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Summary 

Water is a crucial resource for life but only 3% of global water is fresh and this small amount is 

ever decreasing due to unwise human activities. Traditional biological treatments require further 

chemical processing to degrade recalcitrant molecules and the processing of such chemicals 

necessitates large energy inputs and high costs. Heterogeneous photocatalysis provides a green 

solution as it harnesses the power of natural sunlight. 

Titanium dioxide is one of the most extensively studied photocatalysts due to low toxicity, 

chemical stability and low cost. Despite the powerful intrinsic oxidating ability drawbacks in 

commercial titania materials stem from the relatively high band gap energy and low surface 

areas. To overcome this, in this research the aim is to synthesis a novel material which can 

maximize the efficiency of photocatalytic processes applied to depollution of waste water. 

Mesoporous silicas with tunable parameters were employed as supports for the anchoring of 

surface titania species, in order to improve the available active surface area of the catalyst. 

Highly sophisticated analytical techniques common to the fields of surface science and 

heterogeneous catalysis were applied to fully characterize the prepared materials and determine 

structure-function relationships. 

Screening for the photocatalytic activity of the synthesized materials was performed in jacketed 

quartz batch reactor irradiated by a UV-vis light source against common organic dyes. 

Photoactivity of the prepared materials was investigated alongside commercially available 

titania catalysts to act as benchmarks. 

In heterogeneous catalysis it is vital to study the interaction between the surface of the catalyst 

and the probe molecules, including adsorptive and desorptive processes occurring at the solid-

liquid interface. ATR-IR spectroscopy was used to investigate this aspect of our reaction, 

allowing for real time monitoring of reaction kinetics with the use of an innovative flow cell 

chamber, fit with a quartz window allowing for in-situ UV irradiation. 

Keywords 

Advanced oxidation processes (AOPs), waste water treatment, hierarchical photocatalyst, UV-

vis light, ATR-IR spectroscopy.  
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1. Introduction

1.1 Water: the environmental problem  

Over two third of the Earth‘s surface is covered by water but the amount of fresh water available to 

the world population represents only 2.5 % of all water on the planet. It is worth noting that most of 

this fresh water is trapped in glaciers and snowfields, leaving only 0.007 % of the planet‘s fresh 

water available to be used by human beings. The increasing demand for clean water together with 

its scarcity and misuse caused by the expansion of industries, human population swelling and long-

term droughts have become a serious issue worldwide. The World Health Organisation (WHO) 

estimates that over 2.5 billion people have a very limited access to clean water and millions of 

people die every year because of diseases caused by bacteriologically damaged water.[1]  

In 2000 the member states of the United Nations (UN) gathered together to define a series of eight 

time-bound targets, with a deadline of 2015, that have become known as the Millennium 

Development Goals (MDG). Goal 7, to ensure the environmental sustainability, included a target 

that challenged the global community to halve, by 2015, the proportion of people without 

sustainable access to safe drinking water. In 2015, 6.6 billion people use an improved drinking 

water source but despite the achievements of the MDG period, a great deal remains to be done. 

Global water demand is largely influenced by population growth, urbanization, food and energy 

security policies, and macro-economic processes. As the population continues to rise, the number 

of people affected by water stress and water scarcity is expected to rise sharply. Figure 1.1 shows 

the amount of water withdrawal as a percentage of the total available supply, at the national level in 

1995 and in 2025 (projected amounts). Overall, the percentages are expected to rise substantially 

by 2025 

Figure 1.1 World map of the freshwater stress in 1995 and 2025.[2] 
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As the overall demand for water grows, also the quantity of wastewater produced and its overall 

pollution load are continuously increasing worldwide. Over 80% of the world‘s wastewater, and 

over 95% in some least developed countries, is released to the environment without treatment. 

On the 22 March 2017, on the occasion of the World Water Day, the UN released the World Water 

Development Report (WWDR) entitled Wastewater: The Untapped Resource, demonstrating how 

the improvement of wastewater management can generate social, environmental and economic 

benefits essential for sustainable development.[3] One of a few attractive options is the possible 

reuse of onsite rural wastewater or the treated municipal wastewater from treatment plants for 

agricultural and industrial activities.[4, 5] The wastewater problem could be addressed by using 

conventional water treatment methods, but they are highly expensive and energy intensive making 

them largely inaccessible in developing countries. Therefore, highly efficient and low cost water 

treatment technologies must be developed and optimised to address the fresh water shortage. 

1.1.1 Water pollution 

The major sources of water pollution are from human settlements, industrial and agricultural 

activities, which produce a large number of contaminant compounds classified into three main 

groups: 

1. bacteria, virus, protozoa and all agents which cause diseases;

2. inorganic compounds which are water soluble, such as acids, salts and toxic metals

(cadmium, lead, mercury). Radioactive waste also belongs to this group;

3. organic compounds, such as saturated, unsaturated and aromatic hydrocarbons; they

constitute oils, detergents and emulsifiers, plastics and pesticides.

Most of the contaminants are characterized by their persistence, bioaccumulation and toxicity. 

Nowadays water pollution is aggravated by population growth and rapid urbanization and it is 

expected to get worse over coming decades.  

1.1.2 Water quality 

Water quality may be defined by its physical, chemical, and biological properties. Physical 

parameters include colour, odour, temperature, and turbidity. The content of insoluble 

contaminants, such as solids, oils and grease, also fall into this category; solids may be further 

classified into suspended and dissolved solids. Chemical parameters are usually associated with the 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC) 
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and total oxygen demand (TOD); but also with more general properties including salinity, 

hardness, pH, acidity and alkalinity, as well as concentrations of ionized metals such as iron and 

manganese, and anionic species such as chlorides, sulfates, sulfides, nitrates and phosphates. 

Bacteriological parameters include the presence of coliforms, fecal coliforms, specific pathogens, 

and viruses. 

1.2 Water treatments 

1.2.1 Conventional water treatments 

The most common approach to treat water consists in a combination of physical, chemical and 

biological processes. These treatments are divided into preliminary, primary, secondary and tertiary 

and a simple scheme is shown in Figure 1.2. Preliminary treatment is basically mechanical and its 

main function is to protect the downstream equipment and to enhance the efficiency of the 

subsequent stages by removing large materials, suspended or floating solids as sand and wood. 

Primary treatment is designed to eliminate suspended solids by the physical processes of 

sedimentation. Sedimentation removes a good percentage of organic and inorganic pollutants 

which can contribute a high reduction in COD (g.l
-1

). Some organic nitrogen, organic phosphorus 

and heavy metals associated with solids are also removed during primary sedimentation, producing 

a mud potentially contaminated. Colloidal and dissolved compounds are not affected. The effluent 

of primary treatment contains mainly colloidal and dissolved organic and inorganic solids. The 

secondary treatment consists of biological treatment by employing many different types of 

microorganisms in a controlled environment. Generally this stage consists in an aerobic biological 

treatment techniques with the objective to remove the colloidal and dissolved organic matter 

present in the effluent with a removal efficiency of 70- 90% BOD (Biological Oxygen Demand, g.l
-

1
). Tertiary treatment improves the quality of the effluents destroying the remaining organic 

contaminants and no-biodegradable compounds. This stage removes nitrogen, phosphorus and 

brings bacteria down and it generally includes chemical oxidation, reverse osmosis, microfiltration, 

nanofiltration etc. In some cases these techniques are used in combination with primary and 

secondary treatment (i.e: chemical addition in primary and secondary treatment). The most 

common tertiary treatments are briefly described below. 

1. Chlorination has been the most commonly and widely used water treatment method in the 

last decades to decontaminate wastewater streams. This treatment consists in the addition 

of chlorine (Cl2) or hypochlorite (ClO) to water in order to destroy pathogenic 

microorganisms. Unfortunately, this disinfection method generates mutagenic and 

carcinogenic products well-known as disinfection by-products (DBPs).[6] 

2. Membrane reactors assure physical separation of microorganisms, organic and inorganic 

compounds and they intrinsically require small operational energy. However these systems 

are affected by membrane fouling, increasing significantly the hydraulic resistance of the 

system.[7, 8] Therefore the membranes require frequent cleaning and maintenance 

https://en.wikipedia.org/wiki/Hypochlorite
https://en.wikipedia.org/wiki/Disinfection_by-product
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processes, adding significant operational costs. Moreover the output of this process is a 

concentrated stream (i.e. ca 10% volume of treated water) containing active pathogenic 

microorganisms which may cause a significant damage in feed stream or deposition 

place.[8] 

3. Reverse osmosis and nanofiltration can remove dissolved and no-biodegradable

compounds. These processes are based on the implementation of a different pressure to the

two side of a membrane: water can pass throughout the membrane which is impenetrable to

the solute. The membrane cost and the energy consumption to obtain the difference of

pressure, are the main drawback of this process.

4. Ultraviolet (UV) light can be used instead of chlorine because damage to the genetic

structure of bacteria, viruses, and other pathogens making them incapable of reproduction.

The key disadvantages of UV disinfection are the need for frequent lamp maintenance and

replacement, and the need for a highly treated effluent to ensure that the target

microorganisms are not shielded from the UV radiation.

Figure 1.2 Scheme of a conventional waste water treatment 

1.2.1.1 Disadvantages of conventional wastewater treatment plants 

Despite the fact that the commonly used tertiary treatment methods can achieve the legislative 

required standards, they generally require high operational and maintenance costs and intensive 

energy. Another problem is the possible formation of DBPs. As mention before, chlorination, used 

to remove pathogen agents from treated water, leads to the formation, with the natural organic 

compounds of the water (i.e. fulvic and humic acids), of chloride hydrocarbon considered 

carcinogenic. These compounds are generally removed with active carbon which later need to be 

burned, this stage produce chlorine oxides which can form carcinogenic dioxins. Also chemical and 

membrane methods (i.e., ozanation, nanofiltration and reverse osmosis) can generate toxic 

secondary contaminants which are introduced to ecosystems. Therefore, there is a clear need to 
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develop and implement cost-effective and flexible water treatment technologies which can provide 

the complete degradation of the water contaminants. 

1.2.2 Advanced oxidation processes (AOPs) 

Advanced oxidation processes (AOPs) are a class of oxidation techniques, which usually operate at 

or near ambient temperature and pressure,[9] all characterized by the same chemical feature: 

production of hydroxyl (HO
●
) radicals. Hydroxyl radicals are highly reactive species, with little 

selectivity of attack and with rate constants ranging from 10
8
 to 10

9
 M

-1
.s

-1
.[10, 11] These oxidant 

species are effective for the treatment of many compounds in water due to their high oxidation 

strength. The hydroxyl radical‘s oxidation potential (2.80 V) is only surpassed by that of the 

fluorine molecule (Table 1.1). 

Table 1.1 Oxidation potential of some water treatment oxidants.[12] 

Species Symbol Oxidation potential 

/ Volts 

Fluorine F2 3.00 

Hydroxyl radical HO
●
 2.80 

Ozone O3 2.07 

Hydrogen 

peroxide H2O2 1.76 

Permanganate ion MnO4 1.68 

Hypochlorous acid HOCl 1.49 

Chlorine Cl 1.36 

Chlorine dioxide ClO2 0.95 

Oxygen O2 0.40 

It is important to highlights that AOPs do not replace the traditional processes but they can be 

exploited in an integrated approach with biological treatment systems for the oxidative degradation 

of toxic or refractory substances. 

Therefore only wastes with relatively small COD contents (≤ 5 g. l
-1

) can be suitably treated by 

means of advanced oxidation techniques. Higher COD contents would require the consumption of 

too large amounts of expensive reactants. The main advantage of using AOPs is the possibility to 

achieve the complete mineralization of organic contaminants to CO2 and water. Some of these 

technologies employ the UV light in conjunction with other chemical additives to improve the 

efficiency of the process. Among different available AOPs, those driven by light seem to be the 
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most popular technologies for wastewater treatment as shown by the large amount of data available 

in the literature.[13] An example of AOPs classification is offered in Figure 1.3.  

Figure 1.3 Advanced oxidation processes (AOPs) classification. 

Some of the commercially available AOP technologies are: ozonation (O3), hydrogen peroxide 

(H2O2), UV/H2O2 and photocatalysis utilizing either ultraviolet (UV) or solar irradiation with 

titanium dioxide (TiO2). However choose best-performing AOP for water treatment involves the 

evaluation of several parameters, such as: 

- nature and physical-chemical properties of the water (or wet matrix) to treat and the

pollutant to remove together with its biodegradability;

- presence of radical scavengers (i.e. carbonate);[14]

- presence of compounds which absorb UV radiation or suspended solid which can scatter

the irradiated light;[15]

- pH of the solution which can influence the rate of radical generation.[14]

Due to fast development of light related technologies, the photochemical AOPs are positioning 

themselves on a privileged situation to compete with other available technologies. In particular, 

photocatalytic degradation processes, assisted by a semiconductor metal oxide (normally as 

photocatalyst) and oxygen (as primary oxidizing agent), earn increasing importance in the area of 

wastewater treatment as the most emerging destructive technology.[16] 
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1.3 Heterogeneous photocatalysis  

The first contribution for understanding the heterogeneous photocatalytic processes happened in 

1972 with the pioneering research of Fujishima and Honda.[17] They discovered the possibility to 

obtain photocatalytic dissociation of water (water splitting) on TiO2 electrodes. Although the 

primary objective of these studies involved energy applications mainly related to the production of 

hydrogen, this finding opened the frontiers of titania photocatalysis for other type of applications. 

Only four years later, Carey et al.[18] first reported the photocatalytic degradation of organic 

molecules, biphenyl and chlorobiphenyl derivatives, in the presence of TiO2. Over the last decades, 

heterogeous photocatalys has garnered a significant amount of research interest due to the 

extremely wide range of applications, such as: organic synthesis, water splitting, photoreduction, 

hydrogen transfer, metal deposition, disinfection and anti-cancer therapy, water detoxification, 

gaseous pollutant removal, etc.[19, 20] 

 

1.3.1 Definition and mechanism 

In heterogeneous photocatalysis, when a semiconductive material is irradiated with light at proper 

wavelength generates on its surface a series of reductive and oxidative reactions able to produce 

highly reactive species (HO
●
, O

●-
, HO2

●
). The peculiarity of photocatalytic reactions, when 

compared to conventional catalysis, consists in the way the catalyst is activated, with thermal 

activation being replaced by photonic activation. 

Photocatalysts are usually semiconductors, which are materials with electrical properties 

intermediate between those of metals and insulators; this is due to a special configuration of the 

energy levels of electrons in semiconductors.[21] Band theory describes the energy levels of 

electrons within a solid organized in a bands structure, where the highest occupied molecular 

orbital (HOMO) is called valence band (VB) and the lowest unoccupied molecular orbital (LUMO) 

is called conduction band (CB). The energy difference between the bottom of the conduction band 

and the top of the valence band in a semiconductor is called band gap energy (Eg).[22] In 

semiconductors the energy gap lies between 0-4 eV. Materials with zero band-gap are metals or 

semimetals, while those with an energy level gap larger than 4 eV are more frequently known as 

insulators.[22] On Figure 1.4 a scheme of the electronic bands in solids is depicted.  

http://goldbook.iupac.org/C01244.html
http://goldbook.iupac.org/V06589.html
http://goldbook.iupac.org/S05591.html
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Figure 1.4 Relative disposition of the CB (LUMO) and VB (HOMO) for an insulator, a 

semiconductor and a conductor. 

In presence of light a semiconductor is activated when absorbs a photon with energy equal or 

higher than the band gap energy (Ehν ≥ Eg). The absorption leads to a charge separation due to the 

promotion of an electron (e
−
) from the valence band (VB) to the conduction band (CB), thus 

generating in the VB an electronic vacancy or positive hole (h
+
). The hVB

+
 and eCB

−
 are powerful

oxidizing and reducing agents, respectively. This first step is called charge carrier generation. 

(Equation 1.1) 

Equation 1.1 Charge carrier generation 

Figure 1.5 shows the main processes which may occur in the bulk or at the surface of the 

photocatalyst after the electron-hole pair (e
-
 - h

+
) generation (a). In first place the generated carriers 

needs to migrate from the bulk to the surface of the catalyst to be available for the following 

interaction with the other compounds present in the system (b). However these processes must 

compete with the major deactivation processes involving electron/hole recombination, which may 

occur in the bulk or at the surface of the photocatalyst in few nanosecond with simultaneous heat 

dispersion (c-d).[23]  
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Figure 1.5 Main processes occurring on a semiconductor particle: (a) photogeneration of 

electron/hole pair; (b) carriers migration at the surface of the semiconductor; (c-d) electron/ hole 

recombination in the bulk and at surface, respectively. 

Once at the surface the (e
-
- h

+
) can either directly attack the pollutant adsorbed by the catalyst 

surface or generate highly oxidizing species as a consequence of the interaction between the charge 

carriers with adsorbed oxygen and water molecule. Generally the holes mediate the oxidation of 

organic molecules and water by the formation of hydroxyl radicals (HO
●
), and the electrons 

mediate reduction reactions by the formation of superoxide radicals (O2
●-

).[24] The main reactions

can be described by the following equations: 

Equation 1.2 Direct hole attack to the adsorbed subastrate (S) 

(   )

Equation 1.3 Oxidation of adsorbed water by the hole 

(  )

Equation 1.4 Oxidation of surface hydroxyl ion by the hole 

Equation 1.5 Reduction of oxygen by the electron 
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These mechanisms that take place at surface and interfacial areas of the TiO2 catalyst allow the 

degradation of contaminants and one must notice that the main contribution to the photocatalytic 

degradation of organic contaminant in water is given by the formation of highly reactive hydroxyl 

radicals (HO
•
), possible only in the presence of water and dissolved oxygen.[25] 

 

1.3.2 Catalysts for photocatalytic reactions  

The semiconductors that are most commonly used as photocatalysts are oxides or sulfides of the 

transition metals.[26] In the last few decades several semiconductors have been successfully 

reported as photocatalysts for environmental applications, including titanium dioxide (TiO2), zinc 

oxide (ZnO), zirconium dioxide (ZrO2), iron (III) oxide (Fe2O3), cerium oxide (CeO2), tungsten 

trioxide (WO3), zinc sulfide (ZnS), cadmium sulfide (CdS).[27] It is commonly acknowledged that 

a semiconductor photocatalytic material should possess five essential property requirements, which 

are: being photoactive, able to be excited by visible and/or near-UV light, biologically and 

chemically inert (i.e., not prone to photocorrosion), non-toxic and inexpensive.[28]  

Figure 1.6 shows the band gap energies and redox potentials (voltage vs. standard hydrogen 

electrode (NHE) at pH 7) of some of the most common semiconductors used as catalysts. The 

lower edge of the conduction band (grey colour) and upper edge of the valence band (white colour) 

are presented along with the band gap in electron volts. The wider a band gap is the more energy 

(short wavelength) is needed to activate the transfer of electrons between bands. The band gap 

value defines the range of irradiation wavelengths in which the semiconductor is active as 

photocalyst. Furthermore, for organic pollution degradation purposes, the redox potential of 

hydroxyl radicals should lie in its bandgap. 

 

Figure 1.6 Band positions of some typical photocatalysts (at pH= 7 in aqueous solutions).[29] 
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Although these semiconductor have been widely tested as heterogeneous photocatalysts, their use 

for large-scale applications is restricted because of one or more of the following reasons:[26] 

- instability in aqueous medium that leads to the decomposition of the catalyst;

- large band gap that often necessitates the use of UV light;

- high rate of electron-hole recombination.

For example, materials such as CdS has a relatively shorter band gap (2.4 eV), but it is 

insufficiently stable in aqueous media, since it readily undergoes photoanodic corrosion realising 

toxic Cd
2+

 ions in water.[30, 31] Similar behaviour was observed also for WO3 and α-Fe2O3

(hematite), both active in the visible region, but probably because of corrosion show significantly 

low activity in aqueous media.[32] Although ZnO and TiO2 have similar band gap energies (3.2 

eV), the former shows some instability in illuminated aqueous solutions, with formation of 

Zn(OH)2 on the particle surface leading to the deactivation of the catalyst, thus its tendency for 

photodissolution is a problem that affects its efficiency as a photocatalyst.[33, 34] Because it has a 

strong oxidizing power under UV irradiation, high chemical stability, low cost and low toxicity 

TiO2 is the most used photocatalyst for environmental applications. In the next section, a detailed 

description about this remarkable material is presented. 

1.4 Titanium dioxide as photocatalyst 

Titanium dioxide (TiO2) is the most commercially utilised semiconductor material. It was 

discovered in the year 1821, and is reported to be one amongst the top 20 inorganic chemicals of 

industrial importance.[35] Because of its brightness and a very high refractive index it is widely 

used as a pigment to provide whiteness and opacity to paints, plastics, papers, inks, food, etc. TiO2 

is also commonly used in cosmetic and skincare products, and it is present in many types of 

sunblock products to avoid the effect of UV light over the skin. However, despite the vast number 

of applications of TiO2, the most studied and promising is its exceptional photocatalytic response 

for environmental remediation applications.[36] The overall photocatalytic performance of TiO2 

has been suggested to depend on some specific parameters such as phase, crystallinity, particle size 

and surface area.[37] The crystalline phase of TiO2 is one of the most important factors influencing 

its photocatalytic performance and this semiconductor exists in nature as three main crystalline 

polymorphs; anatase, rutile and brookite. Figure 1.7 illustrates the unit cell structures of three TiO2 

crystals. 
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Figure 1.7 Representations of the crystal structures of the commonTiO2 polymorphs: anatase 

(tetragonal, a = 0.3785 nm, c = 0.9513 nm) (a),rutile (tetragonal, a = 0.4593 nm, c = 0.2959 nm) 

(b),and brookite (orthorhombic, a = 0.9181 nm, b = 0.5455 nm, c = 0.5142 nm) (c). Adapted from 

reference [38]. 

Anatase and rutile TiO2, both with tetragonal structure, show different lattice configuration: 

hexagonal close packing (hcp) and cubic close packing (ccp), respectively. In their structures, the 

basic building block consists of a titanium ion (Ti
4+

) surrounded by six oxygen (O
2−

) but in anatase, 

the Ti–O distances are shorter (1.934 and 1.980 Å versus 1.949 and 1.980 Å in rutile) while the Ti–

Ti distances are greater than that in rutile (3.79 and 3.04 Å versus 3.57 and 2.96 Å). These 

differences in lattice structure lead to different electronic band structure and band gap energy, 3.2 

eV for anatase and 3.0 for rutile, thus different photocatalytic behaviours.[39] Despite the higher 

band gap energy, anatase is generally reported to exhibit the greater photocatalytic activity 

compared to rutile.[40, 41] Brookite has an orthorhombic crystal structure and its band gap value is 

3.13 eV.[42] This TiO2 form is quite rare in comparison with the other two and due to its low 

stability and difficulty in preparation it is not yet of commercial interest and it is less common for 

photocatalytic application. Moreover of the three different phases, rutile has been identified as a 

stable form while anatase and brookite are defined as metastable, as they can be transform to rutile 

phase upon calcination at temperatures exceeding ~ 600 
°
C .[40, 43] Thermal treatments allow to 

have mixed titania phases which are also commercially available.  

Degussa P-25 is a successful commercialized TiO2
 
 with a typical phase-mixed structure 

composed of anatase and rutile in a ratio of 4:1.[44] This catalyst is a standard benchmark for 

photocatalytic applications and it has been extensively used in many fields
 
showing in most of 

the applications greater activity compared to pure anatase.[43, 44] Several studies have 

demonstrated that the intimate contact of the two phases can lead to a better response to light 

absorption and charge carrier, enhancement of charge separation and greater interactions at solid-

liquid interface with adsorbed species.[45-47] 

However TiO2 has been reported to be an excellent photocatalyst, there are still several 

limitations which need substantial improvement and that are hindering its large scale 

application. One of the major drawbacks is the narrow photocatalytic region (λ < 400nm)  of 
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TiO2 which has the band gap of ~3.2 eV (corresponding to a wavelength of 388 nm). Thus the 

catalyst results to be active only in the UV region, which is less than 5% of the overall solar 

intensity.[39] The challenge is to avoid the UV lamps as light source and promote the use of visible 

and/or solar light as an alternative economical source of illumination especially for water and waste 

water treatment. Another big limitation is the fast recombination of photogenerated holes and 

electrons that reduces the overall efficiency of the process (low photonic yield). Moreover, since 

heterogenous photocatalysis occurs on the surface of TiO2, mass transfer limitation has to be 

minimized and surface area improved in order to have a good interaction with organic pollutants in 

water. The non-porous structure and the relatively low surface area of commercial TiO2 (i.e. 50 

m
2
.g

-1
 for Degussa P-25) can result in slow photocatalytic degradation rates. Besides, the TiO2 

nanoparticles (~20-30 nm) may undergo aggregation due to the instability of the nanosized particle, 

which may hamper the light incidence on the active centres reducing its catalytic activity.[48] 

Furthermore, in water depollution, the use of suspensions requires a final step to separate the 

photocatalyst from the treated water, which is one of the main challenges in regards to both the 

economic and safety concern.  

 

1.4.1 Trends to improve TiO2 activity  

In the last few decades, there has been a constant investigation to improve the photoactivity of TiO2 

based photocatalysts. The adopted strategies can be summarized as either morphological 

modifications, such as increasing surface area and porosity of the catalyst, or as chemical 

modifications, by incorporation of additional components in the TiO2 structure (i.e. doping, metal 

coating and surface sensitization). Chemical modifications have been widely explored with the aim 

to obtain a visible light active (VLA) TiO2; however the overall efficiency of the photocatalytic 

process can be significantly enhanced by controlling the semiconductor morphology as the activity 

of TiO2 largely depends on its crystal structure, surface area, particle size distribution, porosity and 

hydroxyl density. The approach of the present work is to control the morphology of the catalyst by 

designing TiO2 supported materials, with the objective of obtaining an efficient photodegradation 

system with the following advantages: 

- high specific surface area 

- improved molecular transport/diffusion 

- enhanced light harvesting 

- strong adsorption affinity towards the pollutants 

- good sedimentation ability for catalyst recovery and recycling. 
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1.5 Photocatalyst supports 

Various materials have been explored as supports for TiO2 catalyst particles for the 

photodegradation of pollutants from wastewater. High surface area materials such as silica,[49, 50] 

alumina,[51] zeolites,[52] clays,[53] activated carbon,[54] carbon fibers and carbon nanotubes,[55, 

56] have been used to prepare TiO2-based composite catalysts. Among these materials, silica

supports have been commonly used to simplify the separation of the photocatalyst after the reaction 

from the aqueous media.[49, 57, 58] Moreover strict control of synthesis and preparation 

parameters can be applied, tuning the physical properties of this kind of support; in particular the 

attainable high surface area of silica can markedly improve the catalytic activity by increasing the 

number of active sites for molecules to adsorb and the TiO2 surface readily available for the 

reaction.[59] Many researchers used SBA-15 as a support for photocatalytic applications because 

of its unique properties like large pore size, high surface area, thermal stability and framework 

delocalization capacity by attracting electrons compared to any other silicious porous materials.[60, 

61] 

1.5.1 Porous structure 

According to IUPAC (International Union of Pure and Applied Chemistry) pores can be classified 

into three categories: micropores (below 2 nm in diameter), mesopores (between 2 and 50 nm) and 

macropores (greater than 50 nm).[62] (Figure 1.8) 

Figure 1.8 Classification of porous materials according with the pores size (IUPAC standard). 

1.5.2 Mesoporous SBA-15 

In 1992 researchers of the Mobil Oil Corporation reported the synthesis of a new kind of material 

in the form of ordered mesoporous silica-based and silica-alumina-based families known 

collectively as M41S.[63, 64] The synthesis of M41S is very versatile and allows, by suitably 

varying some synthetic parameters (i.e. pH, temperature) and the type and the concentration of 

some reagents (i.e. surfactant or source of silica), to obtain ordered mesoporous systems 

characterized by different morphological and structural properties. In the 1998 the Stucky group 
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from University of Santa Barbara (CA) produced a mechanically stable, porous silica material with 

well-defined 2D hexagonal structure and large surface area, called SBA-15 (Santa Barbara 

Amorphous). The synthesis of SBA-15 materials by Zhao et al.[65] became one of the most 

promising developments in the research field of this century. Compared with the other member of 

the family of mesoporous materials, the SBA-15 showed enhanced hydrothermal stability with 

thicker silica walls and larger pores,[66, 67] founding a wide range of application such as catalyst 

support.[60, 68] 

SBA-15 is synthesised in acid media (pH ~1) by using a triblock copolymer, as non-ionic structure 

directing agent (SDA),[65] which, during the condensation of the silica precursor, helps the 

formation of the mesostructured network. Block copolymers are amphiphilic molecules, which 

mean they are composed of a hydrophilic and a hydrophobic part, and the ratio between this two 

components influences micelles array, pore shape and architecture.[69] Pluronic P-123 is the 

symmetric triblock copolymer commonly used in the synthesis of SBA-15 as a soft template and it 

is made up from poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) chains (PEO20-

PPO70-PEO20).[65, 70] Firstly, P-123 surfactant is dissolved in acidic aqueous media and, due to its 

amphiphilicity nature, forms micelles in aqueous solutions to lower the free energy in the system. 

The micelles consist of a hydrophobic PPO core surrounded by hydrophilic PEO chains that form a 

corona around the core. Then silica source, normally tetraethylorthosilicate (TEOS) or 

tetramethoxysilane (TMOS), is added to the solution and the alkoxides start to hydrolyses 

(Equation 1.6) and polymerises to form a silica network (Equation 1.7 and Equation 1.8). Both 

steps can be controlled by varying the pH and by adding salts to the aqueous solutions.  

 

                       

Equation 1.6 Hydrolysis of the alkoxide group 

                             

Equation 1.7 Alcohol condensation 

                             

Equation 1.8 Water condensation 

 

The hydrolysis rate changes depending on the nature of the silica precursor; in general, short alkyl 

chains hydrolyse faster than long chains, e.g. TMOS has a faster hydrolysis rate than TEOS. By 

tuning the hydrolysis and condensation rates, the properties of the silica gel can be controlled. The 

silica mesostructure formation mechanism has been discussed in several papers;[63, 69-72] 

however, in all the proposed mechanism, condensation followed by polymerization of silica leads 

to mesostructure and the main difference is the way in which the surfactants interact with the 

inorganic species. At the moment two main theories have been developed. One is based on the 
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liquid crystal templating (LCT) mechanism,[73] suggested by Beck et al. in which the formation of 

SBA-15 is assumed to be similar to the one of MCM-41. In this route the self-assembly process of 

the template results the formation of liquid crystal mesophase. Micelles start as spherical and 

arrange themselves in a hexagonal pattern, when the silica precursor is added it starts to condense 

on them to form the silica walls. On the other hand, Flodström et al.[74, 75] proposed a 

‗cooperative self-assembly‘ mechanism which takes place between the template and the mineral 

network precursor yielding the organised mesostructure. Silica hydrolysis followed by 

polymerisation generates attractive forces between micelles, which eventually coalesce forming 

cylindrical aggregates defining the 2D hexagonal pattern.[75] Among the different proposed 

approaches, this second mechanism is the most popular one adopted for the SBA-15 formation. 

Once this step is completed, the temperature is increased usually between 80– 130 °C and the 

hydrothermal treatment begins. The effect of this step is twofold: first, following the formation of 

the hexagonal structure, the PEO chains are trapped into the silica network [76, 77] and they are the 

source for the micropores in the final material; secondly hydrothermal treatment decreases the 

shrinkage of the silica walls upon calcination. The final step of the synthesis is the removal of the 

surfactants and calcination is the most common way to remove it from SBA-15. During the 

calcination, which is performed in air, the material is heated to 550 ˚C using a slow ramp rate (rr ~1 

°C.min
-1

) to avoid damaging the mesoporous architecture and this temperature is held for 5 h before

the material is cooled down to room temperature. Schematic formation mechanisms of SBA-15 are 

depicted in Figure 1.9. 

Figure 1.9 Schematic stepwise of the two main formation mechanisms of SBA-15: self-assembly 

(a) and cooperative self-assembly (b) route.

1.5.3 Hierarchical SBA-15 

In heterogeneous photocatalysis the advantages of hierarchical structures lead to enhancement of 

the overall photocatalytic efficiency which are summarized in Figure 1.10. 
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Figure 1.10 Advantages of hierarchical nanostructures in heterogeneous photocatalysis. Figure 

adapted from reference. [29] 

In first place, as discussed in the previous section (Section 1.4.1), increasing the surface area of 

semiconductors has been proven to be one of the most efficient approaches for enhancing their 

photocatalytic activity.[61, 78] It is well known that macro-mesoporous materials exhibit smaller 

surface areas compared to materials with only meso- and micropore structure but for the majority 

of them the specific surface area is still considerably high and lies in the range of 100–500 m
2
 

g
1
.[79]

 
Moreover hierarchical macro-mesoporous structures have additional features such as high 

surface area to volume ratio, large accessible surface area and better permeability, which improves 

the number of both adsorption and catalytic sites.[80] Furthermore hierarchical structures with 

meso- and macropores offers excellent transport paths for organic molecule in water, which are 

partially due to the reduced length of the mesopore channels but also to the increasing of accessible 

surface area.[81] Thus the reactant molecules can easily diffuse into the reaction sites and the 

products can also freely move out of them,[82, 83] improving the overall photoactivity of the 

process. Apart from improving surface area and mass transport, increasing of light harvesting has 

also been proven to be one of the most efficient approaches for enhancing photocatalytic activity 

through the fabrication of hierarchical structures.[72, 84] Enhancement of light collection and 

absorption is of great importance for photocatalytic materials and it believed to be due to the so-

called light-scattering effects, which lead to a significant improvement in light trapping within the 

solid structure increasing the probability of light absorption.[81, 85] In addition, ordered 

macroporous materials can influence the propagation and velocity of electromagnetic radiation due 

to the modular variation in refractive index within their architecture which can be exploited to trap 

light and increase absorption to enhance the photocatalytic efficiency. This material characterized 

by periodic 1D, 2D or 3D structures are well known as photonic crystals (PCs) and they show two 

important features. The first is the existence of a photonic band gap (PBG), that is, a range of 

forbidden frequencies. Photons within this particular energy region cannot propagate through the 
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crystal and are, consequently, reflected (light trapping). The second is the slow photon effect which 

can actually improve the effective absorption of photons by reducing their velocity within the 

lattice of the PC. If the band gap of the semiconductor material is overlap with the edge of the 

PBG, increased photon absorption is predicted.[86] Photonic crystal based photocatalyst will be 

discussed further in Chapter 4. 

