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Thesis Summary 

Traumatic spinal cord injury (SCI) is a devastating event. It causes severe damage to the 

nervous tissue which can be associated with partial or complete loss of movement and 

sensation. Recent studies suggested that the benefits of stem cell transplants for SCI may not 

be restricted to cell restoration alone, e.g. to replace damaged neurons, but also may be due 

to their capacity to stimulate endogenous cells at wound sites through paracrine activity. 

Mesenchymal stem/stromal cells (MSCs), in particular, are thought to have anti-

inflammatory, neuroprotective, neurotrophic and angiogenic effects and may thus reduce 

secondary damage and promote neuroregeneration and wound healing after their 

administration. Experimental studies of small rodent SCI models are currently being used to 

investigate the MSCs as a promising option for treatments that repair damaged neuronal 

tissue. However, translation to human patients is still a challenging step. Dogs represent a 

good large animal model as the causes of SCI in dogs occur naturally and traumatically, and 

because of the similar scale and heterogeneity of the lesions formed. Therefore, this study 

aimed to investigate and compare the effects of canine and human MSCs, focused on the 

effects of MSC conditioned medium (MSC CM) on neurogenesis and angiogenesis using 

established responder cell lines, i.e. SH-SY5Y neuronal cells and EA.hy926 endothelial 

cells. All of the MSCs were derived from adipose tissue, and CD271 was used to isolate 

subset populations from human MSCs. The study has demonstrated for the first time the 

potentially beneficial effects of canine MSC CM in promoting SH-SY5Y neurite outgrowth 

and cell proliferation, as well as EA.hy926 endothelial cell proliferation, cell migration and 

the formation of endothelial tubules. Further experimentation demonstrated that canine and 

human adipose-derived MSCs exhibited such neurotrophic and angiogenic effects to a 

similar extent. This may have important implications for the pre-clinical assessment of MSC 

paracrine activity in the development of cell transplantation protocols both for dogs and 

humans. Finally, the study compared the neurotrophic and angiogenic effects of MSC CM 

from selected subpopulations of human MSCs, i.e. CD271+ versus CD271- and plastic 

adherent MSCs; this was with a view to establishing whether a more homogeneous MSC 

population might differ in their paracrine activity. There was no significant difference in the 

neurogenic effects of these various secretomes; however, MSC CM from human 

CD271+MSCs was found to be significantly less pro-angiogenic than human CD271- MSCs 

or non-selected human MSCs. In conclusion, the study supports the use of MSCs to treat 

naturally occurring SCI in dogs, and suggests that there is no evidence herein to support pre-

selecting CD271+ cells.  

Key words: human MSCs, canine MSCs, MSC CM, SCI, CD271, neurogenic, angiogenic.
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1. Introduction 

 

This chapter explores the problem area that inspired the hypothesis which was tested in this study. 

This chapter covers several topics including; the stem cells and their different types, in particular, the 

MSCs and their therapeutic role in treating spinal cord injury (SCI). This chapter also explains the 

role of the large animal model in translating SCI research.  At the end of the chapter, the aim of the 

study is presented. This thesis is organised as follows:  chapter two discusses the chosen 

methodology, chapter three to five set out the results obtained by this study and chapter six discusses 

the results and draws conclusions. 

 

1.1 Stem Cells 

Stem cells are undifferentiated cells found in multicellular organisms. Although they make up a small 

portion of the body mass, their properties and capacities of developing into a variety of cell types in 

the body are remarkable. Stem cells can divide through mitosis and differentiate into a variety of 

specialised cell types. Moreover, stem cells can self-renew to produce more stem cells (Lin, 2008). 

Also, under certain physiological conditions in vitro, stem cells can differentiate into different mature 

cell types with specialised functions (Wells, 2002). The ability to differentiate into diverse cell types 

allows stem cells to serve as a repair system to continuously replenish other cells (Li and Xie, 2005). 

Once, a stem cell divides, each new cell has the potential to either remain as a stem cell or become 

another mature cell type with new specific functions (Lechler and Fuchs, 2005). In fact, it is still a 

challenge to understand the underlying mechanisms of stem cells to differentiate and develop into 

various types of cells, which in turn have important biological functions (Feng and Wang, 2012, Xu 

et al., 2014).  However, all stem cells, regardless of their origin, have three features. Firstly, one of 

the fundamental properties of stem cells is they are unspecialised cells, not allowed to perform 

specific functions as they do not have any tissue-specific structures (Melton, 2014).
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For example, a stem cell cannot work with its neighbors to pump blood through the body (like a heart 

muscle cell)  ; it cannot carry molecules of oxygen through the bloodstream (like a red blood cell);  

it cannot fire electrochemical signals to other cells that allow the body to move or speak like a nerve 

cell (Zapata et al., 2012). However, unspecialised stem cells can give rise to specialised cells, 

including heart muscle cells, blood cells, or nerve cells (Kehat et al., 2001, Wichterle et al., 2002, 

Novotny et al., 2009). Secondly, stem cells have the capacity for dividing and renewing themselves 

for long periods. Stem cells may replicate many times in contrast with other mature cells such as 

muscles, red blood cells and nerve cells which do not usually replicate themselves (Clatworthy and 

Subramanian, 2001).  

Proliferation is the term which describes the repeated self-replication. The in vitro experimental 

studies showed that the stem cells can replicate many times, and can yield millions of cells. These 

studies have used the cell doubling time assay and cell proliferation assay to show the proliferative 

potential of the stem cells(Bruder et al., 1997, Baksh et al., 2007). If these cells resulting from 

proliferation continue to be unspecialised, like their original parent stem cells, then the cells will also 

be capable of long-term self-renewal (Park et al., 2008). Thirdly, stem cells can give rise to 

specialised cells. Differentiation is the term which describes the process by which unspecialized stem 

cells result in specialised cells through distinctive differentiation pathways controlled by internal and 

external signals. Researchers in their studies are just beginning to understand the internal signals and 

external signals that trigger the differentiation of stem cells. The internal signals are controlled by a 

cell's genes, which are interspersed across long strands of DNA, and carry coded instructions for all 

the structures and functions of a cell. The external signals for cell differentiation include chemicals 

secreted by other cells, physical contact with neighbouring cells, and certain molecules in the 

microenvironment (Tosh and Horb, 2014). These characteristics make stem cells a good target in 

regenerative medicine as they hold promise in the repair and regeneration of damaged tissue (Kimbrel 

and Lanza, 2015). Fighting diseases is a fundamental battle, stem cells present a powerful therapy to 

repair injured tissue by cell therapy and tissue regeneration (Trounson and DeWitt, 2016).
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There are a variety of sources of stem cells, based on the type of tissue origin. Mammalian stem cells 

can be classified into embryonic stem cells (ESCs), which can form specialised cells of all three germ 

layers, i.e., ectoderm, mesoderm and endoderm,  and adult stem cells, which are more restricted in 

their differentiation potential (Fortier, 2005). 

 

1.2 Types of stem cells  

The potency of stem cells can be defined as the capacity to differentiate into specialised cell types 

(Polejaeva and Mitalipov, 2013). During adulthood life and growth of each organism, stem cells have 

an increased potential to develop into many different cell types in the body. They have a crucial role 

in replenishing other cells in the body (Avasthi et al., 2008). Stem cell potency can be classified 

according to the differentiation extent of stem cells to give rise to different cell types. There are three 

main classifications for stem cell potency; these are: totipotent, pluripotent or multipotent (Sharma 

et al., 2012). Totipotent stem cells are stem cells that have the ability to differentiate into all possible 

cell types.  

The first few cells that result from the division of the zygote, which formed by the fusion of sperm 

cell with an egg cell,  are considered as totipotent stem cells. They have the potential capacity to give 

rise to the whole embryo and extra embryonic structures (Figure 1.1) (Martín and Menéndez, 2012). 

Pluripotent stem cells are stem cells that have the ability to give rise and differentiate into almost all 

cell types. An example of pluripotent stem cells is ESCs that are isolated from the inner cell mass 

(ICM) which can give rise to all cell types that are derived from the mesoderm, endoderm, and 

ectoderm germ layers (Figure 1.2). Induce pluripotent stem cells (iPSCs) are another example of 

pluripotent stem cells (Thomson et al., 1998, Sharma et al., 2012). Multipotent stem cells are stem 

cells that have the capacity to differentiate and give rise to several cell types. Haematopoietic stem 

cells (HSCs) and mesenchymal stem cells (MSCs) are examples of multipotent stem cells (Figure1.5) 

(Uccelli et al., 2008).
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Figure 1:1 Early developmental stages of a human zygote as an example for totipotent stem 

cells.  

Schematic illustration showing the stages of division of a fertilised egg as an example for totipotent 

stem cells. Each cell is capable of giving rise to a complete organism, plus the extraembryonic 

placental cells. Image adapted (Shutterstock, 2003).
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Figure 1:2 Embryonic stem cells derived from the inner cell mass as an example of pluripotent 

stem cells.  

Schematic illustration showing the developmental stages of embryonic stem cells which are derived 

from the ICM and their differentiation capacity into any of the three germ layers ectoderm, mesoderm 

and endoderm. They do not have the ability to give rise to the extraembryonic structures the umbilical 

cord and placenta. Image adapted from (Chial, 2008). 
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1.2.1 Embryonic stem cells  

In 1981, Evans and Kaufman were the first to isolate embryonic stem cells from mouse, which can 

be isolated from the ICM of the blastocyst at early stages of embryonic development (4-5 days after 

fertilisation), i.e., before implantation in the uterine wall  (Evans and Kaufman, 1981).  In the same 

year Martin, 1981 named them as ESCs (Martin, 1981). This finding led to an interest in an in vitro 

isolation of human ESCs and cell culturing by James Thomson and co-workers (Figure1.3) 

(Thomson et al., 1998). ESCs can be classified as pluripotent stem cells. They can be maintained and 

expanded in culture indefinitely under optimal conditions. As stated earlier, ESCs have the capacity 

to differentiate into all three embryonic germ layers endoderm, mesoderm and ectoderm which, 

subsequently can differentiate into different tissues (Evans and Kaufman, 1981). Thomson et al. 

(1998) and Odorico et al. (2001) suggested that ESCs can propagate for about 300 population 

doublings when growing in culture and that they can be passaged for over a year in culture (Thomson 

et al., 1998, Odorico et al., 2001).  

ESCs  have the potential uses in cell replacement therapy for transplantation medicine  as they have 

the capacity to differentiate into cells or tissues that have been damaged by disease or injury 

(Thomson et al., 1998, McDonald et al., 1999, Odorico et al., 2001, Menasche et al., 2015). Thus, 

ESCs may represent great promise in the future in various research areas, such as human 

developmental biology and cell-based therapies. However, despite these advantageous characteristics 

of ESCs, they have disadvantages as well. One of these disadvantages is the ethical issues 

surrounding ESCs since, to isolate ESCs, the destruction of the human embryo is required. Also, the 

other disadvantage of using ESCs is the possibility of tumour formation. Many animal experiments 

have shown that embryonic stem cells form tumours after transplantation (Master et al., 2007). 

Moreover, transplantation of ESCs requires either a histocompatibility match or the patient needs to 

be immunosuppressed (Swijnenburg et al., 2008).
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However, Schwartz et al., 2012 showed in their preliminary report the safety of treating patients with 

Stargardt's macular dystrophy and dry age-related macular degeneration by transplantation of human 

ESC-derived retinal pigment epithelium (RPE). They reported in their study that transplantation of 

ESC-derived RPE cells showed no signs of hyperproliferation, tumorigenicity, ectopic tissue 

formation, or apparent rejection after four months. They claimed that the pre-differentiation of ESCs 

into RPE cells before their transplantation could reduce the chances of the formation of a tumour or 

being rejected by host tissues  (Schwartz et al., 2012). 
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Figure 1:3 In vitro isolation of human embryonic stem cells.  

The schematic illustration showing the steps from a fertilised egg obtained by IVF to the culture of 

ESCs are depicted. A few-celled embryo later gives rise to the blastocyst, a structure comprised of 

an outer cell layer, the trophectoderm, and ICM. The ICM is harvested and plated on feeder cells, to 

yield a population of ESCs. Image adapted from (Landry and Zucker, 2004). 
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1.2.2  Induced pluripotent stem cells  

iPSCs are in fact adult somatic cells that have regained their pluripotency state by genetic engineering 

mechanisms (Takahashi and Yamanaka, 2006). These reprogrammed adult cells are similar to ESCs 

in that they are pluripotent and capable of differentiating to produce all of the different cells and 

tissues in the adult body (Okita et al., 2007). In brief, iPSCs can be generated by treating somatic 

cells with a combination of four reprogramming factors, including Oct4 (Octamer-binding 

transcription factor 4), Sox2 (Sex-determining region Y)-box2, Klf4 (Kruppel like factor-4), and c-

Myc (Figure 1.4) (Takahashi and Yamanaka, 2006). The iPSCs may overcome the various ethical 

issues regarding the use of embryos in research and clinical medicine. Also, immune rejection is not 

a concern since the body considers the introduction of iPSCs as an autologous transplantation (Guha 

et al., 2013). However, they also have the capacity to form tumours similar to ESCs (Howe et al., 

2008). Despite all the limitations and controversy, both ESCs and iPSCs are already used in ongoing 

clinical treatments of spinal cord injury, macular degeneration of the retina, type 1 diabetes and heart 

failure (Table 1.1) (reviewed in Ilic et al., 2015). 
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Figure 1:4 Generation of iPS cells.  

The schematic illustration showing the reprogramming of adult fibroblast cells in iPS cells mediated 

by Oct-4, Klf4, Sox2 and c-Myc give rise to cells that resemble ESCs with embryonic potential. In 

2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells into iPS and 

in 2007 they have reprogrammed human fibroblast cells into iPS. Image adapted from (Yamanaka, 

2009). 

 

 

 

 

 

 



  

25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The current clinical trial using ESCs and iPSCs. 

The table shows most of the current studies ongoing or recently closed. Most of these studies have demonstrated the safety of using ESCs and iPSCs 

rather than efficacy. The table is adapted from (Ilic et al., 2015). 

Indication Cell source Institution Country Start date Finish date Subjects 
Spinal cord injury  hESC  Geron USA October 2010 July 2013 5  

Asterias USA March 2015 June 2018 13       

Immunotherapy vaccine 

for lung cancer 

hESC Asterias UK Not defined Not defined Not defined       

      

Geographic atrophy 

secondary to myopic 

macular degeneration 

hESC Ocata USA April 2014 April 2015 Not defined       

      

       

Stargardt macular 

degeneration of retina 

hESC Ocata USA July 2012 December 2030 13   
UK November  2011 December 2015 16       

Dry macular degeneration 

of retina 

hESC Ocata USA July 2012 December 2030 13  
Cell Cure 

Neurosciences 

Israel April 2015 August 2017 15      

 
iPSC RIKEN CBD Japan October 2013 Not defined 6        

Wet macular degeneration 

of retina 

hESC The London 

Project 

to Cure Blindness 

UK August 2015 October 2016 10      

      

Diabetes type I hESC ViaCyte USA September 2014 August 2017 40 

Heart failure hESC APHP France June 2013 June 2017 6 
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1.2.3 Adult stem cells 

Most human body tissues have a stem cell population; these cells are called an adult or somatic stem 

cells. Adult stem cells are responsible for the replenishment of cells of the tissue or organ where they 

reside as well as undergoing self-renewal (Goodell et al., 2015). Adult stem cells can be found in all 

part of the body tissues. For example, they can be found in the brain, bone marrow, adipose tissue, 

peripheral blood and blood vessels, skeletal muscle, skin, teeth, heart, gut, liver, ovarian epithelium, 

and testis (Zuk et al., 2002, Avgustinova and Benitah, 2016). Commonly, the beneficial and 

therapeutic usage of adult stem cells is considered more acceptable than that of ESCs, as there are 

fewer ethical considerations and less controversy on the usage of adult stem cells in comparison with 

ESCs. This is because the isolation of adult stem cells and culture does not require the destruction of 

an embryo (Bongso and Richards, 2004, Larijani et al., 2012).  

However, the therapeutic use of adult stem cells faces several challenges. These include issues that 

may be related to donor source, e.g. a genetic pre-disposition to disease. Also, limitations in the 

differentiation potential of the somatic stem cells (which are multipotent rather than pluripotent) 

compared to ESCs (Mariano et al., 2015). Also, since adult stem cells are present in small numbers 

within the tissues they reside, this means few cells can be released, and as high numbers of cells are 

needed for stem cell replacement therapies, this is another challenge of using adult stem cells 

(Spradling et al., 2001). Finally, during cell culture, the capacity of adult stem cells to renew 

themselves are not as great as with ESCs. Adult stem cells also tend to undergo senescence after 

long-term culture (Zimmermann et al., 2004).  

Example of adult stem cells which are common in use in research is HSCs and MSCs which the later 

has discussed in more details in next section.
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1.3 Mesenchymal stem cells 

1.3.1 Sources and main characteristic features of mesenchymal stem cells  

MSCs are multipotent stem cells that have the capacity to renew themselves and have the ability to 

differentiate into several lineages of cells including adipocytes, osteoblasts, chondrocytes, myocytes 

and fibroblasts (Pittenger et al., 1999).  MSCs were first identified in the late 1970s, by a group led 

by the Russian scientist, Alexander Friedenstein (Friedenstein et al., 1970). They showed in their 

study that bone marrow contains a population of cells that have the characteristic of being plastic 

adherent, highly proliferative, and have the capacity to form a colony of fibroblasts. Hence, these 

cells were named colony forming unit-fibroblasts (CFU-F) (Friedenstein et al., 1981, Friedenstein et 

al., 1982). Friedenstein and his group found that these CFU-F spontaneously formed bone, cartilage 

and fibrous tissue following transplantation in diffusion chambers (Friedenstein et al., 1987). This 

study suggested that these cells were multipotent and can form different mature cell types of 

mesenchymal lineages. In 1991, Arnold Caplan proposed the term ˝ mesenchymal stem cells˝ for the 

previously termed CFU-F (Caplan, 1991). Basically, MSCs are multipotent stem cells that have the 

capacity to renew themselves and have the ability to differentiate into several lineages of  cells 

including adipocytes and chondrocytes (Dennis et al., 1999), osteoblasts (Haynesworth et al., 1992), 

muscle (Wakitani et al., 1995, Gang et al., 2004), marrow stromal cells (Majumdar et al., 1998), 

tendon and ligament (Young et al., 1998, Kuo and Tuan, 2008), and other connective tissues 

(Studeny et al., 2004, Bhatia and Hare, 2005) (Figure 1.5). 
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Figure 1:5 Multipotent differentiation capacity of mesenchymal stem cells.  

The schematic illustration shows the differentiation capacity of MSCs into limited types of cells. 

Image adapted from (Das et al., 2013). 
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As mentioned previously, MSCs were identified for the first time in the early 1970s by Alexander 

Friedenstein using the bone marrow, these cells are now referred to as bone marrow-derived MSCs 

(BM MSCs) (Friedenstein et al., 1970). However, over the last decades many studies have 

demonstrated that MSCs can be found in other places in the body, e.g., brain, adipose tissue, liver, 

and lungs (Zuk et al., 2001, Zuk et al., 2002, Kang et al., 2010, Zou et al., 2010). The International 

Society for Cellular Therapy (ISCT) has suggested three minimum criteria that MSCs should display 

regardless of the tissue from which they are isolated. The isolated cells are termed mesenchymal 

stem cells if they demonstrate the following criteria; i) plastic adherence, ii) multipotent 

differentiation profile (i.e., adipogenic, osteogenic and chondrogenic differentiation capacity) iii) 

expression of a specific cell surface markers and the absence of others (Dominici et al., 2006). The 

cell surface markers that the isolated cells should express include; CD44, CD73, CD90 and CD105, 

more than 95 % of the MSC population must express these markers. Also, the isolated cells must 

lack expression of CD34, CD45, CD11b, CD14, CD79, CD19 and HLA class II (less than 2 % should 

express these markers (Horwitz et al., 2005, Dominici et al., 2006).  

CD44 is a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion and migration 

(Goodison et al., 1999, Ponta et al., 2003). CD73 is one of the several enzymes responsible for the 

production of extracellular adenosine, a signalling molecule that is involved in responses to 

inflammation and tissue injury (Hashikawa et al., 2003). CD90 also known as Thy1, is a 

glycosylphosphatidylinositol-linked protein involved in cell-cell and cell-matrix interactions (Rege 

and Hagood, 2006). CD105 also known as endoglin, is a type I membrane glycoprotein that functions 

as an accessory receptor for TGF-beta superfamily ligands (Varma et al., 2007). 

Whereas the cell surface markers that the isolated cells should lack are; CD34 is a member of a family 

of single-pass transmembrane sialomucin proteins that show expression on early haematopoietic and 

vascular-associated tissue (Nielsen and McNagny, 2009). CD45 is Protein tyrosine phosphatase, 

receptor type C (PTPRC). 



  

30 

 

It was originally called leukocyte common antigen, and it is specifically expressed in haematopoietic 

cells (Wu et al., 2002). CD11b is a macrophage-1 antigen (Mac-1) or complement receptor 3 (CR3). 

It is expressed on the surface of many leukocytes involved in the innate immune system, including 

monocytes, granulocytes, macrophages, and natural killer cells (Hickstein et al., 1987, Xu et al., 

2015). CD14 is a human gene also known as cluster of differentiation 14. The protein encoded by 

this gene is a component of the innate immune system. CD14 is expressed on the surface of various 

cells, including monocytes, macrophages, polymorphonuclear neutrophils and chondrocytes (Tobias 

and Ulevitch, 1993, Bas et al., 2004).  

CD79 is composed of two distinct chains called CD79A and CD79B (formerly known as Ig-alpha 

and Ig-beta); these form a heterodimer on the surface of a B cell stabilised by disulphide bonding. 

CD79a and CD79b are both members of the immunoglobulin superfamily (Chu and Arber, 2001, 

Matnani et al., 2013). CD19 is a protein that in humans is encoded by the CD19 gene. It is found on 

the surface of B-cells, a type of white blood cell. CD19 is a B lymphocyte cell-surface marker which 

is expressed early during pre-B-cell differentiation, and this expression remains until terminal 

differentiation into plasma cells (Zhou et al., 1992). The human leukocyte antigen (HLA) system or 

complex is a gene complex encoding the major histocompatibility complex (MHC) proteins in 

humans. The MHCs are responsible for the regulation of the immune system in humans. HLAs are 

the leading cause of organ transplant rejection (Taylor et al., 2011).  

 The MSCs are an attractive resource not only for autologous cell therapy but also for allogenic cell 

therapy, as they possess immune modulatory properties and a powerful immunosuppressive potential 

(Zhu et al., 2008). Zuk et al., 2001 was the first who identified adipose tissue-derived mesenchymal 

stem cells (AT MSCs). These cells have a multi-lineage potential differentiation profile since they 

are capable of differentiating into adipogenic, osteogenic, chondrogenic (Zuk et al., 2001) and 

myogenic cells (Mizuno et al., 2002). 
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Also, in culture AT MSCs are characterised by their expression of a panel of markers (i.e. CD44, 

CD73, CD90 and CD105) and the absence of others (i.e. CD34, CD45, CD11b, CD14, CD79, CD19 

and HLA class II). AT MSCs and BM MSCs are the main sources of MSCs, and they are widely 

used especially in autologous cell-based therapies (Hoogduijn and Dor, 2013). According to the 

website of (clinicaltrials.gov), there are around 369 clinical trials as of 20.03. 2017 on MSCs 

transplantation ranging from recruiting, enrolling by invitation to completed trails. In these studies, 

both autologous and allogenic MSCs have used for treating different conditions, these studies were 

based on showing the safety and efficacy of MSCs.  

However, AT MSCs have several biologic advantages over BM MSCs in term of regenerative 

application for repairing injured and damaged tissue. These benefits can be ascribed to the fact that 

adipose tissue is a more abundant tissue than bone marrow.  It is easy to access and the procedure to 

harvest adipose tissue has a low morbidity rate when compared with the harvesting of bone marrow 

(Padoin et al., 2008). Moreover, the yield of AT MSCs from adipose tissue is potentially higher than 

the yield from bone marrow. AT MSCs make up roughly 2% of the nucleated cells in processed 

lipoaspirate, wears BM MSCs constitute about 0.01% of the total nucleated cells in the bone marrow 

(Friedenstein et al., 1970, Li et al., 2015). 

The approximate CFU-F per gram of adipose tissue is around 5000, compared with CFU-F from 1 

ml of bone marrow MSCs which is around 100 to 1000 (Strem et al., 2005). Furthermore, AT MSCs 

have better performance in terms of proliferative capacity and secreted proteins (basic fibroblast 

growth factor, interferon-γ, and Insulin-like growth factor-1), and immunomodulatory effects (Li et 

al., 2015).  These differences between both BM MSCs and AT MSCs could be due to differences in 

tissues origin site. In fact, heterogeneity is found not only between two MSCs population from 

different tissues of origin but also can be found within the MSC population itself (Noer et al., 2006, 

Tallone et al., 2011). As AT MSCs were used in this study, the heterogeneity of this population is 

further considered in the next section.  
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1.3.2 Heterogeneity of MSCs 

Many studies suggested that MSCs are heterogeneous populations. This heterogeneity could stem 

from different reasons such as genetic, epigenetic, localization-relocalization, site of origin, and 

likely sex/gender factors (Pevsner-Fischer et al., 2011, Li et al., 2013, Hart, 2014). Therefore, using 

heterogeneous populations of MSCs with the presence of subpopulations could result in different 

outcomes. Thus, to emphasise the point, the therapeutic effect of MSCs could be achieved by using 

very well characterised subpopulations to lighten the variation (Phinney, 2012). AT MSCs are easily 

isolated from adipose tissue by collagenase digestion followed by centrifugation steps; the isolated 

fraction is called the stromal vascular fraction (SVF) (Zuk et al., 2001). This SVF is characterised by 

its highly heterogeneous nature since it has different stem cell subpopulations and more differentiated 

cells (differentiated endothelial cells, smooth muscle cells and pericytes) (Ho et al., 2008).  

The plastic adherent outgrowth from SVF is AT MSCs which in turn are considered to be a 

heterogeneous population as they comprise several subset populations (Noer et al., 2006, Tallone et 

al., 2011, Busser et al., 2015). There are several techniques used to isolate a specific subset population 

from heterogeneous populations of AT MSCs. Such isolation can be carried out either by using flow 

cytometric sorting or immunomagnetic separation (Griesche et al., 2010, Jiang et al., 2010). 

Flow cytometry is a powerful diagnostic technique which can measure the physical and chemical 

characteristics of single cells when they pass individually through a laser beam. Additionally, flow 

cytometers also have the ability to sort cells within a heterogeneous mixture. This type of flow 

cytometer device is known as a flow sorter and also known as fluorescence activated the cell sorting 

(FACS) device (Figure1.6) (Shapiro, 2004). Many studies have used FACS technology to purify 

MSCs from heterogeneous cell populations. Such purification is based on the identification of cell 

surface markers expressed by MSCs (Battula et al., 2009, Ramakrishnan et al., 2013).
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Figure 1:6 Cell sorting technique using fluorescence activated cell sorting FACS device. 

 Schematic illustration showing the steps required to isolate certain populations of cells using a FACS 

device as the cells were fluorescently labelled with a targeted marker resulting in highly pure 

population. Image adapted from (Techniques, 2004). 
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The immunomagnetic separation technique is the most common technique of sorting cells using 

magnetic forces named magnetic-activated cell sorting (MACS). The cells selected for isolation are 

labelled with 50 nm diameter superparamagnetic beads and sorted using a packed column (Miltenyi 

et al., 1990). To achieve the separation and purification of a specific subset of cells, one uses 

magnetic beads coated with an antibody that is known to bind to the selected cell type selectively. 

These magnetic beads are incubated with the sample. Once the cells- particles are formed, the mixture 

should pass through a small column under the influence of a strong magnetic force. In the column 

matrix, a high gradient magnetic field is induced as the mixture passes, leading to particle-bound 

cells to be retained while the untagged cells pass through (Figure 1.7). Before tagged cells can be 

eluted from the column and to ensure a proper purification, the column must be washed at least three 

times with buffer to remove all unwanted cells (Jones et al., 2002). In fact, subset isolation techniques 

have attracted attention in mesenchymal stem cells research; this is because the isolation of 

subpopulations from SVF could have potential benefit to repair specific damaged tissue.  

Miranville et al., 2004 isolated CD34+/CD31− cells from the SVF of human adipose tissue obtained 

from three different regions (subcutaneous gluteal, subcutaneous abdominal and visceral abdominal) 

undergoing either lipoaspiration or lipectomy. In their study, they demonstrated that the selected cells 

improved postnatal neovascularization in a mouse model with an ischemic limb (Miranville et al., 

2004). Boquest et al., 2005 also described the differences of AT MSCs stemness between two AT 

MSCs subpopulations, CD31+ cells and CD31- cells, isolated from adipose tissue which was obtained 

by liposuction from abdominal, hip, and thigh regions. In their study, they showed that the 

differentiation plasticity of CD31- was higher compared with CD31+ which most closely resembled 

microvascular cells (Boquest et al., 2005). 
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Figure 1:7 Cell sorting technique using magnetic-activated cell sorting (MACS).  

The schematic illustration shows the experimental strategy using magnetic MACS beads to isolate 

specific subtypes of cells from the mixed population. The principles behind this technique are based 

on labelling cell surface antigens with superparamagnetic microbeads specific for targeted 

populations and a magnetic column (Steinhauser et al., 2013). 
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As another example of MSC cell purification, Jones et al., 2002 reported a study in which they 

performed a cellular purification of MSCs or as Jones et al referred these cells as mesenchymal 

progenitor cells (PMCs) from bone marrow by positive selection with D7-conjugated magnetic 

microbeads. They claimed in their study that they were able to purify a Homogeneous population of 

PMCs from BM based on D7-FIB+, CD45low, LNGFR+ phenotype. They suggested that this 

population is distinctive from haematopoietic stem cells by their lack of expression CD45 and their 

large size, also they claimed that the Stro-1 marker was expressed on these cells. Their study 

suggested that the BM PMCs contained all the CFU-F activity, also these cells have the capacity to 

differentiate into adipocytes, osteoblasts, and chondrocytes (Jones et al., 2002).  

