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In patients with drug resistant epilepsy, the surgical resection of epileptogenic cortex 

allows the possibility for seizure freedom, provided that epileptogenic and eloquent 

brain tissue can be accurately identified prior to surgery. This is often achieved using 

various techniques including neuroimaging, electroencephalographic (EEG), 

neuropsychological and invasive measurements. Over the last 20 years, 

magnetoencephalography (MEG) has emerged as a non-invasive tool that can 

provide important clinical information to patients with suspected neocortical epilepsy 

being considered for surgery. The standard clinical MEG analyses to localise 

abnormalities are not always successful and therefore the development and 

evaluation of alternative methods are warranted. There is also a continuous need to 

develop MEG techniques to delineate eloquent cortex. Based on this rationale, this 

thesis is concerned with the presurgical evaluation of drug resistant epilepsy patients 

using MEG and consists of two themes: the first theme focuses on the refinement of 

techniques to functionally map the brain and the second focuses on evaluating 

alternative techniques to localise epileptiform activity. The first theme involved the 

development of an alternative beamformer pipeline to analyse Elekta Neuromag data 

and was subsequently applied to data acquired using a pre-existing and a novel 

language task. The findings of the second theme demonstrated how beamformer 

based measures can objectively localise epileptiform abnormalities. A novel measure, 

rank vector entropy, was introduced to facilitate the detection of multiple types of 

abnormal signals (e.g. spikes, slow waves, low amplitude transients). This thesis 

demonstrates the clinical capacity of MEG and its role in the presurgical evaluation of 

drug resistant epilepsy patients. 

Keywords:  Magnetoencephalography; Presurgical evaluation; Epilepsy; Interictal 

spikes; Beamforming  
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Chapter 1: Introduction 
 

This PhD project was funded by the Medical Research Council (MRC) and is part of 

the MRC-MEG UK partnership grant (MR/K005464/1 & MR/K501086/1). This 

partnership grant is aimed to develop the clinical research capacity of 

magnetoencephalography (MEG) in the UK by facilitating collaborations between UK 

MEG centres, develop training programmes and to increase critical research mass in 

MEG. The partnership consists of 8 universities; Aston, Cambridge, Cardiff, Glasgow, 

Nottingham, Oxford, University College London, and York. Recently, two new UK 

MEG centres, Birmingham and Ulster, have joined the partnership and will engage in 

the goals set out by the lead site (Cardiff). These goals include developing 

standardised data acquisition and analysis pipelines, and the development of a 

normative database. Therefore, alongside the research detailed in this thesis, part of 

this PhD has involved collecting healthy control data for this normative database, 

whereby each site has committed to acquiring 80 datasets using common protocols. 

To further the clinical research capacity of MEG in the UK, this thesis has focussed 

on investigating the use of MEG in the evaluation of patients being considered for 

epilepsy surgery.  

The aim of epilepsy surgery is to remove the epileptogenic zone, i.e. the region whose 

removal ensures seizure freedom (Engel, 1996, Rosenow & Luders, 2001; Luders et 

al., 2006). Typically, the epileptogenic zone is determined by the patient’s clinical 

history, electroencephalographic (EEG), neuropsychological and neuroimaging 

assessments (Rosenow & Luders, 2001; Dorfer et al., 2015). MEG has been shown 

to provide non-redundant information to help generate hypotheses regarding the 

epileptogenic zone and information to guide the placement of intracranial electrodes 

(Mamelak, et al 2002; Fisher et al., 2005; Knowlton et al., 2006; Sutherling et al., 

2008; Stefan et al., 2011; Agirre-Arrizubieta et al., 2014; Nissen et al., 2016). 

However, localising epileptiform activity with the standard MEG analyses is not always 

successful (Nissen et al., 2016). Therefore, the development and validation of 

alternative localising methods is warranted. There is also a continuous need to 

develop non-invasive techniques to accurately delineate eloquent cortex in patients 

being considered for surgery (Schevon et al., 2007). The accurate localisation of both 

epileptogenic and eloquent cortex is critical for enabling a successful surgical 

outcome.  
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This thesis therefore consists of two main themes: (1) Refining techniques to localise 

eloquent cortex responsible for language processing, and (2) evaluating alternative 

approaches for localising epileptiform activity. This introductory chapter aims to set 

the context of this thesis by describing epilepsy, drug resistance and the rationale for 

epilepsy surgery. Following this, a brief summary will be given on how non-invasive 

neuroimaging and MEG feeds into the presurgical evaluation process. Finally, the 

aims and structure of this thesis will be outlined.  

 

1.1 Epilepsy 
 

Epilepsy is a common neurological condition affecting approximately 50 million people 

worldwide (Brodie et al., 2000). In the United Kingdom, it is estimated that epilepsy 

affects almost 1% of the population (Ferro, 2011; Martinez et al., 2009; Wright et al., 

2000; Morgan et al., 2002). Epilepsy is classically described as a diverse family of 

brain diseases characterised by unprovoked and recurrent seizures (Fisher et al., 

2005; Fisher et al., 2014). The International League Against Epilepsy (ILAE) defines 

epileptic seizures as “a transient occurrence of signs and/or symptoms due to 

abnormal excessive or synchronous neuronal activity in the brain” (Fisher et al., 2005, 

p. 471). These two definitions reflect the diverse range of possible manifestations that 

are dependent on a multitude of factors. These factors often include the location of 

the seizure onset zone, neural pathways, brain development, and confounding 

disease processes (Fisher et al., 2005).  

 

The generation of seizures are hypothesised to be a result of a complex interaction 

between two primary physiological factors; (1) neuronal deregulation, arising from 

mechanisms that affect membrane depolarisation and repolarisation, and (2) neural 

network abnormalities that involve the hypersynchronisation of neurons and 

propagation of discharges through the pathways (Engel, 1997). Anti-epileptic drugs 

(AEDs) aim to prevent epileptic seizures by targeting these two physiological factors. 
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1.1.1 Antiepileptic drugs 
 

The primary goal of AEDs is to prevent epileptic seizures by altering the bursting 

properties of neurons and reducing the abnormal synchronisation of local neuronal 

assemblies (Rogawshi & Löscher, 2004). Different AEDs target different molecules in 

the brain and can be classified into three main categories based on their action 

properties (Rogawshi & Löscher, 2004). These action properties include; (1) 

modulating voltage-gated ion channels to alter the firing of action potentials and the 

release of neurotransmitters, (2) potentiation of inhibitory systems mediated by 

GABAa (γ-aminobutyric acid, type A receptors), and (3) inhibiting synaptic excitation 

by blocking glutamate receptors.  A comprehensive description of the current AEDs 

used in the UK can be found at https://www.epilepsysociety.org.uk/list-anti-epileptic-

drugs. 

 

 

Table 1. ILAE definitions of epileptic brain areas (Luders et al., 1992). These 
terms are used throughout this thesis.  

Term Definition

Epileptogenic	zone Region	of	cortex	that	can	generate	epileptic	seizures.	
By	definition,	total	removal	or	disconnection	of	the	epileptogenic
	zone	is	necessary	and	sufficient	for	seizure-freedom.

Irritative	zone Region	of	cortex	that	generates	interictal	epileptiform	discharges
	in	the	EEG	or	MEG.

Seizure	onset	zone Region	where	the	clinical	seizures	originate.

Epileptogenic	lesion Structural	lesion	that	is	causally	related	to	the	epilepsy

Ictal	symptomatogenic	zone Region	of	cortex	that	generates	the	initial	seizure	symptoms.

Functional	deficit	zone Region	of	cortex	that	in	the	interictal	period	is	functionally	abnormal,
	as	indicated	by	neurological	examination,	neuropsychological	testing
	and	functional	imaging	or	non-epileptiform	EEG	or	MEG	abnormalities.

Eloquent	cortex Region	of	cortex	that	is	indispensable	for	defined	cortical	functions.
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1.1.2 Drug Resistant Epilepsy 
 

AEDs are effective in preventing seizures in the majority of patients, however it is 

estimated that 20-30% of patients are resistant to these drugs and therefore do not 

achieve seizure freedom (Sander, 1993; Schmidt & Gram, 1995; Dichter & Brodie, 

1996; WHO, 2009). The ILAE defines drug resistant epilepsy as a failure of two 

adequate trials of appropriately chosen and tolerated AEDs to achieve sustained 

seizure freedom (as a mono- or poly-therapy) (Kwan et al., 2010). Seizure freedom 

has been defined as a seizure-free period that is at least three times longer than the 

inter-seizure interval prior to starting a new intervention, or a period that lasts at least 

12 months (Kwan et al., 2010). Drug resistant epilepsy patients are also frequently 

referred to as “pharmacoresistant”, “refractory”, or “intractable” patients. To stay 

consistent with the ILAE guidelines, these patients will be referred to as drug resistant 

epilepsy patients throughout this thesis.  

 

The underlying cause for drug resistance is complex with several hypotheses 

attempting to explain the biological mechanisms involved, including the “target” and 

“transporter” hypotheses (Loscher et al., 2005). The transporter hypothesis refers to 

drugs failing to reach their targets due to an overexpression of efflux transporters that 

expel substrates out of the cell against the concentration gradient (Schmidt & Loscher 

et al., 2005). Alternatively, the target hypothesis postulates that intrinsic or acquired 

changes in AED targets (e.g. Na+ channels, Ca2+ channels, GABA system, Glutamate 

receptors) cause a loss of brain-target sensitivity resulting in resistance to AEDs 

(Loscher, 2005). These two putative biological theories provide a potential 

explanation for drug resistance, however there is still debate regarding the exact 

mechanisms underlying drug resistance (Schmidt & Loscher, 2005).  

 

Importantly, patients with drug resistant epilepsy often have poor prognostic 

implications that may include physical injury, psychosocial dysfunction, reduced 

quality of life, and sudden unexpected death (SUDEP) (Leidy et al., 1999; Devisnky 

et al., 1995; Mohanraj et al. 2006; McCagh et al., 2009). In these patients, surgical 

intervention may offer a solution to eliminate or reduce the severity of seizures (Engel, 

1996: 1993; Luders et al., 1992).  
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1.1.3 Epilepsy Surgery 
 

The primary goal of epilepsy surgery is to completely remove the epileptogenic zone 

whilst avoiding permanent neurological deficits (Binnie & Polkey, 2000; Rosenow & 

Luders, 2001). This is achieved by accurately localising the epileptogenic zone and 

identifying nearby eloquent cortex (Knake et al., 2006). It has been reported that most 

epilepsy centres achieve a seizure free outcome in 70–90% of patients (Engel, 1993; 

Engel, 1996; McIntosh et al., 2001, Schmidt and Stavem, 2009; Engel et al., 2012). 

In a randomised control study, Wiebe et al., (2001) demonstrated that 64% of patients 

were free of disabling seizures at 12 months, relative to 8% who were assigned to 

further medical treatment. These figures demonstrate the utility of surgical 

intervention and how a favourable outcome can be achieved in a large proportion of 

patients.  

 

Despite the benefits that can be gained from early surgical intervention, surgical 

treatment for epilepsy is often delayed or underutilised (Engel et al., 2003; 2012; 

2013). The growing body of evidence supporting surgical intervention has aimed to 

increase efforts in providing earlier access to epilepsy surgery (Ryvlin, et al., 2014). 

This is reflected in a recent NHS England contract aimed at facilitating more surgeries 

per annum in conjunction with the Children’s Epilepsy Surgery Service (NHS England, 

2013). This increase in surgery demand means that identifying suitable candidates 

for surgery is of ever-growing importance.   

 
Candidate selection for neurosurgery is often regarded as a two-step procedure 

involving the identification of drug resistant patients who experience disabling 

seizures and to secondly assess whether the risk to benefit ratio of surgery is 

acceptable (Ryvlin & Rheims, 2008). A key criterion for determining surgical suitability 

is whether the epileptogenic zone can be accurately localised during the pre-surgical 

evaluation phase. This is not always straightforward and multiple assessments are 

required to develop a precise hypothesis regarding its location. Therefore, the further 

refinement of pre-surgical evaluation techniques is continuously warranted to 

accurately localise the epileptogenic zone and to enable more patients to be selected 

for surgery.  
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1.2 Pre-surgical Evaluation 
 
This section will outline the common pre-surgical assessments used and outline the 

added value of MEG in this process. 

 

 

 

Inpatient Admission 
x MRI Scan 
x Video-EEG telemetry 
x Neuropsychiatry assessment 
x Neuropsychology/developmental  

assessment 
x ±Physiotherapy/Occupational Therapy  
x ±Ophthalmology 
x ±PET Scan 
x ±Genetic Testing 
 

Outpatient Appointments 
x MRI Scan 
x Prolonged EEG 
x Neuropsychiatry assessment 
x Neuropsychology/developmental  

assessment 
x ±Physiotherapy/Occupational Therapy  
x ±Ophthalmology 
x ±PET Scan 
x ±Genetic Testing 
 

Epilepsy Surgery MDT Meeting 

Clinical review of all results and 
investigations 

Epilepsy Surgery Clinic 
Appointment with 
Neurosurgeon 

Epilepsy New Patient Clinic 
appointment with Neurologist 

Surgery possible Surgery not possible Further Investigations 
required 

Appointment with 
Neurologist E.g. MEG, SPECT 

 

Re-discussion after investigations 

Invasive Monitoring 

Surgery 

If Required 

Figure 1.1 Children’s Epilepsy Surgery Service patient pathway (NHS England, 2013). 
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1.2.1 Non-invasive Testing  
 

There is currently no single measure or imaging modality that facilitates the 

identification of the epileptogenic zone in all patients, therefore a combination of 

methods is often required. These methods enable clinicians to not only determine the 

location of the epileptogenic zone, but to establish the distribution of epileptogenic 

tissue, i.e. whether epileptic discharges spread to epileptogenic cortex or tissue that 

would otherwise be considered normal (Rosenow and Luders, 2001). These 

evaluations often involve reviewing the patient’s seizure history, neurophysiological, 

neuropsychological and neuroimaging assessments (Jayakar, 1999; Rosenow & 

Luders, 2001; Diehl et al., 2003; Dorfer et al., 2015). The following subsections will 

briefly describe each of these assessments and their contribution to the presurgical 

assessment of patients. 

 

1.2.2 Seizure history and semiology 
 

A comprehensive description of the patient’s seizures is often acquired through 

conducting detailed interviews with the patient and their relatives (Ryvlin & Rheims, 

2008). For example, if a patient reports unilateral somatosensory auras (e.g. “tingling” 

sensations), the contralateral primary sensory cortex is often revealed as the ictal 

symptomatogenic zone (Tufenkijan & Luders et al., 2012). In patients that report more 

distributed somatosensations, the seizure onset zone is likely to be located to the 

supplementary sensory motor area and/or the second somatosensory area (Pugnaghi 

et al., 2011). Seizure semiology is also assessed by reviewing video recordings of the 

seizure and linking the overt symptoms to areas in the brain (Tufenkijan & Luders et 

al., 2012). For example, if the recorded seizure indicates lateralised and prolonged 

febrile seizures, then the seizure onset zone is likely to be located in the temporal 

lobe contralateral to the affected side (Tellez-Zenteno et al., 2005; Tonini et al., 2004).  

 

The use of seizure semiology to determine the epileptogenic zone is not always 

straight forward and conflicting symptoms can occur in a single seizure and inter-rater 

agreement can be variable (Tufenkijan & Luders et al., 2012). Therefore, the 

information gained from this assessment needs to be evaluated in the context of the 

other presurgical assessments described below.  

 

 



 20 

1.2.3 Neuropsychological Assessments 
 

Neuropsychological testing is an essential component of the candidate selection 

procedure (Rausch and Babb, 1993; Trenerry et al., 1993) and has shown to assist 

in lateralising the seizure onset zone (Williamson et al., 1993; Sayuthi et al., 2009). 

Furthermore, neuropsychological dysfunctions can be associated to specific seizure 

onset zones (Gotman et al., 1991; Wilson et al., 2015). For example, verbal memory 

impairments are often associated with left temporal lobe epilepsy (TLE) (Gotman et 

al., 1991). Alternatively, more wide spread neuropsychological deficits may be a 

marker of generalised epilepsy, suggesting a potentially poor outcome if a focal 

resection is pursued (Anhoury et al., 2000). With the advent of more sophisticated 

techniques (e.g. neuroimaging), neuropsychological testing is primarily used to 

provide further concordance to these measures and prognostic information regarding 

postsurgical neuropsychological deficits (Rosenow & Luders, 2001).  

 

1.2.4 Neuroimaging assessments 
 

The primary role of non-invasive imaging, such as magnetic resonance imaging (MRI) 

and x ray computed tomography (CT), is to help identify structural abnormalities that 

are likely to be responsible for the seizure disorder (Duncan et al., 1997; Carne et al., 

2004; Knake et al., 2005). CT imaging permits the detection of large lesions, including 

tumours and infarcts, whereas MRI is able to also detect subtle malformations such 

as hippocampal sclerosis, focal cortical dysplasia, cavernomas and small tumours 

(Requena et al., 1991; Duncan, 1997; Bronen et al., 1997; De Camargo & Koroshetz, 

2005). In the majority of cases MRI has replaced CT, however CT is still useful in the 

acute setting or when there are contraindications to MRI (e.g. pacemaker, cochlear 

implants, implanted iEEG electrodes) (Kuzniecky, 2005).  

 

Despite the superior sensitivity of MRI in detecting both major and subtle 

abnormalities (Sperling et al., 1986; Cross et al., 1993), not all MRI assessments 

reveal abnormal findings (Duncan et al., 1997). Approximately, 30% of patients with 

drug resistant temporal lobe epilepsy have nonlesional MRI results (Cascino et al., 

1991; Muhlofer et al., 2007). Berg et al., (2003) reported that 130 out 491 patients 

with MRI information showed no detectable abnormalities with a further 28 patients 

producing equivocal findings. More recent advances in MRI techniques, such as 

magnetic resonance spectroscopy (MRS) and ultra high field MRI, may enable the 
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detection of abnormalities in patients that were previously considered MRI negative 

(Mouthaan et al., 2016; De Ciantis et al., 2016; van der Kolk et al., 2013).  

Other imaging techniques, including positron emission tomography (PET) and single-

photon emission computed tomography (SPECT), have also been shown to 

complement MRI and may assist in determining the epileptogenicity of a lesion (Son 

et al., 1999; Hwang et al., 2001; Hong et al., 2002; Carne et al., 2004). PET imaging 

indicates the irritative zone by showing regional reductions in the uptake of glucose 

(hypometabolism) and significant increases during ictal activity (Henry, 1999). SPECT 

is particularly useful for localising seizure activity, as it is able to capture clinically 

overt seizures regardless of seizure-related movements (Knowlton et al., 2004; Ryvlin 

& Rheims, 2008). Typically, ictal SPECT shows a focal area of hyperperfusion relating 

to the ictal discharge (Kaiboriboon et al., 2005; Kilpatrick et al., 1997; Shin et al., 

2002).  

Being able to identify structural abnormalities is a key part of the presurgical 

evaluation of drug resistant epilepsy patients. However, not all lesions are 

epileptogenic and some radiographic lesions may be unrelated to seizure generation. 

For this reason, even when a radiographic lesion is identified, other methods are 

required to confirm whether this is the underlying cause of the patient’s seizures and 

to establish the extent of the epileptogenic cortex (Rosenow & Luders, 2001). 

Figure 1.2. FLAIR MRI showing a focal cortical dysplasia of Taylor-s balloon cell 
type. The blue arrow depicts the hypoerintense subcortical aspect of the lesion. 
Taken from Urbach et al. (2002). 
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1.2.5 Neurophysiological assessments 

Another measure that is used to confirm whether a lesion is epileptogenic is EEG 

(Rosenow & Luders, 2001). EEG plays a key role in the diagnosis of epilepsy and can 

help to localise the epileptogenic zone (Engel, 1984; Noachtar & Rémi 2009) by 

providing a prolonged measure of interictal and ictal activity (Jobst et al., 2001; 

Pataraia et al., 2004). It can be argued that scalp EEG may be limited to being a 

confirmatory technique when localising the epileptogenic zone as its spatial sensitivity 

is limited by the spatial sampling used (16-21 electrodes). This confound is coupled 

with the field spread of currents as electrical signals pass through multiple layers of 

head tissue (Rosenow & Luders, 2001). 

The use of dense array EEG (D-EEG) and electrical source imaging (ESI) has recently 

shown to be promising when attempting to counter the limitations of conventional 

EEG. The use of up to 256 electrodes in D-EEG increases spatial coverage whilst 

reducing inter-electrode distance to improve the spatial resolution of the data (Lantz 

et al., 2003; Holmes et al., 2008). Another advancement in ESI is the improved 

resolution of EEG forward models that take into account multiple types of head tissue 

and anisotropic conductivity profiles (Grech et al., 2008; Gramfort et al., 2010). The 

ability to construct more realistic head models is crucial to computing an accurate 

leadfield matrix to facilitate an accurate source estimate (Birot et al., 2014). There is 

still a limited amount of research clinically validating D-EEG and ESI, however recent 

studies suggest that D-EEG may provide useful information regarding the 

epileptogenic zone, particularly when the focus is deep (Holmes et al., 2008; Holmes 

et al., 2010; Yamazaki et al., 2012).  

1.2.6 Invasive Monitoring 

Appropriate candidates for invasive testing are patients with conflicting neuroimaging 

(MRI, SPECT, PET) and EEG findings (Sperling, 1997; Siegel, 2000). Invasive 

monitoring or iEEG involves the use of subdural strips, depth electrodes, and subdural 

grids (Dewar et al., 1996; Engel, 1996). Invasive monitoring is used in 25-40% of 

cases in large epilepsy centres (Faught et al., 2008) and is considered the gold 

standard for precisely localising the epileptogenic zone (Hader et al., 2004; Blount et 

al., 2008; Gompel et al., 2008). The percentage of patients that benefit from iEEG 

allowing them to be selected for surgery has shown to range from 75-90% 
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(Brekelmans et al., 1998; Schiller et al., 1998; Eisenschenk et al., 2001; Lee et al., 

2003; Pondal-Sordo et al., 2007).  

An important criterion to qualify for iEEG is that there is some form of hypothesis 

regarding the area to sample from (Siegel et al., 2000; Ryvlin and Rheims, 2008). 

This is crucial as electrode coverage can be limited to several cm3 (Spencer et al., 

1993; Seeck & Spinelli 2004). Given the costs involved and additional risks placed 

upon the patient, it is important to ensure that the implanted electrodes yield useful 

information to precisely determine the epileptogenic zone (Hamer et al., 2002; Stefan 

et al., 2011). 

In cases where MRI and EEG findings are conflicting or inconclusive, MEG has shown 

to be useful in guiding the implantation of electrodes and determining whether the 

epilepsy if focal or if there are multiple seizure onset zones (Rodionov et al., 2013; 

Agirre-Arrizubieta et al., 2014; Nowell et al., 2015). Furthermore, it has been 

demonstrated that in some cases the use of MEG may reduce the need for invasive 

monitoring (Knake et al., 2006; Knowlton et al., 2006). The next section will provide 

an overview of the literature outlining the role of MEG as an additional presurgical 

evaluation tool.    

1.3 Clinical MEG 

MEG is a non-invasive technique that measures the weak magnetic fields produced 

by neurons providing a sub-millisecond measurement of neural activity (Hämäläinen 

et al., 1993) (See Chapter 2 for more detail). Several studies have shown that MEG 

has superior temporal resolution relative to fMRI (Dale et al., 2000; Zotev et al, 2008), 

as it provides a direct measurement of intracellular neuronal ionic current flow 

(Hämäläinen et al., 1993). This is in contrast to the blood oxygen dependent level 

(BOLD) signal measured by fMRI which can take several seconds to develop and 

decay (Bandettini et al., 1993). Furthermore, the spatial resolution of MEG is often 

regarded superior to EEG as magnetic fields are relatively undistorted as they pass 

through the cranium (Ebersole and Ebersole, 2010). This means that less complex 

forward models are required for source localisation in MEG (Muthukumaraswamy, 

2014). Ultimately, MEG provides a good method for investigating the spatiotemporal 

dynamics of the brain and is therefore well suited to studying conditions such as 

epilepsy (Hämäläinen et al., 1993). 
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A key role of presurgical MEG is to help form hypotheses regarding the location of the 

epileptogenic zone in patients whereby MRI or EEG has produced inconclusive or 

conflicting findings (Paulini et al., 2007; Stefan et al., 2003; Wilenius et al, 2013). 

Secondly, in a similar fashion to EEG, MEG can be used as a confirmatory technique 

to establish whether a radiographic lesion is epileptogenic (Cohen-Gadol et al., 2004; 

Paulini et al., 2007). Importantly, the additional information acquired from MEG may 

increase the number of patients eligible for surgery and allow iEEG to be avoided 

where possible (Stefan et al., 2011).  

The above points provide a good rationale for using MEG in clinical practice, however 

it has been reported that some clinicians still question the value of MEG and are 

sceptical of its use in clinic (Kharkar & Knowlton, 2015). The following section will 

provide an overview highlighting the additional value that clinical MEG can provide in 

an attempt to overcome this criticism. 

1.3.1 MEG and Epilepsy 

Numerous studies have shown that MEG can localise epileptiform discharges that 

coincide with ictal activity recorded by iEEG (Sutherling et al., 1988; Stefan et al., 

1992; Knowlton et al., 1997; Mamelak et al., 2002; Lamusuo et al., 1999). Studies 

have also shown concordance between MEG localisations and subsequently 

resected areas leading to seizure free outcomes (Bast et al., 2004; Fujiwara et al., 

2012; Genow et al., 2004; Wilenius et al., 2013). In a prospective blinded study, 

Sutherling et al., (2008) reported that MEG provided non-redundant information in 

33% of patients (n=69), which led to 13% additional iEEG electrode coverage and 

changes that influenced the surgical decision in 20% of cases. This information 

provided by MEG was key, as the information leading to these outcomes were not 

available through other techniques (e.g video EEG, MRI, PET, and SPECT).  

As previously mentioned, the optimal placement of intracranial electrodes is crucial 

with some studies reporting that 49% of ictal onsets occur in regions not covered by 

iEEG electrodes (Widdess-Walsh, 2007). MEG has shown to be useful in guiding the 

placement of intracranial electrodes to ensure successful coverage (Knowlton et al, 

2006; Sutherling et al., 2008; Agirre-Arrizubieta et al., 2014). This is evident in cases 

whereby the initial iEEG electrode placement did not capture ictal activity, but 

secondary MEG guided iEEG placement resulted in the identification of the seizure 
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onset zone (Sutherling et al., 2008). A more recent study demonstrated how MEG 

can provide unique information to help guide intracranial electrode placement in 

patients whereby other pre-surgical assessments were unable to provide a clear 

hypothesis regarding the implantation site (Agirre-Arrizubieta, et al. 2014). 

When considering the added value of MEG relative to EEG, findings have shown that 

the signal to noise ratio (SNR) is higher in the frontal lobe, facilitating greater spike 

detection (De Jongh et al., 2005; Ossenblok et al., 2007; Iwasaki et al., 2005; 

Kakisaka et al., 2012). Several studies have also demonstrated that MEG is more 

consistently concordant with iEEG findings (Mikuni et al, 1997; Oishi et al., 2002; 

Sutherling et al., 1988). This increased sensitivity in MEG compared to EEG may be 

explained by the amount of synchronised cortex reportedly required to produce an 

observable signal (3-4cm2 versus 6-10cm2, respectively) (Mikuni, et al., 1997, Tao et 

al., 2005). Furthermore, in patients who have previously undergone a craniotomy 

(inducing further skull inhomogeneities), MEG has been used successfully for spike 

localisation (Lee et al., 2010; Mohamed et al., 2007; Yoshinaga et al., 2008). 