So far, a great number of hierarchical semiconductors have been designed and synthesized and 

many attempts have been made to obtain a photocatalyst with highly controlled hierarchical 

morphologies, introducing in ordered mesostructures large templates such as polystyrene 

beads,[87-89]polymer emulsions,[90-92]and silica spheres.[93] In this work polystyrene (PS) beads 

of size 200 – 600 nm were used as hard templates, in order to obtain macropore structures with 

periodicities ranging from around 180 – 500 nm. Thus hierarchical macroporous-mesoporous SBA-

15 (MM-SBA-15) has been prepared using a dual templating method of liquid crystal surfactants to 

form the mesopores, and a polystyrene bead template which is calcined to leave behind 

macropores.[94] As discussed above (Section 1.5.2) a large number of studies have been carried 

out to investigate the formation of mesostructures on the basis of surfactant self-assembly and its 

interactions with inorganic species and two mechanisms are generally accepted: true liquid crystal 

templating (TLCT)[95] and cooperative liquid-crystal template. For the fabrication of MM-SBA-

15, the used concentration of surfactant was so high that under the synthesis conditions (pH and 

temperature) a lyotropic liquid crystalline phase is formed without requiring the presence of silica 

precursor. This is typically described as a TLCT strategy for the SBA-15 synthesis. Macropores 

were introduced adding polystyrene beads during the templating of the mesopore network.[95] A 

general preparative route for the formation of hierarchical MM-SBA-15 through TLCT is reported 

in Figure 1.11. First, surfactant molecules assemble to form regular micellar array leading to the 

formation of micelle liquid crystals. Then the silica precursor (TMOS) and the hard template (PS 

beads) were added and the condensation of inorganic silica precursor over the micelle liquid 

crystals and the polystyrene spheres leads to formation of macro-mesostructure, the precursor 

infiltration was followed by removal of methanol under vacuum. Finally, removal by calcination of 

the surfactant micelle and PD beads templates gives the mesoporous silica structures.[69, 96, 97] 

Figure 1.11 Liquid crystal templating route to form macro-mesoporous silica using P-123 as soft 

template for the mesophase and polystyrene beads to introduce a macropore network. 
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1.6 Probe molecules  

1.6.1 Organic dyes  

Large quantities of highly coloured and toxic dye effluents are produced from different industries 

all around the world and extensive studies have been conducted on dyes degradation in aqueous 

system because. The release of these untreated effluents can cause serious pollution to environment 

and aquatic organisms.[98, 99] Dyes are usually the first contaminant to be recognized in industrial 

wastewater due to their high visibility even in very small concentrations (< 1 ppm).[100] and 

colour removal is the most complex and difficult task in water treatment. They are used in many 

industries like textile, paper, plastic, leather, ceramic, cosmetics, ink, food processing etc.[101] 

There are many classes of dyes commercially available and many ways to classify them. However 

the most appropriate system for the classification of dyes is by their chemical structure, which 

determines the colour, properties and uses of dyes, and provides the only rational basis of a 

classification of these compounds.[102] 

In the field of photocatalysis the most studied dyes are the thiazine dyes (i.e. methylene blue), the 

xanthenes (i.e. rhodamine B) and the azo dyes (i.e. methyl orange). Azo dyes are by far the most 

important class, accounting for over 50-70% of all market of dyes. These contain one or more azo 

bonds (-N=N-) in their structure.[103] In this work, the photocatalytic test were performed using 

methyl orange (MO) as test compound, i.e. the photocatalytic activity of the synthesized TiO2 

based catalysts was tested based on the photodegradation rates of methyl orange solutions under 

UV-vis irradiation. This dye is one of the most stable azo dyes under irradiation and the results 

revealed that the percentage of MO molecules decomposed was actually due to the photoactivity of 

catalysts in solution and not to direct photolysis of the target compound. Methyl Orange is a very 

intensely colored compound and is commonly used in dyeing and printing textiles industry. 

Its molecular formula is C14H14N3NaO3S with molar mass of 327.33 g.mol
-1

, and its molecular 

structure is shown in Table 1.2 (the molecular size was evaluated with Chemdraw3D software). 

 

Table 1.2 Methyl Orange properties. 

 

 

The photocatalytic reactions were followed by decolorization of MO aqueous solution. In azo dyes, 

colour disappearance usually reflects an attack on the azo bond (-N=N-) which strongly adsorb 

Name Chemical structure Size Molecular weight Density Absorption λmax

 / nm / g.mol
-1

/ g.cm
-3

 / nm

Methyl orange 1.54 327.33 1.28 464
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light at 464 nm; thus the disappearance of this peak in the UV-vis absorption spectra can be easily 

followed by spectrophotometric measurements.[104] It is believed that hydroxyl radicals play an 

essential role in the fission of the –N=N– conjugated system, as the double bound in azo dyes is 

mainly vulnerable to electrophilic attack by highly reactive radicals.[105] The reaction usually 

proceeds with the opening of the aromatic rings.[106, 107] Therefore, aromatic amines or phenolic 

compounds are often observed as intermediate products. The ring opening yields a variety of 

carboxylic acids, which eventually decarboxylate by the photo-Kolbe reaction to CO2.[108] 

However there are two mechanisms generally accepted regarding photocatalyzed dye degradation 

reactions. The first possible route is the indirect mechanism for dye degradation in presence of UV-

active catalyst, which consisted of photon absorption by the photocatalyst followed by carrier 

generation and formation of active species on catalyst surface (hydroxyl radicals, superoxide 

radicals, hydroperoxyl radicals). Moreover both oxidation and reduction of dye can commonly take 

place on the surface of the photoexcited semiconductor photocatalyst.[109] The main reactions 

responsible of indirect dye degradation are represented by the equations below.  

Equation 1.9 Hydroxyl radical attack 

Equation 1.10 Direct hole attack to dye 

Equation 1.11 Direct electron attack to dye 

The second route is a self-sensitization (or direct) mechanism, which involves the dye excitation 

under visible light photon (λ > 400 nm) from the ground state (Dye) to an excited state (Dye*). 

This excited state dye is further converted into an unstable dye cation radical (Dye
●+

) by an 

electron injection into the conduction band of TiO2.[110] These trapped electrons located in the CB 

can react with the dissolved oxygen promoting the formation of superoxide radical anions (O2
●-

)

which in turn result into hydroxyl radicals. These HO
●
 radicals result to be the mainly responsible 

for the oxidation of the dye and the other organic product in the system.[111] The overall direct 

mechanism is represented in Figure 1.12. 



44 

Figure 1.12 Pictorial representation of direct dye degradation process. 

According to many studies, the first described mechanism is generally prevalent over the self-

sensitization route with a much more pronounced and faster contribution to the dye degradation 

process.[112]  

1.6.2 Carboxylic acids 

Carboxylic acids are classified by the chemical structure R-COOH and, depending on the kind of 

substituents group (R), they can have different physical and chemical properties. In particular, 

aliphatic and aromatic carboxylic acids are widely used in various chemical process industries and, 

due to the environmental restrictions and the potential hazardous effects on flora and fauna, they 

need to be removed from the industrial effluents before disposal to natural water bodies. Treatment 

of waste water containing most widely-used industrial organic acids such as formic acid, acetic 

acid and propionic acid has been recognized as a significant expense to the industry and 

environment.[113] These carboxylic acids are fundamental materials in the chemical industry and 

are most widely used in the field of food and beverages as an acidulant and also in pharmaceutical 

and chemical industries (i.e. dye- and paint-producing, petrochemical and pigment industries).[114] 

Several procedures and techniques have been adopted for degradation and mineralization of short-

chain carboxylic acids from contaminated waters and heterogeneous phtotocatalysis using TiO2 

under UV light irradiation has been one of the most extensively studied techniques.[115] However 

the details of the photodegradation mechanism of carboxylic acid in liquid phase is not entirely 

clear yet, even in the cases of most simple saturated straight-chain carboxylic acids with less than 

five carbon atoms.[108, 116]  

In this work propanoic acid (C3H6O2) was chosen as model substrate in order to explore the 

photodegradation mechanism over different TiO2 phases under UV LED irradiation. Adsorption 

and photodecomposition of propanoic acid were investigated combining studies in flow and batch 
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system using in-situ spectroscopy techniques and analytical methods to clarify the effect of 

interactions at solid-liquid interface and the degradation reaction mechanism. Propanoic acid was 

choose as model substrate for these experiments as it meet some important criteria, such as being 

soluble in water, stable under UV irradiation (no photolysis), easy to detect by UV and IR 

spectroscopy techniques. Moreover its main degradation product is acetic acid which is stable 

enough to achieve high concentration in solution to be readily detected. Molecular formula and 

general proprieties of propanoic acid are reported in Table 1.3. 

 

Table 1.3 Propanoic acid properties. 

 

 

Furthermore the understanding of the photodegradation mechanism of carboxylic acids is important 

because, in spite of the complexity of initial organic pollutants in waste water, in TiO2 

photocatalyzed processes, these compounds are always observed to accumulate and account for the 

majority of converted initial substrates besides CO2.[117] It is generally accepted that the 

photodecomposition of carboxylic acids is usually initiated via two main routes. The first route is 

the decarboxylation by means of so-called photo-Kolbe mechanism [118], which is exclusively 

originated from hole oxidation and it consists on the loss of the carboxylic group released as CO2 

and the formation of a carbon centred radical ( ●
). A second possible route involves the 

hydroxylation by means of generated hydroxyl radicals followed by Kolbe‘s decarboxylation. In 

this case the first HO
●
 attack generates an alkyl radical and a water molecule. The possible 

initiation reactions of carboxylic acids degradation are represented by the equations below.  

 

          
          

  

Equation 1.12 Photo-Kolbe mechanism 

                         

Equation 1.13 Hydroxyl radical attack 

 

After one of these initial steps the reaction can evolve in different ways based on the experimental 

conditions (i.e. presence of oxygen) and the nature of the catalyst.[119, 120] In all the previous 

Name Chemical structure Size Molecular weight Density Acidity

 / nm / g.mol
-1

/ g.cm
-3

/ pKa

Propanoic acid 0.37 74.08 0.98 4.88
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reports the subject of surface adsorption of propionic acid and its relation to photoreactivity were 

hardly discussed.[121-123] Without knowing the surface adsorption, the adsorbed species directly 

involved in photoreactions may not be exactly assigned. In this thesis a detailed investigation of 

reaction pathway of propanoic acid over TiO2 is presented in Chapter 5. 

 

1.7 Thesis aim  

As outlined earlier in this chapter, heterogeneous photocatalysis offers many advantages on 

removal of pollutants present in wastewaters and the need for developing an economical and 

effective immobilized titania photocatalyst has driven this research. The overall aim of this work 

was to investigate the optimal strategy to synthesize a smart photocatalyst tuning its structural and 

optical properties. The synthesized TiO2 based catalysts were characterized and then the catalytic 

performances tested on photo-oxidation of organic dye in water under UV-vis light. 

The first part of this work was focused on the controlling of the structural proprieties of the host 

support with high surface area. Composite photocatalysts consisting of semiconductor 

nanoparticles dispersed on ordered silica hosts were the first material to be studied. TiO2-coated 

mesoporous SBA-15 was fabricated varying two main parameters: pores size of SBA-15 and then 

the TiO2 loading. The development of a composite material with high surface area was thought to 

be an interesting and promising avenue. 

The following step was to improve the optical proprieties of the photocatalyst distributing TiO2 

nanoparticles in photonic hosts with high surface area. Hierarchical SBA-15 with ordered macro-

mesoporous architecture was fabricated from polystyrene sphere templates, with a range of stop 

bands in the visible region obtained varying the macropores size and the TiO2 loading. The shift of 

the stop band and the effect of overlap of the stop band position and the band gap of the 

semiconductor on the rate of dye degradation were also analyses and discussed. 

However despite the importance of heterogeneous photocatalysis as strategy for water treatment, 

not enough is known about reactions occurring at the catalytic solid-liquid interface. Shortage of 

information on the molecular level can hinder a more rational design of the catalyst and process. 

For this reason the last part of the presented work has the aim to shed some light on the processes 

occurring at the solid-liquid interface by using in-situ spectroscopy. Photocatalysis by TiO2 was 

probed in situ using propanoic acid as target molecule, in order to identify the adsorption modes on 

the different titania phases and the reaction intermediates not always detectable in solution, because 

their life-cycle can be restricted to the interface. In this thesis, ATR IR technique is used to probe 

the solid-liquid interface and through the innovative design of the ATR flow cell reactor operando 

photocatalytic studies were performed. 
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2. Experimental 

2.1 Catalyst preparation 

2.1.1 SBA-15 synthesis 

The preparation of SBA-15 was achieved using an established literature procedure by Zhao et al.[1] 

The SBA-15 has been synthesized by using  a 2.6 wt. % solution of Pluronic P-123 triblock 

copolymers (poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (Sigma Aldrich), 

dissolved in acidic solution 1.6 M of hydrochloric acid (32%wt HCL, Sigma Aldrich) with a pH=1. 

The dissolved P-123 forms micelles that are suitable as soft templates to make structured 

mesoporous materials. The solution was prepared in a sealed flask and stirred for 2 hours, at 500 

rpm and 35°C. Tetraethyl orthoxysilicate (TEOS) was then added to the mixture as silica source at 

a molar ratio of 60:1[TEOS]: [P-123] and stirred for an additional 24 hours under the same 

conditions. 

Three batches were made with identical methods up until this step. The pore size and the thickness 

of the silica wall can be adjusted by varying the aging temperature. Therefore, three mixtures were 

aged at 80,100 and 120 °C for 24 hours in an oven in a sealed flask. The solids were recovered 

from each mixture by filtration, washed with ethanol and dried in the oven at 80 °C overnight. 

Removal of the P-123 framework was performed by calcination at 500 °C in a muffle furnace for 6 

hours with a ramp rate of 1 °C.min
-1

. 

 

2.1.2 Polystyrene (PS) beads synthesis 

The emulsion polymerisation approach by Vaudreuil and co-workers [2] was adopted to generate 

monodisperse polystyrene (PS) beads. Polystyrene beads will be employed as a hard template to 

introduce macropores into the framework of SBA-15. The reactants for this synthesis procedure 

were styrene as main monomer, divinylbenzene as co-monomer and potassium persulfate as the 

initiator of the reaction. The reaction was performed on a large scale in a 2 L jacketed Radleys’ 

reactor ready system at 90°C. The deionised water (1.275 L) was first introduced in the vessel 

flask, along with a condenser, thermocouple and a nitrogen line at 1.5 bar pressure under stirring at 

300 rpm and the reactor was left outgassing at room temperature for overnight. In order to fully 

extract polymerisation inhibitors from the as-supplied monomer reagents, Styrene (Sigma Aldrich, 

140 ml) and divinylbenzene (Sigma Aldrich, 27 ml) were washed three times with 0.1M NaOH and 

another three times with deionised water (using about the same volume of the monomer) and then 

added to the reaction vessel. Potassium persulfate (Sigma Aldrich, 0.35 g) was dissolved in 

deionized water (20 ml) at 80 °C. After 30 minutes of stirring at 300 rpm in the reactor at 90 °C, 

the potassium persulfate solution was added. After stirring under N2 for 22 hours, the resultant 
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solid was recovered and separated by centrifugation at 8000 rpm for 3 hours. The beads were dried 

overnight at 80 °C, yielding approximately 70 grams.  

 

2.1.3 TLCT macro-mesoporous SBA-15 synthesis  

Macro-mesoporous SBA-15 (MM-SBA-15) was synthesised using the true liquid crystal template 

(TLCT) method which included the P-123 as soft template to obtain the mesophase and a hard 

macropore template of polystyrene spheres. The hierarchical material was obtained using an 

adapted protocol of Attard et al.[3] Pluronic P-123 (2 g) was mixed with hydrochloric acid 

acidified water (pH 2, 2 g, 2M) and sonicated for 3 hours at 40 °C to yield a homogeneous gel. The 

sol-gel exhibits a hexagonal mesophase. Tetramethoxysilane (TMOS), used as silica source, was 

then added (1.02 cm
3
 1:4 mole ratio to H2O) and mixed for 10 minutes to form a homogeneous 

liquid. Polystyrene beads (6 g, synthesis described in Section 2.1.2) were then added to the liquid. 

The evolved methanol was removed under a light vacuum (0.12 bar) at 40 °C to form a viscous gel. 

The gel was aged for 24 hours at room temperature to complete condensation, before a calcination 

treatment at 500 °C for 6 hours in air (ramp rate 3 °C min
-1

). A successful synthesis produces 

approximately 2.0 g of silica support (white solid).  

 

2.1.4 Titania grafting 

The grafting of titania was achieved using a modified procedure by Landau et al[4] in which 

triethylamine (TEA, Sigma Aldrich) was used to activate surface silanols on the silica and allow 

the reaction to proceed at lower temperatures (85 °C). The synthetic procedure involved mixing 

titanium isopropoxide (TTIP, Sigma-Aldrich) in anhydrous toluene (Sigma-Aldrich, water content 

< 0.002%) in the presence of TEA with SBA-15 or MM-SBA-15 material under stirring at 85 ºC 

for 6 hours and under nitrogen flow. The procedure was conducted under an inert environment as 

the employed Ti precursor, titanium isopropoxide, hydrolyzes instantly upon contact with moisture 

forming large titania particles in the presence of water rather than the intended uniform coating. 

The concentration of titanium isopropoxide in toluene was 145 g.l
-1

, the molar ratio between TTIP 

and SBA-15 was fixed at 3.5 and the mass ratio TEA / SBA-15 at 1.5. 

After the reaction, the solid was separated by filtration, washed with toluene (300 ml) and inserted 

in a 0.5 wt% water-ethanol solution under stirring for 24 hours for the final re-hydratation of the 

grafted surface. The resultant solid was washed with ethanol (150 ml), dried in an oven to 120 °C 

and calcined raising the temperature for 1 h at 250 ºC, 400 ºC and finally for 4 h at 500 ºC. Upon 

completion of the calcination procedure, TiO2 would then be grafted on the surface.   
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2.2 Catalyst characterization 

2.2.1 Inductively coupled plasma optical emission spectroscopy (ICP-OES) 

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was employed to analyse the 

bulk composition of the TiO2 based materials. ICP-OES is a technique in which the composition of 

elements in samples can be determined using plasma and a spectrometer. 

Solid samples were dissolved or digested using a combination of acids, usually metal ions in 10 wt. 

% HNO3, in a closed microwave system, thus retaining potentially volatile analyte species. A 

peristaltic pump sends the resulting sample solution to a nebuliser and then into the core of argon 

plasma, which is created through electromagnetic induction and where temperatures of 

approximately 10000°C are attained. Thus, sample atoms break up in ions, lose electrons and 

recombine in the plasma, generating radiations at the characteristic wavelengths of the involved 

element, analysed in an adequate optical chamber. Calibration curves, obtained via different 

concentration standards, allow quantification of the unknown concentration in the analysed 

solution. 

Instrument and analysis specification: 

ICP- OES was performed using Thermo iCAP 7000 ICP-OES and a calibrated to an elemental 

standard (Sigma Aldrich, 1000 ppm) made up to give concentrations of 1, 10, 25, 50 and 100 ppm. 

Samples were digested in nitric in a microwave digester prior analysis. 

 

2.2.2 X-ray fluorescence spectroscopy (XRF) 

X-ray fluorescence (XRF) is a non-destructive analytical technique used to determine the elemental 

composition of the synthesised materials.  

The solid sample was irradiated with high energy X-rays from the controlled X-ray tube. X-rays 

with sufficiently high energy interact with atoms in their ground state causing emission of core 

electron, which leave behind an electron hole. The hole in the lower energy shell decreases atomic 

stability, which is overcome by the demotion of a high energy shell electron to the hole (demoted 

electron); this process generates excess energy, which is relised as a secondary (or fluorescent) X-

ray photon.[5] The energy of this X-ray is equal to the specific difference in energy between two 

quantum states of the electron and the XRF analysis is based on the measurement of this energy. 

Each of the elements present in the sample produces a set of characteristic fluorescent X-rays 

(‘finger print’) that is unique for that specific element. The result of this analysis is a graphical 

representation of X-ray intensity peaks as function of energy peaks. The peak energy identify the 
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element (qualitative analysis) and the peak heigh/intensity is generally indicative of its 

concentration (quantitative analysis). Emission lines in the XRF spectra typically identify K-L and 

L-M transitions, according to IUPAC nomenclature, as shown in Figure 2.1.  

Figure 2.1 Illustrative representation of X-ray fluorescence mechanism 

Instrument specification: 

XRF analysis was carried out via X-ray fluorescence on a Bruker S8 Tiger instrument, with the 

mass percentage of each element determined by SPECTRA software.  

2.2.3 Powder X-ray diffraction (XRD) 

Powder X-ray diffraction (XRD) is a non-destructive analytical technique, which due to the 

wavelengths within the Ǻngstrøm range, can be used for phase identification of a crystalline 

material and can provide information on unit cell dimensions.[6]  

This technique is based on the fact that when X-rays interact with a crystalline substance, a 

diffraction pattern can be obtained because of the similarity in the distance between atoms and X-

ray wavelengths. An X-ray beam is projected towards the sample and the detector moves around a 

set angle, covering a range of 2θ values which are of interest. X-ray diffraction patterns result from 

the constructive and destructive interference of monochromatic X-rays upon scattering within a 

crystal lattice. The atoms in a crystalline material are arranged in a regular motif, resulting in 

planes of atoms which will scatter the incoming X-rays by different amounts depending on the 

plane spacing (d) (Figure 2.2 ). 
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Figure 2.2 Constructive and destructive interference of X-ray photons (a); schematic of X-ray 

interaction with a crystal lattice (b). 

According to Bragg’s law, the angle at which the X-ray is diffracted is dependent on the 

wavelength of the x-ray beam and the distance between lattice planes. This is mathematically 

explained by Bragg’s equation (Equation 2.1):[7] 

Equation 2.1 Bragg’s equation. 

Where n is an order of reflection (multiplication integer), λ is the wavelength of the x-ray incident 

source (λcu = 0.154nm), θ is the diffraction Bragg’s angle and d is the lattice spacing. 

Upon calculation of layer spacing, the unit cell size (or pore spacing) could be calculated using the 

following equation derived from Pythagoras theorem: (Equation 2.2) 

√ 

Equation 2.2 Pythagoras theorem. 

Furthermore, as it is illustrated in Figure 2.3, if the pore diameter is measured (for example, by 

means of N2 porosimetry) the wall thickness (twall) could be calculated by subtracting pore diameter 

from unit cell size.  
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Figure 2.3 Schematic representation of cross sectional SBA-15 pore channels, layer spacing and 

unit cell 

Determination of averaged sizes of the crystalline particles in a solid material can also be obtained 

for the most intense peaks in the patterns using the Scherrer formula.[8, 9] In this equation the 

width of an individual X-ray reflection is inversely related to the size of the crystallites (Equation 

2.3): 

Equation 2.3 Scherrer equation 

where L = crystallite size (nm), B = FWHM of diffraction peak, S = 0.15 (systematic broadening 

caused by diffractometer), θ is the Bragg angle, k is known as the shape factor and λ is the 

wavelength of the X-ray. For this work, shape factor used is 0.9, which assumes roughly spherical 

particles. The wavelength λ for the X ray radiation produced by the copper tube is 0.154 nm. 

Instrument specification: 

XRD patterns were recorded on a Bruker D8 Advance diffractometer fitted with a LynxEye high-

speed strip detector, both using Cu Kα (1.54 Ǻ) sources with a nickel filter, calibrated against 

Quartz SiO2 standards. Low angle patterns were recorded over a range of 2θ = 0.3-8° (step size 

0.01°, scan speed 0.014°.s
-1
) and wide angle patterns over a range of 2θ = 25-75° (step size 0.02°, 

scan speed 0.020°.s
-1

). 
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2.2.4 X-ray photoemission spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a surface sensitive, analytical technique that provides 

information regarding elemental composition, oxidation state, and local elemental environment of a 

wide array of materials. 

In XPS analysis, the sample to be studied is exposed to an X-ray photon beam. Usually, the Kα 

emission of Al (hν = 1486.6 eV) or Mg (hν = 1253.6 eV) are used.[10] As a result of this impact, a 

photoelectron is ejected leaving behind a core hole. (Figure 2.4) This creates an excited ionic state, 

which then relaxes into the final ground state as outer electrons fill the core holes.[11] The binding 

energy of a core electron is affected by chemical bonding and changes in oxidation state of the 

atom which results in a chemical shift in the detected photoelectron kinetic energy. In other words, 

if the positive charge on the atom is increased through electron withdrawing species bound to the 

surface or increased oxidation state, the binding energy of the core electron is also increased.[12] 

Figure 2.4 Graphical representation of photoelectron ejection. 

The kinetic energies of released photoelectrons can be measured and the binding energies 

calculated using Equation 2.4: 

– ø

Equation 2.4 Kinetic energy. 

where hν is the energy of the incoming photon, EB the initial binding energy, ø the work-function 

of the spectrometer. 

The calculated binding energies can be referenced to a database of standards from the National 

Institute of Standards and Technology (NIST) photoelectron spectroscopy database to determine 
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chemical identity and garner information regarding chemical environment.[13] The final 

appearance of the XPS spectrum is greatly affected by the orbital in which a photoelectron is 

generated. When emission occurs from a non-s orbital (Ɩ > 0), spin coupling interactions between 

orbital angular momentum (Ɩ) and the spin of the ejected electron (s) arise, the sum of which is 

known as the total angular momentum (j). (Equation 2.5) 

 

      

Equation 2.5 Total angular momentum. 

 

As the spin of the electron can be clockwise (+ ½) or anti-clockwise (- ½), two j values are 

produced. s orbitals do not possess any distinct orbital angular momentum (Ɩ =0), thus appearing as 

singlet peaks, but for all other orbitals the effect of spin coupling splits the resultant XPS peak into 

doublet form. These new peaks have a defined ratio equal to 2 j + 1. For example, if observing 

photoemission from a 2p orbital, for which the orbital angular momentum, l, is 1, j would be 

calculated to be either 3/2 or 1/2. 

Instrument specification: 

XPS analysis was performed on a Kratos Axis HSi x-ray photoelectron spectrometer fitted with a 

charge neutraliser and magnetic focusing lens employing Al Kα monochromated radiation (1486.6 

eV). Spectral fitting was performed using CasaXPS version 2.3.14. Binding energies were 

corrected to adventitious C 1s at 284.6 eV. Errors were estimated by varying a Shirley background 

across reasonable limits. 

 

2.2.5 Nitrogen porosimetry 

Porosimetry analysis is used to determine textural physical characteristics of materials such as 

surface area, pores diameter and pores volume. 

Nitrogen gas was employed as the probe molecule and added to the free-space above the sample at 

a series of known pressures; the amount of gas adsorbed onto the surface of the sample up to the 

saturation pressure is measured. Vacuum is then applied in known stages, the gas removed and 

desorption of nitrogen is measured, which may result in hysteresis behaviour due to capillary 

condensation. By plotting the amount of adsorbate against the partial pressure of the system, an 

isotherm can be constructed, which can provide information regarding the material structure and 

properties.[14] The gas adsorption isotherms are classified by International Union of Pure and 

Applied Chemistry (IUPAC) into six types,[15] shown in Figure 2.5. 
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Figure 2.5 Six types of gas physisorption isotherms.[14] 

Type I is the Langmuir isotherm commonly observed in microporous materials (e.g. zeolite and 

activated carbon), of which the steep increase of adsorbed quantity at low relative pressure 

indicates that the available microporous volume is occupied. Type-II, and -IV isotherms are 

possible similar materials, in which multi-layer adsorption (starting at B) might occur in the middle 

relative pressure range. Type II is indicative of a non-porous or macroporous material (e.g. 

nonporous alumina and silica), while type IV is typical for mesoporous materials (e.g. mesoporous 

alumina and silica). Type-III and -V isotherms indicate the weak adsorbate-adsorbent interactions. 

The first is the result of stronger adsorbate-adsorbate interactions than adsorbate-adsorbent (e.g. 

graphite/water), the latter of porous materials and materials that have the weak interaction between 

the adsorbate and adsorbent (e.g. activated carbon/water). Types IV and V are characterized by 

presence of hysteresis loop which implies the occurrence of capillary condensation within 

mesopores. Finally type VI exhibits a stepwise profile which might be associated with layer-by-

layer adsorption on a uniform surface.[16] 

Surface areas were calculated using the Brunauer–Emmet–Teller (BET). BET is an extended 

version of the Langmuir adsorption model. Langmuir assumed that energy of adsorption for the 

first monolayer is generally considerably larger than that of the second and higher layers, thus 

forming multilayer is only possible at much higher pressures than the pressure required for 

formation of the first monolayer.[16] According to BET model, the molecules in the first layer 

were assumed to act as sites for the second-layer molecules, and so on to infinite layers. It is also 

assumed that the adsorption behaviour of all layers above the first monolayer is the same.[17] BET 

surface areas were evaluated from the measured of monolayer capacity over the range P/P0 = 0.03–

0.18 and the resultant equation forms a y = mx + c format, as shown in the following equations:. 
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Equation 2.6 BET linear 

P = pressure; P0 = saturation pressure; V = volume adsorbed; Vm = monolayer volume; C = 

multilayer adsorption parameter 

   
 

                    
 

Equation 2.7 Monolayer volume 

  
        

         
   

Equation 2.8 Definition of constant, C 

 

Surface areas are calculated from Equation 2.9 using the monolayer volume, and assume N2 

molecules close pack and occupy 0.162 nm
2
.[17] 

   
     

  
 

Equation 2.9 BET surface area calculation 

 

SA = surface area, Vm = monolayer volume, σ = N2 area; NA = Avogadro number; m = sample 

mass; v = gas molar volume. 

 

Calculation of the mesopore distribution was calculated from the desorption branch of the type IV 

isotherm, applying the Barrett, Joyner and Halenda (BJH) method. This method involves the area 

of the isotherm at relative pressure above 0.2 as it models the formation of multilayers and parallel 

capillary condensation within the pore structure of the material. When P/P0>0.2, a rapid rise in N2 

adsorption is observed as the mesopores saturate by capillary condensation. The pressure required 

for saturation is dependent on the pore diameter and the radius of curvature of the resulting 

meniscus formed by the condensed N2. The quantitative expression of this phenomenon is given by 

Kelvin’s equation[18]: 

 

     
    

  
       (

 

  
) 

Equation 2.10 Kelvin’s equation. 
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where rk is Kelvin radius which represents the radius of curvature of a hemispherical meniscus, γ is 

surface tension of condensed phase at temperature T, vl is the molar volume of the liquid and θ is 

contact angle of liquid with pore wall which is often considered zero assuming perfect wetting. 

 

In particular case when the pore is cylindrical shape, it would be fair to assume that the condensate 

has a hemispherical meniscus with radius of rk. But because there has been already some 

physisorption taken place, rk will not be equal to pore radius, rp. Therefore considering that the 

multilayer has a thickness of t and assuming the contact angle is zero (θ=0), rp can be calculated 

from the following equation: 

 

        

Equation 2.11 Pore radius. 

 

Applying this modification to Kelvin equation based on a cylindrical pore model (Equation 2.11) 

has been a basis for many methods applied for mesopore analysis, including the Barrett–Joyner–

Halenda (BJH) method, which is the simplest and by far the most frequently used.[16] 

 

The volume of micropores has been calculated using method developed by Lippens and de Boer 

which is mostly known as t-plot. Microporosity was assessed using the t-plot method, this assumes 

for a known monolayer volume subsequent adsorbate layer volumes can be calculated.[20] 

Computer modelled expected multi-layer thickness, using parameters for a nonporous reference, is 

plotted against the actual volume adsorbed for corresponding pressures. Extrapolation to the y-axis, 

which dissects at zero if monolayer accessibility is unrestricted, allows micropore volume to be 

determined.[18] 

Instrument specification: 

Quantachrom Nova 4200 instrument at 77 K. After outgassing approximately 80 mg of catalyst 

which was accurately weighed into the sample tube, at 120 °C for at least 2 h. Subsequently, the 

data were processed using NOVAWin software version 2.2. Samples were degassed at 120 °C for 4 

h prior to N2 adsorption at −196 °C. 

 

2.2.6 Diffuse reflectance UV–vis spectroscopy (DRUVS) 

Diffuse reflectance UV–vis spectroscopy (DRUVS) is a bulk technique based on the onset of 

UV/vis spectra that aims to directly measure the band gap energies and the absorption edge of 

nanostructured materials. 
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Diffuse reflectance spectroscopy is based on the interaction between an incident beam and a 

powdered sample, and measured the reflected radiant energy that has been partially absorbed, 

transmitted and partially scattered by the surface of the sample, with no defined angle of reflection. 

(Figure 2.6). The reflectance spectrum of a reference standard, like a white disk of spectralon 

(100% reflected light), should always be recorded prior to that of any other sample. 

Figure 2.6 Schematic of interaction of the incident beam and the sample surface. 

The term band gap refers to the energy difference between the top of the valence band (VB) to the 

bottom of the conduction band (CB); in order for an electron to jump from a VB to a CB, it 

requires a specific minimum amount of energy for the transition, the band gap energy.[19]  

The band gap of a semiconductor is always one of two types, a direct band gap or an indirect band 

gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence 

band are each characterized by a certain crystal momentum (k-vector). In a direct band gap 

semiconductor, the top of the valence band and the bottom of the conduction band occur at the 

same value of momentum, after light absorption an electron can directly emit a photon. If the k-

vector is different between the two bands, the band gap is called indirect; a photon cannot be 

emitted because the electron must pass through an intermediate state and transfer momentum to the 

crystal lattice. However this difference between the two types of band gaps is most important in 

design of optical devices. A diagram illustrating the band gap is shown in Figure 2.7. 

https://en.wikipedia.org/wiki/Band_gap
https://en.wikipedia.org/wiki/Semiconductor
https://en.wikipedia.org/wiki/Conduction_band
https://en.wikipedia.org/wiki/Valence_band
https://en.wikipedia.org/wiki/Valence_band
https://en.wikipedia.org/wiki/Crystal_momentum
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Figure 2.7 Schematic of direct and indirect band gap energy. 

Band gaps were calculated using Equation 2.12: [20, 21] 

Equation 2.12 Band gap evaluation 

where , hν, Eg and A are absorption coefficient, light frequency, band gap, and a proportionality 

constant respectively, and variable η depends on the nature of the optical transition during photon 

absorption. 