Interestingly, CD271  has been described as one of the most specific markers for the purification of 

human BM MSCs. CD271 also known as low-affinity nerve growth factor receptor (LNGFR), nerve 

growth factor receptor (NGFR), or p75NTR (neurotrophin receptor), belongs to the tumour necrosis 

factor superfamily (Quirici et al., 2002, Buhring et al., 2007). In 2002 Quirici et al., reported for the 

first time that the anti-CD271 antibody is specific for a subset population of multipotent BM cells. 

Also, they suggested in their study the use of CD271 as a marker for the selection of MSC from BM 

(Quirici et al., 2002, Jones and McGonagle, 2008). This finding was also supported by Jarocha et al., 

2006. They suggested that the purification strategy population based on CD271 expression resulted 

in obtaining a subpopulation of cells that have a higher number of CFU-F colonies with higher 

enrichment for molecular markers of early osteogenic and adipogenic progenitors (Jarocha et al., 

2008). 

Moreover, CD271 is not only a marker for a specific subset of MSCs in bone marrow, but it also has 

been used to isolate CD271 subpopulations from other tissues sources for MSCs successfully, for 

example, adipose tissue, dental pulp and placenta (Álvarez-Viejo et al., 2015). Furthermore, several 

studies suggested that the CD271 positively selected cells have demonstrated a higher differentiation 

potential.  



  

37 

 

Mifune et al., 2013 demonstrated in their study that CD271 selected MSCs to have a greater 

differentiation potential for chondrogenesis in vitro and in vivo than plastic adherent MSCs (PA 

MSCs) (Mifune et al., 2013). Similarly, Alvarez et al., 2015 have successfully isolated three different 

subpopulations from the dental pulp using three different combinations of surface markers 

(CD51/CD140a, CD271, and STRO-1/CD146). They reported in their study that the isolated CD271 

cells from the dental pulp displayed the greatest odontogenic potential. The isolation of CD271 

positive MSCs from adipose tissue has received increased attention and favour in regenerative 

research. Such preferences can be ascribed to the fact that AT MSCs are isolated from fat tissue 

easily, have a high yield and also, these cells are easily cultured and have the capacity to differentiate 

into various cell lines (Zuk et al., 2002). Moreover, Cuevas-Diaz Duran et al., 2013 reported in their 

study that although the amount of CD271 positive MSCs decreased with age, the CD271 positive 

cells isolated from adipose tissue were present in all age groups and their frequency was higher than 

what has been found in BM. Therefore, they suggested that the CD271 positive cells selected from 

adipose tissue were proposed as the primary choice for tissue regeneration and autologous stem cell 

therapies in older subjects (Cuevas-Diaz Duran et al., 2013). 

In summary, from all the above it can be concluded that MSCs are not a homogeneous population of 

cells. Several studies suggested that there are several stem cell subpopulations within SVF, each 

population could have potential benefit to repair specific damaged tissue (Calabrese et al., 2015, 

Latifi-Pupovci et al., 2015). Moreover, it is worth mentioning that up till now; all these previous 

studies have focused on and demonstrated the potential of MSC subpopulations only; no study has 

explored the secretomes activity of these cells. Thus, in this study and as a part of this project, the 

potential paracrine action of CD271 isolated cells has been examined. 

 

1.4 The Role of the MSCsʼ Secretomes in Regenerative Medicine 

 As stated previously MSCs are characterised by their multipotent capacity. One of the most 

characteristic features of MSCs is their potent effect on the immune system; it is well known that 
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MSCs have an excellent capability to suppress immune responses (Jiang et al., 2005, Corcione et al., 

2006, Casiraghi et al., 2008, Jarvinen et al., 2008). Also, one of the most distinguishing features of 

MSCs compared to most other cell types is that MSCs retain the ability to migrate into damaged 

tissues so that they can differentiate. In the other word, MSCs are clearly remarkable in possessing 

several regenerative properties including the homing ability to the site of damaged tissue, 

immunosuppressive capacity and multiple differentiation capacities as well as secreting growth 

factors (Figure 1.8) (Deng et al., 2011). In the past, the effective and most common accepted concept 

about the regenerative therapeutic effects of transplanted MSCs was by their migration and 

integration into the damaged tissue and differentiation into specialised cells (Kapur and Katz, 2013, 

Collawn and Patel, 2014). However, many experimental studies showed that only a small proportion 

of locally or systemically administered MSCs have participated in the healing of injured tissues 

(Baglio et al., 2012).  
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Figure 1:8 Regenerative properties of MSCs.  

Schematic diagram showing the main properties that make MSCs a potential therapy for human 

degenerative diseases. The image is adapted from (Kim et al., 2013a). 
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Thus, the scientists are currently suggesting that the beneficial effects in tissue repair and 

regeneration are more likely indirect and depend on the paracrine activity of MSCs and not on their 

engraftment. Several studies proposed secretomes as the main pathway through which MSCs exert 

their therapeutic effects in the central nervous system (CNS) (Drago et al., 2013, Teixeira et al., 2013, 

Konala et al., 2016) this will be described later in this section. Interestingly, this hypothesis opens 

the window on novel therapeutic applications involved in the development of cell-free strategies 

based on the use of MSCs secretomes. The development of such strategies can ensure a treatment 

that is free of immune rejection and tumour formation risks and maybe even potentially better in 

some cases than the application of cell therapy (Kim et al., 2013a). MSCs’ secretomes can be defined 

as a rich complex set of molecules secreted by living cells or shed from the cell surface. It is believed 

that the MSCs’ secretomes are composed of soluble factors, cytokines, chemokines, micro-RNA 

(miRNA), exosomes and microvesicles (Skalnikova et al., 2011). 

These secreted trophic and immunomodulatory/anti-inflammatory factors function together in a co-

operative manner to generate tissue microenvironments that are ideal for repair/regeneration (Figure 

1.9) (Madrigal et al., 2014). The fully characterised profile of secretomes is required for better 

application in regenerative medicine. Therefore, different proteomic approaches have been applied 

to address the characterization of growth factors, cytokines and other molecules secreted by stem 

cells (Skalnikova et al., 2011). Classical proteomic techniques such as 1-D or 2-D gel-based and 

chromatographic fractionation and protein identification using mass spectrometry, along with recent 

advancements in proteomic tools including protein microarrays, quantitative mass spectrometry and 

bioinformatics also highly sensitive antibody-based techniques are expected to enable mapping of 

the stem cell secretomes (Potian et al., 2003, Wang et al., 2006, Chiellini et al., 2008, Hoch et al., 

2012, Kim et al., 2013b).
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Figure 1:9 MSCs secretomes potential activities. 

 Schematic diagram showing a summary of the potential therapeutic roles attributed to the 

mesenchymal stem cells secretomes. Image adapted from (Lavoie and Rosu-Myles, 2013). 
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All biological functions of cells such as growth, division, differentiation, apoptosis and signalling 

are regulated and coordinated by secreted proteins (Skalnikova et al., 2011). Similarly, the tissue 

repair process requires several factors including; regulating extracellular matrix deposition, collagen 

synthesis, fibroblast proliferation, platelet activation, fibrinolysis and angiogenesis. Also, the tissue 

repair process requires immunomodulatory factors,  this are often involved in suppressing T cells, 

activating macrophages and potentially recruiting neutrophils (Krafts, 2010). 

MSCsʼ trophic properties have been studied for wound healing. MSCs can be recognised by their 

ability to secrete many vital growth factors and chemokines to induce cell proliferation and 

angiogenesis. These factors include; transforming growth factor-alpha (TGF-α), transforming growth 

factor-beta (TGF-β), hepatocyte growth factor (HGF), epithelial growth factor (EGF), basic 

fibroblast growth factor (bFGF) and Insulin-like growth factor-1(IGF-1) to increase fibroblast, 

epithelial, and endothelial cell division (Haynesworth et al., 1996, Caplan and Bruder, 2001, Collawn 

and Patel, 2014). Vascular endothelial growth factor (VEGF), IGF-1, EGF and angiopoietin-1 are 

also released to recruit endothelial lineage cell and initiate vascularization (Chen et al., 2008).  

Interestingly, there is growing evidence that MSCs’ secretomes also include neuroregulatory 

molecules such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) 

(Teixeira et al., 2013, Teixeira et al., 2016). Wilkins et al. (2009) in their study showed that MSCs 

secreted several neurotrophic factors such as BDNF. In their study, they demonstrated that exposure 

of neurones to BDNF secreted by MSCs increased activation of AKT pathways and protected 

neurones from trophic factor withdrawal (Wilkins et al., 2009). 

Similarly, Egashira et al., (2012) have suggested that murine and human adipose-derived MSCs have 

neuroprotective effects against experiment models of stroke, both in vivo and in vitro (Egashira et 

al., 2012).
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Also, Teixeria et al., 2016, has investigated the effect of human MSCsʼ secretomes on neural 

progenitor cells in an in vitro and in vivo studies. They claimed that MSCsʼ secretomes prepared 

either in dynamic or static condition both improved proliferation and differentiation of neural 

progenitor cells (Teixeira et al., 2016). Although a significant part of the trophic effect of the MSCsʼ 

secretomes are due to growth factors and cytokines, recently it has also become evident that the 

extracellular vesicles (EVs) including exosomes (40–100 nm) and microvesicles (MVs) (100–1000 

nm) have been shown to play a vital role in tissue repair (Konala et al., 2016). 

 The molecular composition of EVs are mainly proteins including; endosome-associated proteins 

(e.g., Rab GTPase, SNAREs, Annexins, and flotillin), proteins involved in biogenesis (e.g., Alix and 

Tsg101) and some membrane proteins including tetraspanins (e.g., CD63, CD81, CD82, CD53, and 

CD37) (Hemler, 2003, van Niel et al., 2006, Zoller, 2009). Additionally, the EVs are highly enriched 

in lipids (e.g., cholesterol, sphingomyelin, and hexosylceramides) (Brouwers et al., 2013). Moreover, 

EVs are also enriched with a cargo of both mRNA and miRNA (Valadi et al., 2007). Several studies 

have examined the regenerative therapeutic effect of EVs derived from MSCs for different diseases 

for example cardiovascular disease, neurological diseases and other diseases (Bian et al., 2014, 

Jarmalavičiūtė and Pivoriūnas, 2016). Feng et al., 2014, reported in their study where they use mouse 

myocardial infarction model that the delivery of miR-22, which was released by MSCs, reduced 

apoptosis in ischemic cardiomyocytes, reduced fibrosis and promoted cardiac function post-

myocardial infarction (Feng et al., 2014).  

Exosomes are fitting for neurological diseases as lipid-bound nano-vesicles exosomes act as 

liposomes which can cross the blood-brain barrier (Konala et al., 2016). However, MSCs’ paracrine 

actions also have limitations that must be addressed. For example, some cytokines or chemokines, 

such as TNF-α and IL-6 released from MSCs may be harmful (Ward, 2009). Nevertheless, exploring 

the MSCsʼ secretomes holds great promise as a more controllable, manageable and sensible 

therapeutic strategy than cell-therapy. 



  

44 

 

Since MSCs have emerged in the field, intensive research has been explored on the MSCsʼ potential 

for therapy for different conditions including; cardiovascular diseases, autoimmune diseases, and 

liver diseases, orthopaedic injuries, and spinal cord injury (Wright et al., 2011, Kim and Cho, 2013). 

Many animal experiments have recorded an improvement in locomotor function after transplantation 

of MSCs in SCI (Ankeny et al., 2004, Ohta et al., 2004, Deng et al., 2006, Geffner et al., 2008). The 

main mechanism of effect in cell transplantation has been ascribed to their secretomes (Kanno et al., 

2014). The recent clinical trial phase I of SCI in human showed that the transplantation of MSCs was 

safe and feasible (Kakabadze et al., 2016). SCI is further explored in the next section.  

1.5  Spinal cord injury and regenerative medicine 

1.5.1  Gross anatomy of the spinal cord  

The spinal cord is a part of the central nervous system. The spinal cord is the long tubular bundle of 

nerves and neurones that extend from the medulla oblongata in the brainstem to the lumbar region of 

the vertebral column. Generally, spinal cords are characterised by their elaborate organisation and 

complexity. Its complexity is attributed to its critical functions. These include; sensation, autonomic 

and motor control (FintanSheerin, 2004). 

The spinal cord can be described as a complicated processor of sensory and motor information. It 

can regulate the sensory inflow and is involved in the control of movements. In other words, the 

spinal cord looks and also functions as a cable gathering sensory information from the body to the 

brain and sending movement orders from the brain to the body. The spinal cord also processes 

sensory and motor signals (Dikopolskaya and Makarenko, 2014). 

1.5.2 Causes and pathophysiology of spinal cord injury  

SCI is one of the most devastating injuries that can affect the CNS. SCI causes severe damage to the 

nerve tissue in the spinal cord leading to a block in the communication between the brain and the 

body. Before proceeding onto the further explanations regarding SCI, it is worth highlighting the fact 

that the clinical presentation and syndromes of SCI do not necessarily correlate with the pathological 

findings (El Masri, 2006, Ecker et al., 2008).
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A person with SCI, loses sensory, motor and reflex messages, which may not be able to get past the 

damage to the spinal cord (Mothe and Tator, 2012).The most common causes of traumatic SCI are 

motor vehicle accidents, falls at home or work-related injuries, acts of violent crime, and sports-

related injuries (Devivo, 2012). Most clinicians classify the level of injuries of the spinal cord as 

either complete or incomplete. Simply, the fully compressed or severed spinal cord is classified as 

complete spinal cord injury in which the brain's ability to send signals below the point of damage is 

eliminated. Incomplete spinal cord injuries occur when the spinal cord is partially compressed or 

injured, and the brain's ability to send signals below the site of the injury is not completely removed 

(Kirshblum et al., 2011). However, the severity of damage or injury in the spinal cord can be 

classified based on the amount of spinal cord tissue damage or density of the lesion.   Regardless of 

the cause the mechanisms underlying injury after spinal cord trauma results from, primary and 

secondary injury mechanisms (Webb et al., 2010).  

The primary mechanism of spinal cord trauma is a mechanical injury to the spinal cord. This 

mechanical injury occurs as a result of impact and compression (due to column fracture and 

dislocation) against the spinal cord. This leads to several pathological changes at the site of injury 

including; severe damage to the axon, mechanical trauma causing damage to the cells, and damage 

to the small intramedullary vessels causing haemorrhage (Rowland et al., 2008). The primary injury 

leads to the secondary mechanism. The secondary mechanism of injury results in several events. 

These include first, electrolyte shifts in which changes in local ionic concentration occur. Second, 

vascular dysfunction this includes; disturbance in local and systemic blood pressure, reduction in 

spinal blood flow and rupture of the blood-brain barrier. Third, the release of free radicals and finally, 

immune system response inflammation, and apoptotic cell death (Dumont et al., 2001, Oyinbo, 

2011). However, these two mechanisms are involved in four biological phases as a response to a 

spinal cord injury. The immediumte phase (0-2 hours) is the immediumte result of the injurious event 

itself.  
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It begins at the time of injury and lasts ~ 2 hours.  This phase represents the primary mechanism of 

injury and is accompanied by the phenomenon of spinal shock leading to loss of function at and 

below the level of injury for complete injuries (Dumont et al., 2001). 

The acute phase in which the secondary injury processes become dominant and can be subdivided 

into two stages; early acute stage (2-48 hours) which is characterised by continuing haemorrhage, 

increasing oedema and inflammation. Subacute stage (2 days to 2 weeks) this stage represents the 

most favourable time for repair mechanisms, in particular for the strategies based on cell therapies. 

Many experimental studies showed that active functional recovery could happen after cell 

transplantation during this stage compared with immediate treatment or at later time point (Keirstead 

et al., 2005, Karimi-Abdolrezaee et al., 2006).  

The intermediate phase (2 weeks to 6 months) is characterised by the continued maturation of the 

glial scar and by regenerative axonal sprouting. Finally, the chronic phase (more than 6 months) takes 

over. This phase begins at 6 months following injury and continues throughout the lifetime of the 

patient. The main characteristic features of this phase are the maturation and stabilisation of the lesion 

through the continuation of scar formation and the development of cysts, and alterations in neural 

circuitries (Dumont et al., 2001). 

 

1.5.3 The importance of nerve regeneration and revascularization in SCI recovery 

Anatomically the spinal cord can be divided into five regions. The nerves in the cervical region 

control the muscles and glands and receive sensory input from the neck, shoulder, arm and hand. The 

thoracic region nerves are associated with the chest and abdominal walls. The lumbar region nerves 

are associated with the hip and leg. In the sacral region, the nerves are associated with the genitals 

and lower digestive tract. Coccygeal region nerves supply the skin over the coccyx. Spinal cord 

regions do not necessarily correspond to the bony regions of the spinal column (Figure 1.10) (Silva 

et al., 2014).  
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Nerve regeneration after SCI is very limited, however, a team led by Rosenzweig in California San 

Diego in 2010 performed an incomplete hemisection spinal cord injury on adult rhesus monkeys, 

administered at C7 of the spinal cord. They investigated the mechanisms underlying natural recovery 

after such injury. Their findings suggested that the connections between circuits in the spinal cord 

grew again, considerably and spontaneously, and after only 24 weeks following the mild spinal cord 

injury, 60 percent of the connections were fully recovered (Rosenzweig et al., 2010). Also, El Masri 

and colleagues demonstrated that early simultaneous active physiological conservative management 

of the injured spine in patients with complete motor paralysis but with sparing of pinprick sensation, 

70% of those patients revealed in the first 72 h of injury recovered motor power to ambulate without 

surgical, pharmacological, cellular or biological intervention. Thus, based on their studies they 

suggested that surgical intervention is not recommended at the early stages of SCI (El Masri and 

Kumar, 2017).This may be due to the fact that surgical intervention at early stages of SCI may add 

extra trauma to the already injured tissue.  

When CNS patients undergo injury, several factors are required to reconstruct neuronal circuit 

including; synaptic reorganisation, axonal sprouting and neurogenesis. Under the effect of injury 

environment, the nervous system reveals plasticity property to adapt the environmental changes 

(Celnik and Cohen, 2004).  Particularly, the undamaged neurones and collateral axon branches can 

grow into the injured regions to re-establish the neuronal circuit. Although this plasticity is limited 

due to inhibitory factors released at the site of injury, increasing numbers of studies showed that a 

cell transplantation strategy could improve neuronal plasticity (Darian-Smith, 2009, Liu et al., 2012).
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Figure 1:10 Spinal cord regions.  

The schematic illustration shows the five regions of the spinal cord which are not related to the bony 

structure of the vertebra. Image adapted from (System, 2016). 
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Based on several studies either in vitro (Wright et al., 2007, Liu et al., 2010) or in vivo (Ribeiro et 

al., 2011, Neirinckx et al., 2015), MSCs transplantation or conditioned medium exhibited 

neurological effects by improving neurite outgrowth or neuronal axon sprouting from surviving 

axons.  

Angiogenesis plays a critical role in SCI recovery by reducing secondary axonal damage due to 

ischaemia and also by the delivery of oxygen and nutrients to the site of regeneration and removal of 

metabolic waste (Loy et al., 2002, Lutton et al., 2012). Migration and proliferation of endothelial 

cells are important in the angiogenic process. In the spinal cord, blood vessel distribution is based on 

the area of supply, grey matter is characterised by its high vascularisation compared with white 

matter. Such variation in blood supply reflects the metabolic activity of individual areas as the grey 

matter is the aggregation of nerve cells bodies where the metabolic activity is very high whereas 

white matter is an aggregation of axons (Mautes et al., 2000).  The vertebral arteries are the main 

source of blood to the spinal cord which undergoes a series of branching, ending in terminal capillary 

beds that establish the blood-spinal cord barrier (BSCB) (Fenstermacher et al., 1988). The anatomical 

structure of BSCB is composed of several components including; a capillary wall of endothelial cells, 

pericytes, astrocytes and the extracellular matrix (Mautes et al., 2000). The endothelial cells of BSCB 

are unlike those in the peripheral circulation (Figure 1.11). Endothelial cells of BSCB are 

characterised by their non-fenestrated membrane. Instead, the endothelial cells overlap and seal the 

paracellular spaces with tight junctions (Ng et al., 2011). Pericytes surround the endothelial cells and 

separate from endothelial cells by the basal lamina. Pericytes have a significant role in endothelial 

cellsʼ proliferation, migration, and differentiation. Both endothelial and pericyte cells are wrapped 

within a layer of the basal lamina which provides physical support for the vessel wall. Astrocytes 

foot processes, which are juxtaposed against the basal lamina, surround the outer surface of these 

capillaries. 
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Figure 1:11 Basic cellular constituents of the BSCB. 

 Schematic illustration showing the basic composition of BSCB which is formed from an overlapped 

endothelial cell that has tightened by tight junction surrounded with pericyte, and the whole structure 

is wrapped with feet processes of astrocytes. Image adapted from (Abbott et al., 2006). 
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Astrocytes have a critical role in the formation and maintenance of the BSCB (Bartanusz et al., 2011). 

This concrete structure of BSCB reflects the effective role of this barrier to protect spinal cord by 

preventing passage of any molecules apart from the required nutrients. Therefore, lack of such 

protective barrier results in the influx of cellular toxic molecules including; calcium, excitatory 

amino acid neurotransmitters. A high concentration of glutamine and glycine can be toxic to cells. 

Free radicals, erythrocytes, leukocytes, and inflammatory mediators can also be toxic (Bartanusz et 

al., 2011, Ng et al., 2011). In fact, there is an angiogenic response that occurs after SCI in which new 

blood vessels are formed (Oudega, 2012). However, Whetstone et al., 2003 has reported in their 

study that BSCB lost its permeability and the regenerated blood vessels after injury of spinal cord do 

not display a typical barriers’ properties (Whetstone et al., 2003). Therefore, there is a need to 

develop a strategy to ensure the restoration of fully functional nerves and BSCB. The restoration of 

a complete structural and functional BSCB may enhance the improvement of neuronal tissue as the 

BSCB can prevent infiltration of unwanted particles.  

In fact, the cellular and molecular changes that occur during the secondary processes of SCI have a 

significant role in the development of pathophysiology of the lesion. Many studies claimed that the 

intervention may reduce secondary injury of the spinal cord by reducing the series of cascade events 

after spinal cord trauma and thus, an improvement in spinal cord functionality may be achieved 

(Dasari et al., 2014). Since the emerging of stem cells as cell-based therapy, many studies have 

investigated their potential activities to modulate the cascade of events of secondary injury after 

spinal cord trauma. For example, transplantation of MSCs in animal model studies has been shown 

to increase the repair of the injured spinal cord tissues (Park et al., 2011). Although, a full 

determination of the in vivo MSCs functional roles and involved molecular regulatory mechanisms 

are not yet completed. However, several studies suggested that the possible mechanisms through 

which MSCs may ameliorate the secondary injury of SCI may be due to the main characteristic 

features of MSCs biological activities including; migration to the damaged neuronal tissue, neuronal 
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differentiation, and releasing survival factors that could play a role in neuronal protection (Qu and 

Zhang, 2017). 

Cancer cell lines are widely used as models to investigate broad biological activities. Therefore, to 

achieve the goals raised by this study, two cell line models have been adapted to investigate the 

neurogenic and angiogenic effects of MSCs conditioned medium.  

These models include: SH-SY5Y human neuroblastoma cell line, SH-SY5Y human neuroblastoma 

cell line is one of the cell lines which have been widely used to understand neurogenic properties. It 

is the third successive subclone from the original cell line, called SK-N-SH, which was isolated from 

a bone marrow biopsy taken from a four-year-old female with neuroblastoma. SH-SY5Y has been 

extensively used as a neuronal model in most in vitro neurological experiments. This was conferred 

due to first, their ability to differentiate into a functionally mature neuronal phenotype when they are 

differentiated by exposure to retinoic acid followed by brain-derived neurotrophic factor in serum-

free medium. Second, due to the experimental limitation of gaining primary neurone cells in vitro, 

SH-SY5Y cells considered as an alternative source for neuron cells (Yusuf et al., 2013). 

EA.hy926 Human endothelial cell line, a hybrid cell line that was established by fusion of A549 

cells (human cell lung carcinoma) with human umbilical vein endothelial cells (HUV-EC). Note that 

HUVEC is primary cells (Edgell et al., 1983). This cell line displays structural and functional 

characteristic features of vascular endothelial cells (Edgell et al., 1990, Bauer et al., 1992, Rieber et 

al., 1993). This study has adopted EA.hy926 cell line over the primary HUVECs for the following 

reasons, i) long life span of EA.hy926 cells compared with HUVECs as they have a short life span 

ii) reducing individual variation as the primary cells HUVECs are multi-donor of origin adding 

variability to the variability  from the conditioned medium used in this study that has been also 

derived from different donor. Thus, using a cell line model can minimise the risk of the donor to 

donor variations (Bouïs et al., 2001). 
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1.5.4 Strategies for SCI treatment 

As stated above, SCI results from severe damage to neuronal tissue resulting in dramatic disability 

represented in the loss of motor and sensory functions. The primary aim for SCI management is 

avoidance of secondary injury. Thus, the recent therapeutic strategies are aimed to reduce and control 

any further damage to the spinal cord after injury (Martin et al., 2015). Currently, no treatment is 

effective at obtaining a full recovery of function of the damaged tissue of spinal cord after injury. 

However, there are several strategies that claim to improve some of the functions of the spinal cord 

after injury. These strategies include; spinal cord decompression, spinal cord stabilisation, 

neuroprotective strategies and regenerative therapies. The surgical intervention to decompress spinal 

cord after injury within the first 24 h claim to increase the chances of improvement in motor function 

at later stages of injury (Dvorak et al., 2015). Similarly, spinal cord stabilisation is at least as 

important as spinal cord decompression. Spinal cord stabilisation may involve different surgical 

interventions for example; anterior and posterior surgical approaches, halo-vest cervicothoracic 

orthosis and external bracing or rigid collar. The surgical interventions are based on the severity of 

damage in ligaments and bone (Krengel et al., 1993, Furlan et al., 2011). 

Neuroprotective strategies include hypothermia and pharmaceutical therapy. Several studies showed 

that systemic hypothermia in acute SCI has contributed to improving neurological functions. 

However further studies are needed before hypothermia is adopted widely (Wang and Pearse, 2015).  

The evidence based on research studies suggested administration of some pharmaceutical drugs may 

have a beneficial effect on either minimising the secondary injury mechanism or facilitate the 

neurological recovery after injury. Methylprednisolone (MP) is a potent corticosteroid that inhibits 

inflammation and membrane lipid peroxidation. It was widely used by SCI clinicians previously. 

However, this drug classifies as an optional treatment as there is a controversy about the high dose 

of MP (Hugenholtz, 2003, Evaniew et al., 2015, Martin et al., 2015). However, several drugs are in 

development for treating spinal cord injury. They are either neuroprotective or neuroregenerative 

agents targeting specific pathological mechanisms. Riluzole is considered as one of the 
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neuroprotective agents which slow degeneration of motor neurones and prolongs survival (Fehlings 

et al., 2012). Another neuroprotective agent is minocycline which has an effect by reducing 

microglial activation and TNF-alpha secretion (Festoff et al., 2006). Pre-clinical studies suggested 

that improvement in motor function, reduction in lesion size, and preservation of axons have been 

achieved after the administration of minocycline after SCI attributing this improvement to its 

neuroprotective effects (Wells et al., 2003, Casha et al., 2012). The regenerative approaches can be 

achieved not only by halting secondary injury but also by inducing and amplifying repair 

mechanisms. Cethrin is a bacterial-derived toxin that blocks signalling from inhibitory proteins 

released by myelin debris present at the site of injury and promotes axonal growth in vitro (Fehlings 

et al., 2011). Protein nogo-A is one of the myelin proteins which act as an inhibitor of nerve growth 

factor (NGF). Recently, applying a biological strategy of neutralising monoclonal antibodies that are 

selective for Nogo-A has been shown to enhance the regeneration and reorganisation of the injured 

spinal cord (Liebscher et al., 2005, Zhao et al., 2013b). 

These advances in both the understanding of spinal cord pathological mechanisms of injuries and 

developing therapies have shown promising results at the preclinical stage of study but failed to 

translate into clinic Since each therapy focuses on one specific mechanism, therefore, a combination 

of therapies is needed (Martin et al., 2015). Thus, various aspects of stem cells therapy for SCI have 

attracted research as they exert a multiple or a combination of therapeutic and trophic activities.   

MSCs account for a large share of investigations for their therapeutic activities for SCI; this can be 

attributed to their main characteristic features including; freedom from concern about ethical issues, 

ease of access and lack of tumour formation after transplantation (Li and Lepski, 2013, Dasari et al., 

2014). Several new studies have investigated the therapeutic potential of AT MSCs by targeting a 

different aspect of injury mechanisms (Kolar, 2014, Hur et al., 2016). AT MSCs hold significant 

promise for SCI, most of the animal studies showed MSCs could contribute to repair spinal cord 

tissue after injury by several mechanisms. These mechanisms include; replacement of damaged 

nerves as a result of injury, generation of new supporting cells that are capable of formation of 
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myelin, reduction of the damaging inflammation that can occur after injury and secretion of 

protective substances as trophic factors to protect the cell from further damage at the site of injury 

and also absorption of free radicals (Dasari et al., 2014). However, further investigation is still 

required to understand the underlying mechanisms of the therapeutic effects of MSCs and to optimise 

the roles of MSCs in repairing SCI.  