Figure 1.3. Left: A patient with a normal MRI and MEG dipole cluster in the right 
lateral temporal cortex Right: Neurofilament staining of resected tissue from the 
same patient indicating cortical dysplasia. The removal of this tissue was based 
on the MEG localisations that led to iEEG implantation confirming the location. 
The patient was seizure free post-surgery. Taken from Knowlton and Shih 
(2004). 
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MRI-guided MEG has also shown to be useful in revealing epileptogenic 

abnormalities by guiding the review of MRI images in cases that were initially declared 

as being nonlesional (Heers, 2012). For example, Knowlton and Shih (2004) 

demonstrate how MEG dipole analysis can localise small areas of cortical dysplasia 

(Figure 1.3). In conditions such as tuberous sclerosis complex, MEG can also be 

useful in establishing the epileptogenicity of cortical tubers and identifying the most 

epileptogenic tuber (Evans et al., 2012; Wu et al., 2006). 

1.3.2 Interictal MEG 

Based on the short time window to conduct MEG recordings (45-60 minutes) and 

movement related artefacts, ictal events are rarely captured in MEG (Iwasaki et al., 

2005). It is argued that the neural assemblies responsible for generating interictal 

spikes are not necessarily identical to the neural assemblies responsible for 

generating seizures (Jensen and Yaari, 1988; Engel, 1997). Therefore, MEG largely 

relies on localising irritative zones to help form hypotheses regarding the location of 

the epileptogenic zone. 

Interictal spikes are often expressed by high-amplitude (>50 mV) synchronous events 

that last <250ms followed by a slow wave lasting several hundreds of milliseconds1 

(de Curtis & Avanzini, 2001; Staley & Dudek, 2006; Walczac and Jayakar, 1997) (see 

figure 4). The neural mechanism thought to support these paroxysms is the 

synchronous depolarisation of cell membranes belonging to populations of 

hyperexcitable neurons (de Curtis & Avanzini, 2001).  

1 There is not a formal definition of what constitutes a spike in MEG (Nowak et al. 2009). 



27 

Despite the added value of clinical MEG, the localisation of epileptiform activity with 

the current standard analyses (e.g. Equivalent Current Dipole fitting) are not always 

successful (Nissen et al., 2016). This may be due to an absence of clear interictal 

spikes during the recording period or due to insensitivities of the analysis methods. 

Therefore, there is a need to test alternative analysis approaches and develop novel 

techniques that may assist in localising epileptiform activity. This forms one of the 

objectives of this thesis with the aim of improving the sensitivity of clinical MEG 

(Chapters 5-7). The next section will outline the case for mapping eloquent cortex in 

epilepsy patients prior to surgergy and the challenges faced. This forms Chapters 3 

& 4 of this thesis. 

1.3.3 Functional Mapping in MEG 

Patients being evaluated for surgery require eloquent cortex to be identified before 

the resection of epileptogenic tissue due to the risk of paralysis and possible 

disruptions to integral sensory areas (Rosenow & Luders, 2001). In clinical MEG, 

mapping of the primary somatosensory cortex is the most established method with 

Figure 1.4. 9 seconds of MEG data (right temporal sensors) containing interictal 
spikes. The topographic map represents the time point correlating to the peak of 
the interictal spike contained within the shaded blue box.  
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studies demonstrating its robust and accurate localisation (Gallen et al., 1993; Gallen 

et al., 1994; Roberts et al., 1995). The precise localisation of the motor cortex and 

somatosensory cortex is commonly required for frontal lobe epilepsy and fronto-

parietal lesions (Witton et al., 2014). However, the most common type of drug 

resistant neocortical epilepsy is TLE (Zemskaya, 1998; Semah et al., 1998; Engel et 

al., 1998). Therefore, in this population, the localisation of language areas is critical. 

This is usually determined by establishing which hemisphere is dominant for language 

processing and has typically involved the use of invasive methods to achieve this.  

1.3.4 Language Lateralisation 

Historically, the method used to determine language lateralisation is the intracarotid 

administration of sodium amobarbital (WADA; Wada & Rasmussen, 1960).  This 

technique works by assessing whether language deficits occur in the hemisphere 

sedated by the drug. A limiting factor of this procedure is that it can only identify the 

language dominant hemisphere and disregards bilateral language representation and 

the underlying neural substrates involved (Fisher et al., 2008). To gain more precise 

information about language functioning, electrocortical stimulation mapping (ESM) 

can be used to assess changes in language performance (Penfield & Rasmussen, 

1950). Despite being the gold standard for language localisation, patient discomfort 

may reduce the efficiency of ESM and intra-operative mapping is limited to electrode 

coverage (Hamberger & Cole, 2011). Therefore, it is critical to develop non-invasive 

methods that samples the whole cortex to reduce the need for invasive methods 

where possible. 

Non-invasive alternatives, including fMRI and MEG, have been used to identify 

language critical areas (Swanson et al. 2007; Salmelin et al., 2007). Typically, letter 

fluency and verb generation tasks have been used as measures of language 

lateralisation (Singh et al., 2002; Fisher et al., 2008).  The overlapping nature of 

language processing lends itself well to MEG, allowing the temporal separation of 

multiple components with relatively accurate source localisation (Salmelin, 2007). 

Several studies have validated MEG localisations of language with WADA outcomes 

(Papanicolaou et al., 2004; Hirata et., 2004; Hirata et al., 2010) and ESM (Salmelin, 

2007). 

At the Aston Wellcome Trust Laboratory for MEG studies, language areas are often 

identified using a verb generation task. The original publication outlining this task 
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demonstrated beta desynchronisations in the dominant language hemisphere which 

was confirmed using WADA in a small group of patients (Fisher et al., 2008). This 

finding demonstrated a robust lateralised response and indicated a quantitative 

laterality measurement of the source data was not warranted. This study was 

conducted using CTF data from the previous MEG system at Aston and analysed 

using the CTF SAM software tools. More recently, the Aston MEG laboratory has 

acquired an Elekta Neuromag Triux system (see Chapter 2 for description), which has 

presented several issues in regards to source analysis, making these original results 

hard to replicate due to the Elekta beamformer software leading to erroneous 

localisations.  

1.3.5 Functional Mapping using Elekta data 

Until recently, the Aston MEG laboratory relied on the Elekta Beamformer software, 

which works well under some conditions (e.g single state for epilepsy 

protocols/resting state) but unpublished findings have shown that the dual-state 

beamformer (i.e. comparing the power estimate of two brain states) often leads to 

inaccurate deep localisations.  

The requirement of a source analysis pipeline that allows the investigation of ongoing 

oscillations is critical for cognitive paradigms such as the verb generation task. This 

has led to the exploration of alternative software packages, including Brainstorm 

(Tadel et al., 2011), MNE python (Gramfort et al., 2013) and SPM (Litvak et al., 2011), 

with little progress in regards of formalising a beamformer based pipeline. In this 

thesis, a Fieldtrip (Oostenveld et al., 2011) beamformer pipeline was outlined and 

tested (Chapter 3), and subsequently applied to language data in chapter 4.  

Figure 1.5. An example of a white matter localisation in response to stimulation of 
the median nerve. Source analysis was conducted using the Elekta Neuromag 
dual state beamformer.  
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1.4 Aims 

To reiterate the aims stated at the beginning of this chapter, this thesis consists of two 

distinct, yet related themes: (1) Refining techniques to localise eloquent cortex 

responsible for language processing, and (2) developing and validating alternative 

approaches for localising epileptiform activity. Due to the imperative nature of 

localising both eloquent and epileptogenic tissue, this thesis aims to bring these two 

themes together to provide further insights into the use of MEG for the presurgical 

evaluation of epilepsy patients.  

1.5 Chapter Outline 

Chapter 2 will outline specific details about MEG and the methods that are referred to 

and used in this thesis. Chapters 3 & 4 will focus on the first theme of the thesis. 

Specifically, chapter 3 aims to develop an alternative source analysis pipeline for 

Elekta data that can be used to facilitate the localisation of eloquent cortex in epilepsy 

patients. This will also test some of the parameters specific to Elekta data (e.g. 

Maxfilter, sensor selection). Chapter 4 will then apply this pipeline to verb generation 

data and introduce a novel MEG language task with the aim of establishing the 

language dominant hemisphere. Conclusions will be drawn based on the analysis 

pipeline and paradigms used.  

Chapters 5, 6 & 7 will then focus on the second theme of this thesis. Chapter 5 aims 

to evaluate the kurtosis beamformer, an alternative technique for localising interictal 

spikes. This evaluation is carried out on a cohort of patients that have undergone 

epilepsy surgery and have postsurgical outcome measures. In the interest of the 

MRC-MEG UK partnership goals, and to facilitate more multi-centre clinical studies, 

chapter 6 briefly outlines an open source pipeline to compute the kurtosis beamformer 

and provides an initial validation of this approach. Chapter 7 then involves applying a 

novel technique, rank vector entropy (RVE), to epilepsy resting state data to 

investigate its use in clinical MEG analysis.  

Finally, Chapter 8 aims to bring the two themes together by reviewing the respective 

findings and discussing how they provide further insights into clinical MEG. Final 

discussion points will allude to recent advancements in MEG technology and how this 

may impact the future of clinical MEG. 
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Chapter 2: Magnetoencephalography (MEG) 
Physiological basis, hardware and analysis 

techniques. 
2.1 Introduction 

The purpose of this chapter is to introduce the methods used in this thesis and acts 

as a reference point throughout. This chapter begins with a brief description of MEG 

and the instrumentation used to acquire data in this thesis. It then continues to 

describe the methods used at the ABC for MEG-MRI coregistration and head 

localisation. Following this, the challenges faced in MEG are outlined and discussed 

in the context of the signal we can detect. Finally, different approaches to solving the 

inverse problem are outlined. This includes a brief description of common source 

localisation techniques featured in this thesis, with a more detailed description of 

methods that are implemented in the experimental chapters.  

2.2 MEG Overview 

MEG is a non-invasive technique that measures weak extracranial magnetic fields 

providing sub-millisecond measurements of neuronal activity (Hämäläinen et al., 

1993). MEG has provided insights into the cortical dynamics of a broad range of 

functions including language (Salmelin 2007; Cornelissen et al., 2009), vision (Hall et 

a., 2005; Muthukumaraswamy & Singh, 2009), somatosensory (Worthen et al., 2011) 

and social processing (Wang et al., 2015). MEG has also been used in the clinical 

setting to localise epileptiform activity (Fujiware et al., 2012) and to guide the 

implantation of intracranial electrodes (Agirre-Arrizubieta et al., 2014).  

A key advantage of MEG over its electrical counterpart, EEG, is that magnetic fields 

are less perturbed by biological tissue (e.g. skull, scalp, cerebrospinal fluid) (Barkley, 

2004). This allows for less complex forward models to be used in the source 

localisation of MEG signals (Muthukumaraswamy, 2014). In this thesis whereby 

paediatric and adult patient data is used, this is important for a number of reasons. 

Firstly, epilepsy patients that have undergone a craniotomy or burr hole surgery 

present with additional skull inhomogeneities causing further distortions to the EEG 

signal (Flemming et al., 2005). Secondly, the computation of head models for children 

with central nervous system pathology (e.g. epilepsy) may also be complicated due 
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to variations in skull thickness and anisotropic tissue (Lew et al., 2013). MEG is not 

immune from the inaccurate modelling of head tissue, however studies have shown 

that this only weakly affects MEG inverse solutions (Hämäläinen and Sarvas, 

1987;1989).   

A practical advantage of MEG relative to EEG is that it allows patients to be assessed 

without the need for skin abrasion or the application of many electrodes. This 

facilitates patient compliance and can reduce the setup time required before a 

measurement can begin (Witton et al., 2014). It can also be argued that MEG is a 

friendlier environment compared to other techniques that require patient cooperation 

for extended periods of time. To further increase patient comfort, the ABC has recently 

installed a new hydraulic MEG chair to optimise the patient’s head and body position. 

This enables further comfort and allows more effective sensor array coverage. This is 

particularly useful for paediatric patients that are referred to the ABC for presurgical 

evaluation.  

2.3 MEG Signal and Instrumentation 

Before discussing topics directly relevant to the methods used in this thesis, a brief 

overview of the MEG signal and hardware is given to establish what is being 

measured and how it is being measured.  

2.3.1 The MEG Signal 

The MEG signal is thought to originate from the apical dendrites of pyramidal neurons 

as a result of postsynaptic potentials (PSPs) (Hämäläinen et al., 1993).  An excitatory 

PSP (EPSP) occurs when an action potential propagates along the axon reaching the 

synaptic terminal leading to an influx of calcium (Ca++) and causing the release of 

the excitatory neurotransmitter glutamate (Glu). The released Glu then diffuses 

through the synaptic cleft and attaches to receptors located on the postsynaptic cell. 

This causes an influx of sodium ions (Na+) into the postsynaptic membrane by 

increasing its permeability to this ion. Once a certain threshold is reached, the cell 

depolarises causing a primary current to travel down the dendrite. A key feature of 

pyramidal neurons is that they are relatively large with dendrites arranged parallel to 

one another and oriented perpendicular to the cortical surface (Ahonen et al., 1993). 

This facilitates current flow that is also perpendicular to the cortical surface producing 

magnetic fields that can be detected extracranially by the MEG sensors (Hämäläinen 
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et al., 1993). Generally, it is assumed that only primary currents are detectable in 

MEG but research has suggested that secondary volume currents in extracellular 

space may also contribute to the signal (Uitert et al., 2003). 

 

Action potentials along the axon are unlikely to contribute to the observable MEG 

signal as they consist of two opposing dipoles producing a quadropular field. This 

field decreases with a distance (1/r3) much faster than a dipolar field (1/r2) 

(Hämäläinen et al., 1993). Another key difference between action potentials and 

PSPs is the temporal summation that occurs due to PSPs lasting for 10ms relative to 

an action potential lasting 1ms. This temporal summation is critical as neuronal 

currents generate very weak magnetic fields (10-13 Tesla) and it is estimated that 

50,000-100,000 synchronous currents are required to generate a measurable MEG 

signal (Okada, 1983). Therefore, the decrease in field propagation coupled with the 

lack of temporal summation in action potentials makes measurable synchronised 

firing unlikely.  

 

   

2.3.2 SQUIDS 
 
The magnetic field generated by the human brain is extremely small, far smaller than 

the earth’s magnetic signal and other physiological signals. Superconducting 

quantum interference devices (SQUIDs) allow the measurement of weak 

neuromagnetic fields (10-13 T) in the presence of strong environmental noise 

(Hämäläinen et al., 1993). SQUIDs are superconducting loops containing Josephson 

junctions that convert magnetic flux into voltage. Superconductivity is achieved by 

immersing the SQUIDs in liquid helium (4.2K). Modern MEG systems often use 

SQUIDs that are approximately 0.1mm in size and therefore require additional pick-

up coils to increase their detection capability. Due to the magnetic field sensitivity of 

the SQUID, these pick-up coils also act as a flux-transforming device before flux is 

transferred to the SQUID.  
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2.3.4 Pickup coils 

In modern MEG systems, such as the systems used in this thesis, there are tree types 

of pickups coils that are used to form the sensor array: (1) Magnetometers, (2) axial 

first-order gradiometers, and (3) planar first-order gradiometers (see Figure 2). 

Magnetometers consist of a single pickup coil and are sensitive to both deep and 

superficial sources but with the limitation of being more sensitive to noise. First-order 

gradiometers have a counter wound compensation coil that measures the gradient of 

the magnetic field to eliminate large homogenous signals (Vrba, 1997). Axial first-

order gradiometers are arranged on top of one another in the vertical plane whereas 

planar gradiometers are arranged on the same horizontal plane.  

2.3.5 Elekta Neuromag System 

The Elekta Neuromag (Elekta Neuromag, Oy) is the current system used at the Aston 

Wellcome Laboratory for MEG studies. This system has a sensor array consisting of 

102 magnetometers and 204 planar gradiometers, and is housed in a magnetically 

shielded room (MSR). The Elekta system largely relies on the vendor provided 

Maxfilter software as a means of interference suppression. Maxfilter applies signal 

space separation (SSS) by resolving the measured data into components arising 

within and external to the sensor array (Taulu & Kajola, 2005). In order to reject 

interfering sources from within the helmet (e.g. dental artefacts), the temporal 

extension of SSS can be applied (tSSS). This involves applying a statistical method 

Figure 2.1. A schematic of pickup coils used in modern MEG systems: (a) 
Magnetometer, (b) Axial first-order gradiometer, and (c) Planar first-order 
gradiometer. Taken from Lee & Kim (2014). 
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to determine whether the compartmented signals are temporally correlated and if so, 

removed from the data (Taula and Simola, 2006). The use of tSSS and its implications 

are discussed further in Chapter 3.  

2.3.6 CTF 275 System 

MEG data used in this thesis was also collected on the previous Aston CTF MEG 

system (MISL, CTF). This system had a sensor array consisting of 275 axial 

gradiometers and was housed in an MSR. Third order noise cancellation was applied 

online to remove interfering magnetic signals from the data. This is achieved by 

calculating the field at each coil in the sensor and in a set of reference channels. The 

fields measured at the reference channels are then subtracted from the MEG sensors 

by multiplying them by a set of data-driven weights. 

2.3.7 Head Movement 

For the Elekta measurements, 5 head position indicator (HPI) coils were attached to 

the participant’s head. Continuous HPI coil measurement was applied during 

acquisition in order to measure head movement across the duration of the scan. 

During HPI monitoring, continuous sinusoidal signals (290-320Hz) are emitted from 

the HPI coils whereby a minimum of 3 coils are required by the software to exceed 

the goodness-of-fit limit.  Head movement is determined and can be compensated for 

by applying the motion correction algorithm in the Maxfilter software. Movement 

compensation is an extension of the signal separation method (SSS). In movement 

compensation, the harmonic amplitudes from the continuous HPI recordings are 

calculated and then the movement of the subject is modelled as movement of the 

sensor array. Signals are then calculated in a virtual array, which are locked to the 

participant’s head. The output of motion correction must be inspected carefully to 

ensure the algorithm has produced a reasonable output. For example, in instances 

whereby the participant has rapidly moved their head, the algorithm is unable to 

compensate for the movement and can introduce a spurious artifact. 

In this thesis, motion correction was applied to the healthy control data to determine 

the amount of head movement but only temporal SSS (tSSS) filtered data was used 

for data analysis in Chapter 3 & 4 (the rationale for this is outlined in the chapter). In 

these datasets participants with head movement exceeding 5mm were not further 

analysed. Clinical data used in Chapter 5 from the VU Medical Center (Amsterdam, 

Netherlands) were not motion corrected to stay in concordance with their clinical 
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preprocessing protocol. However, clinical data in Chapter 6 & 7 were motion corrected 

to stay in line with the ABC clinical protocols.  

For the CTF data included in chapter 6 & 7, head localisation was performed in a 

similar manner by attaching three coils to the patient’s head. Head localisation was 

monitored continuously throughout the recording and a warning message appeared 

if movement exceeded 5mm. Motion correction software is not available in the CTF 

platform therefore these measurements were not further analysed if movement 

exceeded 5mm.   

 

2.3.8 Coregistration 
 

At the ABC, MEG coregistration is performed using a T1-weighted structural MRI of 

the participant. In data acquired from both MEG systems, an outline of the scalp and 

the position of three fiducial landmarks (nasion, left- and right-preauricular) are 

digitised using a 3D digitiser (Fastrak, Polhemus, Colchester, VT, USA). The digital 

headshape and landmarks are then aligned with the MRI extracted head surface 

using an iterative least squares surface-matching algorithm (Adjamian et al. 2004). 

For this method to be effective, distinctive landmarks including the nose, eyebrows 

and inion must be captured during head digitisation. In each recording, approximately 

300-400 points are acquired to form the digital head shape. It has been estimated that 

a 4mm error can be incurred during this coregistration procedure (Whelan et al., 

2008).  

 

2.4 Challenges in MEG  
 

2.4.1 Radial Sources 
 
One challenge often discussed in MEG analysis is the issue of radial sources (e.g. 

the apex of a cortical gyrus). MEG mainly measures tangential sources (e.g. sulcal 

walls) that are parallel to the scalp as the resulting magnetic field can be measured 

by the tangentially positioned MEG sensors. This insensitivity to radial sources also 

has implications for the detectability of deep sources, as dipoles closer to the centre 

of the head tend to be radially oriented.  

 

Using a gradiometer array, Hillebrand and Barnes (2002) investigated signal 

detectability and demonstrated that sources within a 15° radial limit were considered 
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invisible. Based on neuroanatomical information, the authors determined that these 

invisible sources comprise of thin strips of cortex (2mm wide) present on the gyri 

crown and only account for 5% of neocortical areas. This suggests that although MEG 

is not sensitive to truly radial sources, this limitation is confined to a small percentage 

of the neocortex when using a single sphere forward model. However, more recent 

research has argued that these invisible sources are partially mediated by the use of 

a single-spheres forward model and that there are no truly radial sources (to all 

sensors) when using a multi-spheres forward model (Johnson et al., 2011). 

Therefore, the use of a multi-spheres forward model may assist in overcoming the 

challenge of localising radial sources (see section 2.5.1 for further information on 

forward modelling).  

2.4.2 Deep Sources 

Another important conclusion of the Hillebrand & Barnes (2002) study was that source 

depth, not orientation, was the main factor that detrimentally affected MEG sensitivity. 

This can be explained by Biot and Savart’s law that states a dipolar magnetic field 

falls off to the square of the distance from the current source (1/r2). This conclusion 

is concordant with Johnson et al. (2011) who reported that deeper sources were less 

accurately reconstructed when oriented radially. Therefore, careful consideration 

must be taken when attempting to localise deep structures and this may affect the 

sources of interest in this thesis (e.g. in cases of mesial temporal lobe epilepsy).  

2.4.3 Spatial Resolution 

Despite the spatial resolution of MEG typically being superior to that of EEG (Barkley 

et al., 2003), it is well known that fMRI offers a higher spatial resolution allowing the 

accurate mapping of anatomical areas (Belliveau et al., 1991; Kwong et al., 1992; 

Stam et al., 2007). This advantage however is confounded by the indirect nature and 

slow response latency of the heamodynamic response (Liu et al., 2006). Therefore, 

the rationale for using MEG is that it can measure rapid neurophysiological changes 

(Liu et al., 2006) providing a relatively good spatiotemporal assessment of the 

patient’s ongoing neural activity. It has been reported that under favourable 

circumstances, MEG can localise sources with a 2-3mm accuracy (Hämäläinen et al., 

1993). However, this is dependent on a number of factors including noise in the 

recording, source strength and the sensor configuration used (Hari et al., 1998).  
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2.5 Source localisation 
 
With the aforementioned challenges in mind, a common goal faced in MEG is the 

estimation of neuronal sources that underlie the MEG signal. Source estimation is not 

straightforward and has resulted in different MEG laboratories adopting different 

methods. This section will discuss the forward and inverse problem before describing 

commonly used source inversion methods that are referred to throughout this thesis. 

 

2.5.1 The Forward Problem 
 

The forward problem is a mathematically well-posed problem and states that given a 

known source in the brain we can compute the electromagnetic distribution observed 

outside the head. This is based on the Biot-Savart Law that dictates the magnetic 

field generated by an electrical current (Mosher et al., 1997; Mosher et al., 1999).  To 

solve the forward problem, two approximations are required; the current dipole and 

volume conductor approximation. A neuronal source is typically modelled as a current 

dipole (Okada, 1982) and can be considered as a layer of current dipoles generated 

by a large group of dendritic currents.  

 

In MEG it is sufficient to use a single sphere as a volume conductor model unlike 

EEG whereby the conductivity of different head tissue needs to be modelled more 

precisely (e.g. using three-shell models based on the cranial volume, skull and scalp: 

Hämäläinen and Saravas, 1989). Sphere models can be dissected into three main 

categories: single sphere, locally optimal sphere and local sphere models (Huang et 

al., 1999).  

 

In clinical MEG the ACMEGS guidelines advocate the use of a single sphere model 

(Bagic et al., 2011). However, there may be limitations when using a single sphere if 

the source is unknown or distributed. This may be a result of a sub-optimal sphere fit 

due to error incurred based on the geometry of the head.  For example, Stenroos et 

al. (2014) suggested that with a single sphere model, areas close to the central sulcus 

are likely to be represented well by the model but anterior frontal and posterior 

occipital regions maybe missed.  Therefore, it can be argued that a multi-spheres 

forward model can overcome these limitations to provide a model that takes into 

account all sources in the head. As previously mentioned in section 2.4.1, a multiple-

spheres model may also provide better sensitivity to detect radially oriented sources 

(Johnson et al., 2011).  
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Realistic head modelling may also be used to overcome limitations associated with a 

single sphere approach. Realistic head models include the boundary element model 

(BEM) (Fuchs, et al. 2002) and corrected-sphere model (Nolte, 2003). The corrected 

sphere model introduced by Nolte (2003) operates by fitting a single sphere to the 

cranial volume. This sphere is then corrected by the harmonic function based on the 

geometry of the volume that is derived from the single-shell model.  

In this thesis a number of forward models are used based on the analysis software 

and clinical protocols used and are stated in the relevant method sections.  

2.5.2 Leadfields 

Once an appropriate head model has been computed, a source space grid containing 

all leadfields for each grid point can be calculated. Leadfields refer to the forward 

model at each grid point and consist of three numbers specifying how the current in 

that voxel (x, y and z orientations) produce a magnetic field measured at sensor i. 

There is a set of leadfields for each location in the grid and for each sensor. The 

leadfield for grid point k and sensor i, can be represented as Lik: 

!"#$		!"#&	!"#'	         (2.1) 

Leadfields for the whole head are represented as a matrix L, in order to specify the 

scaling and additions for all sensors around the head.  

2.5.3 The Inverse Problem 

The inverse problem refers to estimating the underlying current distribution from the 

MEG data. Unlike the forward problem, the inverse problem is mathematically ill-

posed as there are an infinite number of source solutions that can explain the 

measured signal (Larson et al., 2014).  An inverse solution is derived from the signals 

measured on the scalp, the sensor configuration, the head and source model used.   

The magnetic field observed around the head is the sum of the fields produced by all 

sources within the brain (with the addition of noise). To illustrate the inverse problem, 

consider this equation: 
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B	=	LQ      (2.2) 

Where B is a matrix containing the magnetic field measured by M sensors across N 

time samples, L is the leadfield matrix and Q is the underlying neuronal source. A 

simple working example of this would be to consider a four channel MEG system with 

2 underlying dipoles generating an observed magnetic field B at time point N: 
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We know B from our sensor data and can calculate L from theory, however we need 

to estimate Q.  It is the estimation of Q that is referred to as the inverse problem.  

