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SUMMARY 

Nanoparticulate delivery systems have been widely used in recent decades, available in a 
wide variety of structures, for targeted drug delivery. They provide controlled and prolonged 
release for drugs, peptides and biopharmaceuticals. Ceramic nanoparticles are one of the 
various nanocarriers, which have been employed in local targeted delivery, most commonly 
in the area of orthopaedic drug delivery to enhance treatment therapies. 

This thesis therefore focused on the development of aquasomes, a ceramic nanoparticulate 
carrier system, for the delivery of proteins, growth factors and antibiotics for its potential 
application in bone regeneration in fracture healing. The suitability of non-aqueous silicone 
elastomer gels (NASEGs) as a topical/transdermal delivery system for proteins as well as 
protein-loaded aquasomes was also investigated. 

Through process optimisation, a suitable lyophilisation method was developed and used for 
the preparation of bioactive aquasome formulations of growth factors, bone morphogenetic 
protein (BMP-2), vascular endothelial growth factor (VEGF-121), and antibiotic, gentamicin. 

Physical characterisation of aquasomes using zeta potential and optimisation of preliminary 
aquasome formulations were optimised by utilising smaller nanocore sizes. In addition, 
scanning electron microscopy (SEM), confocal microscopy analysis and entrapment 
efficiency studies were performed to ascertain the drug loading efficiency of the different 
aquasome formulations. BMP-2 loading aquasomes exhibited an entrapment efficiency of 
98.9% Protein loading on aquasomes yielded a higher negative zeta potential in comparison 
to blank nanocores. Confocal microscopy images elucidated the behaviour of nanocore 
particles showing agglomeration of nanocores and the presence of fluorescent drug 
adsorbed onto nanocores.  

The bioactivity of the aquasome formulations were analysed via in vitro cell culture model 

assays and microbiological assays. BMP-2-loaded aquasomes were investigated for 
enhanced osteogenic proliferation and differentiation effects on osteoblast-like cells, MG63 
cells. The enhanced osteogenic effect of HUVECs in co-culture with these cells was also 
examined. In addition, the committed differentiation of ATMSCs into osteoblasts induced by 
their exposure to BMP-2 -loaded aquasomes was also investigated. Results exhibited the 
enhanced osteogenic differentiation effect, analysed by alkaline phosphatase (ALP) 
secretion (a major biochemical marker of osteoblastic differentiation) from MG63 cells was 
dependent on the protein loading onto the aquasome formulation. However, differentiation of 
ATMSCs cultured in osteogenic medium was significantly higher than ATMSCs exposed to 
BMP-2 or VEGF-121 treatments. 

Gentamicin-loaded aquasomes were investigated for their antimicrobial activity against 
Staphylococcus aureus, a major pathogen popularly implicated in cases of osteomyelitis. 

Results showed that gentamicin released from aquasomes exhibited excellent bactericidal 
activity against bacterial cultures without any reproduction of bacteria in 24 hours. 
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In conclusion, the aquasome formulations were able to offer controlled release of bioactive 
antimicrobials and growth factors over a prolonged duration. The amount of bio-actives 
released was dependent on the loading of the bio-actives in the fabrication process of 

aquasome formulations. However, minute (ng/µg) amounts of adsorbed growth factor/drug 

were observed in comparison to the loading (high ng/mg) within the duration of study. 

It can be inferred these aquasomes can be employed in the sustained local and targeted 
delivery of antimicrobials and growth factors in orthopaedic treatments for enhanced fracture 
healing. However, the loading of bio-actives onto aquasome formulations may need to be 
optimised to increase the amount of bio-actives released to elicit more pronounced 
pharmacological effects. 

Keywords: Ceramic nanoparticles, Aquasomes, BMP-2, VEGF 121, Gentamicin, Fracture 

healing. 
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CHAPTER 1 
INTRODUCTION 
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The control, manipulation and manufacture of structures and devices in the nanometre size 

range are referred to as nanotechnology. Such devices can change or mimic biological 

processes due to their small size, modified surfaces and multi-functionality (Singh and Lillard, 

2009).  

The prefix nano is derived from the Greek word “dwarf”. One nanometre (nm) is equal to 

one-billionth of a meter, that is, 10−9 m (Suri, Fenniri and Singh, 2007). The term 

“nanotechnology” was first used in 1974, when Norio Taniguchi, a scientist at the University 

of Tokyo, Japan, referred to materials in nanometres, in a scientific paper (Zhang and 

Webster, 2009). The size range that holds so much interest is typically from 100 nm down to 

the atomic level approximately 0.2 nm, because in this range materials can have different 

and enhanced properties compared with the same material at a larger size (Sahoo And 

Labhasetwar, 2003).  

Nanotechnology drug delivery is a growing field experiencing an increasing acceptance in 

health care applications. Nanotechnology drug delivery is widely used in the health care 

industry in applications such as cancer treatments, neurology, cardiovascular disorders, and 

anti-infectives, amongst others. One important and active application area of nanotechnology 

drug delivery systems is to transport drugs to the final target site of therapeutic intervention 

within the body. The nanotechnology drug delivery market is witnessing rapid growth due to 

increase in research and development activities in nanotechnology to develop novel nano-

medicine (BCC Research, 2016). 

The global nanotechnology drug delivery market has been divided into different sectors 

based on technology and application. Based on technology, it has been segmented into 

liposomes, micelles, nanocrystals, nanoparticles, nanotubes, and others, (Figure 1.1). The 

nanoparticles segment dominated the global nanotechnology drug delivery market in 2014. 

This segment controlled the market as key nanoparticles such as inorganic nanoparticles, 

dendrimers, liposomes, and fullerenes are used in pharmaceutical drug delivery 

(Transparency Market Research, 2016). 

Based on application, the market has been segmented into neurology, oncology, 

cardiovascular/physiology, anti-inflammatory/immunology, anti-infective, and others. Anti-

infectives were the largest application segment of the nanotechnology drug delivery market 

due to rising prevalence of community-based and hospital-based infections. 
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Figure 1.1 Global Nanotechnology drug delivery market by technology in 2014 (in %) 

(Adapted from: Transparency Market Research, 2016) 

1.1 NANOPARTICULATE DELIVERY SYSTEMS 

Nanoparticles used in biomedical research and drug delivery include inorganic nanoparticles, 

polymeric nanoparticles, solid lipid nanoparticles, liposomes, nanocrystal, nanotube, 

dendrimers and others (Faraji and Wipf, 2009). 

The global market for nanoparticles in the life sciences was estimated at over $29.6 billion for 

2014. This market is forecast to grow to more than $79.8 billion by 2019, to register a healthy 

compound annual growth rate (CAGR) of 22% (Figure 1.2), with its biggest increase from the 

area of drug delivery systems (BCC Research, 2014). 

Nanocarriers have been predicted to account for 40% of a $136 billion nanotechnology-

enabled drug delivery market by 2021, with a 60/40 split between nanocrystals and 

nanocarriers respectively, although developing new targeted delivery mechanisms may allow 

more value to be created for companies and entrepreneurs. 
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Figure 1.2 Global market for nanoparticles in Biotechnology and Pharmaceuticals. 

The graph also illustrates the compound annual growth rate (22%) (Reference: BCC 

Research (BIO113B), August 2014). 

There has been increased interest in the development of biodegradable polymeric 

nanoparticles for drug delivery which can be attributed to their application in controlling the 

release of drugs, stabilizing labile molecules such as DNA, proteins and peptides from 

degradation and targeted drug delivery (Yang and Webster, 2009). 

Nanoparticles are solid colloidal particles comprising macromolecular substances that vary in 

diameter from 1 to 100nm (IUPAC definition of Nano measurement) (Singh and Lillard, 

2009). The drug or protein of interest is usually dissolved, adsorbed, entrapped, attached 

and/or encapsulated into or onto a nanomatrix. The nanoparticles are constructed and 

manipulated to possess and exhibit distinct properties and release characteristics best suited 

for the delivery of the drug or protein Lillard, 2009). A comparison of nanoparticulate carrier 

systems used in drug delivery is highlighted in Table 1.1 with schematic diagrams of these 

nanoparticles illustrated in Figure 1.3.  

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

2013 2014 2019

$ 
M

ill
io

n
s 

Compound annual 
growth rate 
(CAGR) 22% 



20 

Table 1.1 Nanoparticulate carrier systems 

(Utreja and Jain, 2001; Bianco, Kostarelos and Prato, 2005; Gillies and Fretchet, 2005; Xu et al, 2006; Faraji and Wipf, 2009; Malam et al, 2009; Umashankar et al, 2010; Huang 

et al, 2011; Jain et al, 2012; Akbarzadeh et al, 2013) 

Synthesis methods Polymer(s) used Drug loading technology Release mechanisms 

Polymer 
nanoparticles 

Solvent evaporation, nanoprecipitation, 
salting out, dialysis 

PLGA, PLA, Chitosan, Gelatin, 
PMMA, etc. 

Incorporation into polymer matrix Polymer degradation 

Solid lipid 
nanoparticles 

High shear homogenisation, 
ultrasound, high pressure 
homogenisation, solvent 

emulsification/evaporation 

Triglycerides, partial glycerides, 
fatty acids, steroids, waxes 

Solid lipid matrix: drug enriched core 
or drug-enriched shell 

Lipid matrix degradation, diffusion by 
use of surfactants, 

Micelles Spontaneous self-assembly in water 

Amphiphilic co-polymers or 
phospholipids, Pluronic®, 
Polyesters, Poly (L-amino 

acids), P.E.G. 

Core can accommodate hydrophobic 
drugs and its shell hydrophilic drugs 

pH-responsive release, thermo-
responsive release, biodegradability of 

polymer, drug-dependent release 

Liposomes 

Mechanical dispersion methods: 
Sonication, freeze-thawed liposomes, 

lipid film hydration, micro-
emulsification 

Cholesterol and natural non-
toxic phospho-lipids 

Passively during or actively after 
liposome formation; hydrophilic 

drugs can be loaded in hydrophilic 
core and hydrophobic dugs in lipid 

bilayers 

Enzymatic degradation and/or 
phagocytic attack, imitated by use of 

surfactants, 
pH-mediated release 

Inorganic 
nanoparticles 

Surface modification  or 
functionalisation 

Calcium phosphate, gold, 
carbon materials, silicon oxide, 

iron oxide, layered double 
hydroxides (LDHs) 

Adsorption to functionalised/modified 
nanoparticle surface 

Biological processes (endosomal 
release, phagocytosis, dissolution, 

desorption. 

Dendrimers 
Divergent or convergent synthesis 

methods 
Polyamidoamine (PAMAM), Poly 

(propyleneimine), etc. 

Chemical synthesis of polymer-drug 
or polymer-protein conjugates with 
dendrimer backbone forming highly 

branched macromolecules 

pH-mediated response, enzyme-
mediated response, induction of 
disulphide exchange reactions 

Nanotubes 

Chemically “rolling up” a graphene 
sheet to a form a single walled 

nanotubes (SWNT) or many layers to 
form concentric cylinders to form multi-

walled nanotubes (MWNT) 

Graphene 

Functionalising external walls to 
increase water solubility and/or 

linking with different active molecules 
(peptides, proteins, nucleic acids, etc 

(Encapsulation, Internalisation)  

Targeting via enhanced permeability 
and retention(EPR); pH- or 

temperature controlled release 

Aquasomes 
Lyophilisation and adsorption onto 

coated ceramic nanocores 

Ceramic cores made of tin 
oxide, nano-crystalline calcium 
phosphates like brushite, nano-

crystalline diamond. 

Formation of inorganic cores, coating 
of cores with polyhydroxy oligomer 
and loading of the drug/protein of 

choice 

Diffusion and desorption from 
oligomeric coating 
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Figure 1.3   Types of nanoparticles used in drug delivery (Adapted from Faraji and 

Wipf, 2009)     

1.2 AQUASOMES 

Aquasomes are nanoparticulate carrier systems, which constitute a most recent development 

in the areas of nanotechnology and genetic research for the targeted delivery of bioactive 

molecules such as peptides proteins, antigens, hormones, and genes to specific sites 

(Umashankar et al, 2010; Jain et al, 2012).  

They are three-layered self-assembled structures, comprising a solid phase nanocrystalline 

core coated with an oligomeric film, which a biochemically active molecule (drug or 

biopharmaceutical) is adsorbed onto (Figure 1.4) (Girota and Bajaj, 2012). Its constituent 

carbohydrate film prevents destructive denaturing interaction between drug and solid 

carriers. They are also called as water bodies as their water like properties provides a 

platform for preserving the conformational integrity and biochemical stability of bio-actives 

(Girota and Bajaj, 2012). They maintain molecular confirmation and optimum 

pharmacological activity. The molecular conformation of proteins and drugs can be 

preserved by incorporating such biological molecules on aquasomes with natural stabilizers 

(natural sugar coating), which act as dehydroprotectants (Mesariya et al, 2011; Jain et al, 

2012).  
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Figure 1.4  Schematic cross-section of the aquasome structure 

1.2.1  Properties of aquasomes 

The properties of aquasomes enable them to offer various added advantages in 

drug/protein/antigen delivery (Jain, Jain and Mahajan, 2014). 

Aquasomes are large with active surfaces, which can be efficiently loaded with substantial 

amounts of drugs and biopharmaceuticals via ionic, entropic, non-covalent bonds, and van 

der waals forces. Due to their size and structural stability, aquasomes avoid clearance or 

degradation by the reticuloendothelial (RES) system (Jain et al, 2012). 

As colloidal size particles, they are likely to be more concentrated in the liver and muscles 

and can be used for targeted drug delivery to these organs. The pharmacological or 

biological activity of proteins such as insulin and other antigens can be maintained without 

any difficulty in receptor recognition when adsorbed onto aquasome formulations because 

they do not experience any added surface modification (Mesariya et al, 2011). They preserve 

the conformational integrity and biochemical stability of bioactive molecules (Kossovsky et al, 

1996) 

The mechanism of action of aquasomes is controlled by their surface chemistry. They deliver 

adsorbed contents through a combination of specific targeting, molecular shielding and slow 

and sustained release processes (Mesariya et al, 2011; Jain et al, 2012). 
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1.2.2  Method of preparation and structure of aquasomes 

The preparation of aquasomes is a three-step process which constitutes of the following 

processes: 

Formation of an inorganic core: the fabrication of the inorganic core is dependent on the 

material selected. The common used materials are tin oxide core ceramic, nano-crystalline 

brushite (calcium phosphate dehydrate, self-assembled) and nano-crystalline diamond 

particles; 

Coating of the core:  Secondly, the inorganic core (usually ceramic) is coated with a 

carbohydrate (polyhydroxyl oligomer). The coating process is carried out by addition of 

carbohydrate into an aqueous dispersion of the cores under sonication. These are then 

subjected to lyophilisation to promote an irreversible adsorption of carbohydrate onto the 

ceramic surface. Here, the secondary drying process in freeze drying breaks the ionically 

bound water molecules causing the adsorption of the carbohydrate to the ceramic core. The 

unadsorbed carbohydrate was further removed by centrifugation. 

Loading of the drug: the drug of choice is loaded to the coated particle by adsorption. A 

drug solution of known concentration is prepared in a suitable pH buffer and coated particles 

are dispersed into it. The dispersion is then lyophilized to create the aquasomes 

(Umashankar et al, 2010; Jain et al, 2012). 

1.2.3 Characterisation of aquasomes 

Aquasomes are characterised by their individual components: ceramic nanocore, 

polyhydroxyl coating and drug/protein adsorbed onto the ceramic nanocore. Different 

analytical methods are employed to detect the presence of and/or quantify the amount of the 

constituents (coating, drug/protein) per aquasome sample weighed. These analytical 

methods are highlighted in table 1.2. 
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    Table 1.2     Characterisation of aquasomes    

(Kim and Kim, 2002;, Rojas-Oviedo et al, 2007; Goyal et al, 2008; Pandey et al, 2011; Vengala et al, 2013; 

Nanjwade et al, 2013)

Ceramic core Coated core 
Drug/protein-loaded 

aquasomes 

Size distribution analysis 

Scanning electron microscopy 

(SEM), 

Transmission electron 

microscopy (TEM)

Concanavalin A-induced 

aggregation assay 

Determines the amount of sugar 

coated over the core

Entrapment efficiency test 

Analysing supernatant 

separated by high-speed 

centrifugation for unadsorbed 

drug/protein

Structural analysis 

FT-IR spectroscopy 

(potassium bromide sample 

disk method)

Anthrone assay 

Determines the residual sugar 

remaining after coating

In vitro release studies 

Using the partial replacement 

method at specified time 

intervals

X-ray diffraction

Analysis of Crystalline or 

amorphous behaviour

DSC (differential scanning 

calorimetry) 

Examine the effect of 

carbohydrate coating on 

ceramic core peaks

SDS-PAGE  Analysing 

the stability of proteins during 

the formulation of the 

aquasomes
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1.3 NANOPARTICULATE CARRIERS FOR THE TREATMENT OF FRACTURES

1.3.1 Anatomy of the bone 

Bone at the tissue level undergoes continuous formation and resorption (Rodan, 1992; 

Hanley, 2012). Bone resorption refers to the process by which old bone tissue is broken 

down and minerals are released, resulting in a transfer of calcium from bone tissue to the 

blood. Resorption and formation is normally in balance (Hanley, 2012) and a negative 

balance between bone resorption and formation, frequently due to excessive resorption, is 

the basis of many bone diseases (Rodan, 1992). 

1.3.1.1 Intracellular composition 

Bone comprises four cellular components: osteoblasts, osteocytes, bone lining cells and 

osteoclasts (Figure 1.5) (Buckwalter et al, 1995) 

1.3.1.1.1 Osteoblasts 

Osteoblasts are derived from undifferentiated mesenchymal cells located in the marrow bone 

canals, endosteum and periosteum. Their differentiation and proliferation into osteoblasts 

occurs during intramembranous and endochondrial bone formation (replacement of cartilage 

by bone) (Downey and Siegel, 2006). 

The major function of osteoblasts is the manufacture of organic matrix of bone (comprising 

proteins and polysaccharides) (Downey and Siegel, 2006) 

Osteoblasts ultimately follow one of the following pathways: 

 They may remain as active osteoblasts

 They may become surrounded by bone matrix and become osteocytes

 They become relatively inactive and form bone lining cells

1.3.1.1.2 Bone lining cells 

Bone lining cells are thin and elongated cells that cover most bone surfaces in a major 

skeleton and are metabolically active. Evidence shows that in the presence of parathyroid 

hormone, these cells secrete enzymes that remove the osteoid covering of the bone matrix in 

preparing for bone resorption (Buckwalter et al, 1995). Evidence also indicates that bone 

lining cells regulate crystal growth in bone or function as a barrier between extracellular fluid 

and bone tissue (Downey and Siegel, 2006). 
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Figure 1.5. Images of bone cells 

(a) Image of bone matrix deposition by an osteoblast;

(b) Bone resorption by an osteoclast;

(c) Osteocyte differentiation of osteoblastic cells grown on collagen substrates, and

(d) Osteocytes of mousse bone origin

(Reproduced with permission from: Guocheng Wang and Zufu Lu, University of Sydney; Wellcome

images)

1.3.1.1.3 Osteocytes 

Osteocytes make up to 90% of bone cells in a mature skeleton. Immature osteocytes 

resemble osteoblasts but mature as more bone matrix is laid down and moved further into 

bone tissue (their size also becomes relatively smaller as they lose more cytoplasm) (Ng et 

al, 1995). 

(a) (b) 

(c) (d) 
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They are located within lacunae (spaces) and have long cytoplasmic processes that project 

through canaliculi, (tunnel-like structures that extend radially throughout skeleton allowing for 

diffusion of nutrients in the mineralized bone matrix), and contact processes of adjacent cells. 

Such connecting processes are of paramount importance in cellular communication for the 

following reasons (Downey and Siegel, 2006): 

 The important cellular network is thought to allow cell mediated exchanges of

minerals between the fluids in the bone and the vascular supply. 

 The cellular network is thought to sense mechanical deformation within bone

that leads to resorption and thus formation of bone (Buckwalter et al, 1995). 

1.3.1.1.3 Osteoclasts 

Osteoclasts are the largest in size of all the bone cells. They are multinucleated cells 

responsible for bone resorption in both normal and pathological conditions (such as 

osteoporosis) (Downey and Siegel, 2006). 

They have high mobility, moving along the surface of the bone from various sites. Their large 

surface area potentially allows extensive exchange between the intracellular and 

extracellular environment of the bone (Ng et al, 1997; Downey and Siegel, 2006). 

1.3.1.2 Extracellular composition 

The extracellular composition of bone makes up approximately 90% of its volume in 

comparison to the remaining 10% comprising cells and blood vessels. The extracellular 

matrix is composed of both organic and inorganic components. 

The organic component consists predominantly of collagen (synthesized and secreted by 

osteoblasts and aggregated extracellularly). Type I collagen is dominant while types V, VI, 

VIII and XII is present in lesser amounts. Collagen fibrils are consistently assembled in an 

overlapping manner, retaining spaces between adjacent fibrils. Many intermolecular 

crosslinks are formed, producing a stable porous structure (Ng et al, 1997; Buckwalter et al, 

1995; Downey and Siegel, 2006). 

The inorganic component of bone is essential in providing the physiological functions related 

to storage of ions as well as a major portion of its tensile strength. It has been predicted that 

the minerals salts in bone comprises 99% calcium, 85% phosphorus and 40- 60% sodium 

and magnesium found in the human body. Vital physiological functions related to nerve 
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conduction and muscle contraction depend on the bone’s inorganic composition appropriate 

extracellular homeostasis (Downey and Siegel, 2006). 

1.3.2 Bone structure 

The structure of bone is largely divided into cortical (compact) and cancellous (spongy) 

bone, with some structural similarities and differences. Cortical bone is dense and solid and 

surrounds the marrow space while trabecular bone is composed of a honeycomb- like bone 

interspersed in the bone marrow compartment (Clarke, 2008) (Table 1.3). Within these 

classifications, cortical and cancellous bone can be further classified into woven and lamellar 

bone. 

Woven (primary) bone is formed where bone is quickly laid down such as in embryonic 

bone, fracture healing and pathological state such in hyperthyroidism. This is replaced with 

lamellar (secondary) bone which is created by remodelling of woven bone (Buckwalter et al, 

1995, See Figure 1.6). The similarities and differences between woven and lamellar bone are 

highlighted in Table 1.3. 
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Figure 1.6 Structure of the bone. 

a) External structure; b) Internal structure (Reference: Merriam-Webster Inc., 2013)
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Table 1.3   Similarities and differences between cortical and cancellous bone and 

differences between woven bone and lamellar bone 

(Ng et al, 1997; Downey and Siegel, 2006) 

Similarities 

 Cortical and cancellous are made up of the same composition.

 They are both made up of the same matrix structure

Differences 
Cortical (compact) bone Cancellous (spongy) bone 

Cortical bone comprises the outer casing of long bones 

and vertebrae. 

It accounts for 80% of mature skeleton and forms the 

shaft of long bones 

Cancellous bone is located in the interior of 

bone structure. 

Short bones (e.g. carpals), vertebrae, skull and 

pelvic bones have a greater percentage of 

cancellous bone 

Cortical bone has a low surface-to-volume ratio Cancellous bone possesses trabeculae which 

are characterized by a relatively high surface-

to-volume ratio. 

The shaft of long bones allows cortical bone to possess 

a higher resistance to tensional or bending forces. 

 Its rigidity and density justify its shape and weight-

bearing properties. 

Cancellous bone provides greater resilience 

and shock absorption. 

Cortical bone has a low metabolic rate. This is attributed 

partly to its reduced exposure to marrow cells and 

vascular supply as it is engrained within the bone 

matrix. 

Cancellous bone has a relatively high bone 

metabolic rate and seems to respond rapidly to 

changes in mechanical loading and unloading. 

This is attributed partly to the better exposure of 

cancellous bone cells to the adjacent bone 

marrow cells and vascular supply. 

Woven bone  Lamellar bone 

Structure ● Woven bone has a scattered, irregular

appearance. 

● When histologically viewed, osteocytes

in woven bone are more randomly 

scattered. 

● Collagen fibres are interlaced and

randomly distributed by hydroxyapatite 

crystals deposited in a disorganized 

manner. 

● Lamellar bone has a very orderly

arrangement. 

● The osteocytes in lamellar bone are

uniform in size and shape and are placed 

in line with other bone cells. 

● Hydroxyapatite crystals are deposited

parallel to collagen fibres 

● Lamellar bone is composed of collagen

fibres arranged in concentric sheets 

around blood vessels to form harvesian 

systems. 
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1.3.3 The process of bone remodelling 

Bone remodelling is the constant process of ensuring the mechanical integrity of the skeleton 

is maintained. Bone is continually remodelled by the interaction by osteoclasts (which resorb 

existing bone) and osteoblasts (which form new bone, filling up the bone matrix resorbed by 

osteoclasts) (Hadjidakis and Androulakis 2006). Osteoclasts are anchored to the surface of 

the bone and create a micro acidic environment, which dissolves the bone’s mineral content 

and subsequently releases enzymes, which remove the remaining collagenous matrix (Ng et 

al, 1997; Downey and Siegel, 2006; Amgen, 2012). After resorption, the osteoblasts move to 

the resorption space created by the osteoclasts, secrete, and deposit organic matter referred 

to as osteoid (which consists mainly of collagen). This mineral content of collagen (calcium 

and phosphate) crystallizes to form new bone matrix (Ng et al, 1997). Some osteoblasts 

become trapped in their secreted matrix and thus become osteocytes. Osteocytes form a 

network of interconnected cells occupying lacunae (pits) within the mineralised bone tissue. 

Other osteoblasts will either line the surface of the bone structure or undergo apoptosis. This 

process is referred to as bone remodelling. 

Osteoblasts can form new bone matrix independently of concurrent osteoclast activity. This 

increase in bone mass maintains bone strength and promotes bone growth. (Hadjidakis and 

Androulakis 2006; Amgen, 2012). However, a variety of factors decrease osteoblast activity 

and promote osteoclast activity resulting in reduced bone mass. This is referred to as 

negative bone balance. Reduced bone density can be induced by drugs, disease state, 

hormones, growth factors or age. 

1.3.4 Molecular signalling in response to mechanical stimuli (bone resorption) 

Osteocytes direct bone remodelling in response to mechanical strain and other stimuli. This 

process is controlled by a system involving three key proteins: RANK (receptor- activator of 

nuclear factor kappa beta), its ligand RANKL (receptor-activator of nuclear factor kappa beta 

ligand) and a decoy receptor OPG (osteoprotegerin) (Wright et al, 2009). Orthotropic 

hormones to either increase or reduce the OPG/RANKL ratio (Figure 1.7) regulate the 

system. 

Osteocytes and osteoblasts start the process of bone resorption by releasing RANKL, which 

bind to RANK on osteoclasts and its precursors, activating them. Osteoblasts also produce 

OPG, which suppresses bone turnover. OPG binds to RANKL, hindering its interaction with 
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RANK. Thus, the activation of bone remodelling is dependent on the balance between OPG 

and RANKL (Figure 1.8) (Hanley et al, 2012). 

RANK is a member of the tumour necrosis factor receptor (TNFR) family. The expression of 

RANK is observed on a variety of cells including dendritic cells, osteoclast precursors and 

mature osteoclasts. RANK activation by the binding of RANKL initiates an internal signalling 

cascade via cytoplasmic adaptor proteins called TRAFs. RANK has three binding sites by 

TRAF 2, 5 and 6, with different binding affinities for each of them, which transmit the RANK 

stimulation signal and activate downstream pathways. This signalling cascade initiates the 

expression of genes leading to the differentiation of monocytes into osteoclasts and also the 

activation of mature osteoclasts (Wright et al, 2009). 

RANKL is a tumour necrosis factor (TNF) - related cytokine expressed by different bone cells 

including osteoblasts and their immature precursors, T-lymphocytes, B-lymphocytes and 

megakaryocytes (Wright et al, 2009). The expression of RANKL is incited by various 

cytokines (IL-1, TNFα and IL-11) and calcitrophic hormones including prostaglandin E2 and 

1,25-dihydroxyvitamin D3 (1,25D3). An amplified production of RANKL by osteoblastic cells 

leads to osteoclast differentiation and activation, resulting in bone resorption (Wright et al, 

2009). 

RANKL with the synergistic involvement of OPG, the decoy receptor, is understood to be the 

main mechanism in the control of bone turnover. 
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Figure 1.7 Schematic representation of RANK-RANKL relationship. This shows 

RANK-RANKL binding signaling pathways, indicating the inhibition of RANK-RANKL binding 

by OPG. (Adapted from Wright et al, 2009) 

Figure 1.8  The interaction between RANK, RANKL and OPG 

(Adapted from Hanley et al, 2012) 
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1.3.5 Growth factors in bone development and healing 

The process of bone development is tightly regulated by both local and systemic factors 

(Downey and Siegel, 2006; Mundy et al, 2001). Hormones such as parathyroid and estrogen, 

Vitamin D3 and calcitonin are systemic factors while local factors are cytokines, growth 

factors and prostaglandins (Mundy et al, 2001). This process involves a complex interaction 

of bone cells and cytokines working simultaneously with growth factors (Devescovi et al, 

2008). 

Growth factors are polypeptides that are locally acting modulators of cellular activities. Their 

effects may be autocrine, paracrine or endocrine. Their mechanism of action entails their 

binding to target cell receptors which induce an intracellular signal cascade that extends to 

the nucleus and determines the biological response. A single growth factor can also affect 

multiple cell types and elicit diverse functions (Lieberman et al, 2002; Devescovi et al, 2008). 

the growth factors implicated in bone development include: bone morphogenetic proteins 

(BMPs), transforming growth factor- β (TGF-β), platelet-derived growth factor (PDGF), 

vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and insulin-like 

growth factors (IGFs) (Linkhart, Mohan and Baylink, 1996; Ng et al, 1997; Mundy et al, 2001; 

Lieberman et al, 2002; Xiao et al, 2007; Devescovi et al, 2008). Their various osteogenic 

functions are highlighted in Table 1.4. 
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 Table 1.4 Growth factors and their osteogenic functions 

(Linkhart, Mohan and Baylink, 1996; Mundy et al, 2001; Devescovi et al, 2008) 

Growth Factor Cell Source Biologic effect Action on bone 

BMPs Osteoprogenitor cells, 

osteoblasts, endothelial 

cells (BMP-2). 

Chondro-osteogenesis 

(cartilage and bone formation), 

osteoinduction (BMP-2), ectopic 

bone formation. 

Migration of osteo-

progenitors, induction of 

bone cell proliferation, 

differentiation and matrix 

synthesis. 

TGF-β Platelet, osteoblast, 

BMSC, chondrocyte, 

endothelial cell, fibroblast, 

macrophage 

Immunosuppression, 

angiogenesis, stimulation of cell 

growth, differentiation and 

extracellular matrix synthesis. 

Recruitment of osteoblast 

and osteoclast pre-cursors, 

proliferation of un-

differentiated mesenchymal 

osteoblast and chondrocyte 

differentiation, production of 

bone matrix. 

PDGF Platelet, osteoblast, 

BMSC, chondrocyte, 

endothelial cell, fibroblast, 

macrophage 

Proliferation of connective 

tissue cells, macrophage and 

smooth muscle cell chemotaxis, 

angiogenesis 

Migration, proliferation and 

differentiation of 

osteoprogenitors. 

VEGF Platelet, osteoblast Angiogenesis Conversion of cartilage into 

bone, osteoblast 

differentiation and 

differentiation. 

FGF Macrophage, monocyte, 

BMSC, chondrocyte, 

osteoblast, endothelial 

cells. 

Angiogenesis, proliferation of 

fibroblast and smooth muscle 

cells of vessels 

Chondrocyte maturation 

(FGF-1), Differentiation and 

proliferation of osteoblasts, 

induction of apoptosis of 

mature osteocytes, 

inhibition of apoptosis of 

immature osteoblasts. 

IGF Osteoblasts, chondrocyte, 

hepatocyte, endothelial 

cell 

Regulation of growth hormone 

effects; mediating effects of 

mechanical stress on bone 

formation 

Stimulates bone cell 

mitogenesis (IGF-1), 

proliferation and 

differentiation of 

osteoblasts, bone matrix 

synthesis and bone 

resorption (stimulates 

osteoclasts). 
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1.3.6 TGF-β, IGFs and BMPs 

TGF-β is a powerful stimulator of endochondral and intramembranous bone formation. It is 

ctivated by 1, 25- dihydroxy Vitamin D, parathyroid, sex steroids and BMP-2 (Linkhart, 

Mohan and Baylink, 1996). It is present in bone matrix in concentrations of 0.1mg/kg dry 

weight. Continued exposure to TGF-β inhibits bone cell differentiation and the formation of 

mineralised nodules (Mundy et al, 2001). TGF-𝛽 needs to be exposed to bone cells for 

transient periods to enable its stimulatory effects to be exerted on bone cells (Linkhart, 

Mohan and Baylink, 1996). This proposes that TGF-β may have vital chemotactic functions in 

normal bone remodelling, attracting osteoblast precursors to sites of active bone resorption 

(Solheim, 1998). 

BMPs are growth factors that have the unique ability of eliciting ectopic cartilage and bone 

formation, a process which is similar to endrochondral bone formation (Mundy et al, 2001; 

Xiao, Xiang and Shao, 2007). They enhance differentiated function in cultural osteoblasts 

and are vital for embryonic osteogenesis. BMP-3 (osteogenin) has been known to inhibit 

osteoclastic bone resorption and is chemotactic for monocytes (Mundy et al, 2001). 

IGFs I and II are the most abundant growth factors in bone matrix acting as paracrine or 

autocrine regulators of bone formation (Ng et al, 1997). IGFs stimulate the proliferation and 

differentiation of osteoblast progenitors, osteoclast progenitors and marrow stromal cells (Ng 

et al, 1997). The secretion of IGFs is amplified by parathyroid, parathyroid receptor protein, 

1,25-dihydroxyvitamin D, prostaglandin E2 and inhibited by cortisol (Linkhart, Mohan and 

Baylink, 1996). They are known for stimulating bone cell mitogenesis as well as collagen 

synthesis in bone organ culture (Mundy et al, 2001). 

1.3.7 The role of osteogenesis in fracture healing 

Angiogenesis can be defined as the formation of new blood vessels from pre-existing ones 

(Carano and Filvaroff, 2003). In fracture healing, vascularisation is observed before bone 

formation (Deckers et al, 2002). Vascularisation in bone tissue allows oxygen, nutrients and 

other growth factors be transported to bone and surrounding tissues for normal bone 

metabolism (Kanczler and Oreffo, 2008). There are a number of systemic and local factors 

that are active during fracture healing that have direct and/or indirect angiogenic functions 

(Geris et al, 2008). They include members of the fibroblast growth factor (FGF), transforming 
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growth factor (TGF), bone morphogenetic protein (BMP) and vascular endothelial growth 

factor (VEGF) families (Carano and Filvaroff, 2003; Geris et al, 2008).  

The synergistic nature of osteogenesis and angiogenesis in bone regenerated is well 

established, evidenced by several studies indicating the roles of various osteogenic and 

angiogenic cytokines and growth factors involved in the various processes (Patel et al, 

2008). Angiogenesis usually precedes osteogenesis for the establishment of vascularisation 

via the expression of angiogenic growth factors while osteogenic growth factors are 

constantly expressed during bone formation and remodelling (Kempen et al, 2009). 

In fracture healing, there are four stages in which there is a complex interaction involving 

specific cell types, growth factors and extracellular matrix (Carano and Filvaroff, 2003; 

Schindeler et al, 2008). Each stage is classified by a definite set of cellular and molecular 

events which are not clearly demarcated from each other but overlap considerably between 

the different stages during fracture repair (Dimitriou et al, 2005; Schindeler et al, 2008). 

These four stages include inflammation, soft callus (fibrocartilage) formation, hard callus 

formation and bone re-modelling (Schindeler et al, 2008; Geris et al, 2008). 

1.3.8 Stages of fracture healing 

1.3.8.1 Inflammation 

A bone fracture is usually accompanied with disruption of local tissue integrity, cortical bone 

and periosteum tears, discontinuity of normal vascular function as well as a distortion of the 

marrow architecture. The fracture site becomes hypoxic, osteocytes and surrounding tissues 

become deprived of their nutrition (Geris et al, 2008). This leads to the activation of non-

specific wound healing pathways, that is, an inflammatory response (Schindeler et al, 2008; 

Kanczler and Oreffo, 2008).  

The bleeding at the fracture site is contained by the surrounding tissue and develops into a 

hematoma (Dimitriou et al, 2005; Kanczler and Oreffo, 2008). This inflammatory response 

brings inflammatory cells, leukocytes and macrophages. Consequently, an invasion of the 

fracture region by fibroblasts, mesenchymal stem cells and endothelial cells also occurs 

(Geris et al, 2008). Granulocytes, lymphocytes and monocytes penetrate hematoma through 

the fractured fragments and combat any present infection, and consequently secrete 

cytokines and growth factors and cause clotting to progress into a fibrinous thrombus. With 

time, capillaries grow into the clot and are eventually reorganised to form granulation tissue. 
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This stage is regulated by and involves the secretion of a range of cytokines and growth 

factors which include TGF-β, PDGF, FGF-2, VEGF, M-CSF, IL-1, IL-6 and BMPs (Schindeler 

et al, 2008). 

1.3.8.2 Soft callus (fibrocartilage) formation- endochondral ossification 

The initially formed granulation tissue is gradually replaced by fibrous tissue, forming a soft 

callus. Mesenchymal stem cells (MSCs) directly differentiate towards osteoblasts, (regulated 

by present growth factors and perceived mechanical stimuli). This is usually observed near 

the cortex, away from the fracture site, producing woven bone matrix, forming a hard callus 

(intramembranous ossification) (Carano and Filvaroff, 2005; Geris et al, 2008).  

Many fractures may also heal by the process of endochondral ossification (Schindeler et al, 

2008). Endochondral ossification is characterised by a recruitment, proliferation and 

differentiation of undifferentiated mesenchymal cells into cartilage which becomes calcified 

forming a bony callus (Dimitriou et al, 2005). The semi-rigid soft (cartilaginous) callus 

provides a template for the bony callus that will later supersede it (Schindeler et al, 2008). 

Mesenchymal progenitors differentiate into chondrocytes which synthesize cartilaginous 

matrix until previously deposited granulation tissue is replaced by cartilage. When cartilage 

production is deficient, fibroblasts replace the region with fibrous tissue (Dimitriou et al, 

2005). 

Fibroblast and chondrocyte proliferation/differentiation are stimulated by the coordinated 

expression of growth factors including TGF-β2 and –β3, PDGF, FGF-1 and IGF. Also, BMP-

2, -4, -5 and -6) aid in the promotion of cell proliferation and chondrogenesis (Schindeler et 

al, 2008). The effects of these factors enable chondrocytes to produce significant amounts of 

extracellular matrix proteins, particularly collagen II (ibid.).   

Chondrocytes mature into hypertrophic chondrocytes, biochemically preparing the cartilage 

matrix to undergo calcification (Geris et al, 2008). 

1.3.8.3 Hard callus formation 

The hard callus formation stage is also referred to as primary bone formation, which signifies 

the most active part of osteogenesis. Here, there is a high level of osteoblast activity and the 

formation of mineralised bone matrix. The soft cartilaginous callous is gradually removed by 

osteocytes, secreted by hypertrophic chondrocytes, and becomes mineralised with calcium 

hydroxyapatite, deposited by osteoblasts, which are oxygenated and subjected to the 
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appropriate mechanical stimuli, to form a hard callus of woven bone with simultaneous 

revascularisation (Dimitriou et al, 2005; Patel et al, 2008, Geris et al, 2008).  

Soft callus remodelling involves the gradual removal of the fibrocartilage and replacement 

with woven bone. It was previously suggested that osteoclasts play a vital role in soft callus 

remodelling but recent evidence illustrates that they are mostly redundant in this process. 

Remodelling of the soft callus is described as a non-specific catabolic process which can 

involve the activity of different cell types (Dimitriou et al, 2005; Schindeler et al, 2008). Matrix 

metalloproteinases can be identified as a fundamental class of collagenases and gelatinases 

responsible for the breakdown of extracellular matrix (Dimitriou et al, 2005; Schindeler et al, 

2008). 

This new bone or hard callus is usually irregular and under-remodelled (Figure 1.9). Mature 

osteoblasts which differentiate from osteoprogenitors in the presence of osteogenic factors 

produce a combination of proteinaceous and mineralised extracellular matrix tissue which 

forms the irregular and unmodified hard callus (Dimitriou et al, 2005; Patel et al, 2008; 

Kanczler et al, 2010).  

Osteogenic factors critical to this stage of bone healing include members of the BMP family 

which have the unique ability to induce de novo bone formation (Schindeler et al, 2008; Patel 

et al, 2008; Kanczler et al, 2010). The osteoprogenitor cells capable of promoting bone 

formation during repair include mesenchymal cells from the bone marrow. Osteoprogenitors 

may also be derived from other sources such as the surrounding vasculature and local 

tissues (Dimitriou et al, 2005; Schindeler et al, 2008). 

Angiogenesis is very vital to the formation of the hard callus, with an increase in oxygen 

consumption at the local fracture site which is necessary for osteoblast differentiation 

(Schindeler et al, 2008, Kanczler et al, 2010). Newly generated blood supply to the callus is 

crucial for sufficient supply of nutrients, macromolecule transportation, cell invasion and 

maintenance of the appropriate metabolic microenvironment (Kempen et al, 2008; Kanczler 

et al, 2010). 
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Figure 1.9  The process of fracture healing. (a) Hematoma formation; (b) Soft callus 

formation; c) Hard callus formation; d) Bone modelling (Carano and Filvaroff, 2003). 

1.3.9 Angiogenesis factors involved in bone repair 

1.3.9.1 Vascular endothelial growth factor (VEGF) 

VEGF is the major angiogenic factor involved in normal angiogenesis, appropriate callus 

architecture and mineralisation in fracture repair (Carano and Filvaroff, 2003). VEGF 

production is the major coupling mechanism between angiogenesis and osteogenesis during 

fracture repair (Geris et al, 2008). 

VEGF expressed is detected on chondroblasts, chondrocytes, osteoprogenitor cells and 

osteoblasts (Kanczler and Oreffo, 2008; Geris et al, 2008). VEGF expression is induced by 

most osteoinductive growth factors as well as prostaglandins. 

Additionally, VEGF has been observed to play a vital role in cartilage maturation and 

resorption. VEGF produced by hypertrophic chondrocytes instigates the endochondral 

ossification cascade by recruiting and differentiating osteoclastic cells that resorb cartilage 

and attracts osteoblasts (Geris et al, 2008). Exogenously administered VEGF, in the absence 

of osteoprogenitors or a scaffold, boosted bone formation in an in vivo model of mouse femur 

fractures (Carano and Filvaroff, 2003). 

1. 3.9.2 Fibroblast growth factors (FGFs) 

FGFs are potent angiogenic factors which are expressed by monocytes, macrophages, 

mesenchymal cells, osteoblasts and chondrocytes and exert their paracrine and autocrine 

effects on mesenchymal and epithelial cells, osteoblasts and chondrocytes (Montero et al, 
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2000; Dimitriou et al, 2005). FGF-2 has the capability to accelerate fracture when 

exogenously administered during the early healing stage of a fracture (Kanczler and Oreffo, 

2008). 

FGF- 2 has been shown to be an important modulator of cartilage and bone cell function 

(Montero et al, 2000). α-FGF majorly stimulates chondrocyte proliferation and β-FGF 

stimulates chondrocyte maturation and bone resorption (Dimitriou et al, 2005). Although its 

mechanism of action has not been properly elucidated, it has the ability to instigate 

angiogenesis, the proliferation and differentiation of osteoblasts to aid in the repair of bone 

fractures (Paccica et al, 2003; Carano and Filvaroff, 2003; Kanczler and Oreffo, 2008). 

According to Paccica and colleagues (2003), the presence of β-FGF increased blood flow 

and vessel formation in the zone of distraction osteogenesis. An increase in the expression 

of VEGF and β-FGF were observed in distraction osteogenesis. Distraction osteogenesis is a 

unique and effective way to treat limb length inequality resulting from congenital and 

posttraumatic skeletal defects. Bone is surgically broken into two and segments separated 

gradually, allowing new bone to form in the distraction gap. Β-FGF was found to localise at 

the leading edge of the distraction gap, where budding osteogenesis was emerging.  

1.3.9.3 Matrix metalloproteinases (MMPs) 

Matrix metalloproteinases (MMPs) are a family of extracellular endopeptidases that 

selectively degrade components of the extracellular matrix which allows the invasion of new 

blood vessels into the avascular hypertrophic cartilage (Schnaper  et al, 1996; Schindeler et 

al, 2008). They generally require zinc in their catalytic site for activity. They are synthesised 

as inactive zymogens which are proteolytically cleaved to become active, in the extracellular 

matrix (Rundhaug, 2003).  

