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Theadvances in technology capable of measuring various optical properties within organic
materials and tissues have paved way for potentially revolutionary methods of detecting and
diagnosing diseases as well as generally monitoring health. Thus, thigtoegies a background
on a number of key optical properties crucial in organic tissues and describes how such properties
can currently be detected and observed.

The thesis looks a diverse selection of conditions ahdalthmonitoring challenges to
determine the effectiveness nbn and minimally invasive diagnosticdrinary bladder cancemd
a computational Monte Carlo model atescribed in an effort to predict the effectivenessumh
diagnostics tools as well as aid in the overall detectioraoter within the organ. Beginning from
porcine bladder, the modelasivanced to functiowith human biopsy samples.

Furthermore, the thesis coverardiovascular diseag€VD), specifically pre-eclampsia.
Toolsusedfor human analysis are tested on ani@¥D models and ultimately employed to display
their effectiveness at monitoring diseased mice from an established murine model. The thesis also
presents potential parameters vital for diagnostics purposes.

Using theestablished parameters of interest from the above work, the thesis describes
measurement of physiological (photonics based diagnostics) and psychological (reaction time
assessment) effects resulting from sheri light exposure. Due to the frequencywdiich non
natural light interacts with people on a eayday basis, the thesis provides a basis to further expand
healthkmonitoring research.

Finally, potential methods for assessing ocular health in the form of contact lens induced
discomfort is assesdethrough objective analysis by photonics based techniques. The thesis also
establishes a validation for the proposed approach.

Ultimately, the work presented in the thesis describes how novel photonics based
technologies can be effectively employed inideavariety of biomedical diagnostics and monitoring
applications, whether used alone or in conjunction with other forms of diagnostics.

Keywords: urinary bladder cancer, pezlampsia, reaction time task, contact lenses;imaasive
diagnostics.
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Chapter 1 Thesis aims

This thesis is designed to present work conducted on the interface between two fields. As
such, bapters twpthreeand fourconcentrateon bringing to light the idea that photonics based
analysis of organic tissue is an ewatreasing research area with a large applicationhé
biomedical fields. While the first two chapters detail specific technologies and their existing
profound effet in fields such as medicine and biomedical research, it is important to note that
photonics technology is continuously advancing. The direction towards combining multiple
technologies as presented in chater lies at the heart of this thesis. It iepisely this type of
combined technology that forms the backbone for the worlducted by the authofhis short
chapter will look at the core aim of the thesis and outline the progress of work.

1.1 Core thesis aims

This thesis heavily relied upon thecent technological advances within the field of
photonicsbased diagnostics. The combination of multiple complimentary diagnostics methodologies
into single easyto-use devicepresented a host of validation and application problems, which had
to be addessed before such technology could continue to make a significant impact on the world.

In light of this the one overarching aim of this thesis was to investigate the application of
such photonics based technology on various diseases and in a numiedioafl mpplications. This
implies the testing of suitability of such technologies on specific conditions in order to determine
whether useful diagnostics data can be obtained.

Throughout this work, a secondary goal critical to completion of the primaryveas to
establish viable methodological and analytical approaches in the event of successful implementation
of the diagnostics technology.ogether, these two goals exist to exploit the various available
photonics based techniques and form an experitestgpported foundation for further research

into biomedicine.

1.2 Chapteraims

Multiple areas of interest were chosen for investigation in this thesis. This was primarily
done to determine the effectiveness of multifunctional, photonics biésgubstics technologies and
approaches in a broad spectrum of medical conditions. Below entedgiscriptions of the aims for

each individual studied condition
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1.2.1 Diagnostics of cancer

In light of the tremendous impact of cancer on the lives of millions of people worldwide,
chapterfive of this thesis exclusively focuses on developing advancements irandrminimally
invasive early diagnostics of bladder cancer. The thesis providestifecation for the design and
development of a computational 3D bladder tissue model in order to simulate the optical properties
of multi-layered bladder tissue during irradiation by light of varying wavelengths. The ultimate goal
of this work is the usef this model for comparison of different photonic devices and their potential
clinical worth. Furthermore, the chapter aims to present a method for simulating the effects of bladder
cancer progression on the ti sissticdenchmaskpwhichccanl pr
aid in tumour staging and grading criteria.

1.2.2 Monitoring and diagnostics for cardiovascular diseases areclfampsia

Al ong with cancer, cardiovascul ar di seases
in the world Chapter six of his thesis aimed to establish a viable method of monitoring
cardiovascular deficiencies in CVD mouse modétsaddition to establishing ®alidation for
employing the LAKKM diagnostics device on rodent moddlse chapter also outling®tentially
vital methods of analysis for effective diagnosis of various CVDs.

Combining the available technology with established mouse models, the chiampteto
work as a foundation for potential future reseautthmately targetingnoninvasive diagostics of

pre-eclampsia.

1.2.3 Nondisease monitoring and medical application

Monitoring and checkips are important not just for individuals suffering from diseases, but
also for unaffected people wishing to stay healthy. In light of tiiapter seen describes two
potential directions of research into health monitoring within healthy individuals. Specifically, the
chapter concentrates on the effects of light on the cognitive functions of healthy individuals and
potential monitoring of eye healtimé contact lens comfort.