For indirect band gap materials such as anatase TiO2, Eg can be estimated from a Tauc plot of 

(hν)
0.5

 versus hν,[22] with the optical absorption coefficient obtained from the Kubelka–Munk 

function obtained from Equation 2.13 below, by fitting a tangent to the band edge as shown in 

Figure 2.8: 

Equation 2.13 Kubelka-Munk function 

where R is the reflectance obtained from the DRUV measurement were performed in diffuse 

reflectance mode.  



71 

 

 

Figure 2.8 UV–vis diffuse reflectance spectra (a) and Tauc plot for indirect semiconductor (b). 

 

Instrument specification: 

Ultraviolet-visible diffuse reflectance measurements have been acquired using a single beam 

Evolution 220 (Thermo Scientific) spectrometer equipped with an Integrating sphere. Optical 

proprieties of the powder sample were determined over the wavelength range 200–800 nm with 

spectralon disk as a standard reference material. 

 

2.2.7 Vibrational spectroscopy 

Vibrational spectroscopy is an energy sensitive method based on periodic changes of dipole 

moments (infrared spectroscopy, IR) or polarizabilities (Raman spectroscopy) caused by molecular 

vibrations of molecules or group of atoms. 

These modes of vibration give rise to: 

 absorption bands (IR) if the sample is irradiates with polychromatic light of suitable 

wavelengths upon changes of the dipole moment 

 scattered light (Raman) if the sample is irradiated with a monochromatic light of a suitable 

wavelength upon a change of the polarizabilities. 

Absorption bands and scattered light have characteristic energies to be determined and analysed. 
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2.2.7.1 Raman spectroscopy 

Raman spectroscopy is an analytical technique that can provide detailed molecular information and 

crystallography information of a sample in non-destructive way. Raman spectroscopy is the 

measurement of the wavelength and intensity of inelastic scattering (or Raman scattering) of 

incident radiation from molecules and occurs when a photon interacts with the electric dipole of the 

molecule causing a change of its polarisability.[23]  

The incident beam is usually a monochromatic light from a laser in the visible, near infrared, or 

near ultraviolet range. The laser light of known energy irradiates the samples and the incident 

photon excites the molecule into a virtual energy state before the photon scatters elastically or 

inelastically. Three different potential outcomes can be identified and are depicted in Figure 2.9. 

 

Figure 2.9 Energy level diagram for Rayleigh and Raman scattering. 

 

When the scattered photon has the same energy of the incoming photon, the scatter is elastic and it 

is also called Rayleigh scatter (a). In Stokes scatter (b), the energy from the photon is absorbed and 

the target molecule is promoted to a higher (virtual) energy state. Some of the energy from the 

incident photon is used by the molecule to excite it to higher level vibrational and rotational states; 

the rest is emitted as a photon of reduced energy. This photon is commonly called the Raman 

photon. Stokes scatter results when the molecule is excited from ground state (ν0) and results in a 

molecule at a higher energy state (ν1). Anti-Stokes scatter (c) results when a molecule in an excited 

state (ν1) is gains energy from the incident photon. It then decays back to a lower energy level, 

ground state (ν0), with the emission of a higher energy photon than the incident radiation. Since 

very few molecules reside in the excited state, Anti-Stokes scatter does not predominate in a 

Raman Spectra.  

https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Ultraviolet
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Electromagnetic radiation from the irradiated sample is collected with a lens and sent through a 

monochromator. Elastic scattered radiation at the wavelength corresponding to Rayleigh scattering 

is filtered out by an optical filter, while the rest of the collected light is dispersed onto a detector. 

As a consequence of light interacting with molecular vibrations the energy of the laser photon 

being shifted up or down and this shift in energy gives information about the vibrational modes in 

the system. 

Instrument specification: 

Raman spectra were obtained on a InVia Raman Microscope Renishaw fitted with a 532 and 633 

nm lasers, and Wire 3.4 software. Data was collected ranging between 100-1200 cm
−1

, employing 

532 nm source and x20 lens magnification; samples were exposed for 10 sec to the beam source, 

recording 50 accumulations at 50 % laser power. 

2.2.7.2 Diffuse reflectance infra-red Fourier transform spectroscopy (DRIFT) 

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) is a surface sensitive infrared 

spectroscopic technique used to probe the bonding mode of surface species. 

The infrared beam is focussed onto the sample where it can interact with the material in several 

different ways. The beam can be scattered or reflected from neighbouring particles in the sample, 

or transmitted through particles, after which the beam can be scattered or reflected once more. 

Infrared radiation absorption causes an excitation of the vibrational modes of surface functional 

groups, either stretching or bending modes, through the adsorption of photons at a specific energy. 

This results in the generation of a dipole moment, which has a bond-specific wavenumber. Random 

orientation in powder sample generates multiple scattering angles, so a parabolic mirror is required 

to focus the reflected thus increasing sensitivity and signal to noise ratios.[24, 25] (Figure 2.10) 

Figure 2.10 Schematic drawing the optical path through the DRIFTS apparatus (a) detail of the 

interaction between the incident beam and the surface of the powder sample (b). 

https://en.wikipedia.org/wiki/Lens_(optics)
https://en.wikipedia.org/wiki/Monochromator
https://en.wikipedia.org/wiki/Rayleigh_scattering


74 

Hooke’s law (Equation 2.14) can be applied in order to ascertain the relationship between the 

frequency (ν) of vibration with the associated bond strength (k) and reduced mass of the target 

functional group (μ).[26] 

√

Equation 2.14 Hooke’s law 

In the Equation 2.15, m1 and m2 indicate the mass of the bonded atoms in grams. 

Equation 2.15 Reduced mass 

Titration of the surface of catalyst with probe molecules is a powerful technique for quantitative 

analysis of surface acidity (and basicity) of solid catalysts. Pyridine is a well-known probe 

molecule for characterization of nature of acid sites by DRIFTS and it was employed in this study 

for the measurement of acid sites density on the metal oxides surface. 

Instrument and analysis specification: 

DRIFT spectra were obtained using a Nicolet Avatar 370 MCT with Smart Collector accessory, 

mid/near infrared source and mercury cadmium telluride (MCT-A) photon detector at -196 °C 

(liquid N2). Samples were diluted with KBr powder (10 wt% in KBr) for analysis then loaded into 

an environmental cell and subjected to additional drying under vacuum at 110 °C for 10 min prior 

to measurements to remove moisture physisorbed during air exposure. Samples were scanned 

between 4000 and 650 cm
-1

 in vacuo at a resolution of 4 cm
-1

.  

Pyridine adsorption was performed by exposure of samples to pyridine vapour in a desiccator 

overnight. Excess physisorbed pyridine was removed in a vacuum oven prior to sample loading in 

the environmental cell, with spectra recorded at 25 °C in vacuo 

2.2.7.3 Attenuated total reflectance spectroscopy (ATR- IR) 

Attenuated total reflectance spectroscopy (ATR) allows qualitative or semi-quantitative analysis of 

samples with little or no sample preparation, which greatly speeds sample analysis and it can be 

used for solid and liquid samples allowing also the analysis at the interface. 

ATR is an internal reflective technique, as the IR beam is coupled into a crystal called internal 

reflecting element (IRE) with high refracting index (nIRE). The IR beam reflects from the internal 
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surface of the IRE and creates an evanascente wave which projects orthogonally into the sample in 

intimate contact with the ATR crystal. 

The refractive index of the crystal and the sample govern the basic phenomenon of the ATR 

tecnique, thus the internal reflection can only occur when the angle of the incident beam θ is larger 

than the critical angle θc. (Equation 2.16) 

( ) 

Equation 2.16 Critical angle 

The sample is in intimate contact with the IRE and has a lower refracting index (nsample < nIRE). 

When θ is larger than the critical angle θc, the light is trapped in the IRE and is reflected one or 

multiple time until the radiation is returned attenuated by the crystal and the sample to the detector. 

This ATR phenomenon is shown graphically in Figure 2.11. 

Figure 2.11 Graphical representation of the interaction between IR beam and the sample with the 

formation of the evanescent wave. 

Equation 2.17 allow to evaluate the penetration depth of the evanascent wave in the sample, as 

function of angles of incidece and the refractive indices of the crystal and sample and the 

wavelength of the radiation: 

 
 ⁄

Equation 2.17 Penetration depth 

where λ is the wavelength of light and θ is the angle of incidence of the IR beam relative to a 

perpendicular from the surface of the crystal. Typical depth of penetration in ATR ranges from 

about 0.5 microns up to about 5 microns depending upon these experimental values. The effective 
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pathlength of the spectrum collected varies with the wavelength of the radiation; typically the 

penetration depth is lower at higher wavenumbers. 

Two configurations of ATR accessory were employed in this work. In a single bounce–ATR, a 

single internal reflection occurs using a diamond prism whereas multi-bounce ATR, undergoes 

multiple internal reflections (up to 20) using special ZnSe prisms. The multiple internal reflections 

produce more intensive spectra by multiple reflections and, hence it is useful for weak absorbers 

and it was employed for in-situ studies at liquid-solid interface, while the single bounce–ATR is 

suitable for strong absorbers and it was used to analyse the interface species of the composites 

catalysts (powder samples). Table 2.1 summarizes some of the properties of these two materials 

used as ATR crystals. 

 

Table 2.1 General properties of ATR crystals 

Material Wave range Refractive index Depth of penetration 
pH range 

  / cm
-1

 (at 1000 cm
-1

) / μm (at 45° and 1000 cm
-1

) 

Diamond 25000-100 2.4 2 1 14 

ZnSe 15000-650 2.4 2 5 9 

 

Instrument specification: 

ATR measurements were performed using a Thermo Scientific Nicolet iS50 spectrometers equiped 

with a single bounce diamond crystal and with a Smart Collector Accessory with horizontal 

multibounce ZnSe crystal, an infrared source and mercury cadmium telluride (MCT-A) photon 

detector cooled to -196 ˚C. Spectra were collected using OMNIC software. 

 

2.2.8 Microscopy analysis 

2.2.8.1 Scanning electron microscopy (SEM) 

Scanning electron microscope (SEM) produces 3D images with resolution of ~2 nm which provide 

information on the topography and morphology of the samples. 

In this technique, an electron beam generated from a tungsten filament (electron gun) situated on 

top of the microscope interacts with the sample surface.[27] Electrons emitted by the gun are 

accelerated, typically by 1-30 kV, and they travel under vacuum passing first through a condenser 

and objective lenses which focus and direct the beam; then through a set of scanning coils and an 

aperture. The scanning coils are a set of lenses which are moving (rastering) the beam with very 

high precision. These electrons hit the sample and lose energy through interactions occurring in 
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multiple ways, generating high energy backscattering electrons, secondary electrons through 

inelastic scattering and X-ray radiation. Secondary electrons are emitted from the surface of the 

sample and recorded by a detector, allowing the producing of the SEM image.[27] The low energy, 

~50 eV, of the secondary electrons means that their escape is impeded and therefore the technique 

is surface sensitive.  

Image contrast is generated from the morphology of the sample: surfaces at 90° angles to the beam 

are brightest and as surfaces tilt towards being parallel to the beam increasingly darker areas are 

observed. This allows the production of a 3-D image of the sample surface. High energy 

backscattered electrons are generated through elastic scattering of the incident electron beam with 

atoms on the sample surface, contributing to the quality of the final image. The higher the atomic 

mass (or Z number) of the interacting nucleus, the stronger the diffraction effect and the brighter 

the image.[27] In this work, SEM has been used to study the successful formation of the 

macropores structure of the TLCT MM-SBA-15. Figure 2.12 shows a schematic explanation about 

the working principles of a SEM microscope. 

Figure 2.12 Illustrative representation of X-ray interaction with the sample surface and the 

different signal emitted. 

Instrument specification: 

Scanning electron microscopy (SEM) images were recorded on a Carl ZEISS SUPRA 55-VP 

operating at 25 kV. Samples were supported on aluminium stubs each backed with carbon tape. 
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2.2.8.2 Scanning transmission electron microscopy (STEM) 

As with SEM, scanning transmission electron microscopy (STEM) utilises a beam of electrons for 

imaging which scans over the sample rastering the surface. However, for the STEM, the high-

energy electron beam is transmitted through the sample and any apparent absorption by the sample 

resulting in a change in transmitted beam intensity.  

After the generation, the accelerated electron beam is adjusted and focused by the condenser lenses. 

An aperture is inserted to remove the wider scattered electrons and the size is chosen by the 

compromise the signal to noise ratio. The electron probe is controlled by the scan coil to scan over 

the selected region of the sample. When the probe strikes onto the sample, the elastically 

transmitted electrons exhibit different angles with the respect of the optical axis.[28] Below the 

sample, the high angle annular dark field (HAADF), bright field (BF) and electron energy loss 

detectors are positioned to collect different electron signal. The first is an annular detector that 

collects the electrons transmitted at higher scattering angles; the second is perpendicular to the 

transmitted beam and collects information about the electrons that leave the sample with a 

relatively low angle compared to the incident beam. On the contrary, an energy dispersive X-ray 

(EDX) detector is placed above the sample to collect the characteristic X-ray emitted from the 

sample. The produced 2D images are black and white and the contrast depended upon several 

variables, including thickness, atomic mass and density of the sample.[29]  

Equation 2.18 Schematic STEM microscope configuration.[30] 
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Instrument and analysis specification: 

High resolution TEM/STEM (HAADF) images were recorded on a JEOL 2100F FEG STEM 

operating at 200 k eV and equipped with a spherical aberration probe corrector (CEOS GmbH) and 

a Bruker XFlash 5030 EDX, with analysis carried out at the University of Birmingham. The 

samples were prepared by supporting a dispersion of the catalyst in ethanol onto a copper grid 

coated  with a holey carbon Cu grid (Agar Scientific Ltd.). The data was processed using ImageJ 

software and Microsoft Excel.  

2.3 Photocatalytic reaction 

2.3.1 Photo-oxidation of methyl orange 

Photocatalytic tests of the TiO2 composites samples for the degradation of the methyl orange (MO) 

dye were carried out at room temperature in a sealed 120 ml quartz photoreactor. Thermostated 

water at 20°C was pumped continuously through the outer jacket of reactor to prevent overheating 

of the reaction mixture. The whole photocatalytic reactor was insulated in a wooden box to prevent 

the escape of harmful radiation and to minimise temperature fluctuations caused by draughts. 

(Figure 2.13)  

Test solutions were prepared by mixing 50 ml of MO solution (15 ppm) and 50 mg of either 

mesoporous and the hierarchical synthesized materials or the commercial TiO2 benchmark to form 

an aqueous dispersion. The obtained suspension was continuously stirred using a magnetic stirring 

bar at 300 rpm. Prior to irradiation, the test solution was kept in the dark for 60 min under constant 

stirring to establish the adsorption-desorption equilibrium. Subsequently, the reaction mixture was 

irradiated by a 200 W Oriel Instruments 66002 Hg-Xe arc lamp for 4 hours. The UV-source was 

placed at a fix distance from the reactor of 43 cm and with an average radiant flux of 25 mW.cm
-2

. 

Aliquots of the reaction mixture (0.5 ml) were periodically withdrawn and centrifuged to separate 

the catalyst, and UV–vis absorption spectra recorded on the filtrate to monitor the extent of MO 

reaction. 
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Figure 2.13 Set up of the photoreactor for dye degradation (a) and detail of MO reaction solution 

during the irradiation time (b). 

Post-reaction, photocatalysts were separated from the aqueous solution by centrifugation (6000 

rpm, 15 min) prior to UV–vis analysis by Evolution 220 (Thermo Scientific) spectrophotometer. 

As MO absorbs light at certain wavelengths with λmax = 464 nm, during the photoreaction the 

degree of degradation was quantified from calibration curves constructed from standards solutions 

prepared at different dye concentrations. (Figure 2.14a) 

The Lambert-Beer law states that the absorbance of a solution is directly proportional to the 

concentration of the absorbing species in the solution and the path length of light. Thus, for a fixed 

path length, UV/Vis spectroscopy can be used to determine the concentration of the dye in a 

solution. The general Lambert-Beer law could be written as the following: 

[
 
]

Equation 2.19 Lambert-Beer law. 

where A is the absorbance, I is the intensity of transmitted light, I0 is the incident intensity, ε is the 

extinction coefficient of the sample (L.mol
-1

.cm
-1

), l is the path length through the sample (cm), and 

[C] is the concentration of the species under consideration (mol.L
-1

). In cases where the path length

is always constant (i.e. cuvette size), the value of ε and L can be combined to a term α called the 

absorption coefficient and the equation for Lambert-Beer’s law suited a linear equation with the 

general form of y = mx. Thus the unknown concentration of samples containing MO is then 

determined by measuring its absorbance and converting the obtained value in concentration using 

the absorption coefficient. (Figure 2.14b) 
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Figure 2.14 UV-vis absorbance spectra of MO standard solutions (a); calibration plot to determine 

the concentration of unknown samples (b). 

Furthermore, initial rate of reactions (r
0
~ ppm MO.h

-1
) were determined from the initial linear 

portion of the profile of conversion (t < 1 h) and the % of degradation was evaluated as below: 

Equation 2.20 Percentage of MO degradation 

2.3.2 Photo-oxidation of propanoic acid 

For studies of propanoic acid adsorption on TiO2 and photo-oxidation mechanisms at solid liquid 

interfaces in-situ a bespoke flow through cell was designed and applied in ATR-IR spectroscopy 

measurements; in parallel a batch reactor was used to test the catalytic performance of the catalysts 

and to detected reaction intermediates in solution. Both reactors were equipped with 365 nm LED 

array. 

2.3.2.1 ATR flow reactor 

The ATR-IR experiments were conducted in a specially designed continuous flow cell, made from 

a horizontal ATR crystal mounted in a plate block. The flow cell was coupled to a 365 nm LED 

array, the top plate has a quartz window to allow light irradiation and sealed channels for external 

temperature controlled fluids to circulate through the cell body and thus control the temperature of 

the assembly. The cell was mounted on an attachment for ATR measurements within the sample 

compartment of a Thermo Scientific Nicolet iS50 FTIR spectrometer equipped with MCT detector. 
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Spectra were recorded at 4 cm
-1

. The ATR crystal for a liquid flow-through cell is made of Zinc 

Selenide (ZnSe) and has trapezoid shape and has dimensions of 80 mm x10 mm x2 mm, resulting 

in 20 reflections for a 45° reflection crystal. The sample compartment was closed and purged with 

nitrogen during the experiments to avoid H2O and CO2 contamination. 

Propanoic acid solution (0.05 mol.l
-1

, pH ≈ 3.5) was passed through the cell and over the TiO2 film

in the dark for 30 min in order to reach equilibrium. The pKa value of propanoic acid is 4.88. The 

spectra were measured at room temperature at a resolution of 4 cm
-1

, using the clean crystal 

spectrum as initial background. Based on the purpose of each experiment, if necessary the internal 

background/reference was changed to allow the more accurate observation of different changes in 

the collected spectra induced by several operative conditions. The spectrum taken as background 

will be always specified. 

Water subtraction and manual baseline corrections were performed to eliminate the strong signal 

due to the solvent and in order to eliminate minor fluctuations due to instrumental instabilities, 

respectively. Figure 2.15 shows the complete set-up of the ATR IR cell with a detail of the UV 

LED array and the base plate with the ZnSe crystal. 

Figure 2.15 Set up of the ATR flow cell for in-situ measurements (right) and detail of the UV array 

and the base plate with the ZnSe crystal (left) 

Irradiation of the sample with UV light was carried out using a UV-LED array comprised of 9 LED 

bulbs in series with emission wavelength of 365 nm. Remote control and monitoring of operative 

conditions were performed using prototype software developed within Bath University, which 

allow the possibility of setting different intensity values in the range from 10 to 100 mW.cm
-2

. 

Measurements related to the intensity were performed using the light meter G&R Labs Model 200 

equipped with a probe which detects light in the wavelength range of 190-550 nm. The power 



83 

settled for the photocatalytic test was ~ 25 mW.cm
-2

. Figure 2.16 shows the results from the light 

intensity test.  

Figure 2.16 Light intensity calibration obtained controlling the emission of the UV array through 

the remote control and measuring the actual intensity with a light meter (a); lightmeter used for the 

measurement (b). 

After long irradiation times, the formation of a precipitate was noticed on the ZnSe crystal; this 

residue could be removed only by polishing the surface with diamond paste.  

It is possible that the attack to the crystal surface is due to the H2Se production linked with the low 

pH of propanoic acid solution. Under irradiation the inorganic compound can partially decompose 

to leave a residue of elemental Se
0
.[31] (Equation 2.21) 

 →   

Equation 2.21 Etching of the ATR crystal. 

Because of the probable attack of the crystal surface, the illumination time was kept to maximum 2 

hours as a compromise to collect enough information of the kinetic degradation process and to 

protect the integrity of the crystal. 

2.3.2.2 Thin film preparation 

Slurry of the catalysts powder was prepared from about 60 mg catalyst and 10 ml water (Milli-Q, 

18 MΩcm). After sonication for 30 min TiO2 thin-films were formed by dropping the slurry onto a 

ZnSe crystal. The solvent was allowed to evaporate in a vacuum oven for 2 hours at 40 °C. After 

drying, loose catalyst particles were removed by gentle stream of water over the IRE. The 

procedure was repeated two times. Following the final drying step, the film was ready for use. A 
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new catalyst coating was prepared for each experiment. Figure 2.17 shows the crystal before (left) 

and after (right) the coating.  

Figure 2.17 ZnSe crystal before (left) and after coating (right) with the TiO2 thin film. 

2.3.2.3 Batch reactor 

In parallel with the ATR in-situ studies the photocatalytic tests of propanoic acid degradation were 

also performed in a batch reactor. The employed reactor is a double-walled pyrex reactor (ca. 500 

ml) mounted with an outlet and an inlet port allowing water circulation and temperature control (20

± 1 ◦C). Irradiation was provided by a UV-LED bench comprised of 36 LED bulbs with emission 

wavelength of 365 nm and designed and built in the same way of the LED array of the ATR flow 

cell in order to have the same light source and comparable results. Figure 2.18 shows the actual 

set-up of the batch reactor used for photocatalytic tests. 
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Figure 2.18 Batch photoreactor (a) and detail of the UV array (b). 

The initial concentrations of the substrate and the mass of catalyst were constant in all the 

experiments (5 mM propanoic acid and 0.5 g.L
−3

 of catalyst). During the degradation process, 

samples were withdrawn periodically and filtered prior to analysis on an Agilent 1200 series HPLC 

equipped with RI and diode array detectors and a Hi-Plex H column for analysis. A 5 mM aqueous 

solution of sulphuric acid was used as the eluent phase, with a flow rate of 0.6 ml min
-1

 and 65 °C 

column temperature. Product yields were calculated from response factors determined from multi-

point calibration curves. List of compounds that the HPLC was calibrated for and their response 

factors are given in Table 2.2. A representation of typical calibration curves is shown on Figure 

2.19. 

Table 2.2 List of compounds detected by refractive index detector on HPLC 

Compound Detector Retention time Response factor 

min M (nRIU.s)
-1

 

Propanoic acid RI 21.3 8182.4 

Acetic acid RI 17.9 5762.8 

Formic acid RI 15.9 4279.6 

Formaldehyde RI 15.7 4660.9 
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Figure 2.19 Calibration of reactants and potential products detected by refractive index detector 

(RID) on HPLC. 

Furthermore, initial rate of reactions (r
0
) were determined from the initial linear portion of the 

profile of conversion (t < 1 h) and yields, conversion and selectivity (%) were calculated as below: 

Conversion = (
Ct

) 100 

Equation 2.22 Conversion 

where C0 is the initial concentration of the reactant and Ct the concentration at time t. 



87 

 

       
  
 

  
      

Equation 2.23 Yield 

where C
S

0 is the initial concentration of the substrate (i.e. propanoic acid) and C
p
t is the 

concentration of the product at time t. (i.e. acetic acid) 

             
     

                   
     

Equation 2.24 Selectivity 
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3 Titania grafted on mesoporous silica support 

3.1 Introduction 

Chapter 1 highlighted the growing interest in the development of heterogeneous photocatalysts for 

waste water treatment. Among all the photoactive materials studied, semiconductor TiO2 is one of 

the most widely used.[1, 2] 

TiO2-based photocatalysts have been recognized as a very promising material for the degradation 

of undesirable organic compounds in water under environmentally friendly conditions, using only 

ight as the energy source.[1-4] Despite possessing excellent photocatalytic properties, commercial 

TiO2 suffers from poor physical properties which have much scope for improvement, through 

optimisation of the degree of crystallinity, particle size, specific surface area and porosity.[5, 6]  

Many researchers have tried to increase the specific surface area (SSA) of titania, with the 

objective being achieving more active sites per unit area and, consequently, a higher photocatalytic 

activity. Particularly, special attention has been devoted to SBA-15 as a support for TiO2, because 

of its 2D hexagonal pore structure (with average diameters between 2 and 10 nm) and high surface 

area (~ 800 m
2
.g

-1
).[7, 8]  

When considering preparation techniques of a mixed-oxide composite catalyst, two methods are 

commonly employed: one-pot synthesis, e.g. addition of a titania precursor to the silica source 

during the synthesis of the mesoporous material, [9-11] and post-synthesis processing, resulting in 

the deposition of TiO2 particles with controlled size in the range 3–7 nm.[12-14] 

The first method limits the amount of titanium oxide that can be incorporated in the silica walls, 

because of the fast hydrolysis of titanium oxide precursors over the micelles of the template. In 

addition, it is important to control the synthesis conditions to avoid the formation of large external 

TiO2 particles. 

The second method can promote the formation of metal oxides in the channels or external surfaces 

of support, therefore special attention should be paid to the amount of deposited TiO2 to avoid pore 

blocking, which could hinder the access of reactant molecules to the catalytically active sites in the 

porous matrix.  

Busuioc and co-workers[15] reported a post-synthesis deposition method to obtain anatase TiO2 

nanoparticles with different sizes loaded onto SBA-15. These materials showed great adsorption 

properties and higher photocatalytic activity for the degradation of Rhodamine 6G under UV light 

irradiation compared with a bulk anatase. Dong and co-workers[16] prepared a 2D hexagonal 

composite catalysts by depositing anatase TiO2 on amorphous SiO2 with large meso-channels and 

high SSA. The photoactivity of the obtained materials was evaluated for the degradation of a wide 

range of different organic dyes under UV. The photoactivity of the obtained materials was tested 

during degradation of different organic dyes under UV light. The synthesis procedures employed in 

those experiments, however, did not allow control of particle size, particularly upon high TiO2 
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loading (> 20 wt%). Control over particle size plays a key role on photocatalytic efficiency as it 

crucially affects charge recombination. Moreover, particles size bigger than the typical mesopores 

of SBA-15 (~5-10nm) cannot be dispersed inside the pores of the host support, losing the 

advantage of having a porous material with high internal surface area.  

More recently, Besanscon and co-workers[17] studied the impact of dispersion of TiO2 on SBA-15 

by varying TiO2/SiO2 mass ratio during a post-synthesis impregnation process followed by a 

thermal treatment at 400°C in air. At a very high TiO2 loading (~80 wt. %), these composites 

exhibit greater activity for methyl orange degradation than commercial anatase, however, N2 

sorption data and XRD analysis highlight the significant structural change of the host support upon 

thermal treatment process and the presence of crystallized anatase mainly outside the pore 

framework. 

Also Zhang et al.[18] reported on the synthesis of titania supported on silica, focused on the nature 

and the localization of the TiO2 phase. They prepared titania-coated SBA-15 materials by 

successive grafting of titanium isopropoxide (1 to 4 graftings) to gradually increase the TiO2 

loading (~12-34 wt. %) and obtained a good uniform dispersion of the active phase inside and 

outside the support. Despite the good results achieved on the materials synthesis, optical properties 

and photocatalytic activity were not further investigated in their work. 

In general, among the other post-synthesis methodologies, grafting leads to a better dispersion of 

the deposited TiO2 without altering the architecture of SBA-15 support and minimising pore 

blockage. In this study, titania-coated SBA-15 was prepared by a post-grafting procedure. A layer-

by-layer grafting approach was taken in order to increase the loading of the active phase,[19, 20] 

ensuring a uniform and controlled dispersion of TiO2 as well as avoiding pore blocking of the 

SBA-15 support.  

The effect of pore diameter and TiO2 film thickness was thoroughly investigated. The first section 

of this chapter discusses the layer-wise grafting of titania on SBA-15 in order to investigate 

diffusion kinetics. Subsequently, the effect of TiO2 film thickness was explored (up to five 

consecutive grafting cycles) using the SBA-15 synthesized with the largest pore diameter of 7 nm. 

Finally, the catalytic activity of the composites was evaluated by studying the photodegradation of 

methyl orange (MO) in water under UV-vis irradiation. 
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3.2 Results and discussion 

3.2.1 Characterisation of parent SBA-15  

SBA-15 mesoporous silica was prepared following the method reported by Zhao et al [21]. Full 

details of synthesis preparation are reported in Chapter 2. 

It is well-known from previous studies that the temperature of the hydrothermal treatment has a 

significant impact of the final porosity of the sample because of the temperature-dependent 

behavior of the P-123 triblock copolymers [22, 23]. P-123 has a symmetric structure which is 

composed of a hydrophobic polypropylene oxide (PPO) center and two hydrophilic blocks of 

polyethylene oxide (PEO) and will form cylindrical micelles when placed in acidic media (water at 

pH=1). They are capable of forming both spherical and cylindrical micelles. As the hydrophobicity 

of the PEO blocks increases as a function of the temperature, the degree of hydration of these PEO 

blocks decreases at high temperatures. This implies a lower interaction with water molecules and a 

withdrawal of the PEO chains inside the hydrophobic core of the surfactant, resulting in a larger 

volume of the micelle core and therefore an expanded pore diameter within the SBA-15 

material.[24, 25] . (Figure 3.1) The nomenclature used for the silica supports is defined as follows: 

SBA-15-X, where X = pore size (nm). 

Figure 3.1 Schematic drawing of the self-assembly of the surfactant P-123 during the synthesis of 

SBA-15 (a) and dependence of the microporosity and mesopore size from the aging temperature 

(b). 
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The successful pore expansion was first probed by N2 porosimetry, for which adsorption isotherms 

of supports synthesized at different aging temperature (80,100 and 120°C) are reported in Figure 

3.2a.The N2 adsorption-desorption of SBA-15 shows a type IV isotherm according to IUPAC [26] 

which is indicative of an ordered mesoporous material with H1 type hysteresis loop, suggesting 

highly uniform mesopores. 

Figure 3.2b shows a narrow pore size distribution with a clear shift to larger diameters with 

increasing aging temperature. As highlighted in the preceding paragraph, these materials are 

characterized by uniform cylindrical mesopores arranged in a 2D-hexagonally packed structure, the 

pore walls of which contain a high degree of microporosity due to the interpenetration of the PEO 

chain in the silica network. 

Figure 3.2 Stacked isotherm plot of SBA-15 aged at different temperature (a) stacked BJH pore 

size distributions for the mesoporous silica supports (b). 

There is a very clear relation between the aging temperature and the relative amount of micropores 

and mesopores: with increasing aging temperatures, the relative amount of micropores decreases. ( 

Figure 3.3a) 

Microporosity is introduced to the silica walls through silica condensation around hydrophilic PEO 

chains and the subsequent removal of these chains. Due to increasing PEO hydrophobicity at high 

temperatures, the chains withdraw inside the hydrophobic PPO cores, leaving a lower volume of 

holes or voids in the silica walls. These holes are too unstable to resist the calcination step, so the 

micropores will only be generated at places when the PEO is actively penetrating the silica wall (at 

lower aging temperature). On the other hand the larger PPO core at higher temperatures enhances 

the contribution to the mesopore volume and diameter.  
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Figure 3.3b shows the evolution of the mesoporous surface area and the pore diameter with aging 

temperature. 

Figure 3.3 Effect of aging temperature on SBA-15 pore volume (total, mesopore and micropore 

volume) (a); surface area and pore size (b). 

These values are shown in Table 3.1, 

Table 3.1 Structural and textural properties of the SBA-15 support aged at three different 

temperatures 

Sample Taging Pore size SBET Vpore Vmicro 

/ °C / nm / m
2 
g

-1
 / cc g

-1
 / cc g

-1
 

SBA-15 5 80 5.4 719 0.7 0.13 

SBA-15 6 100 5.9 640 0.9 0.07 

SBA-15 7 120 6.8 585 1.0 0.04 

Figure 3.4 shows the XRD patterns for the SBA-15 supports with three mesopore sizes. The XRD 

patterns obtained in the low 2θ region for the three silica support clearly show diffraction peaks 

characteristic of the (d10), (d11) and (d20) diffraction planes of the 2D hexagonal pore structure. 

(Figure 3.4a) This established the presence of a hexagonally arranged, periodic mesoporous 

framework of the prepared SBA-15. In addition the wide angle XRD shows the typical broad 

reflection of amorphous silica. (Figure 3.4b) 
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Figure 3.4 Offset XRD patterns at low (a) and wide (b) angle of SBA-15 supports synthesized with 

different mesopore sizes. 

The pore diameter increased and the silica wall thickness (twall) decreased upon ageing temperature 

(Figure 3.5a).[23] Figure 3.5b illustrates a schematic representation of the cross-sectional 

channels of SBA-15, in which wall thickness (twall), mesopore diameter (dpore) and the pore spacing 

(a0) are illustrated. 

Figure 3.5 Evolution of the evaluated wall thickness (twall) (a) and representative ordered 

hexagonal structure of SBA-15 (b) 

The calculated values are reported in Table 3.2. 
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Table 3.2 Pore spacing (a0), interlayer spacing (d10) and wall thickness (twall) of the supports 

synthesized at different aging temperature. 

Sample 2θ d(10)
 a
/ nm a0

b
 / nm dpore

c 
/ nm twall

d
 / nm

SBA-15-5 0.95 9.4 10.9 5.4 5.6 

SBA-15 6 0.94 9.6 11.1 5.9 5.4 

SBA-15 7 0.88 10.2 11.8 6.8 5.0 

a
Interlayer spacing derived from Bragg's law, 

b
pore spacing=(2d10/√3), 

c
from BJH, 

d
wall thickness=

a0-dpore 

3.2.2 Characterisation of TiO2-SBA-15 catalysts 

3.2.2.1 Effect of mesopore size 

A series of TiO2-SBA-15 composites were first synthesised using the SBA-15 supports with 

various pore diameters of 5, 6 and 7 nm. Two grafting cycles were performed on each support with 

the aim of investigating the physicochemical and optical properties of the supported materials and 

exploring the dispersion of the TiO2 nanoparticles, in order to identify the optimal support for the 

further development of a smart catalyst for photocatalytic degradation of organic pollutants in 

water. Therefore, the supported TiO2 samples were characterized by bulk and surface elemental 

analysis, XPS, N2 porosimetry, XRD, ATR-IR spectroscopy, TEM and UV-vis diffusive 

reflectance spectroscopy.  The nomenclature used for the composites catalyst is defined as follows: 

Ti-SBA-15 X-n 

where X = pore size (nm) of the silica support, n = number of grafting cycles. 
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3.2.2.1.1 Elemental analysis 

XRF and ICP analysis were conducted on the composite Ti-SBA-15 materials to quantify their bulk 

composition. The values of wt.% of TiO2 obtained from the two techniques are shown in Table 3.3. 