 

1.6 The importance of a large animal model in translating regenerative therapy for 

SCI 

As stated above the strategy of using stem cell transplantation for SCI is rapidly evolving in 

regenerative medicine.  However, the absence of animal models fully reflecting the phenotype of the 

human experience of SCI is still a challenging step in bridging the gap between translation research 

and human clinical trials (Harding et al., 2013). 

Although, rodents represent the most traditional animal models for preclinical studies, in cell-based 

therapies they have their limitations. On the one hand, rodents have the advantage in experimental 

studies of easier management and relatively inexpensive cost. On the contrary, they have a short 

lifespan which does not fit with observation experiments over long periods, small organ sizes and 

marked physiologic differences (Cibelli et al., 2013). Rodent models do not reproduce full in certain 

aspects of SCI in human, as the injury is induced in the lab and it is not spontaneously and natural in 

occurrence. Large animal models could be the best option to investigate and translate the outcome of 

cell-based therapies into human clinical trials. The large animals are anatomically and 

physiologically similar to human in comparison with rodents which have small body size and 

substantially different physiology (Casal and Haskins, 2006). For example, the neuropathological 

sequences following SCI in human are characterised by cystic cavitation whereas in murine the lesion 

site is filled with non-neuronal cells (Fujiki et al., 1996, Guth et al., 1999, Byrnes et al., 2010). 

Large animals like rabbits, cats, dogs, pigs, goats, sheep, and non- human primates often represent 

better models than rodents. The use of dogs as large animal models can bring benefits for both human 
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and veterinary medicine. Besides, dogs among other large animals faithfully mirror most of the 

disease in humans (Starkey et al., 2005). The domestic dogs share common similar features in 

diseases including; physiology, disease presentation and clinical response.  About 400 inherited and 

naturally occurring diseases in dogs are similar to those found in human (Khanna et al., 2006). 

Diabetes, epilepsy, asthma and cancer are the most common inherited diseases. These diseases occur 

as a result of complex interactions between multiple genes and environmental factors, interestingly, 

these characteristics are shared by both human and dogs (Schneider et al., 2008). In 2005 Toh et al., 

announced the publication of a complete map of the dog genome. The availability of this genome 

map provides the opportunity to explore the genetic basis of disease susceptibility and may provide 

insights into disease mechanism. This may lead to the possibility of clinical trials in dogs with genetic 

diseases to develop new therapeutics that would improve health in both dogs and humans (Switonski 

and Szczerbal, 2001, Lindblad-Toh et al., 2005). Indeed, the availability of canine DNA and protein 

sequence make dogs a more relevant model to translate the genetic mechanisms underlying the 

occurrence of some genetic diseases in human than mice (Kirkness et al., 2003, Lindblad-Toh et al., 

2005). 

Similarly, in stem cell transplantation dogs have a crucial role as a model for many transplantation 

research studies (Abkowitz et al., 1996, Wagner and Storb, 1996, Horn et al., 2004). Moreover, 

canine SCI represents perfect models for spontaneous SCI in human. The common reasons for SCI 

in canine are similar to human; that can either be traumatic injury as a result of motor accidents or 

non-traumatic injury due to Intervertebral disc disease (IVDD) (McMahill et al., 2015). There are 

three methods of inducing SCI in the lab which is frequently used for experimental animal models 

including; transection model, compression model, and contusion model (Rosenzweig and McDonald, 

2004). Each method addresses a specific question thus each one has its advantages and disadvantages. 

Briefly, the transection model is either a complete or partial section of the spinal cord involving an 

opening within the dura to induce this injury. The advantages of this method are that it provides a 

good setting for axon regeneration experiments and it is a suitable method for the implantation of 
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specific devices. The disadvantage of this method is that transection in spinal injury is very rare in 

humans (Zorner et al., 2010). The contusion model is induced without any disruption of the dura by 

instead directly hitting the spinal cord. There is a specific tool that is controlled by a computer called 

the impactor to generate this model. The advantage of this method is that it provides valuable 

information on several biomechanical parameters. The disadvantage is that it is difficult to 

distinguish between the survived tissue (i.e., spared tissue) and the newly regenerated tissue, as the 

survival tissue has a marked contribution to the recovery process of the spinal cord. Thus the moral 

value of this model could be to assess the safety of interventions but not to establish an efficacy 

(Salegio et al., 2016). 

Whereas, the compression model allows for a prolonged spinal cord compression using a clip or 

forceps compression technique. The advantages of this model are that it is simple, inexpensive, and 

limited resources are necessary. The disadvantages are the lack of an acute injury to study (Cheriyan 

et al., 2014). 

Nonetheless, the clinical lesion in human and dogs usually occur due to a mixture of both forces, 

contusive and compressive, which affect multiple regions of the spinal cord. While in rodents’ 

experimental model's the lesion is only one type either contusive or compressive which are created 

on a single side of the spinal cord (Jeffery et al., 2006a). Also, the immune response in rodents after 

SCI differs compared with human and dogs. Both canine and human inflammation are dominated by 

microglia cells (Schmitt et al., 2000, Spitzbarth et al., 2011). In contrast, inflammation in injured 

rodents is dominated by T-lymphocyte  (Popovich et al., 1997).  Thus SCI in canine is more closely 

mimics the pathophysiology of SCI in human compared to rodents.  Canine could be a promising 

model to bridge that gap between research and human clinical trials. 

Although dogs may consider as better large animal model for human SCI, there are several limitations 

should be taken in a count as dog is quadruped that has less motor dominance by the pyramidal 

(corticospinal) tract, in this aspect it is difficult to use dog as model for human SCI also, difficulties 

in interpreting outcomes measured in animals (Jeffery et al., 2006b, McMahill et al., 2015). 
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1.7 Aims and objectives of the study  

The major aim of this study was to investigate the regenerative activities of MSCs’ secretomes and 

their potential benefit for SCI repair in both human and veterinary regenerative medicine. The reason 

for focusing on secretomes rather than the cells themselves was to establish and develop a new 

strategy of cell-free therapy that will be ready to use at any time, without needing to wait for two or 

three weeks as is the case with using the cells. As it was explained previously in the Introduction 

(Section 1.5.3) neurogenesis and angiogenesis play a critical role in spinal cord recovery and repair. 

Therefore, the thesis has firstly, investigated the regenerative activities (i.e. neurogenesis and 

angiogenesis activities) of canine MSCs secretomes. Secondly, the aim was to investigate the 

differences in these regenerative activities between human and canine MSCs secretomes. Such 

studies could bridge the gap between translating research into preclinical studies and clinical trials 

on SCI in human. Thirdly, the aim was to investigate the differences in regenerative activities among 

MSC subpopulation secretomes. Such investigating could explore the differences in biological 

actions within heterogeneous populations, which may lead to the identification of differences that 

can be employed to develop a specific application of treatment. 

 

 

 

 

 

 

 



  

59 

 

 

 

 

 

 

 

 

2  Chapter Two:  Materials and Methods 
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2.1  Tissue culture regime and management  

2.1.1 Isolation and culture of canine adipose-derived mesenchymal stem cells 

Canine adipose-derived mesenchymal stem cells (cMSCs) were kindly provided by the Veterinary 

Tissue Bank Limited (VTB Ltd., Chirk, UK.) (Table 2.1). These cells were isolated from the inguinal 

fat pads of dogs undergoing MSCs transplantation in the treatment of joint pathology. Fat samples 

were dissected, minced and washed in phosphate buffered saline (PBS) (Gibco®, Life 

Technologies™, Paisley, UK). Then each sample was digested with collagenase solution (0.2% 

Collagenase type A, Worthington Biochemical Corporation. USA) where the sample was placed in 

an incubator at 37 ºC with gentle shaking for 2hrs. An equal amount of standard culture medium, i.e., 

DMEM/F-12 medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/ 

streptomycin (all from Gibco®) was added to stop the action of collagenase, then the digested sample 

was filtered through a 40µm cell strainer (BD Biosciences) to remove any large debris. Following 

two cycles of centrifugation at 1,200 rpm for 4 minutes and resuspension of the resultant cell pellet 

in standard culture medium to wash away any remaining collagenase, the obtained cells were seeded 

in T75 tissue culture flasks (Sarstedt AG & Co. Germany) and incubated in a humidified incubator 

with 5% CO2 at 37ºC. Any non-adherent cells were removed by discarding the medium at 24-72 

hours post-seeding, and the adherent cells cultured as monolayer cultures through to passaging by 

trypsinisation into fresh T75 flasks. The culture-cMSCs at passages II-III was delivered to the 

research laboratories at Aston University. These cells were further cultured with standard culture 

medium, where they were kept incubated at 37ºC in a humidified atmosphere of 5% CO2.  

It may cross the mind how old is a dog in the human year, actually, dogs mature more quickly than 

human do early on. In fact, dog size and breed play a role. Smaller dogs tend to live longer than 

larger ones, but they may mature more quickly in the first few years of life. Table 3 shows the dog 

age compared to a human. Also, it is worth to mention that age and gender of donors have an 

influence on the potency of MSCs (Sotiropoulou et al., 2006, Duggal and Brinchmann, 2011). Donor-

to-donor variation and gender-related variation have a significant impact on phenotype features and 

functional properties of MSCs (Siegel et al., 2013). 
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2.1.2  Isolation and culture of human adipose-derived mesenchymal stem cells 

Following ethical approval and informed consent (LREC number 12/EE/0136), human adipose-

derived mesenchymal stem cells (hMSCs) were harvested from the excised infrapatellar fat pad of 

the knee joints of patients having a knee replacement surgery (Table 2.1). The MSCs were isolated 

from adipose tissue samples following the protocol described previously by (Bunnell et al., 2008). 

Initially, adipose tissue samples were minced and incubated with 0.3 U/ml of collagenase type I 

(Sigma, Dorset, UK) for 3-4hrs in a humidified incubator at 37°C and 5% CO2, with gentle shaking. 

Following collagenase digestion, an equal amount of DMEM/F-12 medium supplemented with 20% 

FBS and 1% penicillin/streptomycin was added to stop the reaction of collagenase. Then the digested 

tissue was centrifuged at 1000 rpm for 10 minutes. After removing the supernatant, the resultant cell 

pellet was washed in DMEM/F-12 containing 20% FBS and 1% penicillin/ streptomycin followed 

by further centrifugation at 1000 rpm for 10 minutes. The resultant cell pellet was resuspended and 

filtered through 70µm cell strainers (BD Biosciences) to remove any debris. The cells obtained 

following this filtering were then cultured in DMEM/ F-12 containing 20% FBS and 1% penicillin/ 

streptomycin in a humidified atmosphere in an incubator at 37 °C and 5% CO2 and after 24-72 hours 

of incubation and non-adherent cells were washed off by a complete change of medium and the 

adherent cells remaining were subsequently culture expanded in T75 flasks until they reached 70%-

80% confluence. The cultured adherent cells were further cultured expanded by passaging through 

trypsinisation and re-seeding into fresh T75 flasks, as described (Kohli et al., 2015). 
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Table 2: MSCs donor details.  

The table shows the MSCs used in this study. Human MSCs were provided by the Royal Orthopaedic 

Hospital, Birmingham whereas the canine MSCs were provided by the Veterinary Tissue Bank 

Limited. 

  

 

MSC ID Tissue of origin Sex Age 

MSC from human 

MSC101 The infrapatellar fat pad of the knee joints Female 27 

MSC110 The infrapatellar fat pad of the knee joints Female  49 

MSC105 the infrapatellar fat pad of the knee joints Male 69 

MSC123 The infrapatellar fat pad of the knee joints Female 59 

MSC126 The infrapatellar fat pad of the knee joints Female 60 

MSC from canine 

 Breed  

MSC012 The inguinal fat pads Labrador Female 7 

MSC014 The inguinal fat pads Labrador Female 8 

MSC017 The inguinal fat pads Spaniel Male 2 

MSC018 The inguinal fat pads Not specified Female 8 

MSC020 The inguinal fat pads Doberman Male 6 

MSC028 The inguinal fat pads Plummer terrier Female 9 
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Size of dogs Small 

20 Ibs or less 

Medium  

21-50 Ibs 

Large  

More than 50 Ibs 

Age of dog (year) Age in human years 

1 15 15 15 

2 24 24 24 

3 28 28 28 

4 32 32 32 

5 36 36 36 

6 40 42 45 

7 44 47 50 

8 48 51 55 

9 52 56 61 

10 56 60 66 

11 60 65 72 

12 64 69 77 

`13 68 74 82 

14 72 78 88 

15 76 83 93 

16 80 87 120 

 

Table 3: Dog age in human years. 

The table shows dogs’ age in human years based on their body mass. This table adapted from 

(WebMD, 2017). 
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2.1.3 Isolation and culture of CD271+ and CD271- human adipose-derived 

mesenchymal stem cells 

MSCs were harvested from the excised infrapatellar fat pad of the knee joints of patients having a 

knee replacement surgery after the ethical approval and informed consent (LREC number 

12/EE/0136) by collagenase digestion, as described above. Following two steps of washing and 

centrifugation to remove collagenase, the resultant cell pellet was re-suspended with 10ml of 

DMEM/F-12 containing 20% FBS and 1% penicillin/ streptomycin and passed through A 100µm 

cell strainer (BD Biosciences). The filtered cell suspension was collected in a 15ml conical centrifuge 

tube and centrifuged at 600g for 10 minutes. Then the cell pellet was re-suspended in 5ml of 

DMEM/F-12 containing 20% FBS and 1% penicillin/ streptomycin and passed through a 40μm cell 

strainer (BD Biosciences). After that, the number of cells was determined by counting viable and 

non-viable cells using the method of trypan blue exclusion and a haemocytometer. Some cells were 

then cultured in T25 flasks to isolate MSCs based on their adherence on tissue culture plastic (PA 

MSCs), as described above, whilst the rest were processed for isolation based on their 

immunopositivity for CD271 using immunolabelling with an antibody for CD271 and magnetic 

beads, as described previously (Jones et al., 2002) and by the manufacturers protocol for CD271+ 

cell isolation (Miltenyi Biotec Inc. USA). In brief, this was as follows: 1. cells were centrifuged at 

300g for 10 minutes and then the supernatant completely removed; 2. any erythrocytes were lysed 

by treatment of the resultant cell pellet with 1ml of 1x erythrocyte lysis buffer (provided with the kit) 

and incubation for 10 minutes at room temperature, then the solution was further centrifuged at 300g 

for 10 minutes; 3. next, the supernatant was removed completely, and cells were re-suspended with 

80µl of buffer (PBS pH 7.2%, 0.5% bovine serum albumin (BSA) and 2 mM of EDTA) ; 4. 10µl of 

FcR blocking reagent and 10µl of CD271-APC was added to the cell suspension, mixed well, and 

the cells were incubated at 2-8 ºC for 10 minutes; 5. at the end of the incubation period, cells were 

washed by adding a further 1ml of buffer and centrifuged at 300g for 10 minutes; 
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6. the supernatant was completely removed, the resultant cell pellet was re-suspended with 10µl of 

FcR blocking reagent and 20µl of anti-APC microbeads and incubated at 2-8 ºC for 15 minutes; 7. 

the washing step was repeated by adding 1ml of the buffer to the cells and centrifugation at 300g for 

10 minutes; 8. finally, the supernatant was completely removed, and the cell pellet was re-suspended 

with 500µl of the buffer, preparing them for magnetic separation. 9. based on the total number of 

cells obtained following this procedure the appropriate MACS column and MACS separator were 

chosen and placed in the magnetic field. 10. the column was rinsed three times with buffer solution, 

then 500µl of the cell suspension was loaded onto the column. 11. unlabelled cells were collected by 

applying 3x3 ml of buffer to the column and eluting each time; these cells were used for this study 

as CD271- cells. 12. after the third buffer wash, the column was removed from the magnetic field, 

placed into new collection tube and a further 5ml of buffer applied onto the column and the 

magnetically labelled cells were immediately flushed out by firmly pushing the plunger into the 

column and collecting the eluent; these collected cells have been referred to as CD271+ cells. 13. 

after this final separation and isolation procedure, all collected cells were pelleted by centrifugation 

and re-suspended with 5ml of DMEM/F-12 containing 20% FBS and 1% penicillin/ streptomycin 

and seeded in a T25 flask at 37 ºC with 5% CO2. 

 

2.1.4 Cell culture expansion and storage 

2.1.4.1 Passaging cells 

Monolayer cells in tissue culture flasks were washed with PBS and incubated with 0.25% trypsin 

(w/v)/EDTA (Gibco®) for 5 minutes at 37 °C with 5% CO2. After the detachment of cells, trypsin 

activity was neutralised by adding an equal volume of standard medium containing 10% FBS. Then 

this cell suspension was centrifuged for 10 minutes at 1000 rpm to make a cell pellet. The supernatant 

was removed, and the pellet was re-suspended in the culture medium. A viable cell count was 

performed using trypan blue exclusion.
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The cells were then seeded into new fresh flasks at a desired density ranging from 5000-20000 cells 

per cm2 according to the experimental protocol. 

 

2.1.4.2  Cell cryopreservation and re-culture from storage 

Cells were harvested by trypsinisation following the method described above and the cell pellet after 

centrifugation was resuspended in cold freezing mix (10% dimethyl sulphoxide (DMSO) in FBS). 

The cell suspension in freezing mix was transferred into cryovials (containing 1-2 ml per vial), which 

were then stored overnight in a designated cryofreezing container that contained isopropyl alcohol at 

-80°C before transfer to storage containers at the same temperature or in liquid nitrogen. Cells were 

returned to culture from -80°C storage by rapidly thawing cryovials under running warm/hot tap 

water. Then the cells in freezing mix were transferred to a 15ml centrifuge tube, and 1ml of ice-cold 

standard culture medium was added to the cell suspension dropwise over one minute. The cells were 

left to stand for one minute at room temperature. After that, 10ml of room temperature standard 

culture medium was added drop-wise over 5 minutes. Then the cell suspension was centrifuged for 

10 minutes at 1000 rpm. The pellet was re-suspended in the warm standard culture medium, a viable 

cell count was performed using trypan blue stain, and then the cells were cultured in T25/T75 flasks 

at 37 °C with 5% CO2 at the desired cell density for each experiment. 

 

2.1.4.3  Screening for mycoplasma contamination in tissue culture 

Regular testing of cell cultures to ensure the absence of mycoplasma infections was performed, in 

conjunction with good aseptic technique, as strongly recommended (Barile et al., 1973). Mycoplasma 

screening was performed on every new donor cell sample received from VTB Ltd, as well as on 

maintained cultures routinely every 3-6 months using a commercial kit by following the 

manufacturer’s instructions (EZ-PCR mycoplasma test kit; Geneflow, Lichfield, Staffordshire, UK). 

In brief, 0.5-1ml of the medium was harvested from the supernatant of each cell culture to be tested 

and transferred into a 2ml micro-centrifuge tube. The supernatant was centrifuged at 250g for 3 
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minutes to remove cellular debris, then collected into a new micro-centrifuge tube and centrifuged at 

15,000g for 10 minutes. Then the supernatant was removed carefully and completely and the resultant 

pellet was re-suspended in 50µl of the commercial buffer solution provided, mixed thoroughly with 

a micro-pipette and heated to 95°C for 3 minutes. This is referred to as the “test sample”. Then 35µl 

of dH2O was mixed with 10µl of reaction mix and 5µl of the test sample in a sterile PCR tube. A 

positive template control was also prepared by adding 39µl of dH2O that was mixed with 10µl of 

reaction mix and 1µl of the positive template in sterile PCR tubes. All tubes were placed into a DNA 

thermal cycler (Thermo Fisher Scientific, UK) and the following parameters were set to amplify the 

DNA: 30 seconds at 94°C, then 35 cycles of; 30 seconds at 94°C then 120 seconds at 60°C then 60 

seconds at 72°C, followed by 30 seconds at 94°C, 120 seconds at 60°C and finally 5 minutes at 72°C. 

After that, the samples were used for agarose gel electrophoresis to determine if a PCR product had 

formed by loading 15µl of the sample in a 2% (w/v) agarose gel and applying 100 volts across the 

gel for 30-45minutes. A known DNA ladder of 100-1013 base pairs (HyperLadder™ 100bp, Bioline, 

London, UK) was also loaded. The gel was then visualised under UV light, and digitised images 

were captured using Syngene imaging software (Syngene, Cambridge, UK). The positive control for 

mycoplasma infection and any mycoplasma positive cultures gave a visible band at 270bp. Any 

mycoplasma positive MSC cultures were subsequently destroyed and all data omitted from this 

thesis. 

 

2.2 Mesenchymal stem cell phenotyping  

The ISCT (Dominici et al., 2006) has proposed three phenotypic criteria to define MSCs for 

laboratory investigations and preclinical studies, these are: (i) adherence to plastic and a stromal 

morphology; (ii) a CD profile that is immunonegative for CD34 and CD45, but immunopositive for 

CD44, CD73, CD90, CD105 and Stro-1; (iii) a multipotent differentiation capacity to form 

adipocytes, osteoblasts and chondrocytes after induction with appropriate induction medium. 

Therefore canine and human MSCs were examined for their capacity to meet these criteria. 
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2.2.1 Immunophenotypic characterization of MSCs using flow cytometry 

Canine and human MSCs were examined for their expression of specific CD markers on the cell 

surface by flow cytometry, according to the availability of commercial antibodies of published 

specificity. 

Canine MSC CD immunoprofiling. 

Immunolabeling of cMSCs was performed from passage III-V as described previously (Zhang et al., 

2013a). In brief; 3x105 cells were trypsinised, washed and pelleted by centrifugation, then re-

suspended in 200µL of 2% BSA/PBS containing 5µL of each one of the antibodies for each sample 

of cells prepared. Cells were incubated with each of the following antibodies conjugated to 

phycoerythrin (PE) or fluorescein (FITC): PE-CD34 (Cat No. 559369 BD Biosciences), FITC-CD44 

(Cat No. 115440 eBiosciences), PE-CD45 (Cat No. 125451 eBiosciences), and PE-CD90 (Cat No. 

125900 eBiosciences) or with antibodies that were not specific for mammalian antigens as isotype-

matched controls, i.e. IgG1 mouse (Cat No.12-4714-41 eBiosciences), IgG2a rat (Cat No.11-4321-

41 eBiosciences), IgG2b rat (Cat No. 11-4031-81 eBiosciences) and IgG2b rat (Cat No. 12-4031-81 

eBiosciences) (isotype control respectively for each CD marker), for 30 minutes at room temperature. 

The cells were then washed twice with 2% BSA/PBS. Immunoreactivity for each CD marker was 

assessed by flow cytometry using a Beckman Coulter FC500 Flow Cytometer and data was analysed 

using Kaluza® Analysis Software. 

Human MSC CD immunoprofiling 

Immunolabelling of human MSC was performed at passages II-V as described previously (Kohli et 

al., 2015).
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In brief, cells were harvested by trypsinisation, washed and centrifuged, and the resultant pellet re-

suspended in 2% BSA/ PBS. Initially, the cells were blocked with 10% normal human 

immunoglobulin (Grifols, Cambridge, UK) for 1hr on ice with shaking. Then cells were washed with 

1 ml of 2% BSA/PBS and centrifuged. Then 105 of cells were aliquoted and each of one of the 

following PE-conjugated mouse monoclonal anti-human antibodies: CD34, CD44, CD45, CD105 

(Immunotools, Friesoythe, Germany), CD73 or CD90 (BD Biosciences, UK), CD271 (Miltenyi 

Biotec Inc.) was added. Separate aliquots of 105 cells were also incubated with isotype-matched 

control PE-conjugated antibodies IgG2a and IgG1 (Immunotools) to detect levels of non-specific 

binding and fluorescence. The extent of immunoreactivity for each CD marker was performed by 

flow cytometry using a Beckman Coulter FC500 flow cytometer with data analysed using Kaluza® 

Analysis Software. 

 

2.2.2  Multipotential differentiation of MSCs 

Canine and human MSCs were induced to differentiate along multiple mesenchymal cell lineages, 

i.e. adipocytes, osteoblasts and chondrocytes, at passages III-V, as described previously by (Wright 

et al., 2008). This was performed as follows: 

Adipogenic Induction: Cells were seeded in triplicate wells at 104 cells per well in a 24 well plate 

and cultured for one week to reach confluence before starting adipogenic induction. Cells were then 

treated with adipogenic induction medium, which consisted of DMEM/F-12 culture medium 

supplemented with 10% FBS, 1% penicillin/streptomycin, 1µM dexamethasone, 1% 

insulin/transferrin/selenium (ITS), 0.5mM 3-isobutyl-1-methylxanthine (IBMX) and 100µM 

indomethacin. The medium was completely replaced with fresh induction medium every 2-3 days. 

Control medium consisted of the carriers alone, i.e., methanol and DMSO, at the same dilution as 

was used for the induction medium. 
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Osteogenic Induction: Cells were seeded into 24 well plates and cultured for one week as described 

for the adipogenic induction above. They were then treated with DMEM/F-12 medium supplemented 

with 10% FBS, 1% penicillin/streptomycin, 10µM beta-glycerophosphate, 50µM ascorbic acid and 

10nM dexamethasone. The medium was completely replaced with fresh induction medium every 2-

3 days. Control medium contained the carriers alone, i.e., methanol and cell culture water at the same 

dilution as was used for the induction medium. 

Chondrogenic Induction: Cells were aliquoted at 25 x 105 cells in 1 ml of DMEM/F-12 medium 

supplemented with 2% FBS and 1% penicillin/streptomycin into 1.5ml microfuge tubes. These were 

then centrifuged in a microcentrifuge at 500g for 5 minutes until they formed a small cell pellet. After 

that, the cell pellets were maintained in the same culture medium further supplemented with 10nm 

TGF-β and 50nm ascorbic acid with fresh medium changes every 2-3 days. All cultures were 

maintained in a humidified atmosphere of 5% CO2 at 37oC for 4 weeks after the initial addition of 

induction medium. 

2.2.3  Assessment of MSC differentiation  

Oil Red O staining and quantification of lipid vacuoles for adipogenic differentiation: The 

formation of lipid droplets was verified by Oil Red O staining and quantified by spectrophotometry, 

as described previously (Ramirez-Zacarias et al., 1992).  Briefly, the Oil Red O stock staining 

solution was prepared by dissolving 300mg of Oil Red O powder (Sigma) into 100ml of isopropanol. 

The stock solution can be stored for 1year at room temperature. The Oil Red O working solution was 

then prepared by dilution of 3 parts from the stock solution into 2 parts of distilled water; this was 

mixed well and left to stand for 10minutes, then filtered through Whatman paper (Whatman No.1 

filter paper, Maidstone, UK), and the filtered solution was used within 3hrs. The induced cell cultures 

were fixed in 10% neutral buffer formalin for 1hr, the 1ml from the working Oil Red O staining 

solution was added for 1hr. The stain was removed, and after 3-4 washing steps in PBS to remove 

any unbound stain, digitised images were captured with an inverted phase contrast microscope 

(CETI. Medline Scientific Ltd. UK). 



  

71 

 

The relative levels of Oil Red O accumulation in each culture were further measured by a 

spectrophotometer (Multiskan go, Thermo Scientific. UK) after treating the stained wells with 100µl 

of 100% isopropanol to extract the Oil Red O from the stained cells. The plates were incubated for 

15minutes on a plate shaker; then the 100µl isopropanol contained the Oil Red O stain was 

transferred into 96 well plates, and the absorbance (optical density - O.D.) was measured using a 

bench spectrophotometer at 540nm. 

Alkaline phosphatase staining and quantification for osteoblastic differentiation: 

Alkaline phosphatase activity is frequently used as a key marker of osteoblast differentiation 

(Štefková et al., 2015). To assess alkaline phosphatase activity by staining, cells were fixed with 10% 

neutral buffer formalin for 10 minutes. Meanwhile, staining solution was prepared by placing 25mg 

of naphthol-phosphate (Naphthol AS-MX phosphate: Sigma) in 0.5ml of dimethyl formamide. Then, 

this solution was mixed with 50ml of 0.2M Tris-HCl buffer containing 50mg of fast red TR (Sigma). 

After mixing well, the final solution was filtered using Whatman No. 1 filter paper (Whatman). The 

fixative solution was then removed, and cells were washed with PBS, then 1ml of the staining 

solution was added to each well for 1hr. Finally, the stain was removed, and digitised images were 

captured with an inverted microscope. 

For the purpose of quantification, a colourimetric assay kit (BioVision, USA) was also used to 

determine alkaline phosphatase activity. This was performed by following the manufacturer’s 

protocol as follows; in brief, cells were homogenised in the assay buffer. The homogenised cells were 

then centrifuged to remove insoluble material at 13,000g for 3minutes. Then 80µl of each of the 

samples was loaded into separate wells of a 96 well plate. Then 50µl of 5mM of the pNPP solution 

was added to each sample well. Following a mixing step by pipetting up and down, the wells were 

incubated at 25ºC for 60minutes. A standard curve was generated by diluting 40µl of 5mM of pNPP 

into 160µl of assay buffer to generate 1mM pNPP standard. 
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Then 0, 4, 6, 12, 16 and 20µl of this standard solution was loaded into a 96 well plate to generate 0-

20 nmol/ml pNPP standards that could be measured by spectrophotometry. Then, the volume of all 

wells was brought up to 120µl by adding required volumes of assay buffer solution. Then 10µl of 

alkaline phosphatase enzyme was added to each well containing the pNPP standard, and the plates 

were further incubated at 25ºC for 60minutes. Following this incubation period, 20µl of the stop 

solution was added into each standard and sample well to stop all the reactions. The levels of alkaline 

phosphatase activity in all wells were measured by O.D. at 405nm in a microplate spectrophotometer. 

Glycosaminoglycan staining and quantification for chondrogenic differentiation: 

Glycosaminoglycans (GAGs) are a major component of the extracellular matrix (ECM) of cartilage, 

and their generation is a key indicator of chondrogenic differentiation (Sasisekharan et al., 2006). 