1.2.3.1 Effects of light on microcirculatory and metabolic processes

As technology advances in the form of new mobile phones, televisions and other devices
based on light emitting screens, it is more important than ever to understand how natural and non
natural light affects healthy individuals. This chapter section ulélpaims to provide an initial

assessment of physiological and cognitive changes in response to short exposures of intense warm
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and cold light. Secondarily, the section is aimed to provide a basis for deeper analysis into the light

effects on humans by emaying highly sensitive devices for physiological property measurement.

1.2.3.2 Analysis of eye health

In addition to diagnostics potentials of photonics based technology, the thesis aimed to
establish potential applications of said technology in aitmong and predictive capacity. Due to
the prevalence of contact lens use and the ease of access to individuals with and without contact
lenses, work in this thesis was carried out on determining the ability of diagnostics devices in
predicting discomforand irritation from eye lens use.

Specifically, work was conducted to establish and outline safe and effective monitoring
methodology for the condition of the human eye, with and without lenses acting as irritants.
Secondarily, this work was completesl @ basis to expand further into more complex applications

of photonics based, nenvasive diagnostics devices in ophthalmology.
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Chapter 2 Introduction to light interactions with biological objects

2.1 Introduction

Throughout history, humanity has been sharg for evefimproving approaches to
medicine. Beginning with ancient civilisations, light, and often specifically sunlight, was deemed to
have curative properties. Cultures such as the ancient Egyptians sought to improve health in a process
nowlabelleca s fAheli otherapyo. The idea of exposure
lasted all the way to the end of the"ihd the beginning of the 2@enturies, when the dangers of
too much sun exposure started becoming more evident. By this point, howevdrafigdttherapy
was beginning to take on a new, more focused form.

Niels Ryberg Finsen, a FaroeBanish physician, obtained the Nobel Piize Physiology
or Medicinein 1903by successfully demonstrating the effects of light therapy for the treatrhent
Lupus Vulgaris(Finsen 1902)Instead of simply sunlight, Finsen employed specifically designed
equipment to deliver concentrated light to target tissue éBamzsche 2011While Finsen believed
that his work was successful@lto the bactericidal effect of ultraviolet (UV) radiation, there was no
substantial scientific evidence backing the theory. It is even suspected that the treatment was
successful due to the possible action of activated singlet ox{elter et al. 2005) Despite the
questioned mechanisms of therapeutic action, this was one of the earliest examples of targeted light
being employed clinically andfectively.

The advent of laser technology further expanded on the possible uses of light within medical
fields. The potential benefits of directly employing lasers in clinical practice were described almost
simultaneously with their invention in the bay 1 gT6Whéssl962; Zaret etl. 1961) Though
potential surgical applications were imagined even as the first lasers were being developed, the first
described medical use of the laser was for photocoagulation in ophthalnfRoggnberg et al.

1995) Over the next two decadekasers spread through various and diverse medical fields,
enhancing and aiding surgery in dermatology, otolaryngology, gynaecology, general surgery,
neurosurgery, gastroenterology and urol@@koy 1988) With further advancement, fields such as
cardiology and dentistry were also employing laser technology. Howeyer,bhe | at e 197
potential applications of lasers diversified beyond simple surgeougherty et al. (1978)
demonstrated one of the earliest successful applications of laserstimalystamic therapy involving

a light activated compound for therapeutic treatment of various malignant tumours.

The development of lasers and increased control over the beam (such as pulsatesh) open
the floodgates of laser application in nearly allldge of medicine. Therapeutic applications
diversified into a number of possible options. Depending on source of laser and exposure to it,

therapeutic effects on both animals and humans could be achieved through electromechanical
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(photomechanical or photatuptive) approaches, ablation, photothermal (coagulative and
vaporizing) processes, photochemical (photodynamic) reactions and through biostimulation and
wound healindPeng et al. 2008)

Alongside the therapeutic functionality, light (specifically laser technologg) fband
application in diagnostics. However, this direction of advancement has been a lot slower. While
techniques such as fluorescence microscopy were first employed for observation of biological objects
by Otto Heimstaedt and Heinrich Lehmann in thequkbetween 1911 1913(Jameson 2014}his
was not used as a diagnostics tool and did not employ laser technology. Not until thé'lcget@§

did photonics technology advance to the point where diagnosis of biological objacteasiy
available. Together with the development of lasers, techniques such as effective Raman spectroscopy
(Porto & Wood 1962and laser Doppler flowmetiibtern 1975pegan to improve, thereby formally
launching the field of photonics based diagnostics.

Thus, the rapid advancement of photonics based diagnostic techniques has only been a recent
phenomenon, witlthe field still displaying much room to grow. The body of work continues to
expand and remains a forefront of its field. As such, this thesis establishes itself on the currently
available technology and attempts to advance the area of photonics basedtitiagachniques.
However, before exploiting and perfecting available techniques for novel applications, it is important
to understand the basic principles they rely on. As such, this chapter will concentrate on the basics

of light interactions with varigs media, specifically organic tissues.

2.2 Light interaction with biological objects

In all cases of light and laser application for biomedical purposes, light has to interact with
organic tissue. It is this interaction, which elicits specific respofrees the organism being
irradiated. Before understanding how light produces various effects on organic tissues, we must
understand, at a basic level, how light interacts with simple isotropic systems. Only then can we

observe how such interactions varycomplex organic systems.