 

Table 3.3 Bulk elemental analysis for the Ti-SBA-15-n (n=1,2) composites. 

 

Sample 
TiO2 loading / wt. % 

 XRF (% error) ICP-OES 

Ti-SBA-15 5-1 10.2 (1.41) 8.2 

Ti-SBA-15 5-2 16.1(1.12) 13.2 

Ti-SBA-15 6-1 9.5 (1.46) 11.9 

Ti-SBA-15 6-2 20.0 (1) 17.4 

Ti-SBA-15 7-1 12.0 (1.6) 10.7 

Ti-SBA-15 7-2 18.4 (1.26) 15.4 

 

3.2.2.1.2 X-ray photoelectron spectroscopy 

XPS analysis was carried out to determine the surface composition and probe any changes to the 

surface chemistry (e.g. Ti oxidation state) and physical properties (e.g. spatial locale) upon 

incorporation of TiO2 nanoparticles.  

A summary of the surface elemental composition is presented in Table 3.4, confirming the increase 

in Ti loading with additional grafting cycle.  

Table 3.4 Surface composition of the Ti-SBA-15-X-n samples. 

Sample  Si O Ti 

  / wt. % / wt. % / wt. % 

Ti-SBA-15 5-1 45 49 6 

Ti-SBA-15 5-2 42 46 11 

Ti-SBA-15 6-1 43 47 9 

Ti-SBA-15 6-2 39 49 12 

Ti-SBA-15 7-1 45 47 7 

Ti-SBA-15 7-2 41 48 10 

 

Furthermore, Figure 3.6a show the Ti 2p region for the composite catalysts Ti-SBA-15-5-n in 

comparison with the spectrum of bulk anatase, which recorded a Ti 2p3/2 peak position at 458.5 eV, 

which is in agreement with the literature value for the binding energy of Ti
4+

.[27] 

The binding energy of the Ti 2p photoelectrons of Ti-SBA-15 samples was found to be higher in 

energy by approximately 0.8–1.9 eV. This shift towards a higher energy is due to the presence of 
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the interfacial species Ti-O-Si, and can be explained by the coordination of titanium (a more 

electronegative oxygen anion within the Ti-O-Si formation than that present within pure TiO2 bulk 

species).[28] This phenomenon at the silica-titania interface due to the higher Pauling 

electronegativity of Si (1.9) versus Ti (1.54), resulting in the electron density being drawn away 

from titanium [29] The contribution from such polarized titanium atoms at the interface with SBA-

15 found to decrease after only the 1
st
 grafting cycle, which is most likely due to the addition of 

titania loading leading to the interfacial state being attenuated. 

O 1s core level spectra are presented in Figure 3.6b. The O 1s region for bare SBA-15 can be 

deconvoluted into two species including oxygen in Si–O–Si at 532.8 eV, and a feature at a higher 

B.E. (533.3 eV) related to the presence of a hydroxyl species (Si-OH). The TiO2-grafted samples 

exhibit additional peak centred at 530 eV, attributed to Ti-O-Ti.[28, 30] 

Figure 3.6 Ti 2p (a) and O 1s (b) XPS stack plot for Ti-SBA-15-5-n. The spectra of bulk anatase 

and of the SBA-15 parent support are reported for comparison. 

The corresponding Si 2p XP spectra are shown in Figure 3.7. The binding energy of the overall 

envelope decreases from 103.6 eV for pure SBA-15 by ~0.8 eV after each grafting cycle, and 

reaches the final value of 102.8 eV after the 2nd cycle. This shift in binding energy is consistent 

with that observed for the titanium signal, suggesting an interfacial species is being formed, and the 

contribution from bulk silica is being progressively screened by titania. This leads to the emergence 

of the silica environment at the interface, in which silicon atoms are linked via oxygen to less 

electronegative titanium. The Si 2p region was initially fit for SBA-15 with a Si 2p doublet (2p3/2 

= 103.6 eV, doublet separation = 0.6 eV). [31] Additionally, a secondary silicon phase was fit at 

102.8 eV (green line) at higher binding energy, attributed to Si-O-Ti species. This secondary 
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species at a lower binding energy is resultant from electronic alterations to the silicon environment 

within the bridging layer.[32] 

Figure 3.7 Si 2p XP spectra for the Ti-SBA-15-5-n samples and parent support (a), and the detail 

of the Si 2p region for the Ti-SBA-15-5-2 sample (b). 

The surface and bulk and compositions of the nanocomposite series evaluated by XPS and XRF 

respectively are summarised in Table 3.5 below and the wt. % Ti surface:bulk ratio is reported. 

Surface Ti content was largely found to be exceeding that of the bulk content, which would suggest 

a surface enrichment of titania. 

Table 3.5 Comparison of the surface and bulk Ti wt. % content for the Ti-SBA-15-n composites. 

Sample Surface Ti
a
 Bulk Ti

b
 Bulk : Surface 

/ wt. % / wt. % 

Ti-SBA-15 5-1 5.8 4.5 0.8 

Ti-SBA-15 5-2 10.5 10.0 1.0 

Ti-SBA-15 6-1 8.8 7.0 0.8 

Ti-SBA-15 6-2 12.2 13.0 1.1 

Ti-SBA-15 7-1 7.3 4.0 0.6 

Ti-SBA-15 7-2 10.3 9.0 0.9 

a 
XPS, 

b 
XRF 
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3.2.2.1.3 Nitrogen porosimetry 

Nitrogen porosimetry was employed to explore the impact of titania deposition on the textural 

properties of the three series of catalysts. It can be observed that the shapes of the recorded 

isotherms are retained after the grafting procedure, however the hysteresis loop caused by capillary 

condensation within the intrinsic mesopore regime (around P/P0=0.6) is progressively shifted 

toward lower relative pressures with increasing the number of grafting cycles, indicative of a 

decreasing mesopore diameter. (Figure 3.8a, Figure 3.9a, Figure 3.10a) 

These results show that TiO2 is filling the mesopores forming a uniform coating. The reduction in 

mesopore diameter is also confirmed from the BJH analysis of the desorption curve which shows a 

progressive shift of the distribution curve towards smaller pore diameters (Figure 3.8b, Figure 

3.9b ,Figure 3.10b) 

Figure 3.8 Stacked isotherm plots (a) and BJH pore size distributions of Ti-SBA-15-5-n and the 

relative parent support (b). 
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Figure 3.9 Stacked isotherm plots (a) and BJHpore size distributions of Ti-SBA-15-6-n and the 

relative parent support. 

 

Figure 3.10 Stacked isotherm plots (a) and BJH pore size distributions of Ti-SBA-15-7-n and the 

relative parent support. 

 

Moreover, the plot of pore size distribution for the sample with the largest pore diameter (SBA-15-

7) confirms that it retains its unimodal pore size distribution, which could suggest the possible 

formation of a homogenous titania layer. This means that the pore size of the silica supports is large 

enough to allow a uniform grafting inside the mesopores. Pore size distribution plots of the other 

two support aged at 80°C and 100°C exhibit a bimodal pore distribution, indicative of an uneven 

application of grafted titania layers within the inherent mesopore network.[18] 
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As shown in Table 3.6 the surface area and the pore size of the grafted materials decreased with 

increasing number of performed grafting procedures. 

Table 3.6 Textural properties of composites materials. 

 Sample 
SBET dp Vtotal Vmicro 

/ m
2 
g

-1
 / nm / cc g

-1
 / cc g

-1
 

SBA-15 5 719 5.4 0.7 0.13 

Ti-SBA-15-5-1 517 5.2 0.7 0.05 

Ti-SBA-15-5-2 366 4.9 0.5 0.04 

SBA-15 6 640 5.9 0.9 0.07 

Ti-SBA-15-6-1 471 5.7 0.7 0.02 

Ti-SBA-15-6-2 420 5.5 0.6 0.03 

SBA-15 7 748 6.8 1.0 0.04 

Ti-SBA-15-7-1 558 6.6 1.1 0.02 

Ti-SBA-15-7-2 484 6.2 0.8 0.02 

3.2.2.1.4 X-ray diffaction 

The low angle XRD patterns in Figure 3.11a-c shows that the ordered mesostructures were 

retained upon two grafting procedures and an increase in wall thickness is observed between the 

parent and the grafted materials, confirming the presence of titania inside the mesopores. (Figure 

3.11d) 

The position of the (20) peak is unchanged relative to the (10) after grafting, indicating pore 

spacing is unaffected by the grafting, but a moderate decrease is evident in the intensities of all 

reflections of the composites materials, possibly due to X-ray absorption by the TiO2 matrix.[18] 
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Figure 3.11 Offset low angle XRD pattern of titania coated SBA-15 (2
nd

 grafting cycle) compared 

with the each parent support (a,b and c), wall thickness as a function of aging time for the parent 

SBA-15s and TiO2-grafted (2
nd

 cycle) materials (d).

The parameters evaluated from the XRD low angle are reported in Table 3.7. 
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Table 3.7 Evaluated pore spacing (a0), interlayer spacing (d10) and wall thickness (twall) of the three 

supports synthesized at different aging temperature and the related grafted materials. 

Sample 2θ d(10) 
 
/ nm a0 / nm twall / nm 

SBA-15-5 0.9 9.4 10.9 5.6 

Ti-SBA-15-5-2 0.9 9.3 10.8 5.9 

SBA-15-6 0.9 9.6 11.0 5.4 

Ti-SBA-15-6-2 0.9 9.5 10.9 5.6 

SBA-15-7 0.8 10.2 11.8 5.0 

Ti-SBA-15-7-2 0.8 10.2 11.8 5.4 

From the collected wide angle XRD patterns, shown in Figure 3.12, no intense diffraction peaks 

corresponding to any TiO2 phase was observed from the grafted SBA-15, besides the (101) 

reflection peak of anatase (marked with the green star). As crystallites of a diameter below 

approximately 2 nm are undetectable by powder XRD with a Cu Kα X-ray tube, it can be concluded 

that the grafted TiO2 is either amorphous in nature or composed of very fine nanoparticulate 

moieties. The anatase diffraction peaks are slightly more pronounced for the Ti-SBA-15-5 sample. 

On the other hand, the sample with the largest pore size (7 nm) allows a better dispersion of the 

TiO2 on the support, avoiding the formation of large titania agglomerates. 

Figure 3.12 Offset of wide angle XRD patterns of the composites materials and their support in 

comparison with the spectrum of pure anatase (the stars mark the anatase reflection peaks) for the 
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three series of support (a,b,c), sketch showing the SBA-15 material (light grey) coated with TiO2 

particles by two cycles of graftings (purple dots) (d). 

3.2.2.1.5 Raman analysis 

The crystal phase of the Ti-SBA-15-n photocatalysts for TiO2 loading ≤10 wt. % was determined 

with Raman spectroscopy and the spectra of the series obtained from the grafting on SBA-15-5 are 

presented in Figure 3.13a. 

The result indicates clearly that only the anatase phase of TiO2 exists in these materials. The four 

different bands at 145, 400, 520 and 640 cm
-1

 are assigned to anatase crystallites (in red).[33]  On 

the other hand, silica typically possesses four main Raman features: the siloxane linkages at 452 

and 803 cm
-1

, the three- and four-fold siloxane rings at ~ 605 and ~ 498 cm
-1

, the surface silanol 

groups at 980 cm
-1

 and the antisymmetric mode of the Si-O-Si linkages at 1050 cm
-1

. [33] However 

the signal of SBA-15 is weak and only some of the typical silica vibrations could be identified 

(grey marked). (Figure 3.13b) 

Figure 3.13 Raman spectra of the parent SBA-15-5 and Ti-SBA-15-n (n=1-2) (a) and detail of the 

SBA-15-5 spectrum (b). 

3.2.2.1.6 ATR IR spectroscopy 

FT-IR spectra of the composites samples (black and red line) and the associated support SBA-15-7 

(grey line) are shown in Figure 3.14. The spectrum of pure TiO2 is reported for comparison (green 

line). The other catalysts obtained through grafting the supports with different pore sizes (Ti-SBA-

15-5-n and Ti-SBA-15-6-n) exhibited the same trend. 
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In Figure 3.14a the peaks at 3740 cm
-1

 and around 3500 cm
-1

 is due to the stretching vibration of 

hydroxyl groups of Si–OH or Ti–OH, respectively.[34] In Figure 3.14b the IR absorption peaks at 

1072 cm
-1

 and 800 cm
-1 

are attributed to νas(Si–O–Si) and νs(Si–O–Si) vibrations of silica

framework of SBA-15, respectively.[18] Meanwhile, the band at ca. 435 cm
–1

 corresponded to the 

characteristic tetrahedral bending of Si-O bond of pure SBA-15.[35] These three peaks are well 

defined in the spectrum of the bare support (grey line). 

Figure 3.14 ATR IR spectra of Ti-SBA-15-n samples, the support and the commercial benchmark 

of TiO2 P-25 in the range of 2800-400 cm
-1

 (a) and 400-1600 cm
-1

 (b).

The band at around 960 cm
–1

 has been widely used to characterize the incorporation of metal ions 

in the silica framework as the stretching Si-O vibration mode is perturbed by the neighbouring 

metal ions.[36] In the spectrum of the bare support this band is very weak and can be assigned to 

the stretching νas(Si-OH). Upon increasing the TiO2 loading the band became more evident with a 

small shift to a lower frequency. According to the literature, this can be direct evidence for the 

substitution of Ti ions in the SBA-15 framework and the band can be assigned to the stretching 

νas(Si-O-Ti) mode.[18] Also the peak at 435cm
-1

 δ(Si-O) is perturbed by the increasing of titania

loading, with a shift to a lower frequency of 418 cm
-1

, characteristic of the  stretching ν(Ti-O). In 

addition, a broad absorption in the range 400-800 cm
-1

 grows with the Ti content. The band at c.a. 

740 cm
-1

 is commonly assigned to ν(Ti-O-Ti), so this feature in the composite material is evidence 

of presence of TiO2 as a separate phase, and becomes more evident at higher TiO2 loading.  

3.2.2.1.7 Scanning transmission electron microscopy 

The parent SBA-15-7 and the corresponding composite material Ti-SBA-15 7-2 were imaged by 

STEM in order to further prove the retention of the ordered structure of the silica support following 
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the grafting procedure. Moreover, it could confirm the presence/absence of large titania 

agglomerates. (Figure 3.15) 

 

Figure 3.15 Representative bright field STEM images of the channel (on the right) and the open 

mesoporous structure (on the left) of the SBA-15 7 (a,b) and Ti-SBA-15-7-2 (c,d). 

 

The STEM images obtained using the high-angle annular dark field imaging clearly reveal regions 

of hexagonally arranged pore structures, as well as the channels consistent with porosimetry and 

low angle XRD results. It should be noted that large titania agglomerates were not observed in 

TEM images of the synthesised mesoporous silica after two cycles of TiO2 grafting. Furthermore 

pore size and a pore spacing distributions were measured using ImageJ software and compared 

with the data acquired from N2 adsorption and powder. (Figure 3.16) 
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Direct measurements from STEM images confirm that there is a clear decrease in pore diameter 

after two cycles of grafting, but no change in pore spacing, in agreement with the data obtained 

from XRD and porosimetry analysis 

Figure 3.16 Pore spacing distributions, normal and cumulative statistical distributions for (a) SBA-

15 7, (b) Ti-SBA-15 7-2, (c) comparison between TEM and XRD measurements. Pore size 

distributions, normal and cumulative statistical distributions for (d) SBA-15 7, (e) Ti-SBA-15 7-2 

and (f) comparison between TEM and porosimetry measurements. 

3.2.2.1.8 UV-vis diffuse reflectance spectroscopy 

UV-visible spectroscopy is commonly used for the assessment of Ti atoms environment on silica-

based materials and to investigate the growth of the TiO2 particles on the support, since for 

semiconductors the band gap energy (Eg) is expected to shift with the particles size according to the 

quantum size effect. Figure 3.17 shows the optical properties size dependent of a semiconductor 

from the nanosized crystals to the bulk crystal. The term quantum size effect is frequently used 

when the size (radius) of solid particles is smaller than their Bohr radii to result in expansion of the 

bandgap. The Bohr radii for anatase particles have been estimated to be 2.5 nm. 
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Figure 3.17 Electronic energy states of a semiconductor in the transition from nanosized to bulk 

crystals.  

Figure 3.18 shows the DRUV-Vis spectra of the Ti-SBA-15-X-n samples in comparison with the 

spectra of the commercial TiO2 Degussa P-25 and the bulk anatase. The spectrum of the parent 

mesoporous SBA-15 is also reported which is mainly transparent in the UV-vis region, the 

absorption observed in the range between 200 and 400 nm comes from titanium species. An 

absorption band of pure SBA-15 is seen around 210 nm (bold black line). As shown, the major 

adsorption band of TiO2 (Degussa P-25 or pure anatase) is around 390 nm.[36, 37] 

The adsorption band of TiO2 is clearly seen in Ti-SBA-15-X-n samples which are typical due to the 

ligand-metal charge transfer (LMCT) between Ti
4+

 and oxygen ligands, mainly attributable to the 

charge transfer in Si–O–Ti groups.[38] The adsorption band of Ti-SBA-15-X-n samples showed a 

blue (shorter wavelength) shift of 20-30 nm. [39] Even if a blue shift of the absorption edge of 

those samples is observed, it might due to the amorphous part of titania, not due to the quantum 

size effect.[40] 

The TiO2 particles size evaluated from XRD analysis are 21 nm and 30 nm for Degussa P-25 and 

bulk anatase respectively, whereas absence or not measurable anatase XRD reflections were found 

for the Ti-SBA-15-X-n samples, in agreement also with the bright field TEM images.  

Therefore the pore channels of SBA-15 provide a size confinement for TiO2 particles whit average 

size probably below 2 nm, according also with previous authors which reported particles size in the 

range of 1.3-1.6 nm after three successive graftings.[36] The blue shift of the absorption edge for 

the composite samples clearly indicates an increase in the band gap of TiO2 nanoparticles on the 

SBA-15 compare to the reference bulk materials. 
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Figure 3.18 UV-vis spectra of Ti-SBA-15-X-n samples, Degussa P-25, bulk anatase and 

mesoporous SBA-15. 

 

Furthermore the band gap values were evaluated through the Kubelka-Munk function F(R) as 

shown in (Figure 3.19a) [41] The band gap energies estimated from the intercept of the tangents to 

the plots are 3.1 and 3.2 eV for bulk anatase TiO2 and P-25 nanoparticles, respectively. The larger 

band gap of the Ti-SBA-15-X-n can be attributed to the quantum size effect as discussed above, 

due to the small crystalline size limited by SBA-15 channels. Figure 3.19b reports in detail the 

small region of absorbance of the parent support which shows a very wide band gap (5.5 eV).  

 

Figure 3.19 Kubelka-Munk function for band gap evaluation (a), spectrum of SBA-15 (b). 
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The band gap values and the corresponding band edge are summarized in the Table 3.8. 

 

Table 3.8 Titania content (wt.%), band gap (Eg), corresponding wavelengths value (λEg) and the 

band edge for the parent support, Ti-SBA-15-X-n and the bulk references materials. 

Catalyst Eg / eV λEg / nm Band edge / nm 

parent SBA-15 5.5 224 - 

Ti-SBA-15 5-1 3.5 354 264 

Ti-SBA-15 5-2 3.5 359 284 

Ti-SBA-15 6-1 3.5 354 274 

Ti-SBA-15 6-2 3.4 369 294 

Ti-SBA-15 7-1 3.5 354 266 

Ti-SBA-15 7-2 3.4 365 276 

TiO2 P-25 3.2 390 320 

bulk anatase TiO2 3.2 390 340 

    

 

3.2.2.2 Effect of titania loading 

SBA-15-7 with larger pore size was chosen as support to prepare a series of composites catalyst 

with increasing TiO2 loading in the range of 10-50 wt.%. The grafting of titania was achieved using 

a modified procedure by Landau et al.[42] describe in detail in Chapter 2. Five grafting cycles, 

each targeted to give a loading of ~10 wt. % of titania, were performed to obtain a layer-by-layer 

fashion deposition of TiO2 on the silica support. Multiple grafting cycles were employed with the 

aim of avoiding pore blocking, ensuring a uniform covering of the parent SBA-15 and assessing the 

evolution of titania surface characteristics with film thickness (i.e. titania phase, particles size, band 

gap). The materials were then characterized in order to give a precise description of the composites 

catalysts and finally, the catalytic activity was evaluated by studying the photodegradation of 

methyl orange (MO) in water under UV-vis irradiation. 
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3.2.2.2.1 Elemental analysis 

TiO2 loadings were measured using XRF and ICP-OES analysis as shown in Table 3.9. 

Table 3.9. Bulk elemental analysis for the Ti-SBA-15-n (n=1-5) composites. 

Sample 
TiO2 loading / wt. % 

 XRF (% error) ICP-OES 

Ti-SBA-15-1 12.0 (1.4) 10.7 

Ti-SBA-15-2 18.4 (0.61) 15.4 

Ti-SBA-15-3 28.4 (0.46) 26.8 

Ti-SBA-15-4 35.6 (0.43) 40.3 

Ti-SBA-15-5 42.8 (0.7) 47.1 

Figure 3.20 shows the comparison of the two sets of data which are in very close agreement for the 

two techniques. 

Figure 3.20 Comparison on the wt. % of TiO2 values obtained from XRF and ICP analysis. 

3.2.2.2.2 X-ray photoelectron spectroscopy 

XPS analysis was employed to probe titania on the surface of the SBA-15 and determine any 

change in oxidation state as a function of Ti loading. A summary of the elemental composition is 

presented in Table 3.10 which reports a significant increase titania content, indicative of surface 

species.  
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Table 3.10 Surface composition of the Ti-SBA-15-n materials. 

Sample Si O Ti 

/ wt. % / wt. % / wt. % 

SBA-15 47 51 - 

Ti-SBA-15-1 45 47 7 

Ti-SBA-15-2 41 48 10 

Ti-SBA-15-3 32 46 14 

Ti-SBA-15-4 26 45 22 

Ti-SBA-15-5 24 45 25 

Figure 3.21 shows the Ti 2p spectra for the five grafting cycles. The Ti 2p3/2 core level is 

characterized by binding energy (BE) values in the range of 458.7–459.3 eV which are indicative 

of octahedrally coordinated TiO2 species.[43] The Ti 2p region for the synthesised catalysts was fit 

using line shapes obtained from a commercial bulk anatase, which recorded a Ti 2p3/2 peak position 

of 458.5 eV, consistent with literature values.[27] A shift to higher binding energies is associated 

with the formation of Ti-O-Si bonds, resulting in the two sets of peaks exhibited in the Ti 2p 

spectra [44] caused by a decrease in the positive charge of the titania species within the Ti-O-Si 

formation compared to that of pure titania.[28]  

Figure 3.21 Ti 2p XP spectra for the Ti-SBA-15-5-n samples and parent support. 

The oxygen 1s region of the Ti-SBA-15-n samples and the bare support are shown in Figure 3.22a. 

The oxygen 1s region for the parent SBA-15 displayed the peak of silicon dioxide Si-O-Si at 532.8 

eV and the feature at 533.3 eV assigned to oxygen in Si–OH. Increasing the titania loading resulted 
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in the emergence of a third feature centred at 530 eV, assigned to the oxygens in bulk titania, Ti-O-

Ti.[28] It can be noticed that the increase of TiO2 loading leads to a continuous increase in intensity 

of the 530.0–530.6 eV peak suggesting a larger presence of separate TiO2 phases on the catalyst 

surface. (Figure 3.22b) It is evident that the surface Si-OH species decreases across the series with 

bulk titania loading, as titania species are grafted on the silica surface. The final percentage of Si-

OH is zero after five following grafting procedures, indicative of formation of titania surface 

species. 

Figure 3.22 O 1s XPS stack plot for Ti-SBA-15-n (n=1-5). The spectrum of the parent SBA-15 is 

reported for comparison (a); variation of surface species with increasing TiO2 film thickness (b). 

Finally the corresponding Si 2p XP spectra are shown in Figure 3.23a and fit with a Si 2p doublet 

(2p3/2 = 103.6 eV, doublet separation = 0.6 eV). The binding energy of the overall envelope 

progressively decreases from 103.6 eV for the bare silica support to a final value of 102.8 eV. The 

secondary silicon phase fit at a higher binding energy is attributed to Si-O-Ti species. This binding 

energy shift is in the opposite direction to that observed for the titanium signal for the same reason 

explained in Section 3.2.2.1.2. Moreover, as expected, the contribution from bulk silica is 

progressively screened by thicker titania ad layers. This leads to the emergence of the silica 

environment at the interface, in which silicon atoms are linked via oxygen to less electronegative 

titanium.[32] 

The Ti:Si wt. % (from XPS) of the five grafted sample as function of their bulk ratio (obtained 

from the XRF data) is shown in Figure 3.23b. 

It can be seen that the surface content of TiO2 species increases with the TiO2 loading. The solid 

line shows the expected values for a homogeneous distribution of titania phase within the support. 

An increase in the Ti:Si ratio above the predicted trend after the 3
rd

 cycle of grafting (wt. %TiO2 >

30) however, suggests that the TiO2 species are located mainly on the external catalyst surface.
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Figure 3.23 Si 2p XP spectra for the Ti-SBA-15-5-n samples and parent support (a). Surface Ti/Si 

atomic ratio (from XPS) versus bulk Ti/Si atomic ratio (from XRF). Solid line shows the expected 

values for a homogeneous Ti distribution within the solid (b). 

3.2.2.2.3 Nitrogen porosimetry 

Nitrogen porosimetry was performed on these materials to reveal the effect of titania loading on 

effective surface areas and pore dimensions. Figure 3.24 demonstrates N2 isotherms and pore size 

distribution for parent SBA-15 and the titania grafted SBA-15 catalysts. It can be observed that 

after grafting titania on the silica support, the structure of SBA-15 remains intact.  

Figure 3.24 Stacked isotherm plots (a) and BJH pore size distributions for Ti-SBA-15-5-n and the 

relative parent support (b). 
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In Figure 3.24a all the isotherms exhibit type IV characteristics according to IUPAC with H1-type 

hysteresis loops during the desorption step. This feature is the result of capillary condensation 

mechanism of filling and emptying pores in the mesopore region. 

The isotherm of the parent SBA-15 shows a well-defined step around P/P0 = 0.7, characteristic of 

capillary condensation within uniform pores. Whereas the Ti-SBA-15-n samples show the onset of 

the capillary condensation progressively shifted toward lower P/P0 values upon increasing of 

number of grafting. The pores of the parent SBA-15 exhibit an average diameter of 7 nm, and with 

increasing the number of graft cycles the pores become as narrow as ~4 nm. The presence of 

narrowed mesopores causes delayed evaporation, requiring a lower desorption pressure P/P0 and 

changes in the shape of the desorption branch of the isotherm.[29, 45] This result is confirmed by 

the BJH analysis of the desorption curve (Figure 3.24b) which shows a narrow pore size 

distribution with a progressive decrease in the average pore size.  Table 3.11 reports the textural 

properties of the parent and the composite material. 

 

Table 3.11 Structural and textural properties of the parent SBA-15 and the grafted samples. 

Catalyst SBET dp Vtotal TiO2 layer thickness 

 

/ m
2
.g

-1
 nm / cc.g

-1
 / nm 

Parent SBA-15 748 6.8 1.1 0 

Ti-SBA-15-1 558 6.6 1.0 0.11 

Ti-SBA-15-2 484 6.2 0.8 0.32 

Ti-SBA-15-3 408 5.6 0.7 0.62 

Ti-SBA-15-4 376 4.1 0.6 1.36 

Ti-SBA-15-5 301 3.8 0.5 1.54 

 

The trend of variation of textural properties and increasing of TiO2 layer thickness with 

number of grafting cycles is shown in Figure 3.25. 
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Figure 3.25 Effect of Ti loading on mesopore and micropore volume and evolution of titania film 

thickness with the number of grafting cycles. 

Micropores are almost completely filled after two grafting cycles. Mesopore surface area decreases 

steadily with each subsequent grafting cycle, suggesting uniform deposition of the TiO2 film 

without undesired pore blockage.  

The theoretical titania monolayer is assumed to have a thickness of 0.352 nm, from the interlayer 

spacing of the (101) plane of TiO2 (anatase).[11]  The calculated titania thickness is consistent with 

the theoretical layer-by-layer growth at the 3
rd

 cycle of grafting.  

3.2.2.2.4 X-ray diffraction 

Figure 3.26a shows the low-angle XRD patterns of pure SBA-15 and Ti-SBA-15 samples. 

It can be seen that all the samples exhibited XRD patterns with one very intense diffraction peak 

and two weak peaks, which are characteristic of 2-D hexagonal (P6mm) structure with excellent 

textural uniformity. 

The results indicated that Ti-SBA-15-n materials retained the ordered mesoporous structure of 

SBA-15. Moreover, the position of the (d10) reflection is unchanged and thus according with the 

Braggs law, the interplanar distance (d10) is not affected by the grafting procedure. Pore wall 

thickness has also been calculated subtracting average pore diameter (calculated from N2 

porosimetry experiments, see Section 3.2.2.2.3) from the unit cell size. Adding the successive 

loading of titanium dioxide leads to a thickening of the pore wall, confirming the preferential 

incorporation of metal oxide species onto the surface of the mesoporous system.  (Figure 3.26b) 
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Figure 3.26 Offset low angle XRD patterns of parent SBA-15 and the TiO2 grafted sample (a); 

evolution of the evaluated wall thickness (twall) and pore spacing with the increasing of titania 

grafting cycles (b). 

Table 3.12 displays the unit cell sizes (a0) calculated for the different materials assuming a 

hexagonal array of pores with P6mm topology.  

Table 3.12 Pore spacing (a0) and pore wall thickness (twall) calculated from XRD and N2 

adsorption-desorption analyses. 

Sample 2θ  d(10) 
 a

a0
b
 dpore

c 
twall

d

/ nm / nm / nm / nm 

Parent SBA-15 0.89 9.9 11.4 6.8 4.6 

Ti-SBA-15-1 0.89 9.9 11.5 6.6 4.9 

Ti-SBA-15-2 0.88 10.0 11.5 6.2 5.3 

Ti-SBA-15-3 0.89 9.9 11.5 5.6 5.9 

Ti-SBA-15-4 0.89 9.9 11.4 4.1 7.3 

Ti-SBA-15-5 0.89 9.9 11.4 3.8 7.6 

a
Interlayer spacing derived from Bragg's law, 

b
pore spacing, 

c
pore diameter 

from N2 desorption isotherm, 
d
wall thickness= (2d10/√3)-pore diameter

Figure 3.27 shows the wide angle XRD patterns over the range of 20 to 80° for bulk anatase, SBA-

15 and Ti-SBA-15-n samples. The parent SBA-15 exhibits a broad diffraction at 22.5° 

corresponding to amorphous silica. No intense diffraction peaks corresponding to any TiO2 phase 
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were observed for the grafted samples up to the 3
rd

 cycle of grafting. The absence of diffraction 

peaks on the XRD patterns of the Ti-SBA-15-n materials indicates that either TiO2 is in the form of 

very small anatase particles or is amorphous. However, Ti-SBA-15-4 and Ti-SBA-15-5 exhibit 

diffractions attributable to anatase TiO2. Based on Scherrer equation (See Chapter 2), the 

crystallite size of anatase was calculated  to be 8 and 9 nm, respectively.[46] As the pore size of the 

support is 7nm, the size of titania particles is too large to fit in the mesopores so the bigger 

nanoparticles are placed on the external surface. 

Moreover the patterns of these two samples with the highest titania loading (35 and 43 wt.% of 

TiO2) clearly evidence that anatase is the only titania phase present in these systems, as indicated 

by the peaks at 2θ = 24.5°, 38°, 48°, 54.5°, 62.5° 70°and 75°. For all Ti-SBA-15-n catalysts, no 

peak of (1 1 0) rutile reflection at 27.4° was detected.[47] 

 

Figure 3.27 Offset of wide angle XRD patterns of the composites materials and their support in 

comparison with the pattern of pure anatase (the gray star marks the (101) anatase reflection 

peaks).  

 

3.2.2.2.5 Raman analysis 

The crystal phase of the Ti-SBA-15-n photocatalysts for TiO2 loading ≤30 wt. % was determined 

with Raman spectroscopy and the spectra are presented in Figure 3.28. 

All the assignments were explained in detail in the previous section (See Section 3.2.2.1.5).  

However the signal of SBA-15 is weak and only some of the typical silica vibrations could be 

identified (grey marked), on the other hand the four different bands at 145, 400, 520 and 640 cm
-1

 

are assigned to anatase crystallites (in red). 

The characteristic peaks of anatase were already visible at low loading (below 10 wt. %). Up to the 

3
rd

 grafting cycle a weak and broad Raman band appears under ambient conditions at 960 cm
-1

 

which is characteristic of a surface titanium oxide over layer (blue marked).[33] 
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These anatase bands are more evident for the two final grafting cycles with the highest TiO2 

loading (~35-43wt. %). Ti-SBA-15-n samples with lower loading (~10-30%) show very low 

intensities indicating the presence of very small particles size (≤ 2nm). 

 

Figure 3.28 Raman spectra of the parent SBA-15-7 and Ti-SBA-15-n (n=1-5). 

 

3.2.2.2.6 ATR IR Spectroscopy 

The ATR IR spectra of pure SBA-15 and Ti-SBA-15-n materials in the range of 1600-400 cm
-1

 are 

shown in Figure 3.29. All the assignments were explained in detail in the previous section (See 

Section 3.2.2.1.6).  

 

Figure 3.29 ATR FT-IR spectra of Ti-SBA-15-n samples and the parent support. 
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The IR absorption peaks at 1072 cm
-1

, 800 cm
-1 

and 435 cm
–1

 are attributed to νas(Si–O–Si), νs(Si–

O–Si) and δ(Si-O) vibrations of silica framework of SBA-15, respectively. [18, 35] These three 

peaks are well defined in the spectrum of the bare support (grey line). 