Most inverse solutions can be seen as a weighted sum of sensor measurements and 

are mathematically very similar (Hillebrand et al., 2005). Hillebrand et al. (2005) 

suggests that the difference between linear inverse solutions are the assumptions that 

the methods impose on the shape of the source covariance matrix. Figure 2.2 

demonstrates how each of these solutions are different cases of covariance 

component estimation formulated on different assumptions and optimisation rules 

(Nagarajan & Sekihara, 2014).  

Figure 2.2.  Schematics of the source covariance matrices for 4 different 
inversion algorithms: Weighted minimum norm, LORETA, Dynamic SPM and 
SAM. Taken from Hillebrand et al. (2005). 
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2.5.4 Source inversion methods 

Many of the traditional source inversion techniques are suitable for studying the 

evoked response which refers to the short lasting (~100ms) neuronal responses that 

are both time- and phase-locked to the stimulus (see Figure 8). In order to extract the 

evoked response, data is often averaged to increase its signal to noise ratio (SNR) 

(Schimmel, 1967). Non-phase locked activity or induced activity, is lost in this 

averaging process but has been shown to be integral in cognition (Singh et al., 2002; 

Wang et al., 2016). In order to localise induced activity, beamformer-based source 

solutions have been developed to study increases and decreases in power across 

time points of interest (Hillebrand et al., 2005).  

Figure 2.3. The difference between evoked and induced responses (adapted from 
Adjamian, 2014). The traces in the left column represents the evoked response and 
shows phase locking indicated by the grey vertical line. Traces in the right column 
represent induced activity consisting of ongoing oscillations that are not phase 
locked to the stimulus. When averaged (bottom row), only the phase-locked activity 
remains.  
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A brief overview of the inverse solutions that are referred to and used throughout this 

thesis will now be given. 

2.5.4.1 Equivalent Current Dipole Fitting 

Equivalent Current Dipole (ECD) fitting is widely used in localising evoked responses 

(Okada et al., 1984; Meunier et al., 2003) and is advocated by the ACMEGS for 

modeling interictal spikes (Bagic et al., 2011). The ECD algorithm estimates the 

direction, strength and orientation of the dipole in order to minimise the residual 

variance between measured and predicted field patterns using a least squares 

approach (Scherg, 1985).  

In Chapter 5, moving dipoles were implemented to model inerictal spikes iteratively in 

time using the Elekta Neuromag Xfit software (Elekta Neuromag Oy, Helsinki, 

Finland). This included fitting a dipole at each time sample from the ascending limb 

of the spike to the peak of the spike. The quality of the dipole fit was evaluated using 

a goodness-of-fit (GOF) measure:  

4 = 100 ∗ 1 −	 (:;	:)
=	(:;	:)
:>:     (2.4) 

Where b and : are vectors that consist of the measured and modelled magnetic fields, 

respectively.  

Despite performing well when the source is expected to be focal, the assumption that 

a small number of ECDs can explain the measured topography presents problems 

when multiple distributed sources are active. To account for multiple sources, multiple 

Figure 2.4. An interictal spike from a single sensor is marked (left) and modelled 
using the Xfit dipole algorithm (middle). These dipoles can then be represented onto 
the subject’s anatomical MRI (right).  
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dipole models can be implemented.  This requires multiple dipole starting locations 

and a priori knowledge regarding the location and extent of the sources.  

2.5.4.2 Multiple Signal Classification (MUSIC) 

The MUSIC algorithm (Schmidt, 1986) can be used to localise multiple asynchronous 

dipolar sources. This inversion method assumes that the signal and noise 

components within the data are orthogonal and can therefore be partitioned into 

separate subspaces. The MUSIC algorithm uses a single dipole to scan through a 

three-dimensional source grid and projects the forward model for each position 

against a signal subspace generated from the data. Dipole locations are estimated 

based on the source space locations that yield the best projections onto the computed 

signal subspace. The user is then required to manually determine the source by 

searching for multiple local peaks in the head volume (Mosher & Leahy, 1998). This 

manual search is subjective and time consuming however further modifications (e.g. 

recursive-MUSIC) allows for the automatic extraction of sources (Mosher & Leady, 

1999). The sensitivity of classifying signal and noise components into different signal 

subspaces is crucial to the performance of this method and (like most techniques) 

careful consideration to data quality must be given.   

2.5.4.3 Minimum Norm Estimation (MNE) 

MNE is a non-adaptive spatial filtering approach and is used in the localisation of 

evoked responses and their wide-spread activation across time (Hämäläinen & 

Ilmoniemi, 1994). The MNE procedure localises the underlying current distribution by 

applying a distributed source model in which 3-dimensional current dipoles are fixed 

to each location. The inverse solution is determined by varying the amplitude 

parameter of the dipoles to recover a source distribution where the predicted data is 

consistent to the measured data whilst searching for a solution that yields minimal 

overall energy.  

2.5.4.4 Low Resolution Electromagnetic Tomography (LORETA) 

A limitation of MNE is that it is prone to a superficial bias and has been criticised for 

mislocalising deep sources onto the cortical surface (Pascual-Marqui, 2002). 

LORETA takes the current density estimate provided by MNE and standardises it by 

the variance of each estimated dipole source (Pascual-Marqui, 1994). This 

standardisation acts as a depth weighting mechanism to counteract the superficial 
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bias of the minimum norm solution. LORETA has been subjected to various 

modifications including sLORETA which uses a different standardisation method to 

counteract the superficial cortical bias (Pascual-Marqui, 2002). 

2.5.4.5 Beamformers 

Beamformers have been used frequently at the ABC for a number of years and are 

used throughout this thesis. The rationale for using a beamformer is that it can localise 

induced changes in cortical oscillatory power (Pfurtscheller and Lopes da Silva, 1999) 

and provide virtual electrode time series that can be subjected to further analysis 

(Hillebrand and Barnes, 2005). These features are important for the analysis of 

oscillations in relation to cognitive tasks and also when interrogating the source time 

series with metrics to localise epileptiform activity (Chapters 5, 6 & 7).  

A key advantage of the beamformer is that multiple sources can be reconstructed 

independently without requiring a priori knowledge regarding the number and location 

of active sources (Vrba & Robinson, 2001; Hillebrand et al., 2005). Further, the spatial 

filtering properties of the beamformer have shown to attenuate sources of magnetic 

noise (e.g. EMG, ECG, EOG) (Brookes et al., 2005; Litvak et al., 2011), increasing 

the signal to noise ratio (SNR) of the signal (Adjamian et al., 2009). It has been 

demonstrated that physiological interfering signals can be localised to their sources 

using a beamformer (Furlong et al., 2004; Muthukumaraswamy, 2013). 

Figure 2.5. Beamformer results for the active phase of a tongue thrust. The 
EMG resulting from the tongue itself produced significant activation in the 25- 
to 40-Hz bands. This activity is localised external to brain tissue to the tongue 
region positioned under the glass brain. Taken from Furlong et al. (2004). 
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The fundamental difference between beamformers and other source inversion 

methods is that they do not attempt to explain the whole of the measured magnetic 

field, instead they reconstruct the contribution of each brain position to the measured 

field. The main assumption in beamforming is that sources are not temporally 

correlated.  

In order to estimate the location and strength of neuronal activity at each location and 

orientation in source space, ?@A, beamformer weights, B@A
> , must be applied to the 

measured signal over time, B(t): 

 ?@A = 	CD	E>C:;F	G = 	B@A
> G (2.5) 

Where Cj is the source covariance matrix, L is the lead field vector and Cb is the data 

covariance matrix. The data covariance matrix, Cb, contains information from all the 

sensors in the system configuration. The diagonal entries of the matrix contain 

information regarding the spatial distribution of signal and noise power within sensor 

space. The off-diagonal entries represent the spatial correlations between the 

sensors.  The source covariance matrix, Cj is not known and must be estimated from 

the lead field vectors and the data covariance matrix allowing us to calculate weights 

for each individual location: 

CH = (E@AI 	C:;-	EJ);F    (2.6) 

Synthetic aperture magnetometry (SAM) is a scalar beamformer that optimises for 

power by iteratively searching for the dipole orientation that gives the optimal SNR. 

This is achieved by computing the pseudo-Z deviate at each source point (Robinson 

& Vrba, 1999). This pseudo-Z statistic is computed based on the source power P, and 

the noise power, n: 

K = 		L	
. (2.7) 

2.5.4.6 Vector Beamformers 
Vector beamformers operate in a similar way to scalar beamformers however there is 

no fixed orientation based on power optimisation (Van Veen et al., 1997). Therefore, 

the forward model and weights are 3-dimensional for each source position, Q: 
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      3 = 	
3$
3&
3'

(2.8) 

Throughout this thesis scalar beamformers are used based on its extensive use 

previously in the ABC. However, optimising the spatial filter orientation for power may 

not always be the optimal method and the use of a vector beamformer may have 

advantages in accurately characterising signals that have a predominantly radial 

representation (Johnson et al., 2011; Prendergast et al., 2013).  

2.6 Statistical Analysis 

2.6.1 Single Subject Statistics 

Functional mapping of healthy control and patient data included in this thesis (Chapter 

3 and 4) were subjected to statistics implemented in the Fieldtrip software 

(Oostenveld et al. 2011). Non-parametric testing for a number of inverse solutions 

has been implemented in the literature including minimum variance beamformers 

(Singh et al., 2003), MNE (Pantazis et al., 2005) and within the Fieldtrip software 

(Maris & Oostenveld, 2007). In this thesis, cluster-based nonparametric 

randomisation testing as described by Maris & Oostenveld (2007) was applied using 

the Fieldtrip software (Oostenveld et al., 2011). This non-parametric framework allows 

great flexibility with freedom to choose any test statistic (i.e. t-, F-, etc.) and does not 

hold the same assumptions as parametric methods (e.g. normally distributed data).  

Briefly, this method involves randomising the single trial source space data (i.e. 

baseline and active) across two partitions and computing a dependent-samples t 

value between them. Samples that exceed <0.05 are then clustered based on spatial 

adjacency (i.e. grid points). The cluster-level statistics are then calculated by taking 

the sum of the t values within a cluster. The cluster with the maximum statistic is used 

as the test statistic. The data is randomised 1000 times across the two partitions and 

the test statistic is calculated each time. The resulting test statistics form a reference 

distribution. The proportion of random partitions that resulted in a larger test statistic 

than the observed statistic is the Monte Carlo significance probability (i.e. p-value).  
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2.7 Virtual Electrodes Analysis 

Virtual electrode (VE) analysis was conducted by multiplying the MEG signal with the 

spatial filter for a given region of interest to reconstruct the electrical density series at 

that location across time (Singh et al., 2002; Barnes & Hillebrand, 2003).   

2.8 VE Time-Frequency analysis 

In the experimental chapters of this thesis, time-frequency analysis was carried out 

using the Fieldtrip software platform (Oostenveld et al., 2011). Time-frequency 

analysis was implemented using a multitaper time-frequency decomposition based 

on multiplication in the frequency domain. Wavelets are created with 1 wavelet per 

frequency and the length parameter is defined based on the frequency of interest. 

The wavelet is tapered (discrete prolate spheroidal sequences) and the fast-fourier-

transform (FFT) is computed on the raw data and the wavelet. These two are then 

multiplied with each other across each frequency. The inverse Fourier transform is 

then calculated on this output. To ensure a reliable estimate of the frequency power 

within a time window, at least 3 cycles of the frequency of interest was used.  

2.9 Conclusion 

The purpose of this chapter was to introduce the reader to the methods that are 

frequently referred to in this thesis and to provide fundamental background knowledge 

to the signal that is being recorded using MEG.  
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Chapter 3: Functional Brain Mapping 
3.1 Introduction 

The Aston MEG laboratory has typically used Elekta software to perform source 

analysis for the localisation of eloquent cortex. This software is particularly good for 

visualising sensor data, performing averages and modelling dipoles in the Xfit 

program. There is a good level of confidence in the spikiness (Foley et al., 2012; Hall 

et al., 2017, in review) and event-related beamformer, however in unpublished data 

from the ABC, mislocalisations have frequently been reported when using the Elekta 

dual state beamformer. This has included the mislocalisation of various 

somatosensory stimulations (median nerve, single digit), physiological artefacts 

(similar method to Furlong et al., 2004), and expressive language areas (similar 

method to Fisher et al., 2008).  The dual-state beamformer allows the comparison 

between two brain states and is therefore important for functional brain mapping in 

patients. 

This chapter aims to describe and test an alternative source analysis pipeline using 

the Fieldtrip toolbox (Oostenveld et al., 2011). Secondly, the effects of tSSS filtering 

and MEG sensor selection (gradiometers, magnetometers, or combined) on the 

beamformer analysis will be explored. The conclusions drawn in this chapter will 

inform the subsequent analysis in Chapter 4 with the aim of establishing a pipeline 

that can be used for the lateralisation of language in epilepsy patients. This section 

will first discuss issues relating to the analysis of Elekta data (tSSS and combining 

sensors), and will state the specific aims of the study followed by a brief explanation 

of the MEG paradigm used. 

3.1.1 Temporal Signal Source Separation 

Signal Source Separation (SSS) (Taula and Jajola, 2005) divides the measured MEG 

signal into two partitions: signals coming from sources outside of the sensor array and 

signals generated from within the sensor array. Residual signal may remain after 

SSS, which cannot be exclusively modelled into either partition. This leads to 

temporally correlated signals between the two SSS-reconstructed partitions. 

Temporal SSS (tSSS) aims to solve this by removing correlated waveforms that 

appear in both parts of the SSS-reconstructed data by means of orthogonal projection 

(Taula and Simola, 2006). A correlation limit (CL) to quantify the degree of synchrony 
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between the magnetic signals is used to determine which signals should be removed. 

Typically, clinical laboratories have adopted a 0.9 CL (Wang et al., 2013; Hillebrand 

et al., 2013; Nevalainen et al., 2012). The CL of 0.9 is also implemented throughout 

this thesis. 

The rationale for using tSSS is based on the noise reduction properties that it provides 

(see Figure 3.1) and literature suggesting that it is a necessary pre-processing step 

for the beamformer analysis of Elekta data (Hillebrand et al., 2013). Hillebrand et al. 

(2013) demonstrated that tSSS filtering is crucial when attempting to accurately 

localise somatosensory evoked fields (SEFs) and hand movements. The results 

demonstrated that raw Elekta data (no tSSS) can lead to errors larger than 1cm, or 

even complete mislocalisation. The authors state that the noise reduction properties 

of tSSS outweigh the caveat posed by tSSS in that it reduces the degrees-of-freedom 

within the data.  

After applying tSSS using Maxfilter software (Elekta Neuromag, Oy), MEG data is 

typically left with an approximate rank of 68 (i.e. 68 non-zero eigenvalues). In general 

terms, rank deficiency refers to a lack of data to accurately estimate the desired 

model. This may arise in MEG from using too few trials, narrow frequency bands or 

small time windows (Woolrich et al., 2011). In the context of tSSS, rank deficiency 

Raw	sensor	data	

tSSS	-iltered	data	

Figure 3.1. Raw (top) and tSSS filtered (bottom) data of the same participant across 
the same 10 second time window. 
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may occur due to the removal of components within the data, particularly in datasets 

contaminated by large artefacts. This may lead to a lack of sufficient data to accurately 

estimate the beamformer covariance matrix leading to poor source reconstructions 

(Woolrich et al., 2011).  

To integrate the use of rank reduced data, Elekta have developed an SSS-

beamformer that combines both tSSS and beamforming (Vrba et al., 2010). The SSS-

beamformer operates on the time-dependent expansion coefficients of spherical 

harmonics estimated by tSSS. Vrba et al (2010) stated that the SSS-beamformer 

allows for computationally more efficient processing and provides equal and in some 

cases, better spatial resolution relative to conventional beamformers (that operate on 

the full data covariance matrix). Vrba and colleagues demonstrated in simulated data 

that the SSS-beamformer can increase the spatial resolution for deeper sources 

relative to a conventional beamformer. The extent and conditions to which the SSS-

beamformer provides better spatial resolution still requires further testing and does 

not necessarily compensate for rank reduced data. The use of SSS-beamforming 

would benefit from further testing in open source platforms, however the ability to do 

so is challenging as the source code is closed2. Therefore, this chapter is limited to 

investigating the source estimates of tSSS filtered data when using a conventional 

beamformer in Fieldtrip. 

In the Fieldtrip documentation, the only reference to compensating for Maxfilter 

(SSS/tSSS) is by using principal components analysis (PCA) to remove small 

components that are likely to be poorly conditioned to ‘stabilise’ the covariance matrix. 

The documentation suggests using PCA to retain the top 50 components of the data 

(http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demo). 

This approach therefore removes a large number of components from the data 

causing further rank reduction. In this chapter, the use of ‘tSSS-PCA’ will be 

investigated but will use a less aggressive approach by retaining 99% of the variance 

in the covariance matrix, allowing more degrees of freedom to be retained.  

2 Elekta have recently announced that they will open the source code and share with the open 
source community. Initial SSS-Beamformer implementations in SPM are currently being 
developed. 
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3.1.2 Combining Magnetometers and Gradiometers 

The Elekta Neuromag Triux system contains 102 magnetometers and 204 planar 

gradiometers. A question faced when analysing Elekta data is whether to combine 

magnetometers and gradiometers or to select only one sensor type for further 

analysis. The fundamental difference between the two sensor types is that 

magnetometers measure the magnetic field component perpendicular to the surface 

of a single pick-up coil, whereas gradiometers measure the magnetic gradient 

between two counter-wound coils (Mohseni et al., 2012). Magnetometers therefore 

measure the total magnetic flux in Tesla and gradiometers measure the difference in 

flux using Tesla per meter (Henson et al., 2009). The difference in scaling and signal 

to noise ratio (SNR) between these two types of sensors must be considered when 

combining them for a beamformer analysis. This is supposedly solved in the Elekta 

software, however limited testing has been carried out in external software platforms. 

A recent study using Fieldtrip to analyse Elekta data selected gradiometers for source 

analysis but did not explain why only gradiometers were selected and whether 

Maxfilter was used to pre-process the data (Cousijn et al., 2014). The online literature 

supporting the Fieldtrip toolbox suggests that the software is able to solve the scaling 

of the forward solution and that source analysis using combined sensors is 

supported3.  However, no empirical research has yet aimed to measure the 

differences in source localisations when using combined sensors versus 

gradiometers or magnetometers alone. 

3.1.3 Aims 

Based on the issues raised, the aims of this chapter are to; (1) establish a beamformer 

pipeline for Elekta data using Fieldtrip, (2) determine the feasibility of using tSSS 

filtered data in this pipeline (using raw, tSSS, and tSSS-PCA data), and (3) investigate 

the effects of source localisation using different sensor types (gradiometers, 

magnetometers and combined sensors). The differences between the various 

conditions will be summarised and quantified using relevant statistics. These 

3 This was verified by personal communication with Robert Oostenveld (Fieldtrip 
developer). 
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differences include the MNI coordinates of the peak source and corresponding source 

values.  

3.1.4 MEG stimulus 

In order to select an appropriate paradigm to address the research questions of this 

chapter, it is necessary to choose a stimulus that elicits a well characterised response. 

Based on this criterion, a stationary square-wave grating, presented in the lower-left 

quadrant of the visual field was used4. Based on knowledge of the visual system and 

related MEG studies, it can be hypothesised that the stimulus should yield a peak 

gamma response in the contralateral occipital cortex (Adjamian et al., 2004; Hall et 

al., 2005; Muthukumaraswamy & Singh et al., 2008; Muthukumaraswamy & Singh et 

al., 2013). Presenting the stimulus in only one quadrant relative to all four (i.e. foveal 

stimulation) is also useful for testing the effects of tSSS in lower SNR conditions, as 

lower induced gamma responses are reported when using non-foveal stimulation 

(Swettenham et al., 2009). Furthermore, the psychophysical properties of a 

stationary, square-wave grating should yield lower amplitude gamma oscillations 

relative to other types of visual stimuli, such as a moving, annular-grating 

(Muthukumaraswamy & Singh et al., 2013). 

3.1.5 Hypothesis 

It is hypothesised that all methods will produce a peak localisation in the right occipital 

lobe as the visual grating is presented in the lower left quadrant of the visual field. 

Due to the lack of published data that has used tSSS data for source localisation in 

Fieldtrip, it is uncertain how tSSS data will perform. As suggested in previous tSSS 

studies (Hillebrand et al., 2013) it can be argued that the benefits of tSSS (less 

interfering components) outweigh the caveat of reducing the rank of the data. 

Furthermore, the use of PCA post tSSS may enable poorly estimated components to 

be removed and thus improve the source estimate. 

4 This paradigm is the visuomotor task used in the MRC-MEG Partnership normative 
database.  
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3.2 Methods 

3.2.1 Participants 

Data was collected from 18 adult participants (10 female, mean age = 20). All 

participants had normal vision with no reported history of neurological or psychiatric 

conditions.  

3.2.2 MEG task 

A vertical, stationary, maximum contrast, three cycles per degree, square-wave 

grating subtending a 4° angle in both horizontal and vertical planes was presented in 

the lower left quadrant of the visual field for 100 trials. The grating was presented for 

1.5-2 s (jittered) with an inter-stimulus interval (ITI) of 4 or 8s (50 trials for each ITI). 

Participants were instructed to maintain fixation on a red dot presented in the centre 

of the screen and asked to perform a right index finger abduction at the offset of the 

visual grating. In this study only the visual grating component was analysed. The 

visual stimulus was programmed in the Psychophysics toolbox for MATLAB (Brainard 

& Pelli, 1997) and gamma corrected for the presentation monitor used. The stimuli 

were projected using a Panasonic 3-Chip DLPTM projector, with a screen solution of 

1400 x 1050 and 60Hz refresh rate. 

Figure 3.2. Visuomotor task. Participants were instructed to fixate on a centrally 
presented red dot and perform a finger abduction on the grating offset. Only the 
visual grating component of this task was analysed. 
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3.2.3 MEG data collection 

MEG data was recorded in a magnetically shielded room (VacuumSchmelze GmbH, 

Hanua, Germany) using a 306-channel Elekta Neuromag Triux (102 magnetometers 

and 204 planar gradiometers), at a sampling rate of 1000 Hz. Participants were 

recorded in the 68° upright seated position. In the tSSS and tSSS-PCA conditions, 

noise reduction was achieved with the Maxfilter software (Elekta Neuromag Oy, 

version 2.2.10). The temporal extension of signal space (tSSS) was applied using a 

sliding window of 10 seconds and a subspace correlation limit of 0.9. Bad channels 

were identified using Xscan (Elekta Neuromag, Oy) and excluded in all analysis 

conditions. A bipolar EEG channel was used to record electrocardiogram (ECG) and 

electrooculogram (EOG). Prior to data acquisition 5 head localisation coils were 

attached to the participants’ head and 3 fiducial points were digitised using a 

polhemus fast-trak digitizer ((Fastrak, Polhemus, Colchester, VT, USA). Additional 

head points were collected to allow a surface based alignment with the participant’s 

T1-weighted MRI using the method described in Chapter 2. Continuous head position 

indication was used and a head movement threshold of 6mm was implemented (none 

of the datasets in this chapter exceeded this threshold).  

3.2.4 MEG analysis 

MEG data was analysed using the MATLAB toolbox Fieldtrip (Oostenveld et al., 

2011). Data was down-sampled offline to 300Hz and epochs were extracted from -2s 

prestimulus to the grating onset to 2s post-stimulus. Trials containing eye blinks 

during visual grating presentation and large electromyography (EMG) artefacts were 

removed via visual inspection. A single shell head model was used (Nolte et al., 2003) 

and source analysis was computed in MNI standard space using a 5mm source space 

grid. An LCMV beamformer was computed on bandpass-filtered data (35-75Hz) using 

a covariance time window from -1.5s to 1.5s post stimulus. Source power was 

projected through using common beamformer weights computed across the whole 

covariance window and applied separately for the baseline (-1.2 to 0 s) and active 

period (0.3 to 1.5 s). Single subject source statistics were computed on the individual’s 

source reconstructed active and baseline trials using non-parametric permutation 

testing as described in Chapter 2. Cluster-based correction was used to correct for 
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the multiple comparison problem (alpha level = <.01) (Maris & Oostenveld et al., 

2007). 

Virtual electrodes were recomputed on the original sampled data (1kHz) at the 

maximum peak voxel identified by the beamformer analysis (-2s to 2s). Time-

frequency analysis was computed between 10-100Hz with a FFT using 3 Slepian 

multitapers (+/- 8 Hz spectral smoothing) applied to the baseline time window (-2s to 

0s) and active time window (0s to 2s). Time-frequency statistics were computed 

between the two conditions using cluster-based permutation testing (<0.01). 

Figure 3.3. The general analysis pipeline and fieldtrip functions used for source 
analysis in this chapter. The pipeline is split up into 2 sections; the first section 
involves data pre-processing and MRI coregistration in the Elekta software, the 
second section is completed in the Fieldtrip toolbox.   
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3.2.5 Source localisation comparison 

The 9 different analysis conditions included; (1) raw gradiometers, (2) raw 

magnetometers, (3) raw combined sensors, (4) tSSS gradiometers, (5) tSSS 

magnetometers, (6) tSSS combined sensors, (7) tSSS-PCA gradiometers, (8) tSSS-

PCA magnetometers, (9) tSSS-PCA combined sensors. The raw conditions (1,2,3) 

were not subjected to tSSS, the tSSS conditions (4,5,6) were subjected to tSSS 

filtering, and the tSSS-PCA conditions (7,8,9) were subjected to tSSS followed by 

PCA in Fieldtrip to retain 99% of the variability of the data. The PCA process resulted 

in an average of 4 components being removed for each participant (i.e. leaving an 

average of 64 components).  

 3.3 Results 

A peak gamma localisation was found in the right occipital cortex in all participants 

across all conditions, except for one subject in the raw gradiometer (subject 8), raw 

magnetometer (subject 8), tSSS-PCA gradiometer (subject 6), tSSS-magnetometer 

(subject 6), and tSSS-PCA combined (subject 6) condition. Figures 3.4–3.6 show 

plots of the LCMV beamformer gamma band activity (35 – 75Hz, p<0.01 cluster 

corrected) on the right hemisphere for 5 randomly selected participants alongside time 

frequency representations of the peak virtual electrode (p<0.01 cluster corrected) for 

each analysis condition (see Appendix 1 for beamformer and time-frequency plots for 

all participants).  