The deposition of GAGs in the ECM in 3D chondrogenic-induced pellet cultures was demonstrated 

by harvesting and sectioning the cell pellets and toluidine blue staining for the metachromatic 

staining that demonstrates the presence of GAGs (Wright et al., 2008). Briefly, 3D pellet cultures 

were harvested at day 28 of differentiation and fixed with 10% neutral buffer formalin overnight 

followed with two steps of washing with PBS. After fixation, the 3D pellets were processed for 

histological sectioning as follows. The pellets were immersed in 70%, 90% and 100% solutions of 

ethanol (in water), respectively, for 30minutes per each concentration. Then the pellets were 

immersed in 100% xylene for 30 minutes. The pellets were carefully transferred to a base mould, 

which was then filled with melted paraffin wax (VWR International Ltd., Poole, UK) and left to 

stand at 60ºC for a minimum of 12hrs. After this time fresh, melted paraffin wax was added after 

aspiration of the old paraffin from the pellets, and embedding cassettes (Thermo Electron 

Corporation, Basingstoke, UK) were placed on top of the base moulds. The cassette and base moulds 

were transferred to an ice block and left to stand for 10 minutes. 
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Finally, the paraffin-embedded 3D pellet blocks were stored at room temperature for further 

histological purposes. Three-micron thick tissue sections were prepared using a standard rotary 

microtome (HM325, Thermo Scientific) placed on glass slides and allowed to dry using a hotbox at 

70ºC. 

Then the sections were dewaxed with 100% xylene for 5 minutes and rehydrated in serial dilutions 

of 100%, 90%, 70% ethanol (in water) for 2 minutes per each concentration, and then washed in tap 

water. These sections were then stained with 0.4% staining solution of toluidine blue (Sigma) in 

0.2M sodium acetate buffer (pH3.75-4.25), which was added to the sections for 10minutes. After 10 

minutes incubation, the sections were washed with tap water for 1minute, then again passed through 

a graded series of 70%, 90%, 100% of ethanol (in water) for dehydration, being immersed for 2 

minutes per each concentration. After a clearing step with 5 minutes in 100% xylene, the slides were 

mounted in Pertex mounting medium (Sigma). Digitised images of the toluidine blue stained sections 

were captured using an inverted microscope. 

The amount of GAGs in the 3D pellets was quantified using the 1, 9-dimethyl methylene blue 

(DMMB) dye binding spectrophotometric assay (Farndale et al., 1982, Farndale et al., 1986). In brief, 

this was performed, as more recently described (Wright et al., 2008). The 3D chondrogenic-induced 

pellet cultures and control pellet cultures were washed with PBS and digested overnight with papain 

at 60ºC. A DMMB solution was prepared as follows; 16mg of DMMB powder, 3.04g of glycine and 

1.6g of NaCl were dissolved in 95ml of 0.1M acetic acid, and the volume was increased to 1L with 

water, then filtered (0.45μm filter, Sigma) and stored in a brown bottle to protect the solution from 

light. A standard curve for GAG levels was prepared by dissolving 40µg/ml of chondroitin sulphate 

from shark cartilage (Sigma) to generate 0, 8, 16, 24, 32, 36, 40µg/ml chondroitin sulphate standards. 

In 96 well plates, 50µl of each standard and test samples were mixed each with 200µl of the DMMB 

solution; then absorbance was measured at 595nm after incubation of the plate for 5minutes at room 

temperature using a bench spectrophotometer.
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2.3 The generation of MSC culture-conditioned medium (MSC CM) 

Canine and human MSCs were seeded at a seeding density of 1.5x106 cells in T75 tissue culture 

flasks in DMEM/F-12 medium supplemented with 10% FBS and 1% penicillin/streptomycin for 

24hrs to permit cell adhesion. After this time, the standard culture medium was discarded, and the 

cultures were washed three times in PBS before feeding with 15ml of DMEM/F-12 culture medium 

supplemented with 1% ITS, 1% non-essential amino acids (NEAA) and 1% penicillin/streptomycin, 

but without any serum present. The MSC cultures were then incubated at 37ºC in a humidified 

atmosphere of 5% CO2 for 3 days. The MSC culture-conditioned medium (MSC CM) was collected 

and filtered through a sterile filter (0.20µm, Minisart® C€, Germany) to remove any cell debris or 

fragments. The MSC CM was aliquoted and stored at -80ºC for further experimentation. Control 

medium (i.e. serum-free DMEM/F-12 with the same supplements, but with no cells present) was 

similarly incubated in T75 culture flasks for 3 days, then harvested, filtered and stored. During culture 

under serum-free conditions, there was no evidence of loss of cell viability as determined by cells 

either losing plastic adherence or floating or becoming phase dark when examined under phase 

contrast microscopy. In Chapter Five, the conditioned medium prepared from three human MSC 

subpopulations examined have been referred to as PA MSC CM, CD271+ MSC CM, and CD271- 

MSC CM. 

 

2.4 Assessment of the paracrine activity of canine and human MSC CM on neuronal 

and endothelial cell cultures 

The effects of MSC CM on neurogenesis and angiogenesis were assessed since these two activities 

play a major role in SCI repair (Cantinieaux et al., 2013). The cell lines, SH-SY5Y neuronal cells 

and EA.hy926 endothelial cells were used as potential responder cells, as previous research has 

reported that MSC CM generated from bone marrow-derived MSC CM have been shown to induce 

differentiation of both cell lines (Wright et al., 2010, Walter et al., 2015).
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Both cell lines derived from tumour cells and are human in origin. As described in the Introduction 

(1.5.3.), SH-SY5Y and EA.hy926 cells have been widely used as models to investigate neuronal and 

endothelial biological activities. 

 

2.4.1 Assessment of neurogenesis using SH-SY5Y neuronal cells 

The SH-SY5Y cell line was used as a neuronal model to investigate and assess the paracrine activity 

of canine or human MSC CM, as discussed in the Introduction (Section 1.5.3) and reported 

previously (Wright et al., 2010). SH-SY5Y cells were routinely grown in DMEM/F-12 supplemented 

with 15% FBS, penicillin/streptomycin and 1% of NEAA and 1% of ITS. For each experiment, SH-

SY5Y cells were harvested at 70-80% confluence by treatment with 0.025% trypsin/EDTA, and then 

centrifuged at 1000rpm for 10 minutes prior to seeding the cells at a density of 1x104 cells per well 

in 24 well plates and incubated overnight at 37°C in a humidified atmosphere of 5% CO2 to allow 

the cells to adhere. The next day, the SH-SY5Y cells were treated either with 1ml of MSC CM or 

with serum-free control medium and the cultures incubated in the Cell IQ Imaging Platform (CM 

Technologies Ltd, Finland) for live cell digitised imaging and analysis, where at least 3 wells per 

sample were analysed and where one image/well was captured prior to and after incubation for a 

3day period. The growth and morphological differentiation of SH-SY5Y cells were determined using 

these captured images and the Cell IQ image analyser software, as described in more detail in Section 

2.5, but in brief this allowed for the determination of the total number of viable SH-SY5Y cells per 

image and the extent of SH-SY5Y neurite outgrowth, i.e. neurite length per cell. 
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2.4.2 Immunofluorescence staining of SH-SY5Y cells for β-III tubulin 

Beta-III tubulin is a marker of neuronal differentiation (Dwane et al., 2013) that was used to further 

examine the effects of MSC CM on SH-SY5Y cells. SH-SY5Y cells were seeded on sterilised glass 

coverslips at a density of 1x104 cells; one coverslip each was placed in a 6 well plate. Cells were 

allowed to adhere overnight by incubating the plates at 37 °C in a humidified atmosphere of 5% CO2. 

Then cells were then washed three times with serum-free DMEM/F-12 medium, and 1ml of MSC 

CM (from either canine or human MSC cultures) or 1ml of serum-free control medium was added. 

The plates were then further incubated at 37°C in a humidified atmosphere of 5% CO2 for three days 

after which the medium was removed, and the cells were fixed with 10% neutral buffer formalin for 

1hr. Then the cells were washed twice with PBS and blocked with a blocking solution of 2% BSA in 

PBS for 1hr before adding a primary antibody of mouse monoclonal anti-beta III tubulin (TU-20: 

Cat. No. ab7751, Abcam) at a 1:500 dilution in blocking buffer that also contained the 

permeabilisation reagent, 0.1% Triton X -100. The plates were incubated with the primary antibody 

for 2hrs at 4°C, and parallel plates were incubated in the same permeabilisation solution with no 

antibody present. After three steps of washing with PBS, the SH-SY5Y cells were then incubated 

with a secondary antibody, which was rhodamine Red-X-AffiniPure donkey anti-mouse IgG (H+L) 

(Cat. No. 715-295-150, Stratech Ltd, address) at a 1:200 dilution for 1hr at 4°C in a humidified 

container that was light protected. After three further washing steps with PBS, 20-30µl of the 

antifading agent Vectashield was pipetted onto clean glass slides. The coverslips were rinsed with 

distilled water and mounted with the cells facing down on the glass slides. Digitised images were 

acquired using a Leica DMI4000 digital microscope, as shown in Chapters 3-4. There was no 

immunopositivity seen in control coverslips of SH-SY5Y cells that were incubated in the absence of 

the primary antibody. 



  

77 

 

 

2.4.3 Assessment of angiogenesis using EA.hy926 endothelial cells 

2.4.3.1  Scratch assay using EA.hy926 endothelial cells 

Migration and proliferation of endothelial cells are necessary for the angiogenesis process (Norton 

and Popel, 2016). Scratch assays of  EA.hy926 cells combined with digitised image analysis have 

been used previously to examine the effects of bone marrow-derived MSC CM on both aspects of 

angiogenic activity (Walter et al., 2015). 

Therefore, a similar approach was adopted in this research. EA.hy926 cells were seeded in DMEM/F-

12 supplemented with 10% FBS and 1% penicillin/streptomycin in 24 well plates at a density of 

5x104 cells per well and incubated at 37 °C in a humidified atmosphere of 5% CO2 for 48hrs to permit 

the formation of 100% confluent monolayers. Then the culture medium was removed, and the 

monolayers were scratched with a 200µl sterile pipette tip to leave a scratch with a gap in the 

monolayer. The wells were then washed immediately with PBS to remove any non-adherent cells or 

debris and then 1ml of MSC CM or serum-free control medium was added into the wells. The plates 

were placed for live cell imaging in the Cell IQ platform to collect digitised images for 2 days. As 

described in more detail in Section 2.5.1, these digitized images were analyzed using the Cell IQ 

analyser software to measure (i) the rate of scratch wound closure, (ii) the number of dividing cells 

per image, (iii) the number of non-dividing cells per image, and (iv) to track the extent of cell 

migration of individual cells. 

 

2.4.3.2  Endothelial tubule formation assay 

The extent to which MSC CM promoted endothelial tubule formation was examined by culturing 

EA.hy926 cells on a substrate of Matrigel, which is a well characterised in vitro model of this aspect 

of angiogenesis (Donovan et al., 2001, Ponce, 2001, Guidolin et al., 2004, Khoo et al., 2011). 
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This was performed as follows. Growth factor-reduced Matrigel (Corning. USA) was kept on ice in 

the fridge at 4°C overnight, then 50μl aliquots were plated into 96-well plates and incubated for 

30minutes in a humidified atmosphere of 5% CO2 at 37°C. Stock cultures of EA.hy926 cells grown 

in DMEM/F-12 supplemented with 10% FBS and penicillin/streptomycin were washed with serum-

free DMEM/F-12 three times and then detached from tissue culture plastic with 0.25% 

trypsin/EDTA. Harvested cells were then centrifuged at 1000 rpm for 10minutes, and the resultant 

cell pellets were re-suspended in 1ml of serum-free DMEM/F-12 before counting by trypan blue 

exclusion in a haemocytometer. Then 2 x 104 viable cells per well were re-suspended in 200µl of 

MSC CM or serum-free control medium and loaded on the top of the aliquots of Matrigel. Following 

incubation in a humidified atmosphere at 37°C and 5% of CO2 for 1day, phase-contrast digitised 

images were captured from three different randomly selected positions in each well using the Cell 

IQ live imaging platform.  From these digitised images, image analysis was performed, as described 

in more detail in section 2.5.1, to determine the total tubule length per image and a total number of 

branching points per image was using the Cell IQ analyser software. 

 

2.4.4 Cell viability assessment using MTT assay  

The MTT assay is a colourimetric assay for assessing cell metabolic activity. The principle of this 

assay is based on the capability of NAD(P)H-dependent cellular oxidoreductase enzymes, which 

under defined conditions reflect the number of viable cells present, to reduce the tetrazolium MTT 

dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to its insoluble formazan, which 

has a purple colour. Thus, in this study, the MTT assay was performed to assess further the effects 

of MSC CM on SH-SY5Y and EA.hy926 cell proliferation, by determining the numbers of viable, 

i.e. metabolically active cells present. This was performed as follows: SH-SY5Y cells and EA.hy926 

cells were seeded at a density of 5x103 cells per well into 96 well plates and treated with 200µl of 

MSC CM or serum-free control medium for three or two days respectively.  
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Following the treatment period, 20µl of 5mg/ml MTT solution was added to each well and incubated 

for 3-4hrs at 37°C in a humidified atmosphere of 5% CO2. Then carefully and without disturbing the 

cells, the medium was removed. The plates were left for 10 minutes to dry then 100µl of DMSO was 

added. The MTT assay was performed in the dark since the MTT reagent is sensitive to light. The 

absorbance of each well, including blanks containing MTT alone (no cells), were measured at 492 

nm and background at 650nm a plate reader. 

 

2.5 Microscopy and Image Analysis   

2.5.1 The Cell IQ live cell imaging machine   

The Cell IQ is an automated live-cell imaging apparatus, which provides an environment that enables 

cells to remain viable, i.e. in an incubator at 37oC and atmosphere of 5% CO2, while also collecting 

digitised images of the cells, a single snapshot at a time. The system can provide for long-term 

analysis of cells, and its software can be applied to the digitised images collected automatically to 

identify and quantify changes in cell phenotype. The system can be used to collect both phase contrast 

data and fluorescence data in different wavelengths and combinations thereof. The accompanying 

analyser software is powerful and has been applied to examine multiple changes in cell phenotype, 

including cell viability (Cao et al., 2016), cell proliferation (Rämö et al., 2016), cell migration (Bray 

and Slevin, 2015), individual cell tracking (Jansson et al., 2012), and specific changes for different 

cell lineages, e.g. increases in neurite outgrowth from neurons (Palazzolo et al., 2012), and 

endothelial tubule formation (Bray and Slevin, 2015). Any morphological parameter that cannot be 

identified by the naked eye can be analysed and quantified by Cell-IQ analyser software. It is possible 

to analyse structures composed of groups of cells either in 2D or 3D in cell culture, e.g. scratch 

wound closure, endothelial tube length and branch points, embryo and oocyte tracking. Such analysis 

is achieved by using the software to develop an analysis protocol for each parameter to be quantified.
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Because of the advantages of using the Cell IQ platform, regarding accumulated extensive, accurate 

and objective data on changes in cell phenotype, the platform was used to examine the effects of 

MSC CM on SH-SY5Y neuronal cells and EA.hy926 endothelial cells. More routine examinations 

of stock cell cultures, e.g. for passaging cells and trypan blue exclusion measures of stock cell 

viability, were performed using an inverted phase contrast microscope. 

 

2.5.2 The Cell IQ analysis protocol for SH-SY5Y viable cell numbers and neurite 

outgrowth 

After treating SH-SY5Y cells with MSC CM or with serum-free control medium, the plates were set 

for imaging using the Cell IQ live cell imaging platform and digitised images captured under phase 

contrast using an X10 objective, where one image per well (in triplicate wells) was captured at the 

end of 3-day time courses. At the end of the incubation period, these images were processed for 

further analysis using the Cell IQ analyser software. Digitised images were uploaded and opened in 

the analyser software window. By following the steps provided in the Cell IQ analyser user manual, 

the protocol was developed using an initial sample “library” of morphological features of the imaged 

cells that were designated as neurites or viable neuronal cell bodies (distinguished as phase-bright) 

versus cell debris or non-cellular background (Figure 2.1). 
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Figure 2:1 Digitised phase contrast images of SH-SY5Y neuronal cells used as a reference 

library for the image analysis software to distinguish morphological features.  

  Representative images are shown of the sample library through segmentation and classification 

based on morphological differences. The process of generating the image analysis protocol was 

performed initially by selecting the “cell classifier” + “neurite finder”. The classes identified were 

neurites (top panels), cell bodies and debris of background (bottom panels). These are magnified 

images derived from digitised images collected using a phase contrast  X10 objective, then 

further magnified using the image analysis software. 
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2.5.3 The Cell IQ analysis protocol for EA.hy926 viable cell numbers, scratch wound 

closure and individual cell migration  

EA.hy926 cells were treated with MSC CM after performing a scratch as described in section 2.4.2.1; 

then the plate was incubated in the Cell IQ platform for digitised image acquisition under phase 

contrast using the x10 objective. Images were generated by selecting at least one region of interest 

(RoI) per well and captured at the same RoI every 15minutes over a two-day period to the point of 

scratch wound closure. Measurements of wound closure, viable cell numbers (distinguished as phase 

bright cells) and cell migration/movement were obtained by using Cell IQ analyser software and 

following the instructions provided by the user manual guide. In brief, the scratch wound closure 

analysis was based on previously published protocols (Walter et al., 2010, Bray and Slevin, 

2015), which utilised threshold levels and selected parameters as shown in Figure 2.2. The Threshold 

tool selects the area that contains viable cells covering the entire digitised then the selected 

parameters can be set to identify and remove any debris from the scratch area or fill in gaps in the 

non-scratched area. The results generated for the scratch wound area have been indicated by the 

purple boundary line seen in Figure 2.2, while the width of the scratch at exactly the centre of the 

image is shown by a blue line. The results used were derived from the scratch area as a proportion of 

the original scratch wound area. This was to avoid the use of the scratch width, which varied along 

the scratch length. The measurement of cell proliferation was also performed using the Cell IQ 

analyser by counting the number of dividing and non-dividing cells in the digitised images collected 

for each of the scratch wounds over time. This measurement was achieved by generating a cell 

identification protocol based on a library of sample images, which were classified according to their 

morphological appearance (Figure 2.3). The same cell identification protocol was also used to track 

viable cell movement and to measure the total distance of cell migration from the edge of the scratch 

wound towards the wound centre. These measurements were quantified over the two days of imaging 

period.
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Figure 2:2 The imaging protocol used to measure EA.hy926 cell scratch wound closure. 

 Representative digitised images are shown of the processing steps undertaken for scratch wound 

area analysis that was used to measure the percentage of wound closure over time. This measurement 

was based on a “threshold level” that initially identified the area of the digitised image that was 

covered by cells. Images from the left panels indicate a representative scratch wound created at day 

0, while the images in the right panels are representative images of the same scratch at day 2. Images 

from top panels to the bottom panels represent the processing steps: i) setting the threshold ii); 

removing debris in the scratched area; iii) eliminating gaps from the non-scratched area; (iv) finally, 

the resultant images used to calculate the scratch wound area as a proportion of the original scratch 

area.

Original images  

Threshold  

Remove debris from 

scratched area 

Remove gaps in non-

scratched area 

Results – the scratch wound 

area indicated by purple  
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Figure 2:3 The imaging protocol used to measure viable EA.hy926 cell division and 

proliferation.  

Representative images are shown from the sample library that was used to identify and quantify the 

numbers of dividing and non-dividing cells present in each of the digitised images of EA.hy926 cells 

in the scratch wound assays. As illustrated above, the cells were classified as dividing and non-

dividing cells based on their morphological appearance, with dividing cells appearing phase bright 

and rounded up or undergoing mitosis, while non-dividing cells were also phased bright but flattened 

and without any clear mitotic changes taking place. 
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2.5.4 The imaging protocol used to measure EA.hy926 tube formation 

Digitised images were captured of EA.hy926 cells cultured on Matrigel in the presence of MSC CM 

versus serum-free control medium for 1day. These digitised images were then analysed to measure 

the total tubule length and total branch point count per image using the Cell IQ analyser software. 

For each well (there were 5 wells per sample tested), 3 images were captured randomly from the well 

and then the threshold tool and selected parameters enabled the required measurements to be 

determined (Figure 2.4). Initially, the threshold tool was used to identify areas of the images that 

contained cells. Then followed by removal of all debris or small single objects, including single cells 

or short lengths of connected cells in sequence, and the removal of cell connections that were less 

than the width of one cell. The numbers of branch points were counted whenever longer sequences 

of cells (classified as tubules) connected with shorter sequences of cells (tubules); these were only 

scored once per connection. 
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Figure 2:4 The imaging protocol used to measure EA.hy926 tube formation.   

Representative images show the processing steps that were applied to develop the analysis protocol 

for measuring endothelial tubule length and for counting the number of endothelial tubule branch 

points. The measurement was based on initially thresholding the areas that were covered by cells and 

that were connected to other cells. Top panels: A) original image; B) applied threshold to identify all 

cells; C) step required to identify debris, single cells and short lengths of unconnected cell sequences; 

D) identification of branch points and removal of small sequences of cells identified in the previous 

step; E) performing the branch counts; F) an optional step to classify the endothelial tubule as thin 

or thick; G) the resultant image that was used to determine the final measurement for tubule length 

and branch point count.
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2.6 ELISA analysis 

Canine and human MSC CM were analysed for the presence of VEGF protein by enzyme-linked 

immunosorbent assay (ELISA) using a commercially available kit (R&D Systems; Minneapolis, 

MN, USA) according to the manufacturer's instructions. In brief, this involved bringing all the 

reagent to room temperature. The working standards were prepared by dilutions as 1000, 500, 250, 

125, 62.5, 31.3, 15.6, and 0 pg/ml after having reconstituted the VEGF in 2000 pg/ml with calibrator 

diluent. 50µl of assay diluent was added to each well coated with a monoclonal antibody against 

VEGF, followed by adding 200µl of standard or sample per well and the plate was incubated for 

2hrs. after incubation, each well was aspirated then washed three times with wash buffer after the 

last wash step a complete removal of any remaining wash buffer was performed by aspirating or 

decanting. Then 200µl of the anti-VEGF conjugate was added to each well and incubated for 2hrs at 

room temperature followed by repeating the same aspiration/ wash steps described earlier. This was 

followed by adding 200µl of substrate solution to each well and incubated for 20minutes protected 

from light. Finally, 50µl of stop solution was added to each well, and 450 nm optical density was 

determined using microplate reader.  

 

2.7 Statistical analysis 

At least three independent experiments were performed for all analysis, i.e. using canine and human 

MSCs and MSC CM that was derived from at least three different patients (for each species) versus 

at least three separately generated serum-free control medium. Data has presented as the mean ± the 

standard error of the mean (SEM). For one experimental readout, i.e. the quantitative determination 

of alkaline phosphatase activity shown in Chapter 5, it was only possible to measure levels in n=2 

MSC donors; therefore this data has been presented as the mean ± standard deviation (SD). All data 

were examined for normal distributions and then analysed using parametric tests (normally 

distributed data) or non-parametric tests (non-normally distributed data) accordingly. 
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The tests used were an independent samples t-test or Mann-Whitney U test, one-way ANOVAs and 

two-way ANOVAs. A p value below 0.05 was considered significant. Statistical analysis was 

performed using Prism software (GraphPad Software Inc., La Jolla, CA, USA). 
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3 Chapter 3: An in vitro investigation of the neurotrophic and 

angiogenic paracrine activities of cMSCs 
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3.1 Aim and background 

The most common causes for SCI in dogs are IVDD or vehicle accidents (Bonner and Smith, 2013). 

Regardless of the cause of the SCI in both cases, the resultant pathology will lead to primary and 

secondary injury. Excellent recovery after injury can be achieved by preventing secondary injury, 

promoting regeneration and sprouting of remaining axons, enhancing the remaining function of any 

preserved neural circuitry, replacing destroyed spinal cord tissue and promoting revascularisation 

(Thuret et al., 2006). However, the recovery level depends on the severity of the injury, the more 

severe the injury, the less efficient the recovery. Although cure from paralysis is still difficult to 

achieve, recent research studies have suggested novel methodologies for SCI treatment, one of which 

is the use of MSCs as a cell-based therapy (Park et al., 2012a). Different studies suggested that 

transplanted MSCs exert therapeutic activity through their secretomes (Drago et al., 2013, Neirinckx 

et al., 2015, Bollini et al., 2013).  

As described in Chapter 1, dogs represent an excellent opportunity in which it is possible to examine 

how cell therapies may benefit SCI patients. Given the evidence that rodent and human MSCs exert 

paracrine activity in promoting nerve growth and angiogenesis (Wright et al., 2007, Wright et al., 

2014, Walter et al., 2015). Therefore, this study has investigated the capacity of canine MSCs to 

exert paracrine activities on models of nerve growth and angiogenesis. As stated above, to achieve a 

good recovery the regeneration of destroyed axons and CNS tissue revascularization is required. This 

chapter reports on the initial characterisation of cMSCs according to the criteria of the ISCT 

(Dominici et al., 2006) and on the effects of canine MSC secretomes, in the form of culture 

conditioned medium, on the SH-SY5Y neuroblastoma cells and the EA.hy926 endothelial cells. 
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3.2 Phenotypic verification of cMSC by multipotential differentiation and 

immunophenotype 

Differentiation capacity of cMSCs 

Cells were originally provided by the Veterinary Tissue Bank at passage II-III, then culture expanded 

as monolayer cultures in standard culture medium (DMEM/F-12 supplemented with 10% FBS, and 

1% penicillin and streptomycin, as described in  Chapter 2(Section, 2.1.1). These cultures of culture 

expanded cMSCs were plastic-adherent and displayed a stromal appearance. At passages III-V, 

cMSC cultures were induced to undergo differentiation towards adipogenic, osteogenic and 

chondrogenic lineages. As shown in Figure 3.1, cMSCs were able to differentiate along all three 

lineages. For adipogenic and osteogenic differentiation there was no evident loss of cell viability. 

However, for chondrogenic pellet cultures some cell death was apparent (as determined by Live/Dead 

staining and confocal microscopy), but nonetheless, there was also clear evidence of extracellular 

metachromatic staining with toluidine blue, indicative of glycosaminoglycan deposition and 

chondrogenic differentiation (Figure 3.1). 

 

Immunophenotyping for CD markers 

The expression of a panel of CD markers was examined for cMSCs (n=4 dogs; passages III-V) by 

flow cytometry. The cMSCs were notably immunopositive for CD44 and CD90 while being 

immunonegative for CD34 and CD45.  This finding is in line with the minimal phenotypic CD pattern 

for the identification of MSCs (Figure 3.2) (Table 3.1) (Dominici et al., 2006). 
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Figure 3:1 Differentiation of cMSCs along mesenchymal lineages. 

 Representative images are shown of plastic adherent, fibroblastic cells under phase contrast 

microscopy before treatment with inducers of differentiation (top panel) and after induction to 

become Oil Red O-positive adipocytic cells, alkaline phosphatase-positive osteoblastic cells, and 

toluidine blue-stained cartilaginous extracellular matrix and cells, as indicated (bottom panels). There 

was an evident loss of cell viability during the chondrogenic differentiation of MSCs in 3D-pellet 

cultures (visualised following Live/Dead staining and confocal microscopy; inset, bottom left panel). 

Scale bars = 100µm.Original magnification X10 for plastic adherent, osteogenesis, and 

chondrogenesis images. Original magnification X40 for adipogenesis image. Data shown are 

representative of inductions of cMSCs from four separate dogs. 
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Figure 3:2 Immunophenotypic verification of cMSCs following CD immunostaining.  

Representative histograms are shown flow cytometric analysis of cMSCs following 

immunocytochemical staining for CD34, CD44, CD45 and CD90.  Immunoreactivity following 

immunocytochemical staining with irrelevant isotype-matched control antibodies has been shown in 

blue, while immunoreactivity for each of the CD markers has been shown in red. Data shown are 

representative of the CD profiles of cMSCs from four separate dogs. 
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Table 4: CD immunopositivity of cMSCs.  

The percentages of cMSCs that were immunoreactive for specific CD markers. The cells were largely 

immunonegative for CD34 and CD45, but immunopositive for CD44 and CD90. Summative data 

has been shown as the mean±SEM of four independent experiments (i.e. 4 different donor dogs). 

 
Percentage expression of CD markers 

 

Cell type Patient ID CD34 CD44 CD45 CD90 

Canine MSCs  cMSC 012 0.6 99.31 0.1 96.3 
 

 cMSC 014 0.3 82.1 0.1 90.9 
 

 cMSC 017 0.1 81.7 0.1 92.7 
 

 cMSC 028 0.3 90.35 0.04 96.3 

Mean 
 

0.33 88.37 0.18 94.05 

SEM 
 

0.11 4.16 0.075 1.35 
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3.3 The effects of cMSC CM on SH-SY5Y neuronal cells 

Following cell characterisation for minimal criteria of MSCs phenotype, the investigation of 

paracrine activities was performed. The neurotrophic activity was examined using SH-SY5Y cells. 

 

3.3.1 cMSC CM enhanced SH-SY5Y cell proliferation and neurite outgrowth 

SH-SY5Y cells were seeded at 1x104 cells per well in triplicate wells of 24 well plates in DMEM/F-

12 containing 15% FBS and 1% penicillin and streptomycin and left overnight to allow for cell 

adherence. After removal of the serum containing medium and washes in serum-free medium, cells 

were treated with cMSC CM versus serum-free control medium. A single digitised phase contrast 

image of each well was generated after placing the culture plates in the Cell IQ live cell imaging 

platform at the end of the 3-day time course (see Figure 3.3 for representative images). These images 

were then used, along with the Cell IQ analyser software, to measure the number of viable cells 

present and the extent of neurite outgrowth per cell. As shown in Figure 3.4, there were significant 

increases in both the number of cells present and neurite outgrowth in cMSC CM when compared 

with control (p= 0.0036 for cell number and p= 0.0055 for neurite outgrowth/cell, respectively) 

(Figure 3.4). 
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Figure 3:3 The appearance of SH-SY5Y cells cultured for 3 days in the presence of cMSC CM 

versus control medium.  