The bands at c.a. 740 cm
-1

 and 418 cm
-1

 are commonly assigned to ν(Ti-O-Ti) and ν(Ti-O), 

respectively. It can be observed that increasing the TiO2 loading a broad absorption band can be 

observed in the range 400–800 cm
−1

 given by the contribution of the ν (Ti-O-Ti) stretching. In the 

meanwhile peak at 435cm
-1

 of δ (Si-O) is perturbed by the increasing of titania loading, with a shift 

to lower frequency up to the value of 418 cm
-1

 characteristic of the stretching ν(Ti-O).  Also the 

band at 960 cm
-1

 of νas (Si-O-TI) grows with the titania loading. All these observations are 

evidences of the successful impregnation of TiO2 onto the silica support and the presence of TiO2 

as a separate phase is more evident at higher TiO2 loading (wt. % > 30). The assigned vibrational 

mode are reported in Table 3.13. 

 

Table 3.13 Vibrational mode assignments of Ti-SBA-15-n catalysts. 

Vibrational mode 
Wavenumber 

/ cm
-1

 

νas(Si-O-Si) 1072 

νsym(Si-O-Si) 800 

δ(Si-O) 435 

ν(Ti-O-Ti) 740 

ν(Ti-O) 418 

ν(Si-O-Ti) 960 

 

3.2.2.2.7 Scanning transmission electron microscopy  

Typical bright field TEM images of Ti-SBA-15-5 are shown in Figure 3.30. 

These images are evidences that the pore walls of SBA-15 remain uniform upon five grafting 

cycles of TiO2. Very small (ca. 2–3 nm) crystalline TiO2 particles can be detected, indicated with 

white arrows (Figure 3.30a) but they may not be representative of the whole sample. Indeed in 

spite of the high TiO2 loading of Ti-SBA-5, very few crystalline particles are observed. 

Figure 3.30b shows deposited titania particles inside the SBA-15 channel (white square) with a 

measured particles size of ~6.4nm. The inset shows that at higher magnification was possible to 

measure the lattice parameter of anatase on the (101) plane, in agreement XRD wide angle and 

Raman analysis. 
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Figure 3.30 Representative TEM images of Ti-SBA-15-5. Arrows show crystalline TiO2 

nanoparticles (a); higher magnification and inset with detail of TiO2 nanoparticle observed inside 

the SBA-15 channel (b). 

3.2.2.2.8 UV-vis diffuse reflectance spectroscopy 

Figure 3.31a shows the DRUV-Vis spectra of the TiO2 grafted SBA-15, TiO2 P-25, bulk anatase 

and the parent support SBA-15. Pure SBA-15 shows no pronounced absorption between 200 and 

800 nm, only a weak absorption signal is seen at 210 nm. All the TiO2 and Ti-SBA-15-n spectra 

exhibit a characteristic adsorption band in region 350-400 nm, corresponding band transition. All 

the assignments were explained in details in Section 3.2.2.1.8. With increasing titanium content, 

the magnitude of blue shift of adsorption band is supressed. The blue shift in the order of Ti-SBA-

15 1
st
<2

nd
<3

rd
<4

th
~5

th
 <bulk TiO2, revealing growing coordination numbers of titanium with the

TiO2 loading. (Figure 3.31b) 
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Figure 3.31 UV-vis spectra of Ti-SBA-15-X-n samples, TiO2 P-25, bulk anatase and parent SBA-

15 (a) and evolution of UV absorption edge with the increasing of TiO2 loading (b) 

 

Using the Kubelka–Munk function F(R), the band gap (Eg) has been calculated from the plot of 

(αhν)
0.5

 versus photon energy (eV).(Figure 3.32 a) The band gap energies estimated from the 

intercept of the tangents to the plots are in the range 3.5 -3.18 eV, with highest values for the TiO2 

nanoparticles to the smallest value found for the bulk anatase. Figure 3.32b shows that increasing 

of titania content, the band gaps are red shifted to longer wavelengths. With respect to the mixed 

oxide composites, this shift reflects to some extent an increase in the size of the TiO2 domains.[48, 

49]

Figure 3.32 Kubelka-Munk function for band gap evaluation of the TiO2 based catalyst, the bare 

mesoporous support and two commercial references (a), trend of the band gap value with the 

increasing of titania loading (b). 
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The band edges and the corresponding band gap values are summarized in Table 3.14. 

Table 3.14 TiO2 content, band gap (Eg), corresponding wavelengths value (λEg) and the band edge 

for the parent support, Ti-SBA-15-X-n and the TiO2 references. 

Sample 
Eg λEg Band edge 

/ eV / nm / nm 

Parent SBA-15 5.5 225 - 

Ti-SBA-15-1 3.5 354 266 

Ti-SBA-15-2 3.4 365 276 

Ti-SBA-15-3 3.3 376 318 

Ti-SBA-15-4 3.2 388 324 

Ti-SBA-15-5 3.2 388 324 

TiO2 P-25 3.2 390 332 

Bulk anatase 3.2 390 340 
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3.2.3 Photocatalytic degradation of methyl orange 

Photodegradation reactions of methyl orange (MO) were carried out under UV-vis irradiation in 

order to explore the impact of catalyst pore size and TiO2 loading on the activities of the prepared 

photocatalysts. The operational set-up and reaction conditions can be found in Chapter 2. 

3.2.3.1 Effect of mesopore size 

Figure 3.33 shows the reaction profile for the loss of methyl orange, when using the synthesized 

catalysts as compared to the pure bulk anatase and commercial Degussa P-25. Blank experiments 

were carried out in the absence of catalyst (photolysis) and in the presence of bare SBA-15. 

Figure 3.33 Reduction of MO concentration with irradiation time over the three series of Ti-SBA-

15-x-n, bulk anatase and Degussa P-25 and one of the parent support (SBA-15-7). 

It must be noted that negligible conversion was observed for control experiments in the absence of 

titania. The final percentage of MO degradation for these two preliminary tests was 3.7% for the 

photolytic effect and 6.4% for the test performed with SBA-15 alone, confirming that the silica 

support exhibits a minor contribution to the degradation process.  

As observed from the DR-UV/vis analysis (Section 3.2.2.2.8), the bare support shows a small 

absorption in the UV region and a very wide band gap of 5.5 eV. Because of its large band gap, 

SBA-15 provides a negligible contribution to photodegradation in the UV region which is most 

likely due to the high density of hydroxyl radical on the silica surface and/or the oxidation of water 

molecule, both sources of hydroxyl radicals (HO
●
) production. 

Figure 3.34 displays the values of the initial rate of MO degradation normalized for the mass of 

catalyst versus the pore size. It can be observed that increasing the pore size of the silica support 
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resulted in significant increase in the rate of the photocatalytic degradation of MO within the three 

series of catalysts (5 nm, 6 nm, 7 nm). This enhancement in degradation rate can be explain by the 

existence of mass-transport problems due to the accessibility of the dye molecule (molecular length 

~1.2 nm) to the TiO2 active sites located inside the small pores of the silica particles (<5 nm). The 

long diffusion path inside the channels of SBA-15 and small size of the pores could adversely 

affect the catalytic performance of the catalyst.[50] The linear correlation between the initial rate 

and the pore size shows that SBA-15-7 is the most suitable support for a composite catalyst as it 

benefits from minimised diffusion limitations and greater homogeneity in the TiO2 dispersions 

compared with the other two host materials, as confirmed also from the XRD wide angle pattern. 

The linear correlation between the initial rate and the pore size shows that SBA-15-7 is the most 

suitable support for a composite catalyst as it benefits from minimised diffusion limitations and 

greater homogeneity in the TiO2 dispersions compared with the other two host materials, as 

confirmed also from the XRD wide angle pattern. 

 

Figure 3.34 Initial rate (r
0
) normalised for the mass of catalyst as function of the pore size. 

 

Figure 3.35 shows % of MO degradation during the irradiation time. In comparison with the 

control tests (photolysis and bare support) the addition of TiO2 to SBA-15 substrate significantly 

improves the efficiency of MO photodegradation. However considering the experimental error, the 

final % of MO degradation reached is approximately the same for all the composites materials 

(~40%) independently from the titania loading.  

Therefore it can be seen that 5nn-1 exhibits a significant deviation from this trend showing almost 

no activity, followed by 6nm-1. The latter is slightly more active but not completely in line with the 

trend of the other samples.  
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Figure 3.35 Variation of the dye degradation rate with irradiation time of methyl orange solution. 

 

These differences on catalytic behaviour found an explanation in the localization of titania 

nanoparticles during the grafting procedure, also in agreement with the characterization techniques 

previously shown. It was observed that there is no formation of separate TiO2 nanoparticles on the 

SBA-15 support up to a TiO2 loading of about 10 wt. % and the distribution of titania within the 

sample results homogeneous. 

The three parent supports were prepared at different aging temperature and the removal of the 

surfactant by calcination leaves micropore areas inside the SBA-15 walls with high hydroxyl 

density. Porosimetry analysis confirm that the density of micropores varying with the aging 

temperature. (See Section 3.2.2.1.3) The support SBA-15-5 has the higher density of these 

micropores which is drastically reduced after the first grafting cycle. However the titania is present 

on the support (as confirmed by XRF, XPS, ICP analysis) but mainly located on the micropores, 

thus not available for the reaction. 

Our reference experiments were performed with Degussa P-25 and the bulk anatase. Both samples 

reached more than 90% of total degradation of MO after 120 min of irradiation time, showing 

apparently higher activity than the supported titania.  

However, normalizing the photodegradation rate by per gram of TiO2 contained in synthesized 

catalysts, the Ti-SBA-15-7 material show better photocatalytic activity than bulk anatase and 

comparable photoactive behaviour to the commercial P-25 Degussa. This exceptional activity is 

attributed to the high accessibility to the model compound to the active site. Results are shown in 

Figure 3.36.  

 



129 

Figure 3.36 Initial rate (r
0
) for the MO degradation normalised for the mass of TiO2.

3.2.3.2 Effect of titania loading 

The reduction of MO concentration vs. irradiation time over the series of composites under UV-vis 

irradiation is presented in Figure 3.37.  

Figure 3.37 Reduction in MO concentration with irradiation time by using different catalysts at 

different wt. % of TiO2 and two references (Degussa P-25 and bulk anatase). 

From this figure it can be observed that the degree of degradation of MO using samples with low 

TiO2 content (~10 and 30 wt. %, 1
st
-3

rd
 cycle of grating) is quite low and follows a slow rate

compared with the samples at higher TiO2 loading (~30-40 wt. %, 4
th
 and 5

th
).

The degradation efficiency is reported in Figure 3.38.  
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Figure 3.38 Variation of the dye degradation rate with irradiation time of MO solution. 

 

It is clear that the degradation of MO using samples with low TiO2 content (10 and 28 wt. %) is 

quite low and slow. After four hours of irradiation, the 1
st
 and the 2

nd
 grafting cycles reached only 

the 20 % of MO degradation, showing very similar photoactivity. 

On the other hand the samples with the highest loading show about 80% of degradation of MO. 

However no relevant difference is observed between the samples with 35-43 wt. % of TiO2. 

Interesting, the 3
rd

 grafting cycle shows a very low activity with final degradation about 10 %. 

It seems that the % of MO degradation first decreases and then increases by increasing the TiO2 

content. This is due to the localization of TiO2 nanoparticles on the support and their accessibility 

to the target substrate. Up to the 3
rd

 cycle of grafting, TiO2 nanoparticles are homogeneously 

dispersed on the internal and external surface of the support with very small anatase particles, 

consistent with the absence of any or very little diffraction anatase peak observed from the wide 

angle XRD pattern. While at high TiO2 loading it starts the formation of separate TiO2 

nanoparticles located on the external surface and so more accessible to the target substrate. 

Therefore it can be postulated that the degradation rate is mainly dependent on the accessibility of 

the compound to the catalytic active sites. 

However there are several factors, such as crystal phase, available surface area, crystalline size and 

band gap, which play an important role in influencing photoactivity. All these parameter are 

depending on the amount TiO2 loaded on the support. Figure 3.39 shows the initial rate (r
0
) as 

function of the TiO2 loading.  
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Figure 3.39 Initial rate (r
0
) for the MO degradation normalised for the mass of catalyst as function 

of the TiO2 loading.  

 

First, it seems that the titania loading on the material produces only a slight increase in the rate of 

MO degradation, then a clear increase in the initial rate was found for TiO2 loadings above 30 wt. 

%. An increasing of TiO2 content led to an increase of crystallized anatase together with lower 

band gap energy values. Moreover at high loading, anatase particles (bigger than 6 nm) are located 

on the external surface area of the support providing a good accessibility of MO molecule to the 

TiO2 active sites. Thus when MO molecules start to degrade, the diffusion of small subproducts 

within the TiO2-coated mesoporous network of SBA-15 may be facilitated. 

From the analysis of the raw reaction profile the two bulk references (100% TiO2) show highest 

photoactivity compared to the composite materials (Figure 3.37). It should be also noticed that the 

two bulk references are characterized by different structural and electronic properties compared 

with the composites samples. This makes it complex to find the exact criteria with which to 

compare the activity of the bulk and the supported samples. Thus in order to compare the 

performance of the different catalysts with the same titania weight, the normalized initial rates for 

the actual TiO2 mass are reported in Figure 3.40.  
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Figure 3.40 Initial rate (r
0
) for the MO degradation normalised for the mass of TiO2. 

 

Normalizing the obtained values for the actual mass of TiO2 present in the system, it can be seen 

the anatase nanocrystal appear to be a more efficient photocatalyst when it is dispersed on the 

SBA-15 support with a high surface area. However the commercial reference, Degussa P-25 

appears to be the best catalyst for MO degradation under the chosen experimental conditions. The 

high photocatalytic activity of TiO2 P-25 is attributed to the complex structure of this material since 

it is a mixture of anatase and rutile phases. 

 

3.3 Conclusions 

Two different series of TiO2–coated SBA-15 composites were synthesized by grafting procedure. 

For the first series, three supports with three pore sizes were prepared at different aging 

temperatures (80, 100 and 120 °C). Further TiO2 nanoparticles were grafted on each support with a 

target of TiO2 loading in the range of 8-18 wt. % (Ti-SBA-15-X-n, X= aging temperature and n= 

number of grafting).  

The aim was to investigate the influence of the pore size of the host support on the TiO2 dispersion 

and on the photodegradation of MO. It was found that for the SBA-15 with the smaller mesopore 

size (5 nm) the deposition of TiO2 meanly occurs inside the micropores, leading to a very low 

activity due to the fact that the active phase is less available for the target molecule. Moreover, 

considering the molecular length of MO (~1.2 nm), small pore size causes also mass-transport 

problems due to the accessibility of the dye molecule to the internal surface area of the host 

support. Therefore SBA-15 with the biggest pore size (7 nm) was the best candidate to study the 

influence of the TiO2 loading effect. Hence, the same grafting method was applied for the second 

series of catalysts on the SBA-15-7 support and the TiO2 loading was varied from 12-43 wt. % by 

five following grafting procedures (Ti-SBA-15-n, n=1-5). At loading below 30 wt. %, the titania 
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coating homogeneously occurs inside the mesopores and no crystalline anatase was observed by 

XRD and Raman. At higher loading, TiO2 was found crystallized in anatase nanoparticles also 

outside the porosity (particle size ~8-10nm). The increasing of particle size brings to a more active 

phase available on the external surface and mainly to a sensible variation of the band gap energy. 

The results show that Eg decreases with the increase of titania content, which affects the 

photoactivity of the samples. It clearly appeared that the Ti-SBA-17-5 composite with 43 wt. % of 

TiO2 exhibits the highest MO degradation rate of both series. From these studies, it was determined 

that the mesoporous SBA-15 with a surface grafted layer of titania, exhibited a remarkable 

efficiency for dye degradation providing high surface area and good dispersion of the active phase. 
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4 Titania grafted on macro-mesoporous silica support 

4.1 Introduction 

Chapter 3 evidences the crucial role of support structure on the synthesis of TiO2 based 

photocatalysts. Mesoporous silicas are a well understood and versatile material, for which advances 

in control over their pore structure and surface properties [1] have made them an ideal choice as 

supports for TiO2 nanoparticles for photocatalytic processes. [2-4] 

A further challenge is to design hierarchical structures which can not only improve the molecular 

diffusion/ transport kinetics but also enhance light harvesting. Primarly the generation of ordered 

macropores within the SBA-15 architecture is predicted to benefit internal mass diffusion kinetics 

through a more open support structure and shorter length mesopore domains.[5] Additionally, 

ordered macroporous materials are of significant interest because of their optical properties as three 

dimensional photonic crystals (PC),[6-8] but their effect have not been fully investigated yet.  

The photonic crystals are periodic dielectric structures, which can prohibit the propagation of a 

certain frequency range of light, called photonic band gap (PBG). At the frequency edges of the 

stop-band, photons propagate with strongly reduced speed and this phenomena reinforces the light-

matter interaction, thus the consequent probability of light absorption is increased.[9] So far several 

research groups focused their attention on the design and synthesis of hierarchical materials for 

photocatalytic application. However, it is very difficult to obtain high control of the hierarchical 

morphology. Porous materials with three-dimensionally ordered macroporous are mainly 

synthesized using spherical polymers as a hard template. [2, 10, 11] These particles are easily 

removed from the target material by thermal treatment or solvent extraction.[12]  

Chen et al.[13-15] demonstrate the importance of the highly ordered structure for a macroporous 

anatase, establishing the unique property of the photonic crystal to improve the light harvesting. 

Oxidative decomposition of methyl blue was performed under monochromatic UV light. A study 

on the slow photon effect were also performed by Liu et al. and Chen et al. in the application of 

TiO2 PC to the photocatalytic degradation of Rhodamine B and phenol, respectively.[9, 16] 

Lu at al.[17] obtained a highly ordered TiO2 PC using two sizes of polystyrene beads (193 and 240 

nm) as hard templates, removed by a calcination step at 550° C. The augmented photocatalytic 

performance of the TiO2 PC was demonstrated by comparison with the same TiO2 synthesised 

without the template, and applied as the control experiments in the photodegradation of 2,4- 

dichlorophenol (2,4-DCP). 

Wen et al.[18] optimized the position of the photonic stop band of macroporous ZnO catalysts by 

tuning the diameter of the hard template.  
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Yamashita et al.[2, 12] explored different kind of siliceous material as a support for a TiO2 

photocatalyst, investigating the effect of hierarchical structure for different loadings of titania 

obtained by conventional impregnation method. The utilization of a hierarchically porous 

architecture exhibited superior photocatalytic performances for the degradation of relatively large 

organic compounds compare to the mesoporous supported material. However, beside the unique 

structural properties of the hierarchical structure, such as well-ordered architecture, high surface 

area and the large pore volume together with the evidence of reduced diffusion limitation, the role 

of macropores was not fully investigated for their optical properties. 

In contrast, Mitchell et al.[19] performed a detailed study on the optical properties of coated 

photonic macroporous supports using different kind of nanoparticles (TiO2, Fr3O4 or CdS) onto 

macroporous SiO2 and ZrO2 deposited by the wet impregnation method. It was found that the PBG 

position strongly depended on the loading and the distribution of the active phase on the photonic 

support. Thus the results showed that by tuning the position of the stop band of the host support 

with the absorption edge of the photoactive phase it was possible to obtain and enhancement in 

light absorption and consequentially in the photocatalytic efficiency of the material. Moreover it 

was found the importance of control over the nanoparticle dispersion in order to retain the photonic 

properties also after the coating with the active phase.  

The following chapter builds upon these investigations by introducing TiO2 on hierarchical SBA-

15 by a grafting procedure in order to have a strong stability of the active phase on the host support 

and much control on the nanoparticles dispersion. An innovative synthetic route utilising the true 

liquid crystal templating (TLCT) has been investigated to observe the effect of incorporating 

macropores, to form an ordered macroporous-mesoporous support.[20] The aim of the study was to 

investigate the effect of structural and optical properties of this particular structure on the 

photoxidation rate of organic pollutants in water. 

In this chapter three ordered hierarchical materials were prepared using different polystyrene beads 

size (200, 400 and 600nm). On this series of supports only one grafting procedure was performed 

in order to study the effect of the macropore size on the grafting procedure and on the activity of 

the composite materials. Subsequently the effect of TiO2 loading was explored on the support 

synthesized with 400 nm PS beads size. The catalytic activity of the composites was evaluated by 

studying the photodegradation of methyl orange (MO) in water under UV-vis irradiation and 

compared with the photocatalytic performance of the Ti-SBA-15 samples. 
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4.2 Results and discussion 

4.2.1 Characterisation of polystyrene beads 

The emulsion polymerisation protocol devised by Vaudreuil et al[21] was used to produce mono-

disperse polystyrene spheres, for use as a hard template for macropore incorporation into SBA-15. 

Three different PS beads sizes were obtained: 200 nm, 400 nm and 600 nm, with STEM used to 

establish the successful synthesis of monodispersed polystyrene spheres. Figure 4.1, Figure 4.2 

and Figure 4.3 confirm a successful synthesis, with spherical morphologies exclusively 

synthesised and good mono-dispersity. All values are in excellent agreement with reported 

literature values under similar synthesis conditions.[5] 

Figure 4.1 Representative STEM images of polystyrene beads of 200nm size (before the centrifuge 

step) (a) and the relative particle size distributions for 500 particles (b). 
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Figure 4.2 Representative STEM images of polystyrene beads of 400nm size (before the centrifuge 

step) (a) and the relative particle size distributions for 500 particles (b). 

Figure 4.3 Representative STEM images of polystyrene beads of 600nm size (before the centrifuge 

step) (a) and the relative particle size distributions for 500 particles (b). 

4.2.2 Characterisation of the TLCT-MM-SBA-15 supports 

TLCT-MM-SBA-15 with three macropore sizes were synthesised using methodologies developed 

by Parlett et al.[22] Successful synthesis was verified using a variety of characterisation techniques. 

Textural properties were explored by N2 porosimetry, resulting isotherms shown in Figure 4.4a. As 

previously established for SBA-15, TLCT-MM-SBA-15 exhibits a type IV, isotherm and H1 

hysteresis, inherent to the preservation of SBA-15 mesostructure and pore uniformity.[23] A 

second hysteresis is shown for this material at higher pressures due to the incomplete 



143 

 

filling/emptying of the macropores. BJH analysis of desorption curve shows a very similar value of 

mesopore pore diameter (~6-7 nm) of the three supports. (Figure 4.4b)  

 

Figure 4.4 Stacked isotherms of MM-SBA-15 supports (a) and stacked BJH pore size distribution 

plots (b). 

 

The BET and BJH methods were used to determine respective surface areas and average mesopore 

diameters, with the results presented in Table 4.1. 

Table 4.1 Textural properties of the MM- SBA-15 support. 

Sample Pore size SBET Vpore Vmicro 

  / nm / m
2
.g

-1
 / cc.g

-1
 / cc.g

-1
 

MM-200 6.6 301 0.4 0.02 

MM-400 6.1 340 0.5 - 

MM-600 6.9 334 0.6 - 

 

The BET surface areas for TLCT-SBA-15 (~320 m
2
/g) is significantly lower than for SBA-15 

(~700 m
2
/g, reported in Chapter 3), which appears to result from a decrease in their microporosity, 

as determined by the t-plot method.[20, 24] This observation can be explained by the removal of 

the hydrothermal treatment in TLCT synthetic protocols; thus altering pore-swelling dynamics.  

Additionally, the presence of the polystyrene bead-macropore template restricts the formation and 

swelling of the mesophase to cavities around said template, thus explaining the smaller unit cell 

parameter and fall in XRD peak intensity, as displayed in Figure 4.5. 
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Figure 4.5a shows the low angle XRD patterns of the MM-SBA-15 supports in comparison with 

SBA-15-7. The MMSBA-15 demonstrates a broadened SBA-15 (d10) reflection only. The other two 

characteristic peaks of the (d11) and (d20) diffraction planes of the 2D hexagonal pore structure 

typical of the mesoporous SBA-15 are not visible or reduced to a weak shoulder for the MM-SBA-

15 due to the lower number of pore repeat units, a consequence of the macropores disrupting the 

mesopore framework. It must be noted that macropore ordering within the support framework was 

undetectable via traditional low angle powder diffraction due to the extremely large repeat unit 

distances (~30 times that of the mesopores) between each macropore. Moreover it can be noticed 

that the first order reflection (d10) is shifted to higher angle TLCT MM-SBA-15 with respect to 

SBA-15. 

Figure 4.5b shows the trend of pore spacing (a0) and wall thickness (twall) with the macropores 

size. The observed parameters tend to increase with increasing of macropores size in the following 

order: MM-200< MM-400< MM-600~ mesoSBA-15.  

Figure 4.5 Low angle XRD patterns of the silica supports (a), trend of increasing of twall and a0 

with increasing of macropore size in comparison with the values found for the SBA-15 (b).  

The parameters evaluated from the XRD low angle are reported in Table 4.2.[5, 24, 25] 
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Table 4.2 Pore spacing (a0), interlayer spacing (d10) and wall thickness (twall) of the hierarchical 

supports with different macropores size. The sample SBA-15-7 is reported for comparison. 

Sample 2θ d(10)
a
 a0

b
 dp

c 
 twall

d
  

    / nm / nm / nm / nm 

SBA-15-7 0.8 10.2 11.8 6.8 5.0 

MM-200 1.2 7.5 8.7 6.6 2.1 

MM-400 1.0 8.7 10.0 6.1 3.9 

MM-600 0.8 11.3 13.1 6.9 6.2 

a 
Interlayer spacing derived from Bragg's law, 

b
pore spacing, 

c
pore diameter 

from N2 desorption isotherm, 
d
wall thickness= (2d(10)/√3)-pore diameter 

 

SEM analysis was used to provide concrete evidence for the successful generation of macroporous 

architecture. (Figure 4.6a, Figure 4.6b and Figure 4.6c) Moreover, the images reveal macropores 

are slightly smaller than the PS bead templates used in synthesis. (Figure 4.6d) The macropores 

are formed due to the removal of polystyrene beads from the silica walls by calcination, thus it is 

proposed that the size of the macro voids is slightly less than the size of the original polystyrene 

because of shrinkage of silica walls during melting of polystyrene latex.[26] The diameter of 

macropores formed from 200 nm PS beads is ca. 150 nm, indicating a shrinking of about 25% 

when compared to the size of the parent PS beads. A similar degree of shrinkage of 15% and 28% 

respectively is observed for silicas prepared with PS beads of 400 and 600 nm diameters, with 

average macropores size of 340 and 428 nm. 
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Figure 4.6 SEM image of macro-mesoporous SBA-15 obtained with PS beads of different sizes: 

200 nm(a), 400 nm (b) and 600 nm (c). The plot shows that measured macropores are smaller than 

the size of PS bead templates previously measured from the STEM pictures (d). 
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4.2.3 Characterisation of TiO2 grafted supports 

4.2.3.1 Effect of macropores size 

Upon successful characterisation of each support, TiO2 was introduced onto the surface using the 

grafting procedure describe on Chapter 2, aiming to TiO2 loadings of 6-10 wt. %. The motivation 

of this study was to prepare a photoactive material evaluating the advantages resulting from the 

introducing of hierarchical structure and investigate the effect of different macropore size on the 

mass transfer limitation and on the optical properties of the material as photonic crystal coated with 

an active phase. The nomenclature used for the composites catalyst is defined as follows: X-n, with 

X the size of the macropores (nm) and n the number of grafting cycles. 

 

4.2.3.1.1 Elemental analysis 

XRF and ICP-OES analysis were conducted on the composite materials to quantify their bulk 

composition. The values of wt.% of TiO2 obtained from the two techniques are shown in Table 4.3. 

Table 4.3 Bulk elemental analysis for the hierarchical composites with different macropores size. 

Sample 
TiO2 loading / wt.% 

XRF (%error) ICP-OES 

200-1 8.1 (0.9) 9.7 

400-1 9.5 (1.1) 10.3 

600-1 6.0 (0.8) 8.3 

 

4.2.3.1.2 X-ray photoelectron spectroscopy 

XPS was employed to probe the surface composition and the oxidation state of the supported TiO2 

nanoparticles. A summary of the elemental surface composition is presented in Table 4.4, which 

reports the wt. % of the surface species for each of the grafted MM-SBA-15 support. 

 

Table 4.4 Surface composition of the hierarchical composites. 

Sample  Si O Ti 

  / wt. % / wt. % / wt. % 

200-1 49 46 4 

400-1 48 47 5 

600-1 49 47 3 
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High-resolution XPS spectra for Ti2p and O1s of the sample 200-1 are displayed in Figure 4.7. 

Figure 4.7a shows that Ti 2p3/2 corresponds to a binding energy of 458.9 eV, which is slightly 

higher than that of TiO2 bulk anatase (458.8 eV) [46]. The shift to higher binding energies is 

associated with the formation of Ti-O-Si chemical bonds, resulting in the two sets of peaks 

exhibited in the Ti 2p spectra. [27, 28] The peaks centred at 459.9 eV and 465.7 eV were assigned 

to cross-linking Ti–O–Si bonds and the shift is due to a decrease in the positive charge of the titania 

species within the Ti-O-Si formation compared to that of anatase.[29] 

Analysis of the oxygen 1s regions (Figure 4.7b) indicates that there were multiple components that 

may be fitted into three peaks: oxygen species in Si–O–Si groups (532.4 eV) in the form of silicon 

dioxide, those in interfacial Si–O–Ti cross-linking bonds (530.4 eV) and those from surface 

hydroxyl groups (533.3 eV).[29, 30] Compared with the XPS of the bare support MM-200, the 

contributions of OH groups in O1s shows lower hydroxyl content and the presence of the cross-

linking Ti–O–Si bonds, suggesting that Ti and Si are combined through a shared oxide. 

 

Figure 4.7 Ti 2p region from XPS analysis of 200-1 and bulk anatase (a), and O 1s region from of 

titania grafted on macroporous SBA-15 and the correspondent bare support. 

 

The corresponding Si 2p XP spectra for the composite material and the bare support are shown in 

Figure 4.8. The Si2p spectrum was fit with two sets of Si 2p doublets with a doublet separation of 

~0.6 eV.[31] The peak at 103.41 eV corresponds to Si-O-Si and it is attributed to the pure silica 

(red line). An additional peak at 102.9 eV (blue line) is only present in the grafted sample. This 

assigned to silicon atoms at the silica-titania interface. 
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Figure 4.8 Si 2p region from XPS analysis of 200-1 and parent support. 

The bulk and surface compositions of the composite catalysts evaluated by ICP and XPS are 

summarised in Table 4.5 below and the wt. % Ti bulk:surface ratio is reported. The bulk and 

surface values result identical, indicating that for low TiO2 loading (ca. ≤10 wt. %) it is possible to 

obtain a homogeneous coverage on the porous support.  

Table 4.5 Comparison of the surface and bulk Ti wt. % content for the hierarchical composites. 

Sample Surface Ti
a
 Bulk Ti

b
 Surface : Bulk 

/ wt. % / wt. % 

200-1 3.8 3.9 1.0 

400-1 4.8 4.5 1.1 

600-1 3.2 3.5 0.9 

a 
XPS, 

b 
XRF 

4.2.3.1.3 Nitrogen porosimetry 

Textural differences between the bare supports and grafted samples were explored by N2 

porosimetry. The resulting isotherms are shown in Figure 4.9a. The isotherms retain a type IV 

shape, characteristic of SBA-15 mesostructure and pore uniformity, including a H1 hysteresis loop 

associated with the bottle-necked pore openings and an increasing adsorption at high partial 

pressure, suggesting the presence of macropores.[24, 25, 32] A second hysteresis is shown for these 

materials at higher partial pressures (P/P0>0.8) due to the incomplete filling/emptying of the 

macropores. The hysteresis loop size increases after the grafting procedure (See isotherms 2-4-6 in 

Figure 4.9a), which may be due to the TiO2-coating of the internal surface area of the pores that 
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could slightly limit the diffusion of N2 during desorption cycle. In general, the preserved hysteresis 

and isotherm shape of the parent material upon the grafting confirms there is negligible pore 

collapse or change in support infrastructure.  

Pore size distributions, calculated from the desorption branch of the isotherm, are presented in 

Figure 4.9b. BJH pore size distribution plots show a shift of the maximum value to lower pore 

diameters after one grafting cycle. The diffence in mesopore size between the parent and the 

grafted materials is in the range of ~0.5-1 nm. Considering that the titania monolayer is assumed to 

have a thickness of 0.352 nm, which is the interlayer spacing for the (101) plane of TiO2 (anatase), 

the results suggested the formation of thicker layer or agglomeration of TiO2 nanoparticles on the 

silica surface. 

Figure 4.9 Stacked isotherm plots of hierarchical SBA-15 with different macroporese sizes (black 

lines): MM-200 (1), MM-400 (3) and MM-600 (5); and the relative grafted composite samples 

(200-1(2), 400-1 (4) and 600-1 (6)) (a); stacked BJH mesopore size distributions (b). 

Table 4.6 reports the textural properties of the grafted samples in comparison with the relative 

parent supports. 

Table 4.6 Textural properties of the parent MM- SBA-15 and the grafted samples. 

Sample SBET dp Δporesize V total 

/ m
2
.g

-1
 / nm / nm / cc.g

-1
 

MM-200 301 6.6 0.4 

200-1 300 5.9 0.7 0.4 

MM-400 340 6.1 0.5 

400-1 322 5.7 0.5 0.4 

MM-600 334 6.9 0.6 

600-1 267 5.9 1.0 0.4 
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4.2.3.1.4 Powder X-ray diffraction 

Figure 4.10a shows the wide angle XRD patterns for the three TiO2 grafted MM-SBA-15. 

A broad reflection at angles θ < 35° was attributed to amorphous silica and a weak peak at 24.5 

degrees was assigned to (101) reflection of anatase. A decrease in particle size was observed with 

increasing diameter of macropore size of the support. (Figure 4.10b) This trend may arise from the 

genesis of large TiO2 crystallites during the grafting procedure which may block pores (more easily 

for smaller macropores) hindering permeation of the titania precursor solution through the pore 

network, leading to low dispersion of TiO2 nanoparticles on the internal silica surface.  

Figure 4.10 Offset of wide angle XRD patterns of the grafted materials in comparison with the 

spectrum of bulk anatase (a). Evolution of the anatase crystallite size with the number of titania 

graftings evaluated by the Scherrer equation (b). 