MMPs are well associated with angiogenesis. They are produced by an array of cell types 

which include epithelial cells, fibroblasts and inflammatory cells. They contribute to 

angiogenesis not just by the degrading extracellular matrix (ECM), allowing endothelial cells 

to detach and migrate into new tissue, but also by releasing angiogenic factors (bFGF, TGF-

β and VEGF) bound to the extracellular matrix (Schnaper, et al, 1996; Stetler-Stevenson, 

1999; Rundhaug, 2003).  
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MMPs are also necessary for tube formation (Rundhaug, 2005). Treatment of endothelial 

cells with exogenous MMP-2 induced a dose-dependent morphologic change of tube 

formation, associated with angiogenesis. Conversely, the effect reaches a plateau and any 

further addition of MMP-2 reversed tube formation. These effects were observed to be MMP-

2 activity as they were inhibited by TIMP-2 (tissue inihibitors of metalloproteinase-2) 

(Schnaper et al, 1996; Stetler-Stevenson, 1999). Angiogenic factors can induce the 

expression of MMPs in endothelial cells and stromal cells but MMPs can improve the 

bioactivity of these angiogenic factors (Rundhaug, 2005) 

1.3.10 Osteoporosis 

Osteoporosis is the absence of equilibrium between formation and resorption in the bone 

microenvironment that constitutes a disease state such as in osteoporosis or primary 

hyperthyroidism. 

Osteoporosis is a systemic disease condition of micro-architectural loss of bone 

characterised by a reduced mineral density (BMD) and weakened bone structure which 

increases bone fragility and decreases bone resistance to low-energy trauma (Downey and 

Siegel, 2007; Hanley et al, 2012). Causes of osteoporosis include the following: poor bone 

acquisition during youth and acceleration bone loss during aging; a combination of hormone 

deficiency, poor nutrition, decreased physical activity and various pharmacological agents 

(Downey and Siegel, 2007). 

The major cause of osteoporosis is the decrease in the female sex hormone, estrogen, which 

is referred to as post-menopausal osteoporosis. An increase in bone resorption is related to 

a rise in the number of osteoclasts, which is connected to a decrease in estrogen production. 

The increase in osteoclasts is caused by an increase in the cytokines that regulate the 

production of osteoclasts (Downey and Siegel, 2006). 

1.3.10.1 Delivery and carrier systems for the treatment of osteoporosis 

Different literature has been published on the localized delivery of growth factors (also 

recombinant growth factors) using bone implants with materials such as hydroxyapatite, 

biodegradable polymers and titanium (Linkhart, Mohan and Baylink, 1996; Devescovi et al, 

2001). 
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There are various possible problems related with the use of peptide growth factors in the 

therapy of osteoporosis. One of the observable issues is that of delivery. With peptides 

having short half-lives, their parenteral delivery causes a severe limitation with osteoporotic 

patients (Mundy et al, 2001). This is because most bone factors have non-osteogenic 

functions and thus will have adverse side effects when administered systematically. Such 

effects include hypoglycaemia (for IGF-1) or fibrosis due to mesenchymal cell proliferation 

(TGFβ) (Mundy et al, 2001). This is the rationale behind the local administration of growth 

factors to bone.  

According to Schliepaeke (2010), an ideal carrier system or in paraphrase, a polymer 

suitable for the delivery of bone growth factors would provide sufficient mechanical strength 

to withstand soft tissue pressure in addition to connecting penetrability and degradability for 

unhindered bone ingrowth and eventual replacement by regenerated bone on the other. Most 

carriers for the delivery of growth factors have such growth factors adsorbed to their surface 

by soaking. This type of loading process generates a burst release of growth factors in most 

cases (Schliepaeke, 2010). 

The biofunctionalization of carriers is reliant upon the characteristics of the carrier material/ 

polymer with respect to degradability. For non-biodegradable materials, loading of the growth 

factors onto the surface will be suitable. Conversely, in the case of biodegradable materials, 

it is more suitable and desirable for the growth factors to be incorporated into the polymer 

matrix for gradual release over time with regard to degradation (Schliepaeke, 2010). 

Polymers with low melting points will be most suitable for the controlled release of bone 

growth factors as high melting points will denature the proteins or impair the functionality of 

the proteins. Therefore, a biodegradable polymer will be the material of choice in this study.  

Based on its unique function of stimulating ectopic bone formation, bone morphogenetic 

protein (BMP, bone growth factor) has been complexed and adsorbed on various materials 

mentioned previously in various literatures. Its ability to stimulate bone formation by inducing 

the proliferation of osteoblasts, as well as indirectly stimulate angiogenesis (formation of 

blood vessels) has been exploited in the research areas of orthopaedics (bone tissue 

engineering, bone fracture healing, bone implantation) (Sigurdsson et al, 1997; Liu, Engest 

and Kuffer, 2007; Fei et al, 2008) and dentistry (osteointegration of dental implants) (Sasche 

and Wagner, 2005). However, the incorporation of bone growth factors into the polymer 

matrix has not been explored. In this present study, the adsorption of bone growth factors 

adsorbed onto a polymeric coating is to be exploited in the present study.  
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1.4    TOPICAL AND TRANSDERMAL DRUG DELIVERY 

1.4.1 Topical Delivery 

Topical delivery is the delivery of drugs with the skin as the target organ (in comparison to 

transdermal delivery, which aims at the delivery of drugs to the systemic circulation). To 

understand topical delivery, the structure of the skin should be elucidated.  

The skin’s structure is sub-divided into three main layers as illustrated in Figure 1.10 (Desai 

and Lee, 2007). 

● Epidermis: This is the uppermost layer of the skin, consisting of cells such as

Langerhans cells, melanocytes and the stratum corneum as its outermost part. The stratum 

corneum comprises dead flattened cells, (made of a tough, fibrous protein keratin), 

embedded in a lipid bilayer, which serves principally as a waterproof barrier. These cells 

are continuously replaced with newer cells that move upward.  

● Dermis: This is a thick layer of connective tissue which comprises hair follicles, nerve

endings, sweat glands and blood vessels. Drug molecules that successfully diffuse through 

the epidermis are distributed systemically due to the rich supply of blood vessels here. 

● Subcutaneous (Fat) layer: This layer aids in body temperature regulation. Certain

drugs accumulate here, decreasing plasma concentration of drugs. 

 Figure 1.10    Structure of the skin.  (Adapted from Ahava, 2012) 
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1.4.2    Transdermal Delivery 

The transdermal route of drug delivery is a viable route of administration in comparison to the 

oral route, through which several drugs are administered into the systemic circulation. 

In a transdermal drug delivery system (TDDS), the drug is stored in the either in a reservoir 

or impregnated into the fabric of the patch. A drug concentration gradient is developed when 

a TDDS is applied to the skin and the drug starts to move down the gradient. A second drug 

reservoir is established in the stratum corneum. As the drug moves further into the skin, it is 

absorbed into the local capillary vasculature and is then transported into the systemic 

circulation (Margetts and Sawyer, 2007). 

There are two designs of transdermal patch currently available: the reservoir, or membrane-

controlled system, and the matrix system. A reservoir patch holds the drug in a gel or 

solution and delivery is determined by a rate-controlling membrane between the drug 

reservoir and the skin (Margetts and Sawyer, 2007; Praunitz and Langer, 2008).  

The rationale behind transdermal delivery (advantages) and limitations is highlighted in Table 

1.5 and 1.6 respectively. 
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    Table 1.5    Advantages and limitations of transdermal drug delivery 

(Delgarro-Charro and Guy, 2001; Desai and Lee, 2007; Ranade and Hollinger, 2004; Prausnitz and 

Langer, 2008) 

Advantages of transdermal delivery 

Avoids first pass metabolism 

It is a significant option for delivering drugs that undergo extensive first pass hepatic metabolism and with poor 

oral bioavailability. 

Constant plasma concentration 

Drug administration creates a steady drug serum concentration during the dosing interval. In some cases, this is 

related to rarer systemic side effects of drugs. 

Advancement over traditional hypodermic injections 

It offers an advantage over hypodermic injections which are painful, create hazardous medical waste and can 

pose a risk of disease transmission by needle re-use, in the case of developing countries. 

Reduces dosage frequency 

It is a very useful route of delivery for drugs with short half-lives and reduces dosage frequency. 

Permits self-administration 

Drug administration via a transdermal patch is user-friendly, convenient and permits self-administration. It allows 

for improved patient compliance and acceptability of drug therapy. 

Alternative to oral route 

It is a vital alternative route of administration for patients with difficulty in tolerating oral delivery of drugs or are 

susceptible to gastrointestinal irritation; it is also suitable for nauseous or unconscious patients. 

Easy cessation of therapy 

Drug therapy can be withdrawn immediately 
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     Table 1.6 Limitations of transdermal delivery 

(Delgarro-Charro and Guy, 2001; Desai and Lee, 2007; Ranade and Hollinger, 2004; Prausnitz and 

Langer, 2008) 

Limitations of transdermal delivery 

Constricted criteria 

  Drugs suitable for transdermal delivery need to meet certain physicochemical criteria. Drugs that have large 

molecular weights or hydrophilic character are poor candidates. Lipophilic drugs are better candidates for 

transdermal delivery. 

Tailored to potent drugs 

  Transdermal drug are only suitable for relatively potent drugs especially those that have effective plasma 

concentrations in the nanomolar/ml range. 

Incidence of skin irritation 

 Skin irritation and sensitisation can be a problem with transdermal delivery. A skin reaction can occur if a drug, 

vehicle, adhesive or permeation enhancers are irritating to the skin. Rotation of the application site can minimize 

side effects 

As seen above, the limitations of traditional transdermal delivery (via patches) is primarily 

associated with the barrier function of the skin, offering protection from chemicals and 

invasive pathogens, which limits the amount and the type of drug delivered via the skin to the 

systemic circulation (Desai and Lee, 2007, Delgaro-Charro and Guy, 2001). Some 

physicochemical factors generally affect topical and transdermal delivery. They are shown in 

Table 1.7. 

It is noteworthy to mention that the second and third generations of transdermal technology 

have overcome a number of these limitations. The second-generation transdermal systems 

focus on the use of conventional chemical enhancers (liposomes, dendrimers, and in some 

cases, prodrugs) to enhance skin permeation, iontophoresis and non-cavitational ultrasound, 

which provide a driving force for drugs across the stratum corneum. The third-generation 

transdermal systems cause a stronger disruption of the stratum corneum, while still 

protecting deeper tissues. Such methods include novel chemical enhancers, electroporation, 

cavitational ultrasound and more recently microneedles, among others. These have 

demonstrated delivery of macromolecules and vaccines.  

Transdermal delivery (and topical delivery) is highlighted in this paper because of the 

potential use of non-aqueous silicone elastomer gels in these areas. As explained in later 

sections, gels are well-known conventional dosage forms in these areas of drug delivery. 

These non-aqueous silicone elastomer gels offer an added advantage: they are suitable 
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vehicles for hydrophobic drugs (Sene et al, 2002), as hydrophobicity is a criterion for 

effective topical delivery into the dermis and transdermal delivery into the systemic circulation 

(Delgaro-Charro and Guy, 2001).  

Table 1.7    Physicochemical properties affecting transdermal delivery 

(Desai and Lee, 2007; Barry, 2002)

Physicochemical properties affecting transdermal delivery
 

Molecular size 

The permeation of a drug through the skin is as a result of passive diffusion through the stratum corneum and this 

varies largely from drug to drug. 

Skin hydration 

 This increases the rate of drug penetration through the skin. 

Drug concentration 

Drug concentration in the formulation and the surface area to which dosage form is applied directly affect the rate 

of drug transport through the skin. 

Diffusion co-efficient (D)  

The diffusion co-efficient (D) in a topical vehicle is dependent on the properties of the drug and the diffusion 

medium and the interaction between them.  

Partition co-efficient (K) 

the partition co-efficient is important when establishing the flux of a drug through the stratum corneum when it 

presents itself as the major diffusional barrier, of which it differs from drug to drug, vehicle to vehicle. 

Transdermal systems became popular for the delivery of viable drugs such as NSAIDs 

(fentanyl), Scopolamine, its use in hormonal replacement therapy (Estradiol, Nitro-dur, etc), 

smoking cessation (nicotine patches), among other implications (Delgaro-Charro and Guy, 

2001). These non-aqueous silicone elastomer gels can also be employed as delivery 

systems for protein or peptide delivery (such as delivery of vaccines). Although proteins are 

generally hydrophilic and do not meet the physicochemical criteria of drug candidates for 

transdermal delivery, these gels can be employed in new delivery technologies to enhance 

transdermal delivery.  

The delivery of cancer drugs to the skin, via these silicone elastomer gels, can be inferred. 

Although the delivery of drugs for cancer prophylaxis is presently available (Moses, Brem 
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and Langer, 2003), cancer drug candidates can be delivered to the skin locally in close 

proximity to diseased cells, for treatment of pre-malignant skin conditions such as actinic 

keratosis and non-melanoma skin cancers such as squamous skin cell cancer or basal skin 

cell cancer, with existing cancer drugs such as 5-fluorouracil, imiquimod, 5-aminolevulinic 

acid (ALA) (using photodynamic therapy) and diclofenac sodium. This mode of therapy can 

minimise side effects while enhancing drug efficacy (McGillis and Fein, 2004). 

1.4.3  Gels as Drug Delivery Systems 

Gels are defined as semi-solid systems made of small amounts of solid distributed in copious 

amounts of liquid vehicle, assuming solid-like properties. They form a three-dimensional 

polymeric matrix, which are made of physically, or chemically linked polymer chains (das 

Neves and Bahia, 2006). 

The use of polymeric gels as pharmaceutical dosage forms is extremely popular. Gels are 

widely used in oral, topical, transdermal as well as in vaginal drug delivery (das Neves et al, 

2009). These gels are generally manufactured using hydrophilic polymers which include: poly 

(acrylates), chitosan, cellulose derivatives (such as hydroxyethyl cellulose, hydroxypropyl 

cellulose, sodium carboxy-methyl-cellulose), hyaluronic acid and its derivatives, pectin, 

starch, poly (ethylene glycol), sodium alginate, etc. (Valenta and Aulner, 2004). These gels 

are also incorporated into other dosage forms (such as gelling/thickening agents in syrups 

and cosmetics) (Allen, Popovich and Ansel, 2011). 

Silicone as a polymer has played a vital role in drug delivery, biomedical applications as well 

as in cosmetics since its introduction in the 1950’s (Sene et al, 2002, Colas, Siang and 

Ulman, 2006). The varying applications of silicone range from its use in the manufacture of 

catheters, cardiac pacemakers, stents and shunts; its use as drug excipients, actives in 

topical formulations, as drug delivery systems such as pressure sensitive adhesives and 

antifoams; to its use in cosmetics such topical creams, personal care products and sexual 

lubricants (Colas, Siang and Ulman, 2006). 

The use of non-aqueous silicone elastomer gels was recently reported for use as a vaginal 

delivery system for maraviroc, a HIV-1 entry inhibitor (Forbes et al, 2011). Based on the 

usefulness and variability of the applications of silicone in transdermal, topical and vaginal 

drug delivery in the past, the rationale behind drug delivery via these routes will be 

discussed. 
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1.4.4 Pharmaceutical Characterisation of Gels 

1.4.4.1 Rheological and textural characterisation of gels 

Rheology is defined as the study of the deformation and flow of matter (Al-Achi, 2013). 

Viscosity (η) can be described as the resistance of a fluid to flow or movement. Viscosity is 

usually illustrated as a hypothetical cube made up of thin layers. When a force (shearing 

force) is applied to the top layer, the layers will move at a decreasing velocity and the bottom 

layer will be motionless. The force applied to the top of the cube is defined as the shear 

stress (σ) and is expressed in Newtons per m2. A velocity gradient, or the shear rate (ϒ), will 

exist and is equated to the differential change in velocity divided to the height of the 

hypothetical cube, expressed in m s-1.  Viscosity is defined as the ratio of shear stress to 

shear rate (Al-Achi, 2013).  

1.4.4.2 Newtonian and non-Newtonian fluids 

The concept of viscosity was initially quantified by Newton who assumed that the rate of flow 

(ϒ) was directly proportional to the applied stress (σ). In simple fluids which obey this 

relationship in which the shear stress divided by the shear rate remains equal independent of 

the shear rate, are referred to as Newtonian fluids. Examples include water and glycerol. 

Conversely, many common liquids are rather complex fluids and do not follow this 

relationship and are referred to as non- Newtonian. Such fluids are defined as those fluids in 

which the relationship between shear stress and shear rate is not a constant. Variation in 

shear rate is not directly related to the shear stress. Examples include emulsions, 

suspensions and gels. 

1.4.4.3 Non- Newtonian fluid behaviours 

1.4.4.3.1 Plastic (or Bingham) flow 

 Plastic or Bingham flow refers to when a material does not flow until a certain value of shear 

stress is exceeded of which at lower stresses the substance behaves as a solid (elastic) 

material. As shown in figure 1.11, such behaviour is illustrated when the rheogram does not 

pass through the origin but intersects with the shear stress axis at a point referred to as the 

yield value, σy. Plastic materials are often referred to as Bingham bodies (who performed 

original studies with these materials). Plastic flow is exhibited by concentrated suspensions, 

particularly if the continuous phase is of high viscosity or if the particles are flocculated.  
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Figure 1.11    Rheogram illustrating plastic behaviour of materials 

1.4.4.3.2 Pseudoplastic flow 

Pseudoplastic fluids demonstrate a decreasing viscosity with an increasing shear rate. This 

is also referred to as shear thinning (Al-Achi, 2013). Such fluids have no singular 

characteristic value of viscosity. Such viscosity is referred to as apparent viscosity and is only 

relevant when related to the shear rate with which it was measured. A range of apparent 

viscosities is required to characterise a pseudoplastic fluid, by means of a flow curve (Figure 

1.12) 
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Figure 1.12 Rheogram illustrating pseudoplastic behaviour of materials (shear 

thinning). 

In the absence of an adequate quantitative elucidation of pseudoplastic flow, the most 

extensively used is the Power Law, given as: 

σn = η’ ϒ 

Where η’ is a viscosity co-efficient and the exponent n an index of pseudoplasticity. 

Materials that exhibit pseudoplastic behaviour include naturally and chemically modified 

hydrocolloids such as methylcellulose and tragacanth, synthetic polymers such as 

polyvinylpyrrolidone and polyacrylic acid, paints, emulsions and various other dispersions. 

1.4.4.3.3  Dilatant flow 

A dilatant fluid is characterised by an increasing viscosity caused by an increase in shear 

rate (the opposite behaviour of pseudoplasticity). As such a material increases in volume 

during shearing, they exhibit shear thickening (Figure 1.13).  

Although this behaviour is less common than pseudoplasticity, it may be exhibited by fluids 

containing high levels of small deflocculated particles such as clay slurries, corn starch in 

water, sand/water mixtures, etc. 
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In conditions of zero or no shear, the particles are closely packed and the interparticulate 

spaces are at a minimum, sufficient for the vehicle to fill. At low shear rates, the fluid 

adequately lubricates the relative movement of the particles. As the shear rate is increased, 

the uniform distribution of the particles is disrupted and clumps are formed, resulting in 

creation of larger voids wherein the fluid drains into, increasing the resistance to flow and a 

rise in viscosity. This effect is progressive with an increase in shear rate. However, the effect 

is reversible and the removal of shear rate restores the fluid nature. 

Figure 1.13 Rheogram illustrating dilatant behaviour of materials (shear thickening) 

1.4.4.2 Rheological Testing of Gels 

 Rheological testing provides information about the structure of materials and the effect that 

time or an applied force has on such a material (das Neves et al, 2009).  

The constituents of a gel can strongly influence its rheological properties. These rheological 

properties partly govern important features such as spreadability and retention 

characteristics at the application site (vital in mucosal delivery) which culminate to the final 

clinical outcome of the drug incorporated into the gels (Jones, Woolfson and Brown, 1997). 

The rheological and mechanical properties of gels are generally characterised using 

oscillatory rheology and texture profile analysis (TPA) respectively (das Neves and Bahia, 

2006). 
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1.4.4.2.1 Oscillatory rheometry and texture profile analysis 

Oscillatory rheometry allows for complete characterisation of both elastic and viscous 

components of the gels studied (das Neves and Bahia, 2006). As gels (particularly 

hydrophilic gels) exhibit non-Newtonian flow behaviour, a single measurement of viscosity at 

a defined shear rate is insufficient in the characterisation of a gel sample. Thus, a ‘multipoint’ 

measurement able to decompose the rheological behaviour of the gel into viscous and 

elastic components is usually employed (das Neves and Bahia, 2006). 

Texture profile analysis (TPA) provides vital information on the mechanical parameters of the 

gels such as hardness (force required to attain a given deformation), adhesiveness (the work 

necessary to overcome the attractive forces between the surface of the sample and the 

surface of the probe) and compressibility (the force per unit time required to deform the 

product the first compression cycle of the probe) (Jones, Woolfson and Djokic, 1996; Jones, 

Woolfson and Brown, 1997). As topical administration of gels will be subjected to shearing 

forces like those encountered under physiological conditions, the effect of such oscillatory 

stresses, on the structural properties of the gels are also quantified with these methods 

(Woolfson and Brown, 1997). 

To characterise the rheological properties of a gel using oscillatory rheometry, controlled 

stress rheometers are employed. Dynamic stress tests are performed to expose the gel 

sample to a range of shear forces similar to physiological shear rates within a time limit to 

analyse the effect of such forces on the gel sample. Cone and plate geometry (in comparison 

with plate-plate geometry, using steel plates) are often used. TPA involves the use of a solid 

analytical probe which is depressed twice into a sample to a defined depth and at a specific 

rate, permitting a delayed period between successive compressions (das Neves et al, 2009; 

Jones, Woolfson and Brown, 1997).  

1.4.4.3 In vitro permeation studies (diffusion testing) of hydrophilic and non-

aqueous silicone elastomer gels 

As previously established, transdermal (and topical) drug delivery are advantageous as 

alternative routes of drug administration having the primary attribute of avoiding first pass 

metabolism of drugs by the liver as well as decreasing side effects.  to further characterise 

topical (or transdermal) dosage forms, permeation studies need to be performed to ascertain 

the biocompatibility of the dosage form as well as establish the permeation characteristics of 

drugs at the site of administration (Ng et al, 2010; Levintova, Plakogiannis and Bellantone, 

2011). The most popular and basic in vitro permeation experiments are performed using 

Franz cell type experiments (Ng et al, 2010). 
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In vitro diffusion is the passive diffusion of a permeant (drug) from a vehicle to the donor, 

through a synthetic or biological membrane into a receptor fluid. The permeant is the 

molecular species or compound moving through or into the membrane. Permeation is the 

movement of the permeant through the membrane encompassing partitioning and diffusion 

through the membrane. Flux is the amount of permeant that crosses the membrane per unit 

area into the circulating system per unit time. For an in vitro permeation system, this is 

expressed in unit mass per unit area per unit time. Diffusivity is a property of the permeant 

and it is a measure of its penetrability through a specific membrane expressed in units of 

area per unit time. The permeability co-efficient describes the rate of permeant penetration 

per unit concentration expressed in distance per unit time. The permeability barrier is a lipid 

barrier dependent on the amounts, types and organisation of lipids present in a tissue.  

Generally, there are a few important considerations that are considered before in vitro 

permeation is investigated which are highlighted below:  

1.4.4.3.1 Franz cell set-up 

Static cell (vertical or side-bi-side): With static cell set-ups, the receptor chamber has a fixed 

volume (containing a stirred receptor fluid), `whose compartment is water jacketed to control 

temperature, as well as a sampling port. The flux (rate of permeation across the membrane) 

is determined by the permeability of the compound and the permeation of the tissue. The flux 

in turn determines the concentration of the permeant in the receptor chamber. 

Continuous flow cell: Continuous flow cell also has a fixed volume receptor, water jacketed to 

control temperature. However, Franz type cells are stirred, have continuous flow which 

causes turbulence in the receptor and simulates stirring. This set-up mimics in vivo (equates 

blood flow), evaluates compound uptake into membranes, finite or infinite dose permeation 

and steady state flux of compounds. The flux also determines the permeation of the 

compound and permeability of the tissue. The flux thus determines the concentration of 

permeant in the receptor chamber and also the rate of clearance (flow rate). 

1.4.4.3.2 Membrane type 

Human tissue ex vivo, small animals (like rats, mice or rabbits), large animals (such as dogs, 

pigs, etc.), polymeric membranes (usually an appropriate inert synthetic membrane such as 

polysulfone, cellulose acetate/nitrate mixed ester, silicone, etc.) or human skin equivalents 

(tissue engineered three-dimensional skin constructs) are the types of membranes usually 

employed for Franz cell experiments dependent on various methodologies (Permegear, 

2012). Though synthetic membranes will not offer an adequate representation of lipid 

perturbation effects undergone by biological samples, diffusion behaviour can be inferred. 

They are also preferred as the most cost effective, easily sourced and structurally simpler 

alternative to skin (Ng et al, 2010). 
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1.4.4.3.3 Donor formulation 

As aforementioned, gels, creams, suspensions, powders or adhesive patches have been 

identified as transdermal and/or topical and/or vaginal dosage forms. A variation of the 

formulation, drug concentration and the addition of permeation enhancers give information 

about the characteristics of the permeant. 

The concentration (of drug or permeant) in the vehicle will depend on the study aims. An 

infinite dose, in which the drug will not be depleted from the vehicle during the experiment, 

will be used to understand the permeation behaviour in the absence of enhancers. Such an 

experiment is similar to Franz cell in vitro permeation validation, which analyses the amount 

of drug that can permeate through the membrane for a specific duration (Ng et al, 2010). 

Consequently, a finite dose will mimic the actual amount of drug/permeant in marketable 

dosage forms. It could be used to determine the amount of active ingredient (drug or 

permeant) needed in the dosage form to demonstrate an effective drug response. 

1.4.4.3.4 Receptor media 

The most important consideration of the choice of receptor media is its in vivo application. 

The selection of receptor media is also dependent on the nature of the drug/permeant and 

type of diffusion cell used. The solubility of the drug/permeant is also an important factor 

because the compound needs to be at its desired form in the donor compartment to prevent 

any slow rate of diffusion which will cause solubility to be another rate-limiting step of its 

diffusion. Aqueous receptors are used for hydrophilic to moderately hydrophobic permeants 

while more hydrophobic permeants will require an addition of polar solvents or surfactants to 

the receptor media. 

1.4.4.3.5 Sampling time 

Sampling time intervals, frequency and volume are dependent on the research question. 

Possible experimental rationale includes: determining the total amount if drug/permeant that 

diffuses through or is retained in the membrane after a long interval, the amount of drug that 

crosses the membrane at shorter sampling intervals or the flux of drug diffused per time 

interval. 

These factors when considered enable the researcher to correctly answer the research 

question to be investigated and thus, the in vitro permeation studies adequately represent 

the in vivo application for the topical/transdermal dosage form being examined for drug 

delivery. 
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1.5 NANOPARTICULATE CARRIERS FOR THE TREATMENT OF BONE 

INFECTIONS 

1.5.1 Osteomyelitis 

The term “osteomyelitis” comprises a broad group of infectious diseases characterized by 

infection of the bone and/or bone marrow (Roy et al, 2012). It is usually simultaneous with 

bone destruction and caused by a pathogenic micro-organism (Prieto-Perez et al, 2014). 

Osteomyelitis is a progressive infection that results in inflammatory destruction, necrosis, and 

new bone formation, which can progress to a chronic and persistent stage. This disease is 

classified based on etiology, pathogenesis, and degree of bone involvement, as well as age 

and the immune condition of the patient. It can involve different structures such as the bone 

marrow, cortex, periosteum, and parts of the surrounding soft tissues, or remain localized 

(Jorge, Chueire and Baptista, 2009). Given this heterogeneity, the following methods of 

classification have been proposed. 

1.5.2 Classification systems for osteomyelitis 

1.5.2.1 Waldvogel classification 

One of the most important classifications of osteomyelitis relevant in clinical studies is the 

Waldvogel classification of osteomyelitis (Lima et al., 2014; Table 1.8). Osteomyelitis is 

divided according to physiopathology and duration of infection. Based on the 

physiopathology, infections are classified into: haematogenous osteomyelitis; osteomyelitis 

secondary to a contiguous focus of infection; and osteomyelitis associated with peripheral 

vascular insufficiency. Based on the evolution of disease, infections are classified into acute 

and chronic osteomyelitis (Lew and Waldvogel, 2004). 
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Table 1.8  Waldvogel classification of osteomyelitis (Adapted from Lima et al., 2014) 

1.5.2.2 Cierny and Mader classification 

In Cierny and Mader classification, osteomyelitis is divided according to bone anatomy and 

physiological factors of the host. Here, four anatomical stages are described, according to 

specific bone involvement and three types of hosts, based on patient’s clinical conditions 

(Lima et al., 2014). This classification system is most useful in defining treatment strategies 

and takes into account only infections in the long bones of the body (Lew and Waldvogel, 

2004). 

1.5.3 Pathogenesis of Osteomyelitis 

In vivo animal studies of bone infection have demonstrated that the bone is normally 

resistant to infection. Therefore, osteomyelitis occurs only when there is a large inoculum of 

pathogens, trauma leading to bone damage or the presence of foreign material (Eid and 

Berbari, 2012). The pathogenic mechanism of osteomyelitis is influenced by a number of 

factors which begins with the spread of the organism. Bacterial infection may reach the bone 
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by haematogenous seeding, direct inoculation and airborne contamination, which can occur 

as a result of fractures or as a post-surgical complication (Gogia et al, 2009).  Fungal 

osteomyelitis usually results from a spreading fungal infection in the body rather than direct 

inoculation of the bone. Once osteomyelitis reaches a chronic state, it can progress to affect 

surrounding muscles, tendons, and skin (Eid and Berbari, 2012). 

Bacteria enter the bone haematogenously through the Haversian system, the structural unit 

of the bone (osteon) (See Figure 1.14). They adhere to the bone and trigger an acute 

inflammatory response. Bacteria have various different mechanisms to facilitate cell-cell and 

cell-implant adhesion (Gogia et al., 2009). Certain major causes of infection, such as Staphy-

lococcus aureus, adhere to bone by expressing receptors (adhesins) for components of bone 

matrix (fibronectin, laminin, collagen, and bone sialoglycoprotein); the expression of the 

collagen-binding adhesion permits the attachment of the pathogen to cartilage (Lew and 

Waldvogel, 2004; Popat et al., 2007 Sanchez et al., 2013; Arciola et al., 2015). 

Figure 1.14  Cross section of the bone structure. The diagram illustrates the singular 

units of bone structure (osteons) as well as the spatial arrangement of compact and spongy 

bone types (Reproduced from National Cancer Institute, 2016). 
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During an acute infection, various inflammatory factors and leukocytes are attracted to the 

inflamed area, to generate toxic oxygen radicals and secrete enzymes in an attempt to kill 

the bacteria. Pus resulting from the inflammatory response spreads into vascular channels, 

raising intraosseous pressure and impairing blood flow. Vascular channels become 

compressed and obliterated resulting in ischaemia and contributing to bone necrosis. Bone 

segments void of viable blood flow become separated to form sequestra (Figure 1.15) and 

may continue to harbour bacteria. Antibiotics and inflammatory cells cannot reach this 

avascular area leading to failure in treatment. Outside the sequestrum, there is reactive 

hyperaemia associated with increased osteoclastic activity. This activity in turn causes bone 

loss and localised osteoporosis. Meanwhile, bone apposition occurs with new bone forming 

around the sequestrum. 

Figure 1.15 Steps in the progression of chronic osteomyelitis 

I: From sequestrum, an area of devascularised dead bone, progression of intramedullary infection 

towards an intra-capsular location can lead to septic arthritis; progression of infection towards a sub-

periosteal location can lead to periosteal elevation. II: New bone formation as a result of massive 

periosteal elevation. III: Extension of sequestrum and necrotic material through cortical bone creates a 

fistula and ultimately breaks through the skin (Adapted from Lew and Waldvogel, 2004). 

1.5.4  Causal organisms 

Among pathogenic microorganisms, Staphylococcus aureus is by far the most commonly 

involved in osteomyelitis in humans, followed by Enterobacteriaceae and Pseudomonas 

species (Lew and Waldvogel, 2004; Gogia et al., 2009). A summary of diverse etiology of 

osteomyelitis is summarised in table 1.9. S. aureus elaborates a range of extracellular and 

cell-associated factors contributing to its virulence. First are factors promoting attachment to 

extracellular matrix proteins, called bacterial adhesins. The ability of S. aureus to adhere is 
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considered crucial for the early colonisation of host tissues, implanted biomaterials, or both. 

S. aureus expresses several adhesins on its surface, each specifically interacting with one

host protein component, such as fibrinogen, fibronectin, collagen, vitronectin, laminin, 

thrombospondin, bone sialoprotein, elastin, or von Willebrand factor. The second set of 

factors promotes evasion from host defences (protein A, some toxins, capsular 

polysaccharides). The third set promote invasion or tissue penetration by specifically 

attacking host cells (exotoxins) or degrading components of extracellular matrix (various 

hydrolases). Finally, the ability of S. aureus to invade mammalian cells may explain its 

capacity to colonise tissues and to persist after bacteraemia. S. aureus can promote its 

endocytic uptake by epithelial or endothelial cells. S. aureus that has been internalised by 

cultured osteoblasts can survive within the cells. Intracellular survival could explain the 

persistence of bone infections (Jorge et al, 2009; Gogia et al., 2009; Gomes, Pereira and 

Bettencourt, 2013). 

S. aureus and S. epidermidis can also form biofilms, which are difficult to treat with

antimicrobial agents. A biofilm is a microbial community characterised by cells that attach to 

substratum or interface to each other, embedded in a matrix of extracellular polymeric 

substance, and showing an altered phenotype in terms of growth, gene expression, and 

protein production. Biofilms can act as a diffusion barrier to slow down the penetration of 

antimicrobial agents and nutrients. The inherent resistance of biofilms to antimicrobial factors 

seems to be mediated by several factors including low metabolic rates, adaptive stress 

responses, and downregulated rates of cell division of the deeply embedded microbes 

(Sanchez et al, 2013; Campoccia et al, 2010).  
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Table 1.9  Etiology of osteomyelitis 

(Lew and Waldvogel, 2004; Jorge et al, 2009; Calhoun, Manring and Shirtliff, 2009)
 

Age Etiology 

Newborn babies 
S. aureus, Enterobacter spp., Streptococcus (Group A and

B) 

Children 
S. aureus, Enterobacter spp., Streptococcus (Group B),

Haemophilus influenza 

Susceptibility factors Etiology 

Injectable drug users 
S. aureus, P. aeruginosa, Serratia marcescens, Candida

spp. 

Immunocompromised 
S. aureus, Bartonella hensalae, Aspergillus spp.,

Mycobacterium avium complex, Candida albicans 

Urinary infection P. aeruginosa, Enterococcus spp.

Spinal column surgery 
S. aureus, coagulase-negatuve staphylococci, aerobic

gram-negative bacilli 

Orthopaedic fixation devices 
S. aureus, coagulase-negatuve staphylococci, 

Propionibacterium spp. 

Hospitalisation (nosocomial source) Enterobacteriaceae, P. auroginosa, Candida spp. 

Diabetes mellitus, vascular insufficiency, 

contaminated open fracture 

Enterococcus spp., Gram-negative bacilli, anaerobes 
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1.5.5 Local antibiotic therapy for osteomyelitis 

The local use of antibiotics as a prophylaxis treatment for bone infections was 

incorporated in general medical practice in the 1970s. Buchholz and Engelbrecht first 

reported that bone cement mixed with antibiotics was effective in the prophylaxis and 

treatment of infection in total hip replacement using polymethylmethacrylate (PMMA) 

beads (El-Husseiny et al., 2011; Gogia et al., 2009). In situ transplantation of a local 

antibiotic delivery system worked to eliminate bacteria growth alongside reducing dead 

space in the bone defect (Nair et al., 2011). In 1979, Klemm fabricated gentamicin-

impregnated beads and used them to occupy dead space after debridement of infected 

bone (Klemm, 1979). 

The major advantage local antibiotic therapy offers over systemic therapy is lower serum 

antibiotic concentrations thus reducing toxicity-related side effects (Joosten et al., 2005; 

Nandi et al., 2009). Based on the commonly implicated causative microbes involved in 

osteomyelitis, the most widely accepted antimicrobial agents in local delivery systems are 

amino glycosides and to a lesser extent various β-lactam agents and quinolones. 

Importantly, a combination therapy of antibiotics proves useful in the reduction of the 

toxicity of individual agents, to prevent the development of antimicrobial resistance and to 

treat mixed infections involved in osteomyelitis and also demonstrate a synergistic effect 

(Nandi et al., 2009, Gogia et al, 2009). Antibiotic agents used in local bone delivery 

systems such as tobramycin, clindamycin, vancomycin, gentamicin, amongst others, are 

selected based on certain criteria (table 1.10). 

Release of the antibiotic in such systems depends on the rate of dissolution of drug in its 

matrix allowing its penetration through the pores of the carrier. The amount of release in 

highly soluble β-lactam agents depends on the surface area of the carrier and on the initial 

concentration of the drug in the prepared systems. For relatively insoluble agents like 

quinolones; the rate of drug release depends on the porosity of the matrix and on the 

dissolution of the drug in the matrix (Allababidi and Shah, 1998).  

Drug delivery systems (DDSs) developed for local delivery of antibiotics can be classified 

into non-biodegradable (or non-resorbable) and biodegradable (or resorbable) delivery 

systems.  
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Table 1.10   Criteria for determining antibiotic agents used in local bone delivery systems 

(Kanellakopoulou and Giamarellos-Bourboulis, 2000, Nandi et al., 2009; Gogia et al., 2009, 

Campoccia et al., 2010) 

Criteria for use of antibiotics in local bone delivery 

Activity against the most common bacterial pathogens involved in chronic osteomyelitis 

Local release at concentrations exceeding several times (usually 10 times) the minimum inhibitory 

concentration (MIC) for the involved pathogen 

Inability to trigger any adverse effects 

Not enter the systemic circulation 

Stability at body temperature 

Favourable water solubility (B.C.S.  Class I) 

1.5.5.1 Non-biodegradable delivery systems 

The most widely used non-biodegradable delivery systems for local antibiotic delivery are 

polymethylmethacrylate (PMMA) beads. The major drawback associated with non-

biodegradable systems is the need to remove the system from the application upon 

completion of antibiotic release, due to non-biodegradability (Kanellakopoulou and 

Giamarellos-Bourboulis, 2000), thermal damage to the antibiotic and poor elution 

properties. Also, resistant bacteria may appear on the carrier-surface during the later 

stages of low level antibiotic release (Azi et al., 2010). 

Commercially available polymethylmethacrylate (PMMA) cements consist of a powdered 

polymer mixed with a liquid monomer to form a solid structure. Currently, there are five 

antibiotic-laden PMMA bone cement products that are approved by the U.S. Food and 

Drug Administration (FDA). These five products include Simplex P, which contains 1 g 

tobramycin (Stryker Howmedica Osteonics, Mahwah, NJ); Palacos G, which contains 0.85 

g gentamicin (Zimmer, Warsaw, IN); SmartSet GHV and SmartSet MHV, which contain 1 

g gentamicin (Depuy Orthopaedics, Inc., Warsaw, IN), and the Prostalac prosthesis 

(DePuy Orthopaedics, Inc.). Premixed antibiotic PMMA beads are available and widely 

used in Europe under the name Septopal (Biomet Merck, Dordrecht, the Netherlands) and 
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popularized by Klemm (1979) but are not currently approved in the United States (Wu and 

Grainger, 2006; Gogia et al., 2009; Azi et al., 2010). 

Non-commercial preparations of beads prepared by surgeons themselves are also in use. 

Physician-made beads are individually manufactured by the surgeon using commercially 

available PMMA polymer mixed with a powdered antibiotic or can be created with the 

assistance of an individually made bead mould. However, these types of beads have the 

disadvantage of a lack of thorough mixing of the antibiotic into the material and a lack of 

uniform size of bead, resulting in lower antibiotic availability (Nelson et al., 1997; 

Kanellakopoulou and Giamarellos- Bourboulis, 2000; Wu and Grainger., 2006). 

the requirements of antibiotics incorporated into non-biodegradable delivery systems is 

their thermostability at high temperatures (up to 100°C, where polymerisation occurs) and 

hydrophilicity (Azi et al., 2010). Aminoglycosides, such as gentamicin and vancomycin, 

are heat stable and are therefore extensively used in these preparations (Nandi et al., 

2009). The most extensively studied antibiotic is gentamicin, an excellent additive to 

PMMA, which is attributed to its broad spectrum of action and good thermostability (Gogia 

et al., 2009; Azi et al., 2010). 

Drug elution characteristics from PMMA vary from one antibiotic to another. Leakage of 

antibiotic from minute cracks in the cement has been established as the mechanism of 

elution. Certain antibiotics such as polymyxin B sulfate, tetracycline and Chloramphenicol 

do not elute from PMMA due to their insufficient thermostability. It has been evidently 

observed that in vitro elution of both aminoglycosides and quinolones are at very high 

concentrations, but the peak of release occurs on the first day (Nandi et al, 2009).  

1.5.5.2 Biodegradable delivery systems 

The general criteria for selecting a polymer for use as a biomaterial are to match the 

mechanical properties and the time of degradation to the need of the application. The 

ideal polymer to be used for orthopaedic applications will exhibit the characteristics 

described in table 1.11 

. 
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   Table 1.11 Criteria for selecting biomaterials for orthopaedic applications 

Criteria for biomaterial use in orthopaedic applications 

Inability to induce an inflammatory/toxic response incommensurate to its beneficial effect. 

Easily metabolised into its final degradation product, in the body during or after fulfilling its purpose in the 

body, leaving no toxic trace 

Easily processed into its final product form 

Adequate shelf life 

Easily sterilisable before application 

Since the advent of the use of PMMA beads introduced by Buchholz and Engelbrecht in 

1970, an alternative osteomyelitis treatment has been investigated, more specifically a 

treatment which will make a follow-up surgery to remove PMMA beads after antibiotic 

release unnecessary (Campoccia et al., 2010). In addition, the use of PMMA in local 

antibiotic treatment has added disadvantages of development of antibiotic resistance due 

to prolonged release of sub-therapeutic levels of antibiotic, systemic toxicity to absorbed 

monomer in some cases and lack of participation in the bone healing process (Gogia et 

al., 2009;). These limitations of PMMA bone cement led to an investigation for other 

alternatives as vehicle antibiotic delivery systems. The major focus for this area of 

research has been on biodegradable materials (Kanellakopoulou and Giamar, 2000). 

The use of biodegradable delivery systems in orthopaedic treatments also offers other 

advantages. An implant prepared from biodegradable polymer can be engineered to 

degrade at a rate that will slowly transfer load to the healing bone, thus eliminating the 

dead space and, eventually, to guide its repair (Middleton and Tipton, 2000; Nandi et al, 

2009). The majority of these biodegradable materials are biocompatible and non-toxic, 

breaking down into degradation products, which are normal metabolites of the body’s 

metabolism, making clearance from the body easier without any toxic build-up 

(Gunatillake and Adhikari, 2003). 

Biodegradable delivery systems have been categorised into two major groups based on 

their material composition: natural-based and synthetic biodegradable delivery systems 

(Rezwan et al., 2006; El-Husseiny et al., 2011). Natural based materials are further 

classified based on their origin and can be either polysaccharides (starch, alginate, 

chitin/chitosan, hyaluronic acid derivatives) or proteins (soy, collagen, fibrin gels, silk). 

Synthetic biodegradable polymers comprise polyesters (such as poly (lactic acid) (PLA) 
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and poly (glycolic acid) (PGA), as well as poly(lactic-co-glycolide) (PLGA) copolymers), 

poly(e-caprolactone) (PCL), polypropylene fumarate (PPF) and poly-hydroxyalkanoates 

(PHB, PHBV, P4HB, PHBHHx, PHO)); polyanhydrides; bioactive glasses (BAGs) and 

calcium phosphates and other ceramics (Middleton and Tipton, 2000; Rezwan et al., 

2006; Puppi et al, 2010; El-Husseiny et al, 2011). 

1.5.5.3 Hydroxyapatite  

Drug delivery systems (DDSs) exhibiting the properties of biocompatible bioceramics are 

highly desirable and are thus shaped as powders, blocks, cements, scaffolds, porous 

devices and coatings for this purpose (Mizushima et al, 2006; Zhou and Lee, 2011; Arcos 

and Vallet-Regis, 2013). One major example commonly used for this property is synthetic 

hydroxyapatite (HA). Hydroxyapatite is the inorganic component of the bone structure. 

Synthetic hydroxyapatite is chemically and structurally similar to the mineral phase of 

bone demonstrating remarkable osteogenic and osteoconductive properties (Itokazu et al, 

1998). 

Because of its chemical and structural similarities to the inorganic phase of human bone, 

hydroxyapatite (HA) shows excellent biocompatibility (Arcos and Regis, 2013). Many 

research studies have been focused on the use of hydroxyapatite as antibiotic carriers for 

treating bone infection, since their chemical composition is very similar to the bone 

mineral phase (Baro et al, 2002).  

