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Polyoxometalates, also known as heteropolyacids (HPA), are solid acids widely utilised 

in heterogeneous catalysis. The physicochemical properties of HPAs facilitate surface-

type or bulk-type reactions, dependent on substrate polarity. For the latter, the gas-

phase dehydration of ethanol was investigated representing an environmentally friendly 

solution to produce bio-ethylene, a key compound to the chemical industry; while for the 

former, the solventless liquid-phase isomerisation of α-pinene was studied due to the 

widespread applications of its derivates. Supported HPAs, exhibiting the Keggin 

structure, were prepared on commercial low surface area fumed silica and mesoporous 

high surface area SBA-15 via wet impregnation technique to elucidate structure-activity 

behaviours in both catalytic systems relative to their bulk equivalents. In addition, 

different types of HPAs, phosphotungstic acid (HPW), silicotungstic acid (HSiW) and 

phosphomolybdic acid (HPMo), were studied to observe the role of acid strength on 

product distribution. 

The successful synthesis of supported HPAs was confirmed by multiple characterisation 

techniques, revealing an inverse relationship between loading and dispersion which is 

further promoted through the use of mesoporous SBA-15 as the support, whereas non-

porous fumed silica induced agglomeration which in turn increases the degree of 

crystalline water present in the HPAs. n-Propylamine TPD evaluated acid strength 

decreases in the order of HPW>HSiW>HPMo, which is independent of support. Support 

choice did not influence selectivity in either reaction, but did impact greatly on catalytic 

activity, imparting significant reaction rate and turnover frequency enhancement. For 

surface-type reaction, SBA-15 showed to be the optimal support due to greater active 

sites accessibility, whereas in the case of the bulk-type reaction, the fumed silica based 

materials, with larger 3D HPAs structures, even at low loadings, showed superior 

performance. Product distributions were affected through the choice of HPA, with higher 

selectivity towards camphene, for α-pinene isomerisation, and ethylene, for ethanol 

dehydration, observed over the HPW catalysts.  

Key words: Heteropolyacids, crystalline water, ethanol dehydration, α-pinene 

isomerisation, SBA-15
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To Nano 
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1.1 Heterogeneous catalysis for Sustainable Chemistry 

Over the past three decades, environmental protection and economical growth have 

been the driving forces for a great variety of research fields. In the chemical sector, an 

enormous number of studies have been addressed to replace waste-inefficient 

harmful/toxic historic processes, at both laboratory and industrial scale. In this scenario, 

catalysis and catalytic technologies play vital roles. Catalysts are used to increase 

reaction rate and product yields, thus are highly valuable in the chemical industry; today, 

90% of all chemical processes employ catalysis in their production. In 2013, catalysts 

global market was valued US $19.2 billion, and is expected to reach US $24.1 billion by 

2018, at a growing rate of 3.9%, estimated between 2012 and 2018 [1]. Catalysis is 

employed in multitude of different industrial sectors, such as petrochemical, chemical 

synthesis, polymers and environmental, with the latter rapidly growing worldwide, 

reaching more and more importance in years to come [1].  

1.1.1 Green and sustainable chemistry 

With growing concerns in relation to climate change, in conjunction with an increasing 

global population and associated demand for consumer goods, the fundamental 

requirements for modern chemicals is to be sustainable, i.e. to have green credentials 

including being biomass derived and produced/isolated via environmental acceptable 

processes.  

The Green Chemistry concept was introduced in the early 90s, in order to produce safer 

chemicals and industrial processes, and was part of a US Pollution Prevention Act [2]. 

Through the years, notable agencies such as the Organisation for Economic 

Cooperation and Development (OECD) and the International Union of Pure and Applied 

Chemistry (IUPAC), both government-based and independent bodies, have collaborated 

in order to establish a new branch of greener chemicals, synthetic pathways and reaction 

conditions. 

In 1998, Professor P. T. Anastas coined the 12 Principles of green chemistry, [3, 4], 

providing guidelines for the basis of chemical synthesis with reduced environmental 

impact, as shown in Figure 1.1. Starting from the first principle, waste prevention, 

catalysis is placed at the 9th position. Whilst the principle suggests using catalytic instead 

of stoichiometric reagents, employing catalysts that are able to increase the selectivity, 

reduce volumes, waste and reaction time, catalysis fits in also in the others, such as 

waste prevention, atom economy, reduction of derivatives and so on.  
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Figure 1.1 – The 12 principles of green chemistry.  