4.2.3.1.5 ATR-IR spectroscopy 

The ATR IR spectra of pure MM-SBA-15 and the grafted materials are shown in Figure 4.11. The 

TiO2 P-25 and the mesoporous SBA-15 7 spectra are reported for comparison. These results 

reported for the spectra of the composites materials provide further evidence of the successful 

grafting of TiO2 onto the silica support along with the formation of a separate TiO2 phase. The 

band at around 960 cm
–1

, which has been widely used to characterize the bond between the metal 

ions and the silica framework and is typical of the Ti-O-Si vibration for the interface species, is 

very weak compared to the peaks attributed to the single SiO2 and TiO2 phases. This observation is 

further evidence for the presence of TiO2 crystallites on the hierarchical SBA-15 support even at 

low TiO2 loading, in agreement with the XRD and XPS data. 
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Figure 4.11 ATR IR spectra of the grafted samples, the MM-200 support, the mesoporous support 

(SBA-15 7) and the TiO2 P-25 in the range of 2950-4000 cm
-1

 (a), 400-1600 cm
-1

 (b). 

 

The observed frequencies and assignments are reported in Table 4.7 and are in good accord with 

the results presented in Chapter 3. 

Table 4.7 Assigned vibrational modes for the TiO2 grafted MM-SBA-15. 

Vibrational Mode  Frequency 

   /cm
-1

 

νas (Si-O-Si) 1072 

νsym (Si-O-Si) 800 

δ (Si-O) 435 

ν (Si-OH) 3740 

ν (Ti-O-Ti) 740 

ν (Ti-O) 418 

ν (Ti-OH) 3500 

ν (Si-O-Ti) 960 

 

4.2.3.1.6 Scanning transmission electron microscopy 

TEM was used to examine the structural architecture of the TiO2 grafted catalysts with 

representative bright field TEM images. Figure 4.12 depicts representative TEM images of the 

200-1 synthesized sample. Macropores are clearly incorporated throughout MM-SBA-15, with an 

average diameter of 185 nm. Moreover the high resolution TEM images confirm the ordered 

mesopore structure is retained and that the pore walls of SBA-15 channels remain uniform upon 

grafting of TiO2. The sample displays both the channel structures and the hexagonal mesopore 
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packing of a typical SBA-15 within the framework, and thus successful synthesis of hierarchical 

macroporous-mesoporous silica and not two independent phases. 

Figure 4.12 Representative bright field TEM images of channel (a) and the hierarchical 

macro/mesoporous structure of the 200-1(b). 

Representative TEM images of 400-1 and 600-1 are shown in Figure 4.13. 

Figure 4.13 Representative bright field TEM images of the hierarchical macro/mesoporous 

structure of the 400-1(a) and the 600-1 (b) samples. 

For all the reported TEM images it is interesting to observe the presence of the mesopore structure 

within the macropore network. In Figure 4.13a the insert highlights a selected area with a presence 

of a small anatase nanoparticle (d ~ 2nm). The spherical morphology and the arrows indicate the 
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(101) lattice spacing with d-spacing of 0.35 nm are both evidence of the presence of TiO2

nanoparticles in anatase phase, in agreement with the XRD analysis. [33] 

4.2.3.1.7 UV-vis diffuse reflectance spectroscopy 

Diffuse reflectance (DR) UV-vis spectroscopy was used to characterize the electronic structure and 

the optical proprieties of hierarchical composite catalysts. 

Three-dimensionally ordered macroporous (3DOM) materials have drawn much attention in the 

field of photocatalysis, because the periodic pore structure, with its large porosity, introduces new 

interesting optical properties, as three dimensional photonic crystals (PC).[6, 7, 34, 35] To be 

specific, the synthesised hierarchical supports (MM-SBA-15) are photonic crystal with an inverse 

opal structure (IOS). Photonic crystals are materials characterized by a periodic structure with 

ordered spatial variation of the refractive index (n) between the solid matrix (i.e. silica, nSiO2 = 1.45) 

and the voids (air, nair = 1), which cause a modification of propagation of light for specific 

wavelength.[19] This range of wavelengths that cannot propagate through the PC structure is called 

photonic band gap (PBG or stop band) and its variation is due to the refractive index contrast. [8, 

36] (Figure 4.14) Specifically, inverse opals are created by the infiltration of synthetic opals (i.e.

PS beads) with a material of high refractive index (silica) and subsequent removal of the spheres to 

produce a structure of periodic voids (air) surrounded by a continuously silica matrix. This creates 

a large refractive index contrast that has the potential to produce a PBG. Photons within this 

particular range of energy cannot be absorbed by the PC structure and are, consequently, reflected. 

The resulting effect is an internal multiple scattering.[37] Another important feature of inverse 

opals, together with the PBG, is the existence of the slow photons (SP) effect. The light at the 

frequency edge of the PBG propagate with strongest reduced velocity in the solid matter and these 

photons are usually called “slow photons”. This effect can significantly enhance the light 

absorption within the material (light harvesting).[7]  

Figure 4.14 Schematic figure of photonic crystal with silica inverse opal structure. 
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The optical behaviour of the synthesised photonic crystals with an inverse opal structure (IOs) was 

further investigated by diffuse reflectance (DR) UV-visible spectroscopy. In particular the stop 

bands can be conveniently measured and the position of slow photons can be identified by 

approximating slopes at the edge of the stop bands. Diffuse reflectance spectra of the MM-SBA-15 

supports with different macropores size and the corresponding stop band positions are reported in 

Figure 4.15. The dotted circles indicate the maximum reflectance of the stop bands, while the 

black arrows indicate the expected region of the slow photon formation at the blue edge of the stop 

band (BPG –blue photonic gap). Figure 4.15a shows the most evident difference between the two 

kind of silica supports: mesoporous SBA-15-7, with 100% of reflectance in the UV-Vis region 

(black line), and the hierarchical materials with broad reflectance bands (stop band) characteristic 

of the photonic structure. The position of the stop bands shifts to longer wavelength for bigger 

macropores, as shown in Figure 4.15b. The PBG are located in the visible region and centred at 

412 (MM-200), 494 (MM-400) and 654 (MM-600) nm. Thus, PBG of the three hierarchical 

supports is evidently modulated by changing the macropore diameters.[38] This trend confirms that 

the hierarchical silica structure can block light in a certain wavelength range, allowing the 

confinement and manipulation of photons within the materials. [7] The stop band, the consequent 

internal scattering, together with the slow photons effect of support material play a key role in 

improving the light absorption and thereby the photocatalytic activity of semiconducting materials 

(i.e. TiO2) when the wavelength of slow photons overlaps with the band gap of a semiconductor 

and/or the incident  light wavelength. Only if these conditions are satisfied, an enhancement of the 

light absorption by slow photons can be observed.[37] 

Figure 4.15 DRUV-vis reflectance spectra (%R) of hierarchical silica supports with different 

macropores size in comparison with the mesoporous SBA-15 (a) shift of the stop band position as 

function of the macropore size (b). 
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The band gap energies (Eg) of the three hierarchical support grafted with TiO2 (~10 wt. % ) were 

calculated using Kubelka-Munk function F(R) as shown in Figure 4.16a (the Eg values indicated 

by the black arrows). Figure 4.16b shows the absorption spectra of the three composites and the 

reflectance spectra of the corresponding supports. The yellow region represents the electronic band 

gap of the TiO2 nanoparticles grafted on each support and the black arrows are the positions of blue 

edges of the PBG. The blue edge of the PBG of the sample 200-1 and 600-1 is tuned with the 

electronic band gap of TiO2 and this can increase the probability to produce a slow photon effect. 

Figure 4.16 Kubelka-Munk function for band gap evaluation (a) and absorption spectra (primary y-

axis) of the TiO2 on MM-SBA-15 support and the reflectance spectra (secondary y-axis) for the 

corresponding supports (b). 

4.2.3.2 Effect of titania loading 

The previous section has highlighted the influence that support materials can exert upon supported 

metal nanoparticle catalysts and the photoactivity of the composite catalysts. Varying support 

properties can induce considerable changes in the photonic properties of these materials, and in 

turn affect their photocatalytic performance. The macro-mesoporous SBA-15 synthesized using a 

PS beads template of 400 nm diameter was chosen as support to investigate the impact of the 

titania loading. Three grafting cycles were performed to obtain a gradually and uniform TiO2-

coating of the silica support, avoiding pore blocking and monitoring the evolution of titania surface 

properties. The nomenclature used for the composites catalyst is defined as follows: MM-400, for 

the parent hierarchical support, and 400-n, with n = number of grafting cycles, for the composites 

catalysts. 
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4.2.3.2.1 Elemental analysis 

Titania was introduced to hierarchical silica support (MM-400) using the grafting procedure 

outlined in Chapter 2, covering a range of weight loadings of 10% to 23%. Three different 

loadings of TiO2 on MM- 400 were prepared and the bulk titania content was measured using XRF 

and ICP analysis. (Table 4.8) 

Table 4.8 Bulk elemental analysis for the hierarchical composites with different TiO2 loading. 

Sample 
TiO2 loading / wt.% 

XRF (%error) ICP-OES 

400-1 9.5 (1.12) 10.3 

400-2 19.0 (0.8) 15.0 

400-3 23.1 (0.96) 18.0 

 

4.2.3.2.2 X-ray photoelectron spectroscopy 

The impact of the three consecutive grafting procedures onto MM-400 support was explored by 

XPS to determine surface composition of the samples with increasing titania loading. 

Table 4.9 presents detailed information about surface composition of 400-n (n = 1-3) catalysts. 

Table 4.9 Surface composition of the 400-n materials (n=1-3). 

.Sample  Si O Ti 

  wt. % wt. % wt. % 

MM-400 48 52 - 

400-1 48 47 5 

400-2 43 47 9 

400-3 42 47 11 

 

From high resolution XP spectra, the evolution of Ti, O, Si species on the surface of MM-400 can 

be observed, confirming that as the titanium content of the materials is increased, interfacial species 

(Si-O-Ti) are present on the surface of silica support. The Ti 2p region was fit using line shapes 

obtained from bulk anatase, which recorded a Ti 2p3/2 peak position of 458.8 eV, consistent with 

literature values.[39] (Figure 4.17a) A shift to slightly higher binding energies is associated with 

the formation of Ti-O-Si bonds, resulting in the two sets of peaks exhibited in the Ti 2p spectra[40] 

caused by a decrease in the positive charge of the titania species within the Ti-O-Si formation 

compared to that of the bulk reference.[29] 

The Oxygen 1s region (Figure 4.17b) displayed an asymmetry which was accounted for by fitting 

the spectra with peaks for bulk silicon dioxide at 532.4 eV and for titanium dioxide at 530 eV, with 

the line shapes and positions taken from analysis of the parent SBA-15 and bulk anatase. The 
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contributions of OH groups from surface hydroxyl group at 533.3 eV drastically decreases already 

at the 1
st
 grafting cycle, indicating that also at low titania loading (wt.% TiO2 ≤10 ) the MM-SBA-

15 surface is almost completely covered.  

 

Figure 4.17 Ti 2p XPS stack plots of the composites catalysts obtained from the 1
st
 and the 3

rd
 

grafting cycles. The spectrum of bulk anatase is reported for comparison (a) O 1s XPS stack plots 

of the three grafting cycles and the relative bare support (b). 

 

The XPS spectra from of the silicon regions are reported in Figure 4.18a. These Si spectra also 

exhibit two distinct chemical environments with BE = 0.61 eV.[31] The state at 103.4 eV is 

attributed to the pure silica (red line), and is the only species in SBA-15, whereas an additional 

peak at 102.9 eV (blue line) is present in the grafted samples. This is assigned to silicon atoms of 

the Si-O-Ti interface specie. After the 3
rd

 grafting cycle the interface layer eventually becomes the 

dominate silica species, with the pure silica signal decreases with grafting cycle.(Figure 4.18b) 

This results from the suppression of the bulk silica signal, from the growing titania coating. 
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Figure 4.18 Si 2p XPS stack plots for the 1
st
 and the 3

rd
 grafting cycle of the composites catalyst. 

The spectrum of the bare support MM-400 is reported for comparison (a) highlight of the Si 2p 

region for the 3
rd

 grafting cycle (b). 

 

Table 4.10 reports the bulk and surface wt. % Ti for each grafting cycle, revealing that increasing 

the loading the bulk/surface ratio is not really changing among the series, suggesting more 

agglomeration or aggregation of TiO2 crystallites on the support rather than growing a uniform 

film. 

Table 4.10 Comparison of the surface and bulk Ti wt. % content for the MM-n composites. 

Sample  Surface Ti
b
 Bulk Ti

a
 Surface : Bulk 

  wt. % wt. %   

400-1 4.8 4.8 1.0 

400-2 8.8 9.5 1.1 

400-3 11.2 11.9 1.1 

a
XPS, 

b
XRF       

 

4.2.3.2.3 Nitrogen porosimetry 

N2 porosimetry allows evaluation of textural properties of the grafted samples and the 

correspondent support. The recorded isotherms shown in  

Figure 4.19a possess type IV shape with an H1 hysteresis, [41] characteristic of mesoporous 

supports with uniform mesopore diameters. Furthermore the isotherms display a second hysteresis 

at elevated relative pressures reflecting partial filling/emptying of the macropore network.  
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The BJH method was applied to the desorption branches of these isotherms to observe the pore size 

distribution. (Figure 4.19b) The pore size distributions indicate that the prepared materials do not 

have an entirely monodisperse pore network, with a small amount of pores existing at a lower 

diameter to those of the average (~ 6 nm), possibly due to contraction of the P-123 micelles near to 

the polystyrene bead regions. The grafting of titania appears to reduce the overall pore size, 

initially at the first grafting cycle by an insignificant margin, contrary to that observed in the 

mesoporous material, possibly due to condensation occurring mainly within the large macroporous 

voids. Subsequently, after the second and third grafting cycles the pore diameter is significantly 

reduced to 3.5 nm.[42]  

 

Figure 4.19 Stacked isotherm plots of MM-n (n=1-3) composites samples and the parent MM-400 

(a) BJH pore size distributions (b) 

 

The BET and BJH methods were used to determine respective surface areas and average mesopore 

diameters and pore volume, with the results presented in Table 4.11. The BET surface areas 

gradually decrease with the grafting cycles. 

  



161 

 

Table 4.11 Textural properties of the parent MM- SBA-15 and the grafted samples 

Sample 
TiO2 SBET dp V total 

/ wt.% / m
2
.g

-1
 nm / cc.g

-1
 

MM-400 - 340 6.1 0.5 

400-1 9.5 322 5.7 0.4 

400-2 19 312 3.5 0.4 

400-3 23.1 243 3.5 0.3 

 

4.2.3.2.4 Powder X-ray diffraction 

Figure 4.20a shows the wide angle XRD patterns for the TiO2 grafted MM-400 series, with 

evidence of the TiO2 crystalline anatase phase. The (101) anatase diffraction peak at 25° was 

discernible at the first cycle of grafting and at higher TiO2 loading XRD patterns exhibited strong 

diffraction peaks at 35°,48° and 52° indicating TiO2 in the anatase phase. The dominant (101) 

reflection at 25° was used to investigate the average of particles size through application of the 

Scherrer equation (See Chapter 2), [43] and an increase in size with the increasing of TiO2 loading 

was observed (Figure 4.20b). 

 

Figure 4.20 Offset of wide angle XRD patterns of the grafted materials in comparison with the 

spectrum of pure anatase (a); evolution of the anatase crystallite size with the number of titania 

graftings evaluated by the Scherrer equation (b). 
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4.2.3.2.5 ATR IR spectroscopy 

The ATR IR spectra of pure MM-400 and 400-n (n = 1-3) composite materials are shown in Figure 

4.21. All the assignments were reported and explained more in detail in the Section 4.2.3.1.5. 

In Figure 4.21a the broad signal centred at c.a. 3500 cm
-1

 is due to the stretching vibration of 

hydroxyl groups Ti–OH, whereas the small sharp peak at 3740 cm
-1

 is assigned to the Si–OH 

stretching.[44] In Figure 4.21b the characteristic bands of Si-O-Si vibrations dominate in the IR 

spectra. The peak around 1072 cm
−1

 and 800 cm
−1

 are attributed to the asymmetric and symmetric 

Si-O-Si stretching modes, respectively.[45] The bands at c.a. 418 cm
-1

, commonly assigned to ν(Ti-

O) stretching, together with the shoulder at c.a. 740 cm
-1

, characteristic of the v(Ti-O-Ti) mode, are 

increasing with the TiO2 loading.[46] Moreover the band at 960 cm
-1

 of νas (Si-O-TI) grows with 

the titania loading. All of these observations are further evidences of the successful impregnation of 

TiO2 onto the silica support 

 

Figure 4.21 ATR IR spectra of TiO2 grafted samples and the bare support MM-400 in the range of 

wavenumber of 2950-4000 cm
-1

 (a) and of 400-1600 cm
-1

 (b). 

 

4.2.3.2.6 Scanning transmission electron microscopy 

Following the successful grafting of titania onto the surface of the hierarchically porous structure, 

the sample was studied using TEM, to confirm the retained presence of macropores and the 

uniform coating of the support. (Figure 4.22) The low magnification micrograph (a) shows the 

preserved morphology of the ordered macropores within the sample after three grafting procedures. 

The yellow circles indicate the presence of some titania particles aggregating throughout the 

material after three cycles of grafting, in agreement with XRD analysis. The high resolution images 

(b, c & d) highlight the highly-organised hexagonal mesopore area in between the macropore 
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network at the 1
st
 (b), 2

nd
 (c) and 3

rd
 (d) cycle of grafting.  In these bright fields TEM images the 

titania nanoparticles can be distinguished due to the differences in titania/silica contrast and the 

yellows arrows indicates the formation of a thin coating of titania on the surface of the 

hierarchically porous SBA-15 which increase with the grafting cycles. 

Figure 4.22 Representative HRTEM images of MM-400 after titania 400-3 (a and d), 400-1 (b) 

and 400-2 (c).  

4.2.3.2.7 UV-vis diffuse reflectance spectroscopy 

Figure 4.23 shows DRUV-vis spectra of 10-23 wt. % TiO2 grafted hierarchical macro-mesoporous 

silica support (MM-400). All the TiO2 grafted MM-400 samples showed similar absorption in the 

UV region (λ~300-390 nm), with a red shit of band edge position (λmax) depending by the titania 

content. (Figure 4.23a) As observed from the XRD wide angle (Section 4.2.3.2.4), the TiO2 

particle sizes rapidly increased even for a narrow range of TiO2 loading.[29] Figure 4.23b reveals 

the spectra obtained by the Kubelka-Munk function for the evaluation of the band gaps, which were 

determined to be Eg ~3.1–3.2 eV for all the TiO2 grafted MM-400 samples. As mentioned earlier in 

this chapter (See Section 4.2.3.1.7), the hierarchical silica support MM-400 behaves as photonic 

crystal and also the photonic band gap (PBG) is affected by the TiO2 loading.  



164 

Figure 4.23 Absorption spectra of all the TiO2 grafted MM-400 samples (a); Kubelka-Munk 

functions for the band gap evaluation (b). 

Further diffuse reflectance spectra (%R) of the TiO2 grafted silica supports and the corresponding 

silica photonic crystal supports are shown in Figure 4.24. 

Figure 4.24 Diffuse reflectance spectra (%R) of the TiO2 grafted MM-400 samples with different 

TiO2 loading and the corresponding support MM-400. The PBG region has been enhanced for 

clarity. 

The PBG intensity was observed to significantly broaden and reduce with increasing titania 

loading, indicating a non-uniform coverage after the 1
st
 grafting cycle, in agreement with the 
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porosimetry and XRD data. [19] However with respect to the bare support MM-400, increasing the 

TiO2 loading red shifts the PBG to longer wavelengths. (Figure 4.25) This red shift is related to the 

introduction of an increasing amount of TiO2, characterized by an higher refractive index compared 

to the silica walls and the voids (nTiO2 = 2.49 > nSiO2 =1.45 > nair = 1). 

 

Figure 4.25 The stop band position as a function of the titania loading. 

 

The broadening of the PBG and the red shift of the electronic band gap (Eg) with increasing of TiO2 

loading can enhance the probability to have a slow photon effect as result of the overlap between 

the blue edges of the PBG and the absorption spectrum of the material. (Figure 4.26) The shaded 

area shows the wavelength range corresponding to the electronic state of TiO2 grafted MM-400 

samples and the black arrow points to the expected region of slow photon formation at the blue 

edge of the PBG. It can be seen that the higher the loading the higher the probability to have slow 

photon effect due to the red shift of Eg. These results show that for ordered MM-400 support the 

photonic properties are retained and the shape and the position of the PBG can be tuned based on 

the TiO2 loading and the kind of coverage (i.e. nanoparticles deposition or uniform coating). 
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Figure 4.26 Absorption spectra (primary y-axis) of the TiO2 grafted MM-400 samples and the 

reflectance spectra (secondary y-axis) for the correspondent support. 

 

4.2.4 Photocatalytic degradation of methyl orange (MO) 

The photocatalytic activity of all the samples with different macropore diameters and titania 

loading were examined in the photodegradation of methyl orange, to correlate structural and 

photonic properties with the activity. The operational set-up and reaction conditions can be found 

in Chapter 2. 

 

4.2.4.1 Effect of macropores size 

Figure 4.27 shows degradation rate curves of samples synthesized by using three different PS 

template spheres (200, 400 and 600 nm) in comparison with that of the commercial P-25, the bulk 

anatase and the mesoporous grafted sample (Ti-SBA-15-7-1). 

A blank experiment under UV was performed in the presence of the parent support MM-SBA-15 

(MM-400) and the result obtained with meso SBA-15 is also reported for comparison. (See 

Chapter 3) The reaction profiles of the support with three different macropores shown the same 

trend and the reported values (black dots) are an average of the three experiments (MM-200/UV, 

MM-400/UV and MM-600/UV). 
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Figure 4.27 Degradation of MO concentration with irradiation time over the three series of 

synthesized catalyst from supports with different macropores size, two references (bulk anatase and 

Degussa P-25) and two parent supports (MM-SBA-15 and SBA-15). Photolysis test of MO under 

UV without catalyst is also reported together with the comparison with the 1
st
 grafting cycle on 

SBA-15-7. 

 

Figure 4.28 shows % of MO degradation during the irradiation time. The parent support shows a 

final percentage of MO degradation of 14%, significantly higher than the purely mesoporous SBA-

15-7 (~6.4 %). (See Chapter 3) 

 

Figure 4.28 Variation of the dye degradation rate with irradiation time of methyl orange solution 

for the grafted samples with different macropores size. 
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As explained in the previous chapter, despite the wide band gap, the silica surface is slightly 

photoactive in the far UV (Eg~5.5 eV) and it can generate electron–hole-pairs to initiate radical 

reactions starting from water and oxygen.[47, 48] The evaluated initial rate constants are the same 

for the two silica supports (~ 19 ppm.h
-1

.grcat
-1

) but the hierarchical SBA-15 showed the highest 

final percentage of MO degradation most probably due to the differences in structural and optical 

properties of the two samples. 

Although the highest surface area, the catalytic behaviour of the mesoporous SBA-15 is influenced 

by the accessibility of the compounds to site of radical production. The long diffusion path and 

small size of the pores could explain the lower percentage of MO degradation compare to the 

hierarchical MM-SBA-15.[49, 50] The introduction of macropore inside the ordered mesoporous 

generated the formation of many apertures and short mesoporous channels, which are effective for 

improving the diffusion of the reactant. In addition the open structure of the MM-SBA-15 also has 

a better response to light, improving the probability of electron-hole pair formation and thus of 

active centres for radical attacks. On the other hand, the reaction profiles of the three grafted 

hierarchical catalysts show a similar photocatalytic performances, with final degradation of ~47 % 

after four hours of irradiation. The same trend was observed for the initial rate (r
0
). 

Figure 4.29a depicts the evaluated r
0
 as function of the macropore diameters in comparison with 

the Ti-SBA-15-7-1 mesoporous catalyst, with comparable mesopore size (~6.8 nm) and TiO2 

loading (~10 wt. %). 

 
 

Figure 4.29 Initial rate (r
0
) normalised for the mass of catalyst (a) and the mass of TiO2 (b) as 

function of the macropore diameters. 
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The hierarchical structure of these TiO2 grafted photonic crystal provides an enhancement of the 

photocatalytic performance of about ~30% compared to the TiO2 grafted mesoporous SBA-15. The 

photocatalytic enhancement of the MO degradation is clearly affected by the structural and optical 

differences of the two families of support used for the TiO2 photocatalyst. In the first place the 

catalytic performance is influenced by the accessibility of compounds to the active sites and for the 

hierarchical catalysts the highly ordered channels possess high connectivity which efficiently 

facilitates the mass transport. Secondly the enhancement of light harvesting resulting from photonic 

crystal structure must be considered. The relative position of the stop band PBG) and the slow 

photon (SP) is crucial to have a real contribution on the photocatalytic performance of the catalysts. 

[37] For example, if the high reflectivity due to the PBG is centred in the region of strong 

absorption of TiO2, the reflection can be disadvantageous as the photons suitable for the reaction 

tend to be reflected instead of absorbed to form e
-
/h

+
 pair, mandatory step to initiate the 

photocatalytic process. However for the three samples the maximum of the PBG is located in the 

visible region, so the wavelength range of strong light absorption of TiO2 is avoided and the slow 

photon effect can be still considered as a contributor to the overall process.  

Normalizing for the amount of the active phase present on each support (grams of TiO2 evaluated 

from the XRF analysis), it can be seen that r
0
 first decreases and then increases with macropore 

size. (Figure 4.29b) The initial rate follows the trend: 400-1< 200-1 < 600-1. For the samples 200-

1 and 600-1, the edge of the stop band of the support overlaps the absorption region of the active 

phase and the slowing of the photons is expected to occur. [51] (See Figure 4.16a) Slow photons 

leads to an increasing of light absorption, consequently contributing to a higher photocatalytic 

activity.[7] Furthermore the 600-1 sample demonstrates the best initial rate probably due to the 

lowest reflectivity in the light absorption region of TiO2 compared to the 200-1 catalyst. Finally the 

initial rates normalised for the mass of active sites indicate that the hierarchical catalysts exhibit 

even higher photoactivity than the commercial P-25 and bulk anatase. This is probably owed to a 

combination of highly dispersed nanocrystals on high surface area (~300 m
2
.g

-1
), excellent 

accessibility to the active phase, enhanced of light harvesting due to the well-ordered macroporous 

structure and its photonic properties. 

 

4.2.4.2 Effect of titania loading 

The reduction of MO concentration vs. irradiation time over the series of composites under UV-vis 

irradiation is presented in Figure 4.30. 
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Figure 4.30 Degradation of MO concentration with irradiation time over the three TiO2-grafted 

catalysts from the support MM-400, two references (bulk anatase and Degussa P-25) and the parent 

support. Photolysis test of MO under UV without catalyst is also reported. 

The photocatalytic degradation of MO with TiO2 P-25 and bulk anatase were conducted for 

comparison, and the direct photolysis of MO without any catalyst served as a control test. The loss 

of MO was around 50% after 4 h of irradiation in presence of the catalyst with the lowest loading 

of TiO2 (~10 wt. %). Among the three catalysts, the 3
rd

 grafting cycle (~30 wt. % TiO2) exhibited 

the most powerful photocatalytic activity with a degradation efficiency of 83%. (Figure 4.31) 

 

Figure 4.31 Variation of the dye degradation rate with irradiation time of methyl orange solution 

for the grafted samples with different TiO2 loading, the MM-400 support and UV-vis test. 
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Comparison of the photocatalytic performances of mesoporous and hierarchical series of catalysts 

is shown in Figure 4.32a, where the initial rate (r
0
) is plotted as a function of the TiO2 loading.

Between these two families of materials, the macro/meso-porous structures have a large influence 

on the photocatalytic activity. It can be noticed that already for the lowest loading (≤10 wt. % TiO2) 

the trend is 400-1 (r
0
~45 ppm MO.h

-1
.g

-1
)> Ti-SBA-15-7-1 (r

0
~33 ppm MO.h

-1
.g

-1
). For the second 

grafting cycle (~20 wt. % TiO2), this difference between the two systems markedly increases, thus 

the activity for the hierarchical catalyst is higher of a factor of 1.5. Following this trend, the 3
rd

 

grafting cycle (TiO2 ≥ 20 wt. %) the hierarchical catalyst reached the highest initial rate value 

(r
0
~90 ppm MO.h

-1
.gr

-1
) over the all mesoporous family of catalysts. Consequently, the combined 

structure of ordered mesoporous and hierarchical macroporous architectures exhibited greater 

photocatalytic performance among the mesoporous catalysts due to the combination of structural 

and optical properties. On one hand the bimodal macro-mesoproporous architecture provide a 

solution for the mass transport limitation encountered in the treatment of waste water containing 

big molecular size compounds. The MO molecule (~1.2 nm) can easily access to the active sites 

present in the macropores, breaking down in smaller products that can consequentially diffuse 

faster inside the mesopores proceeding in the photoxidation process. On the other hand the ordered 

macroporosity provides an enhancement of light harvesting through the photonic crystal properties, 

while retaining a considerably high surface area (~ 300 m
2
.g

-1
) due to the presence of the 

mesoporous structure.  As mentioned in the previous chapter, a proper comparison between the 

synthesized materials and the bulk references suffers from an intrinsic level of difficulty. The initial 

rates of MO degradation normalized for TiO2 mass present in each catalyst are reported in Figure 

4.32b. The results show that the more efficient photocatalysts is obtained when TiO2 is dispersed 

on the hierarchical SBA-15, due to the unique structural and optical properties of the support. The 

normalised activity of 400-1 and 400-3 results to be even higher of the commercial Degussa P-25. 
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Figure 4.32 Initial rate (r
0
) of MO degradation normalised for the mass of catalyst as function of 

the TiO2 loading for the two families of catalyst (meso and macro/meso TiO2-coated SBA-15) (a); 

initial rate (r
0
) normalised for the mass of TiO2 (b).

4.3 Conclusions 

In this chapter the successful generation of hierarchical SBA-15 through TLCT method was 

demonstrated. The macropore size was tuned with three different PS beads size and two series of 

titania based photocatalysts were synthesised by grafting procedure. 

Firstly, the macropore size effect (200, 400 and 600 nm) was investigated and on each support a 

single grafting cycle was performed in order to obtain similar titania loading (~10 wt. %). The three 

catalysts were fully characterised and their activity tested on the photodegradation of MO. It was 

found that introducing the hierarchical structure markedly increases the photocatalytic activity of 

the composite samples of about ~30 % compared to the mesoporous catalysts. However among the 

series with different macropores, the differences in the photocatalytic were mainly attributed to 

optical properties of the supports, which are proper inverse opals photonic crystals. Their photonic 

band gap (PBG) was dependent on the voids volume and the probability of slow photon effect was 

found to be higher for the 200-1 and 600-1 samples where the blue edge overlaps with the 

electronic band gap of the deposited TiO2. Therefore a further study was performed on the MM-

400 support to investigate the effect of the TiO2 loading on the optical properties and catalytic 

performances of the composite materials. 

Hence, a second family of photocatalyst was synthesized applying three times the grafting method 

on the chosen support in order to obtain a range of TiO2 loading of 10-23 wt. %. DR-UV data 

showed a change in the PBG together with the red shift of the electronic band gap with the 



173 

 

increasing of TiO2 loading. Modification of optical properties leads to an increasing of the 

efficiency in the photocatalytic oxidation of MO and the results show that the most active catalysts 

resulted to be 400-3 with the highest TiO2 loading.  
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5 In situ ATR IR study of liquid phase propanoic acid photoxidation on TiO2 

nanoparticles 

5.1 Introduction 

Chapter 3 and 4 were focused on developing nanostructured photocatalysts with the aim of 

maximising the activity of titania supported on silica by increasing the surface area, improving the 

molecular/diffusion transfer and enhanced the light harvesting. 

However the development of a successful photocatalyst requires not only detailed understanding of 

material’s structure and its performance, but also a more detailed investigation of the reaction 

mechanism at the catalyst surface. In heterogeneous photocatalysis it is, therefore, of crucial 

importance to understand the processes that take place at solid-liquid interfaces. In light of this 

infrared (IR) spectroscopy is a powerful tool to investigate interfacial chemistry in heterogeneous 

systems and the attenuated total reflection (ATR) sampling method allows for investigation of the 

adsorption of organic molecules onto a metal oxide surface under a wide range of conditions. 

In this chapter the photodegradation of propionic acid over different titania nanoparticles was 

investigated by in-situ attenuated total reflection infrared (ATR-IR) spectroscopy in a flow-through 

cell. The aim of the presented study is to validate a methodology to explore the solid-liquid 

interface in a time-resolved manner during photocatalytic decomposition of organic molecules. The 

biggest asset of the use of in-situ techniques is the fact that the properties of an interface during the 

process of interest may be drastically different from the properties determined prior to, or post-

reaction. However IR spectroscopic methods are difficult to apply to solid – liquid and in particular 

solid – water interfaces due to the strong IR absorption of the solvent. 

The reliability of information obtained from the IR spectra is dependent mainly upon the correct 

assignment of the vibrational modes by comparison with published spectroscopic data and 

computational studies.[1, 2] Several experimental and theoretical studies on the adsorption of 

aliphatic mono- and di-carboxylic acids on metal oxide surfaces have been performed.[3] Di-

carboxylic acids are the most widely studied because they adsorb much more strongly to oxide 

surfaces due to both electrostatic and chemical interactions and the ability to form bridging or 

chelating adsorption structures.[2, 4-7] Oxalic acid is the simplest polyacid molecule and its 

adsorption on metal oxide has been studied in a wide range of experimental conditions (pH, 

concentration, temperature) 

Hug et al. [2] studied the adsorption of oxalic acid on P-25 identifying several surface complexes in 

a bidentate bridging or monodentate modes with surface Ti
4+

 sites and focusing their study on the 

measurement of adsorbed oxalate to plot an isotherm curve. A similar study was performed by 

Young et al. [4], they use pure anatase to investigate the adsorption/desorption kinetics of oxalic 

acid and extract the pseudo-first-order rate constants corresponding to the three expected adsorbed 

species: monodentate and bidentate, in bridging and chelating configuration. 
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Subsequently, Mendive et al. published several papers introducing the study of photodegradation of 

oxalic acid over different titania phases, combining spectroscopy and theoretical investigation.[6, 

8] Furthermore, they also propose the mechanism of oxidation under UV (A) with the possible 

photo-induced surface complexes and reaction pathway.[7, 9] These works highlight the 

importance of the strong relation between species which form on the surface in the dark and the 

overall reaction pathway. However all of these investigations were performed using a simple and 

well-known model compound in oxalic acid. In the past ten years, similar studies have also been 

performed using more complex molecules. For example, Dolamic and Burgi [10] introduced the 

investigation on di-carboxylic acids using a combination of ATR-IR spectroscopy, modulation 

excitation spectroscopy and isotope labelling to study the mechanism of mineralization over TiO2 

P-25 under UV(A) irradiation. They found that the photooxidation of malonic acid adsorbed to the 

TiO2 surface as malonate can follow two routes: one ends up in an oxalate before reaching the 

complete mineralization to CO2, the other one leads to the formation of acetic acid after the first 

photo-Kolbe reaction, which easily desorbs from the surface without being further oxidized. 