2.2.1 Fundamental properties of light interaction

Upon contact with any object, light undergoes a number of events. These are reflection,
scattering, refraction, absorption and transmission. The degree to which these ewvents occ
dependent on the medium with which the light is interacting. Figdres a simple diagram of these
light interactions with an isotropic mediufBoas et al. 2011; \M®inh 2010)
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Absorbed

N

Transmitted

Figure 2.1 Simple diagram of basic light interactions with an isotropic
medium. The reflected, scattered, absorbed and transmitted light paths are
presented. Additionally an unlabelled point of refractionemhthe light
enters a medium of a different refractive index, is displayed at the interface
between the two different mediums.

2.2.1.1 Reflection and refraction

To understand the events of reflection and refraction, it is important to understaaxtiyat
material through Wich light can travel has a refractive index. The refractive indesdscribes the

linear optical properties of homogeneous media. For such media it can be calculated by,

€ - (21)

Wherec is the speed of light in a vacuy@ 9981 m s') andv is the phase velocity of light in the
medium.

Considering this, as light propagates through a medium with refractive mdeard
encounters the boundary of a medium with a refractive index d@fwill be redirected. Depending
on the wavelength of the propagating light and the surface of the object it interacts with (smoothness,
curvature, etc.), the light will either be reflected off the object (FigLijeor will enter the object at
an altered angle (Figu&2)(Boas et al. 2011; \\®inh 2010)
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Figure2.2 Simple diagram depicting refraction of a beam of light as it crosses the interface betwee
mediuns of differing refractive index grand n). The angle of incidencelf) and angle of refractiord)
are also shown.

Snell 6s | aw, as proposed by Willebrord
astronomers lifetiméWolf & Krotzsch 1995; Rashed 199()an be used to calculate any of the

values as long as the others are known. Below is theiequsatving for the angle of refraction,

OB+ —OFE+ (2.2)

2.2.1.2 Absorption and transmission

Upon entering the object, energy in the form of light can be absorbed. Absorption happens
in a medium by atoms and molecules extracting the incoming light energy to be excited to a higher
energy level. Depending on the atom or molecule, the regions sfi¢lcrum where absorption tends
to occur are collectively known as absorption bands.

Finally, light interacting with an isotropic medium that has not been reflected or absorbed
will be transmitted through the object, once again being refracted uporgexitthmedium with a
different refractive index (Figur2 1) (Boas et al. 2011; \\®inh 2010)

2.2.2 Tissue complexity and layering

Considering the above basic aspects of light intemastiit is also important to realise that
organic tissue is far from an isotropic medium. While certain mediums such as glass will have few
interactions with light passage due to their composition, organic tissue exhibits a much more complex

structure. Ths huge complexity is derived from its heterogeneous state.
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Figure2.3 shows a simplified cross section of skin, comprised of cells forming tissues, which
in turn form layers. Within each layer presented in the image below, further layers exist of similar
types of cell. The epidermis, for example, is composed of predominantly keratinized, stratified
squamous epithelium cells, which form four unique sublayers (with a fifth layer being present in skin
on hands and feet). The dermis features two major laigérin elastin and collagen fibres. Finally,
the hypodermis layer (not present on the image below) connects the skin tissue with the underlying

muscle and bon@penStax 2016)

Epidermis

Dermis

Figure 2.3 Simplified cross section diagram of skin, featuring the epidermis and
dermis layers. The four main layers of epithelial cells are presented. Vascularisation
is also displayed, as is a sweat gldiwhage purchased from Shutterstock)

Furthermore, eacmdividual cell is further broken up into distinctive structures. Fi@Lde
depicts a generic eukaryotic cell and some of the core organelles. Even at this level, organic cells
feature a fluid cytoplasm, numerous sugars and amino acids as well as loasenatoméine bound
proteins and organellgRaven & Johnson 20023l of which can affect and alter light passage

through any organic medium.
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Figure2.4 Basic 2D schematic of a eukaryotic cell. The image features
various organelles floating in the cytoplasondepict complexity and

the numerous interfaces for light scattering and interaction, which are
present in even the simplest organic units.

This type of complexity leads to intricate layering throughout all organic tissues. For
example, the human bladder will be an important focus of the work described further in this thesis.
While it is a relatively simple structure, a fully developed bladddilisemprised of multiple layers.

These can, as presented in Figure B2 br oken wup into four di f fe
muscular, the sulnucous and the mucous. The serous coat is a partial outer layer and is localised
on the superior and latdrregions of the bladder. The muscular coat consists of three layers of
muscular fibres, an external and internal layer where the fibres are arranged longitudinally and a
middle layer between them with the fibres exhibiting a circular arrangement. Tneusalis layer

is areolar (loose connective tissue) attaching the muscular and mucous layers together. ,Tihe latter
turn, is a smooth layer covered by two forms of transitional epithelial cells over the entire inside of
the bladde(Gray 2012)
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Figure2.5 Basic schematic of the bladder cell layering.

Through the use of cell layering, tissues throughout the body are made up iféersst
and specialised functions. Despite the fact that the specialisation of these different tissues and even
organs allows for improved discrimination when observing their function, they still exhibit immense

complexity, even in what are relativelyrgle structures.

2.2.3: Complex light interactions

The reason why it is so crucial to understand the complex, layered and heterogeneous nature
of organic tissue when considering light interaction, is due to the increased number of parameters
that havdo be taken into account as compared to isotropic media. By their very nature, cells not only
provide uneven surfaces for the light to interact with upon initial contact, but also further provide
medawith numerous different refractive indices. The nundfervents described 2.1 are orders
of magnitude higher compared to those in an isotropic medium. Additionally, further interactions
become prevalent and need to be taken into account. This is particularly important when considering

living tissue, wheh relies on large amounts of fluid movement, for example in the form of blood.