In 2000, IUPAC defined the term Green Chemistry as [5]: 

“the invention, design, and application of chemical products and processes to reduce or 

eliminate the use and generation of hazardous substances”. 

The term Sustainable Chemistry is based on the later definition of Brundtland 

Commission upon sustainable development as [6]: 

“development that meets the needs of the present generation without compromising the 

ability of future generation to meet their own needs”.  

Today the definition of sustainable has evolved from a synonym for green to a far more 

complicated definition including social, economic and ecological domains [7, 8]. 

Sustainability through chemistry has become a concept based on green chemistry and 

has expanded to a fast, flexible and eco-friendly vision, interlinked to pursuit the progress 

[9]. To reach this objective, industrial chemistry must find new radical approaches to fulfil 

these requirements:  

- enhance the quality of products during their entire life cycle;

- resized and integrated processes (smaller volumes, multi-step reactions,

catalytic reaction, efficient separation & storage);

- designing inherently safer processes;

- minimizing and substituting the quantity of hazardous material.

Sustainable chemistry includes several challenges, which cover more than one 

discipline; new legislations and government policies have been developed to fulfil social 
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needs of health and safety, whereas industries aimed to adapt and respect the new 

regulations and safety parameters. 

The role of catalysis for sustainable energy requires improvement to three urgent 

catalytic transformations: from heavy fossil residues to fuels, from biomass to fuels and 

chemical building blocks, and photo/electro chemical conversion of CO2 and water [10].  

1.1.2 Principles of catalysis  

The International Union of Pure and Applied Chemistry (IUPAC) defines in the second 

edition of the Gold Book, Compendium of Chemical Terminology a catalyst as [11]: 

“A substance that increases the rate of a reaction without modifying the overall 

standard Gibbs energy change in the reaction; the process is called catalysis”. 

In other words, a catalyst provides an alternative reaction path of the overall reaction 

mechanism, which possesses a lower activation energy barrier of the transition state. A 

catalyst influences only the kinetic rate at which the equilibrium is reached and not its 

thermodynamic constant [12]. 

Based on the number of phases involved in the system, catalysis can be divided in two 

sub-divisions: homogeneous and heterogeneous catalysis. Homogeneous catalysis 

occurs when catalyst and reagent are in the same unique phase, mainly liquid. 

Extensively investigated, homogeneous catalytic compounds, such as transition metal 

complexes, are potentially highly selective in a wide range of reactions with tunable 

properties, electronically and sterically, by varying the type of metal and/or ligands. 

Catalyst separation, via distillation or chemical extraction, and further product purification 

are the central problems of this category, complicating catalyst recyclability and 

increasing overall process cost and reducing environmentally sustainable [13-16]. 

Several old industrial plants are still operating with homogeneous catalytic systems in 

the liquid phase, as the Friedel-Craft aromatic substitution using aluminium chloride 

AlCl3, or the Monsanto Process for the production of acetic acid (AA) where transition 

metal Rh salts, in combination with I-, convert CO and methanol. Homogeneous 

catalysed gas-phase reactions take place mostly in the stratosphere when photo-

degraded chlorofluorocarbons (CFC) catalyse the conversion of ozone to oxygen. 

Heterogeneous catalysis takes place between two or more phases, such as solid 

catalysts and liquid/gas reagents. Solid catalysts are easily separated from the reaction 

mixture, via filtration, centrifugation or decantation, reducing both economic and 

environmental impact. Catalyst design is crucial and requires the combination of different 

properties necessary for the industrial application, such as activity, selectivity, lifetime, 
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deactivation and toxicity [17]. The chemistry behind heterogeneous catalytic processes 

is still not fully understood and surface-sensitive and operando in situ time resolved 

analytical instrumentations are fundamental to shed insight into surface catalytic 

phenomena. Temperature, pressure, catalyst architecture, reagent concentration and 

agitation of reactant mixture have a great impact on the chemical potential of 

heterogeneous reactions, enhancing or weakening system efficiency [18]. Examples of 

important heterogeneous reactions are ammonia synthesis using N2 and H2 over iron 

oxides and alumina (Haber-Bosch Process [19]), olefin polymerisation using TiCl3 on 

MgCl2 (Zigler-Natta type catalysts [20]), hydrodesulfurization (HDS) of petroleum via Mo-

Co on alumina catalyst and lots of other paramount catalytic processes.  