Representative images show there was an apparent increase in SH-SY5Y cell numbers and increased 

neurite outgrowth (arrowed) in cMSC CM compared with control cultures. Scale bars = 200µm. 

These images were performed on cMSC CM from three separate donors.
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Figure 3:4 cMSC CM significantly increased SH-SY5Y cell proliferation and neurite 

outgrowth.   

SH-SY5Y cells were treated with cMSC CM or serum-free medium for 3 days when digitised phase 

contrast images were captured and analysed using the Cell IQ imaging platform and software. There 

was a significant increase in both the number of viable cells present and the extent of neurite 

outgrowth per cell in cMSC CM at the 3-day time point compared with the control cultures. Each 

bar represents the mean±SEM of 5 independent experiments (i.e. using cMSC CM from 5 separate 

dogs). **indicates p≤0.01.  Mann-Whitney U test used to determine the significant differences. 
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3.3.2 cMSC CM induced immunopositivity for the mature neuronal marker, βIII-

tubulin in SH-SY5Y cells 

To further examine the differentiation status of SH-SY5Y cells, the cells were tested for their 

immunopositivity for the mature neuronal marker, βIII-tubulin (Meyer et al., 2004). As shown in 

Figure 3.5, SH-SY5Y cells were βIII-tubulin immunopositive following their treatment with cMSC 

CM for 3 days but were largely immunonegative in control medium at the same time point. Figure 

3.6 demonstrates that there were significantly greater numbers of βIII-tubulin immunopositive SH-

SY5Y cells when cultured in the presence of cMSC CM compared with control cultures (p= 0.0002).
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Figure 3:5Treating SH-SY5Y human neuroblastoma cells with cMSC CM induced beta-III 

tubulin immunopositivity.  

Representative images are shown of SH-SY5Y cells following immunocytochemical staining for 

beta-III tubulin. As shown, there was a clear increase in immunopositivity in cells cultured in the 

presence of cMSC CM compared with control cultures.  Scale bar = 100µm. Original magnification 

X40. These images were performed on cMSC CM from 3 separate donors.
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Figure 3:6 cMSC CM significantly increased the proportion of SH-SY5Y neuronal cells that 

were beta-III tubulin immunopositive.  

As shown, there was a marked increase in the percentage of SH-SY5Y cells cultured in cMSC CM 

versus control medium that was beta-III tubulin immunopositive. The proportion of beta-III 

immunopositive SH-SY5Y cells present was determined by scoring a minimum of 500 cells from 

digitised images, each collected from 5 randomly selected fields in each of 3 wells per medium tested. 

Each bar represents mean±SEM from three independent experiments, i.e. after culturing cells in 

cMSC CM from 3 separate dogs versus control medium. ***indicates p≤0.001. Mann-Whitney U 

test used to determine the significant differences. 
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3.3.3 Assessment of SH-SY5Y viable cell numbers using the MTT assay 

The MTT assay was used to further examine the number of viable SH-SY5Y cells present in cMSC 

CM versus control medium in a 96 well plate format. As shown in Figure 3.7, there appeared to be 

more viable SH-SY5Y cells present after culturing in cMSC CM for 3 days compared with control 

medium. These cultures were subsequently processed to assess viable cell number using the MTT 

assay, which measures non-specific esterase activity in viable cells (Hansen et al., 1989, Denizot and 

Lang, 1986). As shown in Figure 3.8, there was a significantly greater level of absorbance, indicative 

of increased numbers of viable SH-SY5Y cells in cMSC CM versus control medium (p= 0.0009).
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Figure 3:7 The effects of cMSC CM on SH-SY5Y neuronal cell proliferation. 

 Representative images have been shown to the relative increase in SH-SY5Y cell numbers when 

cultured for 3 days in cMSC CM versus control medium. Scale bar = 100µm. Original magnification 

X10. These images were performed on cMSC CM from 3 separate donors. 
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Figure 3:8 The MTT assay confirmed that culturing SH-SY5Y neuronal cells in cMSC CM 

versus control medium significantly increased the number of viable SH-SY5Y cells present. 

 MTT assays were performed to assess viable cell numbers. The results showed a significant increase 

in the number of viable SH-SY5Y cells in cMSC CM versus control medium at 3 days. Each bar 

represents mean±SEM from three independent experiments, i.e. using cMSC CM from 3 separate 

dogs. ***indicates p≤0.001.  Mann-Whitney U test used to determine the significant differences. 
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3.4 The effects of cMSC CM on EA.hy926 endothelial cells 

3.4.1 cMSCs CM increased EA.hy926 endothelial cell migration and proliferation 

The effects of soluble factors secreted into the conditioned medium by cMSCs on EA.hy926 cells 

were examined using a scratch assay. Confluent layers of EA.hy926 endothelial cells were scratched 

using a yellow pipette tip, and the medium was replaced with either cMSC CM or serum-free control 

medium. Then, the rates of EA.hy926 endothelial cell migration and proliferation were monitored 

and quantified using the Cell IQ Imaging platform. Results showed that there was a significant 

increase in scratch wound closure (as a percentage of the original scratch width) when compared 

with control cultures (p=0.0409) (Figures 3.9 and 3.10).  To determine whether cMSC CM played a 

role in promoting cell migration to induce wound closure, cells from both sides of wound edges were 

tracked by using Cell IQ analyser software. A minimum of three cells for each of triplicate scratch 

wound from each of three independent experiments (i.e. testing cMSC CM from three separate dogs) 

was randomly selected. Their patterns of migration were tracked by collecting digitised images every 

15 minutes over a 2-day time course, after which the total distance that each cell had migrated during 

this period was measured. These results showed that there was a significant increase in the extent of 

cell migration in the closure wound area when the cells were treated with cMSC CM compared with 

control medium (p= 0.0001) (Figure 3.11).  

Additional analysis using the cell IQ analyser software was performed on tracked cells to determine 

the numbers of dividing, and non-dividing cells present within the scratch wound area in each image 

collected every 15 minutes over the two-day time course. This data showed that the number of both 

dividing and non-dividing EA.hy926 cells present within the scratch wound area were significantly 

higher when treated with cMSC CM compared with control medium (p= 0.0127 for dividing cells, p 

=0.0001 for non-dividing cells) (Figure 3.12). EA.hy926 cell proliferation was also determined using 

a 96 well plate format and the MTT assay. Representative images in Figure 3.13 show evidence of 

EA.hy926 endothelial cells proliferating to a greater extent after treatment with cMSC CM compared 

with control medium after 2 days of incubation. 



  

105 

 

The MTT assay of these cultures also showed a significant difference in the number of viable 

EA.hy926 cells present in cultures treated with cMSC CM compared with control medium after 2 

days of treatment (p= 0.0001) (Figure 3.14). 
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Figure 3:9 The effects of cMSC CM on EA.hy926 endothelial cells in scratch assays. 

 Representative images are shown EA.hy926 endothelial cell scratch assays, which were treated with 

cMSC CM or serum-free control medium for 2 days after scratching. EA.hy926 cells were seeded 

into multiple wells of 24 well plates and cultured in a standard culture medium until confluent and 

then scratched using a yellow pipette tip. After washing with PBS, the cultures were then fed with 

cMSC CM or serum-free control medium. Scale bars = 200µm. These images were performed on 

cMSC CM from 3 separate donors. 
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Figure 3:10 cMSC CM significantly increased the rate of wound closure in EA.hy926 

endothelial scratch assays.  

The Cell IQ platform was used for live imaging of wound closure in EA.hy926 endothelial cell 

scratch wound assays in the presence of cMSC CM versus serum-free control medium. Digitised 

images were generated over 2 days of incubation and the  Cell IQ imaging software used to measure 

the extent to which the wound had closed (as a proportion of its original scratch area). There was a 

significant increase in the rate of wound closure in cMSC CM compared to the control medium. Each 

bar represents mean±SEM of 3 independent experiments, i.e. using cMSC CM from 3 separate dogs. 

* (red start) indicates p≤0.05. Two-way ANOVA with a Sidak's multiple comparisons test used to 

determine the significant differences. 
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Figure 3:11 cMSC CM significantly increased EA.hy926 endothelial cell migration. 

 Image analysis of the collected digitised images was used to measure the distance that EA.hy926 

endothelial cells migrated from the edge of the scratch towards the centre of the wound over a period 

of 2 days in the presence of cMSC CM versus serum-free control medium. As shown, there was a 

significant increase in distance travelled in cMSC CM versus control medium during this time. Each 

bar represents the mean±SEM of 3 independent experiments (i.e. 3 different dog donors) of 3 

replicates per each experiment. ****indicates P≤ 0.0001. Mann-Whitney U test used to determine 

the significant differences. 
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Figure 3:12 The stimulatory effects of cMSC CM on EA.hy926 endothelial cell numbers in the 

scratch wound area resulted from increased cell migration and cell proliferation.  

The increased numbers of EA.hy926 endothelial cells present in the closure of scratch wounds, seen 

in Figures 3.9 and 3.10, could have been through increased cell migration (as shown in Figure 3.11) 

and increased cell proliferation. Therefore further analysis was performed to track the number of 

dividing and non-dividing cells present in the wound area. As shown, there was a significant increase 

in both cell populations, indicating that cMSC CM stimulated EA.hy926 endothelial cell migration 

and cell proliferation. Each bar represents mean±SEM from 3 independent experiments, i.e. using 

cMSC CM from 3 separate dogs. * (red star top panel) indicates P≤0.05 and **** (four red stars 

bottom panel) indicates P≤ 0.0001. Two-way ANOVA with a Sidak's multiple comparisons test used 

to determine the significant differences.
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Figure 3:13 cMSC CM promoted EA.hy926 endothelial cell proliferation in 96 well plates. 

  Representative images are shown of EA.hy926 cells cultured in cMSC CM or serum-free control 

medium. As shown, there was an apparent increase in the number of EA.hy926 cells present in cMSC 

CM versus control medium at 2 days of culture. Scale bars = 100µm. Original magnification X10. 

This analysis was performed on cMSCs from 3 separate donors.
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Figure 3:14 The MTT assay confirmed that culturing EA.hy926 endothelial cells in cMSC CM 

versus control medium significantly increased the number of viable EA.hy926 cells present.  

MTT assays were performed to assess viable cell numbers. The results showed a significant increase 

in the number of viable EA.hy926 cells in cMSC CM versus control medium at 2 days. Each bar 

represents mean±SEM from 3 independent experiments, i.e. using cMSC CM from 3 separate dogs 

of five replicates per each experiment. ****indicates p≤ 0.0001. Mann-Whitney U test used to 

determine the significant differences.
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3.4.2 The effects of cMSC CM on EA.hy926 endothelial tubule formation 

Angiogenesis is a normal and vital process in growth and development, as well as in wound healing. 

When a new tissue is formed, it is vital that it has blood supply for its growth and sustenance. For 

this, the formation of blood vessels or angiogenesis is important. The effect of cMSC CM was 

examined further using an in vitro assay for endothelial tubule formation. EA.hy926 endothelial cells 

were cultured on three-dimensional Matrigel (with reduced growth factors) in cMSC CM or serum-

free control medium. As shown in Figure 3.15, culturing EA.hy926 cells in cMSC CM induced the 

formation of tubule-like structures, with more of these structures present in the cMSC CM compared 

with control medium. After one day of treatment with cMSC CM or serum-free control medium, 

phase contrast images were captured and analysed using the Cell IQ cell imaging platform and 

software. As shown in Figure 3.16, there were significant increases in both the total tubule length per 

image (p= 0.0082) and the number of tubule branch points per image (p= 0.0307) in cMSC CM 

versus control medium. 
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Figure 3:15 The effects of cMSC CM on EA.hy926 endothelial cells cultured on Matrigel.  

Representative images are shown of EA.hy926 endothelial cells cultured on Matrigel in the presence 

of cMSC CM or serum-free control medium. These images were subsequently analysed using the 

Cell IQ imaging software to determine the length (indicated by green lines) and the number of branch 

points (indicated by blue dots) seen in endothelial tubule-like structures. Scale bars = 200µm. This 

analysis was performed on cMSCs from 3 separate donors. 
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Figure 3:16 cMSC CM significantly increased EA.hy926 endothelial tubule formation. 

 Image analysis of the collected digitised images (see Figure 3.15) was used to measure both the total 

length of tubules formed (per image) and the number of endothelial tubule branch points (per image). 

As shown, there were significant increases in both of these parameters when EA.hy926 cells were 

cultured on Matrigel for 2 days in cMSC CM versus control medium. Each bar represents the 

mean±SEM of 3 independent experiments, i.e. using cMSC CM from 3 separate dogs. Top panel: 

**indicates p≤0.01. Bottom panel: *indicates p≤0.05. Unpaired t-test with Welch's correction used 

to determine the significant differences.
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3.5  Discussion  

MSCs are traditionally characterised by their capacity for self-renewal and multipotent potential to 

differentiate into three lineages: adipocytes, osteoblasts and chondrocytes (Caplan, 1991). The rare 

population of MSCs established from bone marrow (BM) by their preferential adhesion to tissue 

culture plastic constitute only 0.001% -0.01% of the total nucleated cells in the bone marrow 

(Friedenstein et al., 1970). Adipose tissue (AT), like BM, is derived from mesenchyme and has 

supportive stroma that is easily isolated (Zuk et al., 2002). Throughout the last decade, AT MSCs 

have been achieving mounting attention in regenerative medicine (Zuk et al., 2001, Hong et al., 

2010). AT MSCs have similar characteristics to BM MSCs, which are the classical cells source for 

tissue regeneration, but AT MSCs may have advantages since they are more genetically stable in 

long-term culture than BM MSC (Fernyhough et al., 2008, Liu et al., 2011).  

The ISCT has proposed minimal criteria to define MSCs. These are adherence to plastic, specific 

surface antigen (Ag) expression for example CD73, CD90 and CD105, and low or no expression of 

CD34, CD45, CD11b, CD14, CD19, CD79a and HLA-DR., multipotent differentiation potential into 

the three mesenchymal lineage cell types of adipocytes, osteoblasts and chondrocytes, at least in vitro 

(Dominici et al., 2006). The immunophenotyping of the canine culture expanded and plastic adherent 

cells seen in this study was supportive of these cells being characterised as MSCs. They were positive 

for certain surface antigen markers specific for CD44 and CD90. Also, these cells showed negativity 

for the haematopoietic CD markers CD34 and CD45. The study has only examined these four canine 

specific CD markers as they were commercially available. However, this study showed that cMSCs 

poorly differentiate into adipocytes, this might be as a result of using an established protocol which 

was suitable for hMSCs, but might not be suitable for cMSCs. Recently, cell therapy has been 

considered as an efficient method to repair injuries such as SCI (Quertainmont et al., 2012). Different 

studies suggested that cell replacement is not the sole way for transplanted stem cells to boost tissue 

repair in vivo (Madrigal et al., 2014). 
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It is, in fact, becoming increasingly accepted that the mechanism of the therapeutic effect of MSC 

transplants in particular could be related to the ability of these cells to secrete a varied array of factors, 

including growth factors, cytokines, chemokines, metabolites and bioactive lipids, that have 

paracrine activity (Pluchino et al., 2005, Caplan and Correa, 2011, Paul and Anisimov, 2013). 

Moreover, several recent studies have suggested that the secretomes of AT MSCs can have a 

stimulatory effect on wound healing (Walter et al., 2010, Lopatina et al., 2011, Zhao et al., 2013a).  

Having established that canine MSCs could be culture expanded from adipose tissue, this study 

aimed to examine the potential neurotrophic effect and angiogenic effect of canine AT MSCs 

secreted factors in cMSC CM. The purposes of this study were first to determine the effects of cMSC 

CM on neurite growth and cell survival using the SHSY-5Y neuroblastoma cell line. Secondly, to 

identify effects of cMSC CM on endothelial cell migration, proliferation and tubule formation using 

the EA.hy926 endothelial cell line.  The Cell IQ live cell image capture platform and analysis 

software was used for these studies, as has been performed previously (Pandya et al., 2006, Ucuzian 

and Greisler, 2007, Bokara et al., 2016), along beta-III tubulin immunopositivity as a marker of 

neuronal differentiation (Brohlin et al., 2012) and MTT assays for viable cell numbers (Morgan, 

1998). The data obtained by this study showed that cMSC CM significantly increased SH-SY5Y 

neurite outgrowth, proliferation and differentiation when these cells were cultured in cMSC CM 

generated under serum-free conditions versus serum-free control medium. These findings support 

the hypothesis raised by this study, i.e., that the cMSCs secretomes are neurotrophic. Similarly, 

Neuhuber et al., 2005 in their study claimed that MSCs secreted factors which mediate the axonal 

outgrowth and enhance the recovery after SCI  (Neuhuber et al., 2005). Wright et al., 2014 presented 

in their MSCs as a suitable candidate and an option of treatment for chronic SCI as they claimed that 

MSCs encourage the neurite outgrowth overcoming the inhibitory factors which are common in the 

chronic lesion (Wright et al., 2014).
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Moreover, Pires et al. (2014), in their study, showed the secretomes of both BMSCs and Warton 

jelly-derived MSCs was capable of sustaining SH-SY5Y cell survival throughout their differentiation 

into a neuronal phenotype. Such finding can support the evidence on the capacity of AT MSCs to 

secrete neuroprotective and neurotrophic growth factors (Pires et al., 2014). 

When the spinal cord is injured, the local blood vascular supply also will be ruptured, and the primary 

injury mechanism leads further to haemorrhage at the site of injury. This disturbance in the 

vasculature of the spinal cord causes necrotic damage to the endothelial cells, and subsequently, there 

is a decrease in blood vessel density (Ng et al., 2011). This decreased vascularization may be 

considered detrimental to SCI recovery, as several studies have suggested that functional 

improvement after SCI might be related to increases in blood vessel density (Glaser et al., 2006, 

Kaneko et al., 2006, Rauch et al., 2009). Hence, this study also evaluated whether cMSC CM promote 

endothelial cell migration and blood vessel formation. A handful of studies has confirmed that AT 

MSC CM from other species promotes wound healing and formation of new blood vessels (Estrada 

et al., 2009, Ranganath et al., 2012). Also, in vitro studies demonstrated that MSCs from a variety of 

sources could secrete angiogenic, anti-apoptotic and mitogenic factors for endothelial cells such as 

VEGF, HGF, angiopoietin-1, adrenomedullin and IGF-1 (Kinnaird et al., 2004, Schinkothe et al., 

2008). In particular, this study showed the effect of cMSC CM on the proliferation, migration, and 

tube formation of EA.hy926 endothelial cells. The results showed that cMSC CM significantly 

increased the closure rate of scratch wounds compared to non-conditioned control medium. 

Furthermore, detailed live cell image analysis demonstrated that increased EA.hy926 endothelial cell 

proliferation and cell migration contributed to the wound closure process. The data also showed that 

cMSC CM induced the formation of endothelial tube-like capillaries in a Matrigel assay. These 

findings are supportive of the conclusion that cMSCs are also angiogenic. 

In summary, this study has used established in vitro models to examine the paracrine activity of 

cMSCs. It demonstrated that cMSC CM was both neurotrophic and angiogenic. Further studies are 

required to identify mechanisms of action, although a significant number of studies have already 
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shown that MSCs from a variety of different sources and across species secrete neurotrophic and 

angiogenic factors (Timmers et al., 2011, Cantinieaux et al., 2013, Sun et al., 2013, Zhang et al., 

2013b). Also, it would also be important to confirm that the canine MSCs exert similar trophic effects 

on canine neurones and canine endothelial cells, especially if cMSCs were to be used clinically. The 

stimulatory activities reported here support the application of cMSCs as a therapeutic option in 

veterinary regenerative medicine, e.g. to treat SCI. Furthermore, as discussed previously, the 

investigation of cMSC CM on these cell models and in the treatment of SCI in dogs could help to 

develop cell-based regenerative strategies for the treatment of humans. Since many aspects of canine 

diseases and injury are functionally and structurally similar to those described in humans (Starkey et 

al., 2005). A second important consideration, therefore, in this translational pathway, is to examine 

how the paracrine activity of canine MSC and human MSC compare, which is the focus of the next 

research chapter.  
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4 Chapter 4: An in vitro comparison of the neurogenic and 

angiogenic paracrine activities of human versus canine 

MSCs 
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4.1 Background and aims  

SCI can be a devastating condition in humans and other species since it causes direct damage to the 

neuronal tissue accompanied by the loss of motor and sensory function. Current treatments involve 

surgery to decompress and stabilise the spinal cord, treatments that avoid secondary complications 

and that may promote rehabilitation (Tator, 2006). However, functional neurological recovery after 

serious injury, i.e. injury involving chronic and complete loss of motor and sensory function, is still 

rare and effective treatment has not yet emerged. On the other hand, recent evidence, based on studies 

focused on stem cells as a therapy for SCI, have shown some promising results. For example, 

experimental and clinical studies demonstrated the possible use of ESC-derived oligodendrocyte 

precursor cells (Keirstead et al., 2005), neural stem/progenitor cells (NSPCs) (Tsuji et al., 2011), 

iPSCs (Oh et al., 2015, Salewski et al., 2015)or MSCs (Matos et al., 2016, Rathinasabapathy et al., 

2016) as a potential cell transplantation therapy for SCI.  

However, MSCs may be preferable over other stem cells for many strategies promoting tissue repair 

for a variety of reasons. First, there is less concern about the ethical issues of using MSCs in 

comparison with ESCs. Second, studies have suggested that MSCs are suitable for allogenic 

transplantation procedures since they are immuno-privileged, which make the risks of rejection and 

complications more unlikely (Gupta et al., 2013, Vega et al., 2015). Third, the possibility of obtaining 

MSCs in quantity required for clinical application in comparison with many other types of adult stem 

cells, e.g. neural stem cells or olfactory cells, make them preferable (Le Blanc and Pittenger, 2005, 

Morte et al., 2013). Fourth, MSCs do not carry the same risk of forming teratomas compared to ES 

cells (Tipnis et al., 2010, López-Iglesias et al., 2011, Rong et al., 2012). As stem cells emerge as 

potential cell-based therapies, pre-clinical assessment of their regenerative activity is required. 

Therefore, there is a clear awareness of the need for animal models that fully reflect the target 

diseases to be investigated by using stem cells (Plews et al., 2012). Different studies reported that 

the application of mouse models in regenerative medicine has many limitations (Cibelli et al., 2013).
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This could be because mice have short lifespans in comparison to humans and also there are 

significant anatomical and physiological differences between human and mouse (Schneider et al., 

2008). In contrast, large animal models more closely resemble important aspects of human anatomy, 

physiology and pathology than mouse models. In this regard, it may be considered that dogs represent 

a promising translational model for many human diseases (Qeska et al., 2013, Hicks et al., 2015, 

Park et al., 2016). Similarly to SCI in human, SCI in dogs may lead to severe neuronal tissue damage 

resulting in loss of motor and sensory functions (Starkey et al., 2005, McMahill et al., 2015). In 

addition, a number of studies have tested the safety and occasionally, efficacy of cell transplantation 

therapies in dogs with SCI, examining the outcome of different transplanted cell types, including 

autologous canine olfactory cells (Jeffery et al., 2006a, Granger et al., 2012) and canine MSCs (Jung 

et al., 2009, Sarmento et al., 2014). The mechanisms of action of canine MSCs in the treatment of 

dogs with SCI are currently unknown. For this reason, the previous chapter examined whether canine 

MSCs secrete factors that are neurotrophic and angiogenic, using established cell model systems. 

However, the longer term aim is to evaluate the potential of MSCs to treat humans with SCI, wherein 

the effects of canine MSCs in dogs with SCI would represent part of the translational pathway from 

evaluating cell phenotyping and reparative activity in vitro, through to clinical treatment. As a step 

along this pathway, it is worthwhile comparing the neurotrophic and angiogenic effects of canine 

MSCs with human MSCs. Such knowledge would be invaluable in trying to estimate their potential 

for regenerative effects when transplanted. 

This chapter aims to address and understand the differences in the behaviour of MSCs secretomes 

from both canine and human donors. Therefore, experiments were performed to investigate the 

neurotrophic and angiogenic activity for human MSCs in comparison with canine MSCs secretomes, 

where the cells were isolated and cultured from adipose tissue in both cases and all experimentation 

was performed independently of that shown in Chapter 2 and Chapter 3. Cell assays were undertaken 

to examine the effects of MSC CM on SH-SY5Y neuronal cells and EA.hy926 endothelial cells, 

following the methods established in Chapter 3.
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The outcome of these investigations might provide benefits for veterinary and human medicine and 

also might be helpful to bridge the gap between translational research and human clinical trials. 
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4.2 Characterisation of hMSCs and cMSCs  

4.2.1  Growth characteristic and differentiation capacity of hMSCs and cMSCs 

Human and canine MSCs were plastic adherent and displayed a spindle-shaped fibroblast-like 

morphology (Figure 4.1), matching the criteria for an MSC phenotype established by the ISCT 

(Dominici et al., 2006). Both hMSCs and cMSC were assessed for their ability to differentiate the 

following induction in culture into three mesodermal lineages, i.e. to form adipocytes, osteoblasts 

and chondrocytes. As shown in Figure 4.1, hMSCs and cMSCs demonstrated some differentiation 

capacity to form adipocytes (indicated by staining intracellular lipid droplets with Oil Red O), 

osteoblasts (indicated by staining for alkaline phosphatase activity) and chondrocytes (indicated by 

staining the paraffin sections of chondrogenic 3D cell pellets with toluidine blue for 

glycosaminoglycan deposition) (Figure 4.1). However, there was less evidence of greater lipid 

accumulation in the cMSCs compared with hMSCs. 

 

4.2.2 Immunophenotype 

According to the ISCT criteria, MSCs should be immunopositive for the cluster of differentiation 

(CD) markers, CD73, CD90 and CD CD105, and lack immunopositivity for CD11b, CD14, CD19, 

CD34, CD79α and HLA-DR (Dominici et al., 2006).  Some of these markers were included in this 

study, according to the availability of antibodies recognising the canine antigens, and the CD profiles 

were assessed using flow cytometry. The results showed that the large majority of cultured hMSCs 

and cMSCs were immunopositive for CD44 and CD90, but were immunonegative for haematopoietic 

markers, i.e. CD34 and CD45 (Figure 4.2). For hMSCs 91.83%±3.92% and 97.81%±0.52% of cells 

were CD44 and CD90 immunopositive, respectively, while only 1.14%±1.08% and 0.06%± 0.02% 

of cells were CD34 and CD45 immunopositive, respectively (mean±SEM).



  

124 

 

Similarly, cMSCs were 90.57%±1.52% immunopositive for CD44 and 99.20%±0.22% 

immunopositive for CD90, but only 5.79%±5.58% and 0.04%±0.00% of cells were immunopositive 

for CD34 and CD45, respectively (mean±SEM) (Table 4-1).  

In summary, this data demonstrated that the processes of isolating and culturing hMSCs and cMSCs 

from adipose tissue generated a population of cells that met with the ISCT criteria for being 

considered MSCs. 
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Figure 4:1 The appearance and differentiation potential of hMSCs and cMSCs.  

Representative images are shown of hMSCs (top panels A) and cMSCs (bottom panels B). Both cell 

types were plastic adherent and fibroblastic in appearance under phase contrast microscopy. 

Furthermore, hMSCs and cMSCs underwent differentiation into the mesodermal lineages, 

adipocytes, osteoblasts, and chondrocytes. Scale bars = 100µm with original magnification X10 for 

plastic adherent, osteogenesis, and chondrogenesis images. Scale bar = 50µm with original 

magnification X40 for adipogenesis image. This analysis was performed on hMSCs and cMSCs from 

3 separate donors of human or canine.

A          hMSCs 

B          cMSCs 

Plastic adherent 

Plastic adherent 

Adipogenesis Osteogenesis Chondrogenesis 

Adipogenesis Osteogenesis Chondrogenesis 
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Figure 4:2 Flow cytometry analysis of CD markers phenotypic for MSCs. 

 Representative histograms are shown of the extent of immunopositivity seen for CD34, CD44, CD45 

and CD90 in hMSCs (top panels A) and cMSCs (bottom panels B). As shown, both human and 

canine MSCs were immunonegative for CD34 and CD45, but they were immunopositive for CD44 

and CD90. Immunostaining for each CD marker is shown in red, whilst control staining with 

irrelevant isotype-matched antibodies (as described in chapter two, section 2.2.1) is shown in blue. 

This analysis was performed on hMSCs and cMSCs from 3 separate donors.
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Table 5: The proportions of hMSCs and cMSCs that were immunopositive for CD markers.  

The percentages of hMSCs (top panel) and cMSCs (bottom panel) for each of the CD markers. As 

shown, this analysis was performed on hMSCs and cMSCs from 3 different donors. 

Percentage expression of CD markers for hMSCs 

Cell type Patient ID CD34 CD44 CD 45 CD90 

Human MSC  hMSC101 0.04 83.99 0.04 97.54 

 
hMSC110 3.30 95.72 0.04 97.08 

 
hMSC123 0.09 95.78 0.10 98.83 

Mean  
 

1.14 91.83 0.06 97.81 

SEM 
 

1.08 3.92 0.02 0.52 

Percentage expression of CD markers of cMSCs 

Cell type Patient ID CD34 CD44 CD45 CD90 

Canine MSC cMSC 018 0.03 92.57 0.04 98.86 

 
cMSC 020 16.97 87.59 0.04 99.62 

 
cMSC 028 0.39 91.54 0.04 99.13 

mean 
 

5.79 90.57 0.04 99.20 

SEM 
 

5.58 1.52 0 0.22 



  

128 

 

4.3 A comparison of the neurotrophic effects of hMSCs and cMSCs conditioned 

medium 

4.3.1 Human and canine MSC CM promoted neurite outgrowth and neuronal cell 

proliferation of SH-SY5Y cells 

The effects of hMSC CM and cMSC CM on SH-SY5Y neuroblastoma cells were examined using 

the same methodology previously described in Chapter 2 (Section 2.4.1) and Chapter 3. In brief, the 

SH-SY5Y cells were seeded in 24 well plates and incubated for 24 hours to allow for cells to adhere. 