Analogous to this study, more recent investigations were also performed on several 

monocarboxylic acids (i.e. formic acid or acetic acid). The resulting IR signals were found to be 

weaker due to the single-site attack of the probe molecule and for this reason most of these studies 

were undertaken in the gas phase, with an additional investigation of water-surface 

interactions.[11-13] Mattson and Osterlund [14] studied the adsorption and photoinduced 

decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 Nanoparticles. The 

in-situ FTIR transmission in gas-solid phase was used to define the spectral change under UV (A) 

irradiation on the different titania phases which suggested a TiO2 phase-dependent reaction 

pathways.  

Several studies were performed with acetic and formic acid and were also supported by DFT 

calculations. Liao et al.[15] determined that molecular acetic acid and acetate groups adsorbed onto 

TiO2 surfaces, the first by H-bonding or Lewis acid-base interaction and the latter by chemical 

bidentate bonding. Based on the detected adsorbed species they proposed a reaction mechanism of 

acetic acid photodegradation and the effect of water addition was investigated to mimic the reaction 

in the solution phase. CO2 was detected as a photoproduct in the UV irradiation of surface acetate 

and in the presence of water; some surface acetate was converted into acetic acid. 

Similar results were founded by Nanayakkera et al.[16] They focused on the understanding of 

formic acid adsorption on TiO2 nanoparticles, and especially on the effect of relative humidity and 

adsorbed water on surface coordination, adsorption kinetics, and the rate of photooxidation of 

adsorbed formate. Their results showed that gas-phase formic acid adsorbs dissociatively on TiO2 

forming adsorbed formate mainly in a bridged bidentate coordination. Co-adsorbed water changes 

the coordination of formate to solvated, monodentate formate and this will make carbon dioxide 

formation favourable in the presence of water vapor. 



181 

This observation was confirmed and supported by the computational results of Miller et al. [17] 

They found that monodetate formate and adsorbed water favour the oxidation at the hole sites of 

TiO2, increasing the reduction rate of oxygen by the electrons in the conduction band. This will 

produce a great number of radical species, enhancing the mineralization rate of formic acid to CO2 

and water. There is not yet a general agreement on the mechanism of the adsorption of organic 

molecules and water on TiO2 surfaces and the following photodegradation mechanism and for this 

reason the best approach to understand this complex system is to combine the experimental results 

obtained by ATR-FTIR spectroscopy and other techniques. 

Several studies have been reported in the literature regarding the application of IR techniques in 

photocatalytic systems but the ATR in-situ spectroscopy in a liquid-solid phase is still not widely 

studied due to difficulties relating to setting the optimal working conditions and correctly 

processing and assigning the vibrational modes in the final spectra. In this chapter, a full 

investigation of propanoic acid degradation over TiO2 is reported. A schematic drawing of the 

experimental setup for solid-liquid interface investigations is shown in the Figure 5.1.  

Figure 5.1. Schematic drawing of the experimental setup of the ATR IR cell for solid-liquid 

interface investigations and an example of the IR spectra collected for pure PA (a), PA in liquid 

phase (b) and PA adsorbed on P-25 surface (c). 

Preliminary studies with the purpose of validating the correct working conditions of the ATR flow 

cell involved experiments using propionic acid at different concentrations, temperatures and flow 

conditions. After these initial screening tests the photocatalytic oxidation of propionic acid was 

investigated in parallel by in-situ ATR FT-IR spectroscopy in a bespoke flow cell reactor and by 

high pressure liquid chromatography (HPLC) for experiments performed in a batch reactor using 

Degussa P-25, anatase and rutile TiO2 nanoparticles as catalysts. The adsorption kinetics in the 

dark and the surface intermediates formed during the photocatalytic oxidation of propionic acid 

have been investigated. 
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The aim of this study is to gain the understanding of the surface reaction mechanism during 

photocatalytic processes and obtain a model reaction which can be applied to predict the influence 

of physicochemical parameters on the catalyst performance. 

5.2 Results and Discussions 

5.2.1 Adsorption kinetics and equilibrium studies 

Adsorption kinetics and equilibrium constants were evaluated in relation to the Langmuir 

adsorption model, which is based on the assumptions of reversible adsorption/desorption 

mechanism, all adsorption sites being equivalent, monolayer as maximum adsorption and no 

interaction between adsorbed species.[18] Fitting the experimental data into Langmuir kinetic 

model enables to evaluate the adsorption/desorption rate (ka , kd) and the half-life (t1/2) of the 

identified adsorbed species using the Equation 5.1: 

Equation 5.1 Langmuir kinetic model. 

where θ is the surface coverage function of time, θ0 is the coverage when the desorption 

commences (saturation coverage), k is the kinetic constant and t1/2 is the half-life. 

In general, for ATR-IR spectroscopic experiments, the surface coverage θ is proportional to the 

absorbance of spectral peak due to the adsorbed species, A, Equation 5.2: 

Equation 5.2 Surface coverage. 

where Amax is the maximum value reached at the equilibrium point. 

This kinetic theory is ideal for a single adsorbed species system, however the system in this work, 

propionic acid / TiO2, includes at least three different molecule configurations. The Langmuir 

model does however provide the best fit to the experimental data with a correlation coefficient 

which is always R
2 

> 0.98. The Langmuir-type isotherms were obtained by plotting absorbance 

versus time, where absorption is measured as peak areas of the adsorbed species collected at set 

time intervals during a 30 minute period of propanoic acid flow (0.4 ml.min
-1

) over the TiO2 thin

film in the dark. The spectra were recorded until the adsorption had reached an equilibrium, then 

deionized water was passed over the catalyst to study desorption kinetics. Figure 5.2 shows an 
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example of data fitting for adsorption and desorption data relative to the peak at 1712 cm
-1

 

(physisorbed propanoic acid on TiO2).  

 

Figure 5.2 Time dependence of absorbance (at 1712 cm
-1

) during the adsorption (a) and desorption 

(b) time and the relative fitting obtained with exponential function in Origin 9. 

 

Moreover the equilibrium constant (keq) was derived from the adsorption/desorption rate constants 

(ka.kd
-1

), while the Langmuir adsorption (affinity) constant KL was defined as function of the 

concentration of adsorbate (ligand) [L] using Equation 5.3. 

    
  
  [ ]

 

Equation 5.3 Langmuir affinity constant 

 

Equation 5.3. indicates that a more strongly bound adsorbed species (i.e. chemisorbed species) is 

expected to have a larger adsorption rate constant and a smaller desorption rate constant than a 

more weakly bound adsorbed species. 

 

5.2.2 Optimization of working conditions 

The adsorption of propanoic acid in the dark onto TiO2 P-25 was explored under several operative 

conditions (acid concentration, flow rate and temperature). These tests were critical to establish the 

optimum working conditions in order to have a good interpretation of the spectra and determine 

reproducibility of later tests. Common reaction conditions of 0.05 M acid solution and 0.4 ml.min
-1

 

flow rate at room temperature were used unless otherwise stated. For full details of flow cell set-up 

see Chapter 2. 
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5.2.2.1 Effect of propanoic acid concentration  

The purpose of these experiments was to identify the optimum acid concentration for the study of 

adsorption of the acid on TiO2 surface and photo-degradation under UV(A). 

A crucial step prior to the collection of adsorbed spectra is to identify the relative absorption 

intensity and the frequency of the vibrational modes for the acid in the liquid phase. In addition, a 

concentration range of acid solution was prepared to identify the target concentration for which the 

contribution from the liquid phase species were negligible compared to those from adsorbed 

species. Prior to spectral analysis, any contributions from water must be correctly subtracted. 

As shown in Figure 5.3 the νs(O–H) and δ(H–O–H) at 3280 and 1645 cm
-1

 are intense peaks

coming from the absorption of water which can cover the signals from other species, therefore in 

all analysis a blank subtraction is carried out, using as a background the spectrum of deionized 

water on the ATR crystal for measurements in the liquid phase and the spectrum of water adsorbed 

on TiO2 for subsequent adsorption studies.  

Figure 5.3 ATR-IR spectra of a dried TiO2 thin film on a ZnSe crystal (a), pure water on a ZnSe 

crystal (b) and a water saturated thin film of dried TiO2 on a ZnSe crystal (c). 

In Figure 5.4a the ATR IR spectra of solutions in the range of 1M and 0.01M of propanoic acid are 

depicted. The intensity of each peak increases with increasing of concentration as indicated by the 

calibration curves wherein each data point is calculated from the peak area of the corresponding 

absorption. Figure 5.4b illustrates calibration curves obtained using peak area of the two peaks in 

the finger print region of propionic acid at 1227 cm
-1

 and 1080 cm
-1

, ν(C-O) and ν(C-C) 

respectively.  
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Figure 5.4 ATR-IR spectra of propanoic acid dissolved in water in the range of concentration 

between 0.1 M and 10
-2

 M (a) and calibration lines calculated from the peak area of the 

characteristic vibrational modes of propanoic acid in solution (b). 

 

Table 5.1 gives a summary of assigned vibrational mode of propanoic acid. 

 

Table 5.1 IR absorption bands and vibrational mode assignments of propanoic acid. 

 

Mode assignment 

 

Frequencies Description 

/ cm
-1

   

ν(C=O)m 1710 monomer stretching 

ν(C=O)d 1640 dimer stretching 

νas(CH2) 1460 asymmetric stretching 

δ(C-O-H) 1415 bending 

νs(CH2) 1270 symmetric stretching 

ν(C-O) 1227   

ν(C-C) 1080   

ν(C-H) 2850-2950   

ν(O-H) 2500-3500   

 

For the adsorption studies a narrower range of concentration was chosen, with the aim of avoid the 

strong absorption signal from the liquid phase (0.1, 0.05 and 0.01M).  

Figure 5.5 depicts the spectra of propanoic acid at the equilibrium conditions in comparison with 

the solution phase and the adsorption affinity constant (kL) evaluated from the kinetic studies. In 

Figure 5.5a the bold black lines represent the adsorbed acid (ads) and the dotted lines represent the 

propionic acid in solution (w) at the same concentrations. The spectra of adsorbed species are 
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markedly different from that of the acid in solution due to the impact of strong IR absorbance of the 

surface-coordinate species. The strongest adsorbed species shows characteristic peaks which are 

clearly distinct from the acid in solution phase (range 1600-1400 cm
-1

), while the species weakly 

bonded or only physisorbed on the catalyst surface exhibit negligible changes (1800-1600 cm
-1

).  

The most prominent absorption occurs in the carboxylate region and the identified peaks have been 

assigned to propionate bonded to the surface in two different configurations: 

- bridging mode, via the two oxygen molecules of the carboxyl group in a bi-dentate

configuration, with the carbon chain perpendicular to the surface. (νas~1538  cm
-1

 and νs~1298

cm
-1

, Δν~200 cm
-1

);[19]

- monodentate mode, with one oxygen bonded to the titania surface and the characteristic

stretching band at 1420 cm
-1

.[20]

In the carbonyl region (1800-1600 cm
-1

), it is hard to distinguish the contribution between solution 

phase and surface bound species. Only a very small shift of ~2 cm
-1

 to a higher wavenumber of 

v(C=O) stretching at 1700 cm
-1

 can be reported, suggesting there is H-bonding through the 

carbonyl group. On the other hand, the shoulder at 1640 cm
-1

 is more difficult to discern. 

According to the literature, this band could be associated with the dimeric forms of carboxylic 

acids in solution, or the  carboxylates or to the v(C=O) stretching of chemisorbed acid at Lewis 

acid sites (Ti
4+

) through the oxygen lone-pair electrons of the carbonyl group.[2, 5]  

The KL values evaluated from the kinetic experiments for the identified adsorbed species are 

reported in Figure 5.5b. The trend shows that at the highest concentration the adsorption on the 

catalyst surface is dominated by the bridging bidentate configuration, whereas for the monodentate 

species the affinity with the catalyst surface appears to be linearly dependent from the 

concentration value. It is clear that the physisorbed propanoic acid is the more weakly adsorbed 

species in all range of concentrations. 



187 

Figure 5.5 ATR-IR spectra of propanoic acid adsorbed on TiO2 P-25 under equilibrium conditions 

(bold line) and spectra of the acid at the same concentration in solution (dotted line) (a). Adsorption 

affinity constant (kL) from the kinetic experiment performed at different propanoic acid 

concentrations (b). 

The four different possible configurations of a propanoic acid molecule on a TiO2 surface are 

reported in Figure 5.6. 

Figure 5.6. Different adsorption modes of propanoic acid on TiO2. 

5.2.2.2 Effect of flow rate 

An aqueous solution of 0.1M propanoic acid was passed over the catalyst at rates of 0.1, 0.4 and 

0.8 ml.min
-1

 across the TiO2 films. The purpose of these experiments was to investigate the effect

of flow rate on the adsorption kinetics and evaluate the optimum working conditions for the 

following studies. 
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Figure 5.7a shows the spectra collected at equilibrium for propanoic acid adsorbed on P-25 after 

flowing a solution of the acid at different rates over a thin film. The spectrum of propanoic acid in 

solution is reported for comparison (dotted line). 

Figure 5.7b shows that the equilibrium constant keq for the three adsorbed species first increases 

and then decreases with flow rate. The values of the equilibrium constants are higher at 0.4 ml.min
-

1
 and the calculated keq values follow the order: bidentate (4.9) > monodentate (3.9) > physisorbed 

(1.9) acid. Similar trends, but lower values, were estimated at a lower flow rate 0.1 ml.min
-1

. Using 

a higher flow rate (0.8 ml.min
-1

) results in a reduction of all equilibrium constants with a similar 

value for the three the spectral components suggesting an increasing of desorption and a decreasing 

of the adsorption kinetics of all adsorbed species. Flow rates lower than 0.1 ml.min
-1

 gave 

negligible adsorption signals and higher than 1 ml.min
-1

 were found to physically remove the films 

in contact with the ATR crystal, and hence both rates are not reported. The intermediate flow rate 

also provides the best-fit values of keq evaluated from the Langmuir model. Thus all the reported 

experiments in the following chapter were performed at flow rate of 0.4 ml.min
-1

. 

 

Figure 5.7 ATR IR spectra of 0.1M propanoic acid solution adsorbed on TiO2 P-25 under 

equilibrium conditions (bold line) reached at different flow rates and spectra of the acid at the same 

concentration in solution (dotted line)(a). Equilibrium constant (keq) evaluated from the Langmuir 

model for the three surface complexes (b). 

 

5.2.2.3 Effect of temperature 

Kinetic studies were conducted at 0.1M propanoic acid concentration in the range of temperature of 

25-70 °C. Values of equilibrium constant (keq) and Gibbs free energies of adsorption (ΔGads°) were 

experimentally calculated from fitting the Langmuir model to evaluate the effect of temperature of 

the adsorption mechanism on each surface complex. 
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Figure 5.8a shows the spectra collected at equilibrium for adsorbed propanoic acid on P-25 at 

different temperatures. The recorded peak heights in the carboxylate region clearly decrease with 

increasing of the temperature, while the intensity of the peak at 1712 cm
-1

 does not show any 

significant changes within this temperature range, because the peak of physisorbed acid overlaps 

with the vibrational stretching of the acid in liquid phase (ν(C=O) ~1710 cm
-1

) and at equilibrium it 

is hard to distinguish the two contributions. 

Figure 5.8b depicts the equilibrium constants (keq) evaluated from the ratio between the 

adsorption/desorption equilibrium constants. It can be seen that keq of the physisorbed complex 

(1712 cm
-1

) is strongly affected by the temperature and desorption rate drastically rises at 35 °C. 

On the other hand, for the two chemisorbed configurations, the adsorption is favoured at room 

temperature, while the keq shows a decrease to lower values in the range of 35-50 °C. It can be seen 

that in this range the equilibrium constants are quite similar however the values drastically decrease 

with increasing temperature at 75 °C.  

Figure 5.8 ATR-FTIR spectra of adsorbed propionic acid over TiO2 P-25 collected at the 

equilibrium (t = 30 min) at different temperature. The spectrum of propanoic acid in solution at 

room temperature (black dotted line) was reported for comparison (a). Value of equilibrium 

constants (evaluated from the Langmuir model) are reported for the three surface complexes (b). 

Using these results, Gibbs free energy (ΔG°) was calculated from the Langmuir equilibrium 

constants. The Gibbs energy change (ΔG°) indicates the degree of spontaneity of an adsorption 

process, and a higher negative value reflects a more energetically favourable adsorption. According 

to thermodynamic law, ΔG° of adsorption is calculated as follows: 
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  (   ) 

Equation 5.4 Gibbs free energy 

in which keq is the thermodynamic equilibrium constant without units, T is the absolute temperature 

in Kelvins, and R is the gas constant with a value of 8.314 J.mol
-1

.K
-1

. 

Figure 5.9 shows the dependency of ΔGads° on temperature calculated from the Langmuir keq 

values as a function of spectral components for adsorbed propanoic acid on P-25. Results show 

adsorption of all three surface complexes at room temperature. The ΔGads° for the formation of 

bidentate propionate was calculated to be −61 kJ mol
−1

, which is more negative than monodentate 

propionate and physisorbed acid (−38 and −19 kJ mol
−1

), respectively. Furthermore the Langmuir 

model predicts an exothermic adsorption of physisorbed propanoic acid at 35°C, resulting in a net 

increase of ΔGads° to positive values which remain approximately constant in all this temperature 

range (~19 kJ mol
−1

), meaning that the adsorption is no longer spontaneous. 

This result further confirms the weak interaction of the physisorbed complex with the catalyst 

surface which is also strongly affected by the temperature.  

On the other hand, the ΔGads values for the two chemisorbed species were all found to be negative 

in the range from −61 to −26 kcal/mol up to 50° C. Above this temperature the Gibbs free energy 

were found to be positive (~14 kJ mol
−1

) and very close to the ΔGads value calculated for the

physisorbed acid, indicating that at 70 °C the adsorption is not a spontaneous process anymore. 

Figure 5.9 Temperature dependence of ΔGads° calculated from the Langmuir keq. 

The above study regarding the Gibbs free energy values from the liquid phase is similar to that 

found for adsorption of carboxylic acid in gas phase. Because of the interactions of dissolved 

species with the bulk water, the ΔGads values in liquid phase are found to be generally lower 
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compared to the gas-phase values.[21] These results show that in order to perform adsorption 

kinetic studies for the three surface complexes the effective adsorption should take place at room 

temperature (298.15 K).  

5.2.3 Adsorption and photodecomposition of propanoic acid on P-25, anatase and 

rutile TiO2 nanoparticles 

In the previous section three operational parameters (initial adsorbate concentration, flow rate and 

temperature) were optimized in order to have the best conditions on the ATR IR flow cell to 

perform adsorption and photocatalytic kinetic studies related to propanoic acid over TiO2 

nanoparticles. Based on the obtained results, the highest spectra resolution for the adsorbed species 

was observed at 0.05 M initial concentration of propanoic acid. The highest equilibrium constant 

(keq) for the three surface complexes was obtained at 0.4 ml.min
-1

 flow rate at room temperature.

Moreover equilibrium data analysed reveal the Langmuir isotherm to be the best fitted model. 

In the following sections a comparative study of the adsorption and photodegradation of propanoic 

acid on TiO2 nanoparticles by in-situ ATR IR spectroscopy is presented. The photocatalytic 

oxidation of propanoic acid was investigated in parallel in a batch reactor and analysis 

concentrations were performed by high pressure liquid chromatography (HPLC). 

The adsorption kinetics in the dark and the surface intermediates formed during the photocatalytic 

oxidation of propanic acid has been investigated. In the final section the effect of pH has also been 

explored. 

The aim of this study is to gain an understanding of the surface reaction mechanism during 

photocatalytic processes and obtain a model reaction which can be applied to predict the influence 

of physicochemical parameters on the catalyst performance. 
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5.2.3.1 Propanoic acid adsorption 

Figure 5.10 shows the two main regions of interest of the ATR-IR spectra collected during flow of 

propanoic acid solution over P-25 TiO2 for 30 min in the dark. 

Figure 5.10a depicts the region at higher wavenumbers, from 2500 to 3850 cm
-1

, mainly 

dominated by signals attributable to the stretching mode of OH and C-H groups. In Figure 5.10b 

the characteristic peaks of propionic acid due to δ(CH2), ν(C-O), and ν(C-C) bands at ∼1472, 

∼1227 and ∼1080 cm
-1

 (grey font), respectively and the strong vibrational modes of the adsorbed

acid (black font) are marked. All the assignments for the adsorbed species have been previously 

discussed. (See Section 5.2.2.1) 

Figure 5.10 Series of ATR-IR spectra recorded during adsorption of propanoic acid solution on 

TiO2 P-25 in the dark for 30 min. IR region: 2500-3850 cm
-1

 (a) and 1000-1850 cm
-1

(b).

Moreover Figure 5.10a is reported in order to clarify the interaction of water with TiO2 surface 

even after the background subtraction. It is well known that TiO2 exhibits amphoteric 

characteristics and when it is in contact with an aqueous solution the formation of surface species is 

strongly related with pH. It is very important, especially in adsorption studies, to know the surface 

charge of the material in aqueous media as, if the catalyst and the adsorbate have the same charge, 

the adsorption between the two phases is limited. 

The point of zero charge (PZC) or isoelectric point (IEP) is referred to the condition when the 

electrical charge density on a surface is zero. For TiO2 the PZC has been reported between 4 and 

6.[22] Based on the pH value, the amphoteric surface of TiO2 will be positively or negatively 

charged because of the acid-base equilibrium as Equation 5.5 and 5.6 show: 
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pH≤ 5 

Equation 5.5 Surface protonation of TiO2 at acidic pH. 

pH> 5 

Equation 5.6 Surface deprotonation of TiO2 at basic pH. 

A background spectrum was recorded using deionised water at pH = 5~pzcTiO2 where the TiO2 

surface was weakly positive due to predominant species TiOH2
+
 and TiOH. During the adsorption

experiment, the measured value of the propanoic acid solution was pH = 3 (no pH corrections were 

applied) and propanoic acid was partially deprotonated (pH< pKa = 4.87). This pH value results in 

more positive species on the catalyst surface (TiOH2
+
) and the opposite charges of adsorbent and

adsorbate favours the interaction between the two phases. 

In Figure 5.10a a broad band centred at 3250 cm
-1

 can be seen, characteristic of the O-H 

stretching. This band was assigned to the adsorbed water or more precisely to the stretching of the 

bidentate O-H2
+
 group on the TiO2 surface due to the protonation of the hydroxyl group of TiO2 in

contact with acidic media (Figure 5.11).[23, 24]  

Figure 5.11 Simplified figure of the protonation and deprotonation of hydroxylated TiO2 surface 

leading to positive and negative net charge at the surface. 

This region (3000-3500 cm
-1

) also contains the O-H stretching of carboxylic acids but this band is 

less likely due to the adsorbed molecular acid for two main reasons; firstly, at pH = 3 propionic 

acid is mainly present in its dissociated form (C2H5COO
-
) and secondly this band readily increases

within the first minute of solution/catalyst contact but does not grow simultaneously with the 

characteristic band of adsorbed propionic acid. Meanwhile, as propanoic acid was adsorbed on 

TiO2 surface, the positive bands at 2960, 2920, and 2888 cm
-1

, which characterize C-H stretching

of the acid, were observed.  
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Figure 5.12 shows the intensities of each of the most important bands belonging to adsorbed acid 

in the characteristic adsorption isotherm shape. All the assigned bands reached the saturation point 

within the first 10 min with a rapid initial rise tending to plateaux. 

 

Figure 5.12 Adsorption/desorption time profile of the most relevant bands of adsorbed propanoic 

acid on TiO2 P-25 obtained by measuring the peak area at different times. 

 

Previous discussion showed that the adsorption affinity for the three identified species follow the 

order: bridging bidentate > monodentate> physisorbed propanoic acid. (See section 5.2.2.1) The 

band of the bridging bidentate (νa(COO)~1538 cm
-1

) configuration reaches a plateau with the 

highest intensity in the adsorption phase and doesn't decay totally in the desorption step while the 

band of the monodentate configuration (ν(CO)~1420 cm
-1

) grows along with it but the lower 

intensity and the lower adsorption rate suggests less of this formation. Finally the evolution of the 

band ν(C=O) at 1712 cm
-1

 shows the lowest absorption and more rapid decay at the early stage of 

desorption. As expected the physisorbed specie is weakly bonded to the surface in comparison with 

the chemisorbed propionate. 

TiO2 P-25 is a mixture of anatase (80%) and rutile (20%), and hence the two sets of carboxylate 

bands could originate from adsorption on the two crystal phases. Using the same experimental 

conditions, adsorption/desorption tests were performed on different titania samples to investigate 

the interaction behaviour of propionic acid over different titania phases. 

Figure 5.13 shows the IR spectra of propionic acid adsorbed on TiO2 P-25, anatase (A), rutile (R) 

and a physical mixture of the two pure phases in the same mass ratio (4:1) of P-25. 
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Figure 5.13 ATR-IR absorption spectra of propanoic acid adsorbed on P-25, anatase, rutile and 

physical mix 80%A-20%R TiO2 nanoparticle thin film 

As expected distinct spectral differences become apparent in the region of adsorbed propionate, 

whereas the intensity and the position of the vibrational mode of molecular adsorbed acid 

ν(C=O)~1712 cm
-1

 retains the same intensity and position for all the samples. The high band of 

bridging bidentate mode (νa(COO
-
)~1538 cm

-1
) observed on anatase is almost completely absent on

rutile. Previous theoretical and computational studies confirmed the experimental observation 

present in this work, showing that the bridged bidentate bonding mode is more favoured on anatase 

(101) over monodentate configuration.[25-27]

The experiment performed with the physical mixture of anatase and rutile in the (4:1) ratio did not 

show the same behaviour as the P-25 sample, suggesting that the strong interaction of anatase/rutile 

interface in P-25 is critical in the adsorption of organic acid on the catalyst surface.[28] 

Figure 5.14, Figure 5.15 and Figure 5.16 show the time evolution of the spectra resulting from 

flowing 0.05M propanoic acid solution over anatase, rutile and the mixed 80%anatase-20%rutile 

(adsorption step) and the corresponding time evolution obtained during the desorption step from 

the same samples exposed to a water flow for 30 min. Such ATR-IR desorption data have not been 

previously reported in liquid phase for an organic acid over different titania phases. 
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Figure 5.14 ATR IR spectra changes obtained during the adsorption of propanoic acid on anatase, 

(a) and the corresponding spectra in the desorption step (b). The arrow indicates evolution of

spectra with increasing time. 

Figure 5.15 ATR IR spectra changes obtained during the adsorption of propanoic acid on rutile, (a) 

and the corresponding spectra in the desorption step (b). The arrow indicates evolution of spectra 

with increasing time. 
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Figure 5.16 ATR IR spectra changes obtained during the adsorption of propanoic acid on physical 

mixture 80% anatase-20% rutile, (a) and the corresponding spectra in the desorption step (b). The 

arrow indicates evolution of spectra with increasing time. 

In the comparison of the adsorption behaviour on the two pure TiO2 phases is evident that the time 

scale to reach the adsorption equilibrium is very different potentially owing to differences in 

textural properties and crystalline domain of the two samples. On anatase, propanoic acid exhibited 

very rapid adsorption and reached the equilibrium within 5 minutes with a prominent band of 

adsorbed bridging propionate (νa(COO
-
) ~1548 cm

-1
); whereas on rutile the acid displayed slower

adsorption and took more than 10 minutes to reach the equilibrium with the strongest band 

intensity in the carbonyl region (1600-1800 cm
-1

) and highest carboxylate vibration at 1472 cm
-1

 

for the stretching of monodentate mode (ν(CO)). For all the samples the comparison between 

adsorption and desorption step shows a different time scale for the evolution of the peaks. During 

the adsorption step in the carbonyl region the 1714 cm
-1

 peak (H-bonded propionic acid) grows 

more slowly compared to the 1640 cm
-1

 peak (chemisorbed acid) but clearly decays more rapidly in 

the desorption, suggesting a less strongly adsorbed species. 

This observation is further supported by the examination of the spectra of the physical mixture 80% 

anatase- 20% rutile. (Figure 5.16) In this case it seems that the adsorption is clearly characterized 

from two stages process, as result of the separate contribution of the two phases. 

The first stage occurs within the first 5 minutes in which the spectra is dominate by the ν(C=O) 

~1640 cm
-1

 stretching of chemisorbed acid at Lewis acid sites (Ti
4+

).[29] This first step is followed 

by a slower process in which the absorption peak at 1720 cm
-1

 gains further intensity. The final 

equilibrated spectrum recorded at 30 minutes corresponds to three different complexes of 
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propanoic acid on the TiO2 surface: H-bonded propanoic acid (1712 cm
-1

) and propionate in

bidentate (1538 cm
-1

) and monodentate configuration (1420 cm
-1

). In agreement with previous 

studies performed through SVD global analysis on dicarboxylic acids, the spectral changes are 

associated with the build-up of the least stable species which has in this case a characteristic band 

at 1712 cm
-1

.[6, 30] 

Figure 5.17a,b,c show the time dependence of absorbance of IR peaks for the identified surface 

species on different titania nanoparticles in the characteristic isotherm shape. The peak at 1640 cm
-1

 

was not included due to the difficulty of isolating the absorption of water which occurs in the same 

region and the strong absorbance of the adjacent peak at 1712 cm
-1

. It is evident that the peak of 

physisorbed acid (1712 cm
-1

) disappears more quickly in the desorption step for all the samples, 

whereas the chemisorbed species show slower desorption suggesting that are more strongly bonded 

to the surface (Figure 5.17d). 

Figure 5.17 Time dependence of absorbance of propanoic acid on different TiO2 nanoparticles. 

Adsorption and desorption data points were obtained from the measured area of the absorption 

peaks of propionic acid and propionate bonded to the surface (a, b, c). Schematic representation of 

surface bound species related with the desorption rate (d). 
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Such contributions are also seen in the kinetic analysis of the adsorption/ desorption data, shown in 

Table 5.2. Data shows that for P-25 and anatase the peak at 1538 cm
-1

 (bridged bidentate) is 

characterised by a faster adsorption rate but a slower decay of absorbance on the desorption step, 

with a residual coverage of 38% and 6% respectively after 30 minutes of flowing water on the acid-

saturated catalyst film. This suggests that for the samples containing anatase the most strongly 

adsorbed species is the bidentate propionate bonded to the surface via donor atoms from the 

carboxylate group, as previous studies show for some carboxylic and dicarboxylic compounds.[3] 

The analysis of the monodentate mode (1420 cm
-1

) indicates a smaller adsorption/ desorption ratio 

compared to the bidentate configuration, indicative of less affinity with the catalyst surface. On the 

other hand, on the rutile thin film the kads/kdes ratio is higher for the monodentate (1420 cm
-1

) with a 

residual coverage of 6.3%, absent for the pure anatase. 

Finally the kinetic data confirmed the weaker adsorption for the physisorbed acid (1714 cm
-1

) with 

an average of half-live of ~3 minutes and no residual coverage reported in the end of the test for 

any of the samples.  

 

Table 5.2 Maximum absorbance value for each component (Amax), value for each component 

normalised for the surface area(Amax.SA
-1

), residual coverage in the end of the desorption step (θr), 

adsorption/desorption rate constant (ka, kd) and half-life value (t½). 

Band Sample Amax Amax.SA
-1

 θr kads error kdes error kads/kdes t1/2 

cm
-1

     / m
-2

.g.10
3
 % / min

-1
   / min

-1
     / min 

1712 P-25 0.013 0.26 - 0.23 ∓0.016 0.23 ∓0.03 1.0 4.3 

  anatase 0.012 0.29 - 0.27 ∓0.025 0.26 ∓0.026 1.0 3.7 

  rutile 0.010 0.79 - 0.21 ∓0.015 0.30 ∓0.024 0.7 3.2 

  phys mix 0.012 - - 0.13 ∓0.018 0.50 ∓0.024 0.3 2.0 

1538 P-25 0.039 0.78 38 0.41 ∓0.025 0.11 ∓0.012 3.7 8.9 

  anatase 0.016 0.40 6 0.45 ∓0.018 0.20 ∓0.018 2.3 4.9 

  rutile 0.003 0.22 - 0.22 ∓0.015 0.32 ∓0.026 0.7 3.1 

  phys mix 0.010 - - 0.14 ∓0.018 0.21 ∓0.023 0.7 4.8 

1420 P-25 0.034 0.68 7 0.35 ∓0.015 0.12 ∓0.018 2.9 8.4 

  anatase 0.012 0.30 - 0.39 ∓0.018 0.14 ∓0.022 2.8 6.9 

  rutile 0.006 0.43 6 0.21 ∓0.016 0.16 ∓0.022 1.3 6.0 

  phys mix 0.008 - - 0.35 ∓0.016 0.21 ∓0.02 1.7 4.6 

 

These observations confirm preferential adsorption modes of the probe molecule based on the 

different titania phases. Different mechanisms of chemisorption could be related to the density of 
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Lewis acid sites on the surface of different titania materials. FT-IR spectroscopy of pyridine 

adsorption was used to characterize the acidity of the samples. 

As presented in Figure 5.18a, five IR peaks are observed in the spectra. Two sharp and intense 

peaks at 1445 cm
-1

 and 1605 cm
-1

 correspond to the coordinated pyridine adsorbed on Lewis acid 

sites on TiO2. The characteristic peak of pyridine adsorbed on Brønsted acid sites on TiO2 (at 1540 

cm
-1

) is broad and weak for the samples containing anatase and not present on rutile. Therefore the 

peaks at 1575 cm
-1

 and 1491 cm
-1

 assigned to the combined Brønsted/Lewis acidity can be 

attributed only to the Lewis acid sites on TiO2. [26, 31]  

In Figure 5.18b it can be noticed that the higher amount of Lewis acid sites corresponds to a higher 

final absorbance value of the bridging bidentate mode (Amax), except for P-25 which shows higher 

affinity with propanoic acid despite the lower amount of acid sites compare to pure anatase. The 

surface density of acidic sites offers a potential explanation for the prominent peak at 1538 cm
-1

 

(bridging bidentate mode) for anatase and the physical mixture of the two phases (80% anatase), 

which is not evident on rutile. The higher number of adjacent Lewis acid sites increases the 

probability of having the molecule bonded to the surface in the bidentate configuration [26].  