Within heterogeneous catalysts, it is possible to identify several categories depending 

on their properties and the types of reactions in which they are employed; this include 

acid, base, redox, cascade/multicomponent etc. Acid/base catalysis are founded on 

Brønsted and Lewis concepts, and are widely applied in both laboratory and industrial 

scale. Reactions included in this category are isomerisation, dehydration, alkylation, 

etherification, cracking, condensation, hydration, oligomerization and esterification. 

Cascade type reactions are generally used for fine chemicals and are systems whereby 

products from the first reaction (1), formed over one active sites, desorb to react over 

another active site, forming product (2). The catalytic system can be comprised of one 

single material or multiple different catalytic components, and being a sequence of 

reactions with no physical separation between the production of product (1) and (2), 

allowing for the reduction of waste, solvents and reagents volumes, is referred to as one-

pot reactions. This type of approach is extensively used in industrial processes, as, for 

example, in the paper, cosmetic and polymer industry. 

1.1.3 Heterogeneous acid catalysts 

Solid acids can be classified based on the physical properties with examples including 

zeolites and zeotypes, mesoporous materials, mixed oxides, heteropolyacids and 

organic-inorganic materials [21]. 

- Zeolites are crystalline aluminosilicate compounds, with a well-defined structure 

and pores ranging from 0.3 to 1.4 nm. The typical crystalline zeolite is formed of corner-

sharing SiO4 and AlO4 with different Si:Al ratios; when Si or Al are substituted with other 

transition elements, as Ga, Fe, Ge, Ti, V, Cr, Mn and Co, they are referred as zeotypes. 

The substitution of the Si4+ with the Al3+ (or other trivalent ions) generates Brønsted 

acidity in these materials, leaving a negatively charged oxygen that is charge-balanced 

either by protons or by a counter ion, such as Na+, K+, Ca2+, Mg2+ or NH4+. Upon thermal 
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treatment, dehydroxylation occurs, leaving Lewis acid sites on the surface. Although the 

number of possible zeolites and zeotypes is tremendously high, only a few are actually 

applied at industrial scale, as ZSM-5 (silicalite), FAU (faujasite), MOR (mordenite), BETA 

(beta) and LTA (Linde type A, or zeolite A) [22].  

- Mesoporous molecular sieves were first introduced to expand the potential of 

zeolites, to process petroleum derivates with larger molecular size. These materials have 

pores (channels) sized between 2 and 50 nm, can be amorphous or crystalline in nature, 

and generally, possess weaker acidity than zeolites. Mesoporous aluminosilicates, 

mesoporous silicas including SBA-15 and MCM-41, are part of this wide category. 

Improved properties to enhance catalytic performances can be achieved by post-

synthesis treatments (i.e. impregnation and grafting) [21, 22]. 

- Mixed oxides are oxides that possess more than one cationic species or a single 

cation with different oxidation states. These materials have a great variety of possible 

structures, pores sizes, and functional groups, and can be either crystalline or 

amorphous. Important examples widely studied are perovskites and perovskite-like 

compounds (CaTiO3), garnets and derivatives (X2+
3Y3+

2(SiO4)3), magnetite with Fe3+ and 

Fe2+, and also sulfated and phosphated zirconia extensively applied in acid catalysed 

reactions [23].  

- Heteropolyacids are another important class of mixed oxides, used as acid 

catalysts, formed of polyoxometallate anions. Their properties and application are 

discussed herein in the following paragraphs.  

- Organic-inorganic composites are ordered inorganic structures functionalised 

with organic groups by grafting or co-precipitation. Periodic mesoporous organosilicas 

(PMOs) are part of this category, with alkyl-sulfonic groups one example that can be 

incorporated or surface bonded to the silica matrix. The organic functional groups can 

be classed as either reactive, and participate in the reaction cycle, or passive, enhancing 

catalysts resistance to thermal and chemical degradation.  