Induction of bone growth into HA blocks is very unfavourable because of its slow 

degradation rate and that it is slowly replaced by host bone after implantation (Mizushima 

et al, 2006). Porous HA bodies and granules are quite popular in the clinical setting to 

guide and allow new host bone in-growth through the pores (Zhou and Lee, 2011).  

Synthesized HA is very brittle and therefore cannot be used for load bearing applications. 

Hence, implant materials composed of hard and soft phases (composite materials) are 

used for total bone replacement (Zhou and Lee, 2011). HA and other polymers are 

fabricated into composite materials to synergise the osteoinductive and osteogenic 

properties with the improved mechanical properties as well as good biocompatibility. Such 

polymers include poly-methyl methacrylate, poly (3-hydroxybutyrate-co-3-hydroxyvaleate), 

polyacrylic acid, poly (lactic acid-co-glycolic acid) polymers (PLGA) and carbon nano- 

tubes (CNTs), among others (Schnieders et al, 2006; Zhou and Lee, 2011). 

Antibiotic impregnated hydroxyapatite has also been used to treat patients with chronic 

osteomyelitis after removing necrotic tissue. The ceramic material was gradually 
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incorporated into the host bone and uneventful healing was observed within three months 

with no recurrence of infection (Nandi et al, 2009).  

Gentamicin loaded hydroxyapatite cement has been investigated using in vitro and in vivo 

studies for its effectiveness against post traumatic chronic osteomyelitis. In HA-

gentamicin-treated animals, no growth was detectable after 7 days of culture. No 

histopathological evidence of infection was observed in the HA/gentamicin-treated group 

while different stages of chronic osteomyelitis were observed in other groups (Joosten et 

al, 2004). 

Micro porous HA was analysed for antibacterial activation using three different antibiotics 

including gentamicin, in comparison to dense HA. Bacteria inhibition tests against different 

pathogenic bacteria were performed for testing the antibiotic adsorption and the 

microbiological effectiveness after loading with different antibiotics. Results demonstrated 

that the adsorbed amount on the micro-porous HA was largely higher than that on dense 

HA and an increase in the duration of antibiotic release was observed (Chai et al, 2007). 
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1.6    AIMS AND OBJECTIVES 

Current literature has extensively investigated the use of ceramic nanoparticles, in 

particular, calcium phosphates, as nanoparticulate delivery systems for local delivery to 

the bone in form of coated transplants, scaffolds, composites or sponges as well as 

cements and blocks. However, there has been no research to harness the controlled 

release advantage of aquasomes, which can be likened to coated (or modified) ceramic 

nanoparticles for sustained delivery of bone growth factors or antibiotics to aid in bone 

regeneration. The aim of the present research is to investigate the potential of aquasomes 

as drug delivery systems to aid in fracture healing, treat bone infections and achieve the 

topical/ transdermal sustained delivery of proteins, antibiotics and growth factors.  

Objectives  

A summary of the objectives in this thesis are: 

1. To investigate the amount of protein that can be adsorbed unto the nanoparticulate

biodegradable polymers (aquasomes) using BSA as a model protein; and the amount of 

protein (BSA) that can be released over a specified period.   

2. To investigate the effect of nanocore sizes (20nm, 40nm and 60nm compared with

large HA nanoparticles and coating time on the calculated surface areas available for 

drug/protein adsorption. 

3. To investigate the release of BSA from loaded aquasomes for topical/transdermal

drug delivery using non-aqueous silicone elastomer gels (NASEGS) and aqueous semi-

solid polymeric gels. (HPMC and HEC) 

4. To characterize the rheological and textural parameters of NASEGS, HPMC and

HEC gels and its correlation to protein (BSA) release 

5. To analyse the feasibility of in vitro permeation of BSA from loaded aquasomes

using Franz cell equipment. 

6. To determine the amount of BSA that can be released from aquasomes (in

comparison to drug/protein alone) without having a toxic effect on human cells, using 

human dermal fibroblasts (HDFa) as a model via MTT toxicology assay. 

7. To investigate the efficacy of antibiotic (gentamicin) released from aquasomes by

challenging its bactericidal activity against low and high inoculums of S. aureus. 
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8. To investigate the osteogenic, differentiation and angiogenic effects of growth

factor loaded aquasomes (BMP-2 and VEGF 121) when exogenously added to 

osteoprogenitor cells (MG63), mesenchymal cells (ATMSCs) and endothelial cells 

(HUVECs) respectively while using SAOS-2 cells (osteosarcoma cell line) as an 

osteoblastic cell model. 
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CHAPTER 2 
MANUFACTURE AND OPTIMISATION 

OF AQUASOMES
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2.1 INTRODUCTION 

2.1.1 Nanoparticles 

Nanoparticles are an important area of research in the field of drug delivery because they 

can deliver a wide range of drugs to varying areas of the body for sustained periods of time 

(Hans and Lowman, 2002). 

Generally, nanoparticles can also be used to provide targeted (cellular/tissue) delivery of 

drugs, to improve oral bioavailability, to sustain drug/gene effect in target tissue, to solubilize 

drugs for intravascular delivery, and to improve the stability of therapeutic agents against 

enzymatic degradation (nucleases and proteases), especially of protein, peptide, and nucleic 

acids drugs (Panyam and Labhasetwar, 2002). 

Nanoparticles used in biomedical/research and drug delivery include inorganic nanoparticles, 

polymeric nanoparticles, solid lipid nanoparticles, liposomes, nanocrystals, nanotubes, 

dendrimers, etc. (Faraji and Wipf, 2009). 

Biodegradable polymers have been widely explored for the fabrication of drug delivery 

systems. There has been increased interest in the development of biodegradable polymeric 

nanoparticles for drug delivery which can be attributed to their application in controlling the 

release of drugs, stabilizing labile molecules such as DNA, proteins and peptides from 

degradation and targeted drug delivery (Hans and Lowman, 2002; Faraji and Wipf, 2009; 

Singh and Lillard, 2009).  

2.1.2 Vital characteristics for drug delivery via nanoparticles 

2.1.2.1 Particle size 

The in vivo distribution, biological fate, toxicity and targeting ability of nanoparticles are 

mainly determined by their particle size and size distribution. They also influence drug 

loading, drug release and stability of nanoparticles (Singh and Lillard, 2009; Baratt, 2000; 

Baratt, 2003).  

In comparison to microparticles, nanoparticles have a comparative high cell uptake and wider 

cellular and intracellular targets owing to their small size and mobility. Smaller particles also 

have a larger surface area-to-volume ratio therefore most of the drug associated with small 

particles would be at or near the particle surface, leading to faster drug release (Baratt, 2000; 

des Rieux et al, 2006). 



73 

2.1.2.2  Surface properties of nanoparticles 

The surface charges of nanoparticles influence their opsonization, which in turn influences 

their clearance half-life in the blood circulation. Zeta potential analysis is used to characterise 

the surface charge of particles. It measures the electrical potential of particles which is 

influenced by the composition of that particle and its dispersion medium. Zeta potential can 

be used as a marker of particle stability. Nanoparticles with a zeta potential of ±30mV are 

stable in suspension. Such stability is vital in preventing aggregation. Surface modification of 

nanoparticles to decrease hydrophobicity increases its stability (Patil et al, 2007; des Rieux 

et al, 2006). 

Nanoparticles can be recognised by the host immune system when administered and cleared 

by phagocytosis in the circulation. The hydrophobicity of a nanoparticle affects the binding of 

opsonins (blood components) to its surface. Non-modified nanoparticles are rapidly 

opsonized and cleared from the blood circulation (Patil et al, 2007). 

To increase the probability of successful drug targeting, opsonization must be reduced to 

prolong the circulation of nanoparticles in vivo. This can be accomplished by coating 

nanoparticles with hydrophilic polymers/surfactants or fabricating nanoparticles with 

hydrophilic properties (Singh and Lillard, 2009). 

2.1.2.3  Drug loading and release 

The drug loading capacity of a successful nano-carrier delivery system must be high enough 

for the effective delivery of the therapeutic agent to its targeted site. Appropriate 

absorption/adsorption is achieved by incubating the nano-carrier with a concentrated drug 

solution. Drug loading, entrapment and adsorption efficiency is dependent on the matrix 

composition, molecular weight of drug, drug-polymer interactions and the presence of end 

functional groups (Singh and Lillard, 2009). 

The rate of drug release is dependent upon drug solubility, desorption of the adsorbed drug, 

drug diffusion through nanoparticle matrix and nanoparticle erosion and/or degradation 

processes. This demonstrates that solubility, diffusion and degradation govern drug release 

from nanoparticles. Larger particles have a slower burst release effect than smaller 

nanoparticles. Also, the amount of drug loading is directly proportional to the amount and 

rate of drug release (Hans and Lowman, 2002).  

The method of incorporation greatly affects the release profile of the absorbed/adsorbed 

drug. If the drug is incorporated during nanoparticle formulation, the system will exhibit a 

small burst effect and sustained release characteristic. If the nanoparticle is coated with a 
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polymer, the release of the drug is then determined by desorption or diffusion of the drug 

from the polymeric membrane (Singh and Lillard, 2009). 

2.1.3 Nanoparticulate delivery systems 

Nanoparticles are solid colloidal particles comprising macromolecular substances that vary in 

size from 10 to 1000nm (however, particles greater than 200nm are not usually pursued in 

nano-medicine, i.e., the width of micro-capillaries) (Singh and Lillard, 2009).  

The characteristic properties of nanoscale materials (such as physical, chemical, 

mechanical, electrical, magnetic and optical properties) can be utilized to strengthen the 

performance of drug delivery systems. More precisely, the nanometre size of a drug carrier 

provides numerous advantages for drug delivery purposes, which include larger surface 

area, increased dispersability, and optimizable mechanical properties, amongst others (Yang 

and Webster, 2009). 

In addition to size benefits, nanoparticles also have various properties that can be tailored for 

specific applications owning to their exceptional bulk or surface properties (Rieux et al, 2006; 

Yang and Webster, 2009). The drug or protein of interest is usually dissolved, adsorbed, 

entrapped, attached and/or encapsulated into or onto a nano-matrix. The nanoparticles are 

constructed and manipulated to possess and exhibit distinct properties and release 

characteristics best suited for the delivery of the drug or protein (Barratt, 2000; Singh and 

Lillard, 2009). 

2.1.4 Inorganic nanoparticles 

Ceramics can be described as solid compounds that are formed by the application of heat, 

and sometimes heat and pressure, comprising at least one metal and a non-metallic 

elemental solid or a non-metal, a combination of at least two non-metallic elemental solids, or 

a combination of at least two non-metallic elemental solids and a non-metal (Habraken, 

Wolke and Jansen, 2007).  

Ceramic nanoparticles are generally composed of silica, alumina, calcium phosphates, 

zirconia and titanium dioxides. They can also be composed of metals, metal oxides and 

metal sulphides. These nanostructures can be engineered to vary in surface composition, 

size, shape and porosity to evade the reticuloendothelial system (RES) and act as an 
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encasement to protect a drug or protein from denaturation or degradation (Faraji and Wipf, 

2009).  

Calcium phosphates (CaPs) are a major class of inorganic nanoparticles which are popular 

as biomaterials attributing to their biocompatibility and chemical similarity to human bone 

(Ginebra et al, 2006). There are different types of CaPs available which differ in 

calcium/phosphate ratio as well as physical properties (Kalita et al, 2007; see table 2.1 

below). These include hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), biphasic 

calcium phosphate (BCP), amorphous calcium phosphate (ACP), carbonated apatite (CA) or 

calcium deficient HA (CDHA) (Verron et al, 2010). 

Table 2.1 Physical properties of various phases of calcium phosphates 

(Kalita et al, 2007) 

Phases Chemical formulae Ca/P ratio Density (g/cm
3
)

Hydroxyapatite (HA) Ca10(PO4)6 (OH)2 10/6 3.16 

α-Tricalcium phosphate 

(α-TCP) 
Ca3(PO4)2 3/2 2.86 

β-Tricalcium phosphate 

(β-TCP) 
Ca3(PO4)2 3/2 3.07 

Tetracalcium phosphate 

(TTCP) 
Ca4P2O9 2/1 3.05 

2.1.5 Aquasomes 

Aquasomes were originally fabricated by Nir Kossovsky in 1996 (Kossovsky et al, 1996), to 

control molecular polymorphisms of bio-actives to retain their biological activity. Since then, 

an increasing body of literature has demonstrated the potential of aquasomes as 

nanocarriers systems for hydrophobic drugs, oxygen, antigen, proteins and peptides (Table 

2.2).   

Often referred to as ‘water bodies’, due to their water-like properties, aquasomes additionally 

provides a platform for preserving the conformational integrity and biochemical stability of 

bio-actives (Girota and Bajaj, 2012).  

They are three-layered self-assembled structures, comprising a solid phase nano-crystalline 

core coated with an oligomeric film which a biochemically active molecule (drug or 
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biopharmaceutical) is adsorbed onto  as illustrated in Figure 1.4 (Khopade et al, 2002). The 

preparation of aquasomes is a three-step process which constitutes of the following 

processes: formation of an inorganic nanocore (usually ceramic), coating of the nanocore 

with a polyhydroxyl oligomer (usually a sugar) and the loading of the drug/protein of interest. 

The systematic process is highlighted in Table 2.3. 

2.1.5.1 Rationale behind the development of aquasomes 

Aquasome formulations protect bio-actives via its oligomeric coating. Its’ constituent 

carbohydrate film prevents destructive denaturing interaction between drug and solid carriers 

(Kossovsky et al, 1996). Aquasomes maintain molecular confirmation and optimum 

pharmacological activity. The molecular conformation of proteins and drugs can be 

preserved by incorporating such biological molecules on aquasomes with natural stabilizers 

(the natural sugar coating), which act as dehydroprotectants (Mesariya et al, 2011; Jain et al, 

2012). 

 Table 2.2  Application of aquasomes in drug delivery in the literature 

2.1.5.2 Properties of aquasomes 

Aquasomes have functionalized active surfaces which can be efficiently loaded with 

substantial amounts of drugs and biopharmaceuticals via ionic, entropic, non-covalent bonds, 

and van der waals forces (Kossovsky et al, 1995; Goyal et al, 2008). Due to their size (<1µm, 

Applications researched References 

Insulin delivery Cherian et al (2000) 

Oral delivery of acid labile enzyme Rawat et al (2008) 

as an oxygen carrier Khopade et al (2002) 

In antigen delivery Kossovky et al (1995) 

In drug delivery; 

as a nano-carrier for hydrophobic drugs 

Umashankar et al, (2010); 

Sutar and Mokale (2012) 

In gene delivery Jain et al (2012) 

In vaccine delivery Goyal et al, 2008 
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based on the size or nanocore used), and structural stability, aquasomes avoid clearance or 

degradation by the reticuloendothelial (RES) system (Jain et al, 2012).  

As colloidal size range particles, they are likely to be more concentrated in the liver and 

muscles (Yadav et al, 2011). Also, because contents are adsorbed on their surface, in the 

case of antigen delivery, issues associated with receptor recognition are avoided and 

pharmacological action is attained quickly (Kossovsky et al, 1995). 

The mechanism of action of aquasomes is controlled by their surface chemistry. They deliver 

adsorbed contents through a combination of specific targeting, molecular shielding and slow 

and sustained release processes (Mesariya et al, 2011; Jain et al, 2012). 

Table 2.3 Method of preparation and structure of aquasomes 

(Rojas-Oviedo et al, 2007, Nanjwade et al, 2013) 

    Formation of inorganic core

Dependent on the material selected 

Materials used: ceramic, nano-crystalline brushite and nano-crystalline 

diamond particles 

Coating of core

Ceramic core is coated with a polyhydroxyl oligomer (mostly sugars) 

The coating process is carried out by addition of carbohydrate into an 

aqueous dispersion of the cores under sonication. 

Resulting suspension is subjected to lyophilisation to promote an 

irreversible adsorption of carbohydrate onto the ceramic surface. 

The unadsorbed carbohydrate is removed by centrifugation. 

 Drug/protein loading

The drug/protein of choice is loaded to the coated particle by adsorption. 

Drug/protein solution of known concentration is prepared and coated 

particles are dispersed into it. 

the dispersion is then lyophilized to create the aquasomes 
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2.1.6  Aims and Objectives 

In this study, the primary focus was to optimise the present aquasome formulation fabricated 

by the research group as reported in Lowry and Abdulrazzaq (2012), by analysing the effect 

of nanocore size and an increase in coating time (with oligomeric coating) on the drug/protein 

loading during aquasome manufacture. The following objectives formed the foundation for 

the research questions that required investigation. 

1. Comparison between solid hydroxyapatite cores with particle size of 950±160nm

previously used in aquasomes and nano-hydroxyapatite with smaller defined diameters 

(20nm, 40nm, 60nm). 

2. Comparison of surface on naked solid hydroxyapatite cores (950±160nm) vs. nano-

hydroxyapatite with defined diameters (20nm, 40nm, 60nm) which represent a range of small 

nanoparticle sizes for nanoparticulate drug delivery. 

3. Investigation of the effect of increase in coating time on increased surface area

available for drug/protein adsorption. 

4. Elucidation of surface characteristics of the aquasomes and demonstration of the

adsorption drug/protein onto the nanocores, using BMP-2 loaded aquasomes and 

fluorescent labelled aquasomes (metronidazole, in this case), by imaging techniques. 

5. Optimisation of analytical methods employed in protein quantification and individual

aquasome constituents while in formulation. 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

Nano-sized hydroxyapatite powders (20nm, 40nm, 60nm) were purchased from MKNano 

Corporation (Ontario, Canada). Solid hydroxyapatite cores (with particle size marketed as 

<200nm) were purchased from Sigma Aldrich (Poole, UK), D (+)-Trehalose dehydrate was 

purchased from Acros organics (Belgium). Metronidazole, Phosphate Buffer Saline (PBS, 

tablets), trifluoroacetic acid (TFA) and methanol were also purchased from Sigma Aldrich 

(Poole, UK). Lyophilised rhBMP-2 was purchased from eBioscience (Hatfield, UK). BMP-2 

ELISA kit was purchased from Peprotech Ltd. (UK). All reagents and materials were of 

analytical grade. 

2.2.2 Methods 

2.2.2.1 Selection and coating of ceramic nanocores 

Hydroxyapatite cores, with particle size claimed as <200nm from Sigma Aldrich (Poole, UK) 

was used in fabricating previous aquasome formulations in the research group (AQUA1). 

However, the mean particle size of the HA nanocores were measured to be 950 ± 160 nm. 

To analyse the effect of nanocore size and coating times on drug/protein loading, different 

HA nano-powders and varying coating times were chosen and compared. 20nm, 40nm and 

60nm nano-hydroxyapatite powders from MKNano Corporation (Canada) were chosen for 

this study. Very small nanoparticles within the range of 1–20 nm have long circulatory 

residence times with slow extravasation from the vasculature. Nanoparticles that are 

between 30 and 100 nm in diameter are small enough to avoid reticuloendothelial and 

phagocytic clearance, in contrast to larger nanoparticles, which are efficiently cleared. These 

properties play a role in passive and active targeting which in turn determine the efficacy of 

drug delivery using nanoparticles of such sizes (Faraji and Wipf, 2009). 

To coat the nano-hydroxyapatite cores with an oligomeric film, 100mg of each of the nano-

hydroxyapatite sizes was mixed (100rpm) with a 0.1M trehalose solution for 1.5h, 2.5h and 

3h at 4°C.  Previous research by the group explored the coating times of 1h and 2.5h with 

the unoptimised solid HA cores. Hence, this led to the investigation of a shorter (1.5h) and 

longer (3h) coating times with the HA nanocores (20nm, 40nm and 60nm) for any significant 

difference in zeta potential.  
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The dispersion was subsequently centrifuged (1500rpm, 10mins) and supernatant was 

discarded. Cores were washed in PBS buffer or distilled water to remove unadsorbed 

trehalose. Trehalose-adsorbed cores were then freeze-dried to promote the irreversible 

adsorption of trehalose onto the hydroxyapatite cores. The naked nano-hydroxyapatite cores 

and the freeze-dried trehalose-coated nanocores were then analysed for their surface area 

using a porosimeter. The process of fabrication of aquasomes is illustrated in Figure 2.1. 

 Figure 2.1  A cycle illustrating the fabrication process of aquasomes 

The freezing protocol used is as follows: Thermal treatment at -45°C for 60mins maintaining 

the vacuum pressure at less than 350mbar. The primary drying step involved was in two 

phases: -40°C for 10.5hours and further drying at 20°C for 4hours while the vacuum pressure 

was kept at 50µbar (Tang and Pikal, 2004). Freezing (thermal treatment) temperature was 

chosen with respect to the collapse temperature (Tc) of trehalose (-34°C). This temperature 

chosen was required to be well below this temperature to avoid product collapse. 

Protein/drug solution with a known concentration (50ng/ml BMP solution for BMP-loaded 

aquasomes and 2mg/ml metronidazole solution for metronidazole-loaded aquasomes) was 

added to trehalose-coated cores. Drug/protein solution concentrations were chosen based 

Coating of 
Hydroxyapatite 
nanocores with  

Trehalose solution 

(at RT) 

Washing, 
Centrifugation 

and 
Lyophilisation 

(1500 rpm, 
10mins) 

Drug/Protein 
loading  using 
solutions with 

known 
concentrations 
(at 4°C, 25°C) 

Washing, 
Centrifugation 

and 
Lyophilisation 

(1500 rpm, 
10mins) 

AQUASOMES 
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on therapeutic and antimicrobial effects observed in literature. The aqueous dispersions were 

mixed for a further 3.5 hours at 4°C, centrifuged (1000rpm, 10mins) and washed with PBS to 

remove unadsorbed drug/protein molecules in solution. They were then freeze-dried to yield 

drug/protein loaded aquasomes.  

2.2.2.2  Zeta potential analysis 

Naked hydroxyapatite nanocores, trehalose-coated hydroxyapatite cores and BMP-loaded 

aquasomes were characterised through zeta potential analysis measuring the positive 

charge emitted by the carbohydrate (trehalose) coating in comparison to naked 

hydroxyapatite particles. A small quantity of naked hydroxyapatite cores and coated cores 

was mixed with distilled water and placed into the probe for zeta analysis using the 

NanoBrook 90Plus Zeta Particle Size Analyzer (Brookhaven Instruments Corp., NY). The 

mean and standard error of the results were compared. 

2.2.2.3  Surface area analysis 

To optimise the aquasome formulation, smaller nanocore sizes (20nm, 40nm and 60nm) 

were chosen and coated with trehalose for difference durations. The surface areas were 

compared to analyse the effect of nanocore size and coating time on the surface area 

available for drug/protein adsorption. These optimised aquasome formulations were also 

compared with an earlier aquasome formulation (AQUA1) with larger nanocore sizes. 

Surface area analysis was performed by nitrogen (N2) physisorption on a Quantasorb Nova 

1000 instrument at 77 K, after outgassing approximately 100-200 mg of sample (HA 

nanopowders) which was accurately weighed into the sample tube, at 120 °C for at least 2 h. 

Subsequently, the data was processed using NOVAWin software version 2.1. Surface areas 

were calculated using the Brunauer–Emmet–Teller (BET).  

Sample preparation: 

Outgassing: Before the specific surface area of the sample can be determined, it is 

necessary to remove gases and vapours that may have become physically adsorbed onto 

the surface after manufacture and during treatment, handling and storage. If outgassing is 

not achieved, the specific surface area may be reduced or may be variable because an 

intermediate area of the surface is covered with molecules of the previously adsorbed gases 

or vapours. The outgassing conditions are critical for obtaining the required precision and 

accuracy of specific surface area measurements on pharmaceuticals because of the 

sensitivity of the surface of the materials. 
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Conditions: The outgassing conditions must be demonstrated to yield reproducible BET 

plots, a constant weight of test powder, and no detectable physical or chemical changes in 

the test powder. The outgassing conditions defined by the temperature, pressure and time 

should be chosen so that the original surface of the solid is reproduced as closely as 

possible. Outgassing of many substances is often achieved by applying a vacuum, by 

purging the sample in a flowing stream of a non-reactive, dry gas, or by applying a 

desorption-adsorption cycling method. In either case, elevated temperatures are sometimes 

applied to increase the rate at which the contaminants leave the surface. Caution should be 

exercised when outgassing powder samples using elevated temperatures to avoid affecting 

the nature of the surface and the integrity of the sample. 

If heating is used, the recommended temperature and time of outgassing are as low as 

possible to achieve reproducible measurement of specific surface area in an acceptable 

time. For outgassing sensitive samples, other outgassing methods such as the desorption-

adsorption cycling method may be employed. 

2.2.2.4   Scanning Electron Microscopy (SEM) 

To understand the morphology of the nanocores and loaded aquasomes and the mechanism 

in which the drug is adsorbed, the surface morphologies were evaluated with a scanning 

electron microscope.  

Approximately 1mg samples of aquasome formulation (BMP-2, metronidazole) were lightly 

sprinkled on the carbon surfaces of universal specimen stubs taped with double-sided 

adhesive strip. Samples were then double coated with a thin layer of gold under low vacuum 

for about 3 minutes in the presence of Argon gas using a sputter coater, Polaron SC500 

(Polaron Equipment Ltd, Watford, UK) at 20 mA. The particle surface morphology was 

captured using a Cambridge Stereo Scan (S90) Electron Microscope to produce micrographs 

including acceleration voltage and magnification. 

2.2.2.5   Confocal imaging 

Metronidazole, a fluorescence-emitting drug, was used to fabricate aquasomes to illustrate 

how the drug is adsorbed onto the nanocores. 1mg of the formulation was put on microscope 

coverslips, a drop of oil was placed on a microscope slide and the coverslip placed on the 

drop, such that the aquasomes were in contact with the mounting medium (oil). The prepared 

sample was viewed using a Leica TCSSP5 II confocal microscope (Wetzlar, Germany) with 
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an oil objective at 63X magnification (HCX PLAPO 63X/1.4-0.6 oil CS). The wavelength used 

was 488nm, for green fluorescence with resolution and speed of 1024X1024/100Hz; 10Hz.  

Metronidazole-loaded aquasomes were analysed in the confocal imaging assay solely for the 

fluorescent emitting properties of metronidazole, which enables appropriate labelling of  the 

aquasomes. 

2.2.2.6  Optimisation of analytical protocols: ELSD vs. ELISA 

To optimise the analytical methods used in quantifying protein and/or oligomeric sugar, the 

option of a more efficient and rapid assay was explored. The analysis of the individual 

aquasome constituents while still being adsorbed onto the ceramic nanocores was been 

investigated. Current practice analyses each constituent (in this case, oligomeric coating, 

trehalose; protein, BMP-2) using separate analyses, in which indirect methods at best are 

used to quantify the adsorbed oligomeric coating and drug/protein. 

In this study, the ELISA technique was compared to the ELSD (Evaporating Light Scattering 

Detector) liquid Chromatography technique. Schematic diagrams illustrating the various 

steps involved in both analytical processes are shown in Figures 2.2 and 2.3. 
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Figure 2.2    ELISA overview flowchart and schematic diagram. This figure is a 

representative diagram illustrating the general steps involved in an ELISA assay 

showing the coating of the plate, blocking of unbound sites, and detection of antigen 

with intermittent washing between these steps. 
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Figure 2.3 Schematic diagrams illustrating the flow of analysis using evaporating 

light scattering detection (ELSD). The steps involved in ELSD analysis include 

nebulization, evaporation of mobile phase and detection of analyte (Waters, 2016, Young 

and Dolan, 2003). 

The systematic process of detection using the ELSD is discussed below highlighting the 

steps of nebulization, evaporation of mobile phase and optical detection. 

Nebulization: 

A nebulizer combines a gas flow of an inert gas (such as nitrogen) with the column effluent to 

produce an aerosol of uniformly sized droplets. A concentric flow nebulizer allows the carrier 

gas flow to be controlled. A high gas flow produces small droplets requiring less heat to 

evaporate the solvent while a low gas flow produces large droplets, requiring more heat to 

evaporate the solvent.  

Mobile-phase evaporation or desolvation: 

Evaporation occurs as a function of time, temperature and pressure of the carrier gas. 

Therefore, the use of HPLC mobile phases that easily and rapidly evaporate and desolvate is 

of importance. Solvents with fairly low boiling points and low viscosities such as the common 

HPLC mobile phases like water, acetonitrile, methanol, ethanol and TFA are generally used. 

This is because viscous and high-boiling solvents might fail to completely separate from 

analyte molecules or species before the detection step. This incomplete separation then 

adds to the background noise and decreases the analyte signal response, resulting in low 
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sensitivity (slope of the calibration plot) and high limits of detection (LOD). The evaporated 

HPLC solvents are condensed and captured in the recommended solvent trap and exhaust 

routing. 

Optical detection: 

Light striking the dried particles that exit the drift tube are scattered and the photons are 

detected by a photodiode or photomultiplier tube at a fixed angle from the incident light. The 

intensity of scattered light is proportional to the mass of solute passing through the detection 

chamber.  

The size (diameter) of the analyte particles determines how the light is scattered. The 

detector measured the intensity of the scattered light at 60° relative to the excitation beam to 

minimise polarisation effects and stray light. Particles of different sized exhibit different sizes 

exhibit different angular distributions of the scattered light, and particles whose sizes and 

shapes vary have different light-scattering cross sections. In general, larger particles scatter 

more light yielding more intense signals and peak responses. 

A photomultiplier tube (PMT) converts the scattered light signal to a voltage that can be 

recorded and analysed. The stronger the scatterings, the more intense the final signal on the 

ELS detection chromatogram. The scattered light is a rough measure of the mass of material 

represented by a chromatographic peak. To some degree, this “mass” response can be 

compound-independent. However, many factors can also affect the mass response, 

particularly the density of the analyte in a small dried particle. It is also important to note that 

the output of an ELS detector has no direct relation to the molecular weight of an analyte 

(Agilent Technologies, 2012: Waters Corporation, 2006) 

In vitro release studies were performed using phosphate buffer saline (PBS, pH 7.4) as 

release media, simulating body fluid. BMP-loaded aquasomes were placed in 10ml capacity 

vials and filled with 10ml of PBS and placed in an orbital shaking incubator (100rpm, 37°C). 

Using the partial replacement method, 500µl samples were taken and replaced with the 

same volume of fresh pre-warmed release media at hourly time intervals for the duration of 

8h. Samples were analysed using an ELISA assay.  BMP-2 standards were prepared with 

0.05% Tween-20 and 0.1% BSA (50µl Tween-20 and 100mg BSA) in PBS as diluent and a 

calibration curve was used to determine corresponding BMP concentrations in supernatant 

solutions. 
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BMP ELISA was conducted as described by the manufacturers protocol, 100µl of capture 

antibody was added to each ELISA plate well (n=3), sealed and left to incubate overnight. 

Capture antibody was aspirated from the wells and each plate was washed 4 times using 

300µl of wash buffer per well. Plates were blotted onto paper towels to remove all the liquid 

and 300µl of block buffer was added to each well. Plates were incubated for at least 2 hours. 

Plates were further aspirated, washed 4 times and blotted onto paper towels. 

100µl of the samples from each time point of the in vitro release study were added to the 

wells (n=3). The plates were sealed and incubated for 2 hours. Plates were again aspirated, 

washed 4 times and blotted on paper towels. 100µl of Avidin peroxidase was added to each 

well. Plates were incubated for 30mins at room temperature (25°C).  

SigmaFast™ OPD was used as a substrate. One OPD tablet (o-Phenylenediamine 

dihydrochloride) and one urea hydrogen peroxide tablet were dissolved in 20ml of distilled 

water. Care was taken to wrap the solution in foil as it is light-sensitive. 100µl of SigmaFast 

OPD solution was added to each well and monitored for colour development. Absorbance 

readings were monitored at 5minute intervals for 50mins. Optical density was then read at 

405nm. 

The ELSD HPLC method was developed to detect the amount of BMP present in samples 

and compared with the standard BMP ELISA on accuracy and sensitivity. A calibration of 

BMP standards ranging from 0.25 to 30ng/ml was run through the ELSD and results were 

compared with the calibration using the BMP development ELISA. 

BMP standards were analysed by reverse phase high performance liquid chromatography 

(HPLC) (YL instrument, Anyang, Korea) using a SEDEX 90LT ELSD detector (Sedex 

Sedere, Alfortville, France) in isocratic mode. The mobile phase consisted of a 0.5 ml/min 

flow rate, 50:50 percentage ratio of 0.1% trifluoroacetic acid (TFA) in water and methanol. A 

Luna C18 column (5micron, 150x 40mm id, Phenomenex, Ireland) and an optical gain of 2 

were used. An injection volume of 30µl was used and BMP had a retention time of 3.2min.     
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2.2.2.7 Statistical analysis 

The differences in surface areas between the varying HA nanoparticle sizes and coating 

times were tested for statistical significance using the one-way ANOVA on GraphPad Instat 

statistical software.  
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2.3 RESULTS AND DISCUSSION 

The emphasis of this study was to optimise the present aquasome formulation fabricated by 

the research group by investigating the effect of nanocore size and an increase in coating 

time (with oligomeric coating) on the drug/protein loading during aquasome manufacture. 

Another objective was the optimisation of analytical methods employed in protein 

quantification and individual aquasome constituents while in formulation, in comparison to 

present quantification techniques which separately analyse individual components of 

aquasomes.  

2.3.1  Zeta potential analysis 

The zeta potential of the naked hydroxyapatite cores and the trehalose-coated cores were 

analysed to measure the surface charge of the carbohydrate coating on the nanocores 

(Table 2.4). The successful coating of nanocores by the adsorption of trehalose to 

hydroxyapatite with different coating times was determined by change in carrier charge in 

comparison to blank hydroxyapatite nanocores. BMP-loaded aquasomes were also analysed 

and compared for a change in carrier charge in comparison to coated nanocores. The zeta 

potential of HA nanocores in distilled water decreased slightly for the coated 40nm HA while 

the zeta potential of 20nm and 60nm nanocores increased and then decreased slightly 

increased, with no particular trend as coating time.  

A study by Rouahi and colleagues (2006) showed that the zeta potential of different HA 

nano-powders exhibit different zeta potential values, which is dependent on the surrounding 

medium.  

the zeta potential values of a HA powder formulation (HAD) in distilled water decreased from 

0 −20 mV in comparison to another formulation (HAL) which stayed around 0 mV during all 

the immersion time. In non-complete culture medium, the zeta potential decreased to −5 to 

−7 mV for the two powders while in complete culture medium, the zeta potentials were also

similar for the two powders and stayed around −15 mV.  This value of zeta potential 

corresponding likely to the surface charge of adsorbed proteins. From these results, it can be 

hypothesized that a large amount of proteins was adsorbed on HAL powder since the zeta 

potential decreased from 0 to −15 mV after immersion in complete culture medium. This was 

confirmed by the quantification of proteins desorbed from the powders since more proteins 

were desorbed from HAL than from HAD.  

Similar results were observed in a study by Gbureck, Probst and Thull (2002). The zeta 

potential of calcium phosphate powders such as di-calcium phosphate anhydride (DPCA), 

tetra-calcium phosphate (TTCP) and hydroxyapatite were measured in various 
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organic/aqueous media with different pH values. Higher negative zeta potential values were 

observed: -15 to -18mV and -35 to -45mV in water and 0.05mol/L sodium phosphate solution 

respectively.  

This illustrates the fact that the experimental conditions can largely influence the zeta 

potential. The zeta potential values were lower when the powders in the different media were 

permanently shaken at room temperature than when it was intermittently shaken at 4°C. This 

is a well-known phenomenon. 

Moreover, for salt-type minerals such as calcite and apatite, the preferential hydrolysis of the 

surface species and preferential dissolution of ions, which is often accompanied by a 

reaction with the solution constituents and possible uptake of the solid, have been proposed 

to be the major controlling mechanism of zeta potential. 

In another study by Doostmohammadi and colleagues (2012), a negative zeta potential was 

discovered to facilitate bone cell activity. Results from this study showed that at pH 7.4 

(found in many situations in vivo), the zeta potential of the bovine bone-derived HA was 

−9.25 mV in physiological saline. The particles had a negative zeta potential above pH 6 in

physiological saline. This negative zeta potential for bone-derived HA could be an 

advantageous property particularly if the material is implanted in bone containing viable cells. 

Calcium phosphates, such as HA, with negative zeta potential promote apatite nucleation, 

bone regeneration, as well as osseointegration (Zhou et al, 2015). With regards to the 

present research, these findings are advantageous as BMP-2 loaded aquasomes were 

fabricated for culturing with osteoblast like cells to stimulate osteogenic proliferation and 

differentiation.
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Table 2.4 Zeta potential analysis of various sizes of hydroxyapatite cores coated with 

trehalose for 1.5, 2.5 and 3 hours  

Nanocore sample Zeta potential (mV) 

 BMP-loaded aquasomes 

Using 60nm nanocores -0.3233±0.54

Coated nanocores (with different coating times) 

20nm 

1.5h -1.1866±0.23

2.5h -1.465±0.29

3h -1.1033±0.12

40nm 

1.5h -1.0133±0.03

2.5h -1.4633±0.14

3h -1.6033±0.14

60nm 

1.5h -1.61±0.25

2.5h -.1.575±0.27

3h -1.51±0.24

Uncoated nanocores 

20nm -1.085±0.06

40nm -0.71±0.05

60nm -0.8633±0.06

2.3.2 Comparison between the surface areas of hydroxyapatite nanoparticles and 

nano-hydroxyapatite powders (20nm, 40nm and 60nm) 

Surface areas were calculated using the Brunauer–Emmet–Teller (BET). The BET 

instrument determined the specific surface area (m²/g) of HA nanoparticles/ nano-

hydroxyapatite powder samples. The sample is initially degassed to remove any gas or 

vapours which may have adsorbed onto the surface of the samples from the ambient air, 

enhancing adsorption of nitrogen gas (adsorbate). If samples are not degassed, the surface 

area results can be low and non-reproducible because the surface area has already been 

adsorbed by other gas molecules/vapours. The sample is then dried with nitrogen purging or 

in a vacuum applying elevated temperatures. The volume of gas adsorbed to the surface of 

the particles is measured at the boiling point of nitrogen (-196°C). The amount of adsorbed 

gas is correlated to the total surface area of the particles including pores in the surface. The 

surface area is calculated using BET method over the range of P/P0 = 0.02 - 0.2 where a 

linear relationship was maintained. Traditionally, nitrogen is used as adsorbate gas because 

it is chemically inert and the experimental temperature to perform a complete 

adsorption/desorption isotherm measurement is that of the liquid Nitrogen (77K).  
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BET is an extended version of the Langmuir model. Langmuir assumed that energy of 

absorption for the first monolayer is generally considerably larger than that of the second and 

higher layers, thus forming multilayer is only possible at much higher pressures than the 

pressure required for formation of the first monolayer (Roquerol, Roquerol and Singh, 1999). 

According to the BET model, the molecules in the first layer were assumed to act as sites for 

the second-layer molecules, and so on to infinite layers. It is also assumed that the 

adsorption behaviour of all layers above the first monolayer is the same. Moreover, assuming 

that the multilayer has an infinite thickness at p/p0 = 1, Brunauer, Emmet and Teller were 

able to derive their famous BET equation, which is usually expressed in the following linear 

form (Brunauer, Emmet and Teller, 1938): 

𝑝

𝑛(𝑝0−𝑝)
=

1

𝑛𝑚𝐶
+

𝐶−1

𝑛𝑚𝐶
×

𝑝

𝑝0 Equation 2.1 

Where n is the total adsorbed number of molecules, nm is the monolayer capacity and C is an 

empirical constant that is assumed to be exponentially related to the net heat of adsorption 

(energy of adsorption by the first monolayer minus the energy of adsorption by the 

subsequent layers) as the following simplified equation: 

𝐶 ≈ 𝐸𝑋𝑃 (
𝐸1−𝐸𝐿

𝑅𝑇
)  Equation 2.2 

Using the BET method over the range P/P0 = 0.03–0.18, where a linear relationship was 

maintained, surface areas were calculated based on the following equation 2.3: 

𝑎𝐵𝐸𝑇 =  𝑛𝑚𝐿𝜎  Equation 2.3 

Where BET surface area is related to n through the effective molecular cross-sectional area, 

σ, which is equal to 0.162 nm2 for N2 at 77 K and L, is Avogadro’s number (Table 2.5).
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Table 2.5 Definition of Symbols used in the calculated BET surface areas 

Symbol Definition 

P partial vapour pressure of adsorbate gas in equilibrium with the 

surface at 77.4 K (b.p. of liquid nitrogen), in pascals, 

Po saturated pressure of adsorbate gas, in pascals, 

Va volume of gas adsorbed at standard temperature and pressure (STP) 

[273.15 K and atmospheric pressure (1.013 × 10
5
 Pa)], in millilitres,

Vm volume of gas adsorbed at STP to produce an apparent monolayer on 

the sample surface, in millilitres, 

C Dimensionless constant that is related to the enthalpy of adsorption of 

the adsorbate gas on the powder sample. 

Appendix I, II, III and IV are adsorption/desorption isotherms for un-optimised HA, 20nm, 

40nm and 60nm nano-hydroxyapatite powders. Adsorption occurs when a gas is brought into 

contact with a solid, part of it is taken up and remains on the outside attached to the surface. 

In physical adsorption (physisorption), there is a weak Van der Waals attraction between the 

adsorbate and the solid surface. An adsorption isotherm is obtained by measuring the 

amount of gas adsorbed across a wide range of relative pressures at a constant temperature 

(typically liquid N2, 77K). Conversely, desorption isotherms are achieved by measuring gas 

removed as pressure is reduced. 

Appendix I, II, III and IV illustrate the characteristics of type II adsorption isotherms, which 

describe adsorption on macro-porous adsorbents, (in this case, hydroxyapatite), with strong 

adsorbate-adsorbent interaction or affinity. The hydroxyapatite nanoparticles used in this 

study were in the form of loose powders and thus had interparticulate pores between the 

particles. Such isotherms also indicate indefinite multi-layer adsorption after completion of 

the first monolayer and are found in adsorbents with a wide distribution of pore sizes.  Near 

to the first point of inflexion, a monolayer is completed, successfully followed by adsorption 

which continues to occur in consecutive layers. 
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Un-optimised hydroxyapatite nanocores (AQUA1) which has a large nanoparticle size 

distribution with a size range between 925-1100nm had a surface area of 22.742 m2g-1
. 

Nano-hydroxyapatite powders with particle sizes 20nm, 40nm and 60nm had surface areas 

of 54.42, 58.18 and 65.37 m2g-1 respectively illustrating a directly proportional relationship 

between smaller nanoparticle size and larger surface area. These calculated BET surface 

areas are summarised in table 2.6 showing a trend of decreased surface area with an 

increase in HA core size 

Table 2.6  Table showing the calculated BET surface areas of the hydroxyapatite 

nanocore samples 

Sample Calculated BET surface areas (m
2
g

-1
)

20nm nanopowder 65.377 

40nm nanopowder 58.188 

60nm nanopowder 54.423 

Unoptimised HA particles (950±160nm) 22.742 

In a study by Dasgupta, Bandyopadhyay and Bose (2009), a system was developed to 

manufacture different phases of CaPs. Calcium to phosphate ratios was kept at 1:5:1 to 

synthesize tri-calcium phosphate. After subsequent steps, the resultant powder was heated 

to at least 600°C to be calcined to obtain a high purity nano-crystalline powder. The different 

temperatures yielded different crystalline phases of CaPs. Nano-CaPs calcined at 600°C 

showed the highest average BET surface area not only because of their smaller particle size 

(48-69nm), but also because of their higher particle aspect ratio. The BET specific average 

surface area for the powders calcined at 600°C and 800°C were 73 and 57 m2g1, 

respectively, the difference being statistically significant. The results of this study relate to the 

results in this chapter agreeing with theory that the smaller the size of nanoparticles (20nm, 

40nm and 60nm), the larger the surface-to-volume ratio which is available for drug/protein 

adsorption in the fabrication of aquasomes.  

In the study by Dasgupta, Bandyopadhyay and Bose (2009), BSA was used as a model 

protein. The adsorptive property of BSA was investigated by the change in BET surface area 

of CaP nanoparticles. Results from the study showed that the adsorbed amount of BSA 

increased with increasing surface area of the nano-CaPs immersed in the BSA solutions. 

The higher the surface area, the higher the surface charge density of the nano-CaPs, results 

in a higher degree of electrostatic interaction between the BSA and the nano-CaPs. These 
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results clearly demonstrate that surface area affects drug/protein loading and thus a smaller 

hydroxyapatite nanoparticle size translates to a larger surface area, which increases 

drug/protein loading capacity in aquasome formulation. 

2.3.3 The effect of coating on calculated BET surface areas 

Appendix V, VI and VII (a, b and c), show the adsorption/desorption isotherms for trehalose 

coated nano-hydroxyapatite powders. The majority of these plots illustrate the characteristics 

of type III adsorption isotherms, which describe multilayer adsorption on macro-porous 

adsorbents, (in this case, hydroxyapatite), with weak adsorbate-adsorbent interaction or 

affinity. It can be deduced that the coating of the nano-HA powders with trehalose led to the 

weak Van der waals forces between the adsorbate (N2 gas) and the adsorbent (nano-HA 

cores), thus resulting in type III adsorption/desorption isotherms.  