Figure 3.4 depicts the raw data results, whereby the source plots indicate larger t-

values in the occipital region for the magnetometers and gradiometers conditions 

relative to the combined sensors condition. The time frequency spectra show a typical 

response in the magnetometers and gradiometers, consisting of an initial broadband 

amplitude increase in the gamma frequency band (>40Hz). This is then followed by a 

sustained increase in gamma power across the time window. The raw combined 

sensors do not resemble this typical response and show much lower source values 

in the occipital lobe with diminished gamma power in the time frequency plots. Figure 

3.5 shows the source plots and time frequency spectra for the tSSS filtered data. The 

source values and time frequency spectra are more uniform for the tSSS filtered data, 

showing a typical gamma band response, but also an initial transient onset response 
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followed by an alpha/beta power decrease. This initial power increase in alpha/beta 

is considered a characteristic of the visual evoked response (Muthukumaraswamy et 

al., 2010). Finally, figure 3.6 represents the tSSS-PCA data, showing a similar pattern 

of responses to the tSSS filtered data.
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Figure 3.4. LCMV 35-75Hz beamformer results and corresponding peak virtual electrode time-frequency plots for the 
raw data (10-100Hz). Significant voxels (<0.01) are plotted on the right hemisphere. Significant time-frequency bins 
(<0.01) are identified by the black outline. 
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Figure 3.5. LCMV 35-75Hz beamformer results and corresponding peak virtual electrode time-frequency plots 
for the tSSS filtered data (10-100Hz). Significant voxels (<0.01) are plotted on the right hemisphere. Significant 
time-frequency bins (<0.01) are identified by the black outline.
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Figure 3.6. LCMV 35-75Hz beamformer results and corresponding peak virtual electrode time-frequency plots for the 
tSSS-PCA data (10-100Hz). Significant voxels (<0.01) are plotted on the right hemisphere. Significant time-frequency 
bins (<0.01) are identified by the black outline. 
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3.3.1 Source values 

These findings indicate that the largest source values (t-statistic) at the peak voxel 

were observed in the tSSS-PCA gradiometers and the tSSS-PCA combined condition 

(Table 3.1). To investigate the differences between the analysis conditions, the 

resulting peak source values for each condition were compared using a one-way 

repeated measures ANOVA. Mauchly’s test shows that the assumption of sphericity 

had been violated, !2 (14) = 61.28, p<.001, therefore degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity (ε = .36). The one-way 

repeated measures ANOVA showed that there was a significant effect of the method 

used and the peak source value gained, F(2.86, 48.62) = 12.22, p <.01 (η#$= .42). 

Bonferroni-corrected pairwise comparisons revealed that the raw magnetometer (M 

= 16.28, SD = 1.56), raw gradiometer (M = 16.99, SD = 1.47), tSSS magnetometer 

(M = 16.84, SD = 1.54), tSSS gradiometer (M = 16.72, SD = 1.54) , tSSS-PCA 

magnetometer (M = 16.25, SD = 1.50), tSSS-PCA gradiometer (M = 17.05, SD = 1.55) 

and tSSS-PCA combined (M = 17.06, SD = 1.58) conditions yielded significantly 

higher peak source values (p<0.05) relative to the raw combined sensor condition (M 

= 12.24, SD = 1.30). In summary, the condition yielding the significantly lowest source 

values were the raw combined sensors condition. 
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3.3.2 Spatial location 

Due to non-normal distributed data, non-parametric statistics were used to study the 

differences between the peak source locations in the X, Y and Z directions (MNI 

coordinates). A Freidman test found no significant differences in the X and Z direction 

but did indicate a significant difference between the conditions in the Y direction 

(anterior-posterior),  χ2(8, N=18) = 79.26, p < .01. Post hoc-tests (Wilcoxon signed-

rank test, bonferroni corrected) found that there was a significant difference between 

the raw gradiometer (Mdn = -95), tSSS-magnetometer (Mdn = -100), tSSS-

gradiometer (Mdn = -95), tSSS-combined (Mdn = -95), tSSS-PCA magnetometer 

Figure 3.1. Mean peak source values and mean X, Y and Z MNI coordinates for 
the different analysis conditions: R-M: Raw magnetometers, R-G: Raw 
gradiometers, R-MG: Raw magnetometers and gradiometers (combined), T-M: 
tSSS magnetometers, T-G: tSSS gradiometers, T-MG: tSSS magnetometers 
and gradiometers (combined), P-M: tSSS-PCA magnetometers, P-G: tSSS-
PCA gradiometers, P-MG: tSSS-PCA magnetometers and gradiometers 
(combined).  
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(Mdn = -98), tSSS-PCA gradiometer (Mdn = -95), and tSSS-PCA combined (Mdn = -

95) conditions relative to the raw magnetometer condition (Mdn = -105, p <0.05) and

raw combined condition (Mdn = -105, p<0.05). In summary, there were no differences

between the peak value locations in the X and Z directions, however the raw

magnetometer and the raw combined conditions differed on the Y axis compared to

the other methods.

3.3.4 Grand-averaged Time Frequency Plots 

The grand averaged time frequency plots (Figure 3.7) provide a useful overview of 

the results, showing how the raw combined sensor condition produced a diminished 

gamma response relative to the other conditions. Notably, the raw magnetometer plot 

shows the strongest initial broadband gamma response and the tSSS gradiometers 

show the strongest sustained gamma power increase. In all time frequency plots, the 

initial evoked response is observed in the alpha/beta band and characteristically 

followed by a reduction in power. 

Figure 3.7. Grand-average time frequency plots based on the peak virtual electrode 
time series from 18 participants (10-100Hz). Time frequency plots are normalised 
using a relative baseline [-2 2] and changes are expressed as a ratio.  
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3.3.5 Event Related Fields (ERFs) 
Figure 3.8 shows that the smallest ERFs are found in the tSSS-PCA conditions, with 

the largest responses observed in the tSSS gradiometer condition. The amplitudes of 

the c2 (~100ms) and c3 (~150ms) components of the visual grating onset (Harding et 

al., 1996), were compared to investigate if there was a significant difference between 

the conditions. A Freidman’s test revealed that there were no significant differences 

between conditions for the peak amplitudes of the c3 component, however a statistical 

difference was found for the c2 component, X2(8) = 17.60, p<.05. Post-hoc Wilcoxon 

tests show that this difference was observed between the tSSS gradiometer condition 

and the tSSS-PCA gradiometer condition (Z = -3.38, p<0.05, bonferroni corrected) 

indicating a larger c3 response for the tSSS gradiometer condition.  

Figure 3.8. Grand-averaged ERF plots based on the peak virtual electrode time 
series from 18 participants (shaded area represent the standard error).  
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3.4 Discussion 

The purpose of this chapter was to establish a source analysis pipeline in Fieldtrip to 

accurately identify functional cortex in order to overcome issues relating to the Elekta 

dual-state beamformer. This chapter investigated the peak source localisations and 

their values when using different sensor selections (magnetometers, gradiometers, 

combined), and preprocessing methods (raw/no-tSSS, tSSS, tSSS-PCA). Based on 

previous work (Muthukumaraswamy et al., 2013), it was hypothesised that a peak 

source within the gamma range (>35Hz) would be found in the right occipital lobe in 

response to a stationary, square-wave grating presented in the lower left quadrant of 

the visual field.  

Overall, each analysis condition produced similar localisations (Table 1), with a right 

visual cortex peak found in all participants, except for one participant in the raw 

gradiometer, raw magnetometer, tSSS-PCA gradiometer, tSSS-magnetometer, and 

tSSS-PCA combined condition. The statistical analysis comparing the peak source 

locations revealed that the raw magnetometer and raw combined conditions differed 

significantly in the Y (anterior - posterior) direction relative to the other analysis 

conditions. A second comparison was made based on the peak source value. This 

revealed that the raw combined analysis condition resulted in the lowest peak values 

and was significantly lower than all other analysis conditions except for the tSSS 

combined condition.  

Figure 3.4 indicated that the Fieldtrip LCMV beamformer, or perhaps beamformers in 

general, provide less useful source reconstructions when combined sensors have 

been used without applying tSSS. This is also evident in the Figure 3.4 time-frequency 

plots that show diminished gamma responses relative to the raw magnetometer and 

raw gradiometer conditions. This could be a result of the covariance matrix containing 

cross terms from both sensor types. The Fieldtrip toolbox corrects the scale difference 

between magnetometer and gradiometer signals and their corresponding leadfield 

values, however these sensors are still likely to contain differing noise profiles. The 

tSSS procedure may act to reduce the difference between the noise profile of both 

sensor types allowing the covariance between these sensors to be computed more 

effectively.  
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The visual ERFs (Figure 3.8) computed at the peak source indicated that the tSSS 

conditions produced the largest responses with the smallest standard error. In 

contrast, the tSSS-PCA analysis showed less pronounced ERFs, with diminished 

amplitudes and larger standard errors. However, the only statistical difference found 

was for the c2 component between the tSSS gradiometers and tSSS-PCA 

gradiometers. Despite the tSSS-PCA conditions having similar spatial localisations 

and source values to the majority of the other conditions, the application of PCA after 

tSSS seemed to produce poorer ERFs than using tSSS alone. This could be a result 

of the PCA procedure removing components critical for forming the ERF. This may 

be explained by the transient nature (<300ms) of the ERF resulting in its components 

being ‘smaller’ relative to other components contained within the whole 4 second 

epoch (e.g. the long sustained gamma increase, alpha/beta decrease). The ERF may 

have therefore benefited from the PCA method being applied to shorter epochs of 

data (e.g. -400ms to 400ms).  

 

The perceived rationale for using PCA post tSSS is to ‘stabilise’ the data matrix by 

removing the smallest components (and likely poorly estimated components) to 

prevent unpredictable behaviour when the inverse of the covariance matrix is 

calculated. This approach is stated on the Fieldtrip user documentation and suggests 

retaining the first 50 components, however this explicit rank reduction seems to be 

overzealous. Therefore, in the application of the PCA method in this chapter, a data 

driven approach was taken to retain the number of components that described 99% 

of the variance in the data matrix. The use of PCA may prove to be more useful when 

concatenating multiple datasets that have been separately maxfiltered (e.g. in the 

case of the fiff 2GB file limit causing the file to split) where the low-rank subspace may 

vary for each dataset. After concatenation, it is more likely that the ‘higher’ 

components will represent noise and therefore the removal of these components may 

improve the subsequent source estimate. 

 

As previously mentioned, this chapter aimed to establish whether the Fieldtrip LCMV 

beamformer is fit for purpose and to establish a source analysis pipeline when using 

Elekta data. Despite this chapter not necessarily producing optimal solutions to the 

challenges specific to Elekta data, observations can be drawn regarding the use of 

methods that are currently available in the Fieldtrip toolbox. These observations are 

stated below: 
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1) Analysing raw combined sensors produces lower source values and

localisations that deviate from the other analysis conditions (except the raw

magnetometer condition).

2) The time frequency representations of the raw combined sensors also show a

much more diminished gamma power increase and alpha/beta decrease

relative to the other analysis conditions. This raises scepticism about the use

of raw combined sensors when using the Fieldtrip LCMV beamformer.

3) The tSSS conditions were the only analysis conditions in which all peak

sources were contained in the right occipital lobe as hypothesised.

4) In the grand averaged time-frequency plots, the raw magnetometers were able

to reveal the early broadband gamma increase more clearly relative to the

other analysis conditions.

5) Applying PCA after tSSS produced smaller ERF components with higher inter-

subject variance relative to the other conditions. This raises doubt on whether

the tSSS-PCA method is useful in clinical MEG when the study of ERF

responses forms an important part of the clinical protocol.

6) Beamforming suppresses magnetic artefacts and produces relatively good

source reconstructions despite the raw data containing more noise relative to

the tSSS filtered data.

It is feasible to suggest that based on these observations, tSSS filtering offers useful 

noise reduction in order to gain more accurate spatial localisations. The additional 

use of PCA after tSSS is still undetermined in this context and may remove useful 

components from the data. This leads to the conclusion that using tSSS alone is the 

optimal method out of the analysis methods investigated in this chapter. In regards to 

sensor selection, the tSSS-gradiometers show the largest ERF response and the 

grand-averaged time frequency spectra indicates that this analysis condition shows 

larger gamma power increases than the tSSS-magnetometer and tSSS-combined 

conditions. Therefore, given the current methods available and the comparisons 

included in this chapter, it is recommended that data should be tSSS filtered and 

gradiometers should be selected for source analysis. This selection avoids the issues 

faced when attempting to combine different sensor types, whilst still making use of a 

large number of sensors (204 planar gradiometers). 
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Currently, there is no unanimous agreement within the Elekta user community on how 

to optimally compensate for Maxfilter and combine different sensor types. In attempt 

to address these issues, a beamformer workshop was recently organised by Aston 

involving various Elekta users and open source software developers (e.g. SPM, 

Fieldtrip, MNE). The Aston beamformer workshop is an active project and aims to 

address issues concerning the source analysis of Maxfiltered data and the 

combination of different sensor types. The overarching goal of this project is to provide 

optimal solutions to these problems with the view of developing a more standardised 

source analysis approach within the Elekta user community. These solutions will first 

be implemented in the Fieldtrip toolbox, however code will be distributed and 

implemented in other platforms including SPM and MNE.  

 

One initial suggestion from the Aston beamformer workshop was to zero out the cross 

terms of the covariance matrix, i.e. zero the elements that contained a product of a 

magnetometer and gradiometer channel. This essentially would solve issues relating 

to the calculation of covariance between sensors of different scales and different 

noise profiles, however this approach does not take full advantage of the combined 

information from the sensors. Other sensor fusion methods that have previously been 

suggested involve normalising the leadfields and the sensor data based on their 

power prior to source reconstruction (Henson et al., 2009).  

 

A potential method to ensure the stable estimation of the covariance matrix post-tSSS 

is to apply a regularisation parameter, μ, to amplify the on-diagonal elements of the 

covariance matrix. A limitation of this approach is that by increasing μ, the spatial 

specificity of the beamformer decreases as the weights become less specific due to 

the increase in spatial averaging (Woolrich et al,. 2011).  Furthermore, the amount of 

regularisation to be used is relatively subjective, with the most common method using 

the lowest eigenvalue of the covariance matrix (Robinson and Vrba, 1999). More 

recently, a Bayesian PCA approach for adaptive covariance matrix regularisation was 

proposed by Woolrich et al., (2011) to estimate the dimensionality of the data and 

objectively choose the amount of regularisation required. There has been limited 

evaluations of this method and therefore should be included in future research. 
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A limitation of this study was that the stimulus used is known to have a variable peak 

localisation within the contralateral visual cortex (Swettenham et al., 2009), therefore 

making it difficult to determine the true source location. This could have been 

overcome by using a stimulus with a more known localisation, for example a motor 

task or somatosensory stimulation. The reason for choosing this non-foveal, 

stationary grating was to investigate tSSS and beamforming in a more moderate SNR 

condition (relative to the high SNR often encountered in tactile stimulations).  The 

additional use of phantom data could have also been used to further test the accuracy 

of the beamformer and forms part of ongoing work. 

 

When attempting to construct an analysis pipeline, there are countless pre-processing 

methods that can be applied to the data. In this chapter, tSSS was the primary noise 

reduction method alongside the visual inspection and removal of excessively noisy 

trials. Interestingly, the beamformer performed well in the raw condition. This supports 

previous research that demonstrates the noise filtering properties of the beamformer 

even in the presence of large environmental and physiological noise (Adjamian et al., 

2004; Cheyne et al., 2007).  

 

3.4.1 Conclusion 
 

In conclusion, the rationale for this chapter was to develop an alternative source 

analysis pipeline to the Elekta dual-state beamformer. It was demonstrated that the 

Fieldtrip LCMV beamformer is fit for purpose for localising functional brain areas when 

using tSSS filtered data. More systematic testing is ongoing and the integration of 

solutions from the Aston Beamformer workshop will form future investigations. The 

analysis pipeline outlined here will inform the analysis in the next chapter in order to 

localise language areas using a verb generation and a novel passive language task. 
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Chapter 4: Lateralising Expressive Language 
using MEG 

4.1 Introduction 

Drug resistant epilepsy patients put forward for surgery require eloquent cortex to be 

identified before the resection of tissue to reduce the risk of surgically induced 

neurological deficits. TLE is the most common type of drug resistant epilepsy, 

therefore identifying language critical areas prior to surgery is imperative in these 

patients. This is usually determined by establishing which hemisphere is dominant for 

language processing and is often achieved by using invasive techniques such as 

WADA or ESM. These invasive techniques can be uncomfortable and pose additional 

risks to the patient, therefore there is a need to develop non-invasive measures to 

investigate language representation.  

The use of fMRI has frequently been used to lateralise language in patient cohorts 

(Binder et al., 2008; Szaflarski et al., 2006; Anderson et al., 2006), however the use 

of MRI in the paediatric assessment of language may be faced with cooperation 

issues due to the unfriendly scanner environment. Alternatively, MEG may be used 

to potentially overcome these issues. In the ABC, an expressive language task has 

been used to determine the language dominant hemisphere by instructing patients to 

covertly generate verbs (Fisher et al., 2008). However, this type of paradigm may 

pose challenges to young patients that do not understand the task or in patients with 

developmental delays. In these patients, the use of a passive language task may 

allow language lateralisation to be investigated. This is of particular importance to the 

clinical work done at the ABC, as paediatric patients with TLE are frequently referred 

for MEG evaluation. 

This chapter aims to replicate previous verb generation findings using Elekta 

Neuromag data and the analysis pipeline developed in the previous chapter. Further, 

a novel MEG language task will be piloted to seek a passive alternative that may be 

more practical in children and non-compliant patients.  
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4.1.1 Lateralising Language 

The left hemisphere dominance of language is a well-documented finding dating back 

to the 19th century (Broca, 1861; Wernicke, 1911). Research has consistently shown 

support for this unilateral dominance in healthy individuals with only a small proportion 

of dextrals (approximately 4%) expressing bilateral or right hemisphere language 

dominance (Knecht et al., 2000a; Springer, Binder et al., 1999). The incidence of 

atypical language lateralisation increases to 20-27% in healthy left-handed individuals 

(Knecht et al., 2000b; Springer et al., 1999; Pujol et al., 1999).  

Atypical language representation has also shown to increase approximately by one-

third in drug resistant epilepsy patients (Rasmussen & Milner, 1977; Gaillard et al., 

2007). This increase is thought to represent cortical reorganisation as a result of 

chronic epileptogenic activity whereby language-processing regions have moved or 

additional areas have been recruited (Thivard et al., 2005). Inter-hemispheric shifts in 

language processing are often thought to occur (Staudt et al., 2001, 2002; Gaillard et 

al., 2002; Gaillard & Sachs, 2003; Gaillard et al., 2004; Gaillard et al., 2007) resulting 

in right sided dominance or bilateral language representation (Hertz-Pannier et al., 

2002; Pataraia et al. 2005). Therefore, measures of handedness are not appropriate 

or accurate enough in determining language dominance in healthy participants or in 

epilepsy patients. 

More direct measures used to investigate language representation has often involved 

the administration of intracarotid sodium amobarbital, referred to as ISAP or WADA 

(Wada & Rasmussen, 1960).  This technique works by sedating one hemisphere of 

the brain and assessing whether language deficits occur in order to determine its role 

in language. A limiting factor of this procedure is that it can only identify the language 

dominant hemisphere and disregards bilateral language representation and the 

underlying neural substrates of language (Fisher et al., 2008). Another issue is that 

WADA testing carries a certain level of risk due to its invasive nature and can only be 

used on a selective group of patients (Hajek et al., 1998; Abou-Khalil, 2007). 

Furthermore, WADA is an uncomfortable procedure and not patient friendly, 

particularly in paediatric patients. 
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To gain more precise information about language functioning, electrical current 

stimulation (ESM) can be employed to assess changes in language performance 

(Penfield & Rasmussen, 1950). This involves delivering electrical currents to the 

cortical surface whilst the patient performs various language tasks to measure 

disruptions in performance. Despite being the gold standard for language delineation, 

this procedure places additional health risks to the patient (Abou-Khalil, 2007; 

Hamberger & Cole, 2011) and may cause significant distress. It has been reported 

that WADA and ESM success rates are lower in paediatric populations (Hamer et al., 

2000; Schevon et al., 2007) and therefore friendlier, non-invasive alternatives are 

warranted. 

4.1.2 Non-invasive Language Measures 

fMRI and MEG have been used as non-invasive alternatives to identify language 

critical areas. Despite the spatial accuracy of fMRI, the scanning environment maybe 

intimidating for children (Byars et al., 2002) and therefore affecting task compliance 

(Schweitzer, 2010). In uncooperative paediatric patients undergoing MRI, the use of 

general anaesthesia or sedation can be used to ensure a successful recording 

(Johnson et al., 2002; Malviya et al., 2000). This strategy is limited when completing 

functional tasks in MRI and therefore more practical non-invasive modalities need to 

be sought. In this context, MEG may provide a more patient and child friendly 

environment (Colon et al., 2010; D’Arcy et al., 2013). 

4.1.2.1 MEG Language Paradigms 

MEG measurements of language functions have been validated to some degree 

against WADA testing (Papanicolaou & Simos, 2004; Hirata et al., 2004; Hirata et al., 

2010) and ESM (Salmelin, 2007). Previously, expressive language tasks, such as 

covert letter fluency (Singh et al., 2002) and verb generation (Fisher et al., 2008), 

have been used to determine the language dominant hemisphere. Using a covert 

letter fluency task, Singh et al., (2002) demonstrated strongly left biased beta 

dysynchronisations (15-25 Hz) and spatially correlated fMRI BOLD increases at the 

group level. An extension of this work using a verb generation task also reported 

similar lateralised beta dysnchrosinations within single subjects (Fisher et al., 2008). 
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This study demonstrated how spectral power distributions in single subjects could 

provide a qualitative assessment of language dominance.  

It must be highlighted that data used by Fisher et al. (2008) were collected and 

analysed at Aston University using a CTF 275 MEG system and the accompanying 

software. Crucially, these findings have not since been replicated at the ABC since 

the installation of the Elekta Neuromag system due to the aforementioned issues with 

the beamformer software. In this chapter, the pipeline established in the previous 

chapter will be applied to verb generation data with goal of replicating Fisher and 

colleagues. This forms the first aim of this chapter. 

4.1.2.2 Passive Language Tasks 

The second aim of this chapter is concerned with the introduction of a passive 

language task to assist in determining the language dominant hemisphere. Despite 

previous studies showing the potential clinical utility of expressive language tasks, a 

limitation with these paradigms are that participants may not be able to perform the 

task effectively due to young age or developmental delays. Therefore, the use of a 

passive language task may permit the lateralisation of language in order to circumvent 

the practical issues associated with complex active paradigms. In this chapter, a 

Figure 4.1. Verb generation SAM beamformer in the 0 to 3 second time window and in 
the 15-25Hz frequency band (Taken from Fisher et al. 2008). Colour bars show pseudo-
t values. 
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passive listening task, referred to as rotated speech, is used in an attempt to provide 

a lateralisation of language by contrasting intelligible and unintelligible speech signals. 

Spectrally rotating speech signals was introduced by Blesser (1972) as a method to 

destroy the intelligibility of speech signals whilst retaining its structural acoustic 

complexity. Rotated speech involves spectral inversion of the original speech stimuli 

and sounds like ‘alien’ speech. The advantage of this method is that it allows the 

internal structure to be maintained therefore providing a good contrast condition to 

intelligible speech when attempting to reveal speech perception processes. Previous 

research using filtered and spectrally rotated speech in PET demonstrated clear left 

hemispheric dominance, indicating that intelligible speech processing is associated 

with a left anterior temporal pathway (Scott et al., 2000). This left hemispheric 

dominance is also consistent with the neuropsychological literature into language 

organisation (Caplan, 1987). 

The potential utility of a passive listening task is that it can be adapted to children to 

include more engaging content, such as that from a popular children’s book. To date, 

the use of spectrally rotated speech has not been used in MEG and not as a clinical 

tool to passively probe language dominance. The advantage of this task being carried 

out in MEG relative to fMRI is that the scanner environment is friendlier and auditory 

signals can be delivered without scanner noise interference. Another potential 

advantage of MEG is that signals originating from anterior temporal lobe regions may 

be better measured as signal loss in these regions are often incurred in fMRI due to 

macroscopic field gradients (Devlin et al., 2000; Ojemann et al., 1997). 

Figure 4.2 (A) Intelligible speech, (B) Spectrally Rotated Speech. Taken from 
Scott et al. (2000). 
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4.1.3 Aims 

The first aim of this chapter is to replicate the findings from Fisher et al. (2008) in a 

sample of healthy control participants. To expand on Fisher et al’s findings, robust 

source space statistics will be used (using cluster based permutation testing), as 

opposed to using unthresholded pseudo t-values. This first aim is important in 

establishing a method for analysing verb generation data at the ABC and to facilitate 

a larger study using patient MEG and iEEG data.  

The second aim is to pilot the rotated speech paradigm on the same healthy control 

participants to investigate whether the task can provide useful information about 

language representation. Additionally, a dataset from a child and patient will be 

included to test the feasibility of this paradigm. As previous speech perception studies 

have shown BOLD increases in the left anterior temporal pathway (e.g. Narain et al., 

2003), it is hypothesised that the MEG data will show increases in gamma band power 

in similar areas.  

This hypothesis is based on local field potential (LFP)-BOLD coupling studies, that 

have showed positive correlations in the gamma band and negative correlations in 

the beta band (Conner et al., 2011; Mukamel et al., 2005). MEG studies investigating 

this relationship in the visual cortex have also demonstrated significant gamma band 

(40-60Hz) and BOLD responses arising from the same cortical regions 

(Muthukumaraswamy & Singh, 2009). However, the relationship between the BOLD 

and MEG signal is complex (Hall et al., 2014) as BOLD increases cannot be fully 

explained by increases in gamma-band power (Muthukumaraswamy & Singh, 2009). 

Therefore, the rotated speech paradigm will be investigated using the same beta-

frequency band as the verb generation task (15-25 Hz) alongside two gamma-

frequency bands (30-50 Hz) and (40-60 Hz).  
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4.2 Methods 

4.2.1 Participants 

Four right handed adults and two left handed adults (four females, age-range 18-61 

years) with no reported neurological or psychiatric conditions took part in the verb 

generation experiment. Participants were recruited from an ad-hoc population of 

university staff and graduate students. The same participants also took part in the 

rotated speech experiment. In order to pilot the rotated speech paradigm further, data 

was also acquired from a healthy child (female, 12 years old) and a drug resistant 

epilepsy patient (male, age 46) with suspected TLE.  

4.2.2 MEG Data Acquisition 

MEG data was recorded in a magnetically shielded room (VacuumSchmelze GmbH, 

Hanua, Germany) using a 306-channel Elekta Neuromag Triux (102 magnetometers 

and 204 planar gradiometers), at a sampling rate of 1000 Hz. Participants were 

recorded in the 68° upright seated position. Noise reduction was achieved with the 

Maxfilter software (Elekta Neuromag Oy, version 2.2.10) using a sliding window of 10 

seconds and a subspace correlation limit of 0.9. Bad channels were identified using 

Xscan (Elekta Neuromag, Oy) and were not included in the Maxfilter calculations and 

subsequent beamformer analysis. Prior to data acquisition 5 head localisation coils 

were attached to the participants’ head and 3 fiducial points were digitised using a 

polhemus fast-trak digitizer (Fastrak, Polhemus, Colchester, VT, USA). Additional 

head points were collected to allow a surface based alignment with the participant’s 

T1-weighted MRI using the method described in Chapter 2. Continuous head position 

indication was used and a head movement threshold of 6mm was implemented (none 

of the datasets in this chapter exceeded this threshold). 

4.2.3 Verb Generation 

The trial began with a passive phase where participants were instructed to focus on 

a central fixation cross for 3 seconds. After 3 seconds of fixation a noun was 

presented on the screen for a further 3 seconds (e.g. BALL). At this point participants 

were asked to covertly generate a single verb associated with the noun on the screen 
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(e.g. THROW). After 3 seconds of covert verb generation, a picture of Mr. 

Chatterbox© (THOIP) appeared on the screen for 3 seconds and participants were 

instructed to vocalise the verb that they had silently generated (see Figure 4.2). This 

final vocalisation stage was used to assess whether the participant was correctly 

engaging in the task. In this experiment, 60 trials were presented using the 

Presentation software (Neurobehavioral Systems, San Francisco, CA). 