1.1.4 Catalyst deactivation 

Catalyst deactivation is an important concern when designing heterogeneous catalysts. 

Causes of deactivation are basically due to thermal, chemical and mechanical reasons, 

and lead to a decrease in catalytic activity and/or selectivity, during the reaction time. 

Harsh reaction conditions, reactant (or product) composition, or the catalyst instability 

are the major factors. The mechanisms whereby catalyst deactivation occurs can be 

classified into different types: poisoning, fouling, thermal degradation, volatilisation of 
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active phase and vapour/liquid-solid reactions (leaching), and attrition/crushing [24], as 

reported in Figure 1.2. 

Figure 1.2 – Major types of deactivation in heterogeneous catalysis [25]. 

- Catalyst poisoning is due to strong chemisorption of reactants, products and

impurities on active sites. As a result, reactive sites are blocked and, sometimes, also 

the neighbouring sites exhibit a different electronic state on the surface. Evaluation of 

the chemisorption energy of certain compounds on the catalyst surface gives a brief 

indication of whether or not a compound is a potential poison. In the case that 

chemisorption is weak, reactivation of the catalyst is possible. Common poisoning 

agents are: toxic heavy metals and ions (As, Pb, Hg, Zn, Cu and Fe) because are able 

to interact with free orbitals and may form alloys; multiple bonded molecules as 

unsaturated hydrocarbons, (NOx and CO), being able to adsorb through multiple bonds. 

For instance, CO adsorbs strongly on Ni and Co, whereas catalysts containing alkali 

metals adsorb easily CO2 and SOx compounds; amines and ammonia are well-known 

poisons for acidic catalysts. Poisoning can be selective or non-selective on the active 

site; as a common rule, the deactivation process is non-selective if the loss of activity is 

proportional to the concentration of the poison [24].  

- Catalyst fouling occurs with deposition of carbonaceous species on the surface

of the catalyst, leading to pore blockage. These species can be identified as carbon or 

coke; the latter is derived from condensation (which may lead to polymerisation) of 

hydrocarbons; while the former is formed by the disproportion of CO [24]. Olefin and 

aromatics are considered possible coke precursors because, under certain conditions, 

they can react on catalyst acid sites leading to chain and cycloaddition reactions 

resulting in the formation of heavy hydrocarbons and polynuclear aromatics [26].  
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- Crystallite growth of the active phase (sintering), support collapse, and phase

change (a catalytically active phase transforms to a non-catalytically active one) are all 

effects of catalyst thermal deactivation. Sintering is the process whereby either the 

crystallites or the atoms (in extreme cases vapours) migrate on the support surface and 

eventually collide and coalesce, to form bigger agglomerates. The process is reversible 

under specific conditions, O2 or Cl2, leading to redispersion [24]. The use of textural and 

physical promoters can inhibit the sintering process.  

- Volatilisation of active components leads also to catalyst deactivation and occurs

when gaseous reagents react with the catalyst to form volatile compounds. Common 

types of products formed by this process are metal carbonyls, oxides and halides, e.g. 

Ru volatilises in the presence of O2 at high temperatures to RuO3, Ni(CO)4 can be formed 

between (0-300 °C) in CO rich environments, while PtCl4 is formed with chlorine traces 

in the feed [24]. Some compounds can also be lost because the reaction temperature is 

close to their sublimation point, as in the case of P2O5, MoO3, and Bi2O3.  

- Finally, catalysts can undergo mechanical failure due to the crushing of pellets

or granules of the catalyst during the loading into the reactor, producing fine powders, 

attrition between catalytic pellets and granules which lead to a size reduction and 

breakage and erosion of the catalyst due to high fluid velocity.  

The understanding of deactivation mechanisms, by employing in-situ surface 

techniques, operando studies and computation modelling, can provide powerful insight 

into the design of new heterogeneous catalyst and optimising of a catalytic process.  