Comparing the surface areas of the individual nano-sizes (20nm, 40nm, 60nm) with the 

different coating times (1.5h, 2.5 h and 3h); no consistent trend was observed in the 

calculated surface areas (Table 2.7). The difference in the calculated surface areas in 20nm 

samples coated with trehalose for the different durations (1.5h, 2.5 h and 3h) were 60.176, 

56.242 and 58.689m2g-1 respectively (Appendix V), which do not show direct proportionality 

between coating and surface area. This was also observed for 40nm nano-HA which had the 

calculated surface areas of 54.889, 52.184 and 53.558m2g-1 respectively (Appendix VI). In 

contrast, with the 60nm nano-HA, there seemed to be a direct proportionality between 

coating time and surface areas with the calculated surface areas as 47.767, 48.145 and 

50.439m2g-1 respectively (Appendix VII). The differences in the calculated surface areas 

between the individual three nano-HA sizes with different coating times were found to be 

statistically significant (p<0.01).  However, the differences between the surface areas for 

each nano-HA size (20nm, 40nm and 60nm) with the different coating times were found to be 

statistically insignificant (p<0.01). These results evidently show that an increase in the 

duration of trehalose coating does not give a significantly different calculated BET surface 

area but the decrease in particle size and a uniform size distribution gives a definitely 

significant difference in the calculated surface areas. 
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 Table 2.7 Calculated BET surface areas of the different nano-hydroxyapatite samples 

after coating 

BET surface area (m
2
 g

-1
)

1.5h 2.5h 3h 

20nm 60.176 56.242 58.689 

40nm 54.889 52.184 53.558 

60nm 47.767 48.145 50.439 

Drug release is also affected by particle size. Smaller particles have a larger surface area-to-

volume ratio and thus, most of the drug associated with small particles would be at or near 

the particle surface, leading to faster drug release. In contrast, larger particles have large 

cores, which allow more drug/protein to be encapsulated per particle and give slower release 

(Redhead et al., 2001). However, in the case of aquasomes, the oligomeric coating, 

trehalose, offers a controlled release property owing to its gel formation when hydrated. 

A successful nano-delivery system should have a high drug-loading capacity, thereby 

reducing the quantity of matrix materials for administration. Generally, this is achieved by 

incubating the nano-carrier with a concentrated drug solution. If the nanoparticle is coated by 

polymer, the release is then controlled by diffusion of the drug from the polymeric membrane. 

Membrane coating acts as a drug release barrier; therefore, drug solubility and diffusion in or 

across the polymer membrane becomes a determining factor in drug release (Singh and 

Lillard, 2009). Aquasomes are a good example of this kind of nano-carrier system. Drug 

loading is achieved by incubating hydroxyapatite nanocores with a concentrated drug/protein 

solution. The coating of the hydroxyapatite nanocores with an oligomeric film determines the 

diffusion and consequently the release of the drug from the nanocarriers system. 

In the current study, trehalose was used as a polyhydroxyl oligomer coating. The effect of 

coating time on surface area available for drug/protein loading was investigated. This is 

graphically represented in Appendix IX. In comparison to the uncoated HA nanocore 

samples, the BET calculated surface area of the coated nanocores were slightly lower. 

However, this can be attributed to the BET experimental method in which the sites for N2 

adsorption on HA nanocores have been coated with trehalose resulting in a reduced 

calculated surface area value. The calculated BET surface area for 20nm, 40nm and 60nm 

after 1.5h, 2.5h and 3 h of coating were 60.776, 56.242 and 58.689m2g-1; 54.889, 52.184 and 

53.558 m2g-1; 47.767, 48.145 and 50.439m2g-1. Comparing the surface area of the nano-HA 
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powders with the different coating times, there was no constant trend found. The difference 

in the surface area with the different coating times (for each nano-HA size) were statistically 

insignificant (p<0.05). This is in agreement with previous research data by the research 

group (Abdulrazzaq and Lowry, 2012) in which the coating time showed no significant 

difference and therefore, the loading step can be carried out in 2.5 h, compared with longer 

processes  

Trehalose is a non-reducing homo-disaccharide in which two glucose units are linked 

together in a α-1,1-glycosidic linkage (α-D-glucopyranosyl-α-D-glucopyranoside). Because of 

the inherent properties of trehalose, specifically prevention of starch retro-gradation and 

stabilization of proteins and lipids, it has proved quite useful in a number of industries 

including food processing, cosmetics and pharmaceutics (Jain and Roy, 2008). It has been 

shown to possess high thermostability and a wide pH-stability range. Trehalose solutions 

with a pH of 3.5- 10 were heated at 100°C for 24hr and no degradation of trehalose was 

observed (Higashiyama, 2002).  

The characteristics of trehalose responsible for its bio-protective role are attributed to its solid 

state and solution properties. One of the most important reasons why trehalose is such an 

important bio-protectant is due to the existence of a number of polymorphs, both in the 

crystalline as well as amorphous states. These include two crystalline forms, trehalose 

dihydrate (Th) and trehalose anhydrous (Tα and Tβ); and one amorphous form. Careful 

dehydration of the dihydrate under defined conditions leads to the formation of the anhydrous 

crystal (Tβ), and further dehydration of the dihydrate by heating at temperatures below 85°C, 

result in another anhydrous form (Tα). This transformation is reversible, and the anhydrous 

form can be hydrated back to the dihydrate form without any loss of integrity of the crystalline 

structure. The anhydrous crystalline form Tα is thought to absorb moisture, undergoing a 

reversible transition to the crystalline dihydrate form. This reversibility, without alteration of 

the three-dimensional structure of the disaccharide, is important in its protective action (Jain 

and Roy, 2008). 

The unusual protectant capabilities of trehalose could also be partly due to its ability to bind 

water. This observation is related to the number of intramolecular hydrogen bonds found in 

trehalose. Because trehalose forms only one intramolecular hydrogen bond, there are more 

sites available to hydrogen bond with water, resulting in a higher hydration number (Ekdawi-

Sever, Conrad and de Pablo, 2000).  

In this instance, where trehalose is the polyhydroxyl oligomer, which is the hydrogen bonding 

substrate for the drug/protein of choice in the aquasome formulation, the rate of diffusion of 

the drug/protein from the formulation is dependent on the diffusivity co-efficient of trehalose 
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in water, hence offering the sustained drug/protein release property of the aquasome delivery 

system (Ohtake and Wang, 2010). 

It has been proposed that with an increase in density, the free volume decreases, which 

consecutively causes a decrease in diffusivity and thus an increase in viscosity. The faster 

diffusion co-efficient for sucrose (polyhydroxyl oligomer, used in earlier aquasome 

formulations; Han et al, 2007) can be attributed to its smaller hydration number in 

comparison with trehalose, as the hydrated sucrose is smaller in size compared with 

trehalose, it can diffuse more readily. The hydration number is defined as the average 

number of water molecules that are hydrogen bonded to the sugar molecule. These 

properties of trehalose highlighted above have demonstrated its ability to stimulate sustained 

release. Thus, its function in the presently fabricated loaded aquasome formulations is of 

specific importance.  
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2.3.4 Understanding the morphology of aquasomes: Scanning Electron Microscopy 

(SEM) and confocal imaging 

To understand the morphology of loaded aquasomes, SEM images of BMP-2 and 

metronidazole loaded aquasomes and confocal images of metronidazole- loaded aquasomes 

were studied. This was investigated to elucidate the interactions of the drug/protein with the 

ceramic nanocores and also to establish the formation of aquasomes. Figure 2.4 (a) and (c), 

illustrates the morphology of the aquasome surface with agglomeration of individual 

aquasomes of BMP-loaded and metronidazole-loaded aquasomes respectively. Figure 2.4 

(b) and (d) show the individual sizes of the aquasomes, highlighting the wide range of

nanocore sizes used with the un-optimised aquasome formulations. 

The SEM images of the BMP-loaded and metronidazole-loaded aquasomes showed that the 

individual nanoparticle sizes ranged from 70-150nm illustrating that the delivery system is 

within the nanoscale range. However, a lower population of larger sized nanocores with sizes 

up to 346nm exhibited a greater range of size distribution. Using the AQUA1 formulation, the 

confocal images illustrated that the BMP/metronidazole is adsorbed onto individual 

nanoparticles as well as agglomerates of nanocores. Smaller particles have a higher 

possibility of agglomeration during storage, transport, and dispersion (Singh and Lillard, 

2009). This large range of size distribution attributed to the need for optimisation with smaller 

nanocores with a lower size distribution, which may offer more advantages associated for 

nanoparticulate delivery systems.  



100 

Figure 2.4   SEM images of BMP-loaded and metronidazole-loaded aquasomes. 

(A) And (C) show SEM images of BMP-loaded and metronidazole-loaded aquasomes with

(B) and (D) highlighting the sizes of the aquasomes (unoptimised). Images reveal the range

of varying sizes in the hydroxyapatite nanocores used in the formulation (unoptimised).

Figure 2.5 (a) and (b) show the confocal images of the fluorescent emitting drug, 

metronidazole, loaded onto aquasomes. These images illustrate the presence of drug in the 

formulation as well as the fashion in which the drug is adsorbed (around agglomerated 

nanocores). 

(A) (B) 

(C) (D) 
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Figure 2.5   Confocal images of metronidazole-loaded aquasomes. 

(A) and (B) show aquasome formulations with the fluorescence-emitting drug (on black and

grey backgrounds) illustrating the presence of metronidazole in the formulation as well as the

fashion in which the drug is adsorbed (around clumps of nanocores).

2.3.5 The effect of nanoparticle size on calculated surface areas in aquasome 

formulations 

The nanoparticle size of the aquasomes, as a drug/protein carrier, plays an important role in 

its delivery function. The advantages include (Rieux et al, 2006; Singh and Lillard, 2009; 

Yang and Webster, 2009):   

i) improved transport across cell membranes, hence, reducing clearance from the body

and providing a more targeted drug delivery; 

ii) larger surface area- to-volume ratios and subsequently more surface reactivity, thus,

increasing drug loading ability, providing controlled dissolution rates and drug 

bioavailability; 

iii) increased dispersibility for homogeneous drug loading and release of drug molecules;

iv) optimizable mechanical properties (such as matching the strength and ductility of

natural bone), therefore, serving as a strong immediate matrix backbone; 

v) size similarity to natural tissue components (e.g., HA crystals in natural bone are 50 ×

25 nm, thus, enabling better tissue acceptance by bio-mimicking tissue architecture. 

In this study, the nanoparticle size, size distribution and coating of the nano-hydroxyapatite 

was the primary focus, in the optimisation of aquasome formulations for higher drug loading 

and efficacy in delivery. Particle size and size distribution are the most important 

characteristics of nanoparticles. They can influence drug loading, drug release and stability 

of the nanoparticles (Panyam and Labhasetwar, 2002). The size of the particles plays an 

(A) (B) 
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important role if surface adsorption is the method of choice for antigen/allergen loading on 

the delivery systems (Pandey et al, 2011). The sub-micron size of nanoparticles most 

importantly offers a number of distinct advantages over microparticles in vivo. Generally, 

nanoparticles have relatively higher intracellular uptake in comparison to microparticles. A 

study by Desai and colleagues (1997) demonstrated that 100 nm size nanoparticles showed 

a 2.5-fold uptake compared to 1µm and a 6-fold higher uptake compared to 10 µm 

microparticles in Caco-2 cell line (Desai et al, 1997).  

Recent research in aquasome formulations have shown that formulations with smaller 

nanocore sizes have the advantage of higher protein/drug/antigen loading. Pandey and 

colleagues (2011) produced ultrafine aquasomes with high allergen loading. The aquasome 

formulations characterised showed sizes of the hydroxyapatite nanocore, blank aquasomes 

and OVA-loaded aquasomes as 39±11, 43±14 and 47±19 respectively. Rojas-Oviedo and 

colleagues (2007) created varying formulations of indomethacin loaded aquasomes with 

calcium carbonate nanocores and lactose coating, with particle Goyal and colleagues (2008) 

reported the fabrication of aquasomes loaded with antigen for an immunogenic response 

with average hydroxyapatite nanocore size of 150nm, coated hydroxyapatite cores (with 

cellobiose and trehalose)with an average size of 247.26nm and 264.14nm respectively, and 

BSA-loaded aquasomes with average nanocore sizes of 286.56nm and 291.24nm 

respectively. These results demonstrate that aquasome formulations must have nanocores 

within the nano-meter range. However, smaller nanocore sizes ensure higher 

drug/antigen/protein loading. 

From the results in this study, the correlation between particle size, size distribution and the 

surface area available for “loading” of the coating oligomer is evidently shown. The un-

optimised hydroxyapatite nanocores had larger nanocore sizes generally described as 

>60<200nm, with a very wide size distribution. Consequently, the calculated surface area

was 22.742m2g-1, a lower surface area than the nano-hydroxyapatite powders. The HA 

nanopowders had a very narrow size distribution and finer nanoparticle sizes which was 

directly linked to the surface areas available for coating. The calculated surface areas for the 

nanohydroxyapatite powders (20nm, 40nm and 60nm) were 65.377, 58.188 and 54.423m2g-1 

respectively, which showed a 3-fold increase in comparison to the un-optimised HA 

nanocores. 



103 

2.3.6 Comparison of ELSD and ELISA techniques for protein quantification 

To optimise the analysis of protein quantification and/or oligomeric sugar used in this study, 

the option of a more efficient and rapid assay was explored. The analysis of the individual 

aquasome constituents while still being adsorbed onto the ceramic nanocores was 

investigated. Current practice analyzes each constituent (in this case, oligomeric coating, 

trehalose; protein, BMP-2) using separate analyses, in which indirect methods at best are 

used to quantify the adsorbed oligomeric coating and drug/protein. 

The enzyme-linked immunosorbent assay (ELISA) is a common laboratory technique, 

which is used to measure the concentration of an analyte (usually antibodies or 

antigens) in solution. The basic ELISA, or enzyme immunoassay (EIA), is distinguished 

from other antibody-based assays because separation of specific and non-specific 

interactions occurs via serial binding to a solid surface, usually a polystyrene multiwell 

plate, and because quantitative results can be achieved. 

ELISAs are very sensitive and accurate. Nonetheless, they are multi-step assays, which can 

be time consuming (Figure 2.2). However, when automated, they can be simple and easy 

to perform. ELISAs can be quite complex, including various intervening steps and the 

ability to measure protein concentrations in heterogeneous samples such as blood. The 

most complex and varying step in the overall process is detection, where multiple layers 

of antibodies can be used to amplify the signal.   

In comparison, the Evaporating Light Scattering Detector (ELSD) is capable of analysing all 

substances that have an evaporation temperature lower than that of the mobile phase, and 

can attain roughly the same level of detection sensitivity for any compound. For this reason, 

they are well suited to the detection of components such as sugars, fats, surfactants, 

synthetic macromolecules, and steroids, as these components have low light absorbance, 

making them difficult to detect with UV detectors. The ELSD-HPLC technique can also 

analyse samples that require neither UV nor fluorescent activity.  

The detection of BMP-2 standard samples using the ELSD was used in comparison to the 

standard BMP ELISA. Analysing the calibration plots of both methods, the R2 value of the 

ELSD was closer to 1 (0.9949) showing higher linearity in comparison to the ELISA. The 

process of ELSD analysis is illustrated in Figure 2.3. These steps include nebulisation, 

evaporation of the mobile phase and detection of the analyte(s) of interest and are elucidated 

in Section 2.2.2.6 (Young and Dolan, 2003). 
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The results from the ELSD study demonstrated that the ELSD was more sensitive than the 

standard BMP ELISA. Another advantage of the ELSD method over the standard ELISA 

method is the high speed of analysis of samples as samples generally have shorter retention 

times making it faster to analyse a large batch of samples in comparison to the labour-

intensive process of ELISAs. Compared with spectroscopic detectors, ELSDs produce more 

uniform detection sensitivity for most analytes, regardless of their physical and chemical 

properties. This makes it possible to analyse proteins like BMP-2 amongst in minute 

concentrations such as nanograms as well as picograms.  

Results from the calibration of BMP standards ranging from 0.125 to 30ng/ml using an ELSD 

exhibited a R2 value of 0.9949 (Appendix VIII) in comparison to the BMP ELISA R2 value of 

0.9543 (Appendix X). Results from the calibration of trehalose standards ranging from 0.19 

10 12mM are illustrated in Appendix IX. The high sensitivity of ELSD and ease-of-use make 

the ELSD method more viable for use in comparison with the labour-intensive process of 

ELISAs. 

Comparing the ELSD and ELISA methods of detection, ELISAs generally demonstrate high 

but limited specificity to proteins, antibodies and other antigens. However, the ELSD is more 

universal and can analyse any substance less volatile than the HPLC mobile phase. In 

contrast, the ELSD method is not a spectroscopic detector which means a linear relationship 

between absorbance and the concentration of species detected may not always be the case 

(Beer-Lambert’s law). Nonetheless, when considering ease and speed of detection as well 

as sensitivity, the HPLC- ELSD method presents an alternative faster choice in protein 

detection. In addition, due to the number of processes involved in ELISA analysis, various 

errors may occur leading to lower values compared to the ELSD technique which requires a 

single step of manufacturing of samples to be analysed and running them with the ELSD-

HPLC.  
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2.4  CONCLUSION 

The unoptimised HA nanocores (AQUA1) which showed a large and a non-uniform size 

distribution was compared with the hydroxyapatite nanocores with defined diameters (20nm, 

40nm, 60nm) which showed a more uniform size distribution. This size distribution of 

nanoparticles had an effect on morphology of the aquasomes with aggregates of nanocores 

clumped together around large HA nanocore particles in some cases as seen with the SEM 

imaging.  

The particle sizes and size distribution of the HA nanocores most importantly affect their 

surface area-to-volume ratio. The nano-HA powders had larger surface areas, which allowed 

more adsorption of drug/protein molecules in the fabrication of aquasomes. 

The effect of coating time on trehalose coating of nano-HA and subsequently the surface 

area available for drug/protein adsorption was investigated. An increase in coating time from 

1.5h to 3h showed no significant difference in the calculated surface areas. Thus, a shorter 

coating time of 1.5h can be adopted in aquasome fabrication which will both be more energy 

efficient and time saving in the overall aquasome manufacture process. In comparison, 

smaller nanocore size increases the surface area available for drug/protein adsorption as a 

significant difference was observed between the surface areas of the nanocore sizes after 

the different durations of trehalose coating.  

In conclusion, the particle size to be chosen requires consideration based on the research 

question to be answered as well as in vivo correlation, taking into account the mode of 

delivery (local, systemic) and the nanoparticle pharmacokinetics (nanoparticle clearance). 

The final dosage form (cements, tablets, powders) in which the aquasomes will be 

formulated into will also determine the particle size to be chosen. Smaller nanoparticle sizes 

have been associated with clumping/aggregation and therefore subject to end use of 

aquasome formulations, particle size will influence the aesthetics of the final formulation and 

will need to be chosen to favour both functionality and appearance of the final formulation.  

The ELSD (Evaporating Light Scattering Detector) linked with the HPLC has shown a high 

sensitivity in the detection of proteins, comparable to the ELISA technique. Its short sample 

analysis time offers high throughput in analysis of samples which is a preferred feature 

compared to the ELISA technique which requires a longer multi-step process which can be 

time consuming.   

The ELSD technique can be adopted in the detection of proteins usually administered in the 

nano-gram range fabricated into aquasome formulations. However, for the purpose of the 
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present study, the concurrent detection of trehalose and BMP-2 require further method 

development to separate both moieties to analyse both aquasome components with one 

analytical technique. 
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   CHAPTER 3 
THE USE OF NON-AQUEOUS 
SILICONE ELASTOMER GELS 

(NASEGS) AS 
TOPICAL/TRANSDERMAL DELIVERY 

SYSTEMS FOR AQUASOMES 
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3.1 INTRODUCTION 

3.1.1  Topical and transdermal delivery 

Topical delivery is the delivery of drugs with the skin as the target organ, in comparison to 

transdermal delivery, which aims at the delivery of drugs to the systemic circulation.  The 

transdermal route of drug delivery is another viable route of administration in comparison to 

the oral route, through which a number of drugs are administered into the systemic 

circulation. The rationale behind transdermal delivery (advantages) and limitations are 

detailed in Table 1.4.  

the limitations of traditional -transdermal delivery (via patches) is primarily associated with 

the barrier function of the skin, offering protection from chemicals and invasive pathogens, 

which limits the amount and the type of drug delivered via the skin to the systemic circulation 

(Desai and Lee, 2007, Delgaro-Charro and Guy, 2001). 

3.1.2  Gels as drug delivery systems 

A gel is defined as a soft, solid or solid-like material which consists of at least two 

components, one of which is a liquid present in abundance. Its elastic and resilient 

characteristics should be observable by the human eye and, as a consequence, on a t ime 

scale of seconds, a gel should not flow under the influence of its own weight (Hägerström, 

2003).  

Gels are widely recognized as valuable dosage forms in drug delivery via the skin. These 

polymeric systems present several advantages, namely their safety, versatility, easiness of 

use, low price and acceptability.  

Hydrophilic gels are common dosage forms in oral, vaginal, rectal, topical, transdermal and 

nasal delivery. Cellulose polymers (hydroxyethyl cellulose (HEC), hydroxypropyl 

methylcellulose (HPMC)) and natural based polymers such as sodium alginate, pectin and 

gelatine are used in the manufacture of gels as well as incorporated into other dosage forms 

(such as gelling/thickening agents in syrups and cosmetics) (Allen, Popovich and Ansel, 

2011). 

Silicone as a polymer has played a vital role in drug delivery, biomedical applications as well 

as in cosmetics since its introduction in the 1950’s (Sene et al, 2002, Colas, Siang and 

Ulman, 2006). Non-aqueous silicone elastomer gels (NASEGS) are widely and safely used 

as personal lubricants for vaginal and rectal application. Recently, the use of NASEGs was 

reported for use as a vaginal delivery system for maraviroc, a HIV-1 entry inhibitor (Forbes et 

al, 2011).  Also, these NASEGs were modified into hydrophilically-modified SEGs, (h-SEGs), 
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for sustained release of the model ARV microbicide compounds maraviroc and emtricitabine 

(Forbes et al, 2014). 

These non-aqueous silicone elastomer gels offer an added advantage: they are suitable 

vehicles for hydrophobic drugs (Sene et al, 2002), as a drug’s partition coefficient between 

an oil and water phase.  

Transdermal delivery (and topical delivery) is highlighted in this study because of the 

potential use of these non-aqueous silicone elastomer gels (NASEGS) in these research 

areas. NASEGS are currently being investigated for various delivery routes including the 

transdermal route. In the current research, these gels are being investigated for the delivery 

of protein or peptides (such as delivery of vaccines). Although proteins are generally 

hydrophilic and do not meet the physicochemical criteria of drug candidates for transdermal 

delivery, these gels can be employed in new delivery technologies to enhance transdermal 

delivery.  

3.1.3 Gels as dosage form for aquasome delivery 

In the past, nanoparticles and microparticles have been widely studied for oral and parenteral 

drug delivery. They have also been identified as being useful in transdermal/topical delivery 

(Alves et al, 2007). Their large surface area makes them important in cosmetic and 

pharmaceutical applications. Owing to their characteristic sustained drug release, 

nanoparticulate carrier systems have an added advantage for effective topical drug delivery 

(Alves et al, 2007).  

Aqueous gels are widely used as topical/transdermal dosage forms owing to their ease and 

relatively low cost of manufacture. However, they are associated with messiness and 

leakage from application site (particularly in vaginal delivery). Therefore, a suitable 

alternative gel dosage form with properties including better retention at the application site to 

achieve the desired therapeutic effect was needed. NASEGS are hydrophobic gels and have 

exhibited these properties (Forbes et al, 2011). 

Aquasomes are ceramic-based nano-sized carriers that consist of hydroxyapatite (HA), 

oligosaccharide (trehalose, cellobiose), and the target drug/protein/antigen. Outer surface of 

aquasomes on which antigens are non-covalently linked consists of polyhydroxyl oligomers 

or sugar molecules such as cellobiose, trehalose, maltose, sorbitol, and lactose, which 

create a quasi-aqueous film that prevents the denaturation or degradation of the protein. 

Carbohydrate film on ceramic particle retains the drugs spatial properties (Kim and Kim, 

2002; Umashankar et al, 2010; Khopade et al, 2002).  
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In the present experiment, aquasomes containing HA coated with trehalose and protein were 

prepared. Aquasomes were prepared by coating of HA with trehalose and subsequently by 

coating of bovine serum albumin (BSA) as a model protein.  

Gels were chosen as a suitable dosage form for the topical and transdermal delivery of BSA-

loaded aquasomes and were pharmaceutically characterized for suitability in 

topical/transdermal delivery.  Rheological, textural and in vitro permeation studies give 

valuable information on the performance of gel dosage forms in vitro by analysing the 

retention at the application site, “perceived feel” of the gel and the ability of the dosage form 

to permeate the rate-limiting stratum corneum (Jones, Woolfson and Djovic, 1996)  

In this study, the in vitro release profiles of BSA; rheological and textural parameters of 

aqueous gels (HEC and HPMC) were compared with those of ST- elastomer gels. As a 

model protein for transdermal/topical delivery, BSA-loaded aquasomes were fabricated and 

further analysed using in vitro release and permeation experiments. 
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 3.1.4 Aims and Objectives 

The aim of the present research is to investigate the potential of nanoparticulate 

biodegradable polymers incorporated into aqueous and non-aqueous gels as drug delivery 

systems for the topical/ transdermal sustained delivery of proteins. 

Objectives 

1. To investigate the release of BSA from BSA-loaded nanoparticles (aquasomes).

2. To investigate the release of BSA from the BSA loaded aquasomes incorporated into

NASEGS and aqueous semi-solid polymeric gels. 

3. To characterize the rheological and textural parameters of NASEGS and aqueous

semi-solid polymeric gels and its correlation to drug release. 

4. To analyse the feasibility of in vitro permeation of BSA from BSA-loaded aquasomes

using Franz cell equipment and comparing release profiles of hydrophilic and hydrophobic 

drugs/proteins. 

5. To determine the amount of BSA that can be released from aquasomes (in

comparison to BSA alone) that can stimulate a biological response without having a toxic 

effect (via MTT assay), using human dermal fibroblasts as an in vitro cell culture model. 
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3.2 MATERIALS AND METHODOLOGY 

3.2.1  Materials 

Bovine Serum Albumin (BSA, granules) and hydroxyapatite (<200nm, particles) were 

purchased from Sigma Aldrich (Poole, UK). D-(+)-Trehalose dihydrate powder was 

purchased from Acros organics (Belgium). Phosphate Buffer Saline (PBS, tablets) were 

purchased from Thermos Scientific (UK). Trifluoracetic acid (TFA) and methanol were 

purchased from Fisher Scientific (UK). ST- Elastomer 10 and Cyclomethicone were gifted by 

Dow Corning (USA). Hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose 

(HEC) were purchased from BD Pharmaceuticals (UK). All reagents and materials were of

analytical grade. 

3.2.2    Methodology 

3.2.2.1  Preparation of Aquasomes 

BSA-loaded aquasomes were manufactured with 1mg/ml BSA solutions in distilled water 

using the same protocol as outlined in Chapter 2 (Section 2.2.2.1). 

3.2.2.2 Characterisation of Aquasomes 

3.2.2.2.1  Characterisation of the coated cores 

Trehalose-coated hydroxyapatite cores were characterised via zeta potential analysis 

measuring the positive charge emitted by the carbohydrate (trehalose) coating in comparison 

to naked hydroxyapatite particles. A small quantity of naked hydroxyapatite cores and coated 

cores was mixed with distilled water and placed into the probe for zeta analysis using the 

NanoBrook 90Plus Zeta Particle Size Analyzer (Brookhaven Instruments Corp., NY). The 

mean and standard deviation of the results were compared. 

3.2.2.2.2  Characterisation of BSA-loaded aquasomes 

The method detailed in section 3.2.2.2.1 was repeated for the BSA-loaded aquasomes. The 

mean and standard deviation of the results were recorded and compared to those of the 

naked hydroxyapatite cores and BSA solutions. 
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3.2.2.2.3 Aquasome in vitro release studies 

 In vitro release studies were performed using phosphate buffered saline (PBS, pH 7.4) as 

release media. PBS was chosen to simulate physiological body fluid and is commonly used 

in in vitro topical studies (Salgado et al, 2010, Salerno et al, 2010). The samples were placed 

in 10ml of PBS and placed in a shaking water bath (100rpm, 37°C). Using the partial 

replacement method, 1ml samples were taken at hourly time intervals for the duration of 8h, 

and immediately replaced with 1ml fresh warmed PBS. Samples were analysed using high 

performance liquid chromatography (HPLC) with ultraviolet and fluorescence detection 

described in section 3.2.2.3.  

3.2.2.3   Analysis of BSA using High Performance Liquid Chromatography 

(HPLC) 

In vitro release samples of bovine serum albumin (BSA)-loaded aquasomes were analysed 

using an Agilent 1200 series run in gradient mode. Phase A was 0.1% trifluoroacetic acid 

(TFA) in water and phase B was acetonitrile. A gradient method was performed with the 

percentage ratio of phase A to Phase B at 95:5 from 0-18mins, 35:85 from 18-25mins and 

95:5 from 25mins untils 30 mins. The total run time was 30 mins. A Jupiter C5 column (5 

micron, 250 x 4.60mm id, Phenomenex, Ireland) was used; detection wavelength 220nm was 

employed for UV detection and fluorescent readings were at 296nm (excitation) and 380nm 

(emission). An injection volume of 10µL was used and BSA had a retention time of 25min. 

3.2.2.4  Comparison of In Vitro Release of BSA from Aqueous Semi-Solid Polymeric 

Gels and Non-Aqueous Silicone Elastomer Gels (NASEGS) 

BSA release from BSA-loaded aquasomes incorporated into non-aqueous silicone elastomer 

gels (NASEGS) and aqueous semi-solid polymeric gels were compared with the release 

profiles of incorporating the BSA alone in the gels.   

3.2.2.4.1 Preparation of BSA/Gel Formulations 

3.2.2.4.1.1 Aqueous gels 

Hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC) gels were 

prepared (5% w/v) by mixing the required weights of polymer with distilled water using a 

Polytron mixer overnight (800-1200 rpm; 25°C). HPMC and HEC gels were chosen for this 

study because they constitute two of the most commonly used aqueous gelling agents in 

topical formulations. After mixing, samples were kept sealed in individual containers and 

stored at 4°C until needed. 
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3.2.2.4.1.2 Silicone gels 

NASEGS were prepared by hand-mixing the required weights of ST-Elastomer 10 and 

cyclomethicone, which acts as a cross-linker (90/10 %w/w, 80/20 %w/w, 70/30 %w/w, 60/40 

%w/w) and stored in individual containers at room temperature (25°C).  

3.2.2.4.1.3 Protein and protein loaded aquasome incorporation 

BSA was incorporated into the gels by mixing. Based on the theoretical and practical 

estimation that BSA loaded onto aquasomes is between 6±1 mg per 100 mg of aquasome 

formulation, BSA was weighed and incorporated into gels per 1g of gel (Table 3.1). 

Table 3.1 The amount of BSA incorporated in silicone and aqueous gels 

BSA loading (%) Weight (mg/g) gel * 

100 7 

75 5.25 

50 3.5 

25 1.7 

3.2.2.4.2 In vitro release studies of BSA from gels 

1g of each gel formulation was placed into individual jars containing 20ml of PBS and placed 

in a shaking water bath (100rpm, 37°C). Using the partial replacement method, 1ml samples 

were taken and replaced with an equal volume of fresh pre-warmed PBS at hourly time 

intervals for the duration of 8h. Samples were analysed using the HPLC methods described 

in section 3.2.2.4. All formulations were carried out in triplicate. 

3.2.2.5 In Vitro Permeability Studies of Gels 

The in vitro permeation studies of incorporated BSA using the Franz cell set up was 

performed to establish the amount of BSA which can permeate through 0.4µm polycarbonate 

membrane released from the silicone gel formulations.  

*(n=3) 
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3.2.2.5.1 Preparation of samples 

Samples were prepared using the methods highlighted in section 3.2.2.4.1. However, 

aquasomes were not incorporated into silicone gels. 

3.2.2.5.2 Franz cell experiments 

The Franz cell set-up is the most commonly used experiment that studies drug permeation in 

vitro. Permeation studies need to be performed to ascertain the tissue permeation 

characteristics of the dosage form as well as establish the permeation characteristics of 

drugs at the site of administration (Figure 3.1). The heated water pump was switched on and 

left to equilibrate the Franz cell setup at 37◦C for 15 min. Membranes (polycarbonate, 0.4 µm 

pore size, 10 µm thickness) were pre-soaked for 24h in phosphate buffer saline at 25°C. 

Membranes were mounted on the Franz cell setup (n=3) and 0.8-1g of BSA/incorporated gel 

was spread onto the membranes. All Franz cell openings including the donor-receptor 

interface were occluded with Parafilm to prevent evaporation.  

Figure 3.1  Static Franz cell set-up     

(Reproduced with permission from Permegear, 2012) 
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The receptor compartment (PBS, 23ml) was stirred at 300rpm using a magnetic stirrer. 

Samples volumes (1-2 ml) were taken at hourly intervals for the duration of 8 hours for HPLC 

analysis (section 3.2.2.3) and replaced with equal volumes of fresh preheated medium via 

the sampling port. Air bubbles developing under the membrane were removed via the side 

arm by carefully tilting the Franz cell. 

The permeation study was validated by using saturated BSA solutions in place of the sample 

gels. After a temperature equilibration period of 15mins, 0.1ml to 1ml of saturated solutions 

was introduced to the donor compartment (n=3). After the duration of 8h and 24h, an aliquot 

from each receptor compartment was taken and assayed using the HPLC apparatus (section 

3.2.2.3) and receptor drug concentrations were calculated. 

 

3.2.2.6     Rheological Characterisation and In Vitro Permeation Studies of Gels 

3.2.2.6.1  Viscometric and Oscillatory Analyses 

Viscometric and oscillatory analyses were carried out with a Bohlin Rheometer fitted with 

20mm (parallel plate) and 40mm (cone and plate) diameter plates. The gel samples (2g 

approx.) were transferred to the base plate of the rheometer, followed by lowering of the 

plate to produce a gap depth of between 0 to 104µm. Excess gel was removed before 

initiating the test. The viscoelastic region which is defined as the region where stress is 

directly proportional to strain and G’ remains constant, was determined by range of strain 

measurements from 0.05 to 0.15 for the NASEGS and 0.025 to 0.05 for the aqueous 

semisolid polymeric gels. The viscosity, elastic and complex moduli were determined at the 

strain of 0.05 and at a frequency range of 2-50Hz. All measurements including shear sweep 

and stress sweep were performed at body temperature (37±0.1 °C) for a period of 60s with a 

shear rate ranging from 0.01/s to 100/s. All measurements were done in triplicates. 

Calculations of the viscosity (storage moduli, G’) and elastic (loss moduli, G”) were 

performed using a computer programme supplied by TA instruments (Leatherhead, UK). 

 

3.2.2.6.2 Texture profile analysis 

Texture profile analysis measurements were taken with a Brookfield CT3 Texture analyser 

with a TA-10 probe using a fixed base table. The hardness, adhesiveness and cohesiveness 

were analysed with a delay time of 15s between each compression.  Gel samples were 
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stacked up in glass cylindrical vials up to a fixed height of 10cm for each gel formulation. All 

tests were done repeatedly and consistent results were recorded. 

 

3.2.2.7  In vitro cell toxicology assay (Thiazolyl Blue Tetrazolium Bromide (MTT) 

assay) 

To investigate whether the concentrations of BSA adsorbed onto the aquasomes were toxic 

to human cells, using human dermal fibroblasts (HDFa) as a model, a thiazolyl blue 

tetrazolium bromide (MTT) assay was performed to measure cell death after exposure of 

cells to different concentrations of BSA for 24 h, representing short term exposure to 

aquasomes (acute toxicity). 

Human dermal fibroblasts (HDFa) were cultured in basal medium (Medium 106, Gibco®) 

supplemented with antibiotic supplement (Amphotericin B/Gentamycin) at 37°C in humidified 

air with 5% CO2, without serum Cells are cultured at 37°C in humidified air with 5% CO2. 

Cells were trypsinised using a dilute trypsin solution (made with 15-20% of 0.25% Trypsin 

EDTA solution diluted with HBSS), centrifuged (1000rpm) and re-suspended in fresh media. 

Cells were counted and recorded for concentration per ml. Cell suspension was diluted with 

serum-free media to 75,000 to 100,000 cells per ml. 100µl of cells (7,500- 10,000 cells per 

ml) was added into each well and incubated overnight (37°C, 5% CO2).  

On day 2, after allowing cells to attach to the bottom of the wells, serum-free media was 

carefully removed. Cells were treated with 7, 5.6, 3.5 and 1.7mg/ml BSA-spiked serum-free 

medium (n=4), leaving a final volume of 100µl per well. After 24h, 20μl of 5 mg/ml MTT was 

aseptically added to each well. MTT reagent was also added to a set of wells without cells, 

acting as blank.  

Plates were incubated for 3.5 h at 37°C in an incubator. Wells were aspirated and 150µl of 

dimethyl sulphoxide (DMSO) was added per well. Well plates were covered with tinfoil and 

cells were agitated using an orbital shaker for 20mins. The absorbance readings of wells 

were then measured at 590nm with a photometric scan between 540nm to 590nm to assay 

absorbance values at different wavelengths (Multiskan Spectrum- UV/Vis Microplate 

Spectrophotometer). 

The cell viability was calculated using the formula below: 

 

   
Cell viability (%) =    [O.D. OF TREATED WELL- O.D. OF BLANK]    X 100%  

            [O.D. OF UNTREATED WELL - O.D. OF BLANK] 
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3.2.2.8     Statistical Analysis of Results 

Statistical analysis was performed using GraphPad Prism software package. Data was 

analysed using a one-way ANOVA with Tukey’s multiple comparisons post-hoc test. 
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3.3 RESULTS AND DISCUSSION 

Non-aqueous silicone elastomer gels (NASEGS) and aqueous gels (HEC and HPMC) were 

used as delivery systems to study the release of protein (alone) and protein from protein-

loaded aquasomes. In this study, BSA was used as a model large, electronegative protein to 

investigate the various release profiles. Texture profile analysis and rheological 

characterisation were also employed to further characterise and analyse the mechanical 

performance of the gel formulations as required for pharmaceutical use. In vitro permeation 

and toxicity assays were also implemented to explore the release of BSA to mimic in vivo 

conditions and to examine amounts of BSA released from the aquasome formulations. 

 

3.1 Evidence of Drug Loading   

The successful adsorption of BSA onto aquasome nano-carriers was evidenced by zeta 

potential analysis and in vitro release. 

3.4.1.1  Zeta potential analysis 

The zeta potential of the naked hydroxyapatite cores and the trehalose-coated cores were 

compared to establish the presence of the carbohydrate coating on the nanocores (Table 

3.3). The successful coating of nanocores by the adsorption of trehalose to hydroxyapatite 

and subsequent loading of BSA onto coated hydroxyapatite nanocores was determined by 

change in carrier charge in comparison to blank hydroxyapatite nanocores. 

 

The measurement of the electrostatic potential at the electrical double layer surrounding a 

nanoparticle in solution is referred to as the zeta potential. Nanoparticles with a zeta potential 

between −10 and +10 mV are considered approximately neutral, while nanoparticles with 

zeta potentials of greater than +30 mV or less than −30 mV are considered strongly cationic 

and strongly anionic, respectively (Clogston and Patri, 2011). The significance of zeta 

potential is that it can be related to the stability of particle dispersions like aerosols, 

emulsions and suspensions. Zeta potential is a property involving not only the particles but 

also their environment, e.g., pH, ionic strength, and even the type of ions in the suspension 

(Xu, 2008). The zeta potential indicates the degree of repulsion between adjacent, similarly 

charged particles and between adsorbents and their adsorbed ions/substances. Molecules 

and particles that are small enough have a high zeta potential (negative or positive) that 

confers stability, i.e. the particles will resist aggregation. When the potential is low, attraction 

exceeds repulsion and the particles tend to aggregate (Doostmohammadi et al, 2012).  pH 

and concentration of solute in a solution are factors that can affect zeta potential. 
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From the results in table 3.2, the adsorption of BSA onto BSA-loaded aquasomes show a 

more electronegative charge (-29.49 ±1.49 mV), in comparison to the blank hydroxyapatite 

cores (-9.92 ±2.00mV). Similar studies by Pandey and colleagues (2011) showed that OVA-

loaded aquasomes yielded the negative zeta potential of −11.34±1.4mV. Goyal and 

colleagues (2008) who also fabricated BSA-loaded aquasomes (with trehalose coating) 

showed that the BSA-loaded aquasomes yielded the negative zeta potential of 25.32 ± 1.26 

mV. 

Theoretically, the skin carries a negative surface charge due to the phospahtidyl-choline and 

carbohydrates found in mammalian cells and contain negatively charged groups (Honary and 

Zahir, 2013). Successful transdermal delivery has been limited to drug moieties with the right 

combination of molecular weight, lipophilicity and charge (Uchechi, Ogbonna and Attama, 

2014). However, according to the ex vivo work of Morykwas, Thornton and Bartlett (1987), 

the surface charge of human skin is +23.0mV. This charge permits the adherence and thus 

transdermal delivery of negative charged proteins such as BSA. Research shows that BSA 

strongly adsorbs onto skin but cannot permeate through the stratum corneum unless aided 

by permeation enhancers or via new transdermal drug delivery technologies shuch as 

iontophoresis, sonophoresis, microneedles, etc. (Petchsangsai et al, 2012; Hans and Das, 

2013).  

 

Table 3.2  Comparison between zeta potential values of protein and protein-loaded 

aquasomes 

 

 Zeta potential (mV)* 

Hydroxyapatite (HA) cores -9.92 ± 2.00 

Trehalose-coated HA cores -1.15 ± 0.02 

BSA -21.67 ± 4.99 

BSA- loaded aquasomes -29.49 ± 1.49 

      (*n=3) 

 

3.4.1.2  In vitro cumulative release studies of BSA - loaded aquasomes 

A release study of BSA- loaded aquasomes was performed for the duration of 8 hours, with 

samples taken at hourly time points. The in vitro cumulative release plot is presented in 

figure 3.2 with the percentage amount of BSA released presented in figure 3.3. The amount 
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of BSA released ranged from 11.19µg to 15.38µg (1.6 to 3.57%). BSA release from 

aquasomes showed an initial burst release between the 1st and 3rd hour release showing 

amount of BSA release from 11.19 µg to 14.65 µg. After duration of 3 hours, the amount of 

BSA released from aquasomes began to plateau showing similar amounts of BSA released 

ranging from 14.65 µg to 15.38 µg. Percentage release of BSA from loaded aquasomes 

highlight the sustained release characteristic of BSA-loaded aquasomes demonstrating that 

more than 90% of BSA is still remaining in the aquasome formulation. This suggests the 

application of BSA-loaded aquasomes for sustained prolonged release of proteins. 

The hydration of the oligomeric coating, trehalose, determines the release of BSA from the 

aquasomes. The hydration of trehalose forms a gel which offers a controlled release property 

in the aquasome formulation, which consequently leads to the desorption of BSA upon 

further hydration of the trehalose gel from the surrounding release medium.   

 

Similar findings were observed by Goyal and colleagues (2008) which also investigated the 

in vitro cumulative release of BSA from trehalose coated aquasome formulations. The study 

showed that BSA desorbed from nano-carriers follow a typical biphasic pattern. An initial 

faster release rate was observed within hours followed by slow release rate in second phase. 

The possible region might be surface desorption of BSA followed by sustained release of 

antigen from aquasomes matrix. In comparison to cellobiose-coated aquasomes, it was 

noted that cellobiose coated aquasomes released BSA faster than trehalose coated 

aquasomes and plain HA ceramic core, this may be attributed to the zeta potential 

differences and adsorption patterns of BSA antigen onto the surface of HA nanocores, which 

restricts its movement from matrix to external aqueous phase. 
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Figure 3.3 In vitro percentage release of BSA from BSA- loaded aquasomes.              

This graph represents the percentage cumulative amount of BSA released at each time point 

when an in vitro release study of BSA from loaded aquasomes was carried out in PBS (pH 

7.4) for the duration of 8h. Results show that percentage release ranged from 1.59% to 

3.57% demonstrating the sustained release characteristic of BSA- loaded aquasomes (n=3).  