4.2.4 Passive Listening Task 

Participants were instructed to focus on a fixation cross in the centre of the screen 

whilst the speech stimuli were delivered binaurally through echoless plastic tubing 

and foam ear-tips at a comfortable hearing level. The speech stimuli consisted of 

filtered intelligible speech (active) and spectrally rotated speech (baseline). Six, five 

seconds trials of filtered speech were presented consecutively, followed by six, five 

second trials of spectrally rotated speech. This was repeated 5 times, resulting in 36 

trials for each condition. The speech stimuli used in both conditions were taken from 

a shipping forecast, voiced by a male speaker. For the filtered speech condition 

(intelligible speech), stimuli were low pass filtered (3.8 kHz). To create the rotated 

speech stimuli the filtered speech was spectrally inverted using a digital version of the 

technique described by Blesser (1972). This involved first equalising the speech 

signal with a filter, giving the rotated signal approximately the same long-term 

spectrum as the original signal. This signal was then amplitude-modulated with a 

sinusoid at 4 kHz followed by low-pass filter at 3.8 kHz. The spectrally rotated speech 

signal has very similar temporal and spectral complexity to the original speech signals 

but is not intelligible without extensive training (Blesser, 1972). 

Figure 4.3. A schematic of the verb generation task. 
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4.2.5 MEG analysis 

MEG data was analysed using the MATLAB toolbox FieldTrip (Oostenveld et al., 

2011). The MEG data was down-sampled offline in both experiments to 300Hz and a 

single shell head model was used (Nolte et al., 2003). Source analysis was computed 

in MNI standard space using a 5mm source space grid. 

4.2.5.1 Verb generation 

Epochs were extracted from 2.5s prior to the noun onset to 2.5s post-stimulus. 

Therefore, only the covert verb generation phase of the experiment was analysed. A 

slightly shorter time window was used in this study relative to Fisher et al. to avoid 

potential desynchronisations in beta due to motor anticipation for the vocalisation 

phase of the trial. An LCMV beamformer was computed on bandpass-filtered data 

(15-25Hz). Source power was projected through using a common beamformer filter 

computed across the whole covariance window (-2.5s to 2.5s) and applied separately 

for the baseline (-2.5 to 0s) and active period (0s to 2.5s). Single subject source 

statistics were computed on the individual’s source reconstructed active and baseline 

trials using monte-carlo testing. A cluster-based permutation correction method was 

used to correct for the multiple comparison problem (alpha level <0.01) (Maris & 

Oostenveld et al., 2007). Virtual electrodes were recomputed on the original sampled 

data (1kHz) at the left inferior frontal gyrus (pars opercularis, MNI: -48, 13, 17) and 

the contralateral site (MNI: 49, 12, 17) for a simple comparison. Time-frequency 

analysis was computed between 1-100Hz with a fast fourier transform (FFT) using 3 

Slepian multitapers (+/- 8 Hz spectral smoothing) applied to the baseline time window 

(-2.5 s to 0s) and active time window (0s to 2.5s). Time-frequency statistics were 

computed between the two conditions using cluster-based permutation testing 

(<0.01). 

4.2.5.2 Passive Listening Task 

An LCMV beamformer was computed in three frequency bands, 15-25 Hz, 30-50Hz, 

and 40–60 Hz. Source power was projected through using a common beamformer 

filter computed across the whole covariance window and applied separately to the 

two experimental conditions (spectrally rotated and filtered speech). Single subject 
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source statistics were initially computed by contrasting the spectrally rotated speech 

(baseline) to the filtered speech (active) using cluster-based statistics (alpha level = 

<0.01) (Maris & Oostenveld et al., 2007). In a number of participants, no significant 

clusters were found at the alpha level of <0.01, therefore power differences were 

expressed as percentage change (the implications of non-significance at this alpha 

level are raised in the discussion). 

In the child and patient example, virtual electrodes were reconstructed at the peak 

source identified by the beamformer using the original sampling rate of 1kHz. Time-

frequency analysis was computed between 40-80Hz with a fast fourier transform 

(FFT) using 3 Slepian multitapers (+/- 8 Hz spectral smoothing) and applied to the 

spectrally rotated (baseline) and filtered speech (active) conditions separately. Time-

frequency statistics were then computed between the two conditions using cluster-

based permutation testing (alpha level = <0.01). 

4.3 Results 

4.3.1 Verb Generation 

The verb generation task elicited decreases in spectral power in the 15-25 Hz 

frequency band in regions of the left frontal or temporal lobe in all of the right handed 

participants (participants 1 – 4). In the two left handed participants (participant 5 & 6), 

bilateral decreases in spectral power were observed (Figure 4.4). However, across 

all participants, the sites that showed the greatest spectral decreases are variable in 

location and additional areas including the superior frontal gyrus (SFG), middle frontal 

gyrus (MFG), and angular gyrus also showed power decreases. The results are 

shown in Figure 4.4, whereby the top 50% of significant t-values are plotted. In all 

participants, there were significant bilateral decreases in spectral power within the 

frequency band of interest, however in right handers this decrease was greater in the 

left hemisphere and masked out when applying the 50% image threshold.  

The time frequency representations in Figure 4.4 shows the oscillatory power at the 

inferior frontal gyrus (IFG) (pars opercularis) site in both hemispheres. The significant 

changes in task-related power in the right handed participants are prominent within 
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the frequency band of interest, except participant 2 where the decreases in spectral 

power were observed primarily in the anterior temporal lobe. In participants 1,3, and 

4, this significant decrease in power commences approximately at 250–500 ms after 

the noun appears on the screen, indicating early involvement of the left IFG. There 

are no significant power increases observed in the 15-25 Hz frequency band in the 

right handed participants. 

In the left handed participants (5 & 6), there is much earlier bilateral IFG involvement, 

however these changes in spectral power only last for 1–1.5 seconds. The time 

frequency plots for these participants also show (non-significant) increases across a 

broad frequency spectrum. In participant 6, an earlier increase in power peaking in 

the alpha frequency is observed in the left IFG followed by a power decrease at 

500ms. In participant 6’s right IFG time frequency plot an early increase in gamma 

(50-70 Hz) is observed alongside the early decreases in the beta frequency band.  
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Figure 4.4. Verb generation results. Significant t-values (p<0.01, cluster corrected) are plotted on the brain (thresholded to show top 
50% significant values). Time frequency plots of the left and right inferior frontal gyrus are plotted below beamformer results (<0.01, 
cluster corrected). 
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Figure 4.5. Passive listening results (40-60Hz) for participants 1-3 expressed in percentage change. Verb generation results 
for the same participants are plotted underneath (significant t-value, <0.01 cluster corrected). 
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Figure 4.6. Passive listening results (40-60Hz) for participants 4-6 expressed in percentage change. Verb generation results for the 
same participants are plotted underneath (significant t-value, <0.01 cluster corrected). N.B. Participants 5 & 6 are left handed.  
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4.3.2 Rotated Speech 

The rotated speech task elicited the greatest percentage changes in the 40-60 Hz 

frequency band, with little changes observed in the remaining two frequency bands 

of interest (15-25 Hz & 30-50 Hz) and therefore are not plotted. In the 40-60 Hz 

frequency band, predominately left temporal lobe increases were found in the right 

handed participants (1-4). In participants 1, 3 and 4, peak power increases were found 

in the left temporal pole (LTP) and left IFG. Participant 2 displayed greater power 

increases in the left posterior temporal lobe extending to anterior temporal regions. In 

comparison to the verb generation results for these participants (Figure 4.5 & 4.6), 

the rotated speech results identify the same hemisphere (left) for language 

dominance. Patient 4, showed a bilateral response to the intelligible speech with right 

sided power increases in the STG and supramarginal gyrus (SMG), however the 

greatest increases in power were observed in left LTP and IFG areas.  

In the left handed participants (5 & 6), the increases in spectral power in the 40-60 Hz 

band did not show the same left hemisphere bias. Participant 5, shows bilateral 

increases in power in the left angular gyrus and parietal activations in the left 

hemisphere and superior temporal gyrus (STG) increases in the right hemisphere. 

Participant 6 resembles a similar activation profile to participants 1, 3, and 4, however 

these increases in power are lateralised to the right hemisphere. In participant 5, 

despite the results not spatially overlapping, bilateral language activations are 

observed in concordance with the bilateral power decreases observed in the verb 

generation results. The verb generation results for participant 6 also show bilateral 

language representation, however the rotated speech results do not show this 

bilateral response and is lateralised to the right ATL and IFG.  

Finally, Figure 4.7 shows the child and patient data, indicating left lateralised 

increases in power. In the child dataset the peak activation is located on the left STG 

bordering with the left primary somatosensory cortex and an activation in the left 

anterior temporal lobe. The corresponding time frequency plot for the peak activation 

also indicates an increase in power in the 40-60Hz frequency band, with some time 

frequency bands reaching significance. In the patient dataset, the intelligible speech 

sounds are localised to the anterior portion of the left temporal lobe. This activation is 

consistent with the previous right handed results. The corresponding time frequency 

plots show increases in the gamma frequency band (40-60 Hz) for the child dataset 

and small increases in power in the patient dataset (40-80 Hz).  



86 

Figure 4.7. Rotated speech results for the child dataset (top) and patient dataset (below). The volumetric plots 
show percentage change and associated time frequency plots are displayed on the right.   
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4.4 Discussion 

4.4.1 Key findings 

The characterisation of language dominance prior to surgery is important in order to 

avoid removing eloquent cortex responsible for language processing. In this chapter, 

the aim was to replicate the findings from Fisher et al. (2008) using the analysis 

pipeline established in the previous chapter and to test a new passive language task. 

The rationale for using a passive task is of particular importance when assessing 

language in non-compliant patients, such as younger children and patients with 

developmental delays or language impairments.  

The findings of this chapter demonstrate a replication of the beta band power 

decreases that were observed in the Fisher et al. (2008) study. This is important as 

previous unpublished verb generation findings using Elekta data has provided 

uninterpretable results that do not replicate the original CTF results. Secondly, this is 

the first study demonstrating the use of rotated speech to assess language 

dominance in MEG. The significance of this finding is that the use of a passive 

paradigm may permit the assessment of language in non-complaint patients, due to 

age or developmental delays. The discussion will first focus on the verb generation 

findings and then the rotated speech results. 

4.4.2 Verb generation 

At the ABC, verb generation has previously been used to identify the language 

dominant hemisphere as part of additional presurgical information that can be 

included in the clinical MEG report. This verb generation study is based on the work 

by Fisher et al. (2008) that showed spectral power changes in the 15-25 Hz frequency 

band in response to covert generation of a verb. Fisher and colleagues investigated 

a sample of right handed adults and found decreases in power in the left hemisphere 

indicating a left sided dominance for language. It was also found that increases in 

spectral power in the 15-25 Hz frequency band were found in the right hemisphere of 

participants, showing a clear spectral pattern. As mentioned in the introduction, there 

has been difficulty replicating these findings in the ABC using the Elekta Neuromag 

system and the associated Elekta beamformer software.  
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The verb generation results in this study showed similarities to Fisher and colleagues, 

replicating the main finding of spectral decreases in power (15-25 Hz) in the left 

hemisphere in right handed individuals. In the two left handed participants, the verb 

generation source plots indicated bilateral decreases in spectral power, which may 

be explained by research showing a higher prevalence of atypical language 

lateralisation in non-dextrals (Knecht  et al., 2000; Springer et al., 1999; Pujol et al., 

1999). Interestingly, unlike the Fisher et al. study, increases in power were not 

observed in the non-dominant hemisphere in the right handers. A key difference in 

the analysis in this chapter is that robust source space statistics were used 

(permutation testing, cluster based correction <0.01). In comparison, Fisher et al. 

presented unthresholded pseudo t-values. The use of more stringent statistical 

thresholding may explain why power increases were not observed in this study. In 

other studies, using similar covert language generation tasks, beta-band power 

increases have not been reported (Singh et al., 2002; Elk et al., 2010) and therefore 

this may raise scepticism over this finding. 

In the verb generation task, the nouns presented often lead to the generation of action 

verbs (e.g. run). This may explain why sensorimotor beta power decreases were 

observed as the role of beta oscillations are classically related to motor processes 

(Weiss & Mueller, 2012). An explanation for beta desynchronisations in other regions 

could be related to the memory retrieval components of the task when engaging in 

the semantic processing of the noun. Beta desynchronisations have been 

demonstrated in both memory encoding and retrieval, and information load has shown 

to correlate with beta power decreases (Hanslmayr et al., 2012). Beta oscillations may 

also play a role in attention and expectancy violation (Engel and Fries, 2010; 

Jenkinson and Brown, 2011). Although a cognitive violation task was not used in this 

study (e.g. oddball), the presentation of a noun after a baseline period may have 

disrupted the ongoing cognitive state. 

In summary, the verb generation results replicated Fisher et al’s primary finding of 

beta spectral power decreases as a potential signature of language dominance. The 

ability to reproduce this key finding using Elekta data permits a larger study to be 

completed and to provide further clinical evaluations of the verb generation task. A 
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study of this nature is currently being carried out at the ABC comparing patient MEG 

data to data recorded using iEEG.   

4.4.3 Passive Listening Task 

The passive listening task revealed power increases (40-60 Hz) in the left IFG and 

ATL regions in the right handed control participants, and in the child and patient 

datasets. These results indicate that the left IFG and ATL are important for processing 

intelligible speech signals. Speech perception research carried out by Scott et al. 

(2000) using various speech stimuli demonstrated the role of the left anterior superior 

temporal sulcus (STS) in processing intelligible signals. The passive listening findings 

documented in this chapter also indicate the role of anterior portions of the temporal 

pole including the STS supporting the findings by Scott and colleagues. PET and fMRI 

studies have also demonstrated the role of the left anterior temporal cortex in 

response to single words, sentences processing and narratives (Binder et al., 1998; 

Wise et al., 2001; Humphries et al., 2005; Crinion et al., 2006). 

The precise role of the left ATL is still debated but evidence from patients with 

semantic dementia affecting the ATL have exhibited deficits in semantic knowledge 

whilst retaining knowledge in other cognitive domains (Warrington, 1975; Patterson 

et al., 2007; Jefferries, 2013). Neuropsychological cases have also shown speech 

perception impairments as a result of left hemisphere lesions in the STS and anterior 

STG, whereby Heschl’s gyrus and the planum temporale were spared (Barrett, 1910; 

Henschen, 1918). Anterior temporal regions have also shown stronger activation 

when processing speech at the sentence level relative to single words (e.g. Stowe et 

al., 1998; Vandenberghe et al., 2002). One potential explanation for this is that the 

ATL is responsible for binding together different components of a sentence into one 

message (Vandenberghe et al. (2002)). This hypothesis is concordant with studies 

that suggest that the left ATL acts an integrative hub in semantic memory (Holland & 

Ralph, 2010) and therefore is an important substrate in understanding sentences.    

Interestingly, the results did not show peak activations in Wernicke’s area except for 

in the right sided homologue in participant 5. This finding supports the notion that 

posterior STS regions maybe more responsive to speech acoustic signals (Mazoyer 
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et al., 1993; Binder et al., 1994; Fiez et al., 1995; Price et al., 1996; Warburton et al., 

1996), as opposed to speech meaning (Belin et al., 2004). Therefore, it can be 

hypothesised based on the findings from this chapter and previous studies that 

posterior STS regions may be more responsive to the acoustic signals associated 

with speech, but more anterior STS regions are involved in the comprehension of 

these signals. Due to the spectrally rotated speech signal containing the same 

acoustic components as the intelligible speech, there was not a marked power change 

between the two conditions in posterior STS regions. Therefore, the use of spectrally 

rotated speech and the contrast used only revealed the semantic processing 

components of intelligible speech. 

 

Notably, minimal changes in power were observed in the beta (15-25 Hz) and low-

gamma (30-50 Hz) frequency bands. Previous research has suggested that beta 

frequencies act as a mechanism for binding the multiple components (e.g. physical, 

phonological, and semantic) that are contained in speech into a single coherent unit 

(Scott et al., 2009). These changes in beta may not have been observed in the current 

study due to the rotated speech matching the physical properties of the intelligible 

speech. The phonological content between the speech and rotated speech signals 

differ, however it has been reported that after extensive training spectrally rotated 

signals can be understood (Blesser, 1972). In previous sentence processing tasks, 

increases in beta coherence have been correlated with the activation of semantic 

working memory (Haarmann et al., 2002). However, it could be the case that 

increases in beta coherence only occur during more semantically challenging tasks. 

For instance, Haarman et al., (2002) used a gap-filling task to probe semantic working 

memory. 

 

The 40-60 Hz passive listening findings showed concordance with the verb generation 

results in terms of determining the language dominant hemisphere. These results also 

show concordance to previous findings that implicate the role of anterior temporal 

regions in the processing of intelligible signals. However, the findings in this chapter 

should still be considered preliminary based on the sample size used and the lack of 

robust source space statistics. Given the alpha level used in the permutation testing 

and cluster based correction (<0.01), significant increases in gamma were not 

observed in the majority of participants and therefore results were expressed as 

percentage change. A less stringent alpha level could have been used (e.g. <0.05), 
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however this could have been considered as p-hacking. Due to the contrast used in 

the passive listening paradigm, the findings reveal only the semantic processing 

component of the intelligible stimuli as the acoustic features of the signal are 

controlled for. Based on this, more trials may be required to increase the power of the 

study to reveal this subtle effect. Currently, the passive listening paradigm lasts 6 

minutes and therefore additional trials could be added without jeopardising participant 

compliance. 

4.4.4 Conclusion 

The findings in this chapter supports previous findings indicating that MEG can be 

used as a non-invasive method to investigate language and provide useful information 

in the presurgical evaluation of TLE patients. As previously mentioned, the findings 

presented here are only preliminary and a larger study is warranted using a larger 

sample size of patients whereby iEEG, ESM, or WADA data is available to confirm 

the MEG findings. The verb generation findings replicate the key beta 

desynchronisations observed in the Fisher et al. study indicating that the analysis 

pipeline developed in the previous chapter is fit for purpose in this context. 

Importantly, this chapter has also demonstrated the potential clinical utility of a 

passive listening paradigm that may be particularly useful in patients that are non-

compliant or are unable to engage in active language tasks.  
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Chapter 5: Kurtosis Beamforming in Clinical MEG 

5.1 Introduction 

This chapter aims to focus on the second theme of this thesis and is concerned with 

the localisation of epileptiform activity. This chapter evaluates the use of kurtosis 

beamforming as an alternative method for localising interictal spikes in drug resistant 

epilepsy patients. Reports of the use of kurtosis beamforming for presurgical 

evaluation are limited, with few studies measuring its concordance with surgically 

resected areas and post surgical outcomes. The clinical data used in this study was 

provided by the VU University Medical Center (VUmc), Amsterdam, and co-analysed 

with Dr Ida Nissen. 

5.1.1 Localising Epileptiform Discharges 

As described in Chapter 1, MEG has been shown to provide unique information to 

help guide the placement of iEEG electrodes and inform surgical intervention in 

patients with inconclusive presurgical findings (Mamelak, et al 2002; Fisher et al., 

2005; Knowlton et al., 2006; Sutherling et al., 2008; Stefan et al., 2011; Agirre-

Arrizubieta et al., 2014; Nissen et al., 2016). Despite these findings, localising 

epileptiform activity with the standard clinical MEG analyses are not always 

successful (Nissen et al., 2016). One of the challenges faced in our patient population 

is that interical spikes can be infrequent, of low amplitude or multifocal. Therefore, 

there is a need to improve and thoroughly test alternative MEG localisation 

approaches, particularly in challenging patient samples where spiking activity is 

ambiguous.  

5.1.1.2 Equivalent Current Dipole Fitting 

Typically in MEG, interictal epileptiform discharges are modelled into source space 

by manually identifying spikes in the sensors waveforms and fitting single equivalent 

current dipoles (ECDs) to each spike or the spike average (Guggisberg, et al., 2008). 

This approach is effective in cases of focal epilepsy (Wheless et al., 1999; 

Papanicolaou et al., 2005; Ossenblok et al., 2007) and is considered the clinical 

standard by the ACMEGS (Bagic et al., 2011). A number of parameters, including 

confidence volumes and the GOF value, can be used to evaluate the appropriateness 
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of each ECD model (Bagic et al., 2011). Criteria for acceptance of the model is usually 

met if spikes are of sufficient amplitude above background noise, with a single focal 

source active at the time point of interest (Sekihara et al., 1996; Shirashi et al., 2005). 

There are several practical limitations associated with the ECD fitting approach: (1) 

time required to visually inspect 250+ sensor time series across multiple continuous 

recordings (Ishii et al., 2008), (2) the expertise required to identify spikes from other 

transients (Knowlton & Shih, 2004), (3) selection of an appropriate temporal point in 

the spike for modelling (Bagic et al., 2011), (4) moderate inter-rater reliability (Azuma 

et al., 2003; Piccinelli et al., 2005), and (5) a priori knowledge regarding the number 

of dipoles (Gaetz & Cheyne, 2003), starting position, and model to be used (e.g. 

stationary, rotating, or moving dipole) (Russo et al., 2016). Furthermore, some 

technicians choose to average interictal spikes prior to ECD fitting (Bast et al., 2004; 

de Jongh et al., 2005) therefore introducing further subjective judgements into the 

spike selection process. 

5.1.1.3 Kurtosis Beamforming 

Kurtosis beamforming or SAM(g2) is an alternative method developed to 

automatically localise spikes using an adaptive spatial filtering approach alongside a 

higher-level statistic to measure the excess kurtosis (g2) of each region’s source time 

series (Robinson et al., 2004; Kirsch et al., 2006; Prendergast et al., 2013). The 

underlying hypothesis is that regions containing spikes increase the excess kurtosis 

value and thereby localise to the irritative zone. A beamformer-based approach has 

several advantages over ECD: (1) multiple sources can be reconstructed 

independently without requiring a priori knowledge regarding the number of active 

sources (Vrba & Robinson, 2001; Hillebrand et al., 2005), (2) the signal to noise ratio 

(SNR) is increased due to the spatial filter attenuating sources of magnetic noise 

(Adjamian et al., 2009), and (3) beamforming allows virtual electrodes to be 

computed, revealing the time series for predefined locations in the head. The visual 

inspection of virtual electrode time series has shown to be valuable in detecting spikes 

originating from deep structures that are not clearly discernible on the physical 

sensors (Hillebrand et al., 2016). To this extent, kurtosis beamforming is an objective 

virtual electrode selection tool that provides a small set of time series for which the 

user can determine the clinical relevance (i.e., whether they contain spikes or 
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artefacts). This may overcome the aforementioned limitations of manual spike 

marking at the sensor-level and subsequent ECD analysis.  

Studies evaluating kurtosis beamforming have demonstrated a good level of 

concordance with other inverse models (Robinson et al., 2004; Kirsch et al., 2006; de 

Gooijer-van de Groep et al., 2013) and seizure onset zones identified by iEEG (Rose 

et al., 2013; Wu et al., 2014). Currently, there are few studies measuring the 

concordance between sources derived from kurtosis beamforming and subsequently 

resected areas (Guggisberg, et al., 2008; Zhang et al., 2011; Tenney et al., 2014). 

Zhang et al. (2011) evaluated lesional and nonlesional epilepsy patients and 

concluded that a favourable post-surgical outcome can be obtained in most patients 

when MEG (ECD/SAM(g2)) is concordant with either MRI or iEEG. Specifically, they 

reported that 15/16 MRI-MEG concordant patients achieved favourable surgery 

outcome after undergoing resective surgery that included the SAM(g2) zone. Tenney 

et al. (2014) evaluated multiple source algorithms and demonstrated an 89.5% 

sublobar concordance between SAM(g2) and the resected area in 20 patients, 

rendering 6 patients seizure free. In this context, it can be suggested that measuring 

the spatial concordance between the presurgical MEG results and the resected 

volume in seizure-free patients (i.e. the epileptogenic zone) is the gold standard when 

validating a particular source localisation approach. 

Despite a growing body of research, the implementation of kurtosis beamforming in 

the clinical analysis of MEG is variable (Scott et al., 2016) and as such may still be 

considered a research method. This may be based on reports of poorer performances 

relative to ECD analysis (Guggisberg et al., 2008), or the suggestion that this 

technique is extensively time-consuming (Guggisberg et al., 2008; Wu et al., 2014) 

and does not fit into the clinical analysis routine (Guggisberg et al., 2008). 

Furthermore, the variable use of kurtosis beamforming may be due to clinical MEG 

sites not having access to kurtosis beamformer software. For example, The Elekta 

Spikiness beamformer is not readily available to all Elekta sites and the CTF SAM(g2) 

software is now outdated causing compatibility issues with more recent operating 

systems.   
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5.1.2 Aims 

The aim of this chapter is to further elucidate the role of kurtosis beamforming in 

clinical MEG by reporting on its ability to localise the epileptogenic zone in a 

heterogeneous group of patients. The patients investigated had varying spike 

frequencies and inconclusive or conflicting MRI and EEG findings prior to MEG 

referral. This heterogeneous cohort reflects the type of patients often referred for MEG 

evaluation at the Aston Brain Centre (ABC) and the VUmc, Amsterdam. A comparison 

between the kurtosis beamformer localisations and the original MEG analysis (ECD 

fitting) is also carried out.  

5.2 Methods 

5.2.1 Patients 

MEG recordings of 22 patients with drug resistant epilepsy were retrospectively 

analysed. The patients underwent preoperative evaluation and epilepsy surgery at 

the VUmc, Amsterdam. Surgery outcome was classified more than 12 months after 

surgery using the Engel classification system. As the patients only underwent routine 

clinical care, approval for this study and informed consent was not needed by the 

institutional review board and conformed with the Dutch health law of February 26, 

1998 (amended March 1, 2006), i.e. Wet Medisch-Wetenschappelijk Onderzoek met 

mensen (WMO; Medical Research Involving Human Subjects Act), division 1, section 

1.2.  

5.2.2 MEG acquisition 

Whole-head MEG recordings were made using an Elekta Neuromag Vectorview 

system (Elekta Neuromag Oy, Helsinki, Finland) with 306 channels (102 

magnetometers and 204 gradiometers) in a magnetically shielded room 

(Vacuumschmelze GmbH, Hanau, Germany). The acquisition protocol involved eyes-

closed resting-state recordings of 15 minutes in the supine position with a 1250 Hz 

sampling frequency and online filtering (410 Hz anti-aliasing filter and 0.1 Hz high-

pass filter). A 3D head-digitizer (Fastrak, Polhemus, Colchester, VT, USA) was used 

to record the scalp outline and digitise the fiducial landmarks and continuous head 

position indicator coils. The scalp surface points were co-registered with a T1-



96 

weighted MRI of the patient using the surface-matching algorithm described in 

Chapter 2.