1.2 Silica-based supports 

1.2.1 The role of support in catalysis 

Depending on the chemical reaction and the economical requirements of the industrial 

process, it is possible to distinguish three different structural types of solid catalyst: bulk 

catalysts, supported catalysts, and coated catalysts. In catalysis, bulk materials are 

carrier-free entirely catalytic solids; supported catalysts are materials in which the active 

phase is widely dispersed on a highly porous material (either inert or catalytically active). 

Coated catalysts, on the other hand, are formed by a thin layer of the active phase, 

generally 100 μm, which covers the surface of a non-porous support [27].  

Supported catalysts are widely used at both industrial and laboratory scale. The active 

phase can be either supported on a pre-shaped carrier or co-precipitated during the 

support synthesis. The most common preparation methods are impregnation, ion-

exchange, adsorption and deposition/precipitation. Impregnation is a very well-
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established technique, whereby a certain volume of liquid (aqueous or organic), 

containing the active phase or its precursor, wet the support surface and is subsequently 

removed by drying. Wet impregnation (WI) and incipient wet impregnation (IWI) are two 

sub-categories of this methodology, where the former occurs with an excess of solvent, 

whereas in the latter, the volume of solvent used is enough to fill support pores [17]. The 

procedure is based on the fact that the oxide support surfaces possess hydroxyl groups 

which are able to anchor the active phase by hydrogen bond interaction or 

dehydroxylation reactions forming a covalent bond with water production [28].  

The type of support is usually chosen to fulfil economical and technical requirements; 

generally, must be preferably both highly thermostable, with considerable mechanical 

strength, and chemically suitable in the reaction mixture. Silica, γ-alumina and activated 

carbon are the most frequently used supports due to the low bulk density, thermal 

stability and overall production costs [27]. Other common supports are zeolites, ceria, 

zirconia, titania, magnesia, clays and hydrotalcite, which are also important due to their 

chemical nature, acidity/basicity, physical properties and texture. Additionally, 

interactions between support and active phase are also a critical point to be considered 

(too strong or too weak) because of their possible influence on the catalyst activity [29]. 

In the case of heteropolyacids (HPA), it is reported that when supported their acidity 

decreases in the following order depending on the type of support: SiO2> α-Al2O3> 

carbon [30]. In addition, when supported on a basic solid material such as MgO, HPA 

decomposition occurs due to the acid-base reaction between support and active phase 

[31, 32].  

Silica supports are widely chosen because of displays great properties as support, such 

as excellent both chemical and thermal stability, size ranged porosity, thus tunable 

accessibility, and the ease of organic groups to robustly anchor onto the surface to 

provide catalytic centres. 

1.2.2 Generic properties 

Silica is a simple binary oxide commonly used in catalysis that can be arranged in a 

variety of structures. The silicate tetrahedra, SiO4
4-, is the anionic elementary compound, 

which, if connected with other tetrahedra, results to the net chemical formula of SiO2, 

where each O atom bridges two Si atoms with covalent bonds. At room temperature, 

hydrated silicas exhibit silanol groups on the surface, ≡Si-OH, which are distinguished 

in isolated, germinal and vicinal hydroxyl groups (Figure 1.3). Under specific conditions 

of pressure and temperature, the silanols condense to form water and siloxane links (Si-

O-Si); the total removal of hydroxyl groups occurs at 800 °C. Although silica’s surface
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exhibits negligible Brønsted acidity, it is able to generate H-bond interactions, making it 

a great candidate as a support.  

Figure 1.3 – Silica structure with relative hydroxyl groups, in its anhydrous and hydrous 

form. 

1.2.3 Ordered mesoporous silica 

Over the last few decades, the capability of controlling the architecture of materials (as 

surface area, defined porosity and texture) has received significant attention due to the 

wide range of possible applications, such as in catalysis, photonics, drug delivery, 

sensors, adsorption/separation and nanotechnology [33].  

Mesoporous silicates, with pore sizes ranging from 2 to 50 nm, have an important role 

in the family of porous materials. Controlled mesoporosity is introduced by using 

supramolecular templates, or structure-directing agents (SDA), which, during the 

condensation of the silica precursor, help the formation of the mesostructured network. 