 

Figure 3.2 In vitro cumulative release of BSA from BSA- loaded aquasomes 

over a period of 8h. This graph represents the cumulative amount of BSA released at 

each time point when an in vitro release study of BSA from loaded aquasomes was 

carried out in PBS (pH 7.4) for the duration of 8 hours. Results show biphasic release 

of BSA from aquasomes showing initial burst release in the first 2 hours which 

plateaued afterwards during the 8 hour study period (n=3). 
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3.4.2 Texture Profile Analysis (TPA) and Rheological Characterisation of Gels 

In the development of topical dosage forms, several desirable attributes contribute to the 

ultimate patient acceptability and clinical efficacy of the product. These include optimal 

mechanical properties (e.g. ease of removal of product from the container, good spreadability 

on the substrate, e.g. skin, mucous membranes), good bio-adhesion (to ensure retention at 

the site of application), acceptable viscosity, drug release and drug absorption (Jones et al., 

1996a, Jones et al, 2001). A useful method by which the mechanical properties of gels are 

determined is by texture profile analysis. Additionally, the rheological performance of the gels 

is analysed to quantify the general rheological characteristics of gels and evaluate the 

contribution of viscosity to textural characteristics (Jones et al., 1997). 

 

The mechanical and rheological characterisation of the various gels were performed to 

establish the relationship between drug release and the rheological characteristics of gels 

and also the textural characteristics in relation of product performance and suitability.  

3.4.2.1  Texture profile analysis (TPA) 

Mechanical characterisation of gels to measure hardness, adhesiveness and cohesiveness 

(Table 3.5) of both NASEGS and aqueous semi-solid polymeric gels were performed to 

establish the relationship between gel structure and drug release. TPA measurements 

yielded observed differences in user perceived “feel” of the gels (Table 3.5). Results showed 

that hardness (g) increased with an increased ratio in ST-Elastomer for silicone gels and 

hardness (g) was higher for aqueous semi-solid polymeric gels. The formulations with the 

varying percentage weight ratios of ST-Elastomer and cyclomethicone (NASEGS): 60/40, 

70/30, 80/20 and 90/10 had corresponding hardness values of 8.33±2.88g, 15.00±5.00g, 

18.33±2.86g and 65.00±8.66g respectively. The hardness of the silicone elastomer gels was 

dependent on the elastomer/cyclomethicone ratios. This correlates with the research 

performed by Forbes et al, (2011). The increase in polymeric concentrations of HEC, HPMC 

and HPMC II in the gel formulations also had a direct correlation to the increase of texture 

profile analysis (TPA) and rheological parameters of the gels. The corresponding hardness 

values of these aqueous gels were 6.67, 11 and 70g respectively. This also relates with 

similar research performed by Jones et al, (1997a). The TPA analysis demonstrated that 

hardness of the ST-elastomer gels was exponentially higher than that of the aqueous gels.  

The varying formulations of the NASEGS exhibited similar release profiles with formulations 

70/30 ST and 80/20 ST having the best optimal sustained release profiles and desired 

mechanical properties (in this study, evidenced by suitable viscoelasticity and hardness, 

consistent with a true gel; Table 3.5). The 90/10 ST formulation lacked the desired 
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spreadability characteristic with gels while the 60/40 ST formulation was very runny, similar 

to the aqueous gels (Figure 3.4). This was evidenced by the TPA results obtained. The 

mechanical properties of 80/20 ST illustrated better gel spreadability. This desirable 

hardness is required in the development of topical gel formulations which will influence 

patient compliance and subsequently clinical efficacy. Spreadability of gels, creams, 

ointments and lotions is the net result of a combination of rheological contributions, which 

include viscosity and structural rigidity (hardness) (Table 3.3). Good spreadability affects 

adherence to the skin which ensures that a topical medication is properly administered to the 

skin thus enhancing clinical efficacy. 

 

Table 3.3 TPA parameters used to characterise gels in this study 

 

Texture profile analysis parameters 

 

Hardness (strength)  

The force required in attaining a given deformation. 

Adhesiveness 

A quantity that simulates the work required in overcoming the attractive 

forces between the surface of the sample and the surface of the probe with 

which the sample comes into contact. 

Cohesiveness 

The strength of internal bonds or forces holding the structure of the 

polymeric system together. 

      

Texture profile analysis (TPA) of gels analyses the textural properties of gels such as 

‘perceived’ feel of a product and the retention of the product at the application site, which 

provides invaluable knowledge about the predictive performance of the gel under various 

conditions (Section 3.4.2) (Jones et al, 1996; Jones et al, 1997).  As seen in Table 3.4, the 

hardness increased with an increase in ratio of ST-Elastomer. This result infers that 

hardness increases with polymeric concentration (Jones, Woolfson and Djovic, 1996). The 

cohesiveness showed a decrease with an increase in ST-Elastomer component, with the 

60/40 formulation with cohesiveness of 0. However, from the results, adhesiveness had no 

correlation with an increase in the ST-Elastomer component.  
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             Table 3.4          Texture profile analysis measurements 

 

Gel 

formulation Hardness (g) Adhesiveness (J) Cohesiveness 

ST-elastomer formulation (w/w %) 

60/40 8.33 ± 2.88 0 0 

70/30 15.00 ± 5.00 0.0006 ± 0.0001 1.41 ± 0.2464 

80/20 18.33 ± 2.86 0.0003 ± 0.0003 0.98 ± 0.4206 

90/10 65.00 ± 8.66 0.0036 ± 0.0008 0.97 ± 0.0461 

Aqueous gel composition (5 w/v %) 

HEC 6.67 0.0001 ± 0 0 

HPMC 1 11 0.0003 ± 0.0004 0.0003 

HPMC 2 7 0.0016 ± 0.0002 0.0016 

                                                           (n=3)* 

3.4.2.2  Oscillatory Measurements 

Products designed for topical administration will be subjected to shearing forces, e.g. 

chewing, breathing, swallowing, talking, flexing processes of skin, that are oscillatory in 

nature. Therefore, it is important to examine the effects of such oscillatory forces on the 

product rheology, and hence, on their clinical performance (Jones et al., 1996a; Jones et al., 

1996b). 

 

To accurately evaluate the relationship between molecular structure and viscoelastic 

behaviour measurements are conducted in regions where the viscoelastic properties 

observed are independent of imposed stress or strain levels. That is, experiments must be 

conducted in the linear viscoelastic region. The linear viscoelastic region (LVR) was 

determined between the strains of 0.01 to 0.15. Oscillatory sweep tests were performed 

between 0.002 to 50 Hz within the LVR (strain of 0.05- 0.15) for all silicone gel samples. 

Aqueous gels were analysed with a lesser magnitude (0.025- 0.05) of strain as higher 

magnitudes yielded incorrect rheograms. Rheograms were plotted as viscosity and elastic 

moduli against frequency. 
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For the silicone elastomer gels, the viscosity and elasticity moduli are clear and distinct in the 

rheograms within the frequency range measured (Fig. 3.4 A to H), while viscosity and 

elasticity moduli have cross-over points with the aqueous gels, exhibiting loss of gel structure 

(Fig. 3.6 and 3.7). For the silicone elastomer gel formulation examined (80/20 formulation), 

the storage modulus (elastic modulus) and loss modulus (viscosity modulus) increased as a 

function of increasing oscillatory frequency (0-10Hz). Similar results were observed with the 

90/10 with higher values, which maintained its gel structure up to 25 Hz; and 70/30 

formulation with lower values, which maintained its gel structure up to 6.25 Hz, in comparison 

to the 80/20 formulation. In the range of strain values used, the storage modulus was higher 

than the loss modulus, indicating a more elastic character. These results showed that the 

gels possessed viscoelastic properties. However, for the aqueous gels and the 60/40 silicone 

elastomer gel formulation, the viscosity modulus was higher than the elastic modulus which 

crossed over at a higher frequency in which the integrity of gel structure was lost (60/40 at 1 

Hz, 5% HEC at 20 Hz, 5% HPMC (60S) at 12 Hz and 5% HPMC (90000S) at 2.14Hz).  The 

aqueous gels and the 60/40 silicone elastomer gel exhibited more of a viscous property at 

lower frequencies.  

The rheological characterization of the ST-elastomer gels and aqueous semi-solid polymeric 

gels were compared to further examine the correlation between rheological behaviour and 

drug release profiles. The apparent viscosity (σ) profiles of the gels tested illustrated non-

Newtonian, pseudoplastic behavior, commonly attributed to polymeric gel systems (das 

Neves et al, 2009). This behavior is seen to be important for good spreadability of 

topical/transdermal dosage forms. From figures 3.4 a) to f), it is illustrated that the linear 

viscoelasticity region was identified with the viscosity modulus (G’) and elasticity modulus 

(G”) clearly defined without any destruction of the microstructure of the gel shown in the 

cross-over of the G’ and G” plots, within the strain range 0f 0.01 to 0.1Pa. However, the 

cross-over point was reached when exposed to the strain of 0.15Pa at 3.5Hz (figure 3.4g). 

The viscosity modulus (G’), as the name implies, represents the characteristic viscosity of the 

gel while the elasticity of the gel characterizes the elastic property of the gel. The 

measurements in the figures highlighted above, when maintained after shear forces are 

applied, infer that the structural integrity of the gel is intact. When there is a cross-over of the 

G’ and G” plots, this implies that there is destruction of the microstructure of the gel. 

For the aqueous semi-solid polymeric gels (HEC and HPMC I), cross-over points were 

reached at frequencies > 10Hz with the exception of HPMC II (90000S) whose cross over 

point was at 5Hz, illustrating destruction of the gel (Figures 3.5 to 3.7). Higher values of G’ in 

ST- Elastomer gels elucidate the more solid-like and more rigid micro-structure of the gels in 

comparison to the aqueous semi-solid polymeric gels. The higher values of the storage 
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modulus (or elasticity modulus G’) in comparison to the loss modulus (or viscosity modulus 

G”) for the gels tested in the frequency range considered also indicate that the gel systems 

are predominantly elastic (das Neves et al, 2009). Due to slippage (lack of grip during 

rheological testing) at frequencies higher than 25Hz, the G’ and G” plots of the silicone gels 

grew wider apart. This is illustrated in figures 3.5- 3.7. 
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Figure 3.4 A Rheogram showing the viscosity and elasticity moduli of 80/20 

ST-elastomer gel formulation at various strain measurements used in 

analysing the mechanical spectrum (LVR). (0.01 Strain) 

Figure 3.4 B Rheogram showing the viscosity and elasticity moduli of 80/20 

ST-elastomer gel formulation at various strain measurements used in 

analysing the mechanical spectrum (LVR). 0.015 Strain 
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Figure 3.4 D Rheogram showing the viscosity and elasticity moduli of 

80/20 ST-elastomer gel formulation at various strain measurements used in 

analysing the mechanical spectrum (LVR). (0.025 strain) 

Figure 3.4 C. Rheogram showing the viscosity and elasticity moduli of 80/20 

ST-elastomer gel formulation at various strain measurements used in analyzing 

the mechanical spectrum (LVR).0.02 strain 
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Figure 3.4 E. Rheogram showing the viscosity and elasticity moduli of 80/20 

ST-elastomer gel formulation at various strain measurements used in 

analysing the mechanical spectrum (LVR). 0.03 Strain 

Figure 3.4 F  Rheogram showing the viscosity and elasticity moduli of 

80/20 ST-elastomer gel formulation at various strain measurements 

used in analysing the mechanical spectrum (LVR). (0.1 Strain) 
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Figure 3.4 G. Rheogram showing the viscosity and elasticity moduli of 80/20 ST-

elastomer gel formulation at various strain measurements used in analyzing the 

mechanical spectrum (LVR). (0.15 strain) 

 

 

Rheological characterisation of gels provides information on the properties of gels and semi-

solids that may be related to product performance such as drug release and product stability.  

From the correlation of the results of the in vitro release study with the various formulations 

of ST-gels (90/10%, 80/20%, 70/30% and 60/40%) and their rheological and textural 

characterisation, it can be deduced that protein release profiles are affected by the 

rheological parameters of the gels. The weak structure of the 60/40% formulation, evidenced 

by its low hardness value and complete destruction of gel structure (at the frequency of 

10Hz) best describes the immediate release of BSA from the gels.  the 90/10% formulation 

exhibited the next highest in vitro release profile, despite having the highest value for 

hardness, viscosity modulus (G’) and elasticity modulus (G”). Reasons for this result are 

unclear. However, in comparison to the 80/20% and 70/30% formulations which had similar 

but statistically different (p<0.0001) in vitro release profiles, hardness, viscosity modulus (G’) 

and elasticity modulus (G”) results, it is observed that they had small amounts of drug 

released over 8 hours. The highest percentage release of 90/10%, 80/20%, 70/30% and 

60/40% were 11.2%, 5.7%, 5.5% and 13.9%. This illustrates the sustained release 
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characteristic of the 80/20% and 70/30% gels which can be applied as modified gel dosage 

forms for the sustained delivery of proteins.  

An increase in hardness, viscosity and elasticity moduli with an increase in polymer 

concentration is observed as normal and can be explained by macromolecular entanglement 

phenomena. Higher concentrations of polymer increase entanglement density (the number of 

intermolecular contacts per unit volume) and thus viscoelastic properties have a resultant 

increase (Talukdar et al, 1996).  
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Figure 3.5  Rheogram showing viscosity (G’) and elastic (G”) moduli of 5 % 

w/v HEC gels  
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Figure 3.7 Rheogram showing viscosity (G’) and elastic (G”) moduli of 

5 % w/v HPMC (90000S) gels 

Figure 3.6 Rheogram showing viscosity (G’) and elastic (G”) moduli of 5 % w/v 

HPMC (60S) gels 
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Figure 3.8 Rheogram showing viscosity (G’) and elastic (G”) moduli of 

90/10 ST elastomer gels. 

Figure 3.9 Rheogram showing viscosity (G’) and elastic (G”) moduli of 

80/20 ST elastomer gels 
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Figure 3.10  Rheogram showing viscosity (G’) and elastic (G”) moduli of 

70/30 ST elastomer gels. 

Figure 3.11    Rheograms showing viscosity (G’) and elastic (G”) moduli 

of 60/40 ST elastomer gels. 
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3.4.3 Comparison of BSA Release Profiles from of Non-Aqueous Silicone Elastomer 

Gels (NASEGS) 

3.4.3.1  Comparison of BSA release profiles from various compositions of non-

aqueous silicone elastomer gels (NASEGS) 

Non-aqueous silicone elastomer gels (NASEGS) were employed to investigate the 

topical/transdermal delivery of free protein (BSA) and BSA-loaded aquasomes, where BSA 

was used as a model protein. The NASEGS have two components, ST elastomer and 

cyclomethicone. Their proportions can be varied to produce gels of different viscosities. Four 

different formulations of ST-elastomer gels were manufactured to compare BSA release from 

the silicone gel. The formulations varied the composition ratio of ST-Elastomer to 

cyclomethicone (90/10, 80/20, 70/30 and 60/40). The resulting formulations were loaded with 

7mg of BSA per 1g of gel formulation, based on the entrapment efficiency of aquasomes per 

100mg of HA (for each aquasome formulation).  The in vitro release of BSA from the different 

formulations of NASEGS is presented in figure 3.12.  

 

Figure 3.12 shows the BSA release profiles from silicone gel formulations had similar trends, 

with no significant difference (p > 0.05) in the release profiles. The results demonstrated that 

the silicone gel formulations have similar release profiles, which were dependent on 

percentage BSA loading. The release of BSA from the different formulations of the NASEGS 

varied based on the different formulations used. The 60/40 %w/w formulation had the highest 

amount of drug released (0.98mg) followed by 90/10 %w/w (0.78mg), 80/20%w/w, (0.40mg) 

and 70/30 %w/w (0.38mg). The 80/20% and 70/30% formulation showed little difference in in 

vitro release profiles, and the difference was found to be insignificant (adjusted p value= 

0.9954). The difference between the BSA release profiles of “90/10 %w/w vs. 60/40 %w/w” 

formulations were also found to be insignificant (adjusted p value= 0.2306). These results 

highlights the fact that the BSA rate of release from the formulations compared was similar 

irrespective of the formulation as there was no statistical difference between the BSA release 

profiles compared. Nonetheless, the choice for the most suitable formulation will depend on 

the other characteristics (rheological and textural properties, as elucidated in the previous 

sections).  

 

The percentage release of BSA from the various NASEG formulations differed based on the 

composition of polymer in the gel structure. 90/10% and 60/40% formulations had the highest 

percentage of BSA release with their highest points of release as 13% in the first hour and 

13. 15% at the 5th hour time point respectively. Other time points revealed the percentage 

BSA release from these formulations ranging from 11.11 to 13.1% and 8.8 to 13.1% at each 
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time point respectively. 80/20% and 70/30% NASEG formulation had the lowest percentage 

release as 5.25% and 5.12% at the 2nd hour time point respectively. Other time points 

revealed the percentage release of BSA from these formulations ranging from 4.5% to 5.2% 

and 3.5 to 5.1% at each time point, respectively. These results show that the 70/30% and 

80/20% NASEG formulations yield a lower percentage release which translates to sustained 

and prolonged release of BSA. 
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Figure 3.12   In vitro release of BSA from different formulations of NASEGS. This graph 

presents the in vitro release of BSA incorporated into silicone gels composed of various 

ratios of ST elastomer and cyclomethicone. 90/10, 80/20, 70/30, and 60/40% w/w represents 

the ratio of ST to cyclomethicone in the gel formulation and each gel is loaded with 7mg of 

BSA per 1g of gel formulation (n=3).  
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3.4.3.2  Comparison of various BSA release profiles from 80/20 composition of 

non-aqueous silicone elastomer gels (NASEGS) 

The amount of drug released at each time point for the samples of each 80/20 silicone gel 

formulation containing different BSA loadings per 1g of gel (7mg, 5.6mg, 3.5mg and 1.7mg) 

were investigated. The optimised non-aqueous silicone elastomer gel 80/20 %w/w was 

chosen based on its favourable textural and rheological characteristics similar to a true gel, 

maintaining its semi-solid structural integrity, which is characteristic of a true gel.  The 

phenomenological definition proposed by Almdal et al (1993), states that a gel is a soft, solid 

or solid-like material, which consists of at least two components, one of which is a liquid 

present in abundance. The elastic and resilient character should be observable by the 

human eye and, consequently, on a time scale of seconds, a gel should not flow under the 

influence of its own weight. From previous research performed in the group, the BSA 

loadings were chosen in comparison to the total amount of BSA that can be adsorbed per 

100mg of aquasome formulation, analysed by an entrapment efficiency experiment (7mg- 

100%, 5.6mg- 75%, 3.5mg- 50% and 1.7mg- 25%) (results not shown). 

 

The entrapment efficiency experiment determines the amount of drug/protein adsorbed or 

“entrapped” onto the nano-carrier formulation per x mg of formulation. This is determined by 

calculating the difference between the amounts of drug/protein left in supernatant vs. the 

amount of drug/protein initially incorporated into the drug/protein solution during the 

fabrication of the nano-carrier formulation. This can also be achieved by dissolving the nano-

carrier formulation in an appropriate solvent that will break chemical bonds between the 

drug/protein and polyhydroxyl coating (trehalose) without degrading drug/protein (such as 

0.05N NaOH). The amount of drug/protein is detected in resulting supernatant solutions 

using appropriate analytical methods such as ultra violet spectroscopy (Chai et al, 2007).  

 

In comparison, the differences in BSA release profiles of “90/10 vs. 80/20 %w/w”, “90/10 

%w/w vs. 70/30 %w/w”, “80/20 %w/w vs.  60/40 %w/w” and “70/30 %w/w vs. 60/40 %w/w” 

were found to be significant (adjusted p values= 0.0357, 0.0204, 0.0002 and 0.0001 

respectively). This confirms that the release of BSA from the different formulations of the 

NASEGS varied significantly based on the different formulations used. This trend highlights 

the fact that the properties of the formulations compared influenced the BSA rate of release.  

 

The BSA release profile from the 80/20 %w/w formulation (Figure 3.13) showed sustained 

release demonstrating the controlled release property of the silicone elastomer gels.  
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The release of various loadings of BSA (7mg, 5.6mg, 3.5mg and 1,7mg) from NASEGS over 

an 8h period is presented in figures 3.14 respectively. The release profiles from the silicone 

formulations were dependent on drug loading. Figure 3.14 illustrates that the increased BSA 

loading in the silicone gels enhanced the rate of release of BSA from the gel’s insoluble 

matrix. The differences between the BSA release profiles of “100ST vs. 75ST” and “100ST 

vs. 50ST” were found to be statistically insignificant (adjusted p values= 0.3901 and 0.0686 

respectively). This was also observed when the BSA release profiles of “75ST vs. 50ST” and 

“50ST vs. 25ST” as the differences were found to be insignificant (adjusted p values= 0.7724 

and 0.1899 respectively). In comparison, the differences in the BSA release profiles between 

“100ST vs. 25ST” and “75ST vs. 25ST” were found to be statistically significant (adjusted p 

values= 0.0003 and 0.0245 respectively).                                                                           
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Figure 3.13    In vitro release profile of BSA from non- aqueous silicone elastomer gels. 

This graph represents the amount of drug released at each time point for the samples of 

each silicone gel formulation made with different BSA loadings. 100ST represents 7mg; 75 

ST, 5.6mg; 50 ST, 3.5mg and 25 ST 1.7mg of BSA incorporated into per 1g of the 80/20 

%w/w formulation of the non-aqueous silicone elastomer gels (n=3). 

 

According to Patel et al (2011), drug release rate from insoluble polymer matrices is 

controlled by the pore size and number of pores, and tortuosity of the matrix. The release 

mechanism will also depend greatly on how the drug is dispersed within the system 

(dissolved, molecularly dissolved, or dispersed).  

 



140 
 

From the statistical inferences, the difference in the BSA loadings between 100ST vs. 75ST”, 

“100ST vs. 50ST”, “75ST vs. 50ST” and “50ST vs. 25ST” were insignificant and thus do not 

affect the rate of BSA release from the silicone gels. This can be attributed to the dispersion 

of the small amounts of BSA, which is a water-soluble protein within the insoluble silicone 

matrix.  As illustrated in Figure 3.14, the drug release mechanism from silicone matrix differs 

depending on the physiochemical properties of the drugs (Kajihara et al, 2003). 

Lipophilic/hydrophobic drugs or proteins diffuse through the silicone matrix, demonstrating 

more solubility in silicone. However, water-soluble drugs/proteins rely on the hydration of the 

pores within the matrix for release. The differences in the BSA loadings between “100ST vs. 

25ST” and “75ST vs. 25ST” were found to be statistically significant which illustrate that a 

significant increase in BSA loading. The increase in BSA loading will increase the number of 

pores within the matrix which when dissolved into the surrounding release medium, will affect 

the hydration of the polymer matrix and thus increase the rate of BSA release from the 

silicone gels. 

 

BSA release from the gels show constant release but does not follow zero-order kinetics; 

drug release decreases with time due to the increasing distance drug molecules have to 

travel to reach the surface of the gel. However, pore-forming agents can be added to 

decrease tortuosity and facilitate drug release. It may be explained that the decrease in the 

tortuosity of the silicone gel’s insoluble matrix increased the rate of BSA release owing to 

BSA’s high solubility in release media. The addition of BSA (soluble protein, pore-forming 

agent) increased the rate of hydration of the pores/ channels in the gel matrix thus increasing 

the rate of BSA release to the surrounding release medium (Kajihara et al, 2003).  
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A. Water soluble drug  

 

B. Lipophilic drug 

 

 

 

 

 

 

3.4.4 Comparison of BSA Release Profiles from Aqueous Gels 

The release of BSA from the aqueous gels, HPMC and HEC, also had similar release 

profiles, starting with a burst with a near plateau release trend and a very gradual decline in 

amount of BSA released at the tail end of the 8h study. In comparison to release from the 

NASEGS, the amount of BSA released was very high (see Figures 3.16, 3.17 and 3.18). The 

high BSA release and gradual decline in drug release shows that the HPMC and HEC gels 

were rapidly hydrated, leading to a high rate BSA dissolution, depleting the amount of BSA 

remaining within the gels.  

 

Figure 3.16 presents the amount of drug released at each time point for the aqueous gel 

formulation, HEC, with various BSA loadings (7mg, 5.6mg, 3.5mg and 1.7mg) and the 5 

%w/v formulation of the HEC gels. The 5%w/v formulation was chosen because of 

similarities to a semi-solid gel structure. The HEC gel formulations have similar release 

Figure 3.14  Release mechanisms of drugs with different physiochemical properties 

from a silicone carrier such as NASEG. A water-soluble protein like BSA incorporated into 

the insoluble NASEG creates channels when hydrated allowing the subsequent release of 

BSA from the gels. Insoluble or weakly soluble drugs diffuse through the NASEGs and thus 

released from the gels. 
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profiles, dependent on drug loading. The differences between the BSA release profiles of 

“25HEC vs. 50HEC”, “50HEC vs. 75HEC” and “75HEC vs.100HEC” were found to be 

statistically insignificant (adjusted p values= 0.2277, 0.3159 and 0.3694 respectively). In 

comparison, the differences between the BSA release profiles of “25HEC vs. 75HEC”, 

“25HEC vs. 100HEC” and “50HEC vs.100HEC” were found to be statistically significant 

(adjusted p values= 0.0043, <0.0001 and 0.0095 respectively). This trend can be attributed 

to the rate of BSA release from the HEC aqueous gel. Since the gels exhibits an immediate 

release property to the incorporated drug/protein, attributed to the erosion and diffusion 

mechanisms occurring concurrently, the rate of BSA release is faster and is irrespective of 

BSA loading for similar drug loadings because the gel structure is hydrated very quickly and 

does not depend solely on the diffusion of BSA (water soluble protein) to hydrate the gel 

structure for BSA to be released.  

 

Figure 3.17 presents the amount of drug released at each time point for the aqueous gel 

formulation, HPMC, with various BSA loadings (7mg, 5.6mg, 3.5mg and 1.7mg) and the 5 

%w/v formulation of the HPMC gels. As for the HEC gels the 5%w/v formulation was chosen 

because of similarities to a semi-solid gel structure. The HPMC gel formulations have similar 

release profiles, dependent on drug loading. The differences between the BSA release 

profiles of “25HPMC vs. 50HPMC”, “50HPMC vs. 75HPMC” and “75HPMC vs.100HPMC” 

were found to be statistically insignificant (adjusted p values= 0.0732, 0.3986 and 0.6697 

respectively). In comparison, the differences between the BSA release profiles of “25HEC vs. 

75HEC”, “25HEC vs. 100HEC” and “50HEC vs.100HEC” were found to be statistically 

significant (adjusted p values= 0.0013, <0.0001 and 0.0481 respectively). 

 

The same trend observed with HEC gels was also observed with BSA release from HPMC 

gels. This trend can be attributed to the rate of BSA release from the HPMC aqueous gel and 

thus follows the same mechanism of release.  

 

The HPMC and HEC aqueous gels exhibit the characteristics of a viscous hydrophilic matrix 

system (Figure 3.15). In the presence of water, they form matrix systems in which the 

increased viscosity occurs as a result of simple entanglement of adjacent polymer chains but 

without proper crosslinking. They form dynamic structures in which the chains are able to 

move relative to one another and the drug diffuses through the interstitial continuum (Aulton, 

2007).   

 

The mechanism of drug release from a viscous hydrophilic matrix complex is centred on 

diffusion of the drug through, and erosion of, the outer hydrated polymer on the surface of 
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the matrix (Figure 3.15 a) (Jain, 2008). In this instance, where BSA (a soluble protein) is 

incorporated into HPMC/HEC (a viscous hydrophilic matrix system), gradual erosion of the 

HPMC/HEC gel by the surrounding release medium and the diffusion of the BSA through the 

hydrated gel matrix occurs as more water permeates into the core of the matrix. This is 

illustrated in Figure 3.15 c (Patel et al, 2011).  

 

As the outer layer becomes fully hydrated, the polymer chains become completely relaxed 

and can no longer maintain the integrity of the gel layer, leading to disentanglement and 

erosion from the surface of the matrix. Water continues to penetrate through the gel, until it 

has been completely eroded (Tiwari and Rajabi-Siahboomi, 2008; Jain, 2008; Patel et al, 

2011).  
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Drug/Protein dispersed in gel “viscolised” 

matrix 

Gel structure getting hydrated and drug is gradually diffusing 

into surrounding release medium 

Further hydration of gel structure leads to erosion of gel structure and further 

release of drug/protein from the gel 

The polymer chains are completely relaxed leading to loss of integrity of gel 

structure, erosion from the surface of the matrix and rapid drug/protein release 

Drug 

release 
Eroding 

surface 

Figure 3.15  Schematic diagram illustrating BSA release from hydrophilic gels.  a) viscolised hydrophilic matrix showing an entanglement of polymer 

chains without any proper crosslinking; b) true gel matrix which form a polymeric structure in the presence of crosslinks, and  c)  drug release from a 

viscolised hydrophilic matrix gel such as HEC or HPMC used in the present study. 
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Figure 3.16  In vitro release of BSA from hydroxyethyl cellulose (HEC, aqueous) 

gels. This graph presents the amount of drug released at each time point for the aqueous gel 

formulation, HEC, with various BSA loadings.  100HEC represents 7mg; 75 HEC, 5.6mg; 50 

HEC, 3.5mg and 25 HEC 1.7mg of BSA incorporated into per 1g of the 5 %w/v HEC gel 

formulation (n=3). 
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Figure 3.17 In vitro release of BSA from hydroxylpropyl methyl cellulose (HPMC, 

aqueous) gels.  This graph presents the amount of drug released at each time point for the 

aqueous gel formulation, HPMC, with various BSA loadings.  100HPMC represents 7mg; 75 

HPMC, 5.6mg; 50 HPMC, 3.5mg; and 25HPMC, 1.7mg of BSA incorporated into per 1g of 

the 5 %w/v HPMC gel formulation (n=3). 

 

 

3.4.5 Comparison of BSA Release from BSA-Loaded Aquasomes and Non-Aqueous 

Silicone Elastomer Gels (NASEGS) Loaded With BSA 

To examine the possible application of aquasomes in topical/transdermal delivery, 

preliminary studies were performed in comparison to the drug/protein alone to establish 

these claims. A suitable dosage form for the topical/transdermal delivery of aquasomes was 

required to enable protein/drug delivery to the skin. NASEGS and aqueous gels were 

compared in this study to examine the appropriate aquasome formulation for sustained 

topical/transdermal delivery.  Aquasomes were incorporated into NASEGS to formulate a 

dosage form suitable for topical/transdermal delivery. The release profiles, rheological and 

mechanical characterization of these gels were then compared with the commonly used 

aqueous semi-solid polymeric gels (made with HEC and HPMC) using BSA, the model 

protein.   



147 
 

The release of BSA from the aquasomes incorporated into the NASEGS manufactured with 

different BSA loadings (7mg, 5.6mg, 3.5mg and 1.7mg, with the drug adsorbed onto the 

aquasome coating), was investigated. The 80/20 %w/w silicone gel formulation was chosen 

based on rheological and textural properties (Section 3.4.5). Figure 3.19 presents a 

comparison of the release profiles of BSA from various loadings of BSA-loaded aquasomes 

incorporated in the NASEGS. The release of BSA was dependent on the diffusion of the 

release medium through interstitial pores which hydrates the aquasome formulation within 

the insoluble matrix. The trehalose coating is hydrated and forms a gel, which controls the 

release of the BSA adsorbed and as a result, offers the sustained release of BSA. Results 

show that BSA release from NASEGS was similar and the amount of BSA released was 

within a narrow range, regardless of the BSA loading on aquasomes incorporated into the 

NASEGS. 

 

The release of BSA from NASEGS was compared to that released from BSA-loaded 

aquasomes incorporated into the non- aqueous silicone elastomer gels (80/20 %w/w) (figure 

3.20). BSA directly incorporated into the silicone gels had a much higher amount of drug 

released (5.28µg as its highest amount at the 2nd hour time point, 0.075%) than from the 

BSA-loaded aquasomes while the amount of BSA released from the aquasome-silicone gel 

formulations was less than 1µg (0.014% of incorporated amount of BSA). The different 

release profiles can be employed for different drug delivery applications depending on the 

desired drug release characteristic (sustained or immediate release). However, the release 

of BSA from the BSA-loaded aquasomes incorporated into the silicone gels was governed by 

two factors: sustained release of BSA from the trehalose gel formed when in contact with the 

release medium and also the diffusion of the BSA through the pores of the gel. This causes 

BSA to have an extended release from the silicone gels. This extended release property is 

useful for proteins or drugs that require small amounts of drug to be released over a longer 

period. Root t release kinetics, with a readily soluble drug/protein like BSA from the silicone 

gels, can be applied in the release of drug/protein which require sustained release but in 

higher amounts. Here, BSA represents a protein, a readily water soluble protein/drug and a 

pore forming agent, which is dispersed in an insoluble matrix. In higher quantities, it readily 

allows pores to be water filled, initiating release of BSA. As a pore-forming agent, it can be 

incorporated with another protein or a protein-loaded aquasome formulation which requires 

its release to be in higher amounts compared to the amount released (ng) with aquasomes 

alone distributed within the silicone gels (Kajihara et al, 2000; Kajihara et al, 2003).  
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 Figure 3.18    Comparison of the in vitro release profiles of BSA from aqueous gels 

(HPMC and HEC gels) and silicone elastomer gels. This graph compares the amount of 

BSA released at each time point for the aqueous gel formulations, HEC and HPMC, and the 

silicone gels with the same loading: 7mg of BSA per 1g of gel formulation (n=3). 
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Figure 3.19 In vitro release profile of BSA from BSA-loaded aquasomes incorporated in NASEGs. This graph compares the amount of 

drug released at each time point for the BSA-loaded aquasomes incorporated into the silicone gels (80/20% gel formulation). Entrapment 

efficiency experiment estimates that 7mg of BSA is adsorbed per 100mg of aquasome formulation. 100AQUA, 75AQUA, 50AQUA and 25AQUA 

represent 100mg, 75mg, 50mg and 25mg aquasome formulation (n=3). 
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Figure 3.20   Comparison of the in vitro release profile of BSA from BSA-loaded 

aquasomes and BSA directly incorporated in non-aqueous silicone elastomer gels 

(NASEGS). 7mg/g of BSA was incorporated in NASEGS (ST) illustrating the total amount of 

BSA incorporated per 100mg of aquasome formulation (n=3). 
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Drug release from insoluble matrices can follow one of four matrix system release 

mechanisms as detailed in Table 3.8 (Nokhodchi et al, 2012). 

 

           Table 3.8  Drug release mechanisms from insoluble matrices 

 

Drug release mechanisms from insoluble matrices 

 

●   Drug molecularly dissolved in the matrix and drug diffusion occurs 

by a solution-diffusion mechanism 

●   Drug dispersed in the matrix and then, after dissolution of the drug, 

diffusion occurs via a solution- diffusion mechanism  

●    Drug dissolved in the matrix and diffusion occurs through water 

pores in the matrix  

●   Drug dispersed in the matrix and then, after dissolution, diffusion 

occurs through water-filled pores. 

 

 

The amount of drug released from insoluble simple monolithic dispersion systems do not 

follow zero order kinetics but follow root square kinetics i.e. the amount of drug released is 

normally proportional to the square root of the time of exposure to the surrounding release 

medium. The amount of drug released decreases with time of exposure to the release 

medium. This occurs because the drug is released initially from the surface region where 

there is a short diffusion pathway. As the duration of dissolution progresses, the area of drug 

exposed to the release medium decreases. A constantly increasing depletion zone is formed 

within the matrix as the drug dissolves and so the diffusion pathway increases in length 

(Patel et al, 2011).  

It can be concluded that the rate of drug release is controlled by the rate of diffusion of the 

surrounding release medium into the gel matrix (Verma et al, 2013). This explains the 

release profiles of BSA from the NAEGs and thus elucidates the shape of the release profile 

curves. The release profile has a shape of a parabola as a function of time.  The drug 

release profiles of BSA from the aqueous semi-solid polymeric gels formulated with HPMC 

and HEC are similar to generic tablets. In the presence of the aqueous release medium, the 

polymer chains simply disentangle and are diluted because they lack proper crosslinking, 

release the drug into the surrounding medium (Gupta, Vermani and Garg, 2002). A 

distinction should be noted between aqueous gels and hydrogels. Hydrogels are cross-linked 
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hydrophilic polymers which swell in the presence of an aqueous environment, while 

maintaining their 3D structure (Aulton, 2007; Gupta, Vermani and Garg, 2002). 

The amount of drug release is dependent on the drug concentration in the dosage form. 

Therefore, the rate of drug release is defined as the concentration change divided by 

corresponding time change. 

3.4.6  In Vitro Permeation Studies 

To examine the performance of the gels on the skin and its ability to effectively deliver 

proteins/drug through the stratum corneum, in vitro permeation studies are employed. The 

use of in vitro static diffusion cells to assess skin permeability has evolved into a major 

research methodology, elucidating the relationships between skin, drug and formulation. 

Such testing is highly useful not only for the design and development of formulations but also 

for toxicity screening and quality-control purposes (Ng et al, 2010a). 

Franz-type diffusion studies usually involve the use of synthetic membranes to model real 

skin. Although the artificial membranes will not model the lipid perturbation effects undergone 

by biological samples, inferences regarding partitioning and diffusion phenomena can be 

made. Synthetic membranes may be preferred to skin tissue as they are more easily 

resourced, less expensive and structurally simpler (Ng et al. 2010b). 

In this study, Franz cell experiments were performed using 0.4µm pore size polycarbonate 

membranes to mimic the stratum corneum (10µm thickness) and silicone elastomer gels 

incorporated with 7mg/g of gel (figure 3.21). This dosage concentration was chosen based 

on the loading efficiency of aquasomes for BSA estimated at 7mg of BSA adsorbed per 

100mg of aquasome formulation, analysed by an entrapment efficiency experiment. 

Preliminary tests for the investigation of the in vitro permeation of BSA-loaded aquasomes in 

ST-Elastomer gels were performed by incorporating free BSA into the gels. as elucidated by 

Ng et al (2010), the thickness of the membrane used can be a rate-limiting factor in diffusion, 

in comparison to the polycarbonate membrane (thickness of 10µm), acted as a rate limiting 

factor in BSA diffusion. 
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Figure 3.21      Cumulative amount of BSA permeated through 0.4µm polycarbonate 

membranes. In vitro permeation study was carried out using 7mg BSA per g of NASEG for 

duration of 8h. PBS (pH 7.4) was used as the receptor media (n=3). 

 

The physicochemical properties of the drug may have also acted as a rate limiting factor as 

BSA (hydrophilic protein, M.W: > 66,000Da) exhibited a low cumulative drug release profile 

(Fig. 3.21). Literature illustrates that release of proteins from silicone elastomers offer a 

sustained and prolonged release profile (Kajihara et al, 2000). 

In this study, BSA was used as a model protein to investigate the delivery of proteins from 

NASEGS. From the in vitro permeation results using 0.4µm polycarbonate membrane as the 

rate limiting factor, the permeation of BSA from NASEGS through the membrane showed a 

sustained amount of 1.5 – 2.0µg BSA at every time point for the duration of 8 hours. These 

minute amounts of BSA released from NASEGS and permeated through the membrane 

indicate that release of BSA from loaded aquasomes incorporated into NASEGS will yield 

less than optimal results of BSA release. However, these amounts of BSA released can be 

applied in the delivery of potent proteins which elicit a pharmacological response with small 

amounts. According to Kajikara and colleagues (2000), the sustained and prolonged delivery 

of potent proteins such as cytokines and growth factors, required at low concentrations to 

exert a biological effect, can be successfully achieved with mixing such proteins with albumin 

for desired release characteristics. This is because protein drugs cannot diffuse through 
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silicone and the addition of hydrophilic proteins in higher amounts will cause the formation of 

pore channels through the silicone matrix when exposed to the release medium and thus will 

enhance the release of the protein drug of interest (see Figure 3.21, Kajikara et al, 2003). 

It has previously been investigated in numerous studies that ST-elastomer gels have a more 

favourable affinity to hydrophobic [lipophilic] drugs compared to hydrophilic drugs (proteins 

like BSA), owing to their hydrophobic structure (Mashak and Rahimi, 2009; Forbes et al, 

2013). The hydrophobic nature of silicone elastomers is somewhat lipophilic and can be 

swollen by lipids or other nonpolar agents (Curtis and Colas, 2005). Lipophilic drugs are able 

to diffuse through the silicone matrix and thus have favourable release and permeability 

profiles.  Hydrophobic drugs have a constant release rate from hydrophobic polymers 

(Kajikara et al, 2001). 

The underlying theory, which describes the transport of drug across a barrier membrane in 

Franz diffusion cell, is the Fick’s Law of passive diffusion,  

 

𝐽 = 𝐾.
𝐶v

ℎ
  

 

Where J is flux, Cv is permeant concentration in vehicle, h is membrane thickness and K is 

the partition constant of the permeant between the membrane and vehicle (Ng et al, 2010; 

Moser et al, 2001). 

In vitro permeation investigations have employed the use of synthetic membranes made from 

different materials, having different pore sizes and membrane thicknesses (Ng et al, 2010). 

This is usually carried out to compare the rate of flux of a drug through different membranes, 

mimicking the various thicknesses and pore sizes throughout the skin. Commonly used 

membranes are made from silicone, cellulose and polysulfone.   

The successful permeation of a drug in a topical formulation through skin and concurrent 

exertion of a biological effect is dependent on two factors: the drug’s diffusion out of the 

vehicle to the skin’s surface and consecutive permeation through the stratum corneum. 

These steps are dependent on the physicochemical properties of the drug, vehicle and 

barrier, as highlighted in Table 1.5 (Kriwet and Muller-Goymann, 1995). 

Nanoparticulate carriers present some advantages for topical/transdermal applications as 

their display sustained drug release profiles important to expose the skin to the drug for 

prolonged durations. Alves et al (2007) carried out a study to investigate the in vitro 

penetration of a drug model, nimesulide, from hydrophilic gels containing nanocarriers, 
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nanospheres, nanocapsules and nanoemulsions were used in this study. Nimesulide is a 

NSAID (non-steroidal anti-inflammatory drug) under the class of COX-2 inhibitors.  

Nimesulide exhibits low solubility in water (0.001mg/ml). In vitro penetration was analysed 

using the Franz cell technique, using full thickness human skin as membrane. The influence 

of nanocarriers on drug release was compared with free drug in aqueous gel. Nimesulide 

formulations were prepared by nanoprecipitation and interfacial deposition and incorporated 

into Carbopol 940® gels. 

Nimesulide was detected in the stratum corneum for the gel containing nimesulide-loaded 

nanocapsules and nimesulide-loaded nanospheres but not for the gel containing nimesulide-

loaded nano-emulsion. The presence of nimesulide was significantly higher for the gel 

containing nimesulide-loaded nanocapsules in comparison to drug-loaded nanospheres and 

nanoemulsions. The drug was detected in the receptor compartment of the Franz cell 

apparatus for none of the formulations which illustrates from previous studies that particulate 

drug carriers (micro- and nano- particles) improve drug residence in the skin without 

increasing transdermal transport (Alvarez-Roman et al, 2004 in Alves et al, 2007).  

Interestingly, results from this study showed that none of free drug incorporated into the 

vehicle (Carbopol 940®) i.e. without nanocarriers diffused into the skin surface. It is argued 

here that the modified distribution of nimesulide when delivered via nanoparticles is as a 

result of alterations in thermodynamic activity which causes an increase in drug diffusion 

through the vehicle. (Alves et al, 2007). 

3.4.7  In Vitro Toxicity Assay (MTT Assay) 

A thiazolyl blue tetrazolium bromide (MTT) assay was performed to measure cell death after 

exposure of cells to BSA at different concentrations for 24 h, representing short term 

exposure to aquasomes (acute toxicity). The amount of BSA that can be released from 

aquasomes (in comparison to BSA alone) and stimulate a biological response without having 

a toxic effect, was examined. Human dermal fibroblasts (HDFa) were used as a model 

dermal cell line and exposed to similar BSA concentrations as would be released from BSA-

loaded aquasomes. Figure 3.22 illustrates the cell viabilities of HDFa cells, after exposure to 

7.0, 5.6, 3.5 and 1.7mg/ml of BSA dispersed in serum-free culture medium. 

Measurement of cell viability and proliferation forms the basis for numerous in vitro assays of 

a cell population’s response to external factors. The reduction of tetrazolium salts is known 

as a reliable way to examine cell proliferation. The yellow tetrazolium MTT (3-(4, 5-

dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) is reduced by metabolically active 

cells, in part by the action of dehydrogenase enzymes, to generate reducing equivalents 
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such as NADH and NADPH. The resulting intracellular purple formazan can be solubilized 

and quantified by spectrophotometric means. An increase in the absorbance values with 

concentration illustrates a corresponding increase in the formation of MTT formazan. The 

MTT cell proliferation assay measures the cell proliferation rate and contrarily, when 

metabolic events lead to apoptosis or necrosis, the reduction in cell viability.  

 

The percentage cell viabilities of HDFa cells exposed to varying concentrations of BSA-

spiked media were plotted in a bar graph to illustrate the cell viabilities in correspondence to 

the different BSA concentrations. Figure 3.22 illustrates that the BSA concentrations used in 

the fabrication of BSA-loaded aquasomes were not toxic to HDFa cells. On the contrary, BSA 

enhanced the growth of HDFa cells over the duration of 24h. Exposure of the HDFa cells to 

7.0mg/ml BSA-spiked media yielded 130.34% viability, 5.6mg/ml yielded 119.98%, 3.5 mg/ml 

yielded 112.71% and 1.7mg/ml 105.25% viabilities. These differences in cell viabilities were 

found to be statistically significant (p<0.0001). 