2.2.3.1 Scattering

In complex structures like tissue, the variation between the multiple refractive indices
belonging to different subcellular components as well as the legtop acts as a major source of

scattering. While the wavelength of light passing through the tissue will have specific scattering
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characteristics, the sizes, component structures and morphology within the tissue cells are also
responsible for the level acatteringVo-Dinh 2010) Knowing these sizes and shapes, as well as

the values of the refractive indices involved, can technically make it possible to calculate the scattered
radiation.

Unlike with singular events howevet,is important to note that in complex tissues, the
independently sctdred light waves will interactot only with the incident wave, but also with each
other. Furthermore, it is vital to take note of compounding scattering elBotisen & Huffman
1998) The most commonly occurring type of scattering in biological objects is known as Rayleigh
scattering, where the light is scattered by atoms and molecules smaller than the wavelength of
radiation. This type of scattering is heavily dependenthensize of particles encountered by the
incident light. Furthermores scattered light intensity inversely depends on the fourth power of the
wavelength,shorter wavelengths towards the blue end of the visible spectrum undergo stronger
scattering than loger wavelengths. This is also the phenomenon behind the sky beir(y ¢alung
1982)

In relation to biological tissues, however, it is also ingat to take into account the
properties of Raman scattering and Raman shift. While Rayleigh scattering exhibits no energy
exchange between radiation and scattering particle and accounts for the majority of scattering events,
the scatterer molecule or atacan either absorb some radiation energy or lose a portion of energy
itself. These events are known as Stokes andSiokies Raman scattering respectively. Such
changes in energy result in alteration of the vibrational level of the scatterer partiale/anelength

shift in scattered radiation unique to that parti@lambrah & Sharma 2016)

2.2.3.2 Reflection: diffuse and specular

Much like with the scattering, the complexity of a medium will also alter the way light
reflects off the surfacef@aid medium. The case portrayed-igure 2.1 above is commonly known
as specular reflectance, which happens as a result of a smooth or polished surface. More specifically,
this involves the light undergoing reflection at an angle equal to that of gfkeafrincidence.

However, biological tissue is not a smooth medium. Thus, it is important to understand that
in addition to specular reflection, light can undergo diffuse refleaioa combination of both.
Diffuse reflection arises when an uneven stefeeflects oncoming light in a number of directions
at a variety of angle§luds 1988)

2.2.4 Autofluorescence

In addition to the fundamental light interactions described above, it is important to take into

account the events, which occur upon absorption of a photon. Certain molecules, upon absorption of
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energy in the form of a photon with a specific wavelengtimfitee U\tvisible and neainfrared (R)

spectral ranges, are converted from their ground state to their excited state. These molecules may
then release energy, again in the form of a proton. Such a system is not perfect however, resulting in
a loss of engy between absorption and emission. Thus, a photon of a different wavelength is
emitted. The collective term for such molecules is fluorophores. Fluorophores endogenously present
in organic systems, capable of emitting photons upon excitation by speaifelemgths of light
radiation without externally added molecules, are distinguished as autofluorophores. The
phenomenon relating to autofluorophore action is autofluores¢®tareci 2005)

The autofluorescence of proteins is generally exhibited as & oésocreased amounts of
various amino acids. Specifically, tryptophan, tyrosine and phenylalanine, thought the former usually
dominates the protein spectrum. Furthermore, it is vital to understand that the proximity of these
amino acids within the prate structure also has an effect on the autofluorescence excitation and
emission(Vo-Dinh 2010; Menter 2006; Monici 2005)

2.3 Diagnostic and clinical relevance

The bulk of this chapter has concentrated on the interactions between light and various
surfaces, specifically organic tissues. Such interactions are important to consider when developing
methodologies and technologiésr imaging, monitoring or diagnosis of tissue. For example,
observing the way scattering occurs can provide insights into the physical properties of organic
tissue. However, as with the case of autofluorescence, directly assessable biomarkers are also

avdlable to be used.

2.3.1 Autofluorophores

As already mentioned, specific organic molecules have autofluorescent properties. These
molecules can thus be employed as useful biomarkers when spectroscopically analysing organic
tissue. For example, epithelial and connective tissues may be distingoystieskbrving the collagen
and elastin fluorescence sign@%-Dinh 2010) At this time, the excitation and emission maxima
for these biomarkers have been characterised in detail and are well (Qmea & Bottiroli 2014;

Huang et al. 2006 able2.1 presents these values for some of the most diagnostically and clinically

relevant biomarérs.
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Table2.1 Excitation and emission wavelengths of various autofluorophores

Fluorophore Molecules/localisation Excitation (hm) | Emission (nm)
. . Tryptophan 280 350
Aromjélic(;samlno Tyrosine 275 300
Phenylalanine 260 280
Cytokeratins Intracellular fibrous protein 280-325 495525
Collagen Extracellular fibrous protein 330340 400410
Fatty acids Accumulated lipids 330350 470480
Reduced b-nicotinamide adenine 440
pyridine dinucleotide(NADH) (bound) 330380
nucleotides NADH (free) 462
Elastin Connective tissue 350420 420510
. flavin adenine dinucleotide
Flavins (FAD) 350370 480-540
Lipofuscin Miscellaneous (proteins, lipids 400500 480-700
Porphyrins Haemoglobin/myoglobin 500600 630,670
Melanin Melanocytes 785 820920