5.2.3 MEG Preprocessing 

The raw data were spatially filtered offline to remove artefacts using the temporal 

extension of signal space separation (tSSS) (Elekta Neuromag Oy) (Taulu and 

Simola, 2006). This was implemented in the MaxFilter software using a sliding 

windows of 10 s and a subspace correlation limit of 0.9 (Maxfilter version 2.1, Elekta 

Neuromag Oy). Noisy channels were visually identified and excluded before tSSS 

filtering. A single sphere head model was generated based on the co-registered MRI 

scalp surface and used in both source reconstruction approaches. The use of the 

same head model is important as previous studies have often used different head 

models when comparing analysis method (e.g. single sphere for ECD, multiple local 

spheres for kurtosis beamformer: Gooijer van de Groep et al., 2013; Kirsch et al., 

2006; Wu et al., 2014; Guggisberg et al., 2008), thus making the comparison between 

methods more convoluted.  

5.2.4 ECD analysis 

The clinical analysis had already been performed by an experienced EEG/MEG 

technician. The ECD approach used was consistent with the ACMEGS guidelines 

(Bagic et al., 2011) and forms part of the standard analysis pipeline used at the VUmc. 

In summary, spikes in the sensor time series were identified and a single equivalent 

current dipole model was calculated at each sample from half-way up the ascending 

limb of the spike until the peak (using Xfit, version 5.5.18, Elekta Neuromag Oy). 

Typically, ECD models with GOF values above 70% were accepted for further review 

and were evaluated by a multidisciplinary team of clinicians, physicists and 

technicians.  

5.2.5 Kurtosis Beamformer 

The kurtosis beamformer was applied to the presurgical MEG data using the Elekta 

SSS-Spikiness Beamformer (Beamformer version 2.0, Elekta Neuromag Oy). The 

SSS-beamformer differs from a conventional beamformer in that it operates on the 

harmonic function amplitudes and the corresponding lead fields derived from SSS 
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filtering (Vrba et al., 2010). The kurtosis beamformer works by reconstructing the 

source time series for each voxel in the source space grid and then computes the 

kurtosis value for each of these time series. This results in a volumetric map whereby 

each voxel is represented by a single kurtosis value. A guide on how to replicate the 

analysis detailed in this section and an example dataset can be found here: 

https://osf.io/95k8f/. 

To ensure that each dataset underwent the same method, a 300s time window was 

chosen for analysis. This time window was selected to include as many spikes as 

possible whilst trying to avoid artefacts. Data were band-pass filtered from 20 to 70Hz 

to provide an optimal contrast for spike identification (Kirsch et al., 2006; Ishii et al., 

2008).  For each patient, the source space grid (5mm resolution) was computed for a 

bounding box enclosing the entire head. Beamformer weights were then constructed 

and virtual electrodes representing each location in source space were computed. 

The excess kurtosis (g2) value was then calculated for each virtual electrode time 

series: 

g" = 	 %&
'	() * + ,-)/

01-/
− 3  (5.1) 

where N is the length of time series t, 4 is the mean and σ is the standard deviation. 

The volumetric image was then overlaid onto the co-registered MRI and kurtosis peak 

locations were extracted using a local maxima algorithm in the MRIView software 

(MRIView version 1.0, Elekta Neuromag Oy).  

Virtual electrode time series corresponding to the peak locations were recomputed 

using the stored beamformer weights and compared to the physical sensor time 

series. We considered all peaks that were localised inside the head. From these peak 

locations, the corresponding virtual electrodes were visually inspected to evaluate 

whether they contained genuine spikes or artefacts. A montage in the Graph software 

(Elekta Neuromag, Oy) was used to visualise the virtual electrodes alongside the 

physical MEG sensor time series in 10 second segments. This montage allowed the 

cross-validation of transients seen in the virtual electrode with those seen in the 

physical MEG sensors. Virtual electrodes that robustly localised epileptiform activity 

(e.g. multiple spikes present in the time series for that location) were selected as the 

candidate source. The virtual electrode number chosen as the candidate source is 

reported in Table 1 (e.g. VE1 represents the first volumetric peak location). 
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 To test the value of the kurtosis beamformer in a non-hypothesis driven scenario, no 

other information (e.g. patient notes, surgical site, EEG, MRI) was used to guide the 

analysis. 

5.2.6 Resection cavity delineation 

The resection cavity was manually segmented based on the three month post-

operative MRI using iPlan 3.0 software (BrainLAB AG, Feldkirchen, Germany). Firstly, 

the post-operative scan was linearly registered with the preoperative MRI (the one 

used for MEG co-registration). Secondly, the same transformation that was applied 

to co-register the preoperative MRI with the MEG data was also applied to the 

resection cavity. 

5.2.7 Concordance with resection cavity 

For each patient, the ECD point sources and the single kurtosis beamformer 

candidate (point) source were overlaid onto the presurgical MRI along with the 

resection cavity delineation. The ECD results were represented by the cluster or main 

Figure 5.1. A schematic of the kurtosis beamformer pipeline. A scalar beamformer 
is applied to the MEG data to estimate the source time series for each voxel in 
source space. The excess kurtosis is then calculated for each source waveform 
and mapped onto a high resolution MRI.  
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cluster if the ECDs were scattered. If ECDs were scattered across one lobe, then the 

centroid of this scatter was used to determine the overlap. In cases of more than one 

ECD localisation, all localisations were reported and considered. If no spikes or focal 

slow activity were present, or the ECDs extended across multiple lobes, then this was 

considered an uninterpretable localisation. The kurtosis beamformer results were 

represented by the location of the candidate source. An uninterpretable kurtosis 

beamformer localisation consisted of virtual electrodes not containing any epileptiform 

activity. Only interpretable results were included in the concordance calculations.  

Anatomical concordance was visually assessed based on the overlap of the kurtosis 

beamformer candidate source, ECDs and the resection cavity. The level of 

concordance was determined using concordance criteria similar to that used in Kirsch 

et al. (2006): 

I. Concordant, direct overlap of Kurtosis/ECD and resection: Kurtosis

beamformer peak/ECD cluster and resection cavity directly overlap.

II. Concordant, partial overlap of Kurtosis/ECD and resection: Kurtosis

beamformer peak/ECD cluster and resected cavity are concordant at the

lobar level, but do not directly overlap.

III. Discordant, no overlap of Kurtosis/ECD and resection: Kurtosis

beamformer/ECD results were uninterpretable or disagreed on location with

resection cavity (e.g. scattered ECD results).

5.2.8 Concordance between ECD and Kurtosis Beamformer localisations 

The overlay of the ECD point sources and the single kurtosis beamformer candidate 

source were used to establish concordance in a similar manner as described in the 

paragraph above: 

I. Concordant, direct overlap of Kurtosis and ECDs: Kurtosis beamformer

peak and ECD main cluster directly overlap.

II. Concordant, partial overlap of Kurtosis and ECDs: Kurtosis beamformer

peak and ECD main cluster are contained in the same lobe, but do not

directly overlap.
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III. Discordant, no overlap of Kurtosis and ECDs: Kurtosis beamformer peaks

and ECD main cluster are in different lobes.

5.2.9 Sensitivity, Specificity, and Accuracy 

To evaluate the concordance between the two source localisation methods and the 

resection cavity, measures of sensitivity, specificity and accuracy were calculated in 

conjunction with surgery outcome. These measures were calculated only on the 

interpretable localisations. Sensitivity was based on the number of ECD/Kurtosis 

beamformer localisations that overlapped with the resection cavity in the patients that 

were seizure free. Specificity was based on the number of discordant ECD/Kurtosis 

beamformer localisation with the resection cavity in patients with persistent seizures. 

More specifically: 

Sensitivity = Concordance with resection area in seizure-free patients / all 

seizure-free patients. 

Specificity = Discordance with resection area in patients with persistent 

seizures / all patients with persistent seizures. 

Accuracy = (Concordance with resection area in seizure-free patients + 

discordance with resection area in patients with persistent seizures) / all 

patients. 

Furthermore, the difference in accuracy (overlap with resection area in seizure-free 

patients and non-overlap in patients with persistent seizures) between the two 

methods was tested at the lobar and sublobar level using a chi-square test. 

5.3 Results 

Presurgical MEG data from 22 patients who subsequently had a cortical resection 

were retrospectively analysed using a kurtosis beamforming approach. The 

presurgical findings from before the MEG referral of the patients were inconclusive or 

conflicting, and are displayed alongside patient characteristics in Table 5.1. The 

number of spikes present in the MEG recording differed from no spikes (two 

recordings) to 215 spikes (median: 9 spikes). The kurtosis beamformer resulted in a 

localisation in 18/22 patients (82%). Of the four patients with an uninterpretable 

kurtosis beamformer localisation; one had no spikes in the MEG recording (patient 5), 
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one had no spikes visible on the virtual electrodes (patient 4), and two had excessive 

artefacts in their recording so that the kurtosis beamformer peaks were either outside 

the head (patient 6) or the virtual electrodes showed only artefacts (patient 1). The 

ECD analysis provided interpretable localisations in 20/22 patients (91%), either in a 

delimited area (cluster in 14 patients) or widespread (scatter in 6 patients). 

Table 5.2 shows the concordance of the kurtosis beamformer localisation with the 

resection cavity and ECD localisation. For the seizure-free patients, in whom the 

resection cavity corresponds to the epileptogenic zone, the kurtosis beamformer 

overlapped with the resection cavity in 9/13 patients (69%) (6 direct overlap and 3 

partial overlap). Figure 5.2 shows the localisation results and virtual electrode time 

series for these nine patients. In the patients with persistent seizures (i.e. the 

epileptogenic zone was not entirely removed or disconnected), the kurtosis 

beamformer was discordant with the resection cavity in 3/5 patients (60%) (1 direct 

overlap and 1 partial overlap).  

Table 5.3 shows the sensitivity (regarding overlap in seizure-free patients), specificity 

(regarding discordance in patients with persistent seizures), and accuracy (regarding 

all correct concordances and discordances). For the kurtosis beamformer, the 

accuracy was 56% on a sublobar level (direct overlap) and 67% on a lobar level (direct 

and partial overlap).  
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Table 5.1. Patient characteristics, MRI findings, number of spikes in the MEG recording, kurtosis beamformer and ECD localisation, 

location of the resection and surgery outcome (Engel class) are displayed for all patients. The kurtosis beamformer candidate source 

location is shown under ‘Kurtosis beamformer localisation’ and the VE peak number is shown under ‘Kurtosis beamformer notes’ (e.g. 

VE1 represents the first peak location). 

N Gender 

/ Age 

Interictal EEG MRI Spikes in 

recording 

Kurtosis 

beamformer 

localisation 

Kurtosis 

beamformer 

notes 

ECD localisation Resection Outcome 

1 F/25 R temporal Negative 9 - No VE candidate L temporal  (cluster) R temporal 4A 

2 F/29 L frontotemporal MTS L 13 R parietal VE4 best

candidate

L temporal (scatter) L temporal 1A 

3 M/29 R frontal and central Tumor RI 9 R frontal VE1 best

candidate

R frontobasal (anterior 

tumor boundary) 

(scatter) 

R Frontal / 

Insular 

3A 

4 M/52 - Tumor L frontal 2 - No VE candidate L frontal next to resection 

cavity (cluster) 

L temporal 4B 

5 F/46 - Tumor L frontal No spikes - - - L frontal 4B 

6 F/26 R neocortical 

posterior temporal 

Tumor R temporal 4 - Artefacts / No VE

candidate

R central  (cluster) R temporal 1A 

7 M/28 L frontotemporal Tumor L frontal 6 L frontal VE4 best

candidate

L frontal  (scatter) L frontal 1A 

8 M/40 - Tumor RF 

(extends to LF) 

No spikes L central VE1 best

candidate

L central (cluster) R frontal 4C 

9 M/23 L temporal Tumor L temporal 16 R Frontal VE2  best

candidate

L central (cluster) L temporal 1A 

10 F/33 L neocortical fronto- 

and medial temporal 

Mesial Temporal 

Sclerosis L 

8 L temporal VE2 best

candidates

L temporoparietal 

(cluster) 

L temporal 1A 

11 F/52 L>R frontotemporal Mesial Temporal 

Sclerosis L 

4 L temporal VE1 best

candidate

- L temporal 1A 
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12 F/43 R and L 

frontotemporal 

Mesial Temporal 

Sclerosis R 

12 R frontal VE1 best 

candidate 

R neocortical 

temporoparietal  (cluster) 

R temporal 1A 

13 M/20 R frontal Dysplasia R 

frontal 

113 R frontal VE2 best 

candidate 

R frontal and R temporal 

(scatter) 

R frontal 1A 

14 F/29 R>L frontotemporal Optic tumor 85 R temporal VE1 best 

candidate 

R medial temporal 

(cluster) 

R temporal 1A 

15 F/48 L neocortical medial 

and posterior 

temporal 

Resection L 

temporal 

9 L temporal VE9 best 

candidate 

L neocortical temporal 

(cluster) 

L temporal 1A 

16 F/33 - Tumor L temporal 16 R temporal VE3 best 

candidate 

L temporal behind lesion 

(cluster) and R temporal  

(cluster) 

L frontal 3B 

17 M/38 L > R neocortical 

frontotemporal 

Negative 4 R frontal VE1 best 

candidate 

L centroparietal (cluster) L temporal 2A 

18 M/47 L frontotemporal Mesial Temporal 

Sclerosis L 

215 L temporal VE1 best 

candidate 

L temporal (cluster) L temporal 1A 

19 F/28 L>R temporal Multiple 

cavernomas 

12 L parietal VE3 best 

candidate 

L temporoparietal 

(scatter) 

L temporal 1A 

20 F/30 L and R 

frontotemporal 

Dysplasia R 

frontal 

12 R frontal VE1 best 

candidate 

Frontocentral, 

lateralization not possible 

(scatter) 

R frontal 1A 

21 M/39 Frontotemporal, 

lateralization not 

possible 

Bleeding R 

temporal + frontal 

19 R temporal VE1 best 

candidate 

R temporal (cluster) R temporal 2A 

22 M/52 L>R frontotemporal Mesial Temporal 

Sclerosis L 

8 L temporal VE5 best 

candidate 

L Frontal (cluster) L temporal 1A 

Abbreviations: N: patient number, ECD: equivalent current dipoles, F: female, M: male, L: left, R: right, VE: virtual electrode, - : uninterpretable localisation.
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ECD localisations were concordant with the resection cavity in 10/13 seizure-free 

patients (77%) (5 direct overlap and 5 partial overlap) (Table 5.3). In patients with 

persistent seizures, 5/7 patients (71%) (2 direct overlap) had discordant results. The 

accuracy was lower for the ECD localisation (50%) compared to the kurtosis 

beamformer localisation (56%) on a sublobar level, but was higher on a lobar level 

(75% for ECD analysis and 67% for kurtosis beamformer) (Table 5.3). The differences 

between the two methods remained non-significant at both the sublobar (χ2 (1) = 

0.117, p = 0.76) and lobar level (χ2 (1) = 0.320, p = 0.72). 

The concordance of the two methods were moderate to high regardless of surgery 

outcome (Table 5.2). For seizure-free patients with an interpretable localisation by 

both methods, the kurtosis beamformer coincided with ECD localisations in 7/12 

patients (58%) (six direct overlap and one partial overlap). In the patients with 

persistent seizures, the kurtosis beamformer corresponded to the ECD localisation in 

4/5 patients (80%) (three direct overlap and one partial overlap). In total, the kurtosis 

beamformer co-localised with the ECD analysis in 9/17 (53%) on a sublobar level and 

in 11/17 (65%) on a lobar level (Table 5.3).  

More specifically, the kurtosis beamformer resulted in a more accurate localisation 

than the ECD analysis in six patients. Of these, the kurtosis beamformer candidate 

source directly overlapped with the resection area in two patients, whereas the ECD 

localisations were either uninterpretable (patient 11) or localised to another lobe 

(patient 22). In patients 7, 13 and 20 the ECDs were scattered and fell both inside 

and outside of the resection area, whereas the kurtosis beamformer produced an 

unambiguous source (i.e. the virtual electrode showed clear spiking activity). For 

example, in patient 20, the ECDs were widespread, whereas the kurtosis beamformer 

directly overlapped with the resection area. In a further patient (patient 10), the 

kurtosis beamformer candidate source was adjacent to the resection area in the 

anterior temporal lobe, whereas the ECDs localised to a more posterior area near the 

temporal-parietal junction.
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Abbreviations: ECD: equivalent current dipoles, - : uninterpretable localisation

Patient Surgery outcome Concordance Kurtosis/resection Concordance ECD/resection Concordance Kurtosis/ECD 

     Seizure-free patients 

2 1A Discordant Concordant, partial overlap Discordant 

6 1A - Discordant - 

7 1A Concordant, direct overlap Concordant, direct overlap Concordant, direct overlap 

9 1A Discordant Discordant Discordant 

10 1A Concordant, partial overlap Concordant, partial overlap Discordant 

11 1A Concordant, direct overlap - - 

12 1A Discordant Concordant, partial overlap Discordant 

13 1A Concordant, partial overlap Concordant, direct overlap Concordant, direct overlap 

14 1A Concordant, partial overlap Concordant, partial overlap Concordant, direct overlap 

15 1A Concordant, direct overlap Concordant, direct overlap Concordant, direct overlap 

18 1A Concordant, direct overlap Concordant, direct overlap Concordant, direct overlap 

19 1A Discordant Concordant, partial overlap Concordant, partial overlap 

20 1A Concordant, direct overlap Concordant, direct overlap Concordant, direct overlap 

22 1A Concordant, direct overlap Discordant Discordant 

     Patients with persistent seizures 

1 4A - Discordant - 

3 3A Concordant, partial overlap Concordant, direct overlap Concordant, partial overlap 

4 4B - Discordant - 

5 4B - - - 

8 4C Discordant Discordant Concordant, direct overlap 

16 3B Discordant Discordant Concordant, direct overlap 

17 2A Discordant Discordant Discordant 

21 2A Concordant, direct overlap Concordant, direct overlap Concordant, direct overlap 

Table 5.2. Concordance between kurtosis beamformer localisation, resection cavity, and ECD localisation. 
Surgery outcome is provided in Engel classes. 
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Abbreviation: ECD: equivalent current dipoles 

*For the concordance between kurtosis beamforming and ECD analysis, the resection area and surgery outcome was not taken into account, hence

sensitivity, specificity and accuracy could is not calculated.

Concordance Kurtosis/resection Concordance ECD/resection Concordance  Kurtosis/ECD* 

Direct overlap 

(sublobar 

concordance) 

Partial + direct 

overlap (lobar 

concordance) 

Direct overlap 

(sublobar 

concordance) 

Partial + direct 

overlap (lobar 

concordance) 

Direct overlap 

(sublobar 

concordance) 

Partial + direct 

overlap (lobar 

concordance) 

Seizure-free 

patients 
6/13 9/13 5/13 10/13 6/12 7/12 

Patients with 

persistent 

seizures 

1/5 2/5 2/7 2/7 3/5 4/5 

Total 7/18 11/18 7/20 12/20 9/17 11/17 

Sensitivity 46% 69% 38% 77% 

Specificity 80% 60% 71% 71% 

Accuracy 56% 67% 50% 75% 

Table 5.3. Sensitivity, specificity and accuracy for the concordance between kurtosis 
beamformer localisation, resection cavity, and ECD localisation. 



107 

 In patients 2, 12 and 19, the kurtosis beamformer candidate sources were discordant 

with the resection cavity, whereas the ECD localisations partially overlapped. These 

patients did produce kurtosis beamformer peaks in areas concordant with the 

resection area but based on our inspection of the virtual electrode time series an 

alternative candidate source was selected.
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Figure 5.2. Examples of all seizure-free patients, in whom the kurtosis beamformer results were concordant (sublobar and lobar overlap) with 
the resection cavity. Left: the preoperative structural MRI is shown in three views with overlays of the resection area (milky area), kurtosis 
beamformer results (hot / orange), placement of the VE in the kurtosis peaks (green dots), and ECD location (blue dots). The empty green 
circle centres on the best VE candidate for the kurtosis beamformer results. Slice views are centred around the kurtosis beamformer candidate 
source, therefore not all ECD point sources are visible. Right: A four second segment of the virtual electrode time series corresponding to the 
candidate source (the virtual electrode chosen as the kurtosis beamformer localisation) for each patient. 
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5.4 Discussion 

5.4.1 Key Findings 

The kurtosis beamformer candidate sources were compared to the clinical ECD 

analysis and the resection area in both seizure free and seizure persistent patients. 

We found that the kurtosis beamformer provided an interpretable localisation in the 

majority of patients (18/22). Of these, the candidate source was contained within the 

resection lobe in 9/13 seizure-free patients and in 2/5 patients with persistent 

seizures, yielding an accuracy of 67% on a lobar level. The kurtosis beamformer had 

a higher accuracy than the ECD analysis on the sublobar level (56% and 50%, 

respectively) but not on the lobar level (67% and 75%, respectively).  

Previous studies that have evaluated the kurtosis beamformer relative to the seizure 

onset zone in iEEG found lobar concordance in the majority of patients (e.g., Tenney 

et al. 2014: 16/20; Wu et al. 2014: 20/30 patients; Zhang et al. 2011: 13/20). It can be 

suggested that the gold standard for evaluating the performance of a clinical source 

localisation method is by measuring its spatial concordance with the resection area in 

seizure-free patients (i.e. the epileptogenic zone). In this study, kurtosis beamforming 

was evaluated by retrospectively comparing its output to the resection area in 

combination with surgery outcome. This study found a higher level of concordance 

between the kurtosis beamformer and the epileptogenic zone (9/13) relative to a 

similar study by Guggisberg et al. (2008) who reported a concordance of 3/11 in 

seizure-free patients. A key difference between the two studies is that Guggisberg 

and colleagues did not visually inspect the virtual electrode time series corresponding 

to the kurtosis beamformer peaks. 

It is important to reiterate the necessity for inspecting the virtual electrode time series 

to rule out artefacts, ensure that kurtosis peaks contain spikes, and to determine the 

relationship between multiple foci (Rose et al., 2013; Scott et al., 2016).  This manual 

verification step still involves the visual assessment of time series, but only for a small 

set of virtual electrodes with higher SNR relative to 250+ physical sensors. We found 

this step not to be as extensively time-consuming as previously suggested (Zhang et 

al., 2011; Wu et al., 2014). Furthermore, to reduce visual inspection time, a peak-to-
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root mean square ratio algorithm can be used to automatically mark spikes in the 

virtual electrode time series (Kirsch et al., 2006).

In this study, visual inspection of the virtual electrodes that corresponded to the 

volumetric kurtosis peaks inside the head was critical (5-10 peaks per patient). The 

highest peaks were not necessarily the best candidates and visual inspection helped 

to identify sources that coincided with the EZ despite the presence of artefacts. Scott 

et al. (2016) suggested reviewing the first five kurtosis peaks, which may work well 

for artefact-free MEG recordings. In contrast, our datasets included several 

recordings with noisy channels and muscle artefacts, despite our efforts to minimise 

these. This resulted in multiple artefact-driven peaks. Patient compliance is therefore 

important for limiting excessive or re-occurring physiological artefacts (e.g. jaw 

clenching) that may bias the kurtosis metric towards spurious sources.  

Another goal of this study was to compare the kurtosis beamformer to the original 

clinical ECD analysis. Overall, the two methods showed a moderate overlap with one 

another (53% sublobar, 65% lobar), which is consistent with other studies showing 

similar or higher lobar agreements (Kirsch et al., 2006; Wu et al., 2014; Zhang et al., 

2011). The kurtosis beamformer achieved a higher accuracy at the sublobar level, 

whereas the ECD analysis showed a higher accuracy at the lobar level. Importantly, 

our findings demonstrated how the kurtosis beamformer can provide additional 

information to the ECD analysis. In two seizure free patients (11 and 22), the kurtosis 

beamformer localised sharp atypical activity to the epileptogenic zone (direct overlap) 

whereas the ECD analysis resulted in discordant localisations. The clinical value of 

localising sharp atypical activity remains to be established, however, the ability to do 

so may be useful in the absence of clear spikes. In three additional patients (7, 13 

and 20), ECD scatters fell both inside and outside of the resection area, whereas the 

kurtosis beamformer gave an unambiguous localisation within the resection area. This 

suggests that the kurtosis beamformer may instil confidence into the ECD analysis 

results, particularly when ECDs are scattered. 

It was also found that in three patients (2, 12, 19) ECD scatters localised the 

epileptogenic zone (partial overlap), whereby the kurtosis beamformer candidate 
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source did not. However, in these patients, the kurtosis beamformer produced 

multiple peaks containing spikes, some of which overlapped with the ECD scatters. 

The selection of the candidate source was incorrect in these patients even though the 

chosen source contained clear and robust localisation of spikes. This reaffirms that 

interictal spikes are not necessarily an index of the epileptogenic zone (Luders et al., 

2006) and can occur in distant or contralateral regions (Zumsteg et al., 2005).  This 

finding highlights the need to interpret the kurtosis beamformer (as well as ECDs) in 

the context of all available clinical information, which we did not do in this study in 

order to test its performance in an unbiased way (this included being blind to the 

resection zone). Evaluating the kurtosis beamformer output in the context of available 

presurgical findings would have potentially improved our results, and is recommend 

in clinical practice. 

A higher accuracy for the kurtosis beamformer on the lobar and sublobar level relative 

to ECD has previously been reported (Tenney et al., 2014, Wu et al., 2014). 

Differences with our results may simply be due to differences in patient population 

and MEG devices, or could be due to the few spikes in our recording (median: 9 

spikes) (see Table 1 for spike count). It could therefore be argued that there were too 

few spikes for an optimal localisation, as Guggisberg et al. (2008) has demonstrated 

that accuracy increases when analysing recordings with more than 50 spikes. This is 

reflected in this study, as the kurtosis beamformer localised the epileptogenic zone in 

all three patients who produced more than 50 spikes (patient 13,14, and 18). 

Ultimately, the overall performance of both approaches in this study were comparable. 

5.4.2 Limitations 

A limitation that affects the comparison of the kurtosis beamformer with ECD analysis 

is the spatial extent of the localisation. For instance, the kurtosis beamformer 

candidate source was expressed as a single point source, whereas the ECD analysis 

resulted in multiple point sources that could be clustered or scattered across lobes. 

For example, in patient 13 the kurtosis peak is adjacent to the resection area whereas 

the dipoles are both within and outside the resection area. Other studies comparing 

these two methods demonstrated a higher accuracy for the kurtosis beamformer on 

a sublobar level (Tenney et al., 2014) and lobar level (Tenney et al., 2014, Wu et al., 
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2014). This difference may be a result of only selecting a single peak to represent the 

kurtosis beamformer output, whereas other studies included all localisations 

containing kurtosis peaks. Another limitation in comparing the kurtosis beamformer to 

the resection area is that the resection site may have been influenced by the ECD 

findings as they formed part of the original presurgical findings. 

5.4.3 Future Research 

Recently, a sliding SAM(g2) approach (SAMepi) has been proposed in order to 

maximise the kurtosis value for sources that produce very frequent spikes (Scott et 

al., 2016; Harpaz et al., 2015). The problem often encountered in our patient 

population is that patients tend to produce few interictal spike (Nissen et al., 2016) 

and may therefore not benefit from this approach. The dependence on spikes is a 

general limitation of both kurtosis beamforming and ECD analysis, hence alternative 

methods are needed to generate hypotheses regarding the epileptogenic zone in the 

absence of spikes. The placement of virtual electrodes in suspected source locations, 

for example based on MRI and EEG findings, may assist in this situation (Hillebrand 

et al., 2016). Furthermore, it has been shown that network analysis can identify the 

epileptogenic zone in MEG data without interictal spikes (Nissen et al., 2017). Future 

research should continue to focus on developing and validating methods that detect 

the full spectrum of epileptiform activity (e.g. high frequency oscillations, spikes, 

atypical slow waves), as well as investigating spike-independent approaches.  