BSA was used as a model protein in this study and has been established in general cell 

culture protocols to ensure optimal cell growth and proliferation. It is commonly used to 

enhance the growth of various immortalised and primary cell lines, mimicking the protein-rich 

cell milieu in vivo. Further investigations in cell culture were not pursued as BSA is a well- 

established serum protein for optimising cell growth in in vitro studies. 



157 
 

1
.7

m
g

/m
l

3
.5

m
g

/m
l

5
.6

m
g

/m
l

7
.0

m
g

/m
l

0

5 0

1 0 0

1 5 0

B S A  c o n c e n t r a t io n  (m g /m l)

C
e

ll
 v

ia
b

il
it

y
 o

f
 H

D
F

a
 (

%
)

1 .7 m g /m l

3 .5 m g /m l

5 .6 m g /m l

7 .0 m g /m l

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22  Cell viability of HDFa cells.  MTT assay of HDFa cells exposed to varying 

concentrations of BSA (7. 5.6, 3.5 and 1.7mg/ml) after 24 hours. Results show that BSA 

had no toxic effect on the cells but rather increased the viability of the cells over the period of 

24 hours (n=24). 
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3.5 CONCLUSIONS 

 

The present study focused on the use of non-aqueous silicone elastomer gels (NASEGS) as 

a suitable topical/transdermal delivery for aquasome delivery. NASEGS were employed to 

investigate the topical/transdermal delivery of free protein (BSA) and BSA-loaded 

aquasomes, where BSA was used as a model protein. Aqueous gels, made of HPMC and 

HEC, are common drug dosage forms and were used in this study to compare the drug 

release, rheological and textural parameters of NASEGS. As a model protein for 

transdermal/topical delivery, BSA-loaded aquasomes were fabricated and further analysed 

using in vitro release and permeation experiments. 

BSA release from aquasomes exhibited biphasic release behaviour with an initial burst 

release which plateaus after 2 hours. The percentage release of BSA from loaded 

aquasomes showed a range of 1.6 to 3.57% indicating the potential of BSA-loaded 

aquasomes for sustained and prolonged release of proteins. 

BSA release profiles from the various NASEG formulations demonstrated that amounts of 

BSA released are dependent on BSA loading into NASEGS. The release profile of BSA from 

NASEG formulations showed constant release of BSA for every time point during the 8-hour 

study. BSA release from aqueous gels showed a higher amount of release illustrating the 

higher rate of hydration of the aqueous gel matrix thus resulting in high amounts of BSA 

released. NASEG compositions (90/10%, 80/20%, 70/30% and 60/40%) also influenced BSA 

release, rheological and textural parameters that determine the suitability of a NASEG 

formulation fit for topical delivery. Based on the results from the in vitro release, study, 

rheological and textural parameters, 80/20% formulation showed favourable results as the 

NASEG formulation with optimum characteristics as a pharmaceutical topical gel. 

Incorporation of BSA-loaded aquasomes into NASEGS yielded minute amounts of BSA 

release (less than 1µg, 0.014%) which can be applied to the release of potent antigens, 

proteins and peptides which require small amounts to exert their pharmacological effect. 

Incorporation of hydrophilic proteins in higher loadings with such potent peptides and 

antigens can enhance the release of such peptides/antigens by increasing the ingress of 

water into the hydrophobic gel matrix of NASEGS. BSA released from loaded aquasomes 

was also found to be released in smaller quantities in comparison to BSA directly 

incorporated in NASEGS. 

BSA   was also investigated for acute toxicity in human cells, using HDFa cells as a cell 

culture model. BSA was found to enhance proliferation of cells within 24 hours. This is 
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generally expected as BSA is used in cell culture medium to enhance cell growth and 

viability. 

In conclusion, BSA-loaded aquasomes show potential as protein carrier delivery systems 

which can be applied in various areas of protein where small amounts of protein release are 

required. NASEGS have demonstrated suitability as a dosage from for the delivery of 

protein-loaded aquasome formulations for topical delivery.    
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                   CHAPTER 4 
GENTAMICIN-LOADED AQUASOMES 

AS POTENTIAL ANTIBIOTIC DELIVERY 
SYSTEMS FOR THE TREATMENT OF 
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4.1 INTRODUCTION 

One of the major and prevailing complications in orthopaedic surgical procedures and 

fracture treatments are pathogenic infections which may lead to rejection from host, 

disunions or ultimate bone destruction (El-Husseiny et al., 2011). Such infections cause 

inflammations of the bone tissue (osteomyelitis) (Lew and Waldvogel, 2004). Osteomyelitis is 

a disease in transition, with ongoing changes in predisposing factors, causative organisms 

and treatment. It is a disease which is heterogeneous in its pathophysiology, clinical 

presentation and management (Gomes, Pereira and Bettencourt, 2013, Lima et al., 2014).  

This infection may be restricted to one portion of the bone or can involve several regions 

including the marrow, cortex, periosteum and the surrounding soft tissue (Soriano and Evora, 

2000; Lew and Waldvogel, 2004). 

 

4.1.1  Progression and Etiology of Osteomyelitis  

Bacteria enter the bone haematogenously through the Haversian system, the structural unit 

of the bone (osteon). They adhere to the bone and trigger an acute inflammatory response. 

Bacteria have various different mechanisms to facilitate cell-cell and cell-implant adhesion 

(Gogia et al., 2009). Certain major causes of infection, such as Staphylococcus aureus, (S. 

aureus) adhere to bone by expressing receptors (adhesins) for components of bone matrix 

(fibronectin, laminin, collagen, and bone sialoglycoprotein); the expression of the collagen-

binding adhesion permits the attachment of the pathogen to cartilage (Lew and Waldvogel, 

2004; Popat et al., 2007 Sanchez et al., 2013; Arciola et al., 2015). 

Among pathogenic microorganisms, S. aureus is by far the most commonly involved in 

osteomyelitis in humans, followed by Enterobacteriaceae and Pseudomonas species (Lew 

and Waldvogel, 2004; Gogia et al., 2009). The ability of S. aureus to adhere is thought to be 

crucial for the early colonisation of host tissues, implanted biomaterials, or both. S. aureus 

expresses several adhesins on its surface, each specifically interacting with one host protein 

component, such as fibrinogen, fibronectin, collagen, vitronectin, laminin, thrombospondin, 

bone sialoprotein, elastin, or von Willebrand factor. S. aureus and S. epidermidis can also 

form biofilms (a microbial community characterised by cells that attach to substratum or 

interface to each other) which are difficult to treat with antimicrobial agents. 
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4.1.2 Local antibiotic therapy for osteomyelitis 

The major advantage local antibiotic therapy offers over systemic therapy is lower serum 

antibiotic concentrations thus reducing toxicity-related side-effects (Joosten et al., 2005; 

Nandi et al., 2009). Based on the commonly implicated causative microbes involved in 

osteomyelitis, the most widely accepted antimicrobial agents in local delivery systems are 

amino glycosides and to a lesser extent various β-lactam agents and quinolones. 

Importantly, a combination therapy of antibiotics proves useful in the reduction of the toxicity 

of individual agents, to prevent the development of antimicrobial resistance and to treat 

mixed infections involved in osteomyelitis and also demonstrate a synergistic effect (Nandi et 

al., 2009, Gogia et al, 2009).  

Release of the antibiotic in such systems depends on the rate of dissolution of drug in its 

matrix allowing its penetration through the pores of the carrier. The amount of release in 

highly soluble β-lactam agents depends on the surface area of the carrier and on the initial 

concentration of the drug in the prepared systems. For relatively insoluble agents like 

quinolones, the rate of drug release depends on the porosity of the matrix and on the 

dissolution of the drug in the matrix (Allababidi and Shah, 1998).  

     

4.1.3  Hydroxyapatite as a biomaterial for antibiotic local delivery 

Drug delivery systems (DDSs) exhibiting the properties of biocompatible bioceramics are 

highly desirable and are thus shaped as powders, blocks, cements, scaffolds, porous 

devices and coatings for this purpose (Mizushima et al, 2006; Zhou and Lee, 2011; Arcos 

and Vallet-Regis, 2013). One major example commonly used for this property is synthetic 

hydroxyapatite (HA). HA is the inorganic component of the bone structure. Synthetic HA is 

chemically and structurally similar to the mineral phase of bone demonstrating remarkable 

osteogenic and osteoconductive properties (Itokazu et al, 1998). 

Because of its chemical and structural similarities to the inorganic phase of human bone, HA 

(HA) shows excellent biocompatibility (Arcos and Regis, 2013). Many research studies have 

been focused on the use of ceramic materials HA as antibiotic carriers for treating bone 

infection, since their chemical composition is very similar to the bone mineral phase (Baro et 

al, 2002).  

Antibiotic impregnated HA has also been used to treat patients with chronic osteomyelitis 

after removing necrotic tissue. The ceramic material was gradually incorporated into the host 

bone and uneventful healing was observed within three months with no recurrence of 

infection (Nandi et al, 2009).  



163 
 

Gentamicin loaded HA cement has been investigated using in vitro and in vivo studies for its 

effectiveness against post traumatic chronic osteomyelitis. In HAC/gentamicin-treated 

animals, no growth was detectable after 7 days of culture. No histopathological evidence of 

infection was observed in the HAC/ gentamicin-treated group while different stages of 

chronic osteomyelitis were observed in other groups (Joosten et al, 2004). 

Micro porous HA was analysed for antibacterial activation using three different antibiotics 

including gentamicin, in comparison to dense HA. Bacteria inhibition tests against different 

pathogenic bacteria were performed for testing the antibiotic adsorption and the 

microbiological effectiveness after loading with different antibiotics. Results demonstrated 

that adsorbed amount on the micro-porous HA was largely higher than that on dense HA and 

an increase in the duration of antibiotic release was observed (Chai et al, 2007). 

                                                                                                                                                                                     

4.1.4 Aims and objectives 

The overarching aim for this chapter is focused on investigating the efficacy of the aquasome 

delivery system in exerting sustainable bactericidal activity against an osteomyelitis relevant 

pathogen (Staphylococcus aureus).  The following objectives were set to achieve this aim. 

1. To successfully fabricate gentamicin-loaded aquasomes which exhibit antibacterial 

activity against a known pathogen by the release of gentamicin 

2. To fabricate gentamicin-loaded aquasomes with sustained release and bactericidal 

activity and to determine the amount of gentamicin released at each time point that yields 

antibacterial activity. 

3. To examine the efficacy of gentamicin-loaded aquasomes in exerting a bactericidal 

effect against Staphylococcus aureus, (which is implicated in nearly all cases of 

osteomyelitis), in comparison with negative controls. 
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4.2 MATERIALS AND METHODS 

4.2.1 Materials  

Nano-sized hydroxyapatite powders (60nm) were purchased from MKNano Corporation 

(Ontario, Canada). D (+)-Trehalose dehydrate was purchased from Acros organics 

(Belgium). Dulbecco’s Phosphate Buffer Saline (PBS, tablets were purchased from Sigma 

Aldrich (Poole, UK). Gentamicin sulphate was purchased from Bio-West (UK). LB Agar 

(Miller Luria-Bertani agar), LB Broth (Miller Luria-Bertani broth) were purchased from Fisher 

Scientific (UK) and McFarland Reagent. Lab strain of Staphylococcus aureus were gifted by 

Dr Lindsay Marshall. All reagents and materials were of analytical grade. 

 

4.2.2 Methodology 

4.2.2.1   Preparation of Gentamicin-Loaded Aquasomes  

(a) Coating phase 

100mg of nano-sized hydroxyapatite (HA) powder was weighed and placed in 10ml capacity 

freeze dryer vials. 0.1M trehalose solution was prepared with distilled water and 10ml of 

trehalose solution was added to each vial containing HA powder. The resulting suspension 

was mixed for 2.5 h.  

 

(b) Freeze drying and secondary drying phases 

HA-trehalose suspension was further centrifuged at 1000rpm for 5mins. Supernatant was 

discarded, leaving the coated HA nanocores. Coated HA nanocores were washed with 2.5ml 

phosphate buffer saline (PBS) solution and centrifuged again at 100rpm for 5mins. 

Coated HA nanocores were manually freeze-dried by manually freezing the HA slurries at - 

20°C to speed up freezing of samples while manually reducing the shelf temperature of the 

freeze dryer to -32°C, a temperature slightly higher than the Tg of trehalose, -34°C. Coated 

HA nanocore slurries are then transferred to the cooled freeze dryer shelves and the 

condenser and vacuum pump (500µBar) are turned on to start the freeze-drying process. 

This freeze-drying step lasted for the duration of 12-16 h. Subsequently, shelf temperatures 

were sincreased to 30°C to evaporate any residual non-sublimed moisture content. This 

drying step lasted for the duration of 4 h. 
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(c) Drug loading phase 

2mg/ml gentamicin sulphate solutions were prepared with distilled water and 10ml of 2mg/ml 

gentamicin solution was added to each vial containing freeze dried coated HA nanocores. 

The resulting suspension was coated and further freeze dried as explained in the coating 

phase (a) and freeze-drying and secondary drying phases (b) above. 

 

4.2.2.2  In Vitro Release Study of Gentamicin Loaded Aquasomes  

In vitro release studies were performed using phosphate buffered saline (PBS, pH 7.4) as 

release media. Gentamicin-loaded aquasomes were placed into 10ml capacity vials and filled 

with 10ml of PBS and placed in an orbital shaking incubator (100rpm, 37°C). Using the 

partial replacement method, 1ml samples were taken and replaced with fresh pre-warmed 

release media (PBS) of the same volume at hourly time intervals for the duration of 8h. 

Samples were analysed using UV spectrophotometry at the maximum detection wavelength 

(λmax) of gentamicin, 257nm. Gentamicin standards were prepared with PBS as diluent and a 

calibration curve was used to determine corresponding gentamicin concentrations in 

supernatant solutions according to Beer-Lambert’s law.  

 

4.2.2.3  Bacterial zone inhibition assay (Control Assay)  

To determine the activity of the components of gentamicin-loaded aquasomes, 

hydroxyapatite (HA) nanocores, coated nanocores and gentamicin were individually tested 

against lawns of Staphylococcus aureus for antibiotic activity. 

Lab Staphylococcus aureus was incubated in LB (Miller Luria-Bertani) broth overnight. 

Lawns of S. aureus were prepared using LB agar as a substrate. 20mls of LB agar was 

pipetted into single vent petri dishes close to a Bunsen burner flame to maintain aseptic 

conditions, and left to cool to room temperature. Lawns of S. aureus were prepared on the 

agar surface by streaking bacterial suspension in a perpendicular motion, using sterile cotton 

swabs. Glass Pasteur pipettes were used to puncture holes into the agar, sufficient to 

contain 50µl of control solutions/ suspensions (HA and coated HA, 2mg/ml suspensions; 

gentamicin, 0.5, 1.0, 2.0, 3.0 and 4.0mg/ml standard solutions). Control 

solutions/suspensions were pipetted into the holes and incubated for 24 h in an incubator 

(37°C, 5% CO2). 
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Diameters of the zones of bactericidal activity were measured in mm and graphically 

represented to compare antibiotic activity of aquasome components as well as the varying 

concentrations of gentamicin standards. 

 

4.2.2.4   Antimicrobial activity assay of Gentamicin-loaded aquasomes 

To determine the antimicrobial activity of gentamicin loaded aquasomes, varying microbial 

loads of S. aureus were exposed to gentamicin loaded aquasomes (n=3). Multiple colonies of 

S. aureus were harvested from a lawn with a sterile inoculating loop, dispersed in sterile PBS 

and thoroughly mixed to maintain a homogenous bacterial suspension. The turbidity of the 

bacterial suspension was: (A) compared with 0.5 McFarland standard solutions and; (B) 

measured at O.D of 1 at 625nm. 

S. aureus stock solution, (a), was further diluted in a 1:100 dilution with sterile PBS. 10ml of 

1:100 diluted S. aureus suspensions were pipetted into bijou vials containing 100mg 

gentamicin loaded aquasomes with extra free volume for bacterial aeration. Control group 

constituted 1:100 S. aureus solutions without aquasomes.  

S. aureus stock solution, (b), was further diluted in a 1:100 dilution with sterile PBS. 50ml of 

the 1:100 diluted S. aureus suspension was pipetted into 250ml conical flasks containing 

500mg gentamicin loaded aquasomes (100mg per 10ml) with extra free volume for bacterial 

aeration. Control group constituted 1:100 diluted S. aureus solutions without aquasomes.  

Samples (100µl) were taken hourly from S. aureus stock solution, (b) {with O.D. =1},  for 8 h 

and after 24 h without replacement as sample total volume had a negligent effect on the 

antimicrobial activity of gentamicin on S. aureus. Samples (100µl) were taken hourly from S. 

aureus stock solution, (a), {with O.D. = 0.5}, for 8 h and after 24 h with an individual 

experimental setup for each time point.   

Samples were further diluted from a range of 10-1 to 10-6. 20µl of serially diluted samples 

were aliquoted and plated on LB agar plates in triplicates, with corresponding control culture 

dilutions and incubated for 24h for bacterial growth. After 24 h, any colonies present were 

counted and the colony forming units (CFU) were calculated with the formula below: 

 

 

CFU/ml = Average colony count x 50 x Dilution used 
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To illustrate the antimicrobial activity of gentamicin against S. aureus, the results were 

graphically represented plotting the log CFU against the hourly time points.  

 

4.2.2.5    In vitro cell toxicology assay (Thiazolyl Blue Tetrazolium Bromide (MTT) 

assay) 

to investigate whether the certain concentrations of gentamicin adsorbed onto the 

aquasomes were toxic to cell lines used in this study (SAOS-2, MG-63, HUVECs), a thiazolyl 

blue tetrazolium bromide (MTT) assay was performed to measure cell death after exposure 

of cells to different concentrations of gentamicin for 24 h, representing short term exposure to 

aquasomes (acute toxicity). 

MG63 and SAOS-2 cells were grown in DMEM/F-12 supplemented with 10 % FBS, 1 % L-

glutamine, 1 % NEAA, 1% penicillin/streptomycin. Human Umbilical Vein Endothelial Cells 

(HUVECs, Gibco, UK) were cultured in Medium 200 (M200, Gibco, UK) supplemented with 

the LSGS kit (Gibco, UK) which is constituted of the following concentrations per 500ml 

M200: fetal bovine serum, 2% v/v; hydrocortisone, 1 g/ml; human epidermal growth factor, 

10 ng/ml; basic fibroblast growth factor, 3 ng/ml; and heparin, 10 g/ml. Cells are cultured at 

37°C in humidified air with 5% CO2. Cells were trypsinised using a dilute trypsin solution 

(made with 15-20% of 0.25% Trypsin EDTA solution diluted with HBSS), centrifuged 

(1000rpm) and re-suspended in fresh media. Cells were counted and recorded for 

concentration per ml. Cell suspension was diluted with complete media to 75,000 to 100,000 

cells per ml. 100µl of cells (7,500- 10,000 cells per ml) was added into each well and 

incubated overnight (37°C, 5% CO2).  

On day 2, after allowing cells to attach to the bottom of the wells, serum-free media was 

carefully removed. Cells were treated with 10, 20, 30, 40 and 50ng/ml BMP-2/VEGF121-

spiked serum-free media (n=3), leaving a final volume of 100µl per well. After 24h, 20μl of 5 

mg/ml MTT was aseptically added to each well. MTT reagent was also added to a set of 

wells without cells, acting as blank.  

Plates were incubated for 3.5 h at 37°C in an incubator. Wells were aspirated and 150µl of 

dimethyl sulphoxide (DMSO) was added per well. Well plates were covered with tinfoil and 

cells were agitated using an orbital shaker for 20mins. The absorbance readings of wells 

were then measured at 590nm with a photometric scan between 540-590nm to assay 

absorbance values at different wavelengths (Multiskan Spectrum- UV/Vis Microplate 

Spectrophotometer). 
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The cell viability was calculated using the formula below: 

 

  

 

 

4.2.2.6 Statistical analysis of results  

Statistical analysis was performed using GraphPad Prism software package. Data was

analysed using a two-tailed paired t-test (significance level, p<0.05). 

Cell viability (%) =   [O.D OF TREATED WELL- OD OF BLANK]      X 100%  

            [OD OF UNTREATED WELL -OD OF BLANK] 
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4.3 RESULTS AND DISCUSSION 

 

Gentamicin is a commonly used antibiotic to prevent bacterial infection around bone 

implants. It is an aminoglycoside antibiotic, with wide spectrum of activity against bacteria, 

particularly gram-negative bacteria. It works by binding the 30S subunit of the bacterial 

ribosome, interrupting protein synthesis. When given orally, gentamicin is not effective (a 

characteristic common to all aminoglycosides) (Lambert, 2004; Popat et al., 2007). This is 

because it is absorbed from the small intestine, and then travels through the portal vein to 

the liver, where it is inactivated. Therefore, it can only be given intravenously, intramuscularly 

or topically. Delivery via these routes is often not effective because the drug cannot readily 

reach the infection site in bone tissue, particularly in necrotic or avascular tissue left after 

surgery. This limitation cannot be overcome with increased systemic doses because of organ 

toxicity associated with antibiotics at higher concentrations. Thus, local antibiotic therapy has 

become an accepted and common adjunct to systemic antibiotics to prevent infection. This 

not only offers the advantages of a high local antibiotic concentration without any systemic 

toxicity but also an effective way of delivering antibiotics right at the site of implantation 

(Popat et al., 2007). The use of gentamicin in local antibiotic delivery systems is regarded as 

a gold standard of treatment and its prolific use has been recorded in various literature, with 

gentamicin-PMMA beads (non-biodegradable) and collagen-gentamicin sponge as 

commercially produced antibiotic delivery systems (Kanellakopoulou and Giamarellos-

Bourboulis, 2000; Nandi et al., 2009).  

The bactericidal activity of gentamicin-loaded aquasomes against S. aureus was determined 

for possible implementation in the treatment of local bone infections. S. aureus is the major 

causative organism in bone infections and thus the aim of this research was to represent a 

bone disease state and establish the efficacy of gentamicin-loaded aquasomes as an 

antibiotic eluting delivery system. 

Infection is defined as a homeostatic imbalance between the host tissue and the presence of 

microorganisms at a concentration that exceeds 105 organisms per gram of tissue (Zilberman 

and Elsner, 2008). The incidence of bone infections is high in immunocompromised patients 

and is a prevalent problem in orthopaedic surgeries (Lew and Waldvogel, 2004). The 

success of bone implantation surgeries depends not only on the bone–implant integration, 

but also on the presence of a sterile environment around the implant, which will prevent 

bacterial infection. If not prevented, bacterial infection can result in serious and life 

threatening conditions such as osteomyelitis (Popat et al., 2007). Osteomyelitis is a 

debilitating disease, characterized by the inflammatory destruction of bone and surrounding 
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tissues. Disease is most commonly preceded by hematogenous spread of microorganisms to 

the bone from either a contiguous infection or directly following trauma. S. aureus is the 

microorganism most commonly associated with hematogenous and post-traumatic 

osteomyelitis, accounting for more than half of all the cases (Lew and Waldvogel, 2004), 

 

4.3.1 Bacterial zone inhibition assay (Control Assay) 

Figure 4.1 illustrates the non-bactericidal activity of trehalose-coated and uncoated nano-HA 

cores against lawns of S. aureus used in this study. These served as negative controls. 

These demonstrated, on a smaller scale, the vulnerability of bone substitutes and bone graft 

materials such as blocks and granules made of HA, β-tricalcium phosphate, or calcium 

sulphate to microbial colonisation leading to bone infections and thus bone implantation 

failure (Teller et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Biofilms are surface attached communities consisting of mono- or polymicrobial species that 

are surrounded by a self-produced extracellular polymeric matrix. Generally, biofilms 

represent a protected mode of growth enabling the organisms to persist within 

Figure 4.1      Images from antimicrobial assay, showing negative controls of 

coated and uncoated hydroxyapatite (HA). Image above shows the controls of (a) 

coated and (b) uncoated HA. Lawns of S. aureus were incubated with naked HA 

nanocores and trehalose-coated HA nanocores in triplicates and showed no zone of 

inhibition, illustrating the non-bactericidal/bacteriostatic activity of HA nanocores (coated 

or uncoated) (n=3). 

(a) 
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immunocompetent hosts, and are regarded as a significant pathogenic event in the 

development of a number of chronic human infections, including osteomyelitis (Sanchez et 

al., 2013). A bacterial biofilm can progressively form on the implant surface, recruiting 

inflammatory cells and evoking inflammation, compromising the osseointegration process or 

even determining bone resorption, leading to mobilization, functional impairment and failure 

of the treatment (Campoccia et al., 2010). Slower penetration of antibiotics in the 

extracellular matrix of biofilms and the expression and exchange of biofilm-specific 

resistance genes further diminish the effectiveness of antibiotics against bone infections 

(Barth et al., 2011). S. aureus can form biofilms in vitro, furthermore staphylococcal biofilms 

are a significant factor contributing to non-union indicating that staphylococcal biofilms play a 

critical, yet not fully understood role in the development of chronic osteomyelitis and related 

infectious complications (Palmer and Sewecke, 2011; Sanchez et al., 2013). 

Figure 4.2 illustrates the bactericidal activity of gentamicin standards (0.5, 1.0, 2.0, 3.0 and 

4.0 mg/ml). Zones of inhibition were measured and results showed that gentamicin 

concentration was directly proportional to the diameter of the zone of inhibition in mm (n=3) 

as shown in table 4.2 below. Figure 4.3 shows a graphical representation of the zones of 

inhibition of S. aureus growth when samples of gentamicin standards were incubated with 

lawns of S. aureus (n=3), illustrating the bactericidal activity of the gentamicin standards. The 

differences in diameter were found to be statistically significant (p<0.05). 

 

        Table 4.2           Zone of inhibition (diameters) for gentamicin standards 

 

Gentamicin concentration (mg/ml) Diameter of zone of inhibition (mm)* 

0.5 28.83±0.28 

 

1 31.5±0.5 

2 32.83±0.28 

3 34±0 

4 34.5±0.86 

                                            *Results were found to be significant when p< 0.05, n=3 
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Figure 4.2      Images from antimicrobial assay, illustrating the bactericidal activity 

of gentamicin standards. Image above shows gentamicin positive controls. Lawns of S. 

aureus were incubated with varying concentrations of gentamicin (0.5 (e), 1.0 (b), 2.0 (d), 3.0 

(c) and 4.0 (a) mg/ml) in triplicates and showed corresponding increasing diameters of zones 

of inhibition, illustrating the bactericidal activity of gentamicin standards (n=3). 
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Figure 4.3 A graphical representation of zones of inhibition illustrating the 

bactericidal activity of gentamicin standards. Lawns of S. aureus were incubated with 

varying concentrations of gentamicin (0.5 (e), 1.0 (b), 2.0 (d), 3.0 (c) and 4.0 (a) mg/ml) in 

triplicates and showed corresponding increasing diameters of zones of inhibition, illustrating 

the bactericidal activity of gentamicin standards (n=3).  
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4.3.2 In Vitro Release Study of Gentamicin Loaded Aquasomes 

A release study of gentamicin- loaded aquasomes, fabricated with 2mg/ml gentamicin 

sulphate solutions, was performed for the duration of 8 h with samples taken at hourly time 

points.  The in vitro cumulative release plots (figure 4.4A) show that the amount of 

gentamicin released from the aquasomes was consistently between 1.0 to 1.4mg/ml at every 

time point. Percentage release (figure 4.4B) shows a range of 5.05 to 6.42% for each time 

point. The release of gentamicin after 8 h demonstrates sustained release of gentamicin from 

the aquasomes. The release of gentamicin from aquasome formulations ranged from 1.011 

to 1.28mg at each time hourly point. In an antibiotic study by Akins and Rybak (2000), the in 

vitro activities of different antibiotics against S. aureus including gentamicin, was 

investigated. The minimum inhibitory concentrations (MICs) and minimum bactericidal 

concentrations (MBCs) of gentamicin for three strains of S. aureus in an in vitro infection 

model were calculated to be 128/128, 0.5/1.0 and 0.25/0.5 µg/ml. These findings 

demonstrate that gentamicin released from loaded aquasomes is about 10 times higher than 

the highest MIC of S. aureus. 
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4.3.3 Antimicrobial activity assay of Gentamicin-loaded aquasomes 

Figure 4.5 pictorially represents the results from the antimicrobial assay illustrating the 

progressive bactericidal activity of gentamicin released from gentamicin-loaded aquasomes 

[images 1 (a) to 3(a) and 4(b) to 6(b)] against S. aureus (0.5 McFarland standard turbidity 

concentrations) over the duration of an 8h release study in comparison with the negative 

controls (1 (b) to 3(b) and 4(a) to 6(a)) (S. aureus in sterile PBS).  

The ceramic nanocore used in this study was hydroxyapatite (HA). Calcium phosphates 

(CaPs) such as HA and β- tricalcium phosphate have attracted significant interest in 

simultaneous use as bone substitutes and drug delivery vehicles. CaPs are more 

biocompatible than many other ceramic and inorganic nanoparticles. Degradation products of 

CaPs are Ca2+ and PO4
3-, which are already natural occurring metabolites in the body and 

are also found in relatively high concentrations (1–5 mM) in the bloodstream. This natural 

occurrence of CaP is one of the primary advantages over other synthetic drug delivery 

systems (DDSs), which might trigger an immunogenic response (Bose and Tarafder, 2012). 
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Figure 4.4 In vitro release of gentamicin from gentamicin-loaded aquasomes. Fig. 4.4 A 

shows the cumulative release of gentamicin from aquasomes (fabricated with 2mg/ml gentamicin 

solutions) for the duration of 8h; Fig 4.4B illustrates the percentage release of gentamicin from 

the aquasome formulation. Percentage release results show 5.05 to 6.42% gentamicin release 

after 8h (n=3). 

(B) 
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HA has been exhaustively researched in the literature for its excellent bioactivity, 

biocompatibility and osteoconductivity. Its inherent properties make it an excellent 

biomaterial for use in orthopaedic medicine. Based on its properties, it does not require 

removal after implantation in comparison to PMMA beads, because of its resorbable 

property. Hence, numerous studies have been published illustrating HA as an excellent 

antibiotic carrier material in orthopaedic medicine.  

The surface modification of HA has been shown to offer an added sustained release property 

of adsorbed antibiotics in comparison to HA (in its various forms: blocks, cements, powders) 

soaked in antibiotic solutions. These surface modifications include increased porosity, 

reduction of individual particle sizes or coating with another material which offers a prolonged 

release effect (Chai et al, 2007; Arcos and Vallet-Regi, 2013).  
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Figure 4.5 Images from antimicrobial assay (S. aureus stock solution, A, optical density O.D. =0.5). These images illustrate 

the bactericidal activity of gentamicin-loaded aquasomes. Images show results at the various time points, with the test (G) and control 

(C) plates: 1. 0hr (a) test (G) plate, (b) control (C) plate; 2. 1hr (a) test (G) plate, (b) control (C) plate; 3. 3hrs (a) test (G) plate, (b) control 

(C) plate; 4. 4hrs (a) control (C) plate, (b) test (G) plate; 5. 7hrs (a) control (C) plate, (b) test (G) plate; 6. 8hrs (a) control (C) plate, (b) 

test (G) plate. Serially diluted sample aliquots were plated on agar plates in triplicates from test and control groups and incubated for 

24h. Test results show that gentamicin loaded aquasomes demonstrated bactericidal activity up to 24h.   
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Chai et al (2007) investigated antibiotic adsorption on microporous and dense HA and the 

microbiological effectiveness after loading with different antibiotics. The impregnation time, 

antibiotic impregnating concentration, impregnation condition and other factors, which might 

influence the antibiotic loading effect, were studied by exposure to different releasing 

solvents and different pathogenic bacteria (most prevalent in bone infections): 

Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. The results 

showed that, for all three types of antibiotics (vancomycin, ciprofloxacin and gentamicin), 

adsorbed amounts on the micro-porous HA were hugely higher than that on dense HA. The 

micro-porosity of test HA had also significantly prolonged the release time of antibiotics even 

under mimic physiological conditions. The human plasma used in this study is regarded, as a 

mimic physiological solution for in vitro antibiotic (ATB) releasing study, so the results can be 

representative of results in in vivo conditions. The results clearly demonstrated that the 

porous structure of test HA material induced a sustained antibiotic delivery effect (increasing 

the release time from 24 h observed with dense HA to 72 h).  

β- Tricalcium phosphate (TCP) is also used in bone regenerative medicine. The solubility of 

β-TCP is much higher than HA, and thus β-TCP is termed a bio-resorbable ceramic. It 

exhibits excellent biocompatibility, absorbability and osteoconductivity. The cements based 

on β-TCP have been widely used in bone tissue engineering. Wu et al (2013) developed a 

bactericidal gentamicin-doped β-tricalcium phosphate (β-TCP) scaffold reinforced with a 

gelatin/genipin hydrogel (G-β-TCP). Gelatin hydrogel has been used to achieve a sustained 

release of gentamicin. Gelatin reacts with genipin to form a hydrogel, which formed a drug-

eluting layer along the inner walls of the pore structure the results showed that the 

gentamicin-doped G-β-TCP had a much longer drug releasing period, while the gentamicin 

was completely released from pure TCP cements (β-TCP) within one day. Around 17% of the 

drug was released from G-β-TCP on the first day, followed by a zero-order release profile in 

which 2–4µg of drug released daily. A standard strain of S. aureus (ATCC25923) was 

selected to evaluate the antibacterial activity and therapeutic effect of this scaffold. G-β-TCP 

significantly inhibited growth of S. aureus both in vitro and in vivo. In a rat osteomyelitis 

model, osteomyelitis was totally cured after implantation of G-β-TCP for three weeks (Wu et 

al, 2013).  

In comparison to the two research studies highlighted above, the present study also 

demonstrates the efficacy of the gentamicin loaded aquasomes to exert bactericidal effects 

against pathogenic bacteria prevalent in bone infections: S. aureus. Figure 4.6 and 4.7 

graphically illustrate the bactericidal activity of gentamicin aquasomes against low inoculum 

(O.D=0.5) and high inoculum (O.D=1) of S. aureus.  The micro porous HA investigated by 

Chai et al (2007) acted as an ATB delivery system with pores as cavities for the ATBs to be 
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loaded into. This led to a more sustained release of ATB over 72 h in comparison to the 

dense HA. A similar result was observed with the β-TCP scaffold used by Wu and colleagues 

(2013), in which the gelatin hydrogel was used to achieve a sustained release of gentamicin 

which led a longer release period in comparison to gentamicin loaded onto pure β-TCP 

cements which was released within one day. The self-assembled structure of gentamicin-

loaded aquasomes has an incorporated trehalose coating which acts as the release 

mechanism for gentamicin. Its hydration forms a gel which acts as a controlled release 

barrier for gentamicin release into the surrounding milieu.  

Trehalose was used in the current study as a sustained release coating based on its solution 

properties. The strong and prominent hydrogen bonds network of trehalose impacts on its 

solution properties, such as diffusivity and viscosity. In comparison to sucrose, trehalose 

demonstrated a lower water diffusion co-efficient and higher viscosity, although the density 

was similar (Ekdawi-Sever et al, 2001). According to the Noyes-Whitney equation, the rate of 

dissolution of a drug particle is inversely proportional to the viscosity of the dissolution 

medium. This generally applies to both in vivo and in vitro situations whereby the medium 

into which the drug is dissolving exhibits Newtonian behaviour.  

Another research study exhibited the same trend of results where the release profiles of a 

gentamicin carrier system (composed of calcium phosphates, poly (DL-lactide) (PLA) and 

gentamicin) was investigated (Baro et al, 2002). One of the formulations developed (F-D) 

was composed of 80% phosphates (25% HA and 75% tricalcium phosphate, TCP), 20% PLA 

(MW, 30 kDa) and 3.5% gentamicin sulphate (GS) and was coated with PLA (MW, 200 kDa). 

To explain the in vitro release mechanism of this implant, an uncoated implant (F-X), with 

identical matrix composition, was prepared. Results showed that the PLA coating delayed 

the gentamicin release, indicating that part of the antibiotic released from the matrix diffuses 

through the polymer coating film. This agrees with the present study where gentamicin is 

released through the hydration of the trehalose polymer matrix (Figure 4.4A). The selected 

formulation was also tested in the femur of rabbits and showed a faster release rate in vivo 

than in vitro. This is due to a greater degree of PLA degradation, changes in the phosphate 

blend, and bone tissue invading the implant. Gentamicin concentration in the areas of the 

bone closest to the implant was higher than the minimum inhibitory concentration (MIC) 

against S. aureus. 
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Figure 4.6 Images from antimicrobial assay (S. aureus stock solution, (B), optical density O.D. =1). These images illustrate the 

bactericidal activity of gentamicin-loaded aquasomes.  Images show results at the various time points, with the test (G) and control (C) 

plates: 1. 0hr (a) test (G) plate, (b) control (C) plate; 2. 1hr (a) test (G) plate, (b) control (C) plate; 3. 3hrs (a) test (G) plate, (b) control (C) 

plate; 4. 4hrs (a) control (C) plate, (b) test (G) plate; 5. 7hrs (a) control (C) plate, (b) test (G) plate; 6. 8hrs (a) control (C) plate, (b) test (G) 

plate. Serially diluted sample aliquots (10
-1 

to 10
-10

) were plated on agar plates in triplicates (20µl per replicate) from test and control groups 

and incubated for 24 h. Colonies were counted and CFU/ml was calculated. Test results show that gentamicin loaded aquasomes 

demonstrated bactericidal activity up to 24 h. 
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Figure 4.6 pictorially represents the results from the antimicrobial assay illustrating the 

progressive bactericidal activity of gentamicin released from gentamicin-loaded aquasomes 

[images 1 (a) to 3(a) and 4(b) to 6(b)] against S. aureus [with the turbidity concentration 

measured with the optical density (O.D.) = 1] over the duration of an 8h release study in 

comparison with the negative controls [1 (b) to 3(b) and 4(a) to 6(a)] (S. aureus in sterile 

PBS). Bactericidal activity was observed after 5 h of sustained gentamicin release from 

aquasomes and this can be attributed to the higher bacterial inoculum concentration.  

Figure 4.7 shows the bactericidal activity of gentamicin loaded aquasomes against S. aureus 

(0.5 McFarland standard turbidity concentrations) over the duration of an 8h release study in 

comparison to the negative controls evidenced by a bar graph plotting the colony forming unit 

(CFUs) count over the duration of 8 h. This is pictorially represented in Figure 4.5 [images 1 

(a) to 3(a) and 4(b) to 6(b)] show test plates and (1 (b) to 3(b) and 4(a) to 6(a)) negative 

controls (S. aureus in sterile PBS)]. The graph illustrates the progressive bactericidal activity 

of gentamicin which had a sustained release profile from the aquasomes over the duration of 

8 h. Bactericidal activity (no CFU detected) was observed after 2 h of exposure to the 

gentamicin loaded aquasomes hand this was sustained over the 8h study. According to the 

in vitro release profile of gentamicin from gentamicin loaded aquasomes (Figure 4.4A), the 

amount of gentamicin that exerts bactericidal activity against S. aureus corresponds to 

1.01mg of gentamicin released into PBS, when sampled after 5 h of gentamicin release from 

aquasomes. The two-tailed paired t-test showed a significant difference between the test 

group (gentamicin aquasomes) and the negative control group (p= 0.0273; R2= 0.6555), 

indicating that the gentamicin released from the loaded aquasomes had a bactericidal effect 

on the inoculum of S. aureus, evidenced by the absence of CFUs after 2 h of gentamicin 

release. 
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.   

Figure 4.7 Antimicrobial activities of gentamicin-loaded aquasomes against S. 

aureus (stock solution, comparable to 0.5 McFarland standard). The graph illustrates the 

progressive bactericidal activity of gentamicin-loaded aquasomes at different time points 

(every 2 h for 8 h). Serially diluted sample aliquots were plated on agar plates in triplicates 

from test and control groups and incubated for 24 h. Gentamicin released from aquasomes 

exerted a bactericidal effect within 2 h and bacteria did not reproduce within the study period. 

Test results show that gentamicin loaded aquasomes demonstrated bactericidal activity up to 

8 h (n=3).  

 

 

The bactericidal activity of gentamicin loaded aquasomes against S. aureus (O.D=1) over the 

duration of 24 h release study is represented graphically in Figure 4.8. In comparison to the 

negative controls, the bactericidal activity of gentamicin from loaded aquasomes is 

evidenced by a bar graph plotting the colony forming units (CFUs) count over the duration of 

24 h. This is pictorially represented in Figure 4.6 [images 1 (a) to 3(a) and 4(b) to 6(b)] show 

test plates and (1 (b) to 3(b) and 4(a) to 6(a)) negative controls (S. aureus in sterile PBS)]. 

The graph illustrates the progressive bactericidal activity of gentamicin which had a 

sustained release profile from the aquasomes over the duration of 24 h. Bactericidal activity 

was observed after 5 h of sustained gentamicin release from aquasomes. No CFU were 

observed after 5 h and this bactericidal activity sustained over the 24 h study. According to 

the in vitro release profile of gentamicin from gentamicin loaded aquasomes (Figure 4.4A), it 
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corresponds to 1.1mg of gentamicin released into PBS, when sampled after 5 h of 

gentamicin release from aquasomes. The two-tailed paired t-test showed a significant 

difference between the test group (gentamicin aquasomes) and the negative control group 

(p= 0.0010; R2= 0.7202) indicating that the gentamicin released from the loaded aquasomes 

had a bactericidal effect on the inoculum of S. aureus when compared with the negative 

control group, evidenced by the absence of CFUs after 5 h of gentamicin release. 

To examine the efficacy of the bactericidal activity of the gentamicin-loaded aquasomes, a 

higher inoculum of bacteria was used. The bacterial inoculum concentration used had an 

optical density (O.D) of 1, at 625nm in comparison to the O.D. of 0.5 McFarland turbidity 

standards, which has an O.D. range of 0.08 to 0.1, and thus a higher amount of gentamicin 

released from the gentamicin-loaded aquasomes was needed to exert a bactericidal effect. 

The gentamicin-loaded aquasomes also maintained bactericidal activity as no bacterial 

growth was observed in the test groups even after 24 h in comparison to the negative 

controls, which showed an almost constant log CFU/ml, count between the 5th and 24th h 

time points.  

A similar study performed by Popat et al (2007) investigated the release of gentamicin from 

nanotubes as well as the bactericidal activity of gentamicin nanotubes (NT-G) against 

Staphylococcus epidermis and its osteoconductive ability. These drug-loaded nano-tubular 

surfaces were developed for direct application onto existing implants (at the interface of 

implant and tissue). Nanotubes (80nm width, 400nm length) were filled with 200µg, 400 µg 

and 600 µg gentamicin. There was a slower and more sustained release of gentamicin from 

nanotubes loaded with high amounts of gentamicin (600 µg) in comparison to those loaded 

with smaller amounts (200µg and 400 µg). A 70% decrease in bacterial colonies was 

observed on NT-G (600µg) in comparison to titanium (Ti) and unloaded nanotubes (NT) as 

well as enhancing osteoblastic differentiation in newborn mouse calvaria-derived MC3T3-E1 

subclone 14 pre-osteoblastic cells.  In the present study, 2mg/ml gentamicin solution per 

100mg was used to fabricate gentamicin loaded aquasomes. In comparison to naked HA 

cores (in PBS, release medium, negative control), gentamicin loaded aquasomes showed 

efficacy in its bactericidal effect against S. aureus (up to O.D. of 1 at 625nm). HA nanocores 

used in this study have also exhibited increased osteoblast proliferation and differentiation, 

measured by increased ALP production (discussed in chapter 5). 
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Figure 4.8 Antimicrobial activity of gentamicin-loaded aquasomes against S. aureus (stock 

solution, (B), optical density O.D. =1). This graph illustrates the progressive bactericidal activity of 

gentamicin loaded aquasomes at different time points (hourly for 8 h and at 24 h). Serially diluted 

sample aliquots were plated on agar plates in triplicates from test and control groups and incubated for 

24 h. Gentamicin released from aquasomes exerted a bactericidal effect within 5 h and bacteria did not 

reproduce within the study period. Test results show that gentamicin loaded aquasomes demonstrated 

bactericidal activity up to 24 h (n=3).  
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4.3.4 In vitro cell toxicology assay (Thiazolyl Blue Tetrazolium Bromide (MTT) assay) 

A thiazolyl blue tetrazolium bromide (MTT) assay was performed to measure cell death after 

exposure of cells to gentamicin to ensure that concentrations released from aquasome 

formulations are not toxic to cells used in this thesis. SAOS-2 cells, MG63 cells and HUVECs 

were exposed to different concentrations of gentamicin for 24 h, representing short term 

exposure to aquasomes (acute toxicity). Figure 4.8 illustrates the cell viabilities of SAOS-2 

cells, MG63 cells and HUVECs after exposure to 0.5, 1.0, 1.5, 2.0 and 2.5 mg/ml of 

gentamicin in culture media.  