Templates can be divided in soft templates, as surfactants and polymers, or hard 

templates, such as carbonates, carbon and metal oxides; after the synthesis, they can 

be easily removed via dissolution at certain pH, solvent extraction, or burned-off. The 

resulting material exhibit a structure that replicates the SDA assembly, with a narrow 

pore size distribution, high surface area, and tunable pore sizes depending on pH, 

temperature and template type. The first reported ordered mesoporous material was 
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published in 1971 [34], but it was not until 1992 that this new class of materials opened 

up a whole field of research, and a cationic surfactant was used for the synthesis of 

MCM-41, which stands for Mobil Composition of Matter No.41 [35-37].

Since then, a tremendous number of mesoporous materials have been synthesised by 

varying the reaction conditions. In the SBA-family, for which the synthetic pathway uses 

non-ionic templates at strong acid conditions, SBA-15 is the most popular mesoporous 

material used as support for a huge variety of catalytic applications. SBA-15 is highly 

ordered, with two-dimensional hexagonal mesostructure (space group P6mm), 

synthesised in acid media (pH ~1) using a triblock copolymer, as non-ionic structure 

driving agent [38]. Working at pH > 2, neither the silica-gel nor the precipitation of 

precursor occurs, whereas at neutral pH ~7, only disordered and amorphous silica is 

obtained. Non-ionic surfactants are preferable because of their lower toxicity, 

biodegradability and wide range of assembly geometries [33], an example of this 

category are the amphiphilic triblock copolymers, which allows for thick silica walls 

making the material more thermostable.  

Block copolymers are formed by two distinct parts: one hydrophilic and the other 

hydrophobic and their ratio modifies the micelles array, effecting pore shape and 

architecture [39]. A larger hydrophilic moiety results in spherical micelles, as the 

hydrophobic region would be fully encapsulated; in the opposite case, disc-shaped 

micelles would aggregate forming rods whereby the core is hydrophobic and the corona 

hydrophilic. P123 is commonly used in the synthesis of SBA-15, and its formula is 

(PEO)20-(PPO)70-(PEO)20, where PEO is poly(ethylene oxide) and PPO is 

poly(propylene oxide). In the aqueous solution of water-soluble surfactant, the 

hydrophobic PPO dwell in the micelle core, while the hydrophilic PEO lies in the corona, 

as depicted in Figure 1.4.  

Figure 1.4 – Schematic stepwise synthesis of mesoporous materials. 

During the reaction the inorganic precursor, generally tetraethyl orthosilicate, TEOS, 

hydrolyses releasing ethanol to further polymerise:  

Hydrolysis: ≡Si-OCH2CH3 + H2O → ≡Si-OH + CH3CH2OH 

Micelles formation Precipitation Hexagonal arrangement Template removal
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Polymerisation: ≡Si-OH + HO-Si≡ → ≡Si-O-Si≡ H2O 

The hydrolysis rate changes depending on the nature of the silica precursor, slowing 

down or accelerating the synthesis. The optimal reaction temperature is chosen based 

on the critical micellar temperature (CMT) and cloud point (CP) [40]. The former refers 

to the lowest temperature at which surfactants form micelles, and the latter indicates at 

what temperature starts the phase-separation and the micellar solution becomes cloudy. 

Through the years, several studies have been made to understand the kinetics of the 

process and the mechanism of the silica mesostructure formation [36, 41-45]. Flodström 

et at. [46, 47] investigated on the mechanism that occurs when an amphiphilic structure 

agent, P123, is used for the synthesis of SBA-15. A self-assembly mechanism is 

proposed, whereby the kinetics of silica polymerisation matches the kinetics of micelles 

aggregation. Silica hydrolysis followed by polymerisation generate attractive forces 

between micelles, which eventually coalesce forming cylindrical aggregates defining the 

silica 2D hexagonal pattern [46].  

After the precipitation, hydrothermal treatment, usually between 80–150 °C, facilitates 

the reorganisation, growth and crystallisation of the mesostructure; in this range, higher 

temperatures induce micelle expansion resulting in a larger pore diameter of the final 

material. For temperatures >150 °C, destruction of the micelles array and surfactant 

decomposition is observed. Calcination is the most common method to remove the SDA 

using a slow ramp rate to avoid damaging the mesoporous network architecture.  