Following medium change and treatment with either hMSC CM, cMSC CM or serum-free medium 

(in control cultures), the plates were incubated in the Cell IQ live cell imaging platform for 3 days 

for digitised image collection (Figure 4.3). At the end of incubation period, these images were 

analysed using the Cell IQ analyser software. 

The data obtained showed that both human and canine MSC CM have a marked neurotrophic effect, 

enhancing neuronal cell growth and neurite outgrowth from SH-SY5Y cells compared to control 

cultures. The results showed that human and canine MSC CM significantly increased the number of 

SH-SY5Y cells present after 3 days in culture compared with control medium (p= 0.0288 for hMSC 

CM and p= 0.0168 for cMSC CM). However, there was no significant difference between the effects 

of human and canine MSC CM in this regard ( p= 0.8865). Also, both human and canine MSC CM 

significantly increased neurite outgrowth of SH-SY5Y cells compared with control medium (p= 

0.0042 for hMSC CM and p= 0.0098 for cMSC CM), but there was no significant difference between 

the effects of human and canine MSC CM ( p= 0.6819) (Figure 4.4). 

Therefore, hMSC and cMSC were shown to have significant neurotrophic activity, which was 

similar.
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Figure 4:3 Human MSC CM and canine MSC CM increased neuronal cell numbers and 

neurite outgrowth in SH-SY5Y neuroblastoma cells.   

Representative digitised images captured by the Cell IQ live cell imaging platform have been shown. 

As shown, hMSC CM and cMSC CM increased neurite outgrowth (arrows) and neuronal cell 

proliferation compared with control medium. Scale bar = 200µm. These images were collected using 

hMSC and cMSC CM from 3 separate donors.
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Figure 4:4 Human MSC CM and canine MSC CM significantly increased SH-SY5Y cell 

numbers and neurite outgrowth. 

The results showed that hMSC CM and cMSC CM had a similar effect of increasing cell proliferation 

and neurite outgrowth of SH-SY5Y cells. Each bar represents the mean±SEM from 3 independent 

experiments (i.e. 3 different donors) of 3 replicates per each individual experiment. *indicates p≤0.05 

(top panel A); and **indicates p≤0.01 (bottom panel B). One way- ANOVA with Tukey's multiple 

comparisons test used to determine the significant differences. 
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4.3.2 hMSC CM and cMSC CM enhanced immunopositivity for the mature neuronal 

marker βIII-tubulin in SH-SY5Y neuronal cells 

βIII-tubulin is a marker of neuronal differentiation (Dwane et al., 2013), which was detected by 

immunocytochemistry. This analysis demonstrated that βIII-tubulin appeared to be present to a 

greater extent in SH-SY5Y cells when they were treated with hMSC CM and cMSC CM compared 

with control medium (Figure 4.5). The proportions of βIII-tubulin immunopositive SH-SY5Y cells 

were significantly increased versus controls when cultured for three days in hMSC CM (p= 0.0018) 

and cMSC CM (p= 0.0013). There was no significant difference in the proportions of βIII-tubulin 

immunopositive SH-SY5Y cells present in either hMSC CM versus cMSC CM (p= 0.4674) (Figure 

4.6). 

Therefore, hMSC and cMSC secreted factors that appeared to induce neuronal differentiation to a 

similar extent.
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Figure 4:5 The effects of hMSC CM and cMSC CM on beta-III tubulin immunopositivity in 

SH-SY5Y cells.  

Representative images are shown of SH-SY5Y cells treated with hMSC CM or cMSC CM or control 

medium for 3 days and immunostained for beta-III tubulin. As shown there was an apparent increase 

in immunopositivity when cultured in the presence of MSC CM. Scale bar = 100µm. Original 

magnification X40. These images were collected using hMSC CM and cMSC CM from 3 separate 

donors. 
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Figure 4:6  Human MSC CM and canine MSC CM significantly increased the proportion of 

SH-SY5Y cells that were beta-III immunopositive. 

 The proportion of beta-III immunopositive SH-SY5Y cells present was determined by scoring a 

minimum of 500 cells from digitised images, each collected from 5 randomly selected fields in each 

of three wells per medium tested. Each bar represents the mean±SEM from 3 independent 

experiments, i.e. testing hMSC CM and cMSC CM from 3 separate donors. ****indicates p≤ 0.0001. 

One way- ANOVA with Tukey's multiple comparisons test used to determine the significant 

differences. 
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4.3.3 Assessment of SH-SY5Y viable cell numbers using the MTT assay 

The MTT assay was used to further examine the number of viable SH-SY5Y cells present in cMSC 

CM versus control medium in a 96 well plate format. As shown in Figure 4.7, there appeared to be 

more viable SH-SY5Y cells present after culturing in hMSC CM or cMSC CM for 3 days compared 

with control medium. These cultures were subsequently processed to assess viable cell number using 

the MTT assay, which measures non-specific esterase activity in viable cells (Denizot and Lang, 

1986, Hansen et al., 1989). As shown in Figure 4.8, there was a significantly greater level of 

absorbance, indicative of increased numbers of viable SH-SY5Y cells in hMSC CM (p= 0.0016) and 

cMSC CM (p=0.0060) versus control medium whereas, the absorbances showed no significant 

difference between hMSC CM and cMSC CM (p= 0.3548).  

Therefore, the data suggested that hMSC and cMSC secreted factors appeared to support neuronal 

growth and survival to a similar extent. 
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Figure 4:7 The effects of hMSC CM and cMSC CM on SH-SY5Y neuronal cell proliferation.  

Representative images demonstrate the relative increase in SH-SY5Y cell numbers when cultured 

for 3 days in hMSC CM or cMSC CM versus control medium. Scale bar = 100µm. Original 

magnification X10. These images were collected from hMSC CM and hMSC CM from 3 separate 

donors. 
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Figure 4:8 The MTT assay confirmed that culturing SH-SY5Y neuronal cells in hMSC CM or 

cMSC CM versus control medium significantly increased the number of viable SH-SY5Y cells 

present.  

MTT assays were performed to assess viable cell numbers. The results showed a significant increase 

in the number of viable SH-SY5Y cells in hMSC CM or cMSC CM versus control medium at 3 days. 

Whereas, hMSC CM or cMSC CM had a similar effect. Each bar represents the mean±SEM from 3 

independent experiments, i.e. testing hMSC CM and cMSC CM from 3 separate donors. **indicates 

p≤0.01.  One way- ANOVA with Tukey's multiple comparisons test was used to determine the 

significant differences. 
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4.4 The comparative of effects of hMSC CM and cMSC CM on EA.Hy926 endothelial 

cells. 

4.4.1  Human and canine MSCs CM increased the migration and proliferation of 

EA.hy926 endothelial cells  

The angiogenic effects of human and canine MSC CM on EA.hy926 endothelial cells were examined 

by using scratch assays, and live cell image analysis with the Cell IQ imaging platform (Figure 4.9), 

as described in  Chapter 2 (Section. 2.4.3.1) and Chapter 3. The results showed that both human MSC 

CM (p=0.0001) and canine MSC CM (p= 0.0242) significantly enhanced the rates of scratch wound 

closure compared to control medium. In contrast, there was no significant difference in the rate of 

wound closure between the hMSC CM versus cMSC CM (p= 0.1897) (Figure 4.10). 

 To determine whether MSC CM played a role in stimulating EA.hy926 cell migration versus 

proliferation to induce wound closure, cells from the sides of wound edges were tracked by using the 

Cell IQ analyser software. Each scratch wound assay was performed in triplicate in each of the 3 

independent experiments and a minimum of 3 cells at the edge of the scratch per replicate scratch 

were tracked to plot their movement into the scratch wound area every 15 minutes over a 2 days 

period. This meant a total of 27 cells for each condition (hMSC CM, cMSC CM and control medium) 

were tracked. The total distance each cell had migrated from day 0 to day 2 was measured and 

demonstrated that hMSC CM and cMSC CM significantly enhanced the extent to which cells 

migrated in the wound area compared to control medium (p= 0.0001 in both cases), but that there 

was no significant difference between the human and canine MSC CM (p= 0.3155) (Figure 4.11).
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Figure 4:9 The effects of hMSC CM and cMSC CM on EA.hy926 endothelial cells in scratch 

assays.  

Representative images are shown EA.hy926 endothelial cell scratch assays, which were treated with 

hMSC CM, cMSC CM or serum-free control medium for 2 days after scratching. EA.hy926 cells 

were seeded into multiple wells of 24 well plates and cultured in a standard culture medium until 

confluent and then scratched using a yellow pipette tip. After washing with PBS, the cultures were 

then fed with cMSC CM or serum-free control medium (Control). Scale bars = 200µm. These images 

were collected using hMSC and cMSC CM from 3 separate donors.
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Figure 4:10 Human and canine MSC CM significantly increased the rate of wound closure in 

EA.hy926 endothelial scratch assays. 

 The Cell IQ platform was used for live imaging of wound closure in EA.hy926 endothelial cell 

scratch wound assays in the presence of hMSC CM or cMSC CM versus serum-free control medium. 

Digitised images were generated over 2 days of incubation and Cell IQ imaging software was used 

to measure the extent to which the wound had closed (as a proportion of its original scratch area). 

There was a significant increase in the rate of wound closure in hMSC CM and cMSC CM compared 

to the control medium, whereas no significant difference between hMSC CM and cMSC CM. Each 

bar represents mean±SEM of 3 independent experiments, i.e. using hMSC CM and cMSC CM from 

3 separate donors. *indicates p≤ 0.05, and ****indicates p≤ 0.0001.Blue stars represent hMSC CM 

vs control, and red stars represent cMSC CM vs control. A Two-way ANOVA with Tukey's multiple 

comparisons tests used to determine the significant differences. 
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Figure 4:11 Human and canine MSC CM significantly increased EA.hy926 endothelial cell 

migration.  

Image analysis of the collected digitised images was used to measure the distance that EA.hy926 

endothelial cells migrated from the edge of the scratch towards the centre of the wound over a period 

of 2 days in the presence of hMSC CM or cMSC CM versus serum-free control medium. As shown, 

there was a significant increase in distance travelled in hMSC CM and cMSC CM versus control 

medium during this time. Each bar represents mean±SEM of 3 independent experiments, i.e. using 

hMSC CM and cMSC CM from 3 separate donors. ****indicates p≤ 0.0001. One way ANOVA with 

Tukey's multiple comparisons tests used to determine the significant differences. 
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The numbers of dividing and non-dividing EA.hy926 cells within each of the digitised images 

collected in each of the scratch wound assays were also identified using live cell image analysis. This 

demonstrated that hMSC CM and cMSC CM significantly increased the numbers of dividing and 

non-dividing cells present within the scratch wound assays compared with control medium (p= 

0.0001 for dividing cells in both MSC CM, p= 0.0001 for non-dividing cells in hMSC CM; p= 0.0003 

for non-dividing cells in cMSC CM)  (Figure 4.12). However, there was no significant difference in 

the effects of hMSC CM versus cMSC CM (dividing cells p= 0.1006; non-dividing cells p= 0.9379).  

Moreover, the effects of human and canine MSC CM versus control medium on EA.hy926 cell 

proliferation was further determined by inverted Phase contrast microscopy and by MTT assay to 

determine the number of viable cells present after treatment in 96 well plates. The results showed 

that the hMSC CM (p= 0.0035) and cMSC CM (p= 0.0244) significantly increased the number of 

viable EA.hy926 cells over a 2 day period compared with control medium, but that there was no 

significant difference between the human and canine MSC CM (p= 0.2276) (Figures 4.13 and 4.14).



  

142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:12 Human and canine MSC CM increased the numbers of EA.hy926 endothelial cells 

in the scratch wound site.  

The number of dividing versus non-dividing EA.hy926 endothelial cells present in the whole area of 

the digitised images collected of each scratch wound assay was determined over a 2 day period using 

live cell image analysis. As shown, there were marked increases in both dividing and non-dividing 

cells when cultured in the MSC CM versus control medium. Results have been shown as mean±SEM 

from 3 independent experiments, i.e. testing MSC CM harvested from 3 donors versus control 

medium. *** indicates p≤ 0.001 and **** indicates p≤ 0.0001. Blue stars represent hMSC CM vs 

control, and red stars represent cMSC CM vs control. Two-way ANOVA with a Tukey's multiple 

comparisons test used to determine the significant differences. 



  

143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:13 Human and canine MSC CM promoted EA.hy926 endothelial cell proliferation.   

Representative images are shown of EA.hy926 cells cultured in 96 well plates in the presence of 

hMSC CM or cMSC CM versus control medium for a 2 day period. As shown, there was an increase 

in the presence of viable EA.hy926 cells with time, which was most marked in cells cultured in MSC 

CM. Scale bars = 100µm. Original magnification X10.This image was collected from hMSC CM 

and cMSC CM from 3 separate donors. 
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Figure 4:14 The MTT assay confirmed that culturing EA.hy926 endothelial cells in cMSC CM 

versus control medium significantly increased the number of viable EA.hy926 cells present. 

 MTT assays were performed to assess viable cell numbers. The results showed a significant increase 

in the number of viable EA.hy926 cells in human and canine MSC CM versus control medium at 2 

days. Whereas, human and canine MSC CM had a similar effect. Each bar represents the mean±SEM 

from 3 independent experiments, i.e. testing hMSC CM and cMSC CM from 3 separate donors. 

*indicates p≤0.05 and **indicate p≤0.01.  One way- ANOVA with Tukey's multiple comparisons 

test used to determine the significant differences.

V
ia

b
le

 c
el

ls
 (

A
u

) 



  

145 

 

4.4.2  Human and canine MSC CM stimulated endothelial tubule formation in 

Matrigel assays 

The angiogenic activity of human and canine MSC CM was further assessed using Matrigel assays 

to examine endothelial tubule formation by EA.hy926 cells, as has been reported in other studies 

testing different angiogenic factors (Ponce, 2001, Ponce, 2009, Khoo et al., 2011).  The extent of 

tubule formation and endothelial tubule branch formation was determined by capturing digitised 

images after EA.hy926 cells had been cultured on Matrigel in hMSC CM, cMSC CM or control 

medium, and using the Cell IQ image analysis software (see Chapter 2, 2.5.4). As shown in Figure 

4.15, human and canine MSC CM induced the formation of tubule-like structures by EA.hy926 

endothelial cells to a markedly greater extent than culturing the cells on Matrigel in control medium. 

Angiogenic activity was quantified by measuring total tubule length and branch point count for each 

of the digitised images captured. The results showed that both the human and the canine MSC CM 

significantly increased these parameters compared to control medium (Figure 4.16). Hence, there 

was a significant increase in total tubule length (hMSC CM versus control, p= 0.0034; cMSC CM 

versus control, p= 0.0080) and the number of branch points (hMSC CM versus control, p= 0.0163; 

cMSC CM versus control, p= 0.0298). In contrast, there was no significant difference between hMSC 

CM versus cMSC CM for either total tubule length or branch point counts (p= 0.6665, p= 0.8611. 

respectively). Taken together, this data demonstrated that human and canine MSC CM had a marked 

and significant stimulatory angiogenic effect on EA.hy926 endothelial cells. 
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Figure 4:15 The effects of human and canine MSC CM on EA.hy926 endothelial cells cultured 

on Matrigel.  

Representative images are shown of EA.hy926 endothelial cells cultured on Matrigel in the presence 

of hMSC CM or cMSC CM versus serum-free control medium. These images were subsequently 

analysed using the Cell IQ imaging software to determine the length (indicated by green lines) and 

the number of branch points (indicated by blue and red dots) seen in endothelial tubule-like 

structures. Scale bars = 200µm. This analysis was performed on hMSC CM and cMSC CM from 3 

separate donors. 
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Figure 4:16 Human and canine MSC CM significantly increased EA.hy926 endothelial tubule 

formation. 

 Image analysis of the collected digitised images (see Figure 4.15) was used to measure both the total 

length of tubules formed (per image) and the number of endothelial tubule branch points (per image). 

As shown, there were significant increases in both of these parameters when EA.hy926 cells were 

cultured on Matrigel for 1 day in hMSC CM and cMSC CM versus control medium. Each bar 

represents the mean±SEM from 3 independent experiments, i.e. testing hMSC CM and cMSC CM 

from 3 separate donors. Top panel: **indicates p≤0.01. Bottom panel: *indicates p≤0.05. One way- 

ANOVA with Tukey's multiple comparisons test used to determine the significant differences.
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4.5 Discussion  

MSCs have been intensively studied for their potential therapeutic activity for a large number of 

conditions, particularly CNS damage such as SCI (Mariani and Facchini, 2012, Oliveri et al., 2014, 

Razeghian Jahromi et al., 2016). Recently it has become more accepted that transplanted MSCs exert 

a therapeutic effect through their paracrine activities on endogenous cells present at the sites of 

injuries (Teixeira et al., 2013, Konala et al., 2016). MSCs have the ability to secrete different kinds 

of reparative proteins including growth factors, cytokines, chemokines as well as extracellular 

vesicles (Kupcova Skalnikova, 2013, Kalinina et al., 2015). However, the translation of research into 

cell-based therapy into the clinic requires a good animal model for SCI, which anatomically, 

physiologically and pathologically resembles human SCI. Dogs, among many other animal models, 

including rodents, are a powerful model for the study of human diseases and pre-clinical and clinical 

research leading therapy (Rowell et al., 2011).  

In the previous Chapter, the results demonstrated that canine MSCs exert paracrine activity by 

stimulating neuronal outgrowth and endothelial growth and migration. To help develop a 

translational pathway from establishing the potential effect of canine MSC transplants in dogs with 

SCI to human MSC transplants in humans with SCI, the aim of this study was to compare the 

paracrine activities of human MSCs with canine MSCs. Having established that the human and 

canine MSCs examined, which were isolated and cultured from adipose tissue, met the minimal 

criteria of the MSC phenotype described by the ISCT (Dominici et al., 2006), the study then 

examined their paracrine activity using MSC CM.  

Results obtained by this study showed that both the human and canine MSC CM similarly promoted 

SH-SY5Y neuronal cell proliferation, cell survival, neurite outgrowth and neuronal differentiation. 

These findings suggest that human and canine MSCs exert neurotrophic effects through their 

secretomes in a similar manner and to a similar extent. 
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Traumatic SCI causes damage and disruption to the blood vessels that supply the spinal cord and the 

early re-establishment of blood vessels can minimise the loss of neuronal tissue after injury (Kundi 

et al., 2013). Therefore, this Chapter, like the studies undertaken in Chapter 3, also compared the 

angiogenic effects of human and canine MSC CM. This demonstrated that both the human and the 

canine MSCs had a significant stimulatory effect on EA.hy926 endothelial cells, indicating an 

angiogenic paracrine activity. Similar to the effects on SH-SY5Y cells, there were no marked or 

significant differences between hMSC CM versus cMSC CM. These findings suggest that human 

and canine MSCs exert angiogenic effects through their secretomes in a similar manner and to a 

similar extent.   

However, a clear caveat to concluding that the human and canine MSCs have similar paracrine 

activity is that the responder cell lines tested, i.e. SH-SY5Y neuronal cells and EA.hy926 endothelial 

cells are of human origin and derived from tumours. This means that the responses of these cells to 

cross-species growth factors may differ from their response to cells of the same species, plus they 

may vary in response from normal primary neurones or endothelial cells. The importance of the 

findings shown in this chapter, including possible areas that require further experimentation and 

validation, will be discussed in more detail in Chapter six.   

In the next Chapter, experiments were performed to examine whether there may be an optimal 

population of human MSCs for CNS repair. This was done again as a part of the translational 

pathway to human clinical trials, e.g. for the treatment of SCI, because of the known heterogeneity 

of MSCs in terms of activity and because of the reported donor-donor variation in the effects of 

MSCs (Sivasubramaniyan et al., 2012, Walter et al., 2015).  The generation of a more 

homogenous MSC population of known paracrine activity would be advantageous as the 

application of these cells goes to the clinic.
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5 Chapter 5: An in vitro examination of the neurotrophic and 

angiogenic paracrine activities of human adipose-derived 

MSC subpopulations 
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5.1 Background and aims  

MSCs are heterogeneous populations of non-haematopoietic multipotent cells. The main sources for 

MSCs are bone marrow or adipose tissue (Hass et al., 2011). The most popular and classical method 

to isolate and generate MSCs from tissues is by plastic adherence. The plastic adherent method is 

used to obtain MSCs after tissue processing, i.e., after using density gradient centrifugation of bone 

marrow to obtain mononucleated cells (Pittenger et al., 1999) or following collagenase digestion to 

obtain the stromal vascular fraction from adipose tissue (Zuk et al., 2002). The isolated cells are then 

put into the culture medium, and those which successfully attach to plastic following isolation are 

then culture expanded (after removal of non-adherent cells) as cell monolayers. These adherent 

monolayer cell populations are recognised as MSCs. However, they are still reported being 

heterogeneous in nature (Ho et al., 2008, Phinney, 2012). 

Cell sorting techniques allow the achievement of more highly purified subpopulations of MSCs 

than their selection based on plastic adherence (Tondreau et al., 2005, Buhring et al., 2007, 

Battula et al., 2009). Furthermore, the identification and purification of MSC subpopulations 

before culturing them may allow for a better understanding of their biological functions (Jones et 

al., 2002, Tormin et al., 2011).  

A popular marker to prospectively isolate MSCs from bone marrow and adipose tissue is CD271. 

The receptor belongs to the tumour necrosis factor superfamily (Quirici et al., 2002, Buhring et al., 

2007). Several studies have revealed that selected CD271+ MSCs have shown high osteogenic and 

chondrogenic differentiation capacities compared with plastic adherent selected cells (Jones et al., 

2010, Cuthbert et al., 2015).  

This suggests that using CD271+ MSCs in orthopaedic cell replacement therapies for damaged bone 

and cartilage may have a more beneficial effect regarding tissue regeneration than plastic adherent 

selected MSCs (Mifune et al., 2013).
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However, there is currently a lack of information regarding the paracrine effects of CD271+ MSCs’ 

on the biological functions of various cell types, including nerves and blood vessels, which may have 

application in other wound repair scenarios, e.g. for CNS damage. Therefore, this study was 

conducted for the first time a comparison investigation to examine the paracrine effects of three 

human adipose-derived MSC subpopulations, including plastic adherent MSCs (i.e., PA MSCs), 

CD271-selected MSCs (i.e., CD271+ MSCs), and those cells which were CD271- , but were selected 

for plastic adherence after the removal of the CD271+ MSCs, i.e. the CD271- MSCs. For further 

purposed of comparison, this investigation of sub-population paracrine activities involved looking 

for the effects of MSC CM on neurogenesis and angiogenesis using the SH-SY5Y and EA.hy926 

cell model systems previously utilised in Chapters 3 and 4. 
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5.2 Characterization of MSC subpopulations  

5.2.1  Morphological appearance and differentiation of PA MSCs, CD271+ MSCs, 

and CD271- MSCs 

As described in Chapter 2 (Section 2.1.3), the human MSC subpopulations were isolated using the 

MACS technique, culture expanded and assessed to see if they matched the ISCT minimal criteria 

for MSC phenotype (Dominici et al., 2006). The PA MSCs, CD271+ MSCs and CD271- MSCs all 

manifested a plastic adherent and fibroblastic appearance during culture expansion (Figure 5.1).  

Furthermore, all three MSC subpopulations differentiated into adipocytes as detected by Oil Red O 

staining (Figure 5.2). Moreover, the amount of Oil Red O accumulation was quantified by releasing 

the dye from lipid droplets using isopropanol 100% (Chapter 2, Section 2.2.3). Results shown in 

Figure 5.3 demonstrate that all three MSC subpopulations significantly increased the amount of lipid 

content in response to adipose-differentiation inductions compared with control cultures, but that 

there were no significant differences in the amount of lipid formation amongst the three MSCs sub-

populations. A Two-way ANOVA with Tukey's multiple comparisons test was used to determine the 

differences amongst these three groups. This data was obtained from three independent experiments, 

i.e. examining each MSC subpopulation from three different MSC donors. 

The three MSCs sub-populations were also assessed for their capacity to differentiate into osteoblasts 

(Chapter 2, Section 2.2.3) by staining and quantifying for ALP activity (Figure 5.4 and Figure 5.5). 

As shown in Figure 5.4, there was a marked increase in the presence of ALP-positive MSCs after 

osteogenic induction compared to control cultures. The results shown in Figure 5.5 demonstrated 

that ALP levels were significantly increased in osteogenic treated PA MSCs and CD271+ MSCs 

versus their respective control cultures.
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There was no significant difference between osteogenic treated PA MSCs and osteogenic treated 

CD271+ MSCs. However, osteogenic treated PA MSCs and CD271+ MSCs had significantly higher 

levels of ALP activity compared with osteogenic treated CD271- MSCs. Furthermore, the osteogenic 

treated CD271- MSCs showed no significant difference when compared with their control cultures. 

A two-way ANOVA with Tukey's multiple comparisons test was used to determine levels of 

differences amongst these three groups. The data was obtained from two independent experiments, 

i.e., examining MSC subpopulations from two different donors with three replicates for each donor 

and each experiment were performed and pooled. 

The three MSCs sub-populations were also assessed for their capacity to differentiate into 

chondrocytes. As described in Chapter 2 (Section 2.2.3), the differentiation capacity was assessed by 

the accumulation of GAGs in the extracellular matrix of pellet cultures which were stained with 

toluidine stain (Figure 5.6). This demonstrated that an apparent increase in metachromatic staining 

within the chondrogenic treated cell pellets versus control cell pellets in all MSC subpopulations. 

The amount of GAGs in digested pellets after 28 days in culture was quantified by using the DMMB 

assay. The resulting data in Figure 5.7 showed that there was an increase in GAG content in the 

chondrogenic treated pellets versus control for all MSC subpopulations, but that there were no 

significant differences amongst the three MSC subpopulations. A Two-way ANOVA with Tukey's 

multiple comparisons test was used to determine the differences amongst these three groups. This 

data was obtained from three independent experiments, i.e., with MSC subpopulations from three 

different donors.
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Figure 5:1 The fibroblastic appearance of MSC subpopulations.  

Representative phase contrast images are shown of PA MSCs, CD271+ MSCs and CD271- MSCs 

growing as plastic adherent cells in culture. Scale bar = 100 µm. Original magnification X10. This 

analysis was performed on MSC subpopulations from three separate donors.
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Figure 5:2 Adipogenic differentiation of MSC subpopulations.  

Representative phase contrast images are shown of PA MSCs, CD271+ MSCs and CD271- 

MSCs. All three MSC subpopulations displayed the ability to differentiate into adipocytes 

after their treatment with adipogenic induction medium. Oil Red O staining was used to 

indicate the accumulation of fat droplets in the cell cytoplasm. Scale bar = 50 µm. Original 

magnification X40. This analysis was performed on MSC subpopulations from three 

separate donors.
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Figure 5:3 The extent of lipid accumulation in MSC subpopulations.  

The amount of lipid accumulated after the differentiation of PA MSCs, CD271+ MSCs and CD271- 

MSCs was quantified by spectrophotometry. Each bar represents the mean±SEM from three 

independent experiments, i.e. testing the MSC subpopulations from three different donors. As shown 

there was an increase in lipid content in MSCs that had been treated with adipogenic induction 

medium versus controls. *indicates p≤0.05. Two way-ANOVA with Tukey's multiple comparisons 

tests were used to determine significant differences. 
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Figure 5:4 Osteogenic differentiation of MSC subpopulations. 

Representative phase contrast images are shown of PA MSCs, CD271+ MSCs and CD271- MSCs 

after differentiating into osteoblasts following treatment with osteogenic induction medium. The 

differentiation capacity was indicated by staining for alkaline phosphatase activity. Scale bar = 100 

µm. Original magnification X10. These images were collected from two independent experiments, 

i.e., examining MSC subpopulations from two different donors. 
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Figure 5:5 Quantification of ALP activity for MSCs sub-populations.  

The amount of ALP activity in PA MSCs, CD271+ MSCs and CD271- MSCs was quantified by 

spectrophotometry. Each bar represents the means±SD from the pooled data of two independent 

experiments, i.e., testing the MSC subpopulations from two different donors where there were three 

replicates per donor for each condition of each experiment. *indicates p≤0.05, ***indicates p≤0.001, 

and ****indicates p≤0.0001. A Two-way ANOVA with Tukey's multiple comparisons test was used 

to determine significant differences. 
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Figure 5:6 Chondrogenic differentiation of MSC subpopulations.  

Representative phase contrast images are shown of PA MSCs, CD271+ MSCs and CD271- MSCs in 

pellet cultures which had been induced to undergo chondrogenesis (treated) versus control and 

stained with toluidine blue stain to identify GAG content. Scale bar = 100 µm. Original magnification 

X10. This analysis was performed on MSC subpopulations from three separate donors. 
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Figure 5:7 Quantification of GAGs in the MSC subpopulations.  