Figure 4.9 demonstrates that the exposure of SAOS-2 cells and HUVECs to the high 

concentrations of gentamicin sulphate for 24 h showed that they have no acute toxic effects 

on the cell lines. For SAOS-2 cells and HUVECs, all concentrations of gentamicin showed an 

increment in percentage cell viability after gentamicin exposure indicating cell proliferation in 

both instances in comparison to control. However, MG63 cells exhibited a reduction in 

percentage cell viability after cells were exposed to gentamicin. However, an increase in 

gentamicin concentration did not have a significant effect on MG63 percentage cell viability 

(p=0.9378). This same trend was observed for SAOS-2 cells and HUVECs as the increasing 

concentration of gentamicin had no significant effect on percentage cell viability (p=0.9378). 

However, the differences in percentage cell viability between the different cell lines were 

found to be significant (p<0.0001). These results show that different concentrations of 

gentamicin may affect cell lines differently by enhancing cell proliferation. However, all 

gentamicin concentrations are safe to use for use in culture of cells used in this study. 
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Figure 4.9   Percentage cell viability of SAOS-2 cells, MG63 cells and HUVECs after 

exposure to varying concentrations of gentamicin.  MTT assay results of the cell viability 

of HUVECs, SAOS-2 and MG63 cells, after exposure to varying concentrations of 

gentamicin; (0.5, 1.0, 1.5, 2.0 and 2.5 mg/ml) in culture media for 24 h. Results show that 

gentamicin had no toxic effect on the cells with the exception of MG63 cells but rather 

increased the viability of the cells SAOS-2 and HUVECs) over the period of 24 h (n=24). 

 

HA cement was used as a carrier system in the treatment of chronic, posttraumatic 

osteomyelitis investigated by in vitro and in vivo studies (Joosten et al, 2004). In the in vitro 

study, release of gentamicin from standard cylinders of HAC was measured by agar diffusion 

test. As a representative of mechanical properties, compression strength was measured in 

order to detect changes when mixing HAC with gentamicin. In the in vivo study, bone 

infection was induced and obtained after three weeks using S. aureus as pathogenic 

organism and white “New Zealand” rabbits. Animals were treated by debridement and filling 

the marrow either with HA alone or HA mixed with gentamicin (32 mg/g). Best evidence of 

the efficiency of treatment was observed in histopathological and microbiological findings. In 

all swabs of the control groups, taken 6 weeks following infection S. aureus were detected 

which were clonal to the strain used for induction of osteomyelitis\s. In HAC/gentamicin-

treated animals, no growth was detectable after 7 days of culturing in BHI bouillon. In the 

HAC/ gentamicin-treated group, there was no histopathological evidence of infection. In all 

other groups, different stages of chronic osteomyelitis were found. No side effect was 

observed, neither locally or systemically by HAC or gentamicin (Joosten et al, 2004).  
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The nano-HA powder used in the gentamicin loaded aquasome formulation also contributes 

to the release profile of gentamicin from the aquasome formulation, by offering a larger 

surface area of gentamicin loading in the fabrication of the formulation. This ensures that the 

amount of gentamicin in the aquasome formulation is more than sufficient to demonstrate a 

controlled release profile over a longer duration and thus exert a prolonged bactericidal 

effect.  

Rauschmann et al (2007) investigated the antibiotic release properties and biocompatibility of 

PerOssal®, a biodegradable composite of calcium sulphate and nanoparticulate HA. 

PerOssal® was used in comparison to calcium sulphate alone, to demonstrate improved 

surface area for drug loading and eliminate short term cytotoxicity, a commonly known 

characteristic of calcium sulphate. Specific surface area was 106m2/g for PerOssal and 

2.2m2/g for pure calcium sulphate. Almost complete elution of gentamicin was found for both 

carrier materials (94.7% for PerOssal® vs. 95.8% for calclium sulphate) within 10 days. 

PerOssal® showed higher initial and lower release after approximately 5 days compared to 

calcium sulphate. No significant in vitro cytotoxic differences were found between PerOssal® 

and nontoxic cell culture medium. However, calcium sulphate showed cytotoxic effects in two 

out of four tests. The authors concluded that PerOssal® exhibited excellent properties 

regarding resorption, biocompatibility, and antibiotic release based on the results obtained. 

Based on this study, the favourable results can be largely attributed to the use of nano-HA. 
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4.4 CONCLUSIONS 

 

Gentamicin has been established as an effective local treatment in bone infections. It has 

been extensively researched upon as an additive in orthopaedic biomaterials to prevent 

infections commonly implicated in surgeries. From the results, gentamicin loaded aquasomes 

have proven to be an effective antibiotic nano-carrier delivery system which have great 

potential in the treatment of bone infections for low and high inoculums of bacteria. For low 

inoculum and higher inoculum of S. aureus (O.D=0.5; O.D=1), gentamicin released from 

loaded aquasomes exerted bactericidal activity against S. aureus within 2 h and 5 h 

respectively. Statistical analysis showed that the differences between the CFUs samples 

from test groups (gentamicin loaded-aquasomes) and control groups (S. aureus), were 

stistically significant (p<0.0001). S. aureus is implicated in most cases of osteomyelitis and 

thus the demonstration of the bactericidal effect of gentamicin-loaded aquasomes show 

promise in the treatment of bone infections in vivo. These results prove that gentamicin 

loaded aquasomes can provide a protective bactericidal cover for 24 h at the interface of 

local application of prophylaxis. However, further investigations on the duration of complete 

release of gentamicin from aquasomes need to be investigated to determine the duration of 

antibiotic protection gentamicin loaded-aquasomes can offer in in vivo and in vitro 

applications. 
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CHAPTER 5 
THE DIFFERENTIATION EFFECT OF 

BMP-2- AND VEGF 121- LOADED 
AQUASOMES 
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5.1 INTRODUCTION 

Osteogenesis involves the migration of mesenchymal stem cells (MSCs), their differentiation 

into osteoprogenitor cells, and their differentiation and maturation into osteocytes (Carriera et 

al, 2014). This process is tightly regulated by both local and systemic factors. Local factors 

such as growth factors play a major role in the modulation of osteogenesis and the most 

important growth factors implicated in this process are bone morphogenetic proteins (BMPs) 

(Mundy et al, 2001). 

 

BMPs were first isolated by Urist and co-workers (1965) and proposed the name Bone 

Morphogenetic Protein in 1971. They constitute the largest sub-unit of the transforming 

growth factor βeta (TGF-β) family. BMPs are synthesized by osteoprogenitor cells, 

osteoblasts, chondrocytes and platelets (Sipe et al, 2004), but their production is not 

restricted to bone, since they also perform non-osteogenic functions. They play an important 

part in the development of osteoblasts and platelets including cell proliferation and 

differentiation, tooth morphogenesis, organogenesis, embryonic development, apoptosis, 

chemotaxis and repair of a wide variety of tissues (Ducy and Karsenty, 2000). Most 

importantly, in maintaining bone integrity and fracture healing, BMPs stimulate 

intramembranous/ endochondral ossifications by inducing mesenchymal stem cell 

differentiation into the osteoblastic lineage (Dragoo et al, 2003). 

 

5.1.1 Structure of BMPs 

Around 20 BMPs have been found and sub-grouped according to their sequence similarity 

and known functions. The BMP family is sub-grouped into four according to their amino acid 

sequence: (a) BMP2 and 4 (80% homology); (b) BMP3, BMP3B (GDF10); (c) BMP5, 6, 7, 8a 

and 8b (78% homology); (d) GDF5, 6, 7 (Carriera et al, 2014). 

 

All BMPs are dimers and are synthesized as inactive precursor proteins constituting of about 

120 amino acids (Figure 5.1). These include seven cysteine residues, six of which are built 

into a cystin knot linked with three intramolecular disulphide bonds (Xiao, Xiang and Xhao, 

2007; Carriera et al, 2014). The seventh is involved in dimerization with another BMP 

monomer. Prior to secretion, BMPs consist of an N-terminal hydrophobic signal peptide, pro 

domain and mature peptide.  The signal peptide is cleaved and consecutively undergoes 

glycosylation and dimerization. Such glycosylation increases their stability and half-life in the 

body. After dimerization, a prerequisite for bone induction, the pro-domain is proteolytically 

cleaved at a consensus Arg-X-X-Arg region to generate mature and active homodimers or 

heterodimers (Xiao, Xiang and Xhao et al, 2007; Carriera et al, 2014). 
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Being synthesized by a variety of cells, BMPs exerts an array of regulatory effects. The 

regulatory effects of BMPs depend upon the target cell type, differentiation stage, local BMPs 

concentration, as well as interactions with other secreted proteins (Figure 5.2) (Dimitriou, 

Tsiridis and Giannoudis, 2005; Carreira et al, 2014b) 

Figure 5.1 Structure of BMP showing its receptor BRIAA 

(Xiao et al, 2007) 
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Figure 5.2 Osteoblastic differentiation (Adapted from: Carreira et al, 2014) 

5.1.2 BMP-2 in tissue engineering 

BMPs are the most effective growth factors in improving healing of non-unions, fractures, 

spinal fusions and dental implants (Bessa, Cassa and Reiss, 2008, Carreira et al, 2014b). 

They have been extensively investigated and are most recently being used in advanced 

tissue engineering technologies to improve the regeneration of bone for fracture healing and 

in treatment of bone defects (Kisiel et al, 2012; Patel et al, 2008; Li et al, 2006 Bessa, Cassa 

and Reiss, 2008).  Its osteogenic effects are highlighted in Table 5.1. 

Based on its unique function of stimulating ectopic bone formation, BMPs have been 

complexed and adsorbed on various materials mentioned in numerous literatures. Its ability 

to stimulate bone formation by inducing the proliferation of osteoblasts as well as indirectly 

stimulate angiogenesis (formation of blood vessels) has been exploited in the research areas 

of orthopaedics (bone tissue engineering, bone fracture healing, bone implantation) 

(Sigurdsson et al, 1997; Liu, Engest and Kuffer, 2007; Fei et al, 2008) and dentistry 

(osteointegration of dental implants) (Sasche and Wagner, 2005). 
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the use of recombinant human BMPs (rhBMPs) are widely applied in tissue engineering 

products with rhBMPs loaded in delivery systems made of synthetic or natural polymers co-

cultured with stem cells or osteoprogenitor cells (Kang et al, 2012; Kyriakdou et al, 2008; 

Unger et al, 2007). Such polymers include synthetic polymers like PLA, PGA, PLGA, PLA- 

Collagen, PLA-Collagen-HA and natural polymers like collagen, gelatin, hyaluronic acid, 

chitosan, dextran, fibrin and alginate (Bessa, Cassa and Reiss, 2006). 

the main role of a delivery system for growths factors, in this case BMPs, is to retain the 

growth factor at the site of injury for a prolonged time frame, providing an initial support to 

which cells attach and form regenerated tissue. An appropriate bone tissue engineering 

material will exhibit osteoinductive and/or osteoconductive properties, while offering 

mechanical stability to the regenerating bone (Xu et al, 2005; Bessa et al, 2008; Schliepaeke, 

2010).  

Table 5.1 Osteogenic BMPs and their functions 

(Xiao et al, 2007) 

BMP Functions 

BMP-2 • Induces bone and cartilage formation.

• Plays a key role in osteoblast differentiation

• Induces the expression of other BMPs

BMP-3 • Induces bone formation

BMP-4 • In vivo and in vitro osteochondrogenic factor

• Regulates the formation of teeth, limbs and bone from

mesoderm. 

• It also plays a role in fracture repair

BMP-5 • Performs functions in cartilage development

BMP-7 • In vivo and in vitro osteochondrogenic factor

• Plays a key role in osteoblast differentiation.

• Also induces the production of SMADI. Also, key in

renal development and repair 

BMP-9 • Promoting chondrogenic differentiation of human

multipotential mesenchymal cells 
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5.1.3 Vascular endothelial growth factor (VEGF) 

As evidenced in a plethora of literature, VEGF is the major angiogenic factor involved in 

normal angiogenesis, appropriate callus architecture and mineralisation in fracture repair 

(Carano and Filvaroff, 2003). VEGF production is the major coupling mechanism between 

angiogenesis and osteogenesis during fracture repair (Geris et al, 2008). 

VEGF expressed is detected on chondroblasts, chondrocytes, osteoprogenitor cells and 

osteoblasts (Kanczler and Oreffo, 2008; Geris et al, 2008). VEGF expression is induced by 

most osteoinductive growth factors as well as prostaglandins. 

Additionally, VEGF has been observed to play a vital role in cartilage maturation and 

resorption. VEGF produced by hypertrophic chondrocytes instigates the endochondral 

ossification cascade by recruiting and differentiating osteoclastic cells that resorb cartilage 

and attracts osteoblasts (Geris et al, 2008).. Exogenously administered VEGF, in the 

absence of osteoprogenitors or a scaffold, boosted bone formation in an in vivo model of 

mouse femur fractures (Carano and Filvaroff, 2003). 

5.1.4 Dual delivery of osteogenic and angiogenic growth factors 

The dual delivery of angiogenic and osteogenic factors has been reported in the literature 

illustrating the importance of angiogenesis in the successful bone regeneration for the 

treatment of bone defects (Table 5.2). Angiogenesis precedes osteogenesis in bone 

regeneration for the re-establishment of vascularity. The principal angiogenic factor, VEGF 

and BMP have been synergistically administered for bone regeneration (Kanczler and Oreffo, 

2008, Kempen et al, 2009). VEGF has been investigated to be implicated in osteogenesis 

and bone repair. Also, BMP-2 has been revealed to upregulate VEGF (an increase in cellular 

production) (Deckers et al, 2002). On the contrary, as earlier mentioned, inhibition of VEGF 

decreases angiogenesis, callus mineralisation and thus bone healing (Kanczler et al, 2010). 
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Table 5.2 Dual delivery of BMP-2 and VEGF growth factor in bone regeneration 

Application and biomaterial used References 

Delivery to osteoprogenitor cells via 

Alginate-PDLLA composite scaffolds 
Kanczler et al, 2010 

BMSC driven bone regeneration using 

PLGA scaffolds 
Huang et al, 2005 

Induction of bone formation using CaP 

coated titanium implants 
Ramazanoglu et al, 2013 

In vivo osteogenic response using PLGA 

microspheres and/or PLGA scaffolds 
Hernandez et al, 2012 

Osteogenic differentiation of bone marrow 

derived stem cells (BMSCs) 
Bai et al, 2013 

In vivo model of bone regeneration using 

gelatin microparticles in scaffolds 
Patel et al, 2008 

Ectopic and Orthotopic bone regeneration 

using PLGA microspheres in polypropylene 

scaffolds 

Kempen et al, 2009 

5.1.5 Hydroxyapatite as an osteoconductive and osteoinductive nano-carrier for 

rhBMP-2 

Hydroxyapatite is the naturally occurring inorganic form of calcium apatite and it constitutes 

50% of the total mass of bone. Synthetic hydroxyapatite (HA) is chemically similar to the 

inorganic component of bone matrix (general formula:  Ca10(OH)2(PO4)6) (Zhou and Lee, 

2011). The close chemical similarity of HA to natural bone has led to extensive research 

efforts to use synthetic HA as a bone substitute and/or replacement in biomedical 

applications (Nayak, 2010). The major advantages of synthetic hydroxyapatite over bone 

substitutes are its biocompatibility, slow biodegradability rate in situ, osteoconductive and 

osteoinductive capacities (Zhou and Lee, 2011). 

Porous hydroxyapatite offers a high binding affinity for a variety of pharmacological 

substances including antibiotics, hormones and enzymes (Nayak, 2010). Nanoscale 

hydroxyapatite incorporated with BMP-2 has been used in coating bone implants (Sasche 

and Wagner, 2005, Liu et al, 2007), as composites (Saito et al, 2005), fabricating 

osteoconductive porous scaffolds (Unger et al, 2007; Autefege et al, 2009) and formulating 

microparticles (Mizushuma et al, 2006).   
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5.1.6 Recent approaches to skeletal tissue engineering: delivery of angiogenic and 

osteogenic factors 

Bone tissue engineering has evolved in the past two decades and has provided a lasting 

solution to the reconstruction of orthopaedic defects in comparison to the traditional clinical 

treatments which are associated with severe side effects such as disunions, infections and 

consequent pain. These traditional clinical treatments include autografting and allografting of 

cancellous bone, applying vascularised grafts and other bone transport techniques (Burg et 

al, 2000). Successful bone regeneration requires the production of a morphogenetic signal, 

the recruitment of responsive host cells that will respond to the signal, a suitable carrier of 

this signal that can deliver it to specific sites then serve as a scaffolding for the growth of the 

responsive host cells, that is, an osteoconductive carrier, and a viable, well vascularized host 

bed (Burg et al, 2000; Xu et al, 2005; Bessa et al, 2008).  

According to Schliepaeke (2010), an appropriate scaffold or carrier system would also 

provide mechanical strength for bridging of the bone defect and resisting pressure from 

surrounding soft tissue as well as being porous enough to allow bone ingrowth and final 

replacement by regenerated bone. Osteoinductivity refers to the ability to cause pluripotent 

cells (such as undifferentiated mesenchymal cells) from a non-osseous environment to 

committedly differentiate into chondrocytes or osteoblasts. Osteoconductivity refers to the 

ability to support the ingrowth of capillaries and cells from the host into a three-dimensional 

structure to form bone. An osteoinductive material promotes the proliferation of host cells that 

stimulate the formation of bone which include endothelial cells, osteoprogenitor cells, 

chondroblasts and osteoblasts (Burg et al, 2000; Xu et al, 2005; Unger et al, 2007). 

Biodegradable materials are also more suitable and desirable for the growth factors to be 

incorporated into the polymer matrix for gradual release over time with regard to degradation 

(Schliepaeke, 2010). Furthermore, the carrier should protect the BMPs from degradation and 

maintain its bioactivity whilst offering a controlled release of BMP over time to promote the 

formation of new bone at the treatment site. Such delivery systems suitable for the delivery of 

bone growth factors would provide sufficient mechanical strength to withstand soft tissue 

pressure in addition to connecting penetrability and degradability for unhindered bone 

ingrowth and eventual replacement by regenerated bone on the other. 

Bone tissue engineering refers to the use of materials that can induce formation of bone 

tissue or act as a carrier or template for implanted bone cells or growth factors. According to 

Burg and colleagues (2000), these materials can be acellular or cellular. Acellular materials 

promote bone formation by having osteoconductive properties and can also allow bone 

ingrowth into the construct, but do not consist of a cellular component while cellular materials 
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have a cellular component added before implantation or treatment of bone defect. Acellular 

systems include naturally derived polymers (such as demineralised bone matrix and 

collagen), synthetic polymers (such as poly lactic-co-glycolic acid, PLGA, poly D-glycolic 

acid, PGA, poly lactic acid , PLA), composites (such as hydroxyapatite, tricalcium phosphate) 

and ceramics (such as hydroxyapatite, Ca10(PO4)6(OH)2, aragonite, CaCO3). 

5.1.7 Aims and Objectives 

Combining the osteoconductive property of hydroxyapatite and osteoinductive properties of BMP-

2 and VEGF-121, we report the formulation of BMP-2 and VEGF 121-loaded aquasomes as a 

potential aid in fracture healing. The aim of this research is to establish the potential of BMP-

loaded aquasomes as osteoinductive nanoparticulate systems that promotes bone cell 

proliferation as well as induce angiogenesis via the proliferation of endothelial cells. VEGF-loaded 

aquasomes were also investigated to compare its proliferation and differentiation effect to BMP-

loaded aquasomes. To establish these claims, BMP-2 and VEGF 121 released from aquasomes 

was quantified and BMP-loaded aquasomes were co-cultured with osteoprogenitor cells and 

assayed for ALP production to demonstrate the ability of aquasomes to be employed in bone 

regeneration.  

To achieve this over-arching aim, the following set objectives were investigated: 

1. In vitro release of BMP-2 and VEGF 121 from loaded aquasomes fabricated from

50ng/ml and 100ng/ml BMP-2 and VEGF 121 solutions. 

2. In vitro administration of BMP-2 loaded aquasomes onto osteoprogenitor cells

(MG63, osteoblast cell line) to analyse the differentiation effect of released BMP-2 from 

aquasomes. 

3. In vitro administration of VEGF loaded aquasomes onto osteoprogenitor cells and

osteoblasts to analyse the effect of released VEGF from aquasomes. 

4. Co-culturing of endothelial cells (HUVECs, human umbilical vascular endothelial

cells) and osteoblasts (SAOS-2) and/or osteoprogenitor cells (MG63) to demonstrate the 

effect of endothelial cells on osteoprogenitor cells and establish the link between 

osteogenesis and angiogenesis 

5. In vitro administration of BMP-2 and VEGF 121-loaded aquasomes onto

mesenchymal stem cells (AT-MSCs, adipose tissue mesenchymal stem cells) to analyse and 

compare the differentiation effects of released BMP-2 and VEGF 121 from aquasomes. 
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5. 2 MATERIALS AND METHODS 

5.2.1 Materials 

Lyophilised rhBMP-2 was purchased from eBioscience Ltd. (Hatfield, UK). Lyophilised VEGF 

121 was purchased from Creative BioMart (Shirley, NY, USA). BMP-2 and VEGF121 

development ELISA kits were purchased from Peprotech Ltd. (UK). Nano-hydroxyapatite 

powder (60nm) was purchased from MKNano Ltd. (Ontario, Canada). Trehalose dihydrtate 

was purchased from Fluka (Buchs, Switzerland). 1-step PNPP assay reagent was purchased 

from Thermo Fisher Ltd. (USA). Sirius Red/Fast Green Collagen Staining kit was purchased 

from Chondrex (Redmond, Washington, USA). 4-Nitrophenol (98%, NP) was purchased from 

Acros Organics (NJ, USA). DMEM/F12 with 15mM Hepes was purchased from Lonza 

(Belgium). Alizarin Red, Dimethyl Sulfoxide (DMSO), Fetal Bovine Serum (FBS) and 0.25% 

Trypsin EDTA was purchased from Sigma Aldrich (Poole, UK). Transwell inserts (pore sizes 

0.4µm and 1.0µm) were purchased from Millipore (UK). The following cell culture reagents: 

Glutamax (Glutamine), Non-essential amino acids (NEAAs), penicillin/streptomycin and 

Hank’s balanced salt solution (HBSS). All chemicals were of analytical grade. 

5.2.2  Manufacture of aquasomes 

Synthetic hydroxyapatite (HA), which is chemically and structurally similar to naturally 

occurring calcium apatite, the ceramic constituent of bone, was the inorganic core of choice 

for the manufacture of the aquasomes used in this study. BMP-2 and VEGF 121-loaded-

aquasomes were manufactured using the same protocol as explained in Chapter 2 (Section 

2.2), using 50ng/ml and 100ng/ml BMP-2 and VEGF 121 solutions.  

To analyse the entrapment efficiency of aquasomes for BMP-2 and VEGF 121, the 

supernatant left after centrifugation to remove unadsorbed BMP in solution was aliquoted 

and analysed for BMP-2/VEGF 121. 

5.2.3  Cell culture 

The osteosarcoma fibroblast cell line MG63 was gifted by Dr Eustace Johnson (Figure 5.3) 

and was used as a pre-osteoblast/osteoprogenitor cell culture model to assess the 

osteogenic differentiation and proliferation effect of BMP-2 and VEGF 121- loaded 

aquasomes; BMP-2 and VEGF 121 spiked media of different concentration. The bone 

osteosarcoma epithelial cell line SAOS-2 (CLS, Germany) was used as an osteoblastic cell 

model and used as a positive control for osteoblastic cell behaviour. Adipose tissue 

mesenchymal stem cells (AT-MSCs) was gifted by Dr Eustace Johnson and was used to 

analyse the differentiation and proliferation effect of BMP-2 and VEGF 121-loaded 
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aquasomes and BMP-2 and VEGF 121 spiked media of different concentration, on 

mesenchymal stem cells. AT-MSCs, MG63 and SAOS-2 cells were grown in DMEM/F-12 

supplemented with 10 % FBS, 1 % L-glutamine, 1 % NEAA, 1% penicillin/streptomycin in a 

humidified 37 °C incubator with 5% CO2. The media was changed every 3-4 days. Thereafter 

the cells were passaged 6-7 days post seeding (at 70-80% confluency) by discarding old 

media, adding 5ml of HBSS Balanced solution (per T25cm2 flask; 10ml per T75cm2), and 

incubating for 5-10mins in an orbital shaking incubator to wash the cells. Trypsinising 

solution (made with 15-20% of 0.25% Trypsin EDTA solution) was added to flasks and 

returned to the orbital shaking incubator to incubate for 10mins. Flasks were then viewed 

under the microscope (Primovert, Carl Zeiss, and Germany) to ensure cells were lifted off the 

flask’s surface. Cell solutions were transferred into centrifuge tubes and were centrifuged 

(1000rpm, 10mins). Supernatant was discarded and the pellet was re-suspended in pre-

warmed media and mixed (pipetted up and down). The resulting cell solution was split into 

two flasks containing 5ml of media (per T25 flask, 15ml for T75 flasks). 

Human Umbilical Vein Endothelial Cells (HUVECs, Gibco, UK) were used in this study to 

investigate the angiogenic effects of BMP-2 loaded aquasomes when exogenously 

administered to the cells as well as establish the osteogenic proliferation effect of endothelial 

cells when co-cultured with AT-MSCs or MG63. Cells were cultured in Medium 200 (M200, 

Gibco, UK) supplemented with the LSGS kit (Gibco, UK) which is constituted of the following 

concentrations per 500ml M200: fetal bovine serum, 2% v/v; hydrocortisone, 1 g/ml; human 

epidermal growth factor, 10 ng/ml; basic fibroblast growth factor, 3 ng/ml; and heparin, 10 

g/ml. Cells are cultured at 37°C in humidified air with 5% CO2. Media was changed every 2-

3 days. Thereafter the cells were passaged 6-7 days post seeding (80-90% confluency) 

using the same protocol as stated above for AT-MSCs, MG63 and SAOS-2 cells. 

Cells were cryopreserved for further use by centrifugation at 1000 rpm for 10 min to obtain 

A cell pellet followed by resuspension of the pellet in 1ml Biofreeze cryopreservation solution 

(Biochrom, Germany). 1 ml of the cell suspension was aliquoted into cryovials and stored for 

30mins at -80˚C and immediately transferred to liquid nitrogen for long-term storage. 

5.2.4 Experimental design 

5.2.4.1  BMP-2 bioactivity via ALP expression 

100mg of BMP-loaded aquasomes were administered to MG63 cells (osteoprogenitor cells) 

and HUVECs (endothelial cells) in vitro. The amount of bioactive BMP released onto the cells 

was quantified and the differentiation effect of BMP on MG63 cells was measured via 

alkaline phosphatase (ALP) activity. HUVECs were also co-cultured with SAOS-2 cells and 

MG63 cells to link the synergistic nature of the osteogenic and angiogenic processes. Cell 
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lines were co-cultured using 12-well plates at different seeding densities.  SAOS-2 and 

MG63 cell lines were seeded at 2x105cells/ml in the well chambers with DMEM/F-12 and 

HUVECs at 1x105cells/ml on transwell inserts. For each well chamber, 1ml of cell suspension 

was added and an extra 500µl was added to the well. For transwell inserts, 500µL of cell 

suspension was added to the 1.0µm pore size transwell inserts (Millipore, UK). When BMP-

loaded aquasomes were exogenously administered, they were dispersed in corresponding 

cell culture medium and placed in transwell inserts when co-cultured with MG63 cells and in 

the well chambers when cultured with HUVECs. All control cell lines were mono-cultured. 

HUVECs and MG63 monocultures were used as negative controls, SAOS-2 cells as positive 

controls. The experimental design is illustrated in Table 5.3. 

Figure 5.3   Microscopy images showing the morphology of the cells used in this 

study. (A) MG63 cells, (B) HUVECs, and (C) sub-confluent SAOS-2 cells (Magnification: 

40X) 

(A) (B) 

(C)
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Table 5.3 Experimental design codes: Groups explained 

Group names Interpretation 

BMP50/ VEGF50 Cells cultured with 50ng/ml BMP-2 or VEGF spiked media 

HUVEC/MG63 or HUVEC/SAOS-2 Cells co-cultured with HUVECs grown on transwell inserts 

BMP AQUA Cells co-cultured with BMP-loaded aquasomes placed in 

well chambers and cells in transwell inserts 

MG63/SAOS-2 Cells co-cultured with MG63 cells grown on transwell 

inserts 

HUVECs (control);  

MG63 cells (control)    

SAOS-2 cells (control) 

Cells cultured with basal media 

Cell co-culture study legend 

 HUVEC  MG63 

50ng/ml BMP-2  

BMP-loaded aquasomes  

MG63  - 

SAOS-2   

50ng/ml VEGF 121 - 

5.2.4.2 AT-MSC differentiation study 

AT-MSCs were seeded at 3.5 x 103 cells per cm2 into 12 well plates (1ml cell suspension per 

and an additional 500µl culture medium) added to each well. Positive control cultures were 

then maintained with osteoblastic differentiation medium. This consisted of standard culture 

medium additionally supplemented with 50µM ascorbate 2-phosphate, 10nM dexamethasone 

(DEX) and 10mM β-glycerophosphate.  AT-MSCs in osteogenic medium and SAOS2 served 

as a positive control. AT-MSCs were cultured with 50ng/ml and 25ng/ml BMP-2 (AT-MSCs 

BMP50, AT-MSCs BMP25), 50ng/ml and 25ng/ml VEGF 121 (AT-MSCs VEGF50, AT-MSCs 

VEGF25), BMP-2 and VEGF 121-loaded aquasomes (fabricated with 100ng/ml solutions; 

AT-MSCs BMP AQUA, AT-MSCs VEGF AQUA) and BMP-2 and VEGF 121 loaded 

aquasomes physically combined (AT-MSCs BMP/VEGF AQUA). All cultures were then 

maintained at 37°C, 5% (v/v) CO2. Control and test media were replaced every 2-3 days and 

after 21 days in culture, samples were analysed for ALP activity. Experimental design for the 

study is illustrated in Table 5.4. 
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Table 5.4 Experimental design: AT-MSC differentiation study 

Group names Interpretation 

AT-MSCs BMP50/ AT-MSCs VEGF50 Cells cultured with 50ng/ml BMP-2 or VEGF spiked 

media 

AT-MSCs BMP25/ AT-MSCs VEGF25 Cells cultured with 25ng/ml BMP-2 or VEGF spiked 

media 

AT-MSCs BMP AQUA/ AT-MSCs VEGF AQUA Cells cultured with BMP-loaded OR VEGF-loaded 

aquasomes placed in transwell inserts and cells in well 

chambers 

AT-MSCs BMP AQUA/VEGF AQUA Cells cultured with BMP and VEGF-loaded aquasomes 

(exogenous dual delivery) aquasomes placed in 

transwell inserts and cells in well chambers 

AT-MSCs Blank Cells mono-cultured in osteogenic media  

5.2.5 In vitro cell toxicology assay (Thiazolyl Blue Tetrazolium Bromide (MTT) assay) 

to investigate whether the certain concentrations of BMP-2 and VEGF 121 adsorbed onto the 

aquasomes were toxic to cell lines used in this study (SAOS-2, MG63, HUVECs), a thiazolyl 

blue tetrazolium bromide (MTT) assay was performed to measure cell death after exposure 

of cells to the individual aquasome components (Hydroxyapatite, trehalose, BMP-2, VEGF) 

at different concentrations for 24h. 

Each cell line was cultured in basal medium (Medium 200, HUVECs; DMEM/F12 Gibco®) 

supplemented with antibiotic supplement (Amphotericin B/Gentamycin) at 37°C in humidified 

air with 5% CO2. Cells were trypsinised using 0.25% Trypsin/EDTA solution, centrifuged and 

passed into 96-well culture plates for the study.  Cells were trypsinised, centrifuged and re-

suspended in fresh media. Cells were counted and recorded for concentration per ml. Cell 

suspension was diluted with complete media to 75,000 to 100,000 cells per ml. 100µl of cells 

(7,500- 10,000 cells per ml) was added into each well and incubated overnight (37°C, 5% 

CO2).  

On day 2, after allowing cells to attach to the bottom of the wells, serum-free media was 

carefully removed. Cells were treated with 10, 20, 30, 40 and 50ng/ml BMP-2/VEGF121-

spiked serum-free media (n=3), leaving a final volume of 100µl per well. After 24h, 20μl of 5 

mg/ml MTT was aseptically added to each well. MTT reagent was also added to a set of 

wells without cells, acting as blank.  
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Plates were incubated for 3.5 h at 37°C, 5% CO2 in an incubator. Wells were aspirated and 

150µl of dimethyl sulphoxide (DMSO) was added per well. Well plates were covered with 

tinfoil and cells were agitated using an orbital shaker (300rpm) for 20mins. The absorbance 

readings of wells were then measured 590nm with a photometric scan between 540nm to 

590nm to assay absorbance values at different wavelengths (Multiskan Spectrum- UV/Vis 

Microplate Spectrophotometer). 

Cell viability was calculated using the formula below: 

5.2.6  In vitro BMP-2 release and bioactivity (ALP activity) 

To establish the effect of BMP on MG63 differentiation, an ALP quantification assay was 

performed on MG63 cells exposed to BMP-containing media. ALP activity was analysed 

using the 1-step PNPP assay (ThermoFisher, UK). BMP-2 protein was quantified using a 

BMP development ELISA (Peprotech, USA).  

For the co-culture experiments, media aliquots (1ml) were taken from the well chamber at the 

time points (days 2, 5, 7, 9, 12, 14, 16, 19 and 21) for MG63 cells and from the transwell 

inserts for HUVECs. Aquasomes were placed (in transwell inserts for MG63 cells and in the 

well chamber for HUVECs) and media aliquots were also taken from the well chamber for 

MG63 cells and from the transwell inserts for HUVECs to analyse the amount of ALP 

secreted. BMP released from aquasomes into media was analysed in a separate study. 

Media aliquots were taken at predetermined time intervals of 1, 3, 9, 13 and 21 days to 

analyse the amount of BMP-2 released. Aliquots were quantified for BMP-2.  

To measure ALP activity (quantified by the production of PNPP product, 4-Nitrophenol), 

100µl of the 1-Step PNPP was added to each well containing 100µl of sample (96 well plate). 

The solution in each well was mixed thoroughly by gently agitating the plate. Each plate was 

incubated at room temperature for 30 minutes or until sufficient colour developed. 50µL of 2N 

NaOH was then added to each well to stop the reaction. This solution was mixed thoroughly 

by agitating the plate. The absorbance of each well was measured at 405nm (Multiskan 

Spectrum- UV/Vis Microplate Spectrophotometer). 

Absorbance values of blank wells and blank media were used to correct sample absorbance 

(ʎ) values. The principle of the reaction is illustrated in figure 5.4.  The BMP ELISA protocol 

was followed as provided in the kit. 100µl of capture antibody was added to each ELISA plate 

Cell viability (%) =   [O.D OF TREATED WELL- OD OF BLANK]      X 100% 

 [OD OF UNTREATED WELL -OD OF BLANK] 
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well (n=3), sealed and left to incubate overnight. Capture antibody was aspirated from wells 

and each plate was washed 4 times using 300 µl of wash buffer per well. Plates were blotted 

on paper towel to remove all liquid and 300 µl of block buffer was added to each well. Plates 

were incubated for at least 2h. Plates were further aspirated, washed 4 times and blotted on 

paper towel. 

100 µl of the samples of each time point from the in vitro release study were added to wells 

(n=3). The plates were sealed and incubated for 2h. Plates were aspirated washed 4 times 

and blotted on paper towel. 100 µl of Avidin peroxidase was subsequently added to each 

well. Plates were incubated for 30mins at room temperature (25°C).  

SigmaFast™ OPD was used as substrate. One OPD tablet (o-Phenylenediamine 

dihydrochloride) and one urea hydrogen peroxide tablet were dissolved in 20ml of distilled 

water. Care was taken to wrap solution in foil as solution is light-sensitive. 100µl of 

SigmaFast OPD solution was added to each well and monitored for colour development. 

Absorbance readings were monitored at 5min intervals for 50mins and OD was read at 

405nm (Multiskan Spectrum- UV/Vis Microplate Spectrophotometer). 

 Figure 5.4  Principle of the PNPP assay 
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5.2.7 Statistical analysis 

Statistical analysis was performed using GraphPad Prism software package. Data was 

analysed using a two-tailed paired t-test (significance level, p<0.05). 

5.3 RESULTS AND DISCUSSION 

The main objective of this study was to investigate the ability of BMP-2 and VEGF 121 

loaded aquasomes to stimulate osteogenic activity when exposed to osteoprogenitor cells 

(MG63, osteoblast-like cell line) and mesenchymal stem cells (AT-MSCs).  This was 

analysed primarily by ALP expression which is measured by 4-nitrophenol production.  

5.3.1 In vitro release of BMP-2 and VEGF-121 from aquasomes 

A release study of BMP-2- loaded aquasomes, fabricated with 50ng/ml and 100ng/ml BMP-2 

solutions, was performed for the duration of 8h with samples taken at hourly time points.  The 

in vitro cumulative release plots (figure 5.5A) show that release of BMP-2 from the 

aquasomes was dependent on BMP-2 loading. The amount of BMP-2 released ranged from 

6-8.5 ng for the 50ng/ml BMP-2 loaded aquasomes and 15-51ng for the 100ng/ml BMP-2

loaded aquasomes. Percentage release (figure 5.5B) shows less than 5% release of BMP-2 

after 8h in both cases demonstrating sustained release of BMP-2 from the aquasomes. The 

entrapment efficiency results of the BMP-2 showed 98.9% of BMP-2 adsorbed onto the 

aquasome formulation. That is, for every loading with 100ng/ml (in 10ml), 989.9ng is 

adsorbed and for every 50ng/ml (in 5ml), 245ng is adsorbed onto the aquasome formulation. 

Figure 5.5 C illustrates that the release of BMP-2 from aquasomes in media is similar to its 

release in PBS. This was investigated to compare the release of BMP-2 from aquasomes in 

PBS and in culture medium and identify if there was a reduction in BMP-2 quantified in 

culture media indicating degradation of BMP-2 by serum proteins. Figure 5.5C shows it can 



205 

be deduced that the serum proteins in cell culture may be degrading viable BMP-2 released 

from aquasomes as the amount of BMP-2 released in media is lower than BMP-2 released in 

PBS.  

The role of VEGF in osteogenic differentiation and proliferation has been investigated and 

researched in the literature. Recently, the combined or sequential delivery of BMP-2 and 

VEGF to mesenchymal cells has resulted in enhanced osteoblast differentiation (Table 5.2). 

VEGF 121 was employed in this study to analyse the differentiation and proliferation effect of 

VEGF when exogenously administered to MG63 cells and AT-MSCs in culture medium or in 

aquasome formulation and compare the differentiation effect via the two modes of delivery. 

Figure 5.6 illustrates the release of VEGF from aquasome formulations fabricated with 

100ng/ml VEGF solutions with a similar entrapment efficiency of 98%. The profile shows a 

steady decline in VEGF release over the 8 h study. However, percentage release is similar to 

BMP-2 from the aquasomes which shows that less than 6% of VEGF has been released 

during the 8 h study, thus implying that VEGF-loaded aquasomes offer a prolonged release 

of the angiogenic factor. 

These results demonstrate that the BMP-2 and VEGF 121 aquasome formulations can act as 

a delivery system for prolonged release of the growth factor which can elicit its osteogenic 

effect for a prolonged duration.    
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 Table 5.5 BMP-2 release in media for the duration of 21 days 

 Time (days) 
BMP released from 

aquasomes to media (ng)* 

1 1.4933 ± 0.9451 

3 1.6933 ± 0.9452 

8 1.51 ± 1.3796 

13 1.8933 ± 0.8083 

21 1.26 ± 1.0392 

* (n=3)

Figure 5.5 In vitro release of BMP-2 from BMP-2-loaded aquasomes. 

(A) shows the cumulative release of BMP-2 from aquasomes (fabricated with 50ng/ml and

100ng/ml BMP-2 solutions) for the duration of 8h; (B) and (C) illustrate the percentage release of

BMP-2 from the 50ng and 100ng aquasome formulations. Percentage release results show less

than 5% release after 8h.

(C)
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5.3.2 In vitro cell toxicology assay (Thiazolyl Blue Tetrazolium Bromide (MTT) assay) 

A thiazolyl blue tetrazolium bromide (MTT) assay was performed to measure cell death after 

exposure of cells to the individual aquasome components (Hydroxyapatite, trehalose, BMP-2 

and VEGF 121) at different concentrations for 24 h, representing short term exposure to 

aquasomes (acute toxicity). Figures 5.7, 5.8 and 5.9 illustrates the cell viabilities of SAOS-2 

cells, MG63 cells and HUVECs after exposure to 0.2, 0.4, 0.6, 0.8, 1.0 and 2.0mg/ml of 

hydroxyapatite dispersed in culture medium; 0.00625, 0.0125, 0.025, 0.05, 0.1 and 0.2M of 

trehalose in culture media and 10, 20, 30, 40 and 50ng/ml of BMP-2 and VEGF 121 in 

culture media.  

5.3.2.1    Effect of increasing hydroxyapatite concentration on proliferation of MG63, 

SAOS-2 and HUVECs 

Figure 5.7 shows the percentage cell viabilities of SAOS-2 cells, MG63 cells and HUVECs 

after exposure to varying concentrations of hydroxyapatite dispersed in media (0.2, 0.4, 0.6, 

0.8, 1.0 and 2.0mg/ml). The results represented in the graph demonstrates that the exposure 

of SAOS-2 cells and HUVECs increasing concentrations of hydroxyapatite after a short 

duration showed that they have no acute toxic effects on the cell lines. Rather, exposure of  

the cells to the varying concentrations of hydroxyapatite show a marked percentage increase 

in cell viability with demonstrates cell proliferation within the duration of 24 h. This same 

trend was observed with the MG63 cells although with slightly lower percentage cell 

viabilities. Hydroxyapatite is an osteoconductive material which supports the growth of 

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

A
m

o
u

n
t 

o
g

 V
E

G
F

 r
e
le

a
s
e
d

 (
n

g
) 

Time (hours) 

Figure 5.6 In vitro cumulative release of VEGF 121 from VEGF 121-loaded 

aquasomes.  This graph shows the cumulative release of VEGF from aquasomes 

(fabricated with 100ng/ml VEGF solution) for the duration of 8h (n=3). 
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osteoblast like cells, owing to its similarities with natural apatite which is the inorganic 

component of bone.  Its ionic dissociation in media can release Ca2+ and PO4
2- which can

promote osteoblast proliferation (Ramires et al, 2001).  

1.3.2.2   Effect of increasing trehalose concentration on proliferation of MG63, SAOS-2 

and HUVECs 

Figure 5.8 shows the percentage cell viabilities of SAOS-2 cells, MG63 cells and HUVECs 

after exposure to varying concentrations of trehalose (0.00625, 0.0125, 0.025, 0.05, 0.1 and 

0.2M). The results represented in the Figure 5.8 demonstrates that the exposure of SAOS-2 

cells and HUVECs to the increasing concentrations of trehalose after a short duration 

showed that they have no acute toxic effects on the cell lines. Rather, exposure of the cells 

to the varying concentrations of trehalose shows a marked percentage increase in cell 

viability which demonstrates cell proliferation within the duration of 24 h. However, there was 

an exception with the cells treated with 0.2M trehalose which showed a decline in percentage 
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Figure 5.7    Cell viability of SAOS-2 cells, MG63 cells and HUVECs after exposure 

to varying concentrations of hydroxyapatite in media.  MTT assay of SAOS-2 cells, 

MG63 cells and HUVECs after exposed to varying concentrations of hydroxyapatite (0.2, 

0.4, 0.6, 0.8, 1.0 and 2.0mg/ml) after 24h. Results show that hydroxyapatite had no toxic 

effect on the cells but rather increased the viability of the cells over the period of 24h 

(n=24). 
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cell viability of SAOS-2 and MG63 cells which illustrates an acute toxic effect on the cells. 