Fluorescence pmectroscopy is the technique used to measure the emission of this
autofluorescence. However, as organic tissue is complegamadinsmany various biomarkers, the
emission spectra do not come out exclusively depicting a specific biomarker. Bi§sieows
typical emission spectra for four different excitation wavelengthsecorded from pure compounds

in solution(Dunaev et al. 2015)
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Figure2.6 A typical example of emission spectra for four different excitation waveleliDinsaev et al.
2015) UV (365 nm), blue (450 nm), green (532 nm) and red (635 nm) excitations are prese
Biomarkers excited by the stated wavelengths of light are labelled next to their erpesasisn

As is evident from the figure, emissions of specific autofluorophores are not unique on the
spectrum. Wavelengths of light near to the specific excitation wavelength of an autofluorophore may
excite it to a lesser extent. This results in the alirsyeectra with multiple peaks, which display

presence of more than one type of biomarker.

2.3.2 Clinically and diagnostically relevant biomarkers

2.3.2.1 NADH and FAD, the redox ratio

Arguably, one of the most important processes for life and th&ced survival of organic
material is the ability to produce energy. In this respect, organisms and organic tissues produce
energy in the form of adenosine triphosphate (ATP) in a process called metabolism. The mainly
mitochondria bound reduced pyridinelaculeb-nicotinamide adenine dinucleotide (NADH, also
commonly known as NAD(P)H) and the oxidised flavoprotein molecule flavin adenine dinucleotide
(FAD), thus present themselves as excellent biomarkers for observing metabolic processes
(Mayevsky & Chance 2007; Raven & Johnson 2002; Ostrander et al. Zat®jermore, it should
be noted that the oxidised form of NADH and the reduced form of FAD do not have similar
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fluorescent properties. As the process of metabolism involved the net gain of NADH and net
consumption of FAD, the two biomarkers are functionally invéfsssterin et al. 2005)

In light of the above, a ratio can be used to provide a numeric value describing the
metabolism of an organic tiss. This is commonly referred to as the redox ratio (®R}rander et
al. 2010) which is displayed in equatidh3.

Y — (2.3)

The RR can generally indicate an increasengtabolic activity by a rising value and a

decrease by falling value.

2.3.2.2 Collagen and elastin, structural proteins

From a diagnostic perspective, structural properties of organic tissue are also of great
importance. In this respect, collagen and elastin are great biomarkers for observing potential
structural changes under different conditions due to their importandepmaavalence in the
extracellular matrixMonici 2005; Kulikov 2014) On its own, collagen fibres can account for as
much as 60 70 percent of the dry weight of dermal tissue. When considering that structuraigrotei
such as collagenvill fluctuate in quantity depending on apoptotic conditions of cells or formation
of new healthy or even dysplastic ce(Smirnova et al. 2012)the high importance of such
biomarkers is easy to see.

It should also benoted that these biomarkers are by no means exclusivestadiks
conductedby groups such as dgbeorgakoudi et al. (200resent evidence that taking various

biomarkers into account potentially provides more information from a diagnostic perspective.

2.3.2.3 Porphyrins and melanin

Biomarkers for structural proteins and metabpliacesses hold a critical role for observing
organic processes, which will be looked at in more detail further on in this thesis. This, however,
does not reduce the value of other potential biomarkers in diverse applications. For example,
autofluorescencef porphyrin has been used as a marker for determining effectivenesstahzmir
agents (Gurushankar et al. 2014y aiding in observation of their arghgiogenic effect.
Protoporphyrin autofluorescence has also been suggested as a potential marker for diabetes mellitus
(Fauaz et al. 2010)

A particdarly interesting biomarker to note is melanin. Melanin very effectively absorbs
light from the UV to the visible spectrum. This results in a suppression of fluorescence signals in
areas of high melanin content. As demonstratedbgaev et al. (2015)volunteers \wth high

melanin concentrations in their skin displayed largely suppressed autofluorescence signals on shorter
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wavelengths, leaving porphyrins as the only clearly evident biomarkers. Analysis by methods
utilising longer wavelengths can use melanin as aenaior melanomgSilveira et al. 2012)
however this particular case is a good dertration that some biomarkers will limit the potential

methodologies that are available for a diagnostic application.

2.4 Conclusion

The processes of light interaction with organic tissues are incredibly complex. Decades of
researchaveprovided acces® many technological advancements. The concepts briefly described
in this chapter lie as a foundation for a myriad of photonics techniques, which are currently employed
for the study of organic tissues.
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Chapter 3 Principles of biophotonics techniques

The previous chapter provided a brief summary on the multiple ways light interacts with
various objects, specifically organic tissues. This information is a crucial basis for the development
of technology capable of assessing the conditions of such objects. As such, many techniques have
been developed, which have been effectively utilised tleaolarge volumes of data on organic
materials in their varying states. The following chapter will concentrate on a number of these
techniques. Specifically, powerful techniques that are commonly utilised, the majority of which are
relevant to the work deribed further in this thesis, were selected for this chapter.

3.1 Laser Doppler flowmetry

Laser Doppler flowmetry (LDF), a technique first commercialised in the 1980s, is-a non
invasive method of diagnostics utilised predominantly for the measureiftessue blood perfusion
in organic tissues. The concept was initially proposed for measurement of haemodynaBtérs by
(1975) by monitoring the scattering of coherent light by static tissues as well as the moving blood
cells within a living organism.