Figure 5.18 IR spectra in 1300–1700 cm
−1

 spectral region for pyridine adsorbed on P-25, anatase 

and rutile (a) and plot of surface Lewis acid density for the different TiO2 samples (b). 

In the following section, further experiments with physical mixtures of anatase and rutile phases 

were not reported due to the reproducibility problem. During the adsorption/desorption tests the 

thin film of the physical mixture of anatase-rutile suffered of poor stability under flow conditions 

on the ZnSe crystal, attributed to marked differences in particle size and density of the two mixed 
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crystal phases. The different interactions of propanoic acid molecules with the surface of the titania 

nanoparticles might lead to differences on photocatalytic properties.  

The goal of this study is to investigate how the different adsorption modes of propanoic acid on 

TiO2 surfaces affect the photocatalytic efficiency of the oxidation process in aqueous media by 

ATR IR spectroscopy. To achieve this, the study in-situ of chemisorbed reaction intermediates was 

performed supported by the identification of photodegradation pathways by experiments carried 

out in a batch reactor under similar reaction conditions. 

5.2.3.2 Propanoic acid photodecomposition 

The three TiO2 catalysts (P-25, anatase and rutile) were evaluated for the photodegradation of 

propanoic acid in aqueous solution under UV LED light (λ ~ 365 nm). ATR-IR spectroscopy, 

facilitating the detection of surface bound species, was applied to study the liquid phase 

photooxidation of propanoic acid on TiO2 thin film and identify the reaction mechanism. 

In parallel, samples were tested in a batch reactor equipped with an array comprised of 34 LEDs 

and the degradation of propionic acid and the generated intermediates were measured by HPLC 

chromatography as a function of time.  The innovative aspect of this work is to present a parallel 

study of propionic acid (C3) degradation between a batch and an ATR flow photo-reactors both in 

liquid phase, unlike most of the previous investigations that were performed in gas phase and for 

shorter acid chain lengths.[15, 32, 33] 
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5.2.3.2.1 Batch reactor 

Figure 5.19a shows the normalised reaction profile of photocatalytic degradation of propanoic 

acid. The time evolution of the target substrate and the detected reaction intermediates is reported 

in Figure 5.19b, Figure 5.19c and Figure 5.19d for P-15, anatase and rutile respectively. 

Figure 5.19 Comparison of the photocatalytic activity of the different photocatalysts under UV 

light (a) and reaction profile of propionic acid with relative formed intermediates detected by 

HPLC analysis of TiO2 P-25 (b), anatase (c) and rutile (d). 

As evidenced within Table 5.3, despite the higher initial rate of anatase, the final conversion of 

propanoic acid was lower compared to P-25, but a higher acetic acid yield was measured. This 

result can be attributed to deactivation of the catalyst. For both samples the main detected 
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intermediate was acetic acid, followed by the formation of a small percentage of formaldehyde. On 

the other hand rutile shows a very low reaction rate, with only 10% of final conversion and no 

intermediates detected in solution 

Table 5.3 Experimental results of the propanoic acid photooxidation over TiO2 samples. 

Sample r
0 a

 Conversion
b
 Intermediates Yields

c
 Selectivity

c
 

 / mmol.h
-1

 % % % 

P-25 0.12 67 CH3COOH 22 33 

CH2O 2 3 

anatase 0.13 48 CH3COOH 39 81 

CH2O 1 2 

rutile 0.03 10 - - 

[a] Initial reaction rate evaluated in the first 40 mins

[b] Final propanoic acid conversion

[c] Final values of yield and selectivity of the detected intermediates

5.2.3.2.2 ATR flow reactor 

Figure 5.20 ATR-IR spectra recorded at different time during the photodegradation of propanoic 

acid on TiO2 P-25 under UV (365 nm) in the 2500-3900 cm
-1

 (a) and 1000–1850 cm
−1

 (b) region.

Spectra were collected during 2 hours of illumination at different times and spectra of TiO2 

samples saturated with propanoic acid solution prior to illumination were used as background in 

each measurement. Figure 5.20a shows an increase of the band centred at 3250 cm
-1

 during the 

first hour of irradiation (green arrow). This band was attributed to the formation of water on the 

TiO2 surface as reaction product. Furthermore the shoulder appearing at 3480 cm
-1

 could be

assigned to the formation of H2O2, which has been speculated to be another possible 

photoproduct.[12] The band of water eventually decreases after 2h of irradiation (red arrow). At the 

same time the carboxylate region showed a continuous change due to an increase of absorption 

bands at 1590 cm
-1

 and 1384 cm
-1

 assigned to the typical va(COO
-
) and vs(COO

-
) vibration of the

coordinate formate.[19] (Figure 5.20b) 
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Figure 5.20 shows the ATR IR spectra obtained during photodegradation of propanoic acid on 

TiO2 P-25. 

Figure 5.21 confirms the presence of formate as reaction adsorbed intermediate. The subtraction of 

the spectrum of propanoic acid adsorbed on P-25 after 60 min of irradiation (1) from the spectrum 

collected in the dark at equilibrium (2) provides the evidence of positive bands of νa(COO
-
)~1590

and νs(COO
-
)~1384 cm

-1
 (see 1-2 spectrum), confirming the presence of formate as reaction

adsorbed intermediate (spectrum 1-2). The spectrum of adsorbed formic acid (3), used as reference 

for the peaks assignment, was obtained by flowing for 30 minutes a 0.05 M aqueous solution of 

acid over a TiO2 P-25 thin film in the dark. The characteristic bands of propanoic acid in the finger 

print region of v(C-C) ~1227 cm
-1

 and v(C-O)~1080 cm
-1

 were seen to decrease, and this further 

proved the photodecomposition of the acid.  
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Figure 5.21 Stacked ATR IR spectra obtained in different conditions (from the top): (1) after 60 

min of irradiation, (2) equilibrium in the dark, (1-2) spectrum obtained from the difference of the 

latter two, (3) equilibrium in the dark of formic acid over P-25. 

To gain more information about the evolution of the generated intermediate (formate and water), 

the spectrum of propanoic acid adsorbed on P-25 collected before UV irradiation was further 

subtracted from the all the spectra collected during the irradiation time. (See Figure 1, Appendix) 

Figure 5.22 shows the evolution of the peak area of finger print of propanoic acid (p), adsorbed 

formate (f) and water (w) on the TiO2 P-25 surface during the irradiation time. During the first 10 

min of irradiation, the ν(C-C) and ν(C-O) propionic acid peaks decrease and vibrational bands of 

adsorbed formate and water initially increase and then eventually start to decrease after extended 

illumination time (~90 min).[19] 
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Figure 5.22 Evolution of the peak areas of propanoic acid at ν(C-O)~1227 cm
-1

 and ν (C-C)~1080 

cm
-1 

(p, in black)
 
and formate (f, in red) and water (w, in blue), during the irradiation time. 

Figure 5.23 shows the ATR IR spectra obtained during photodegradation of propanoic acid on 

anatase. Figure 5.23a shows a very weak and noisy signal in the region of adsorbed water 

(~3250cm
-1

), whilst two peaks at ca. 2950 cm
-1

 and 2850 cm
-1

 are assigned to the νa(COO)+δ(CH)

and ν(CH) respectively typical of adsorbed formate.[16] Formate formation on anatase is further 

supported by the appearance of the two shoulders at 1590 cm
-1 

and 1384 cm
-1

. (Figure 5.23b)  

On anatase, the νa(COO
-
) band at ∼1590 cm

-1
 is broader than the one observed on P-25 and it can

be assigned to formate ions signalling formation of aqueous-like clusters.[20] This suggests weaker 

adsorbate-surface interactions on anatase and displacement by water formed in the course of the 

photoreaction, in agreement with previous studies.[34] At the same time the disappearance of the 

bands ν(C=O)~1712 cm
-1

 and ν(CO) at 1420 cm
-1

 (black arrows) seems to correlate to the 

broadening of the bands at 1538 cm
-1

, suggesting that under illumination propionic acid in the 

monodentate configuration is gradually converted to propionate.  

Such an assignment is based on two aspects: the observation of the difference spectra obtained by 

subtraction of the spectrum of propanoic acid adsorbed in the dark from the spectra collected 

during the irradiation time (See Figure 2, Appendix ) and some previous studies performed on 

alkanes and dicarboxylic acids which confirm the evolution of the surface species under 

illumination and the dependence of photo-oxidation reaction on TiO2 with the structure of the 

surface intermediates.[6, 14]  

In particular, on anatase the rearrangement of propionic acid molecule from the monodentate to a 

bidentate configuration can be considered the rate-determining steps (RDS) of the 
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photodegradation reaction which then easily leads to the formation and accumulation of reaction 

intermediates.[14]  

Figure 5.23 ATR-IR spectra recorded at different time during the photodegradation of propanoic 

acid on anatase under UV (365 nm) in the 2500-3900cm
-1

 (a) and 1000–1850 cm
−1

 (b) region.  

In contrast, on rutile, where most propanoic acid is adsorbed in monodentate configuration, only 

negligible spectral differences are observed after extended illumination; and the propionate appears 

to be photostable on the surface. (Figure 5.24) Figure 5.24a shows that the OH stretching band 

increased and shifted towards a higher wavenumber (~3632 cm
-1

) during UV irradiation. Although 

only a small percentage of the substrate is degraded over rutile, the photo-excitation of the catalyst 

under UV leads the formation of reactive oxygen species (ROS) from the reduction/oxidation of 

water and oxygen by means of the electron/hole pair. This indicates that formation of this band can 

be attributed to photocatalytically generated H2O2 as more stable photoproduct compared to the 

other ROS (HO
●
, HO2

●
).[35] This observation is confirmed from some recent chemiluminescence

studies performed by Kakuma et al.[36] They found that the generation rate and the adsorption of 

H2O2 under UV light were significantly larger for rutile. In Figure 5.24b it can be clearly seen that 

the band of ν(C=O) ~1712 cm
-1

 gradually decreases (black arrow) and in the meantime the band at 

1538 cm
-1

 of chemisorbed propionate show an increase in intensity (red arrows).  
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Figure 5.24 ATR-IR spectra recorded at different time during the photodegradation of propanoic 

acid on rutile under UV (365 nm) in the 2500-3900cm
-1

 (a) and 1000–1850 cm
−1

 (b) region.  

Figure 5.25 shows the time evolution of the measured peak areas of the physisorbed, the 

monodentate and bidentate configurations. The peak areas were measured from the subtracted 

spectra shown in Figure 3, Appendix. 

Figure 5.25 Evolution of the peak areas related to the H-bonded acid ν(C=O) and propionate in 

bridging ν(COO
-
) configuration. 
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In agreement with previous studies the formation of bridging bidentate under irradiation is 

favoured but photo-stable on rutile. [14, 19, 37] Contrarily to anatase, the reaction does not proceed 

to photo-oxidized products. On rutile the most exposed surface is the (110) planes and propanoic 

acid dissociates on this facet as propionate remaining strongly bonded to the surface and this 

mechanism is exclusively detectable only by IR spectroscopy measurements. 

Furthermore, even though there is the production of radical, active species, the photocatalytic 

oxidation of organic substrates on rutile seems to be limited to adsorbed substrates, with a very 

limited reaction zone confined on the surface. The higher photoactivity of anatase can be explained 

by its ability to generate more mobile radical species capable of migrating to the bulk solution and 

reacting with both surface-bound and unbound substrates/intermediates. (Figure 5.26) [38] These 

observations are consistent with the reaction profile detected by HPLC in the batch reaction. The 

rutile catalyst exhibited low activity, achieving only 10% conversion after 3 hours of irradiation 

and no intermediates could be detected in solution  

Figure 5.26 Illustration of OH-radical-mediated photocatalysis on anatase (left) and rutile (right), 

image from Reference [38]. 

5.2.3.2.3 Proposed reaction mechanism 

The proposed reaction mechanism summarize the results obtained from the photo-oxidation of 

propanoic acid performed in the batch reactor (HPLC data) and the surface species identified under 

irradiation by ATR IR spectroscopy for the three different TiO2 catalysts. For the samples 

containing anatase, this parallel studies lead to the identification of three main organic 

intermediates: acetic acid (in solution), formic acid (adsorbed on the surface) and formaldehyde 

(weakly adsorbed on the surface and present in small concentration in solution). In Figure 5.27 a 

schematic drawing of the reaction pathways for the photodegradation of propionic acid on TiO2 P-

25 sample is shown. The high propionic acid conversion (67%) measured by HPLC and the 

relatively low selectivity of acetic acid in solution compared to pure anatase (Table 5.3) can be 

explained as follows. 
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Initially, propionic acid (C3) was strongly bonded to the surface of TiO2 P-25 in the bridged 

bidentate configuration which is recognised as the main precursor for the photo-Kolbe 

decarboxylation.[39] This route (1) is initiated by a photo-generated hole (h
+
) and leads to CO2 and

a carbon centred radical (C2
●
). In the presence of O2, the formed alkyl radicals react with peroxyl

radicals (HO2
●
), and then decomposes to water and carbonylated intermediates (i.e. acetic acid)

following the well-known Russell mechanism (route 3).[40, 41] Acetic acid can easily desorb from 

the surface [9] and in fact there are no signs in the ATR IR spectra of adsorbed acetic acid/acetate 

during the irradiation time whilst this oxidation product was measurable in solution after 40 min of 

irradiation.[9] However a low concentration of formaldehyde in solution and strong adsorbed 

formate signal from the ATR IR spectra were detected and these observations suggest other 

possible mechanisms. The second possible route (2) involves the hydroxylation by H-atom 

abstraction from the α-carbon, followed by the formation of pyruvic acid. This intermediate was 

not detected in the present work but previous studies and isotopic investigation confirm the 

presence of this intermediate in the photocatalytic decomposition of propionic acid.[24, 41, 42] 

Pyruvic acid is not only a precursor of acidic acid (route 2-4-5) but offers a reasonable explanation 

for the formation of the other intermediates. Thus the proposed route (2-4-6) is consistent with the 

strong formate signal shown by the ATR IR measurements. It was observed that after the first 10 

minutes of irradiation, the characteristic peaks of adsorbed formate grow more slowly and then 

start to decay for the extent of the illumination time because the formate species further decompose 

to CO2 in a single step reaction without forming long lived intermediates. [43] (Figure 5.22) On 

the other hand, the generation of formaldehyde dissolved in solution can be explained by the 

hydroxylation process followed by a photo-Kolbe decarboxylation (route 2-4-7-8). Finally, for 

completeness, the possibility of hydroxyl radicals attack at the β-carbon (route 9) is reported but in 

this system no evidence of the possible intermediates deriving from this mechanism was observed. 

Figure 5.27 Proposed reaction mechanism for of propanoic acid over TiO2 P-25. 
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The comparative study between P-25 and pure anatase leads to the conclusion that, for the latter, 

degradation of propanoic acid mainly proceeds through direct photo-Kolbe decarboxylation with 

higher production of acetic acid [19] and CO2 (route 1-3). Thus on anatase propanoic acid readily 

oxidizes to acetic acid but the reaction cannot proceed further due to the low affinity of this product 

with the TiO2 surface. On P-25 the presence of rutile (~20 %) might contribute to stabilize the 

adsorbed intermediates allowing the reaction to proceed to different routes. The synergistic effect 

between the two phases can explain the higher propanoic acid conversion and the formation of 

smaller intermediates (i.e. formaldehyde and strong adsorbed formate). These observations are 

supported by the HPLC analysis and further confirmed by the measurements of the CO2 peak area 

of the IR spectra, as shown in Figure 5.28. 

Figure 5.28 Conversion-selectivity plot for the three TiO2 samples (a); evolution during the 

irradiation time of the peak area ratio ν(CO2)/ν(C-C) evaluated for P-25 and anatase (b). 

5.2.4 Effect of pH 

The pH effect was investigated because it may influence the surface charge on the photocatalyst, 

the amount of produced HO
●
, the state of ionization of the substrate and its adsorption efficacy.[12] 

The effect of pH on the photodegradation of propanoic acid was studied in the pH range 3-8.An 

aqueous solution of ammonia was added to adjust the pH of the propanoic acid solution. With no 

pH correction the stock solution has measured pH value of 3. Values of pH 6.3 and 8 were obtained 

after ammonia correction. The solution at higher pH was used for a photocatalytic test in the ATR 

flow cell to investigate the effect of pH on the surface interactions. Figure 5.29a-b show the 

normalised reaction profile of photocatalytic degradation of propanoic acid and the initial rates in 

the range of pH 3-8, respectively. 
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Figure 5.29 Comparison of the photocatalytic degradation of propionic acid over TiO2 P-25 at 

different pH under UV light (a) Trend of the initial rate with the pH value (b). 

The reaction profiles of propanoic acid degradation and detected intermediates at pH 6 and 8 are 

reported in Figure 5.30. It is interesting to note that increasing the pH, the initial rates and the 

propanoic acid conversions increase. In addition also the acetic acid selectivity increases with the 

pH, suggesting that the product distribution is pH dependent. 

Figure 5.30 Reaction profile of oxidation propionic acid over TiO2 P-25 with relative intermediates 

detected by HPLC analysis at pH 6 (a) and 8 (b). 
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Table 5.4 summarises the initial rate, conversions and the yields of the photodegradation reactions. 

Table 5.4 Experimental results of the propanoic acid photooxidation over P-25 at different pH. 

pH r
0 a

 Conversion
b
 Intermediates Yields

c
 Selectivity

c
 

 / mmol.h
-1

 % % % 

3 0.12 67 CH3COOH 22 33 

CH2O 2 3 

6 0.25 86 CH3COOH 75 87 

CH2O 0 2 

8 0.28 94 CH3COOH 82 87 

CH2O - - 

[a] Initial reaction rate evaluated in the first 40 mins

[b] Final propanoic acid conversion

[c] Final values of yield and selectivity of the detected intermediates

In first place the pH modification can induce changes in the adsorption mode of propanoic acid. In 

Figure 5.31 the spectra at adsorption equilibrium are reported in order to compare the different 

affinity of propanoic acid with TiO2 surface, the spectra of acid in solution are reported for 

comparison. At pH 8 the solution is well above the pKa (4.87) of the carboxylic acid group and thus 

all the acid is deprotonated. Observing the spectrum of propanoic acid in solution (dotted blue line) 

it can be seen that the peak at 1712 cm
-1

 of carbonyl stretching ν(C=O) is weakened by the 

neighbouring COO
-
 group which shows a sharp absorption peak at ~1538 cm

-1
, absent at pH 3 

where only the 1.3% of the acid is deprotonated. In presence of catalyst, the relative peaks intensity 

change (bold lines). It is well known that the affinity of carboxylate for the surface of metal oxides 

increases with decreasing pH.[12] The isoelectric point (IEP) of the TiO2 (Degussa P-25) is at pH 

6.8, thus in acidic media TiO2 surface is positively charged and the electrostatic attraction between 

the surface and the acid promotes the adsorption. In alkaline conditions (pH > 6.8), there is an 

increasing of the TiO
–
 groups density and also the acid molecules are negatively charged, thus, due 

to electrostatic repulsion, the acid is scarcely adsorbed.  
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Figure 5.31 ATR-FTIR spectra of propionic acid at pH 3 and 8 in aqueous solution (dotted lines) 

and adsorbed on TiO2 P-25 nanoparticle (bold lines). 

Figure 5.32 shows a schematic drawing of the affinity of propionic acid in solution and the surface 

of metal oxide with the varying of pH.  

Figure 5.32 Schematic illustration of the adsorption of carboxylic acid on the TiO2 surface 

relatively to the pH of the solution and isoelectric point (IEP) of TiO2. 

Despite the low affinity between the target molecule and catalyst surface, the photodegradation was 

significantly enhanced at high pH. The high activity can be explained with more efficient formation 

of hydroxyl radicals  in alkaline solution, due to the high concentration of HO
-
 ions.[44] Previous 

studies also confirm that the activity of hydroxyl radicals is higher on dissociated species (i.e. 

propionate).[45] In the previous section (Figure 5.27 in Section 5.2.3.2.3) two main pathways 

were identified for the photodegradation of propanoic acid over TiO2 P-25. 
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The ATR IR spectroscopy can help to elucidate which route is favoured under UV at different pH. 

The spectral development of propionic acid adsorption under UV illumination at pH 8 is shown in 

Figure 5.33. Under UV, the band of adsorbed water centred at 3250 cm
-1

 drastically decreases in 

the first 10 minutes of irradiation, as shown in Figure 5.33a (black arrow). For extended irradiation 

time the OH band decreases and shifts towards higher wavenumber (~3480 cm
-1

) which can be due 

to the production of hydrogen peroxide (H2O2)species.[11, 46] On the other hand, the carboxylate 

region under UV shows more affinities with the spectra recorded in acidic conditions, as shown in 

Figure 5.33b. However at pH 8 the spectral changes show a small evolution in the carboxylate 

region, with initial rapid increasing of the absorption band of formate (1590 cm
-1

 and 1384 cm
-1

) in 

the first 30 min of irradiation and a negligible decreasing in peak intensities for extended 

irradiation time. This observation is in line with the reduced adsorption affinity between the acid 

and the catalyst surface in alkaline conditions, suggesting that at pH 8 the small amount of 

adsorbed propanoic acid initially reacts through photo-Kolbe mechanism with formation of CO2 to 

then proceed to other routes. 

Figure 5.33 ATR-IR spectra recorded at different time during the photodegradation of propanoic 

acid on TiO2 P-25 under UV (365 nm) at pH 8 in the 2500-3900 cm
-1

 (a) and 1000–1850 cm
−1

 (b)

region. Spectra were collected during 2 hours illumination at different times and spectra of TiO2 

samples saturated with propanoic acid solution prior to illumination were used as background in 

each measurement.  

Figure 5.34b shows the HPLC data with higher propanoic acid conversion and acetic acid 

selectivity at pH 6 and 8. In Figure 5.34b the peak ratio CO2 / ν(C-C) highlights that in alkaline 

condition the formation of CO2 results to be faster in the first 30 min until reached a constant value, 

lower than the one observed at pH 3. 
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Considering that CO2 is the product of direct hole oxidation through the photo-Kolbe mechanism, 

these results suggest that at pH 8 the favourite route for oxidation of propanoic acid is through 

hydroxyl radical attack. This observation could explain the high acetic acid selectivity, due to a 

double contribution of hole and HO
●
 attack (See route 1-3 and 2-4-5, Figure 5.27), and also the 

formation of formaldehyde in solution within the first hour of irradiation (route 2-8, Figure 5.27). 

All these results confirm the strongly dependence of the fate of the photocatalytic reaction from the 

pH conditions which influence the interaction substrate-catalyst, the adsorption of water on catalyst 

surface and subsequently the formation of reactive species and sub-products. 

Figure 5.34 Conversion-selectivity plot for the three pH values (a); evolution during the irradiation 

time of the peak area ratio ν(CO2)/ν(C-C). 

5.3 Conclusions 

In this chapter the adsorption and photodecomposition of propanoic acid over a TiO2 film was 

investigated by in situ ATR-IR spectroscopy, aiming at identifying different surface complexes for 

propanoic acid adsorbed on the surface of P-25, anatase and rutile and demonstrating the 

dependence of the reaction mechanism from the adsorption modes. Significantly, the identification 

of a reaction mechanism was achieved by simultaneous but separate detection of reaction 

intermediates in liquid phase (batch reactor) and as surface species (ATR flow reactor). 

Adsorption kinetic studies reveal that propanoic acid bonds more strongly to P-25 and anatase in 

bidentate configuration and more weakly to rutile in monodentate mode. The surface density of 

acidic sites offers a potential explanation for differences of adsorptions modes, thus the higher 

number of adjacent Lewis acid sites on the anatase surface increases the probability of having the 

molecule bonded to the surface in the bidentate configuration. 
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This configuration is recognised as the main precursor for the direct hole oxidation through photo-

Kolbe mechanism, which leads to CO2 and acetic acid. Upon illumination the coverage of adsorbed 

propanoic acid on P-25 and anatase decreased and adsorbed CO2 was observed and measured on 

the TiO2 surface and acetic acid detected in solution. On rutile the formation of bridging bidentate 

configuration is a rate determining step for photo-decomposition of propanoic acid and after 3 

hours of irradiation only ATR spectral change were observed and no intermediates detected in 

solutions. The second possible identified route was the hydroxyl attack with H-abstraction and 

formation of water. Formate was a main intermediate surface product on P-25 and anatase. It was 

observed that coordinated formate is preferred on P-25, whereas formate ions form on anatase, 

which is displayed by the typical broad peak at νa (COO) ~1590 cm
-1

. More molecular water on the

surface of anatase tends to displace acetic acid, which was detected with high selectivity in solution 

compared to P-25. In general, surface IR spectra showed that P-25 exhibits large similarities with 

anatase but the highest final conversion of propanoic acid and the higher formaldehyde selectivity 

suggest the possibility of more reaction pathway for P-25, probably due to the contribution of rutile 

which is able to stabilize the adsorption of intermediates to the catalyst surface. 

Finally, the role of pH on the reaction mechanism was investigated. In alkaline media the reaction 

rate showed an increasing in activity with high propanoic acid conversion and acetic acid yield, 

with formation of formaldehyde within the first 30 minutes of irradiation. At pH 8 molecules and 

catalyst surface are negatively charged but, despite the low adsorption affinity, alkaline media 

promote the formation of hydroxyl radicals which are the main responsible of acid degradation. 
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6. Conclusions and future work

6.1. Conclusions 

Heterogeneous photocatalysis has been found to be an effective solution for the removal of organic 

contaminants from wastewater. This thesis set out to explore the structure reactivity correlations in 

nanostructured titania photocatalysts for the degradation of aqueous organic pollutants, combined 

with in-situ ATR studies. 

During the course of this research work, a number of conclusions have been reached, regarding the 

preparation, characterization and reactivity of TiO2 based photocatalysts. Two approaches were taken 

utilising first mesoporous SBA-15 and then macro-mesoporous SBA-15 as a scaffolds to obtain a 

uniform titania coating via a grafting method. The photoactivity of these materials was explored 

through their application in dye degradation under UV-vis light which is an important reaction for the 

waste water treatment. 

In the first approach TiO2-SBA-15 materials were prepared by successive graftings of titanium 

isopropoxide on dehydrated mesoporous SBA-15. A series of three supports was synthesized at 

different aging temperatures in order to systematically tune the pore size and the TiO2 content was set 

at 8-18 wt. %. 

The influence of the pore size of silica supports on the dispersion of TiO2 was demonstrated and SBA-

15 with large mesopores of around 7 nm (synthesized at 120°C) produced the most effective catalyst. 

Characterization of the catalysts by N2 porosimetry confirmed that the grafting of TiO2 exhibits a 

systematic decreasing of pore size with no bimodal distribution observed in the BJH plot compared to 

the other two supports with smaller mesopores size. Moreover no crystalline anatase was observed by 

XRD analysis. Considering also the molecular length of methyl orange (~1.2 nm), large mesopore 

size avoids mass-transport problems due to the accessibility of the dye molecule to the internal surface 

area of the photocatalyst. 

Going forwards, SBA-15 synthesized at 120°C was used as an optimal host support and the TiO2 

content of the composites was varied from 12 to 43 wt. %. At TiO2 loadings higher than 30 wt.%, 

crystalline anatase was observed by XRD and Raman. The results show that Eg decreases with the 

increase of titania content, which affects the photoactivity of synthesized material on the degradation 

of MO. 

After five successive grafting procedures, the sample with highest TiO2 loading (43 wt.%) was found 

to possess a relatively high surface area (~300 m
2
.g

-1
), readily accessible mesopore for the target 

molecule (~3.8 nm) and a bad gap value comparable to the commercial titania references (3.2 eV). 

These properties affect the photoactivity of the composite which exhibits the highest initial rate of 

MO degradation (87 ppm.h
-1

.grcat
-1

) over both synthesised series of mesoporous photocatalysts.

http://context.reverso.net/traduzione/inglese-italiano/readily+accessible
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In the second approach enhancement of textural and optical properties of these materials was 

attempted and achieved through grafting of titania on hierarchical SBA-15 support.  

The aims in this stage were to develop an ordered hierarchical photocatalyst through grafting of TiO2 

nanoparticle in photonic supports (macro-mesoporous SBA-15), and investigate the effects of the 

photonic structure on the photocatalytic activity.  

Initially the grafting method was applied on supports with three different macropores size with a 

titania loading set at ~10 wt. %. It was found that introducing the hierarchical structure markedly 

increases the photocatalytic activity of the composite samples of about ~30 % compared to the 

mesoporous catalysts with the same TiO2 loading and similar mesopores size. Enhancements of initial 

reaction rates relevant to dye degradation by slow photons at the blue edge of a photonic stop band 

have been reported for the samples with 200 and 600 nm macropore size.  

Secondly a further study was performed on the support with 400 nm macropore size to investigate the 

effect of the TiO2 loading on the photonic support. The PBG intensity was observed to significantly 

broaden and reduce with increasing titania loading in the range of 10-23 wt. %.  

Modification of optical properties leads to an increasing of the efficiency in the photocatalytic 

oxidation of MO in terms of initial rate and the results show that the most active catalysts resulted to 

be 400-3 with the highest TiO2 loading.  

In conclusion this work reports the successful synthesis of ordered hierarchical system with high 

specific surface area and a three-dimensionally continuous structure with the properties of a photonic 

crystal. These features make the new material a highly effective photocatalyst since the diffusion 

resistance is minimized and the efficiency of photoabsorption is enhanced. 

 

In the final section of this research work, attenuated total reflection infrared (ATR-IR) spectroscopy 

was used to study the adsorption and photodegradation processes of carboxylic acids onto titanium 

dioxide film. The photodegradation of propanoic acid on P-25 TiO2 and on pure anatase and rutile 

phases was followed in situ. Analysis of ATR IR spectra indicates that propanoic acid bonds stronger 

to P-25 and anatase in bidentate configuration and weaker to rutile. Upon illumination the spectral 

evolution of adsorbed propanoic acid demonstrates adsorption mode-dependent reaction pathways. 

For example formate is the main intermediate species detected on P-25 and anatase surface when 

propanoic acid is photodecomposed; whereas on rutile, coordinated propionate in bidentate 

configuration is formed and it is not photodegraded even after 120 min of illumination. This result 

was consistent with the performance evaluated in the batch photo-reactor, in which the propanoic acid 

conversion was only 10% after 3 hours of illumination and no intermediates were detected in solution. 

Coordinated formate is preferred on P-25, whereas formate ions form on pure anatase, which is 

proved by the typical broadening of the νa(COO). In general, the surface ATR IR spectra show that P-

25 exhibits large similarities with anatase compared with rutile but the former shows more molecular 
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water evolves on the surface, which tents to displace propanoic acid and hinder the interfacial charge 

transfer to the adsorbed organic molecules. Lower propanoic acid conversion but higher quantum 

yield of acetic acid was detected in solution for pure anatase compared with P-25. This suggest that on 

anatase adsorbed propanoic acid rapidly evolves to acetic acid by photo-Kolbe decarboxylation, 

which is weakly bonded to the surface and tents to accumulated in solution without further interaction 

with the catalyst surface. For P-25 the concentration in solution of acetic acid is lower despite the 

higher conversion of propanoic acid. This indicates that upon illumination the reaction pathways for 

propanoic acid decomposition involve both the direct hole oxidation and the hydroxyl radical attack 

and that care must be taken when deriving reaction mechanisms based only on stable intermediate 

species observed in solution. The presented study highlights that a molecular level understanding of 

processes occurring at catalytic solid liquid interfaces is of great importance for the rational design of 

solid catalysed liquid phase reactions. Thus the cell design and the developed protocol with catalysts 

benchmark to follow photodegradation reactions at solid-liquid interface offers great opportunities for 

mechanistic investigations of interfacial processes and provide a great basis for future developments. 

 

6.2. Future work 

In this thesis, nanostructure titania based catalysts were studied for the application in photocatalysis 

for water treatment.  

Although hierarchical nanostructures have been widely characterized together their unique properties 

such as increased light harvesting and mass transport, further investigation on charge separation 

mechanism and adsorption capacity are required to deeply understand all the advantages that these 

materials can offered in the field of environmental applications. 

An interesting future development of this work could be the evaluation of these hierarchical 

photocatalysts in various photocatalytic reactions such as H2 production, CO2 reduction and 

degradation of different classes of pollutants.  

Also modification strategies such as doping, forming hetero-junctions and the loading of suitable co-

catalyst could be of great interest since they offer the possibility to develop visible-light photocatalyst. 

In addition, further studies may include the analysis and determination of possible degradation 

pathways of pollutants in water by IR spectroscopy techniques. This will contribute to the 

understanding of the photocatalytic degradation process on the surface of synthesised catalyst in order 

to develop any possible strategy for the design of a smart photocatalysts. 
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Figure 1 shows the evolution of formate on the TiO2 P-25 surface during the irradiation time (2 

hours). The black lines refer to the increasing spectra collected at different time (0-60 min), whereas 

the red line is the last spectrum (120 min) which indicates a decrease in formate adsorbed on the 

surface following an extended period of irradiation. 

Figure 1 Evolution during the time of the spectra obtained from the subtraction (UVtime-Adsdark) from 

flowing propanoic acid over TiO2 P-25.  

Figure 2 shows the disappearance of peak at 1712 cm
-1

 (physisorbed acid) which seems to be related 

to the broadening of the bands at 1538 cm
-1

, suggesting that under illumination, the monodentate 

configuration is gradually converted to propionate. Moreover for extended illumination time the band 

intensity of adsorbed formate (1590 cm
-1

) increases at the expense of the propionate, which eventually 

also starts to disappear after 60 min. The band of formate is much broader compare to the defined and 

intense peak observed on TiO2 P-25, suggesting a weak interaction of this species with the catalyst 

surface. 
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Figure 2 Evolution during the time of the spectra obtained from the subtraction (UVtime-Adsdark) from 

the experiment of propanoic acid over anatase.  

Figure 3 shows that the physisorbed monodentate acid (peak at 1712 cm
-1

) gradually disappears and 

converts to bidentate propionate with the two characteristic bands at 1538 cm
-1

 and 1297 cm
-1

, 

asymmetric and symmetric stretching respectively. The blue dot indicates the peak at around 1625 

cm
−1

 which is due to the δ(HOH) vibrational mode of the small amounts of adsorbed water forming 

during the irradiation time. 

Figure 3 Evolution during the time of the spectra obtained from the subtraction (UVtime-Adsdark) from 

the experiment of propanoic acid over rutile.  