This decline was found to be statistically significant (p=0.0005). 0.2M trehalose is two times 

higher than the concentration of trehalose used in the fabrication of aquasomes in this study, 

which shows that the trehalose in the aquasome formulations have no toxic effect. In 

contrast, MG63 cells exhibited a different response to exposure to trehalose. Percentage cell 

viabilities ranged from 70-79% of the control group, with an exception of the cells exposed to 

0.2M trehalose spiked media. Exposure of MG63 cells to 0.2M trehalose increased cell 

viabilities to 85.6% in comparison to the preceding trehalose concentration (0.1M, 70.4%), 

the reason behind the increase in percentage cell viability is inconclusive as research shows 

that trehalose at high concentrations is found to be non-toxic even at high concentrations 

(Benaroud, Lee and Goldberg, 2001; Jain and Roy, 2009).  
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Figure 5.8 Cell viability of SAOS-2 cells, MG63 cells and HUVECs after 

exposure to varying concentrations of trehalose in media.  MTT assay of SAOS-2 

cells, MG63 cells and HUVECs after exposed to varying concentrations of trehalose 

(0.00625, 0.0125, 0.025, 0.05, 0.1 and 0.2M) after 24h. Results show that trehalose had 

no toxic effect on SAOS-2 and MG63 cells but rather cells proliferated over the period of 

24h. MG63 cells experienced a decrease in percentage cell viability during the study 

(n=24). 
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5.3.2.3    Effect of increasing BMP-2 or VEGF 121 concentration on proliferation of 

MG63, SAOS-2 and HUVECs 

Figure 5.9 A and B demonstrates that the exposure of SAOS-2 cells and HUVECs to high 

concentrations of BMP-2 and VEGF 121 for 24 h showed that they have no acute toxic 

effects on the cell lines. For SAOS-2 cells, MG63 cells and HUVECs, all concentrations of 

BMP-2 and VEGF 121 showed an increment in percentage cell viability after exposure to the 

varying concentrations of BMP-2 and VEGF-121 indicating cell proliferation in all instances.  

Figures 5.9 A, B and C also illustrate a trend of increased cell viability which is directly 

proportional to increasing BMP-2 or VEGF 121 concentration. However, a noticeable 

decrease in percentage cell viability is observed with cells that are exposed to 50ng/ml BMP-

2 or VEGF 121. This may suggest that prolonged exposure to high BMP-2 and VEGF 121 

concentrations above 50ng/ml (in spiked media) may cause a decline in cell viability. This 

was observed in co-culture studies (see section 5.3.3) when SAOS-2 cells, MG63 cells and 

HUVECs were exposed to 100ng/ml BMP-2/VEGF 121 spiked media. After about 10 days of 

a 21-day study, all cells exposed to 100ng/ml BMP-2/VEGF 121 spiked media died off while 

cells exposed to 50ng/ml BMP-2/VEGF 121 spiked media were still thriving and proliferating 

(results not shown).    

Figure 5.9 C shows that exposure of MG63 cells to 10ng/ml BMP-2 or VEGF 121 shows a 

decrease in cell viability (76.4%). The same trend observed with SAOS-2 cells and HUVECs 

(Figure 5.9 A and B) was also seen with MG63 cells where there was an increase in cell 

viability which was directly proportional to increasing BMP-2 or VEGF 121 concentration in 

spiked media. However, a noticeable decrease in percentage cell viability is observed when 

the cells are exposed to 50ng/ml BMP-2 or VEGF 121 spiked media which indicates that 

further exposure to concentrations of BMP-2 or VEGF 121 higher than 50ng/ml would result 

in a decline in percentage cell viability as highlighted above. Despite the observations made, 

the differences in percentage cell viabilities for all cell lines exposed to varying 

concentrations of BMP-2 were found to be insignificant (p=0.3605). In contrast, the 

differences in percentage cell viabilities for all cell lines as a result of exposure to various 

VEGF 121 concentrations were found to be significant (p<0.0001). Also, the differences in 

percentage cell viabilities between the different cell lines for both cases of exposure to BMP-

2 and VEGF 121 were found to be significant (p<0.0001). 

Figure 5.9 B and C also highlight an obvious difference in the percentage cell viabilities of 

MG63 cells and HUVECs when exposed to BMP-2 in comparison to the cell viabilities when 

exposed to VEGF 121.  Exposure to the varying concentrations of VEGF 121 showed higher 

percentage cell viabilities in HUVECs and MG63 cells. VEGF-121 is a major angiogenic 

factor which induces the proliferation of HUVECs and subsequently the formation of 
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vasculature. It also induces the proliferation of osteoblasts and pre-osteoblasts. In 

comparison, BMP-2 exerts a stronger differentiation effect (tube formation) on HUVECs and 

exhibits a lesser proliferation effect on HUVECs (Finkenzeller, Hager, and Stark, 2012). 

BMP-2 induces the proliferation and differentiation of MG63 cells in vivo, which is not 

immediate but usually occurs after day 4 (see Figure 5.2). Although, a more rapid response 

can be observed in osteoprogenitor cells when exposed to higher doses as seen in Figure 

5.9 C.).  

The increase in proliferation of SAOS-2 cells and HUVECs in response to exposure to BMP-

2 or VEGF 121 can be linked to the fact that SAOS-2 cells and HUVECs both secrete BMP 

and VEGF, which proliferate cells as well as other cell types when in co-culture (Deckers et 

al, 2002). Therefore, exposure to increased concentrations of exogenous added BMP-2 or 

VEGF 121 causes an increase in cell proliferation (Unger et al, 2007; Devescovi et al, 2008).  
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Figure 5.9 Cell viability of SAOS-2 cells, MG63 cells and HUVECs after exposure to 

varying concentrations of BMP-2 and VEGF 121 in media.  MTT assay of (A) SAOS-2 cells, 

(B) HUVECs and (C) MG63 cells after exposure to varying concentrations of BMP-2 and VEGF

121 (10, 20, 30, 40 and 50ng/ml) after 24h. Results show that BSA had no toxic effect on the

cells but rather increased the viability of the cells over the period of 24h (n=24).

(C)
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5.3.3 Osteogenic potential of BMP-2 loaded aquasomes and its comparable effect 

with 50ng/ml BMP-2 spiked media on osteoblast cells 

Figure 5.10 illustrates the amount of p-nitrophenol produced by the activity of secreted 

alkaline phosphatase (ALP) for a 21-day study. Alkaline is an ectozyme which is produced by 

bone cells and is an established biochemical marker of bone cell metabolism. ALP is an early 

to late osteogenic differentiation marker which indicates the progression and success of 

osteogenesis in tissue engineering. It is expressed in mesenchymal stem cells which 

committedly differentiate into osteoblasts as well as in osteoblastic cells as part of their 

normal metabolism. ALP as plays a major role in the mineralisation of bone (Golub et al, 

2007; Birmingham et al, 2012). Bone-specific ALP is produced in extremely high amounts 

during the bone cycle’s formation phase and is therefore an excellent universal indicator of 

bone formation activity (Christenson, 1997). 

MG63 cells were cultured with BMP-2 aquasomes (MG63/BMP AQUA) and 50ng/ml spiked 

media respectively (MG63/BMP 50). The results in Figure 5.9 show that the amount of ALP 

expression from MG63 cells cultured with BMP-2 loaded aquasomes was higher than those 

cultured with 50ng/ml BMP spiked media with exceptions on days 9 and 14. The differences 

in 4-nitrophenol production between MG63/BMP AQUA and MG63/BMP 50 was found to be 

statistically insignificant (p= 0.1886). The sustained release of BMP-2 from the aquasomes 

and the Ca2+ and PO4
2- ions from the gradual dissolution of hydroxyapatite may have created

an osteoinductive and osteoconductive environment for the cells, which have promoted the 

production of ALP, especially in the later stages of the study.  50ng/ml BMP spiked media 

induced higher ALP expression (measured by 4-nitrophenol production) on days 9 and 14 

which can be attributed to the higher availability of BMP-2 in the 50ng/ml spiked media in 

comparison to the lower amounts of BMP-2 constantly released from aquasomes.  

In comparison to the MG63 blank group, both MG63/BMP AQUA (MG63 exposed to BMP-

loaded aquasomes) and MG63/BMP 50 groups (MG63 exposed to 50ng/ml BMP-spiked 

media) produced more 4-nitrophenol than the MG63 blank with the exception of day 12 in 

which the reasons are inconclusive. The difference in 4-nitrophenol production between the 

MG63/BMP AQUA group and MG63 blank were found to be statistically significant (p< 0.10). 

However, the difference in 4-nitrophenol production between the MG63/BMP 50 group and 

MG63 blank were found to be statistically insignificant (p=0.2813). From the results 

graphically represented in Figure 5.10, it was deduced that the loading of the BMP-2 loaded 

aquasomes needed to be increased to enhance osteogenic differentiation. With a sustained 

delivery of BMP-2 from these aquasomes, higher ALP expression which infers successful 

osteogenic differentiation is expected.  
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Numerous studies have been published demonstrating the use of scaffolds, bone cements or 

carriers made of biodegradable material designed with BMP adsorbed onto or incorporated 

into them to allow local controlled release of BMP over a period of time (Kenley et al, 1994; 

Kempen et al, 2008; Patel et al, 2008; Fei et al, 2008). 

A study by Sasche and co-workers (2005) reported the successful osseointegration of metal 

implants using non-glycosylated BMP-2 in female sheep. BMP-2-coated implants initiated 

significant new bone formation, initially in trabecular arrangements and were replaced by 

cortical-like bone after 20 weeks. The new bone was oriented towards the cylindrical implant. 

This animal model provided first evidence that application of non-glycosylated BMP-2 coated 

on solid implants may foster bone healing and regeneration even in aged-compromised 

individuals. The present study shows that BMP-2 loaded aquasomes induce osteoblast like 

cell differentiation, which shows successful osteogenesis. Results from Sasche et al (2005) 

illustrate the success of BMP-2 coated implants in the osseointegration of metal implants 

which imply the proliferation of osteoblasts aid in the integration of the metal implants into the 

bone structure. 

Patel and co-workers (2008) conducted both in vitro and in vivo studies to analyse the 

release of BMP-2 (radiolabelled) from gelatin microparticles embedded in a collagen scaffold. 

The effect of gelatin cross-linking, BMP-2 dose, and release medium on BMP-2 release 

kinetics was investigated. Results showed that release of BMP-2 could be systematically 

controlled from gelatin microparticles by altering the extent of gelatin crosslinking. It was also 

observed that higher doses of BMP-2 loaded in the gelatin microparticles resulted in 

decreased release from the gelatin microparticles. It was hypothesised that presumably, the 

ratio of free vs. bound growth factor is similar for both amounts, and therefore the effect on 

BMP-2 release was minimal for the investigated doses (Patel et al, 2008). These results 

show correlation with the present study as the aquasome formulation controls the release of 

BMP-2 available for the cells. The doses of BMP-2 released from aquasomes show minimal 

effect, however the effect is statistically significant in comparison to controls. An increase in 

BMP-loading of aquasomes may increase effect and will need to be explored. 

Kempen and co-workers (2008) also conducted both in vitro and in vivo studies to analyse 

the bioactivity of BMP released from sustained delivery vehicles over a period of time. BMP-2 

was incorporated into a gelatin hydrogel, PLGA microspheres embedded in a gelatin 

hydrogel, microspheres embedded in a poly (propylene fumarate) (PPF) scaffold and 

microspheres embedded in a PPF scaffold surrounded by a gelatin hydrogel. The release 

and bioactivity of BMP-2 were tested weekly over a period of 12 weeks in pre-osteoblast 
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W20-17 cell line culture and in a rat subcutaneous implantation model. Parameters 

measured were alkaline phosphatase induction and bone formation respectively. 

The bioactivity of BMP-2 released from composites was much higher than similar 

concentrations of BMP-2 added directly to control cultures (Kempen et al, 2008). This 

illustrated that BMP-2 can be subject to degradation/ inactivation by molecules such as 

serum proteins in culture medium. The rate of BMP-2 release in vivo was found to be 

profoundly higher than in vitro. This is hypothesised to be attributed to the cellular enzymatic 

degradation of the composite or implant polymer made possible by the more protein-rich 

environment in vivo. The results show that the bioactivity of BMP-2 is retained when 

incorporated into composites prolonged sustained delivery (Kempen et al, 2008).  This 

outcome is in agreement with the present study in which the BMP-2 released from 

aquasomes elicited higher ALP expression in comparison to 50ng/ml BMP-2 spiked media, 

which may have been degraded or inactivated by serum proteins in culture medium. 
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Figure 5.10  Comparison of the groups MG63/BMP AQUA, MG63/BMP50 and MG63 

Blank to analyse the amount of ALP produced measured by 4-Nitrophenol production. 

The graph illustrates that the MG63/BMP AQUA had a higher rate of 4-Nitrophenol production 

for the 21-day study than the MG63/BMP50 group with the exception of days 9 and 14, 

illustrating the differentiation effect of BMP-2 released from BMP-2 loaded aquasomes when 

co-cultured with osteoblast-like cells, MG63. These results were compared to 4-Nitrophenol 

production of MG63 monocultures (MG63 Blank) (n=3). 
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5.3.4 Osteogenic potential of VEGF on MG63 cells and its comparable effect with 

MG63 co-cultured with HUVECs 

VEGF, an angiogenic factor, is also involved in osteogenesis and bone repair by stimulating 

survival, recruitment and migration of major bone forming cells (Bai et al, 2013). Exogenous 

administration of VEGF is known to enhance osteoblastic differentiation and proliferation in 

tissue engineering (Kanczler et al, 2010; Ramazanoglu et al, 2013). 

Figure 5.11 illustrates the amount of p-nitrophenol produced by the activity of secreted 

alkaline phosphatase (ALP) when MG63 was co-cultured with HUVECs (MG63/HUVECs) 

and MG63 in mono-culture with 50ng/ml VEGF 121 (MG63/BMP50) for a 21-day study. 

MG63/HUVECs exhibited higher ALP expression by having the higher 4-Nitrophenol 

production when compared with MG62/VEGF 50 monoculture. The difference in 4-

nitrophenol production between the two groups were found to be statistically significant 

(p<0.05). It is well established in the literature that endothelial cells enhance 

osteoprogenitor/osteoblast cell growth when in co-culture. It has also been reported that the 

expression of early differentiation markers such as ALP is enhanced from osteoblast-like 

cells (MG63 cells) and mesenchymal cells of bone origin when in the presence of ECs 

(HUVECs) (Xue et al, 2005; Kaigler et al, 2005). In a similar co-culture study by Zhang and 

colleagues (2010a), MG63 cells proliferated in the presence of HUVECs, which showed 

higher cell numbers on titanium surfaces after 72h, in comparison to single cultures. 

MG63 cells were co-cultured with SAOS-2 cells to examine if there will be an increase in ALP 

production in comparison to MG63 monocultures (MG63 Blank) and MG63 co-cultured with 

50ng/ml BMP-2 spiked medium (MG63/BMP 50). SAOS-2 cells are well- characterised 

osteosarcoma cells, which are commonly used as an osteoblastic cell model. When MG63 

cells were co-cultured with SAOS-2 cells (MG63/SAOS-2), the results were comparable to 

MG63/BMP 50 but were higher than the control (MG63 Blank). However, the differences in 4-

nitrophenol between the two groups were found to be statistically insignificant at p<0.05 

(p=0.4168, results not shown). In comparison, ALP production by MG63 co-cultured with 

50ng/ml of VEGF-121 (MG63/VEGF 50) was higher than in the MG63/BMP50 group (Figure 

5.10 and 5.11). VEGF is an angiogenic marker, which has been noted in literature to 

stimulate osteogenesis evidenced by increased ALP production (Deckers et al, 2002).   

In a study by Zhang et al (2010a), expression levels of ALP in MG63 cells were stimulated in 

the presence of HUVECs and were found to be 2 times higher (P < 0.01) than in MG63 

monocultures. This observation agrees with the previous assumption that osteoblasts 

stimulate the proliferation of endothelial cells (HUVECs) by producing VEGF, and that the 

stimulated ECs reciprocally enhance the proliferation of osteoblasts in co-culture (Zhang et 
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al, 2010a, Zhang et al, 2010b). This was also observed in a study by Hoffmann et al (2008) 

where HUVECs in monoculture did not survive long term co-culture studies but thrived and 

proliferated when co-cultured with human osteoblasts which demonstrated that human 

osteoblasts support the survival and proliferation of endothelial cells (HUVECs). VEGF acts 

directly on osteoblasts increasing chemotaxis, proliferation and differentiation (Carano and 

Filvaroff, 2003). Several in vitro studies have already established that there is a reciprocal 

regulation between osteoblast-like cells and endothelial cells and VEGF acts as the main 

signalling between these cells (Kyriakidou et al, 2008). 

In figure 5.12, the graph illustrates the proliferation count of MG63 co-cultured with HUVECs 

or cultured in the presence of BMP-2/VEGF 121/BMP-loaded aquasomes to illustrate 

differentiation and/or proliferation effect in comparison with the control group (MG63 Blank). 

These results correlate with 4-nitrophenol produced by ALP secreted from the cell types 

MG63. A significant number of HUVECs did not survive the long-term culture period in a 
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Figure 5.11 Comparison of the groups MG63/HUVECs, MG63/VEGF 50 and 

MG63 blank to analyse the amount of ALP produced measured by 4-Nitrophenol 

production. The graph illustrates that the MG63/HUVECs has a higher rate of 4-

Nitrophenol production for 19 days in the 21-day study illustrating the proliferation 

effect of HUVECs when co-cultured with osteoblast-like cells, MG63 (n=3). 
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monoculture and thus results are not shown. Such results were observed in similar studies 

(Unger et al, 2007; Hoffmann et al, 2008). The co-culture of endothelial cells with osteoblast-

like cells MG63 and SAOS-2 increased the cell numbers of these cell types. These results 

correspond with the results in the literature which validate the proliferation effect of 

endothelial cells on osteoblastic cells (Kyriakidou et al, 2008, Zhang et al, 2010b). 

The cell count of MG63 cells from the experimental groups MG63/BMP 50, MG63/VEGF 50 

and MG63/BMP AQUA yielded higher results in comparison to MG63 blank (control). 

However, this graph illustrates an increase in the cell count of MG63 cells when exposed to 

BMP-2 aquasomes (MG63/BMP AQUA) in comparison to exposure to 50ng/ml VEGF spiked 

medium. This can be attributed to the presence of exogenous calcium from the 

hydroxyapatite nanocores in the aquasome formulation. Calcium present in the aquasome 

formulation offers osteoconductivity to the cells and aids in an increment in proliferation. 

Although BMP-2 released from the aquasomes was controlled yielding approximately less 

than 5% at each time point (Figure 5.5B), the concerted effect of BMP-2 and calcium in the 

aquasome formulation increased proliferation of MG63 cells and was comparable to the 

proliferation effect of exogenously added 50ng/ml BMP (Doostmohammadi et al, 2012; 

Rouahi et al 2006; Ramazanoglu et al, 2013). The differences in the cell numbers between 

MG63/BMP AQUA and MG63 Blank or MG63/VEGF 50 and MG63/BMP AQUA were 

however where found to be statistically insignificant (p<0.10). In contrast, the differences in 

cell number between MG63/HUVECs and MG63/BMPAQUA were statistically significant 

(p<0.10). 
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Figure 5.12 Proliferation counts of MG63 and SAOS-2 cells co-cultured with HUVECs 

or cultured in the presence of BMP-2/VEGF 121/BMP-loaded aquasomes. This graph 

illustrates the differentiation and/or proliferation effect of BMP-2 /VEGF on MG63 cells in 

comparison with the control group (MG63 BLANK) (n=3). 

5.3.5 Adipose Tissue-Derived Mesenchymal Stem Cells (AT-MSC) differentiation 

study 

AT-MSCs are isolated from the human adipose tissue and purified through several 

processes for selecting multi-potent MSCs-like cells. Adipose-derived MSCs (AT-MSCs) 

have attracted much interest as an alternative to BM-MSCs (bone marrow-derived 

mesenchymal stem cells). It has been reported that AT-MSCs are comparable to BM-MSCs 

with respect to the multi-lineage potential, growth kinetics, and cells senescence (Yoon et al, 

2011). Adipose tissue-derived mesenchymal stem cells (ATMSCs) obtained from lipo-

aspirates have been shown to have the multi-lineage potential to differentiate into 

adipogenic, chondrogenic, myogenic and osteogenic cells (Gun-II Im et al, 2005; Keibl et al 

2011). 

AT-MSCs were used in this study to investigate the osteogenic differentiation and 

proliferation effect of BMP-2 and VEGF-121 released from aquasomes in mesenchymal stem 

cells in comparison to exogenously administered spiked media.  AT-MSCs were exposed to 
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different concentrations of BMP-2 and VEGF 121; BMP-2 aquasomes, VEGF aquasomes 

and a physical combination of both aquasome formulations to investigate the differentiation 

effect of each exogenous administration. Figure 5.12 illustrates the differentiation of AT-

MSCs after these treatments, measured by ALP expression (4-nitrophenol production). AT-

MSCs exposed to osteogenic differentiation medium (Blank with O.M) were used as a 

positive control to compare the differentiation of AT-MSCs exposed to exogenous 

treatments. The differentiation of ATMSCs using osteogenic medium is well established and 

successfully differentiates mesenchymal stem cells into the osteoblastic lineage (Gun-II Im et 

al, 2005, Bai et al, 2013). 

Also, the treatment of AT-MSCs with 50ng/ml BMP yielded higher ALP activity in comparison 

to 25ng/ml BMP. However, the difference in ALP activity between AT-MSCs treated with 

25ng/ml BMP and 50ng/ml BMP did not translate to a direct proportionality of 2 times more 4-

nitrophenol production and this difference in 4-nitrophenol production between the groups 

were found to be statistically insignificant (p=0.4411). This may also demonstrate that an 

increase in exogenously administered BMP-2 may not necessarily translate in higher ALP 

activity but rather a controlled release of the growth factor over a prolonged period of time. 

For BMP (BMP-2) to elicit a therapeutic effect, it must be retained at the site of injury for a 

sufficient period, to allow the migration of pluripotent and osteoprogenitor cells, their 

proliferation and differentiation to promote the formation of bone. Appropriate carrier systems 

are required to promote local delivery of BMP to the site of injury and provide a sustained 

release profile over a long period of time (Jeon et al, 2008; Kempen et al, 2008; Luca et al, 

2009). This is in agreement with a study by Patel et al (2008) which concluded that the dose 

effects of BMP-2 released from gelatin microparticles were minimal but rather a systematic 

release of BMP-2 from the gelatin microparticles yielded better results (Patel et al, 2008). 

Also, the treatment of AT-MSCs with 25ng/ml VEGF yielded higher ALP activity in 

comparison to 50ng/ml VEGF. However, the difference in ALP activity between AT-MSCs 

treated with 25ng/ml BMP and 50ng/ml BMP did not translate to a direct proportionality of 2 

times more 4-nitrophenol production. In constrast to difference observed between the two 

groups were found to be statistically significant (p=0.0032). This may also demonstrate that 

an increase in exogenously administered VEGF-121 may not necessarily translate in higher 

ALP activity but rather a controlled release of the growth factor over a prolonged period of 

time. Comparing the 4-nitrophenol production of ATMSCs exposed to 50BMP and 50VEGF, 

the differences were found to be statistically insignificant (p=0.4302) while the differences in 

4-nitrophenol production of ATMSCs exposed to 25BMP and 25VEGF were found to be

statistically significant (p=0.116). 
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The results show that the BMP-2 loaded aquasomes had the lowest amount of 4-nitrophenol 

produced in comparison to the other treatment groups. In comparison, VEGF 121 loaded –

aquasomes exhibited higher 4-nitrophenol production. The differences between the 4-

nitrophenol production of AT-MSCs exposed to BMP AQUA and VEGF AQUA were 

statistically significant (p<0.0001). Interestingly, the dual delivery of combined VEGF-121 and 

BMP-2 loaded aquasomes did not yield a higher ALP expression as expected. The 

differences in 4-nitrophenol production between the groups exposed to BMP/VEGF AQUA 

and BMP AQUA; and BMP/VEGF AQUA and VEGF AQUA were statistically significant 

(p=0.0030 and p<0.0001 respectively).  This agrees with Patel et al (2008), Kempen et al 

(2009) and Kanzcler et al (2010) which investigated the sequential/dual delivery of VEGF 

and BMP-2 which yielded enhanced bone regeneration as opposed to a combined dual 

delivery of the growth factors.  From literature, it has been observed that the step–wise 

exogenous treatment of mesenchymal stem cells with VEGF and BMP-2 yield higher 

success rate of osteogenic differentiation. This can be attributed to the sequential way 

angiogenesis and osteogenesis take place in vivo. Angiogenesis usually precedes 

osteogenesis for the establishment of vascularisation via the expression of angiogenic 

growth factors while osteogenic growth factors are constantly expressed during bone 

formation and remodelling. In Kempen et al (2009), although the VEGF/BMP- 2 combinations 

resulted in an additive effect on bone formation, this was less pronounced compared to the 

application of combinations of growth factor expressing cells. This difference could be the 

result of dose-related effects which can occur when using BMP-expressing cells.  

In addition, VEGF 121 is a potent angiogenic factor which plays an important role in 

protecting cells.  The release of VEGF from aquasomes as well as VEGF exogenously 

added to culture medium may have acted to keep the AT-MSCs viable sufficiently to enable 

differentiation and proliferation. This can subsequently lead to even higher local endogenous 

dosages of the osteoinductive growth factors. These results correspond to the results of the 

present study which showed that the co-culture of HUVECs with MG63 cells yielded higher 

ALP expression (Kanczler et al, 2010; Bai et al, 2013). 

Comparing the 4-nitrophenol production of AT-MSCs exposed to BMP AQUA and 50BMP; 

and BMP AQUA and 25BMP, the differences were found to be statistically significant 

(p<0.0001; p=0.0002 respectively), demonstrating that BMP-2 induced ALP expression from 

exogenously administered 50ng/ml BMP-2 spiked media had a more pronounced effect than 

BMP-2 released from aquasomes. This can also be attributed to the minute amounts of 

BMP-2 released from aquasomes (less than 5%) available for BMP-2 induced osteogenic 

differentiation of AT-MSCs in comparison to the higher amounts of BMP-2 available in the 

BMP-2 spiked media. 
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Using the AT-MSCs cultured in osteogenic medium (Blank with O.M group) as a positive 

control, Figure 5.12 reveals a marked difference in 4-nitrophenol production in comparison to 

BMP AQUA, VEGF AQUA or BMP/VEGF AQUA groups. These differences in the 4-

nitrophenol production were statistically significant in all comparisons (p<0.0001) which 

indicate that the ATMSCs successfully differentiated into the osteoblastic lineage cells when 

cultured in osteogenic medium (O.M). According to Christenson (1997), ALP is produced in 

extremely high amounts during the bone cycle’s formation phase and is therefore an 

excellent universal indicator of bone formation activity. These results re-iterate that release of 

BMP-2 from aquasomes were in small amounts to have a pronounced differentiation effect. 

However, further investigations are required to increase optimal amounts of BMP-2 released 

from aquasomes to completely induce AT-MSC osteogenic differentiation.  

Figure 5.13 Study of AT-MSCs differentiation when exposed to different exogenous 

treatments. AT-MSCs were cultured with 50ng/ml and 25ng/ml BMP-2 (AT-MSCs BMP50, 

AT-MSCs BMP25), 50ng/ml and 25ng/ml VEGF 121 (AT-MSCs VEGF50, AT-MSCs 

VEGF25), BMP-2 and VEGF 121-loaded aquasomes (fabricated with 100ng/ml solutions; AT-

MSCs BMP AQUA, AT-MSCs VEGF AQUA) and BMP-2 and VEGF 121 loaded aquasomes 

physically combined (AT-MSCs BMP/VEGF AQUA) (n=3). 
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5.4   CONCLUSION 

These various studies show the potential use of BMP-2 -loaded aquasomes and VEGF 121- 

loaded aquasomes in bone regeneration. Combining the osteoconductive and osteoinductive 

properties of the components, synthetic hydroxyapatite and BMP/VEGF with a polyhydroxyl 

oligomer (trehalose), the delivery system proves to be a controlled release system for growth 

factors. The different loading doses of BMP-2 on aquasomes show that the release of BMP-2 

or VEGF 121 from aquasome formulations is dose dependent. However, low percentages of 

release for the study period were observed which infer that BMP-2 and VEGF- 121 loaded 

aquasomes act as sustained and prolonged nanocarrier delivery systems. BMP-2 and 

VEGF-121 released from aquasomes induced ALP expression in MG63 cells which 

demonstrates its ability to stimulate osteoblast proliferation and differentiation. Its 

differentiation effects on AT-MSCs were not pronounced in comparison to positive control 

(AT-MSCs in osteogenic medium). In comparison, co-culture studies of HUVECs with MG63 

cells demonstrated higher ALP expression compared to exogenous treatments with BMP-

2/VEGF 121. VEGF exogenously administered in culture media was proven to have a 

protective effect on MG63 cells and AT-MSCs resulting in higher ALP production in most 

instances. However, further studies are required to optimise the amount and ratio of the 

release of BMP-2 and VEGF 121 and also compare the bioactivity of BMP-2 and VEGF 121 

released from aquasomes in comparison to free rhBMP-2 and rhVEGF121 in media.  
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        CHAPTER 6 
GENERAL DISCUSSION 
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Aquasomes are nanoparticulate carrier systems with three-layered self-assembled 

structures. They consist of a central solid nano-crystalline (ceramic) core coated with 

polyhydroxy oligomers onto which biochemically active molecules are adsorbed. The solid 

ceramic core provides the structural stability, while the polyhydroxy oligomer coating protects 

against dehydration and stabilizes the biochemically active molecules. This major 

characteristic of maintaining the conformational integrity of bioactive molecules has made 

aquasomes to be generally described as a carrier system for delivery of peptide/protein-

based pharmaceuticals.  

To optimise the aquasome formulation and increase the drug/protein-loading capacity of 

aquasomes, a decrease in nanocore size for an optimal aquasome formulation was 

investigated in this thesis. The aquasome formulation used in preliminary studies in the 

present research, fabricated with hydroxyapatite nanopowders (<200nm particle size, BET), 

was optimised using hydroxyapatite nanopowders with smaller particle sizes (20nm, 40nm 

and 60nm) and a more uniform size distribution.  

The effect of hydroxyapatite nanoparticle size and coating of hydroxyapatite (HA) 

nanoparticles on the surface area available for drug/protein adsorption during the fabrication 

of aquasomes was investigated using BET analysis. The decrease in nano-hydroxyapatite 

core sizes (60nm, 40nm and 20nm) showed a marked increase in surface area available for 

drug/protein adsorption with calculated BET surface areas  as 54.42 m2g-1, 58.18 m2g-1 and 

65.37m2g-1 respectively in comparison to the un-optimised HA nanocores which had a 

calculated surface area of 22.74 m2g-1. 

Hydroxyapatite nanocores (20nm, 40nm and 60nm) were then coated with trehalose for 1.5h, 

2.5h and 3h to investigate the increase in surface area available for drug/protein adsorption. 

Significant differences were observed for calculated surface area between the nano-core 

sizes (20nm, 40nm, 60nm) for each coating time (*p<0.01). No significant differences 

(P>0.05) were found for calculated surface areas when investigating coating time for specific 

nano-core sizes (i.e., 20nm 1.5h, 2.5h and 3h). These results evidently show that an 

increase in the duration of trehalose coating does not give a significantly different calculated 

BET surface area but the decrease in particle size and a uniform size distribution gives a 

definitely significant difference in the calculated surface areas  

The zeta potential of the coated and uncoated hydroxyapatite nanocores were also analysed 

to measure the surface charge. The change in surface charge after coating established the 

adsorption of trehalose onto the nanocores.  SEM and confocal imaging were also employed 

to understand the morphology of aquasomes and validate the adsorption of drug in 

aquasome formulations. Pictorial results using these imaging techniques evidently elucidated 

the morphology of and validated the adsorption of drug/protein in loaded aquasomes. Using 
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the fluorescence emitting drug, metronidazole, loaded onto aquasome formulations, the 

behaviour of aquasome nanoparticles was elucidated. The confocal images illustrated the 

adsorption of metronidazole onto the coated nanocores and the SEM and confocal images 

revealed the clustering of individual nanocores in the aquasome formulation. Generally, 

agglomeration of nanoparticles may affect the bioactivity of adsorbed bio-actives. However, 

trehalose, the oligomeric coating used in this study, is popular known to retain the 

conformational integrity of bioactive molecules and thus aggregation of nanocores may not 

pose a problem. 

Optimisation of protein quantification using HPLC with an ELSD exhibited robustness and 

ease of performance in comparison to the conventional ELISA technique for quantifying 

proteins. The HPLC-ELSD analysed BMP-2, VEGF-121 and trehalose, the components of 

aquasomes individually. The results from this study demonstrated that the ELSD was more 

sensitive than the standard BMP ELISA.  

Following the optimisation of the aquasome formulation used in this study, gels were 

investigated as a drug dosage form for the delivery of proteins for topical/transdermal 

delivery. BSA was used as a model protein to investigate the suitability of gels for the 

delivery of protein-loaded aquasomes. Non-aqueous silicone elastomer gels (NASEGS) have 

been used as delivery system, personal lubricants and for rectal application (Forbes et al, 

2014). More recently, they have been employed in the vaginal delivery of HIV-1 microbicides 

(Forbes et al, 2013).  

Various ratios of the gels components (ST-elastomer and cyclomethicone) were investigated 

to manufacture different gels with different textural and rheological characteristics. These 

gels also exhibited similar release trends which varied with changing the ratio of 

cyclomethicone in the gels and protein loading. 80/20 (ST-elastomer/cyclomethicone) and 

70/30 (ST-elastomer/cyclomethicone) had similar release profiles, however, rheological and 

textural characterisation results proved the 80/20 gel to be the most suitable gel formulation 

with a more desirable hardness characteristic of pharmaceutical gels (18.33±2.86, Table 3.5) 

and well-defined viscous and elastic moduli without any cross-over between the two moduli 

indicating the gel’s ability to maintain its gel structure without any destruction of the 

microstructure of the gel when exposed to strain of 0.15Pa. 

Release from NASEGS exhibited sustained release of BSA of which the amount of BSA 

released was dependent on BSA loading into the gels. The release mechanism of BSA from 

NASEGS is elucidated in Figure 3.15A, illustrating the diffusion of a water-soluble drug, like 

BSA, through the hydrophobic silicone matrix. The minimal hydration of the pores of 

hydrophobic matrix causes the slow diffusion of BSA through the pores, culminating in the 

sustained release of BSA from the gels. The structures of the aqueous gels are rapidly 
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hydrated and eroded, enhancing the release of BSA through the water-soluble matrix thereby 

resulting in higher rates of BSA release from the aqueous gels. In comparison with BSA 

release from the aqueous gels, minute amounts of BSA (6-7 µg, highest amount released) 

were released from the 80/20 NASEGS. Release of BSA from BSA loaded aquasomes 

incorporated into the 80/20 NASEG formulation yielded 0.25µg BSA as the highest release 

(0.0035% per time point).  The incorporation of BSA-loaded aquasomes in NASEGS can 

offer a delayed and sustained release of hydrophilic drugs/proteins in comparison to 

aquasomes loaded with hydrophobic drugs. Hydrophobic drugs dispersed in the NASEGS, 

have higher amounts of drug released (Forbes et al, 2014). Aquasomes in the NASEGS can 

be exploited for use in the delivery of antigens, antibodies, growth factors or hormones which 

require small amounts of drug/protein to be released for a prolonged periods of time. 

In vitro permeation of BSA in the NASEGS was investigated to examine the performance of 

the gels on membranes in vitro to examine and its ability to effectively deliver proteins/drug 

through the stratum corneum in vivo. Franz cell studies using polycarbonate membranes 

(0.4µm pore size) were used to mimic the stratum corneum and analyse the permeation rate 

of BSA through the membranes. Permeation of BSA through the membrane showed 

consistent release of 1.5- 2.0µg every hour for 8 hours, from loaded aquasomes fabricated 

with 7mg/ml BSA solutions  and incorporated into 80/20 NASEG formulation. The low 

cumulative permeation profile of BSA through the polycarbonate membrane may be applied 

for the sustained and prolonged delivery of potent proteins such as cytokines and growth 

factors, required at low concentrations to exert a biological effect. It was hypothesized that 

the rate of permeation through the membrane may be less than optimal based on the results 

from Figure 3.21.  

Gentamicin-loaded aquasomes were also fabricated to investigate its potential as an 

antibiotic delivery system for treating bone infections. Bone infections have been a major 

concern in orthopaedics due to the common incidences of infections experienced in bone 

transplantations, orthopaedic surgeries as well as fractures. Staphylococcus aureus is the 

major causative organism implicated in bone infections and was used to challenge the 

efficacy of the bactericidal activity of gentamicin loaded aquasomes. The individual 

components (hydroxyapatite, trehalose) were tested for bactericidal activity which yielded 

negative results. Gentamicin-loaded aquasomes were tested against a low inoculum and 

higher inoculum of S. aureus. The results revealed that the gentamicin released from 

aquasomes had an effective bactericidal effect against a low inoculum of S. aureus (Stock 

solution A, O.D. compared with 0.5 McFarland standards) after 2 hours for an 8 hour study. It 

also had an effective bactericidal effect against a higher inoculum of S. aureus (Stock 

solution B, O.D =1 at 625nm) after 5 hours of incubation and retained its effect even after 24 
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hours, in comparison to controls. The results proved the efficacy of gentamicin loaded 

aquasomes as antibiotic carriers for the treatment of bone infections.  

BMP-2 and VEGF 121 loaded aquasomes were fabricated as osteoinductive and angiogenic 

delivery systems that promote bone cell proliferation as well as induce angiogenesis via the 

proliferation of endothelial cells. To establish these claims, BMP released from aquasomes 

was quantified and BMP-loaded aquasomes were co-cultured with osteoprogenitor cells and 

assayed for ALP production, to demonstrate the ability of aquasomes to be employed in 

bone regeneration for fracture healing. Percentage release of BMP-2 and VEGF 121 from all 

aquasome formulations was less than 5% of the amount of protein adsorbed during the 8 

hour release period. SAOS-2 cells, MG63 cells and HUVECs were exposed to the individual 

components of aquasomes for 24 hours (BMP-2, VEGF 121, Hydroxyapatite, and trehalose) 

and tested for acute cell toxicity using the MTT assay. The concentrations being used for 

aquasome manufacture were found to be safe and increased percentage cell viability for all 

three cell lines. When exposed to BMP-2 loaded aquasomes, MG63 had a higher ALP 

activity when compared to the control group (MG63 Blank). The differentiation effect of BMP-

2-loaded aquasomes was comparable to that of 50ng/ml BMP-2 exogenously added to

culture medium. However, co-culture with HUVECs yielded higher ALP activity. This was 

probably because the secretion of VEGF from the HUVECs induced an increment in the 

proliferation of MG63 cells as well as offered a protective activity on the cells causing MG63 

cells to be more viable in long term cell culture. VEGF as a potent angiogenic factor plays an 

important role in protecting cells causing cells to thrive in long term culture (Ferrari et al, 

2006). These results were also mirrored in the cell proliferation count assay where co-culture 

with cells yielded higher ALP activity across the groups in comparison to groups exposed to 

exogenous treatments.  

A separate study investigating the differentiation effect of BMP-2 and VEGF- 121 loaded 

aquasomes on mesenchymal cells (ATMSCs) was performed to determine the differentiation 

effect of BMP-2 and VEGF 121 released from aquasomes in mesenchymal cells in 

comparison to cells cultured in osteogenic media. ATMSCs in osteogenic medium were used 

as a positive control. Results revealed that BMP-2 aquasomes (ATMSCs BMP AQUA) had a 

low differentiation effect in comparison to osteogenic media. However, VEGF aquasomes 

induced higher ALP activity in comparison to BMP aquasomes. A comparison between the 

group exposed to 50ng/ml VEGF and 25ng/ml VEGF showed that a higher dose of growth 

factor may not necessarily translate to higher ALP activity. Results also showed that dual 

delivery of BMP-2 aquasomes and VEGF aquasomes did not yield higher ALP activity in 

comparison to singular delivery of each growth factor-loaded aquasome formulation. This is 

in agreement of a study by Kempen et al (2009) which suggested sequential delivery of 
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angiogenic and osteogenic growth factor in a time dependent manner for enhanced 

osteogenic differentiation. 

This thesis has focused on the potential of aquasomes as nanocarrier delivery systems for 

proteins, antibiotics and growth factors.  
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AND CONCLUDING REMARKS 
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1. Further research could investigate the permeation of BSA or another model protein

from aquasomes incorporated into NASEGS with the addition of hydrophilic polymers to 

enhance protein drug release. Permeation studies using PDMS membranes, a closer 

substitute to the stratum corneum should also be examined to investigate the permeation of 

proteins from loaded aquasomes through such membranes. 

2. It would be beneficial to conduct a longer term cell culture study to determine if the

less pronounced differentiation effect of BMP-2 on MG63 and AT-MSCs was due to the 

release from aquasomes in smaller amounts in comparison to exogenous treatments. This 

means that the release of the growth factors in long term cult ure couldbe examined for 

sustained bioactivity, a concurrent study of different concentrations of BMP-2 released onto 

MG63 cells and ATMSCs could be examined for osteogenic differentiation after 4-6 weeks 

and an intensive immunohistochemical study could be performed to investigate the 

qualitative differentiation of MG63 and ATMSCs. 

3. Further studies are required to optimise the amount and ratio of the release of BMP-2

and VEGF 121 and also compare the bioactivity of BMP-2 and VEGF 121 released from 

aquasomes in comparison to free rhBMP-2 and rhVEGF121 in media.  

4. Further investigations on gentamicin loaded aquasomes could center on the delivery

of gentamicin loaded aquasomes onto infected osteogenic cells to examine the efficacy of 

gentamicin loaded aquasomes to alleviate bone infections in situ. The duration of complete 

release of gentamicin from aquasomes could be investigated to determine the duration of 

antibiotic protection gentamicin loaded-aquasomes can offer in in vivo and in vitro 

applications. 

5. Advancement in the ELSD-HPLC method technique could focus on the development

of the assay to examine the complete aquasome formulation (coating and drug) in single 

analysis as opposed to two separate analyses. The developed method would achieve 

separate peaks for different components in the same analysis.  
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Appendix I.  Adsorption/Desorption Isotherm plot for hydroxyapatite nanocores showing 

calculated surface area as 22.742m
2
g

-1
. Using N2 as an adsorbate, the surface area was calculated

by the volume of gas adsorbed and desorbed on the surface of the hydroxyapatite nanocores, with 

multilayer formation evidenced by two inflection points. 
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Appendix II.  Adsorption/Desorption Isotherm plot for 60nm nano-hydroxyapatite powder 

showing calculated surface area as 54.423m
2
g

-1
. The surface area was calculated by the volume of

N2 gas adsorbed and desorbed on the surface of the hydroxyapatite nanocores, with multilayer 

formation evidenced by two inflection points. 

Surface area = 54.42m
2

g
-1
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Appendix III. Adsorption/Desorption Isotherm plot for 40nm nano-hydroxyapatite powder showing 

calculated surface area as 58.188m
2
g

-1
. The surface area was calculated by the volume of N2 gas

adsorbed and desorbed on the surface of the hydroxyapatite nanocores, with multilayer formation 

evidenced by two inflection points. 

Surface area = 58.188m
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Appendix IV. Adsorption/Desorption Isotherm plot for 20nm nano-hydroxyapatite powder 

showing calculated surface area as 65.377m
2
g

-1
. The surface area was calculated by the volume of N2

gas adsorbed and desorbed on the surface of the hydroxyapatite nanocores, with multilayer formation 

evidenced by two inflection points. 
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Appendix V. Adsorption/Desorption Isotherm plot for 20nm nano-hydroxyapatite powder coated 

with trehalose. (a) 1.5hrs, (b) 2.5hrs and (c) 3hrs, showing calculated surface areas as 60.176, 56.242 

and 58.689m
2
g

-1
 respectively. These plots illustrate type III isotherms indicated low gas-solid affinity 

between the N2 and the nano-HA particles. 
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Appendix VI.  Adsorption/Desorption Isotherm plot for 40nm nano-hydroxyapatite 

powder coated with trehalose. (a) 1.5hrs, (b) 2.5hrs and (c) 3hrs, showing calculated 

surface areas as 54.889, 52.184 and 53.558m
2
g

-1 
respectively. These plots illustrate type III

isotherms indicated low gas-solid affinity between the N2 and the nano-HA particles. 
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Appendix VII.  Adsorption/Desorption Isotherm plot for 60nm nano-hydroxyapatite powder 

coated with trehalose. (a) 1.5hrs, (b) 2.5hrs and (c) 3hrs, showing calculated surface areas as 

47.767, 48.145 and 50.439m
2
g

-1 
respectively. These plots illustrate type III isotherms indicated low 

gas-solid affinity between the N2 and the nano-HA particles. 
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Appendix VIII.   BMP-2 calibration using ELSD-LC showing R
2 

as 0.9949. BMP-2

standards ranging from 0.125 to 30ng/ml were analysed in isocratic mode and detected with 

an optical gain of 2. 

y = 381.46x + 179.96 
R² = 0.9949 
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Appendix IX.  Trehalose calibration using ELSD-LC showing R
2 

as 0.9993. Trehalose 

standards ranging from 0.19 10 12mM were analysed in isocratic mode and detected with an 

optical gain of 2. 
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Appendix X.   BMP-2 calibration using ELISA showing R
2 

as 0.9543. BMP-2 standards

ranging from 0.125 to 30ng/ml were analysed using the ELISA technique and UV absorbance 

was read at 405nm. 

y = 0.0156x + 0.0601 
R² = 0.9543 
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