5.4.4 Conclusion 

This chapter demonstrates that kurtosis beamforming performs comparably to ECD 

but with fewer subjective steps and less a priori information to guide the analysis. This 

objective approach allows for more time efficient analysis and is particularly useful for 

less experienced MEG technicians. Furthermore, kurtosis beamforming can assist the 

ECD analysis by instilling confidence in ECD localisations (particularly when 

scattered) and in some cases localise unknown or unexpected sources. Based on 

this, it is proposed that kurtosis beamforming should be integrated into existing clinical 

protocols to assist in generating hypotheses regarding the epileptogenic zone. This 

could be achieved with little additional effort by taking the agreement of both 
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approaches (similar to de Gooijer-van de Groep et al. 2013) and in cases where the 

methods are discordant, virtual electrodes can be placed in the kurtosis peaks and 

ECD centroids to determine clinical relevance. Kurtosis beamforming could also be 

used as a first pass analysis to estimate the number of probable sources to model 

and to automatically identify spikes in the time series. This may assist in the early 

subjective steps encountered during the ECD analysis.  

The heterogeneous patient cohort used in this study is representative of the patients 

typically referred to MEG for presurgical evaluation in our centre. The generalisability 

of these findings may benefit from larger patient studies whereby kurtosis 

beamforming can be evaluated in subgroups, such as temporal or frontal lobe 

epilepsy patients. A further limitation is that proprietary software was used to analyse 

the data and therefore limits replication. Open source approaches to computing the 

kurtosis beamformer may facilitate larger multicentre studies whereby data from 

different sites and MEG platforms can be pooled together and analysed using a 

standardised set of analysis scripts. The next chapter will briefly outline an open 

source version of the kurtosis beamformer to help facilitate such studies. 
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Chapter 6: Open Source Kurtosis Beamformer 
Pipeline 

 6.1 Introduction 

Standardised clinical tools, such as the kurtosis beamformer in open source software 

could facilitate multi-site collaborations and the pooling of data across multiple MEG 

platforms. This type of multicentre collaboration and the use of standardised analyses 

is one of the aims of the MRC-MEG UK partnership, hence the motivation for this 

chapter. This would allow larger clinical studies to be conducted and greater flexibility 

to improve and modify code (e.g. in MATLAB), as opposed to proprietary software 

with limited access (e.g. Elekta software). For example, Prendergast et al. (2013) 

suggested modifications to the source orientation selection routine to increase the 

accuracy of the kurtosis beamformer by optimising for kurtosis instead of power. This 

suggestion and the integration of other modifications (e.g. SAMepi, Harpaz et al., 

2015) are impossible to integrate within the current Elekta and CTF software. 

Alternatively, an open source environment would facilitate greater access to the code, 

allowing improvements to be integrated and tested by the wider user community.  

This brief chapter acts as an extension to the previous chapter with the aim of 

developing an open source kurtosis beamformer pipeline. Importantly, this pipeline 

can be implemented using data from any of the main MEG platforms5. This pipeline 

uses the Fieldtrip functions and is applied to two patient datasets that were acquired 

on the same day in both CTF and Elekta MEG systems at the ABC. For validation, 

the source localisations for these datasets are compared to the results gained from 

their respective vendor kurtosis beamformer software.  

5 Supported MEG data fromats: CTF, Elekta/Neuromag, 4D/BTi, Yokogawa. 
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6.2 Methods 

6.2.1 Patient Data Acquisition 

Two patients were recorded at the Aston Brain Centre on the same day using a 275 

channel CTF MEG system (MISL, Coquitlam, Canada) and an Elekta Neuromag Triux 

(Elekta Neuromag Oy, Helsinki, Finland). The CTF data was sampled at 1200Hz with 

an anti-aliasing filter of 300 Hz, and a third order gradiometer configuration. The 

Elekta data was sampled at 2000 Hz with a 330 Hz anti-aliasing filter and 0.1 Hz high-

pass filter. The Elekta data was tSSS filtered and motion corrected using a sliding 

window of 10 s and a subspace correlation limit of 0.9 (Maxfilter version 2.2, Elekta 

Neuromag Oy). In both MEG platforms, non-continuous epochs of data were acquired 

lasting between 2-5 minutes in the seated upright position. Data from both scanner 

platforms were coregistered using the head surface matching algorithm described in 

chapter 2.  

6.2.2 Fieldtrip Kurtosis Beamformer 

This kurtosis beamformer implementation is fundamentally the same as the pipeline 

described in the previous chapter, however a conventional beamformer was used as 

opposed to an SSS-beamformer. In the Fieldtrip toolbox for MATLAB (Oostenveld et 

al., 2011), data were band-pass filtered from 20 to 70Hz, a single shell head model 

was generated based on the segmented brain and a 5mm source space grid was 

used. A single covariance window spanning the entire dataset was used and a scalar 

LCMV beamformer was used to estimate the source time series for each location in 

source space. The kurtosis function in MATLAB was iteratively applied to each of the 

source time series to generate a volumetric kurtosis image. A peak finding algorithm 

written in MATLAB was then used to find local maxima within the volumetric image. 

For the analysis, the top peak location was plotted and the corresponding virtual 

electrode was reconstructed by applying the beamformer weights for that location to 

the data. Figure 6.1 shows a basic schematic of the fieldtrip functions used in this 

pipeline. Example code can be downloaded from https://osf.io/95k8f/. 
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6.2.3 SAM(g2) and Spikiness Beamformer 

To compare the Fieldtrip localisations with some form of standard, the CTF SAM(g2) 

and Elekta Spikiness Beamformer was also computed in the CTF and Elekta datasets, 

respectively. The implementation of these methods were the same as described in 

the previous chapter, however the Elekta Spikiness Beamformer was computed using 

Beamformer version 3.0 (Elekta Neuromag Oy) and used a single shell BEM model 

generated in the Xfit software (version 5.5.18, Elekta Neuromag Oy). The SAM(g2) 

beamformer was computed in the ctf-5.1 software (MISL, Coquitlam, Canada) and 

used a multiple local spheres model. 

Figure 6.1. The Fieldtrip functions used in the kurtosis beamformer. Note kurtosis 
is applied using the MATLAB kurtosis function and the find peaks algorithm is in-
house code. 
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6.3 Results 

The open source pipeline implemented in Fieldtrip indicates concordant localisations 

between the CTF and Elekta datasets, and spatial concordance with the results 

produced in the respective vendor software. 

Figure 6.2. Example 1 of the Fieldtrip kurtosis beamformer. A) The Fieldtrip kurtosis 
beamformer volumetric images for CTF and Elekta data. The peak source 
localisations are indicated by the blue cross hairs and corresponding virtual 
electrodes are plotted underneath. B) The CTF SAM(g2) and Elekta Spikiness 
Beamformer localisations for the same datasets. For CTF SAM(g2) data, the peak 
source is indicated by a green dot. For the Elekta Spikiness data, the peak source is 
indicated by the green target. 
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In example 1 (Figure 6.2), the first volumetric peak from the Fieldtrip kurtosis 

beamformer show similar results for both the CTF and Elekta datasets. These peaks 

localise to areas adjacent to an anatomical lesion in the right parietal lobe. The virtual 

electrodes corresponding to the top peaks are plotted below the volumetric images 

and clearly show spiking activity several magnitudes larger than the background 

activity. For comparative purposes, the kurtosis beamformer was also implemented 

in the CTF SAM(g2) and in the Elekta Spikiness beamformer software for the CTF 

and Elekta data respectively. Both volumetric images indicate regions close to the 

regions identified by the Fieldtrip kurtosis beamformer, although the peak locations 

were not identical.  

Example 2 (Figure 6.3) further demonstrates concordant localisations between the 

top peak locations in the CTF and Elekta datasets. The corresponding virtual 

electrode time series again shows clear spikes above baseline activity. The first peak 

in the CTF SAM(g2) volumetric image also coincides with the anatomical region 

identified by the Fieldtrip results. Further, the Elekta Spikiness beamformer indicates 

the same region, however this was the second volumetric peak. The first volumetric 

peak indicated a region in the right parietal lobe not visible on the slice view in Figure 

6.3. 
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Figure 6.3. Example 2 of the Fieldtrip kurtosis beamformer. A) The Fieldtrip kurtosis 
beamformer volumetric images for CTF and Elekta data. The peak source 
localisations are indicated by the blue cross hairs and corresponding virtual 
electrodes are plotted underneath. B) The CTF SAM(g2) and Elekta Spikiness 
Beamformer localisations for the same datasets. For CTF SAM(g2) data, the peak 
source is indicated by a green dot. For the Elekta Spikiness data, the peak source is 
indicated by the green target. 
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6.4 Discussion 

This brief chapter outlined an open source implementation of the kurtosis beamformer 

in order to work towards a standardised pipeline that could be used to pool data from 

different sites and MEG platforms to facilitate a multi-centre clinical study. The results 

demonstrated that the Fieldtrip kurtosis beamformer implementation is able to localise 

voxels that contain interictal spikes and that these localisations correlate well with the 

MEG vendor software. The advantage of the method used was that the same patients 

were measured in both CTF and Elekta MEG platforms on the same day. The results 

showed that for examples 1 & 2, the top peak locations were concordant but not 

identical. This is likely to be a result of the differences in the sensor configurations 

and noise profiles of the two systems, alongside physiological and spiking variability 

between sessions (Ou et al., 2007).  

To further establish the kurtosis beamformer pipeline in Fieldtrip, a more systematic 

comparison will be undertaken. This will also involve an implementation in the MNE 

software. This comparison will compare spatial locations and corresponding virtual 

electrodes from a series of patients recorded in both CTF and Elekta MEG systems. 

This is a worthwhile venture as Elekta are no longer distributing the spikiness 

beamformer to new sites and the CTF software is outdated leading to compatibility 

issues with newer operating systems.  
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Chapter 7: Rank Vector Entropy 

7.1 Introduction 

Chapter 5 demonstrated how kurtosis beamforming can provide additional value to 

the clinical analysis of MEG data in patients with complex etiologies. However, as 

demonstrated, these techniques do not always accurately localise the epileptogenic 

zone and therefore additional approaches are required to improve the sensitivity of 

presurgical MEG. This proof of concept chapter outlines the use of a novel measure 

to analyse the MEG signal with the goal of providing additional value in the presurgical 

evaluation of drug resistant epilepsy patients.  

As mentioned in the discussion of chapter 5, the dependence on spikes with a 

relatively good SNR is a general limitation of common clinical MEG analysis 

techniques. Patients referred to the ABC can often have ambiguous spiking patterns 

and may only exhibit atypical slow-wave activity or other transient abnormalities that 

do not lend themselves well to ECD fitting or kurtosis beamforming (see Figure 7.1). 

Furthermore, these patients may only produce low amplitude spikes that are difficult 

to detect and localise. Based on these observations, it is important to develop novel 

signal processing techniques that are able to detect the full spectrum of epileptiform 

activity to yield useful information in patients that do not produce high SNR interictal 

spikes. A way to achieve this could be by looking at the moment-to-moment variability, 

or entropy, within the signal. 
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7.1.1 Entropy 

Typically, neural activity is modelled by defined narrow-band oscillatory signals (theta, 

delta, alpha, beta, gamma) and are thought to be coupled to one another via networks 

(Robinson et al., 2012). A recent review by Garrett et al. (2013) proposed an 

alternative concept for measuring neural responses by assessing the moment-to-

moment signal variability to study human brain functioning in health and disease. 

Entropy is a metric that can be used to quantitatively measure the variability, or 

disorder, in a system. Measures of source space entropy in MEG can therefore allow 

the spatiotemporal assessment of disorder in the brain (Brookes et al., 2014). Signals 

that have low predictability and high variability (e.g. Gaussian noise) result in high 

entropy, whereas signals with high predictability and low variability (e.g. oscillations) 

exhibit low entropy (Brookes et al., 2014). 

Figure 7.1. An example of a patient recorded at the Aston Brain Centre who did not 
produce any interictal spikes during the 45 minute recording session. This dataset 
contained bursts of high amplitude slow-wave activity over the right temporal sensors.  
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7.1.2 Rank Vector Entropy 

Research into entropy has often been limited by studies involving EEG/MEG sensor 

space analysis or by only assessing the long term properties of entropy and therefore 

lacking temporal resolution. This includes studies using Lempel-Ziv complexity 

(Fernandez et al., 2011), transfer complexity (Vakorin et al., 2010) and the 

comparison of multiple entropy measures (Bruna et al., 2012). Sliding block methods 

have previously been used to estimate temporal changes in entropy (Adler and 

Marcus, 1979), however are computationally inefficient when applied to thousands of 

voxels. 

Alternatively, Robinson et al. (2013) developed a methodology, rank vector entropy 

(RVE), to measure the broadband, non-linear properties of the MEG signal in source 

space (Robinson et al., 2013). RVE is a non-parametric measure of entropy that 

estimates the complexity of information contained within a neurophysiological signal 

based on the probability distributions of “brain states” (Robinson et al., 2013). The 

Figure 7.2. Left: Simulated signal (1-20Hz), and Right: Rank Vector Entropy (RVE) 
transform of the same signal.  See Appendix1, for information on signal generation. 
The first 50 seconds of the signal are composed of ‘brain-like’ oscillations, and the 
latter 50 seconds is random noise. The RVE signal is low for the brain-like oscillatory 
signal and increases for the random noise, demonstrating that signals with less 
predictability exhibit high entropy. 
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novel aspect of RVE is its initial encoding of the time series that rank orders n-samples 

in respect to their magnitude. A sliding window containing n-samples is then 

progressed through the time series resulting in a rank vector for each set of samples 

(see section 3.1.4 for method).  This method is therefore invariant to the absolute 

signal amplitude of the time series and only regards the relative amplitude within each 

window.  

Robinson and colleagues demonstrated the application of RVE in various MEG 

experiments including a resting state and auditory oddball task. It was reported that 

under resting state conditions there was no correlation between the temporal and 

spatial patterns of RVE and the Hilbert envelope of power (4-150Hz).  The auditory 

oddball task however revealed reductions in entropy coinciding with the N100m peak 

for frequent and combined tones. Interestingly, for rare tones, there was a slow 

increase in entropy starting at approximately 250ms corresponding to the mismatch 

negativity signal. This asynchronous neural activity suggests that increases in entropy 

may therefore signify the engagement of attentional mechanisms. 

The potential advantage of RVE is that it is independent of absolute amplitude and 

therefore sensitive to other properties of the signal that conventional approaches are 

not.  When considering this method in the context of epilepsy patients referred for 

MEG at Aston (equivocal spiking patterns, low amplitude spikes, abnormal low 

frequency waves), RVE may be useful in detecting a range of epileptiform activity, 

including; typical interictal spikes (20-70Hz), slow waves (<10Hz), low SNR spikes 

and other transient abnormalities. RVE may therefore produce a more complete 

picture when attempting to detect and localise abnormal activity embedded in the 

patient’s source time series.  

Due to the limited research on RVE and its novel application in epilepsy, this chapter 

is exploratory to the extent that it aims to answer whether RVE is able to localise areas 

of interest in patients being evaluated for surgery and if so, what additional value can 

it provide. If we take what is known about epilepsy and the generation of ictal and 

interictal epileptiform activity (i.e. the hypersynchronisation of neural assemblies), it 

can be hypothesised that entropy will decrease during these periods of time. Interictal 



126 

spikes for example have a clear rise and drop that is likely to result in the generation 

of a predictable signal. Similarly, a burst of abnormal slow-waves will also have a 

highly predictable oscillatory signal and would be expected to cause a decrease in 

signal entropy.  

7.1.3 Aims 

To test the entropy reduction hypothesis, this chapter will first evaluate whether the 

RVE signal decreases in response to single virtual electrode time series containing 

interictal spikes. Secondly, RVE will be applied to whole-head source time series to 

determine whether RVE is able to provide valuable spatial localisations regarding the 

irritative zone and assess its suitability in detecting different types of transients. In this 

chapter, RVE is applied to both Elekta and CTF datasets, demonstrating the use of 

this methodology across different scanner platforms. 

7.2 Method 

The original MATLAB code for the RVE method was provided by Dr Matthew Brookes 

(Nottingham University) and was specific to CTF datasets. The RVE method had not 

yet been tested on epilepsy datasets, therefore initial testing was carried out on single 

virtual electrodes in CTF data (section 3.1). Based on these findings, considerable 

work was carried out to adapt the code to run a beamformer and RVE transformation 

on Elekta data (section 3.2). This was done in order to provide a pipeline for future 

use in the ABC. The development of the Elekta RVE code also reduced processing 

time to 2.5 hours (originally 22-24 hours on an 16GB, 12 core machine). This involved 

introducing parallel processing (parfor) in the MATLAB code where possible and the 

RVE computations were carried out in C++ before being saved back as a MATLAB 

variable. Code development was completed with the assistance from Dr Caroline 

Witton.  
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7.2.1 Patients 

Eight paediatric drug resistant epilepsy patients with various spiking patterns and 

etiologies were included in this study. These patients were selected as they reflected 

the diverse range of paediatric patients that are referred to the ABC for MEG.  These 

patients were recorded at the ABC as part of their ongoing presurgical evaluation and 

previous clinical analysis had been performed on them as part of their presurgical 

workup.  

7.2.2 MEG Data Acquisition 

As described above, initial testing was carried out using CTF data (patients 1-4) and 

further application of the RVE method was carried out on Elekta data (patients 5-8).  

7.2.2.1 CTF data 

MEG data was acquired from four patients (patients 1-4) using a 275 channel CTF 

MEG system (MISL, Coquitlam, Canada) with an anti-aliasing filter of 300 Hz, and a 

third order gradiometer configuration in a three layer (inner mu metal) magnetically 

shielded room (Vacuumschmelze GmbH, Hanau, Germany). Non-continuous epochs 

of data were acquired lasting between 2-5 minutes, resulting in a total recording time 

ranging between 45-90 minutes. Data was recorded in the seated position, and 

sampled at either 600, 1200, or 2400Hz. All datasets sampled above 600Hz were 

subsequently downsampled to 600Hz for the RVE analysis.  Three fiducial coils were 

attached to the patient for head localisation.  

7.2.2.2 Elekta data 

 Four patients were recorded using an Elekta Neuromag Triux system (Elekta 

Neuromag Oy, Helsinki, Finland) with 306 channels (102 magnetometers and 204 

gradiometers) in a magnetically shielded room (Vacuumschmelze GmbH, Hanau, 

Germany). The acquisition protocol involves 5 minutes of eyes-open resting-state 

recordings obtained in the 68° seated upright position with a 2000 Hz sampling 
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frequency and online filtering (330 Hz anti-aliasing filter and 0.1 Hz high-pass filter). 

For the RVE analysis, all datasets were downsampled to 500Hz. Head localisation 

was performed by attaching 5 coils on the patient's head.  

Data from both scanner platforms were coregistered using the head surface matching 

algorithm described in chapter 2.  

7.2.3 Rank Vector Entropy Method 

The RVE algorithm was applied to the SAM source time series to produce RVE 

transformed source time series. The RVE algorithm operates by selecting lagged 

samples, ξ, by using the sampling rate, fs, and the low pass-filter frequency 

, fc: 

ξ = 	
$%

&$'
   (7.1) 

Therefore, a sampling rate of 600Hz and a low-pass filter of 150Hz would result in 

ξ=2, meaning every second sample point is selected for further analysis (ξ=2). If ξ is 

a non-integer then it is rounded to the nearest integer. A sliding sub-window of W 

lagged-samples (ξ intervals) starting at sample point i is then applied to the source 

times , and can be expressed as () = *+, *+-., *+-&., *+-/. 	…	*+- 123 . . This vector 

is then converted to its rank vector in relation to the magnitude order of the samples. 

For example, the vector () = 1.2		3.0		4.7		3.2		5.6  would yield the rank vector of 

=) = 1		2		4		3		5 . 

A state symbol is then allocated to the rank vector using a generated look up table 

that contains every possible rank vector. Given that ()	contains	(	samples the look 

up table will contain W! possible symbols. For example, if ( = 5 then the look up table 

will contain 120 unique rank vectors. A state symbol is allocated based on the 

hierarchal ordering of the rank vectors (e.g. =) = 1, 2, 3, 4, 5  would be allocated a 

symbol of 1). The window, Wk, then advances through the time series one lagged 

sample at a time (() = *+-., *+-&., *+-/., *+-I. 	…	*+- 123 . )	generating a new rank 

vector and state symbol at each iteration.  
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Wk is then advanced through the time series by incrementing i, generating a frequency 

histogram KL, which counts the frequency of each state symbol’s occurrence. For 

random data (e.g. neurophysiological data) there is an equal likelihood of each state 

symbol occurring and a flat frequency distribution would be the likely outcome yielding 

only the absolute entropy. A leaky integrator is used to quantify the temporal evolution 

of entropy. This allows the integration of the result across a function of time whilst 

‘leaking out’ information of previous states encountered. This leaky integrator is 

determined by introducing an integrator decay rate τ, whereby τ represents the time 

taken for histogram counts to decay by 1/e of their original value. This integrator decay 

rate is then used to calculate a time constant a whereby 

M = N*O −1/RS    (7.2) 

The time constant M	 is applied to each iteration of the algorithm so that KL = αKL2U  

where α must be <1 in order for the temporal dynamics of entropy to be estimated.  

The altered frequency distribution, KL, is then normalised by the absolute integral of 

all symbol frequencies to produce a probability distribution.  For each time point, 

Shannon’s entropy is then be computed. 

V(X) =
3

YZ [!
−OZ X ]^[!

Z23 OZ X         (7.3) 

The RVE parameters in the present study consisted of a time constant τ = 0.3s, 

sample lag ξ = 2, window length w = 5 and a band-pass filter frequency of 1-150Hz. 

These parameters are based on the original Robinson et al. (2013) study.  
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7.2.4 Virtual Electrode Selection 

To investigate the temporal evolution of RVE in response to epileptiform activity, a 

single virtual electrode (1-150Hz) from four patients (patients 1-4) was reconstructed 

at a coordinate identified by the kurtosis beamformer. The kurtosis beamformer 

method used was the same as that described in Chapter 5, however it was computed 

using the CTF SAM(g2) software (20-70Hz) using a local spheres head model. Before 

the RVE transformation was computed, each virtual electrode was visually screened 

to establish it contained spikes. After RVE transformation, minima in the RVE signal 

were marked using an automatic detection algorithm in MATLAB. This was achieved 

by inverting the signal and then computing the root-mean-square (RMS) of the data 

and using a peak finding algorithm to mark peaks in the data that pass a threshold of 

0.5. This threshold of 0.5 was arbitrary but reflected the small fluctuations observed 

Figure 7.3. A schematic of the RVE method. Source time series are estimated 
using a SAM beamformer and then converted into RVE time series. 
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in the RVE signal. The original RVE signal was then plotted and time points identified 

by the previous step were marked on the time series. This enabled the sufficient 

marking of time points relating to local minima allowing decreases in entropy to be 

visually compared to spikes in the virtual electrodes.  

7.2.5 Whole Head RVE Beamforming 

Data were motion corrected and filtered offline to remove artefacts using the temporal 

extension of signal space separation (tSSS) with a sliding windows of 10 s and 

subspace correlation limit of 0.9 (Maxfilter version 2.2, Elekta Neuromag Oy). Noisy 

channels were visually identified and excluded prior to tSSS. A single layer BEM 

model was generated based on the co-registered MRI scalp surface using the Xfit 

software (Xfit version 5.5.18, Elekta Neuromag Oy). A scalar Elekta SSS-Basic 

Beamformer (Beamformer version 3.0, Elekta Neuromag Oy) was applied to the 

continuous data (1-150Hz) to estimate the source time series of each brain location 

(5mm resolution).  

The beamformer source time series were then inputted into the RVE algorithm to 

compute RVE source time series. RVE time series were then standardised (z-score) 

and a functional volumetric image was computed by taking the absolute minimum 

value of each RVE time series. A local minima algorithm was used in the mri3dX 

software to generate a list of ‘peak’ (minima) locations.  

7.3 Results 

7.3.1 Single virtual electrode RVE analysis 

To test the hypothesis that interictal discharges cause a reduction in entropy, i.e. a 

reduction in the RVE signal, virtual electrodes in four patients were identified using a 

kurtosis beamformer and then transformed into RVE time series. These virtual 

electrodes contained various types of epileptiform activity. To assist in the visual 

inspection of the time series, a peak finding algorithm was used to identify negative 
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peaks in the RVE signal represented by black dashed lines. The virtual electrode 

findings show a clear relationship between interictal activity and reductions in entropy. 

In Figures 7.4 - 7.7, the left set of time series show the RVE and VE time series across 

the whole epoch (120s), with the right set of time series showing a 10 second extract 

indicated by the transparent grey box. In patients 1-3, the 10 second segments show 

polyspike complexes in the virtual electrode and clear decreases in the RVE signal 

during the same time period. Similarly, patient 4 shows a small, transient sharp wave 

at ~118 seconds, which is also shown to be sensitive by RVE. This is further 

demonstrated in figure 7.7, whereby a 2 second segment is extracted to clearly 

Figure 7.4. Top: Kurtosis beamformer peak localisation (green dot) overlaid onto the 
patients T1 anatomical MRI. The functional overlay is thresholded to half the 
maximum value. Bottom: The rank vector entropy (RVE) time series (top) and the 
virtual electrode (bottom) corresponding to the kurtosis peak location. The left set of 
time series shows the entire epoch (120s), the right time series show a 10s selection 
showing the decrease in RVE signal and the epileptiform activity in the virtual 
electrode. 
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visualise the sharp wave. It is also evident that there is a small lag (<1s) in the RVE 

decreases relative to the discharge onset.   

In all four patients, it is notable that interictal discharges result in a decrease in the 

RVE signal, with the largest RVE decreases not necessarily corresponding to the 

largest spikes. Figure 5, for example shows how RVE is also sensitive to atypical 

slow-wave rhythms, whereby there is a comparable decrease in RVE relative to the 

Figure 7.5. Further examples from Patient 1: Reductions in RVE in relation to 
(A) polyspike and wave and (B) abnormal slow-wave activity. (C): The same
slow-wave activity displayed but band-pass filtered from 1-9Hz. Note the virtual
electrode amplitude differences between the polyspike and wave and the slow-
wave activity.
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clear polyspike complexes. Further, the polyspike and wave activity is of a much larger 

amplitude, yet reductions in RVE are consistent in both cases. 
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Figure 7.6. Patients 2 and 3 single virtual electrode analysis. Top row: Kurtosis 
beamformer peak localisation (green dot) overlaid onto the patients T1 anatomical MRI. 
The functional overlay is thresholded to half the maximum value. Bottom row: The rank 
vector entropy (RVE) time series (top) and the virtual electrode (bottom) corresponding 
to the kurtosis peak location. The left set of time series shows the entire epoch (120s), 
the right time series shows a 10s selection showing the decrease in RVE signal and the 
epileptiform activity in the virtual electrode. 
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Figure 7.7. Top row: Kurtosis beamformer peak localisation (green dot) used to identify 
the virtual electrode (VE) containing spikes. Bottom Row: The rank vector entropy (RVE) 
time series (top) and the original virtual electrode. The left time series shows the entire 
epoch (120s), the right time series show a 10s selection showing the decrease in RVE 
signal and the epileptiform activity in the VE. Time series indicated by the bold blue arrow 
shows the same 10 second time series and a 2 second extract indicating the decrease 
in entropy and corresponding spike.  
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7.3.2 Whole Head RVE 

The virtual electrode analysis demonstrated that in response to epileptiform activity 

there are observed decreases in the RVE signal. Based on this finding, RVE was 

applied to every voxel across the whole brain, and functional images were produced 

showing the minimum RVE value across the time series for each location in source 

space.  