The amount of accumulated GAGs in the extracellular matrix from the differentiated and non-

differentiated pellets of PA MSCs, CD271+ MSCs and CD271- MSCs were measured using the 

DMMB assay. Each bar represents the mean±SEM from three independent experiments, i.e., testing 

the MSC subpopulations from three different donors of three replicates per donor for each 

experiment. ****indicates p≤0.0001. A Two-way ANOVA with Tukey's multiple comparisons test 

was used to determine significant differences.
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5.2.2 Immunophenotypic CD profiling characterization of MSC subpopulations  

The common cell surface markers for MSCs which have been established by ISCT as defining 

markers were quantified for the three MSC subpopulations.  The three MSC subpopulations at 

passage II were processed for flow cytometry analysis. The results showed that all these three MSC 

subpopulations were immunonegative for haematopoietic markers, which were CD34 and CD45 and 

immunopositive for MSC-specific cell-surface antigens which are not expressed by haematopoietic 

cells, these were CD44, CD73, CD90 and CD105 (Figure 5.8). The data gathered by this study 

showed that all three MSC subpopulations were immunonegative for CD34. The percentage of cells 

which were detected as positive for CD34 (mean±SEM) were as the following; PA MSCs 

0.67±0.66%, CD271+ MSCs 3.86±3.84%, and CD271- MSCs 3.45±0.96%. Similarly, the MSC 

subpopulations were showed immunonegative for CD45.  The percentage of cells which were 

detected as positive for CD45 (mean±SEM) were as the following; PA MSCs 0.02±0.02%, CD271+ 

MSCs 1.41±1.38%, and CD271- MSCs 0.10±0.05%. Also, the flow cytometry data showed that the 

three MSCs sub-populations were immunopositive for CD44, CD73, CD90, and CD105. The 

percentage of cells which were detected as positive for CD44 (mean±SEM) were as the following; 

PA MSCs 97.68±0.95%, CD271+ MSCs 97.61± 1.19%, and CD271- MSCs 97.34± 0.42%. The 

percentage of cells which detected as positive for CD73 (mean±SEM) were as the following; PA 

MSCs 95.73±2.50%, CD271+ MSCs 99.48±0.18%, and CD271- MSCs 99.56±0.15%. The 

percentage of cells which detected as positive for CD90 (mean±SEM) were as the following; PA 

MSCs 98.15±1.38%, CD271+ MSCs 99.53±0.12% and CD271- MSCs 99.47±0.23%. The percentage 

of cells which were detected as positive for CD105 (mean±SEM) were as the following; PA MSCs 

92.39±6.38%, CD271+ MSCs 99.19±0.47% and CD271- MSCs 99.13±0.30%. 

Furthermore, the expression of CD271 cell surface marker was examined at the same passage (i.e. 

passage II) for all three MSCs sub-populations PA, CD271+, and CD271-.



  

163 

 

The flow cytometry data showed that although CD271+ selected MSCs were positively selected for 

this marker, they lost the expression of this CD marker at an early passage in expanded tissue culture 

only about 0.06±0.04% were positive for CD271 marker. Additionally, PA MSCs and CD271- MSCs 

were also examined for their capacity to express CD271 cell surface marker. The results showed that 

PA MSCs and CD271- MSCs showed negative immunoreaction for CD271 cell surface marker 

(0.94±0.91% and 0.05±0.02% respectively) (Table 5.4). The data presented mean±SEM was 

obtained from three independent (i.e. three different donors). 
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Figure 5:8 (A) Flow cytometry analysis of CD markers expressed by MSC subpopulations. 

 Representative images are shown of three experiments for CD profiling for MSC subpopulations.   The MSC subpopulations were negative for CD34 and 

CD45, but they were positive for CD44, CD73, CD90 and CD105 (red histograms). IgG1 and IgG2a isotype staining were used as negative controls (blue 

histograms).
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Figure 5:8 (B) Flow cytometry analysis of CD271 marker expressed by the three MSC 

subpopulations. Representative images for CD271 expression of MSC subpopulations are shown 

the expression of CD271 after being culture expanded. The CD271+ MSCs lost the capacity to 

express the CD271 at the early passage of culture expansion. Similarly PA MSCs and CD271- MSCs 

were negative for CD271 (red histogram). IgG1 isotype staining groups were used as negative 

controls (blue histogram; overlap between red and blue appears as magenta). Data were obtained 

from three independent experiments, where the three MSC subpopulations were in passage II. 
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Table 6: Immunoreactivity of the three MSC subpopulations for cell surface markers.   

The table shown is the percentage of cells that are immunoreactive from the three MSC subpopulations for specific CD markers. The cells showed negative 

immunoreaction for CD34 and CD45 and positive immunoreaction for CD44, CD73, CD90 and CD105. Also, the three MSC subpopulations showed negative 

immunoreaction for CD 271. Data shown is mean±SEM of three independent experiments.

  CD34% CD44% CD45% CD73% CD90% CD105% CD271% 

PA MSCs 105 0.01 98.53 0.01 99.78 99.48 99.65 2.76 

PA MSCs 123 1.99 95.78 0.06 91.16 95.4 79.68 0.05 

PA MSCs 126 0.02 98.72 0 96.26 99.57 97.85 0 

mean 
 

0.67 97.68 0.02 95.73 98.15 92.39 0.94 

SEM 
 

0.66 0.95 0.02 2.50 1.38 6.38 0.91          

CD271+ MSCs 105 0.01 99.2 0.06 99.3 99.49 99.88 0.03 

CD271+ MSCs 123 0.02 98.33 0.01 99.31 99.36 98.3 0.15 

CD271+ MSCs 126 11.54 95.29 4.16 99.83 99.76 99.4 0.01 

mean 
 

3.86 97.61 1.41 99.48 99.53 99.19 0.06 

SEM 
 

3.84 1.19 1.38 0.18 0.12 0.47 0.04          

CD271- MSCs 105 1.57 97.88 0.19 99.75 99.1 98.61 0.08 

CD271- MSCs 123 4.67 96.52 0.06 99.26 99.43 99.12 0.04 

CD271- MSCs 126 4.12 97.62 0.04 99.67 99.89 99.65 0.02 

mean 
 

3.45 97.34 0.10 99.56 99.47 99.13 0.05 

SEM 
 

0.96 0.42 0.05 0.15 0.23 0.30 0.02 
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5.3 Neurotrophic effect of MSC subpopulations conditioned medium 

5.3.1 MSC CM from all MSC subpopulations promoted neurite outgrowth and 

neuronal survival of SH-SY5Y cells  

The neurotrophic effects of MSC CM from MSC subpopulations were examined by performing an 

in vitro assay using SH-SY5Y cells. The representative phase contrast images in Figure 5.9 show 

SH-SY5Y that were seeded in 24 well plates as described in  Chapter 2 (Section 2.4.1.1) and treated 

with conditioned medium from either PA MSC CM, CD271+  MSC CM, and CD271- MSC CM or 

serum-free medium as a control. The plates were incubated in the Cell IQ live cell imaging platform 

for three days. At the end of the incubation period, images were analysed by using the Cell IQ 

analyser software. The data obtained showed that the MSC CM from MSC subpopulations has a 

similar neurotrophic effect. The Cell IQ analysis showed that the MSC CM from MSC 

subpopulations significantly increased the neurite outgrowth of SH-SY5Y cells compared with 

control medium (p= 0.0039, p= 0.0006, and p= 0.0014 respectively). However, there was no 

significate differences on promoting neurite outgrowth from SH-SY5Y amongst MSC CM from 

MSC subpopulations (PA MSC CM vs CD271+ MSC CM p= 0.4023, PA MSC CM vs CD271- MSC 

CM p= 0.8096 and CD271+ MSC CM vs CD271- MSC CM p= 0.8673). Also all three MSCs PA, 

CD271+, and CD271- CM significantly increased cell number compared with control medium (p= 

0.0005, p= 0.0008, and p= 0.0016 respectively). There was no significant differences amongst MSC 

CM from MSC subpopulations on increasing the cell number (PA MSC CM vs CD271+ MSC CM 

p= 0.9762, PA MSC CM vs CD271- MSC CM p= 0.7108 and CD271+ MSC CM vs CD271- MSC 

CM p= 0.9037) (Figure 5.10). This data was obtained from three independent experiments, i.e., with 

MSC subpopulations from three different donors.
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Figure 5:9 The effects of the three MSCs sub-populations PA, CD271+, and CD271- CM on SH-

SY5Y cells neurite outgrowth and neuronal cell proliferation.  

Representative images are shown of SH-SY5Y neuronal cells following culture for 3 days in the 

presence of three MSCs sub-populations PA, CD271+, and CD271- CM or in control serum-free 

medium. As shown, there was clear evidence of increased neurite outgrowth (arrows) and cell 

numbers in PA CM, CD271+ CM and CD271- CM compared with control cultures. Scale bar = 

200µm.
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Figure 5:10 Quantitative analysis showing the effect of MSC CM of three MSC subpopulations 

on cell proliferation and neurite outgrowth from SH-SY5Y cells. 

  SH-SY5Y cells were treated with MSC CM of MSC subpopulations or serum-free medium as 

control when digitised phase contrast images were captured and analysed using the Cell IQ imaging 

platform and software. There was a significant increase in both neurite outgrowth and cell numbers 

from SH-SY5Y cells compared with the control medium. However, there was no significant 

difference amongst the three groups. Each bar represents the mean±SEM of three independent 

experiments, i.e., testing the MSC subpopulations from three different donors of three replicates per 

each experiment. **indicate p≤0.01 and ***indicate p≤0.001. One way- ANOVA with Tukey's 

multiple comparisons test used to determine the significant differences.
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5.3.2 Assessment of SH-SY5Y viable cell numbers using the MTT assay 

Cell growth and cell viability rate were determined by the using the colourimetric MTT assay. As 

described in Chapter 2 (Section 2.4.3.) and as the representative images shown in Figure 5.11, the 

SH-SY5Y cells were seeded in 96 well plates and treated with either PA MSC CM, CD271+ MSC 

CM, CD271- MSC CM or serum-free medium as a control for 3 days. The data showed that all three 

MSC CM of MSC subpopulations had a similar effect on SH-SY5Y cell growth and cell viability. 

There was no significant differences in their effect to promote cell growth and to increase the cell 

viability rate of SH-SY5Y cells during the period of incubation (PA MSC CM vs CD271+ MSC CM 

p= 0.6755, PA MSC CM vs CD271- MSC CM p= 0.2030, and CD271+ MSC CM vs CD271- MSC 

CM p= 0.2633). On the other hand, the data showed that the MSC CM of MSC subpopulations effect 

was significantly different when compared with control medium (p= 0.0007, p= 0.0009 and p= 

0.0049 respectively) (Figure 5.12). The data obtained from three independent experiments, i.e., 

testing the MSC CM of subpopulations from three different donors of five replicates per each 

experiment. 



  

171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:11 Cell growth and cell viability of SH-SY5Y cells.  

Representative images are shown of the relative increase in SH-SY5Y cell numbers when cultured 

for three days after their treatment with conditioned medium from the three MSC subpopulations 

versus control medium. Cell growth and cell viability were assessed by MTT assay. Scale bar = 

100µm. Original magnification X10. The images were collected from three independent experiments 

(i.e. three different donors).
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Figure 5:12 The MTT assay confirmed that culturing SH-SY5Y neuronal cells in MSC CM of 

MSC subpopulations versus control medium significantly increased the number of viable SH-

SY5Y cells present.  

MTT assays were performed to assess viable cell numbers of SH-SY5Y cells after treating with PA 

MSC CM, CD271+ MSC CM, and CD271- MSC CM versus serum-free medium as a control for three 

days. The conditioned medium from the three MSC subpopulations had the similar influence, and 

they were significantly stronger in promoting cell viability rate as compared with control medium. 

Each bar represents the mean±SEM from three independent experiments, i.e., testing the MSC CM 

of subpopulations from three different donors of five replicates per each experiment. **indicates 

p≤0.01 and ***indicate p≤0.001. A One-way- ANOVA with Tukey's multiple comparisons tests 

used to determine the significant differences. 
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5.4 The effects of MSC CM of MSC subpopulations on EA.hy926 endothelial cells 

5.4.1 MSC subpopulations promoted EA.hy926 endothelial cell migration and 

proliferation to different extents 

The angiogenic effects of the MSC CM of MSC subpopulations on EA.hy926 cells were examined 

by using a scratch assay. The representative images in Figure 5.13 show the confluent layers of 

EA.hy926 cells that were scratched using a yellow pipette tip, and after three repetitive washing steps 

with PBS, the medium was replaced with either PA MSC CM, CD271+ MSC CM, CD271- MSC CM 

or serum-free medium as a control. Then, the migration/ movement and proliferation of the EA.hy926 

cells to close the scratch wound were monitored and quantified using the Cell IQ Imaging Platform. 

The result showed both PA MSC CM and CD271- MSC CM had the same effect of promoting wound 

closure compared with CD271+ MSC CM which showed less effect in promoting wound closure. 

The results showed there was no significant difference between PA MSC CM and CD271- MSC CM 

(p= 0.9991). Whereas, both PA MSC CM and CD271- MSC CM showed significant differences 

when compared with CD271+ MSC CM (p= 0.0204, p= 0.0304 respectively). The PA MSC CM and 

CD271- MSC CM also showed significant differences in increasing wound closure rate when 

compared with control (p= 0.0001 and  p= 0.0001 respectively) while, CD271+ MSC CM showed no 

significant difference when compared with control ( p= 0.1221) (Figure 5.14). To determine whether 

the MSC CM of MSC subpopulations played a role in cell movement and migration to improve 

wound closure, cells from both sides of wound edges were tracked by using the Cell IQ analyser 

software. Three cells per each scratch wound from three replicate per each of three independent 

experiments were randomly selected. This meant a total of 27 cells for each condition (PA MSC CM, 

CD271+ MSC CM, CD271- MSC CM, and control medium) were tracked. Cells were tracked for 

their movement every 15 minutes and over two days, total distance starting from the day 0 to day 2 

was measured. The results showed both PA MSC CM and CD271- MSC CM similarly enhanced 

cells migration in wound area and there was no significant difference in their effect (p= 0.9991). 
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Whereas, both PA MSC CM and CD271- MSC CM showed significant differences in their effect 

when compared with CD271+ MSC CM (p= 0.0367, p= 0.0306 respectively).   

The data obtained in this study also showed that both PA MSC CM and CD271- MSC CM 

significantly increased the cell movements when compared with control (p= 0.0089, p= 0.0075 

respectively) while CD271+ MSC CM showed no significant difference when compared with control 

medium (p= 0.7231) (Figure 5.15). Further analysis has been done using Cell IQ analyser software 

to examine the rate of proliferation of EA.hy926 cells. For the purpose of quantification, cells were 

classified and quantified as dividing and non-dividing. Cells were counted every 15 minutes over 

two days. The results showed all MSC CM of MSC subpopulations similarly promoted cell 

proliferation. The results showed that there was no significant differences in their effect on the rate 

of dividing cells (PA MSC CM vs CD271+ MSC CM p= 0.4809, PA MSC CM vs CD271- MSC CM 

p= 0.4809 and CD271+ MSC CM vs CD271- MSC CM p= 0.9999). But, all MSC CM of MSC 

subpopulations showed significant differences when compared with control medium (p= 0.0001, p= 

0.0094, and p= 0.0094 respectively). However, for non-dividing cells, the results showed there was 

no significant differences between PA MSC CM and CD271- MSC CM (p= 0.9996) but, both PA 

MSC CM and CD271- MSC CM showed significant differences when compared with CD271+ MSC 

CM (p= 0.0228, p= 0.0304 respectively). Moreover, all MSC CM of the three MSC subpopulations 

were significantly higher when compared with control medium (all p= 0.0001) (Figure 5.16). The 

data was obtained from three independent experiments (i.e. three different donors) of three replicates 

per each experiment. The cell viability activities were further determined by using the MTT assay. 

The representative images are shown in Figure 5.17, displaying the EA.hy926 cells which were 

seeded in 96 well plates and treated with either PA MSC CM, CD271+ MSC CM, CD271- MSC CM 

or serum-free medium as a control for two days. The data showed that MSC CM of the three MSC 

subpopulations had the same effect on EA.hy926 cell growth and cell viability and there was no 

significant differences in their effect on promoting cell growth and to increase the cell viability rate 

of EA.hy926 cells during the period of incubation (PA MSC CM vs CD271+ MSC CM p= 0.9717, 

PA MSC CM vs CD271- MSC CM p= 0.9719 and CD271+ MSC CM vs CD271- MSC CM p= 
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0.9999). On the other hand, the data showed that the effect of MSC CM of the three MSC 

subpopulations was significantly different when compared with control medium (p= 0.0382, p= 

0.0211, and p= 0.0212 respectively) (Figure 5.12). The data obtained from three independent 

experiments (i.e. three different donors) of five replicates per each experiment.    
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Figure 5:13 The effect of the three MSCs sub-populations PA, CD271+, and CD271- CM on 

wound closure.  

Representative images of monolayer EA.hy926 cells in scratch assays which were treated with the 

three MSCs sub-populations PA, CD271+, and CD271- CM or control medium for two days. Scale 

bar =200µm. The images were collected from three independent experiments (i.e. three different 

donors).
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Figure 5:14 Effect of MSC CM of the three MSC subpopulations on EA.hy926 cells migration 

and proliferation in closing the scratch.  

The Cell IQ platform was used for live imaging. Images were generated over two days of incubation. 

PA MSC CM and CD271- MSC CM similarly increased wound closure percentage and that was 

significant when they compared with CD271+ MSC CM (blue star and yellow star *indicates p≤ 

0.05). The PA MSC CM and CD271- MSC CM showed significant differences when compared with 

control medium (blue stars and yellow stars ****indicates p≤ 0.0001). Whereas, CD271+ MSC CM 

showed no significant difference compared with control medium. Each bar represents the 

mean±SEM of three independent experiments, i.e., testing the MSC CM of subpopulations from three 

different donors of three replicates per each experiment. A Two-way- ANOVA with Tukey's multiple 

comparisons tests used to indicate the significant differences. 
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Figure 5:15 The MSC CM of the three MSC subpopulations significantly increased EA.hy926 

endothelial cell migration.  

Image analysis of the collected digitised images was used to measure the distance that EA.hy926 

endothelial cells migrated from the edge of the scratch towards the centre of the wound over a period 

of two days in the presence of PA MSC CM, CD271+MSC CM, CD271- MSC CM or serum-free 

control medium. As shown, there was a significant increase in distance travelled in PA MSC CM 

and CD271- MSC CM versus CD271+ MSC CM and control medium during this time. Each bar 

represents the mean±SEM of three independent experiments of three randomly selected cells of each 

three replicates per of each experiment. *indicates p≤0.05 and **indicate p≤0.01. A One-way- 

ANOVA with Tukey's multiple comparisons test used to indicate the significant differences. 
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Figure 5:16 The effect of the three MSCs sub-populations PA, CD271+, and CD271- CM on 

EA.hy926 cells proliferation. 

 This analysis was performed to track the number of dividing and non-dividing cells present in the 

wound area. The data on number of dividing cells showed no significant difference amongst the three 

MSCs populations whereas there was a significant difference when compared with control medium 

( top panel: blue stars ****indicates p≤ 0.0001, red stars and yellow stars** p≤  0.01). The data on 

non-dividing cells showed that PA CM and CD271- CM were significantly higher compared with 

CD271+ CM (bottom panel: blue and yellow star *indicates p≤ 0.05).However, the 3 MSCs 

populations were significantly higher compared with control medium (bottom panel: blue, red, and 

yellow stars ****indicates p≤ 0.0001). Each bar represents the mean±SEM from three independent 

experiments, i.e., testing the MSC CM of subpopulations from three different donors of three 

replicates per each experiment. Two-way- ANOVA with Tukey's multiple comparisons test used to 

indicate the significant differences.
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Figure 5:17 The MSC CM of the three MSC subpopulations promoted EA.hy926 endothelial 

cell proliferation in 96 well plates. 

  Representative images are shown of EA.hy926 cells cultured in PA MSC CM, CD271+ MSC CM, 

and CD271- MSC CM or serum-free control medium. As shown, there was an apparent increase in 

the number of EA.hy926 cells present in PA, CD271+, and CD271- CM versus control medium at 2 

days of culture. Scale bars = 100µm. Original magnification X10. The images were collected from 

three independent experiments (i.e. three different donors).
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Figure 5:18 The MTT assay confirmed that culturing EA.hy926 endothelial cells in PA MSC 

CM, CD271+ MSC CM, and CD271- MSC CM versus control medium significantly increased 

the number of viable EA.hy926 cells present.  

MTT assays were performed to assess viable cell numbers. The results showed a significant increase 

in the number of viable EA.hy926 cells in PA MSC CM, CD271+ MSC CM, and CD271- MSC CM 

versus control medium at two days. Each bar represents the mean±SEM of three independent 

experiments, i.e., testing the MSC CM of subpopulations from three different donors of five 

replicates per each experiment. *indicates p≤0.05. A One-way- ANOVA with Tukey's multiple 

comparisons test used to indicate the significant differences. 
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5.4.2 The effect of MSC CM of the three MSC subpopulations to induced 

morphogenesis of EA.hy926 cells in vitro 

The paracrine activity of the three MSC subpopulations to induce tube formation from EA.hy926 

cells was examined. The assessment of the regenerative capacity of the MSC CM of MSC 

subpopulations was performed by establishing an in vitro assay for tube formation using reduced 

growth factors Matrigel. The representative images in Figure 5.19 show the EA.hy926 cells cultured 

on three-dimensional Matrigel and treated with either PA MSC CM, CD271+ MSC CM, CD271- 

MSC CM or serum-free medium as a control for one day. Plates were set in the Cell IQ live imaging 

platform to generate images for the purpose of measurements. The PA MSC CM showed a higher 

ability to induce the formation of tube-like capillaries from EA.hy926 cells as compared with CD271+ 

MSC CM and CD271- MSC CM. The CD271- MSC CM showed stronger ability to induce the 

formation of tubule-like capillaries from EA.hy926 cells when compared with CD271+ MSC CM. 

The results showed that CD271+ MSC CM had the poor effect of inducing the formation of tube-like 

capillaries from EA.hy926 cells. The data was generated by measuring total tubule length and branch 

point count using Cell IQ analyser software as described previously in Chapter 2 (Section 2.5.4). The 

data showed there were significant differences in PA MSC CM effect compared with CD271+ MSC 

CM (for total tube length p= 0.0001, for total branch point count p= 0.0001). Also, the data showed 

significant differences between PA MSC CM and CD271- MSC CM in total tubule length (p= 

0.03209) and in total branch count (p= 0.0001). In addition CD271- MSC CM promoted the tube 

formation as compared to CD271+ MSC CM significantly (for total tube length p= 0.0032, and for 

total branch point count p= 0.0.0365). Moreover, both PA MSC CM and CD271- MSC CM showed 

significant differences when compared with control medium for total tube length (p= 0.0001, p= 

0.0016 respectively) and for branch point count (p= 0.0001, p= 0.0275 respectively). 
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While, CD271+ MSC CM showed no significant difference when compared with control medium for 

both total tube length and branch point count (p= 0.9355, p= 0.9795 respectively) (Figure 5.20). The 

data was obtained from three independent experiments (i.e. three different donors) of five replicates 

per each experiment.  

The amount of VEGF in the MSC CM of the MSC subpopulations was detected by using ELISA. 

The results showed that there were no significant differences amongst the three MSC CM of MSC 

subpopulations regarding containing VEGF in their conditioned medium. The amount of VEGF was 

estimated at a concentration of 307.935 pg/ml for PA MSC CM, 381.018 pg/ml for CD271+ MSC 

CM, and 362.737 pg/ml for CD271- MSC CM (Figure 5.21). This data was obtained from two 

independent experiments (i.e. two different MSC donors). 
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Figure 5:19 The effects of the MSC CM of MSC subpopulations on EA.hy926 endothelial cells 

cultured on Matrigel. 

 Representative images are shown of EA.hy926 endothelial cells cultured on Matrigel in the presence 

of MSC CM of MSC subpopulations or serum-free control medium. These images were subsequently 

analysed using the Cell IQ imaging software to determine the length (indicated by green lines) and 

the number of branch points (indicated by blue and red dots) seen in endothelial tubule-like 

structures. Scale bars = 200µm. The images were collected from three independent experiments (i.e. 

three different MSC donors). 

PA MSC CM CD271+ MSC CM 

CD271- MSC CM Control 
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Figure 5:20 The MSC CM of the three MSC subpopulations significantly increased EA.hy926 

endothelial tubule formation.  

Image analysis of the collected digitised images (see Figure 5.19) was used to measure both the total 

length of tubules formed (per image) and the number of endothelial tubule branch points (per image). 

As shown, PA MSC CM significantly improved the total tubule length and total branch point 

compared with CD271+ MSC CM and CD271- MSC CM. Also, CD271- MSC CM had a significant 

effect compared with CD271+ MSC CM. Each bar represents the mean±SEM of three independent 

experiments, i.e., testing the MSC CM of subpopulations from three different donors of five 

replicates per each experiment. *indicates p≤ 0.05, ** indicates p≤ 0.01, ***indicates p≤ 0.001, and 

****indicates p≤ 0.0001. A One-way- ANOVA with Tukey's multiple comparisons test used to 

determine the significant differences. 
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Figure 5:21 The detection of VEGF in the three MSC subpopulations conditioned medium 

using quantitative ELISA.  

The detection of VEGF in the two donors of MSC subpopulations conditioned medium was 

determined using a quantitative ELISA kit. Using the equation (R2 = 0.9991 as calculated by Excel)  

approximately (means±SD) 306±53 pg/ml of VEGF in PA MSC CM, 380±78 pg/ml of VEGF in 

CD271+ MSC CM and 359±33 pg/ml VEGF in CD271- MSC CM were detected. Each bar represents 

the means±SD of two independent experiments, i.e., testing the MSC CM of subpopulations from 

two different donors of two replicates per each experiment. ****indicates p≤ 0.0001. A One-way- 

ANOVA with Tukey's multiple comparisons test used to indicate the significant differences. 
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5.5 Discussion  

MSCs are a heterogeneous population with regenerative therapeutic activities, which have been 

ascribed to their secretion of paracrine factors (Jayaraman et al., 2013). However, different studies 

have stated that MSCs exhibited donor-donor and intra-population heterogeneity (Méndez-Ferrer et 

al., 2010, Morando et al., 2012). Some studies showed that a CD271 positive purified population of 

MSCs could exert different differentiation potentials related to bone and cartilage repair (Jones et al., 

2010, Cuthbert et al., 2015). Unfortunately, there is a lack of information on understanding the 

functional activities of MSCs at subpopulation levels for their paracrine activities in stimulating 

nerve growth and angiogenesis. 

Therefore, this comparative study was performed to examine the biological differences, if any, in the 

regenerative paracrine activities of PA, CD271+ and CD271- human adipose-derived MSC 

subpopulations on SH-SY5Y neuronal and EA.hy926 endothelial cell model systems.   

The three MSC subpopulations were first examined for their capacity to exert an MSC phenotype 

according to the ISCT criteria (Dominici et al., 2006).  The results showed that all three MSC 

subpopulations were plastic adherent when expanded with a stromal appearance. Furthermore, all 

three MSC subpopulations differentiated into adipocytes, osteoblasts and chondrocytes. There were 

no significant differences in their capacity to differentiate into adipocytes.  However, PA MSCs and 

CD271+ MSCs had a significantly greater level of ALP activity after osteogenic treatment than 

CD271- MSCs. The increased osteogenic capacity of CD271+ BM MSCs has previously been 

reported (Cuthbert et al., 2015), which supports the current observation of adipose-derived CD271+ 

MSCs, although it should be noted that in this previous study the CD271+ MSCs differentiated to 

form osteoblasts to a significantly greater extent even than PA BM MSCs.
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Furthermore, the three MSC subpopulations differentiated to a similar extent, as measured by GAG 

content, into chondrocytes after inducing the culture pellets with induction medium. Some studies 

suggested that CD271+ MSCs have more chondrogenic differentiation capacity compared with PA 

MSCs (Mifune et al., 2013). However, the tissue of origin might be the reason for such differences 

in chondrogenic potentiality as Mifune et al., 2013 used BM MSCs.  

Moreover, the three MSC subpopulations were examined for their ability to express specific cell 

surface markers. The flow cytometry results showed that the three MSC subpopulations shared very 

similar expression levels of standard MSCs markers such as CD44, CD73, CD90, and CD105, but 

lacked expression to haematopoietic cell surface markers such as CD34 and CD45 (Table 5.4). 

Hence, it can be concluded that all three subpopulations of MSCs met the ISCT criteria and can 

justifiably be termed MSCs. Although MSCs from different tissue sources share similar 

morphological appearance and differentiation capacities, their immunophenotype may show 

differences in their expression of CD markers. For example, several studies have suggested that AT 

MSCs have the ability to express CD34 when tissue culture expanded at early passages (Strioga et 

al., 2012, Ammar et al., 2015).This may explain the results of CD profiling for AT MSCs 126 donor 

used in this study as they showed some positivity for CD34.  

This study also examined the expression of CD271 by CD271+ positively selected cells as well as 

the PA MSCs and CD271- cells after cultivation. The flow cytometry data obtained by this study 

showed that all MSC subpopulations were immunonegative for CD271 at passage II. Hence it can 

be concluded that the CD271+ MSCs lost CD271 at early stages of culture expansion. Similarly, 

Churchman et al., 2012 showed that CD271+ BM MSCS also lost the expression of CD271 as they 

were culture expanded (Churchman et al., 2012). Thus, it seems that CD271 is lost from adipose 

MSCs as well as BM MSCs during cell culture expansion. The reasons for the loss of CD271 

expression are currently unknown, although other researchers have suggested that the prevalence of 

CD271+ MSCs in vivo may relate to microenvironmental and physiological factors (Cattoretti et al., 

1993, Churchman et al., 2012). Whilst it would have been advantageous to confirm that the MACS 
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technique has successfully isolated CD271+ cells, it was not possible to test CD271 positivity in the 

freshly isolated cell population due to limitations in cell numbers available after purification. 

However, other studies have demonstrated that the proportion of CD271+ cells yielded after 

purification from BM or adipose tissue was ~ 0.5% of all mononucleated cells present (Jones et al., 

2006, Alvarez-Viejo et al., 2013). 