To explain further, LDF is specifically based around the scattering of laser radiation (nea
IR) from moving particles within the organic system. The light will pass through tlaiortissue
i n accor dan c eptical properties until it is scattered dysa dynamic particle, which in
terms of organic systems will be an erythrocyteede moving particles will scatter the oncoming
photons and alter the frequency of said photons in a process more commonly referred to as the
Doppler shift. The size of this Doppler shift depends on the scattering angle, the velocity of the
dynamic partict, the wavelength of light within the tissue and the angle between the direction of
particle velocity and the scattering vector. It is important to note here, that in an organic system the
scattering events will not be unique. Due to the continuous swwéanythrocytes and the varying
orientation of microvessels within organic tissue, multiple shifts will occur in the same system even
if all the particles travel at an identical speed. Thus, the sum of individual Doppler shift events is
used to calculatene average velocity of particles (in this case blood) once the scattered light is
ultimately detected by a specialised probe. Ultimately, a continuous monitoring of tissue perfusion
is achievedLeahy et al. 1999; Rivat al. 2010; Rajan et al. 2009; Peng et al. 20BRjure3.1
presents a simplified schematic of an LDF device used to calculate the haemodynamics of an organic

system.
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Figure3.1 Simple schematic of arDF probe used to calculate the haemodynamics of an organic sys

LDF as a technique, due to the mechanism of its action, is thus able to provide a very
sensitive method for neimvasive blood perfusion measurement. The lack of dependence on
radioactve markers, as employed in other techniques, stands as one of the major benefits of LDF
(Rajan et al2009; Riva et al. 2010; Jafarzadeh 200@fortunately, while the technique is being
slowly adapted to clinical application, the majority of use is found in the academic and research
sectors. This is primarily due to a number of limitations. The aatithe sensitivity of the technique
also results in oversensitivity to minute motion and artefacting. This is compounded by a relatively
short penetration depth and the occurrence of multiple Doppler shifts, leading to increased noise
signal(Leahy et al. 1999; Rajan et al. 2008ylditionally, LDF uses arbitrary perfusion units rather
than an absolute measurem@rgitao Ferreira 2007)which clinical practice is often reluctant to
employ.

Despite the drawbacks, advances are constantly being made. LDF has been successfully
demonstrated in multiple settings such as cancer res@atmmer et al2013; Hemingway et al.

1992; Heier et al. 199 1plastic surgeryAlsbjorn et al. 1984)physiological measuresnts(Dunaev
etal.2014dand even in clinical perfusion m@remin or i ncg
et al. 2016) Further development within the research areas employing LDF, improvement of the
techniqueds metrol ogical support and combinat.|

Dunaev et al., 2015)ould eventually see LDF effectively employieda clinical setting.
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3.2 Spectroscopy

Spectroscopy, in itself, is not a description of a single technique. As a collective term,
spectroscopy studies the interactions of electromagnetic radiation and matter. At the simplest level,
spectroscopic tectiques rely on the use of electromagnetic radiation to elucidate property data about
an object of interest through the measurement of absorption, spontaneous emission and/or various
types of scattering. Due to the multiple potential optical propertieshvwdain be measured through
spectroscopic means, there is naturally a variety of spectroscopic techi@aqngsbell & Dwek
1984) Each such technique has benefits and drawbacks, ranging from variations in price and ease of
use, to specifics of application (for exampbr detection of cancer by a combination of fluorescence
and diffuse reflectance spectroscopy as describethbet al. (2008) This section will concentrate
on fluoresceoe spectroscopy due to the importance of the technique further in the thesis as well as
introduce the concept of Raman spectroscopy, a powerful technique that is commonly and effectively

employed for analysis of organic and biological objects.

3.2.1Fluorescence spectroscopy

Chapter 1 of this thesis has already mentioned the concept of fluorescent spectroscopy as a
tool for observing properties such as autofluorescence. The principle of the technique is relatively
simple. As mentioned in the firshapter, certain molecules have the capacity to absorb energy from
specific wavelengths of light. These molecules are labelled fluorophores and autofluorophores (when
they are endogenous). The absorption of energy is enough to excite fluorophores frgnotimeir
electronic state (@b to their singlet excitation state jSAfter excitation, the fluorescent molecule
undergoes relaxation back to the ground state by either radiatively emadiatively releasing
energy. A norradiative relaxation is characiged by energy dissipating as heat. Radiative relaxation
is the principle behind fluorescence. Following a-nadiative relaxation within the excited state,
the fluorescing molecule transitions down to the ground state with a release of a photon. The
wawelength of the released photon is alwaysgleifted in comparison to the excitation wavelength,
due to the loss of energy occurring as a result of therabiative transitiongRamanujam 2000a;
Gillenwater et al. 1998)Figure 3.2 presents this example of emission in a simplified Jablonski
diagram
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Figure3.2 Simple Jablonski diagram presenting an example of fluorescence as
a result of radiative relaxation. The figure presents UV wavelength excitation
followed by blue wavelength emission due to tbes of energy during
transition between vibrational levels (depicted as the dotted line). NADH
autofluorescence is a real world example of this series of events.