Figure 7.8. Whole head RVE source plots in three patient examples. Functional overlays 
are calculated by taking the minimum value of each RVE time series for every location 
in source space. A subset of physical MEG sensors (blue waveforms), and VE/RVE time 
series (black waveforms) are plotted across 9 seconds.  
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In Figure 7.8, the RVE localisation for patient 5 is situated in an area coinciding with 

a perisylvian polymicrogyria. The right parietal sensors show a polyspike and wave 

complex that is also reflected in the virtual electrode for the spatial location and a clear 

reduction in RVE. The RVE localisation for patient 6 identifies an area in the right 

parietal lobe that had undergone two previous resections. Due to persistent seizures 

post-surgery this patient was referred to MEG for further evaluation. The right parietal 

magnetometers and virtual electrode data contain transient sharp waves that also 

result in a reduction in the RVE signal. Patient 7 had spikes across multiple MEG 

channels, however the top RVE ‘peak’ localised to an area contralateral to a glioma 

in the right parietal lobe. Despite the lack of spatial concordance with the visible lesion, 

the RVE time series contains multiple decreases in RVE in response to spike and 

wave discharges.  

7.3.3 RVE Post Surgical Example 

In a further attempt to investigate whether RVE is a potentially useful tool in detecting 

epileptiform activity, RVE was retrospectively computed on presurgical data of a 

patient who subsequently had a focal resection. The postsurgical follow up at 12 

months indicated that this patient was seizure-free, supporting the notion that the 

resected area was the epileptogenic zone. In Figure 7.9, RVE shows a spatial overlap 

with the resected area. This functional image is based on the time point that showed 

the lowest entropy value (not standardised in this example). In comparison, the 

kurtosis beamformer (10-80Hz) localises a source slightly posterior to the resection 

zone.   
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Figure 7.9. A comparison between the presurgical RVE and kurtosis beamformer 
localisations and subsequent resection area in a seizure free patient (at 12 months). (A) 
Post-operative MRI with the frontotemporal resection area indicated by the blue box. (B) 
RVE volumetric image at the time point showing the lowest RVE value plotted. (C) The 
kurtosis beamformer (10-80Hz) peak localisation.  
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7.4 Discussion 

This chapter aimed to investigate the temporal dynamics of entropy in a series of 

epilepsy datasets using RVE. The hypersynchronisation of neuronal populations 

underlying epileptiform activity led to the hypothesis that entropy will decrease as the 

signal becomes more predictable. This hypothesis was evaluated by applying RVE to 

real virtual electrode data to investigate how the RVE signal corresponds to various 

types of epileptiform activity. RVE was then applied to whole-head beamformer time 

series to determine whether it is able to provide valuable spatial localisations in 

identifying probable irritative zones. Finally, in a single patient with post surgical 

outcome information, RVE was retrospectively applied to investigate whether the RVE 

localisation was spatially concordant with the resection area.  

The single virtual electrode analysis revealed that RVE decreases in response to a 

variety of discharges including polyspike complexes, sharp waves, and abnormal slow 

wave rhythms. The virtual electrode analysis for patient 1 demonstrated that RVE is 

not necessarily dependent on amplitude, and in comparison to clear spike and wave 

discharges it can be equally sensitive to abnormal slow-wave activity of a lower 

amplitude. This finding suggests that RVE is sensitive to changes in entropy in the 

signal as opposed to just changes in amplitude. This could enable the identification of 

low amplitude spikes that are present in the source time series and assist in the visual 

identification of small spikes embedded in the MEG sensor time series.  

The clinical value of localising abnormal low frequency signals may be particularly 

useful in patients with tumour-associated epilepsy (Tran et al., 1997), however it still 

remains unclear whether these signals are a marker of epileptogenic regions, or 

simply a by-product of the lesion (Baayen et al., 2003). Nevertheless, as the presence 

of abnormal low-frequency signals often indicates pathological changes in the brain 

(Baayen et al., 2003), the ability to localise these signals may still be useful in patients 

who do not present with any other form of abnormalities when measured in MEG. This 

is particularly relevant for patients that are referred to the ABC as they do not always 

produce clear spikes despite a presentation of drug resistant epilepsy. Furthermore, 

unpublished MEG data from the ABC shows that abnormal low frequency signals can 
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occur in patients with MRI negative findings. These localisations could assist in 

supporting other presurgical findings, or help the re-evaluation of MRI data (e.g. MEG 

guided MRI, Funke et al., 2011). 

The single virtual electrode analysis demonstrated support for the hypothesis that en 

decreases in response to epileptiform activity. Based on these findings, probable 

irritative zones were identified across the whole brain by searching for volumetric 

peaks that contained the lowest RVE values. This was based on the notion that areas 

with the lowest RVE values would correspond to areas involved in the epileptic 

network (i.e. hypersychronised neurons). The RVE source for patient 5 localised to 

an area adjacent to a right lateralised perisylvian polymicrogyria and the virtual 

electrode for this coordinate showed multiple polyspike and waves. This patient’s 

lesion was extensive and the question asked upon referral was if MEG could 

determine an area of epileptogenic focality. RVE allowed a focal region to be 

localised, however post surgical findings are not available to determine the accuracy 

of this localisation. 

Patient 6 had previously undergone two fronto-parietal resections, however was 

referred for MEG due to persistent auras and seizures post-surgery. The volumetric 

image for patient 6 shows RVE peaks in an area surrounding the lesion indicating that 

the epileptogenic zone may not have been completely removed. This is likely due to 

the proximity of the epileptic focus to sensorimotor areas. Despite absent post-

surgical outcomes for this patient, RVE seems to provide a sensible localisation 

whereby decreases in the RVE time series correspond with epileptiform activity in the 

virtual electrode. 

 The top RVE peak in patient 7 localised to an area contralateral to a right parietal 

glioma. Despite this localisation being discordant to the lesion, it has previously been 

shown that in one third of patients with a cavernoma, spikes are present in the 

contralateral homologous site (Jin et al., 2007). These ‘mirror spikes’ are thought to 

the be the result of rapid propagation from the perilesion epileptogenic focus (Jin et 

al., 2007). This rapid propagation to the contralateral homologous site is likely to be 

facilitated by the sensorimotor network (Biswal et al., 1995; Brookes et a., 2011).  
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It is important to note that patients 5,6, and 7 are all considered ‘complex’ cases 

whereby their MEG data suggests a distributed epileptic network containing multiple 

spike generators with abnormalities present on multiple sensors. This diffuse activity 

consists of independent and coupled spike loci meaning that an ECD analysis may 

not have provided valuable localisation information. In these multifocal cases, the 

combination of an adaptive spatial filter and a metric sensitive to paroxysmal activity 

such as RVE may provide unique and valuable information not currently provided by 

standard techniques.  

 Patient 8 is an example of a focal case whereby we were able to gain a post-operative 

MRI and surgical outcome at 12 months. The minimum RVE value localises to an 

area that spatially overlaps with the area that was subsequently resected, leading to 

a seizure free outcome. It is therefore reasonable to conclude that in this scenario 

RVE was able to localise the epileptogenic zone. For comparative purposes, the 

kurtosis beamformer localisation is also given in Figure 9, indicating a region slightly 

posterior and superior to the resected area. In the virtual electrode corresponding to 

the RVE localisation, a MATLAB based spike detection algorithm marked 112 spikes, 

whereas the kurtosis beamformer virtual electrode contained 105 spikes. In this 

scenario it is possible that the source containing fewer spikes was favoured by the 

kurtosis beamformer as the g2 metric is biased to rare events (Harpaz et al., 2015).  
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7.4.1 RVE parameters 

A key parameter of RVE is that a broadband signal is optimal (e.g. 1-150Hz) for 

effectively estimating entropy in order to include information across multiple frequency 

bands. The use of a broad-band filter is ideal for studying epilepsy as signals contain 

both low and high frequency components (Jirsch et al., 2006; Westmijse et al., 2009). 

A further advantage of RVE is that there are less tunable parameters relative to other 

measures of entropy (e.g. Kolmogorov Entropy, Kolomogrov, 1958), which may allow 

the researcher to influence the outcome by changing the bins used (Robinson et al., 

2013). This allows for a simpler application and remains fairly user independent 

whereby the researcher is less able to bias results. However, a search for parameters 

optimal for epilepsy signals may be useful in order to ‘tune’ the RVE algorithm.  

Figure 7.10. Patient 8: Two virtual electrodes (VE1 & VE2) were seeded in the area 
that was subsequently resected and compared to the virtual electrode 
corresponding to the kurtosis beamformer peak (VE3). VE1 contained 112 spikes, 
VE2 contained 131 spikes, and VE3 contained 105 spikes. Based on the 
morphology of the virtual electrode time series, VE1 and VE2 have more variable 
background noise and large spikes, whereas VE3 has less variable background 
data accompanied by more transient sharper spikes. RVE localised an area 
concordant with VE2. 
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The main tuneable parameters for RVE is the sampling frequency fs, window size W, 

and τ (constant giving the time for the counts to decay to 1/e). In the Robinson et al. 

paper the sample lag ε, is  determined by fs/fc (sampling frequency/corner frequency) 

rounded to the closest integer, however the sample lag can also be manually selected 

and therefore a tuneable parameter. Preliminary simulations shown in Appendix 1, 

suggest that using a higher sampling rate, with larger windows (e.g. W=6), may 

improve the sensitivity of RVE in oscillatory signals relative to random noise. The use 

of a larger window allows for more brain states to be computed, which could facilitate 

the differentiation between states due to an increase in the number of possible states 

(5! = 120, 6! = 720). Furthermore, using a higher sampling frequency may improve 

the sensitivity of RVE by allowing more samples to be included in the RVE calculations 

and facilitating the characterisation of transient signals. Obviously, the increase of 

sampling frequency and window size alsos increase the processing resources 

required. 

7.4.2 Future Research 

The functional RVE overlays represents the lowest RVE value in the time series for 

each voxel. A relatively unexplored aspect of this chapter is how to maximise the 

temporal information gained from these RVE source time series. For example, Figure 

7.11 shows how 4D spatiotemporal information can be used to investigate RVE 

changes across time. This may be particularly useful in trying to study spike 

propagation through assessing the reduction in RVE across time. The study of single 

spikes and their propagative properties are frequently studied by MEG technicians 

and forms an important part of clinically oriented software (e.g. Brainstorm, Tadel et 

al., 2011). 
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Figure 7.11 is based on time points contained within the largest decrease in RVE in 

patient 6, and shows how RVE changes over multiple time points, indicating an area 

surrounding the anatomical lesion. This could potentially provide information 

regarding the extent of the resection required to ensure the complete removal of the 

epileptogenic zone, or to study the propagation of the activity.  

7.4.2.1 RVE-ICA 

Other signal processing techniques may also be applied to the RVE source time 

series, such as independent components analysis (ICA). This could enable the 

identification of epileptic networks and regions that relate to spike onset and 

propagation. This method is similar to that used by Brookes et al., (2015) who 

decomposed the 4D entropy matrices into temporally independent components, thus 

exposing voxels with similar entropy profiles. An example of this is shown in a single 

Figure 7.11. Functional RVE images plotted across 0.5 second window indicated by the 
transparent grey box (1 image per 0.08 seconds) demonstrating the evolution of RVE 
over time. 
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epilepsy patient below (Figure 12), whereby the top component shows changes in 

entropy (signal rotated), implying this entropy profile is shared by a left parietal and 

right frontal region. This RVE-ICA approach could allow epileptic networks to be 

systematically pulled apart, particularly in cases that present with different types of 

epileptiform activity and multiple sources.  

7.4.2.2 Small Scale Entropy 

To further understand how pathological activity and entropy changes in the epileptic 

brain at the macroscopic level, it is also worth investigating the entropy of small scale 

entropy within local neuronal populations. This could be achieved by using 

multielectrode array (MEA) measurements to record both local field potentials (LFP) 

and single unit data simultaneously in resected human brain tissue (Jones et al., 

2016). For example, Dossi et al., (2014) used planar MEA in epileptic human cortical 

slices to measure spontaneous interictal activity alongside drug induced ictal events 

(zero [Mg2+]o and high [K+]o (6 mM) artificial cerebral spinal fluid). The monitoring of 

single units alongside LFP/EEG signals has also been demonstrated using in vivo 

recordings in human epilepsy patients (Keller et al., 2010; Bower et al., 2012; Cash 

and Hochberg, 2015).  

Figure 7.12. An example of RVE-ICA. The first component is plotted on the 
patient’s downsampled MRI. This component spatially overlaps with a lesion in 
the the left parietal lobe and a right frontal region.  
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7.4.2.3 Seizure Detection 

Extensive research since the 1970s has been carried out into the use of EEG in 

automatically detecting seizures (Mormann et al., 2007), including the use of discrete 

wavelet transform (DWT), approximate entropy (ApEn) (Ocak, 2009) and other time-

frequency based methods (Tzallas et al., 2007). The application of RVE to iEEG and 

scalp EEG could also be useful as a seizure detection tool whereby a change in 

entropy (reduction) could be used to mark points in time relating to ictal activity. This 

may assist in the visual screening of data to identify time points of interest and to 

provide a measure that does not solely rely on the amplitude of the signal.  

7.4.3 Limitations 

This chapter is a proof of concept of the application of RVE in epilepsy MEG datasets 

and is not a clinical validation of this technique. In order to provide a validation of RVE, 

then a similar method as chapter 5 could be employed to measure the spatial 

concordance between RVE localisations and resection areas in a cohort of patients. 

A further limitation of this chapter is that the results presented are primarily qualitative 

and could therefore benefit from further quantitative analyses. This qualitative 

presentation of the data is suitable for neurophysiologists who often rely on 

interpreting EEG/MEG waveforms in a subjective manner. However, a quantitative 

analysis would assist in drawing further objective conclusions regarding the SNR of 

RVE and could involve comparing the SNR of decreases in RVE relative to the SNR 

of spikes in the virtual electrode. 

7.4.4 Conclusion 

This chapter demonstrates that RVE is sensitive to epileptiform activity, and may allow 

the localisation of a wide range of activity, including conventional spikes, abnormal 

slow frequency signals, and low amplitude abnormalities. The results shown in this 

chapter supports the hypothesis that as assemblies of neurons become 

hypersynchronised, the signal becomes more predictable causing a reduction in 

entropy. By using these reductions in entropy as a marker in time for plotting spatial 
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images, it has been demonstrated that regions of interest relating to the irritative zone 

can be localised. The overarching goal of applying novel techniques to epilepsy data 

is to establish multiple tools that can be used to improve the sensitivity of MEG, 

particularly in patients that do not present with clear spikes. RVE may allow for the 

localisation of low amplitude spikes, atypical slow waves, and may assist in identifying 

locations of interest that could then be entered into a functional connectivity analysis 

(e.g. granger causality). Future research should aim to provide a clinical validation of 

this technique and a quantitative analysis is warranted to investigate the added value 

of RVE in comparison to the standard clinical methods.   
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Chapter 8: General Discussion 
8.1 Overview 

This PhD project was funded by the MRC and is part of the MRC-MEG UK partnership 

grant (MR/K005464/1 & MR/K501086/1). The objectives of this grant were to increase 

the clinical research capacity of MEG in the UK and to work towards standardised 

data acquisition and analysis pipelines across UK MEG laboratories.  

To meet the clinical goals of this grant, this thesis aimed to investigate the use of MEG 

to localise epileptiform activity and eloquent cortex in drug resistant epilepsy patients 

being considered for surgery. Therefore, this thesis consisted of two themes: The first 

theme aimed at refining techniques to functionally map the brain in order to identify 

eloquent cortex. This theme was particularly important due to the absence of a reliable 

beamformer implementation at the ABC. Therefore, initial methods testing had to be 

carried out to establish a new beamformer pipeline that could then be applied to 

datasets of interest (e.g. language data). The second theme shifted focus onto 

investigating methods to localise various forms of epileptiform activity by evaluating a 

pre-existing method spike detection technique and introducing a novel method. These 

two themes, albeit distinct in their goals are of equal importance in the presurgical 

evaluation of patients being considered for surgery. In this context, it has been 

demonstrated that MEG can be used to help form hypotheses regarding the location 

of the epileptogenic zone as well as identify brain regions that are important for 

healthy brain functioning.  

This general discussion will provide a summary of the work done in this thesis and 

highlight the main conclusions that can be drawn from this work. The limitations of the 

work conducted in this thesis will also be discussed. Finally, to embed the outputs of 

this research into the wider picture, the future of clinical MEG will briefly be discussed 

in relation to recent advancements in MEG technology.  
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8.2 Experimental Chapter Summary 

In order to facilitate the functional mapping of patients using Elekta data, additional 

methodological work was carried to establish a beamformer pipeline that was fit for 

purpose (Chapter 3). This chapter highlighted the current issues when analysing 

Elekta data (e.g. combining sensors, tSSS filtering) and recommended a set of 

parameters that can be used in future functional mapping applications. This is the first 

study to explore the parameters that are specific to Elekta data in the context of 

beamforming. The findings showed that tSSS is a necessary preprocessing step prior 

to source localisation in order to provide an accurate localisation. This supports 

previous work that indicates the requirement of tSSS when analysing Elekta data 

(Hillebrand et al., 2013). Furthermore, the time frequency plots indicated that using 

tSSS in combination with gradiometers alone produce the best sustained gamma 

response. As mentioned in the chapter 3 discussion, there are a number of ways to 

preprocess and analyse MEG data. Therefore, further work should focus on trying to 

establish a set of standardised guidelines on how to approach these issues, 

particularly when addressing issues specific to Elekta data.  

The pipeline developed in Chapter 3 was then used in Chapter 4 to analyse language 

data. Chapter 4 had two primary goals, the first being a replication of earlier work at 

Aston that was conducted using the CTF 275 system, the second was piloting a 

passive language task. The verb generation results showed support for the key finding 

from the original Fisher et al. (2008) paper, demonstrating lateralised beta 

desynchronisations (15-25 Hz) in response to the covert generation of verbs. 

Secondly, the findings from the rotated speech paradigm indicated that this task could 

be useful in assisting to determine language dominance in a passive manner. It was 

found that anterior temporal regions showed a frequency specific (40-60 Hz) response 

in single subjects, therefore supporting previous work indicating the role of the anterior 

temporal pathway in speech perception (Scott et al., 2000).  

The clinical significance of Chapter 4 is that probing language in a passive way could 

be of great practical benefit when measuring young children or patients that are 

unable to complete complex active tasks. Despite these initial positive findings, there 

were several limitations to this work including a low sample size and the need for 
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potentially refining the rotated speech paradigm (i.e. increasing the number of trials). 

Crucially, this data acts as important pilot data to form a larger study using patients 

whereby invasive measures of language in patients can be used to validate the MEG 

findings. A study of this nature is currently undergoing at the ABC. 

Chapter 5 focussed on the second theme of this thesis. In this chapter, kurtosis 

beamformer results were compared to the resection site in patients who had 

undergone surgery. The rationale for this study was based on the variable clinical use 

of kurtosis beamforming across clinical MEG centres, despite a number of sites 

producing published research using this method (Scott et al., 2016). Therefore, a 

further evaluation of this technique to form conclusions regarding the role of kurtosis 

beamforming in clinical MEG analysis was conducted. The key finding from Chapter 

5 was that in 9/13 of the seizure free patients the kurtosis beamformer overlapped (at 

the lobar level) with the subsequently resected area. It was found that there was not 

a significant difference in the accuracy between kurtosis beamforming and the clinical 

standard ECD fitting approach. However, it was demonstrated in some cases that 

these techniques can provide unique information that the other technique is not 

sensitive to. Importantly, the value of kurtosis beamforming as an objective approach 

was also demonstrated. Based on these findings, it was concluded that kurtosis 

beamforming should be integrated into existing clinical protocols, whereby this 

additional information may help to confirm sources implicated by ECD fitting and in 

some cases (e.g. sharp activity) provide unique information to help form hypotheses 

about the epileptogenic zone.  

The evaluation conducted in Chapter 5 would benefit further from a larger study using 

data from multiple sites using a standardised kurtosis beamformer method. This type 

of multicentre collaboration and use of standardised analysis tools is one of the aims 

of the MRC-MEG UK partnership. Therefore, this provided motivation to develop an 

open source version of the kurtosis beamformer in Fieldtrip to facilitate such a 

collaboration. This work was described in the following short chapter (Chapter 6), 

which can be considered an extension of Chapter 5. In Chapter 6, it was demonstrated 

in 2 patients that a Fieldtrip based kurtosis beamformer could perform similarly to the 

CTF and Elekta proprietary software and localise interictal spikes. The advantage of 
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an open source pipeline is that improvements to the method can easily be 

implemented (e.g. Prendergast et al., 2013) and data can be pooled from multiple 

MEG platforms. Further research will aim to validate this pipeline, whilst also 

introducing variations of the kurtosis beamformer method, such as the SAMepi 

approach originally described by Harpaz et al. (2015).  

The findings from Chapter 5 indicated that the available clinical MEG analysis tools 

do not always accurately localise the epileptogenic zone and therefore new 

approaches are required to improve the sensitivity of MEG to abnormal transients. 

Chapter 7 aimed to address this by introducing a novel method, RVE, to investigate 

whether it can provide additional information in localising a range of epileptiform 

activity including spikes, low amplitude transients, and abnormal slow waves. It was 

hypothesised that reductions in signal entropy would be observed during periods of 

hyperschronisation within neuronal populations, i.e. during epileptiform activity. The 

findings show that the RVE signal showed a decrease in entropy to a range of 

epileptiform activity including low amplitude signals, spikes and slow waves. The 

findings also demonstrated that regions showing the greatest reduction in entropy 

correlated with other clinical findings (e.g. lesions in the MRI) and in one patient 

localised to an area that was subsequently confirmed as the epileptogenic zone. 

There are many possible extensions of this work whereby the RVE source time series 

could be manipulated in a number of ways. After further clinical evaluation this method 

may be used for the clinical analysis of epilepsy data and potentially provide localising 

information of abnormalities in other conditions, such as mild traumatic brain injury 

(mTBI) (e.g. abnormal slow wave activity is often observed in mTBI).  



153 

8.3 Future of Clinical MEG 

Finally, it is worth considering the outputs of this research in regards to recent 

advances in quantum sensing. New MEG and sensor developments, such as optically 

pumped magnetometers (OPMs) (Boto et al., 2017) and HyQuidsTM (Shelly et al., 

2016) may provide measurements containing less low-frequency noise, which may 

be particularly useful for the detection of slow wave abnormalities. This feature in 

combination with a method such as RVE could significantly increase the sensitivity to 

these types of abnormalities. Another potential advantage is that these new quantum 

sensing devices may allow for the better detection of low amplitude high frequency 

oscillations (<100 Hz). 

Current MEG systems are based on SQUIDS immersed in liquid helium that are 

housed in a dewar meaning that sensors are located at least 3-6 cm from the head 

surface. OPMs for example, can be positioned much closer to the head allowing 

increases in SNR (as the brain follows an inverse square law). Improvements in SNR 

has shown to provide benefits in relation to the spatial resolution in MEG (Brookes et 

al., 2008; Brookes et al., 2010; Hilleband & Barnes, 2002) and would benefit clinical 

applications, particularly in presurgical MEG when detecting low amplitude signals 

(e.g. small spikes, high frequency oscillations). Boto et al. (2017) recently 

demonstrated the potential utility of OPMs in response to a median nerve stimulation, 

where signals exhibited ~4 times the magnitude of equivalent measures made using 

SQUIDs. If these results can be replicated using whole-head arrays, then the 

sensitivity of presurgical MEG could increase and dramatically improve the detection 

and localisation of epileptiform signals in patients.   
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Appendices 

Appendix 1: Rank Vector Entropy Simulations 

Test Signal Generation 

MATLAB code:  

freq1 = 0; % Low freq 

freq2 = 10; % High Freq 

%% Start freq loop 

for freq = 1:30 % 1: number of bands required to reach end freq (should be 1:30 for  
600Hz  sampling rate with a 150Hz corner frequency). 

     time = linspace(0,endtime,fs*endtime); 

     sig = randn(size(time)); 

    sig = nut_filter2(sig','firls','bp',200,freq1,freq2,fs,0)'; 

     sig(fs*(endtime/2)+1:fs*endtime) = 0.1.*randn(1,fs*(endtime/2)) 

The first half of the test signal is the ‘brain-like’ oscillations within the specified 
frequency band, the second half is random noise.   
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RVE of Test Signal 

For the oscillatory signal, entropy is lower relative to the noise which has an entropy 
value of ~1 (as expected).  

The mean of these two signals are taken (between two time points) and the difference 
between the means are calculated (Noise RVE mean – Osc RVE mean).  

timesignal = [20 30]; % takes signal between 20 and 30 seconds. 

            timenoise = [70 80]; % takes signal between 70 and 80 seconds. 

            samplesignal = timesignal * fs; 

            samplenoise = timenoise * fs; 

            SallOsc = mean(S(samplesignal)); %takes mean between 20-30s 

            SallNoise = mean(S(samplenoise));% takes mean between 70-80s 

            SensDiff = SallNoise - SallOsc; % difference between the two 

    Diffs(freq, :) = SensDiff; % stores the differences 

The greater the difference between the two, the more sensitive the RVE algorithm is 
(the vector of differences is what is plotted to see how the parameters affect the RVE 
sensitivity).  
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Sampling Frequency Comparison 

This uses the current RVE parameters but with varying sample frequencies plotted up 
to 150Hz. From this it is apparent that the algorithm is more sensitive to lower 
frequencies. Higher sampling frequencies tend to be more sensitive. Note that there 
is an increase in sensitivity when fc=600 Hz. This seems to be common in all sampling 
frequencies as the frequency band approaches the corner frequency and when Xi=2. 
If you change Xi to 1 then this sharp increase does not occur.  
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Comparing Xi (sample lag) when fs = 1200Hz 

When Xi=2 there is a sharp increase as the frequency band approaches the corner 
frequency limit. This is apparent at all sampling frequencies tested (600, 1200, 2400 
Hz). Overall, Xi=1 seems to increase the sensitivity of the RVE relative to Xi=2 as 
indicated by the plot above. 
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Comparing sampling frequency and window size (W=5, W=6) 

The Y axis is scaled differently for the two figures. Using W=6 (i.e. including more 
samples in the window), seems to increase sensitivity. 
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Comparing tau (600Hz fs) 

The algorithm was implemented using tau values ranging from 0.1-1.4. Three 
categories were used (low, mid, high tau) formed from averaging the vectors of 0.1:0.3 
(low), 0.6:0.8 (mid), 1.2:1.4 (high tau). The plot indicates that there is little difference 
in the sensitive of RVE when using different levels of tau.  