Various studies have reported that the secretomes of MSCs exert a beneficial impact on damaged 

tissue and have ascribed this effect to a wide range of different bioactive secreted molecules including 

growth factors, cytokines, chemokines and EVs (Lee et al., 2014, Lopatina et al., 2014, Wright et al., 

2014, Kalinina et al., 2015). However, these previous studies have examined the secretomes from 

heterogeneous MSC populations. As alluded to earlier, this study has examined for the first time the 

neurotrophic and angiogenic activities of MSC subpopulations according to their isolation, which 

was based on PA and CD271 immunopositivity. By using in vitro assays with SH-SY5Y cells, it has 

been shown that the MSC CM of all MSC subpopulations significantly stimulated SH-SY5Y neurite 

outgrowth and neuronal cell survival and proliferation.   There were no significant differences 

amongst the three MSC subpopulations in this neurotrophic effect. This finding of enhanced SH-

SY5Y neurite outgrowth was based on the morphological appearance of the cells, and a further 

experimental confirmation to validate the effects of MSC CM in promoting neuronal differentiation, 

e.g., through increased Beta-III tubulin immunopositivity would be beneficial. Nonetheless, the data 

shown in this chapter further supports the hypothesis that MSCs are neurotrophic through their 

secretion of neurotrophic factors and suggests that MSC subpopulations have a similar capacity in 

this regard. Further studies to identify the presence and levels of different known neurotrophic factors 

in the MSC CM, and confirmation of their activity, e.g. through the use of blocking antibodies or 

through gene knockdown strategies, in promoting SH-SY5Y neuronal differentiation and growth are 

also warranted and would help explain potential mechanisms of action. 

Interestingly, the investigations of angiogenic activity amongst these three MSC subpopulations 

conditioned medium have shown very clear variances in their biological effect on endothelial cells. 
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In EA.hy926 endothelial cell scratch wound assays, the results showed that both the PA MSC CM 

and the CD271- MSC CM significantly increasing scratch wound closure rates compared with the 

CD271+ MSC CM and control medium. 

This variance in effects amongst the MSC CM of the MSC subpopulations was examined further by 

tracking cell movements and counting dividing and non-dividing cells in the scratch wound area. The 

conditioned medium from CD271+ MSCs showed a lower biological effect on increasing cell 

movement towards the centre of the scratch wound area compared with PA MSC CM and CD271- 

MSC CM.   This finding may further interpret through the findings of dividing and non-dividing 

cells. Whereas the CD271+ MSC CM had a similar effect on the number of dividing cells, but their 

effect on non-dividing cells was less when compared with the effects of PA MSC CM and CD271+ 

MSC CM. The explanation for such difference could attributed to the fact that the cells might be 

under the influence of other factors that might restrict or inhibited their movement or directed them 

into random directions rather than towards the other side of scratch (i.e. the centre of scratch wound 

area) or could be as a result of the lack of other factors affecting cell movement. Therefore, further 

studies to identify the presence and levels of different known cytokines and growth factors that play 

a role in the mediation of cell migration is required (Chen et al., 2008).   

Furthermore, the results of the tube formation assay using Matrigel reduced growth factors confirmed 

the angiogenic effect of the MSC subpopulation conditioned medium. Whereas the CD271+ MSC 

CM again showed poor enhancement on the formation of tube-like capillaries from EA.hy926 cells, 

meanwhile, PA MSC CM and CD271- MSC CM revealed a stronger effect. In this assay, it is obvious 

that PA MSC CM and CD271- MSC CM showed a different biological effect when compared with 

their effect in the scratch wound assay. Herein the PA MSC CM significantly promoted the tube 

formation compared with CD271- MSC CM, whereas in the scratch wound assay there were no 

significant differences in their effect on EA.hy926 cell proliferation and migration and wound closure 

rate. The explanation of such differences in the biological activities might be related to the fact that 

although the CD271+ population has a poor angiogenic effect but, their presence in the heterogeneous 
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population has a role to direct or regulate the other population to exert their biological effect.  Hence 

these findings support the hypothesis raised in this study where the isolation of a more homogenous 

population could exert differences in their biological effects. Such findings highlight the benefit of 

isolating certain MSCs subsets to treat an injury where specific biological activity is required. This 

finding also further support the findings of  Mifune et al., 2013 findings as they suggested that 

CD271+ MSCs showed better hyaline cartilage repair in vivo, where the lack of neovascularization 

promotion is required. 

Nonetheless, the detection of VEGF in the conditioned medium of the three MSC subpopulations 

using an enzyme-linked immunosorbent assay showed the three MSC subpopulations secreted VEGF 

to a similar extent. This finding may suggest that although VEGF plays the main role in the 

neovascularization process, other factors are required to achieve a fully functional vascularization 

(or lack of inhibitors).  

In conclusion, this study has demonstrated for the first time that the purified MSCs derived from 

adipose tissue culture could exert a different biological effect. The MSCs subpopulations showed 

MSC phenotypes which have been established by the ISCT. The MSC CM of the three MSC 

subpopulations exerted a neurogenic effect to a similar extent, whereas, their angiogenic paracrine 

effect has shown remarkable differences among the three subpopulations. The CD271+ MSC CM had 

a poor effect on enhancing neovascularization by the EA.hy926 cells. The demonstration of poor 

neovascularisation enhancement by CD271+ MSC CM might explain their suitability to repair 

cartilage as the hyaline cartilage is an avascular tissue (Mifune et al., 2013). Finally, the data obtained 

by this study may suggest that the isolation and purification of a certain subpopulation of MSCs 

previously identified in vivo could result in isolation of a subpopulation that has the capacity of 

exerting more tailored biological activities. Also, the consequence of such purification will allow an 

increase in the efficiency of clinical applications of MSCs to treat and repair specific kind of injured 

tissues. 
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Since the emergence of MSCs in the field of regenerative medicine as a cell-based treatment, 

numerous investigations have been done on their therapeutic capacity to treat a broad range of 

diseases. Such interest can be attributed to their characteristic features including; fewer ethical issues 

than those surrounding ESCs as their extraction does not require destruction of an embryo, relative 

ease of access from patient sources, lack of immune rejection if applied autologously, and lack risk 

of tumour formation (Bongso and Richards, 2004, Larijani et al., 2012). In recent years, MSCs 

derived from adipose tissue have received more attention than those derived from bone marrow in 

terms of regenerative applications for repairing injured and damaged tissues. Such attention can be 

ascribed to the fact that adipose tissue is a more abundant tissue, again ease of access, and the 

harvesting of adipose tissue has a low morbidity rate when compared with the harvesting of bone 

marrow. Also, the number of the cells released from adipose tissue is higher compared to bone 

marrow (Padoin et al., 2008). It also has recently become more accepted that the MSCs exert their 

potential therapeutic activities through their secretomes (Teixeira et al., 2013). The trophic activities 

of secretomes of MSCs have been addressed in different aspects of regenerative medicine including 

SCI. It is well known that the recovery after SCI is elusive. Many experimental studies in animals 

showed encouraging results of recovery and regaining some functions after transplantation of MSCs 

in the injured spinal cord (Lim et al., 2007, Park et al., 2012b, Li and Lepski, 2013, Dasari et al., 

2014). It is worth mentioning that in the absence of an animal model fully reflecting the SCI in 

human, it can be a challenging step to bridge the gap between experimental studies evaluating the 

effects of MSCs in rodent models through the translation research that leads clinical trials in human. 

Therefore, the research described in this study was aimed to evaluate and improve several strategies 

for application of secretomes of MSCs as a treatment for SCI. These strategies were:       

 Examining the secretomesʼ activities of MSCs derived from canine adipose tissue using 

established assays for neurotrophic and angiogenic.  
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 Comparing the neurotrophic and angiogenic activity of canine and human MSCs in a step-

by-step approach to help validate dogs as a clinically relevant large animal model for SCI 

treatments. 

 Examining the regenerative paracrine activities of subset populations of human MSCs to 

increase the likelihood and efficiency of MSC-based clinical applications to treat and repair 

SCI, where avoiding cell heterogeneity is potentially advantageous. 

The MSCs used in this study were derived from canine and human adipose tissue. The investigation 

of canine MSCs in this study was for the following reasons. First, such investigation can bring benefit 

to both human and veterinary regenerative medicine as a means of treating dogs with SCI. This in 

itself is a potential clinical application. Second, dogs represent a better large animal model for human 

treatment than rodents as dogs share some similarities with humans in terms of wound causation, 

pathophysiology and disease presentation and scale (Starkey et al., 2005, Khanna et al., 2006, 

McMahill et al., 2015). Third, if canine MSCs are shown to have a therapeutic effect in dogs with 

SCI, then understanding and comparing their activity with human MSCs may help inform how best 

to apply the human MSCs in the clinical setting. 

The therapeutic potential of MSCs has been widely investigated for various diseases including 

mainly tissue injury and immune disorders (Patel et al., 2013).  Dogs are valuable animal models 

since most of the disease is naturally occurring similar to humans. The transplantation and 

regenerative activities of canine MSCs have been studied in many clinical trials for a naturally 

occurring disease like keratoconjunctivitis Sicca (Villatoro et al., 2015), and SCI (Penha et al., 

2014). Interestingly the research on cMSCs is based on investigations of the potential therapeutic 

effect of the cells only; there is a lack of information about the secretomes’ action of canine 

MSCs. Thus, the study data presented in chapter 3 of results has described for the first time the 

potential therapeutic activities of canine MSCs secretomes for in stimulating neurogenesis and 

angiogenesis, which supports their application as a treatment for SCI in the dog.  
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The canine MSCs were initially examined for their capacity to display MSCs phenotype, according 

to the minimal criteria proposed by the ISCT to define MSCs. These criteria are: i) adherence to 

plastic, ii) specific cell surface antigen expression, for example immunopositivity for CD73, CD90 

and CD105, immunonegativity for CD34, CD45, CD11b, CD14, CD19, CD79a and HLA-DR., iii) 

multipotent differentiation potential into the three mesenchymal lineage cell types of adipocytes, 

osteoblasts and chondrocytes, at least in vitro (Dominici et al., 2006), where the cMSCs have 

matched these criteria. Largely, the canine MSCs have matched these criteria, although there was 

some difference from human MSC phenotypes in that a proportion of canine MSCs were CD34 

immunopositive. This demonstrated that the cells that were isolated and culture expanded from the 

inguinal fat pads of a number of dogs could be classified as MSCs. 

 Recent studies suggested that the mechanism of MSCs therapeutic effects might not work through 

differentiation of transplanted MSCs at the site of injury. In fact, MSCs exert their therapeutic effect 

through their secretomes that have a varied array of proteins including growth factors, cytokines, 

chemokines, metabolites and bioactive lipids (Kupcova Skalnikova, 2013). These secretory 

molecules have a role in tissue repair and regeneration after injury (Pluchino and Cossetti, 2013). In 

experimental studies, MSC CM have demonstrated the activities that required for tissue repair 

(Walter et al., 2010, Isakson et al., 2015). Therefore, MSCs represent one of the most promising cells 

for cell-based therapy application in human and veterinary regenerative medicine (DiMarino et al., 

2013).  

The rational basis of the study presented in Chapter 3 was first to characterise the MSC phenotype, 

as discussed, then to determine the effects of cMSC CM on neurite outgrowth and neuronal cell 

growth and survival, using the SH-SY5Y neuroblastoma cell line, and, on endothelial cell migration, 

proliferation and tubule formation using the EA.hy926 endothelial cell line.  The findings suggested 

that cMSC CM exerted neurogenic and angiogenic effects.   

These findings support the hypothesis raised by this study of considering the trophic activity of cMSC 

CM as potential therapies for SCI. The findings could shed light on the benefits of secretomes of 
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cultured cMSCs as an alternative for cell therapy with a view toward a trial in SCI repair in veterinary 

regenerative medicine since the regain of neuronal survival, axonal growth and revascularisation play 

the main role in repair processes for the injured spinal cord (Quertainmont et al., 2012). However, 

mechanisms of action of cMSCs are still poorly identified and have not been fully addressed in this 

study. Therefore, further investigation is required on the identification of the conditioned medium 

composition. 

The preliminary data (in Appendix Figure 7.1) showed for the first time the isolation of exosomes 

from cMSC CM. Both concentration and diameter of these exosomes were measured using the qNano 

machine.  This preliminary data suggested the requirement for future work including the examining 

of the functionality of these isolated exosomes, as human exosomes have shown a potential effect on 

angiogenesis and neurogenesis (Zhang et al., 2015, Kim et al., 2016). 

In human regenerative medicine, there is an urgent need for a large animal model mirroring the 

phenotype of the target disease and bridging the gap between translation research and human clinical 

trials (Harding et al., 2013). As mentioned earlier in this chapter, dogs are considered as a good 

model to represent SCI in human, for the reasons described above and in Chapter One (Section 1.5).  

These are briefly, long life span, large body mass and naturally occurring diseases. SCI lesions are 

very similar to humans as both SCI occur due to traumatic injuries because of car accidents or non-

traumatic injuries due to IVDD (McMahill et al., 2015). The findings in chapter four of results 

support the proposal of considering dogs with SCI as a model for human SCI. To summarise these 

findings of work, it was clearly demonstrated that both human and canine MSCs underwent tri-

lineage differentiation into adipocytes, osteoblasts and chondrocytes. Although cMSCs showed poor 

adipogenic differentiation, this could be ascribed to the composition of the induction medium 

composition which was more suitable to human MSCs rather than cMSCs. The reason behind the 

chosen human induction medium to induce adipogenesis in cMSCs was to avoid variations of 

experimental conditions. In future using induction medium specific or suitable for cMSCs is 

recommended. Also, both human and canine MSCs have shown a lack of expression of 
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haematopoietic CD markers such as CD34 and CD45, but they showed positive expression to most 

of MSCs’ CD markers such as CD44 and CD90 to a similar extent. Hence, this suggested that cMSCs 

have the capacity to exert an MSC phenotype to a similar extent to hMSCs in culture expanded. 

The comparative examination of MSC CM from both human and canine showed interesting findings 

for their neurogenic and angiogenic paracrine activities as SH-SY5Y cells, and EA.hy926 cells were 

used as a model system to test these two activities respectively. Both morphological analysis using 

Cell IQ analysis software and immunohistochemistry for B-III tubulin staining showed both human 

and canine MSC CM had a neurotrophic effect on neurite outgrowth and neuronal survival from the 

SH-SY5Y cells line to a similar extent.  

Similarly, the examining of angiogenic effects of both human and canine MSC CM in scratch wound 

assay and tube formation assay suggested that human and canine MSC CM exerted their angiogenic 

effect to a similar extent. Due to this similarity in paracrine effects from both human and canine MSC 

CM, a comparison of the protein sequences was performed. The amino acid sequences for NGF and 

VEGF were sought since NGF plays a key role in neurogenesis and VEGF is the key role for 

angiogenesis. This comparison was done to examine the extent of similarity between human and 

canine in terms of protein sequences of these growth factors. Figure 6.1 and 6.2 shows that these two 

human and canine growth factors are homologous. Alignment of human and canine NGF and VEGF 

amino acid sequences revealed a high degree of sequence homology. Interestingly, the detection of 

VEGF in conditioned medium from both human and canine MSCs using a human ELISA kit has 

shown that although the ELISA kit was specific for quantitative determination of VEGF in human 

samples, it has detected VEGF in the canine sample as well. VEGF in cMSC CM was detected at a 

concentration 229.58 pg/ml, and VEGF in human MSC CM was detected at concentration 378.39 

pg/ml (measuring VEGF is a first step toward characterising the secretomes).  

Although the findings in this study could encourage the idea of adopting a dog as a model in 

translation research for cell-based therapy (i.e. treatment using MSCs), however, clearly there is a 

need for an in vivo study to confirm the potential effect of cMSC CM. Also, both cell models, i.e., 
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SH-SY5Y cell and EA.hy926 cells used in this comparative study are of human origin and derived 

from tumours. Thus, responses of these cells to cross-species growth factors may differ from their 

response to primary neuronal and endothelial cells of the same species. Therefore, these findings 

may highlight the importance of establishing neuronal and endothelial cells originating from canine 

as a model system for such investigation. Also and as stated earlier in this section, further 

investigation on the mechanisms of action of cMSC CM is required and also a further proteomic 

profile for cMSC CM is recommended. As described in the introduction (section 1.4) human MSC 

CM is known be composed of various growth factors, cytokines, and ECM (Walter et al., 2010, 

Kupcova Skalnikova, 2013). It is likely that cMSC CM contains similar factors. 

Also, despite these advantages of using cell lines in research they also have their disadvantages, 

represented by the fact that cell lines after continuous passaging over a period of time can show 

genotypic and phenotypic variations. Therefore, researchers should be careful about only relying on 

data generated with cell lines. Hence, the primary cells are believed to be more biologically relevant 

tools than cell lines for studying human and animal biology. Although, primary cells have a limited 

lifespan, they resemble tissue characteristics and their mutation capacity is low compared with cell 

lines that have an infinite life span and that lose tissue characteristics and their mutation capacity is 

high (Hughes et al., 2007).  

Interestingly, primary cells have also been used in the investigation of the potential effect of 

conditioned medium of MSCs. Wright et al 2007 and 2014 tested the MSCs secretomes effect on 

neurite outgrowth using dorsal root ganglia and spinal cord model. Based on their studies they 

suggested that MSCs have impact effect on promoting neurite outgrowth despite the presence of 

inhibitory factors (Wright et al., 2007, Wright et al., 2014). 
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Score Expect Method Identities Positives Gaps 

422 bits(1085) 2e-151 Compositional matrix adjust. 219/241(91%) 223/241(92%) 0/241(0%) 

Canine  1    MSMLFYTLITALLIGIRAEPHPESHVPAGHAIPHAHWTKLQHSLDTALRRARSAPAGAIA  60 

             MSMLFYTLITA LIGI+AEPH ES+VPAGH IP AHWTKLQHSLDTALRRARSAPA AIA 

Human   1    MSMLFYTLITAFLIGIQAEPHSESNVPAGHTIPQAHWTKLQHSLDTALRRARSAPAAAIA  60 

 

Canine  61   ARVTGQTRNITVDPKLFKKRRLRSPRVLFSTHPPPVAADAQDLDLEAGSTASVNRTHRSK  120 

             ARV GQTRNITVDP+LFKKRRLRSPRVLFST PP  AAD QDLD E G  A  NRTHRSK 

Human   61   ARVAGQTRNITVDPRLFKKRRLRSPRVLFSTQPPREAADTQDLDFEVGGAAPFNRTHRSK  120 

 

Canine  121  RSSSHPVFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCR  180 

             RSSSHP+FHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCR 

Human   121  RSSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCR  180 

 

Canine  181  DPTPVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAGRR  240 

             DP PVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKA RR 

Human   181  DPNPVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRR  240 

 

Canine  241  A  241 

             A 

Human   241  A  241 

 

Figure 6:1 Alignment of NGF amino acid sequences of canine (NCBI Reference Sequence: 

NP_001181879.1) and human (NCBI Reference Sequence: NP_002497.2).  

Differences are marked in the human sequence by highlighting the residues in yellow. 
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Score Expect Method Identities Positives Gaps 

377 bits(969) 8e-132 Compositional matrix adjust. 205/215(95%) 207/215(96%) 1/215(0%) 

Canine  1   MNFLLSWVHWSLALLLYLHHAKWSQAAPMA-GGEHKPHEVVKFMDVYQRSYCRPIETLVD  59 

            MNFLLSWVHWSLALLLYLHHAKWSQAAPMA GG    HEVVKFMDVYQRSYC PIETLVD 

Human   181 MNFLLSWVHWSLALLLYLHHAKWSQAAPMAEGGGQNHHEVVKFMDVYQRSYCHPIETLVD  240 

 

Canine  60   IFQEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEEFNITMQIMRIKPHQGQHIGEM  119 

             IFQEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEE NITMQIMRIKPHQGQHIGEM 

Human   241  IFQEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEM  300 

 

Canine  120  SFLQHSKCECRPKKDRARQEKKSIRGKGKGQKRKRKKSRYKPWSVPCGPCSERRKHLFVQ  179 

             SFLQH+KCECRPKKDRARQEKKS+RGKGKGQKRKRKKSRYK WSVPCGPCSERRKHLFVQ 

Human   301  SFLQHNKCECRPKKDRARQEKKSVRGKGKGQKRKRKKSRYKSWSVPCGPCSERRKHLFVQ  360 

 

Canine  180  DPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR  214 

             DPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR 

Human   361  DPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR  395 

 

Figure 6:2 Alignment of VEGF amino acid sequences of canine (NCBI Reference Sequence: 

NP_001003175.2) and human (NCBI Reference Sequence: NP_001165095.1).  

Differences are marked in the human sequence by highlighting the residues in yellow.
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It is worth mentioning that MSCs reveal differences in their biological properties based on their tissue 

of source (Elahi et al., 2016). In fact, recently, there is a clear interest in using AT MSCs in different 

aspects of research in regenerative medicine over the BM MSCs. This can be as a result of the fact 

that AT MSCs possess several features that make AT MSCs preferable, these include; ease of access 

and the harvesting of adipose tissue has a low morbidity rate when compared with the harvesting of 

bone marrow (Padoin et al., 2008). Also, for their high quantity of MSCs released from adipose tissue 

compared with yields from bone marrow. Besides, AT MSCs are characterised by their high 

proliferation capacity and secreted proteins (basic fibroblast growth factor, interferon-γ, and Insulin-

like growth factor-1), and immunomodulatory effects (Li et al., 2015). However, AT MSCs are a 

highly heterogeneous population. SVF released from collagenase processed adipose tissue is 

composed of different stem cells subpopulations and fully differentiated cells (differentiated 

endothelial cells, smooth muscle cells and pericytes) (Ho et al., 2008). 

Since CD271 has emerged as a CD marker for isolation of subpopulations within MSCs, many 

studies; have focused on their differentiation capacity regardless of their secretomesʼ activities 

(Quirici et al., 2002). Hence, in Chapter Five of results, and as a continuation in the loop of the 

translational pathway to human clinical trials, the study aimed to highlight the CD271+ MSC CM 

neurogenic and angiogenic activities compared with the whole population of MSCs, i.e., PA MSC 

CM and CD271- MSC CM. The development of homogenous MSC population of known paracrine 

activity would allow an increase in the efficiency of clinical applications of MSCs to treat and repair 

injuries including SCI.  

The MSC subpopulations were first examined to determine if they match the ISCT criteria. The three 

MSC populations had an equivalent capacity to differentiate into adipocytes and chondrocytes. 

Whereas they showed variances in their capacity to differentiate into osteoblasts as the PA MSCs 

and CD271+ MSCs exerted a high level of ALP. This observation was supported by other researchers 

(Cuthbert et al., 2015) although in their study the CD271+ MSCs had greater osteogenic activity even 

when compared to PA MSCs.
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This study has examined the ALP expression from 2 MSC donors following their osteogenic 

induction, therefore, increasing the number of repeat experiment is recommended. As the limited 

number of MSC donors (i.e., 2 MSC donors) used in this experiment could be the reason for 

unmarked differences of osteogenic differentiation between CD271+ MSCs and PA MSCs. 

Moreover, the three MSC subpopulations shared very similar expression levels of standard MSC 

markers such as CD44, CD73, CD90, and CD105, but lacked expression of haematopoietic cell 

surface markers such as CD34 and CD45. Hence, from all above it is possible to conclude that all 

MSC subpopulations exerted the MSCs phenotype.  

Interestingly, CD271+ selected MSCs lost their capacity to express the CD271 cell surface marker 

at an early passage, i.e., passage II. Similarly, Churchman et al., 2012 in their study showed that 

the BM MSCs CD271+ also lost the expression of CD271 as the culture expanded. They assumed 

this may relate to the physiologic requirements for bone remodelling, and hence the production 

of osteoblasts, may stimulate CD271 cells in vivo. Growing as monolayers in culture and in vitro 

environment conditions could also be the reason behind such loss rather than functional 

differences between cells (Tormin et al., 2011). Hence, these findings could suggest that the 

culture expanded MSCs lost the expression of CD271 in even earlier passages.  Although the 

mechanism underlying the loss of expression of CD271 is still unknown, but researchers have 

suggested that the presence of CD271+ MSCs in vivo may relate to microenvironmental and 

physiological factors  (Cattoretti et al., 1993, Churchman et al., 2012). 

As stated earlier the aim of this study was to develop a strategy based on the generation of a 

homogenous MSC population of known paracrine activity which could be advantageous in the 

application of these cells as therapy for SCI. The three MSC subpopulationsʼ conditioned medium 

showed neurogenic effects on SH-SY5Y neuroblastoma cells to a similar extent. However, this 

finding of enhanced SH-SY5Y neurite outgrowth was based on the morphological appearance of the 

cells, therefore, further experimental confirmation to validate the effects of MSC CM in promoting 

neuronal differentiation, e.g., through increased Beta-III tubulin immunopositivity would be 
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beneficial to emphasise the SH-SY5Y cells differentiation. Whereas, the finding of angiogenic 

activity amongst MSC subpopulations conditioned medium showed an interesting observation.  

In the scratch wound assay and tube formation assay, the CD271+ MSC CM showed less angiogenic 

activity. In the EA.hy926 endothelial scratch wound assay, Cell IQ results showed that CD271+ MSC 

CM had a low angiogenic effect compared with PA MSC CM and CD271- MSC CM. This finding 

was a further corroborated by the tube formation assay as the CD271+ MSC CM showed the poor 

angiogenic effect on enhancing formation of tube-like capillaries from EA.hy926 cells in Matrigel 

reduced growth factor assay when compared with PA MSC CM and CD271- MSC CM. Hence, this 

finding may support the hypothesis raised in this study as the homogenous population of MSCs 

exerted different biological effects compared to the heterogeneous population.  

The data in this study indicated that the isolation strategy based on CD271 expression resulted in a 

cell population which has a low paracrine activity of angiogenic activity, although VEGF (which 

plays the main role in angiogenesis) was secreted by these subpopulations at a similar concentration. 

These findings encourage that further understanding of the mechanisms of action of MSC CM could 

be obtained through screening for the presence of other endogenous regulators that are involved in 

the process of angiogenesis. 

 This finding has answered the question raised in this study as to whether the subset of MSCs 

population exhibit a different pattern of action. This supports the idea of selecting specific 

homogenous populations to repair a specific kind of injury. MSCs CD271+ might not be 

recommended for SCI repair, but it could be useful for repairing tissue where the requirement for 

new blood vessels are not necessary such as repairing articular cartilage, as this subpopulation in 

other studies showed a high capacity for chondrogenesis capacity (Mifune et al., 2013). In addition 

to the isolation of subpopulations using CD271 CD marker, on different occasions, many researchers 

have used different CD markers to investigate their biological activities. For example, isolation of 

MSCs subpopulation based on their expression of CD 105. In fact, CD105 is a receptor that plays an 

important role in development and remodelling of blood vessels (Duff et al., 2003).  
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Many studies claimed that CD105 MSCs have more myogenic potentiality. Both in vitro and in vivo 

studies suggested that CD105 MSCs differentiation into myoblast-like cells after myogenic induction 

and differentiation into muscle cells after their transplantation into damaged skeletal muscles in rats 

(Conconi et al., 2006, Ranganath et al., 2012). Another example for CD marker used to sort specific 

subset population of MSCs is CD146. The studies suggested that the localization of this 

subpopulation of MSCs is perivascular (Crisan et al., 2008). 

Conclusion  

In conclusion, from all of the results described above, there are three key findings presented in this 

thesis. In Chapter 3 of results, the study has demonstrated for the first time that the secretomes of 

cMSCs exert neurogenic and angiogenic effects in an in vitro assays. These results highlight the 

desirability of using cMSCs secretomes in further studies of wound healing in dogs, e.g. following 

SCI. These encouraging findings suggested considering dogs with SCI as a model for SCI in human, 

the results in chapter four showed for the first time the similarity in neurogenic and angiogenic 

activities in human and canine MSCs secretomes. Finally, the findings in chapter five of this study 

have demonstrated for the first time that the secretomes of purified cells of MSCs culture could exert 

a different biological effect. Thus this study may suggest that the usage of such purified cells will 

allow an increase in the efficacy of clinical applications of MSCs to treat and repair specific kind of 

injured tissues. 
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7 Appendix  
 

7.1 Quantification of exosomes concentration and measurement of their 

diameters 

 

Figure 7:1 Measurements of the size and quantity of exosomes isolated from the secretomes of 

cMSCs. 

The representative histograms show the concentration (y axis) and the diameter (x axis) of the 

extracellular vesicles from cMSC CM 2000 xg supernatants (left panel) and serum free medium as 

control (right panel, where the histogram show no presences of EVs). cMSC CM or serum free 

medium as controls were processed for EVs isolation by ultracentrifugation. Briefly, cMSC CM or 

control medium was centrifuged at 300 xg for 10 minutes. Then the collected supernatant was 

centrifuged at 2000xg for 20 minutes at 4 ºC. The supernatant was transferred to a special 

ultracentrifugation tube suitable for a SW 40 Ti rotor of optima L-100 ultracentrifuge (Beckman 

Coulter). This final supernatant was then ultra-centrifuged at 100,000 xg for 70 minutes. Then after 

removing the supernatant the pellets were re-suspended in 100 µl of PBS. The nanopore-based 

system q-Nano (IZON Science, Christchurch, New Zealand) was used to determine the size of 

extracellular vesicles in the MSC CM using a 200 nm nanopore membrane (IZON Science). The data 

was analysed using IZON software. Results suggest that cMSCs were secreting EVs in a relatively 

high concentration (1.40x109 particles/mL), where the majority of them fall within the diameter size 

range between 90 and 200 nm, commonly known to correspond to the exosomes (left panel). Serum 

free medium that should be EVs-free was also measured under the same conditions. Acquired data 

demonstrate the lack of characteristic EVs (right pane, l3.26x107 particles/mL) in serum free profiles 

as observed on the left panel, and it is due to the instrumental noise. It can be concluded that 

nanoparticles measured in cMSC CM preparations (left panel) are EVs derived from cells, and not 

from serum free medium (right panel). 

cMSC CM Control 
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