The above physical properties make it is possible to excite various autofluorophones with
a biological system to determine their relative quantities by employing a photodetector and capturing
the emitted, reghifted wavelengths of light. Chapt&rtable2.1 provides excitation and emission
details of the autofluorophores most relevantitidgical and clinical applications. It is, however,
important to also mention the potential of exogenous fluorophores. Particularly in the fields of
photodynamic therapy, fluorescent molecules (suchamibolevulinic acid and hypericin) can be
introduced to a biological system based on their preferential uptakepbygific, for example
neoplastidissuegWagnieres et al. 1998)

While fluorescence spectroscopy is a powerful technique capable of providingda goo
understanding of the relative levels of desired molecules, it does suffer certain limitations. The output
of fluorescence data is in forms of biomarker levels rather than quantitative concentrations of said
biomarker. Though an issue, this can be circem@d through the application of biologically relevant
ratios (such as the redox ratio mentioned in se@i®2.1 of this thesis). It is also important to note
that a certain level of distortion is to be expected in any output signal, due to the laesgtas of
scattering and absorption events emitted photons will encounter. This effect is compounded in living
tissues due to the presence of very strong absorbers such as haen{Sgidhakar et al. 1994)

Despite the various drawbacks, fluorescence spectroscopy has seen successful application i
disease diagnostics. Amongst many diseases, cervical and oesophageal di’spidsiaet al. 2012;

Georgakoudi et al. 2001atherosclerosis of the aorta and coronary art@vlascu et al. 2001; Calfon
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et al. 2A.0) and multiple varieties of canc@ritvinova et al. 2010; Shahzatla. 2010; Palmer et al.
2013; Ramanujam 2000have all been detected with the aid of the technique.

3.2.2 Raman spectroscopy

While fluorescence spectroscopy relies on the excitation of specific molecules within a
system, Raman spectroscopy is a technique that relies on the scattering properties of the objects of
interest. The technique employs a monochronigfitt source to iradiate the object of interest and
generate scattering events as a result of light interacting with vibrating molecules. As already
mentioned in sectioR.2.3, a small fraction of these scattering events, those undergoing Raman
scattering, will be inelastidViore specifically, this scattered radiation exhibits a changed frequency
compared to that of the incident radiation. The detection of these Raman shifted scattering events is
followed by the construction of Raman spe¢8aith & Dent 2005; Bumbrah & Sharma 2016)

Considering that this technique is capable of monitoring unique and specific molecules
within a system and the last few decades have seen a large technadgamatement, Raman
spectroscopy presents a high potential for clinical applications in diagnostics and monitoring. Though
much of the drive has been towards detecting cancer, successful implementation of Raman
spectroscopy has been achieved in many varimssie types, including the oesophagus, the

gastrointestinal tract, cervix, mouth and many others.

3.3 Tissue reflectance oximetry

Tissue reflectance oximetry (TRO) is a techniqgue most commonly employed to determine
the microhaemodynamics, oxygen sport characteristics and utilisation of an organic system in a
norrinvasive manner. The techniqgue employs a spectroscopic approach in order to calculate levels
of oxygenated and deoxygenated haemogldbgu(e3.3). These two haemoglobin fractions extibi
unique absorption properties, presenting a possibility of detection by green (530 nm) and red (635
nm) radiation wavelengths respectivéMurkin & Arango 2009; Scheeren et al. 2012; Ferrari &
Quaresima 20127 his technique ultimately determines the relative volumes of the abertoned
haemoglobin fractions, as well as the oxygen saturation of the microvasculature, within the
monitored tissue volume. These parameters provide an average level o¥ddmaity and a tissue

oxygen saturation valu®unaev et al. 2014)
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Figure 3.3 A rough graph presenting the absorption spectra of oxygenated
(HbO2) and deoxygenated (Hb) haemoglobin. Red and green arrows indicate
the specific absorptiorwavelengths employed to detect the differing
haemoglobin fractins.

It is important to note that similarly to the above techniques discussed in this chapter already,
TRO (and other similar methodologies) is also more commonly employed for the pugboses
research, though it is finding a place in clinical application. Specifically, this is due to the lack of
standardised instrumentation and methodological support for the given tecl{@gaessima et al.
2013) Degwite this, as already mentioned for application of LDF, TRO could find a lot of medical
application in conjunction with other diagnostic methodologies.

3.4 Optical coherence tomography

Optical coherence tomography (OCT) is a+morasive, reatime diggnostics technique that
was first introduced in the 1980but found initial application in optometry in the following decade.
The methodology is based on the use of backscattered reflection signals of near IR radiation within
the range of 700 1300 nm asa tool for constructing structural images. In this, the technique is
similar to ultrasound, though with the application of light instead of sGygk et al. 2007; Fercher
et al. 2010)This approach allows for the construction of two dimensional images at a high resolution
(around 10" 20 um), though at a relatively shallow depth (around 2 r(im) et al. 2013; Li et al.
2011)
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Though a relatively modern technique, OCT has found extensive application in both
biomedical research and clinical diagnostics fields. For exarfdeda et al. (2012)escribe the
use of OCT to observe microvascular functiornivivo rodent models of canceClinically, OCT
has been applied extensively in ophthalmology, cardiology and oncology of different organs
(including, but not limited to, the mouth and the bladder), as well as other condfimiset al.
2007; Schmidbauer et al. 2009; Wildemith et al. 2010)

3.5 Other techniques

The above techniques, while powerful, are not the limit of currently available approaches.
One of the major benefits they share is the potential foitirealdiagnostics or monitoring of living
tissues. However, biophotonics techniques exist, which provide a wealth of daténfratro
samples and tissue segments. Whitdie ofthese methodologies are employed in the following
work, they bear mention due tcethimpact on diagnostics and data acquisition abilities.

Flow cytometry is a technique that relies on passing a constant stream of individual cells
through a focussed laser beam, with the aim of detecting induced fluorescence and scattering. This
is commonly achieved by application of specific fluorophore labels using specific antibodies. While
the method requires samples to be taken and carefully prepared for diagnosis, it does provide a large
parameter of potential measurements per cell, including witeme and quantity of RNA/DNA,
amongst others. Thus, this technique has seen successful application for diagnosis of such conditions
as cance(Barlogie et al. 1983; Brownstein et al. 2007)

Unlike flow cytometry, onfocal laser scanning microscopy (CLSM) is an imaging based
technique capable of providing high quality, low blur, three dimensional images constructed from
fluorescence properties of tissues of interest (endogenously or with thesgidaiffc dyes). This
technique paved the way for accurately imaging sections of tissue as thickras Bllimately, the
technique provides a versatile approach where the quality and resolutiwoatput image can be
enhanced at the cost of acquaititime. This can result in high quality, detailed images. However,
the technique is relatively slow, especially when imaging more than one fluorescence channel. It also
suffers from a narrow field of view and limited penetration dépsmkman & Brown 205; Jerome
2011)

Multi-photon laser scanning microscopy (MLSM) is a technique that works on a similar
principle to CLSM, but relies specifically on IR excitation. This allows for an improved penetration
depth and reduced scattering within the sartipéeie, providing a better quality output imd¥e et
al. 1996; Yeh et al. 2002; Rafailov 201@ne of the major advantages of tléshtnique is the ability
to use notlinear scattering (such as second and third harmonic generation) in order to generate
contrastMoreaux et al. 2000; Sun et al. 200@)ovidng an avenue for imaging active processes in

various organism@Aviles-Espinosa et al. 2014; Débarre et al. 208t)ch like the CLSM however,
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MLSM also suffersfrom slow acquisition times. This ultimately prevents the technique from
recording data of samples such as biopsies, which may denature or lose their properties in the time it

takes to form a complete, highsolution image.

3.6 Conclusions

This chaptebriefly introduced a number of powerful and commonly employed techniques
currently available for analysis of organic tissues. While noa@lemployed within the work
outlined further in this thesis, the current applications in research and clinicatgras well as the
potential future applications of the techniques bears mention.

For the purposes of this thesis, the LDF, TRO and fluorescence spectroscopy techniques
have been explained in more detail as they will be the backbone in much of kheutliored in the
following chapters.
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Chapter 4 MLNDS and the LAKK series devices.

The last chapter summarised a number of currently available, photonics erahldédues
for the investigation and imaging of organic tissue parameters. The techniques described are known
for their effectiveness; however, all field various disadvantages, whether in the form of limited
information, poor penetration depths and slowusition times, amongst others. To this effect,
diagnostics technology has begun to stream towards the combination of photonics based, non
invasive technology into units capable of complimentary methodologies capable of enhancing the
quality of receiveddt a whi | e al so ¢ ompens a(Rogatkin etfalbb2011e a c h
Kalchenko et al. 20115uch devices have collectively been termed multifunctioeaktzased non
invasive diagnostics systems (MLNDS).

At the current moment, use of combined techniques is indeed presenting itself to be highly
effective. Many studies are employing multiple techniques to bolster the usefulness of output data
(Kalchenko et al. 2011; Patel et al. 20Kuznetsov et al. 2011jlowever, the integration of multiple
such techniques into single MLNDS6 is still r
As such, this chapter will concentrate on the LAKK seriesaimercially availabléevices created
by SPE ALAZMAO Ltd. These devices are a good
employed in a research and diagnostics capacity. Additjomiais series of devices seextensive

use within the work described in this thesis.

4.1 The LAKK-M

The work in this thesis relates to the use of many various forms of photonics based
techniques. However, one device is used in each investigation presented in the following chapters.
This device is the LAKKM, an MLNDS de wveAlZopAedd Lhyd , SHREI sfs i a.
core idea of MLNDS desigmrigure 4.1 shows the schematic structure of the LAKK
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Figure 4.1 Simplified block schematic of the LAK¥A. The device
incorporates LDF, TRO, pulse oximetry and fluorescence spectroscopy
methodologies. The key internal components are presented.

The reason for such extensive use of the LAKHies in the versatility othe methodologies
combined within the system. It provides access to LDF and TRO for measuring microcirculatory
parameters such as perfusion and tissue saturation, as well as pulse oximetry (PO) and fluorescence
spectroscopy (FS).

The device itself is qamble of employing LDF, TRO and pulse oximetry simultaneously.

The system is displayed Figure4.2 below.
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Figure4.2 The LAKK-M device. 17 Power switch2i Switch to set device into LDF and TRO
recordirg mode. 3 Calibration button for LDF mode.i4Switch to set device into fluorescence
spectroscopy mode. 5 Excitation wavelength selection buttonsi @ilter for fluorescence
excitation. 7i Calibration dock. 8 Main fibre with probe. 9 Pulse oximeer finger clamp10

i Externally housed filters.

A B
Figure4.3 A) External appearance of the main LAK¥ optical fibre probe housing the multiple radiation
sources and detector fibres. B) Schemdgpiction of the internal arrangement of the multiple radiation
sources and detection fibres. Sources and detectors are labelled.

The main fibre Figure4.21 8) houses a combination of multiple optical fibres, each employed to
either deliver or detect Iig. Figure4.3 displays a closap of the probe and the internal arrangement

of the fibres.
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