1.3 Heteropolyacids 

In the great variety of mixed oxides, the most commonly studied are double oxides, such 

as perovskite-like structures (ABO3, as CaTiO3), and heteropolyacids (HPA), called also 

polyoxometalates. HPAs offer an environmentally friendly solution for a wide range of 

reactions both in homogeneous and in heterogeneous catalysis [48-55]. Their structure 

is the result of aqueous condensation of more than two oxoanions of high valent 

transition metals (M) as W6+, Mo6+, V5+ and Nb5+ called addenda atoms, in addition to a 

heteroatom (X), or central atom, which coordinates with O, ranging between 4 and 12 

depending on the coordination number. Several structures are possible by varying the 

number of atoms involved; the foremost studied is the Keggin structure where one 

heteroatom occupies a central position in the form of a tetrahedron, XO4, while 

surrounded by 12 MO6. These species are arranged in 4 triplets, M3O13, where each 

triplet shares an oxygen atom with the central atom [56], having as general formula 

Hn(XM12O40)n-1, as reported in Figure 1.5. Heteropolyacids salts are obtained when 

cations replace at least one of the H+ balancing the charge of the polyanion. Due to the 
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tunable structural properties, chemical factors and oxidizing ability, HPAs and their salts 

are widely used as solid catalysts, in their bulk form or supported, for acid catalysis or 

catalytic oxidation. Herein, the acid properties and catalysis will be extensively 

discussed. 

Figure 1.5 – Phosphotungstic acid Keggin structure. 

1.3.1 Structure of solid HPA 

The structure of HPA was first studied in the early 70s. As largely accepted, HPAs 

possess three substructures called primary, secondary and tertiary structures (Figure 

1.6). The heteropolyanion alone defines the primary structure without counter cation or 

protons; the charge balanced single unit cell identifies the secondary structure as for 

example a typical Keggin unit, while agglomeration of multiple units into a solid 

architecture represent the tertiary structure. Bulk HPAs exhibit very low surface area, 

about 10 m2 g-1 and no porosity. However, when HPA salts are formed by large cations 

with low valency as Cs+, K+ and NH4
+, higher values of surface area, 50-100 m2 g-1, are 

observed. The  micro- and mesoporosity of these materials result from intercrystalline 

voids and not intracrystalline porosity, as proved by Okuhara et al. [53] via porosimetry 

and TEM analysis. Understanding the hierarchical structure of HPAs and their salts is 

crucial to understand their applicability in catalysis.  
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Figure 1.6 – Hierarchical structure of phosphotungstic acid in the solid state [56]. 

1.3.2 Types of reaction: surface and bulk 

Misono et al. [56] defined the catalytic activity of HPA driven by two different types of 

reaction, as reported in Figure 1.7, where reagent (R) and products (P) interact either 

at the surface or penetrate into the 3D bulk. The former represents the common reaction 

process in a heterogeneous system, where the catalysis occurs on the external surface 

of the solid, and the reactant is a nonpolar molecule that only reacts with the external 

acid protons. Reaction rates are governed by catalyst surface area and proton 

accessibility to the apolar substrate. The latter bulk catalytic mechanism occurs within 

the tertiary structure, in which the reactant diffuses, resulting in expanded interpolyanion 

distance, and occurs when the reactants are polar. Once formed, the products diffuse 

back to the external surface and into the reactant phase (gas or liquid). Furthermore, this 

bulk-type catalytic mechanism can be divided into two sub-categories: pseudoliquid and 

redox catalysis. Pseudoliquid catalysis is observed for acid catalysed reactions, with 

protons from the bulk being active species. The denomination of pseudoliquid arises 

from the fact that polar molecules, such as water, alcohols and small amines are capable 

of diffusing into the bulk HPA structure, creating a concentrated reaction solution where 

conversion  takes place [57]. Redox processes are found for oxidation reactions, in which 

protons and electrons diffused rapidly within the bulk.  
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Figure 1.7 – Types of catalysis for heteropolyacids, where the K.U. are depicted in grey, 

with an arbitrary number of hydrogens (white) and water molecules (blue), where R 

stands for reagent and P product.  

1.3.3 Generic properties 

Heteropolyacids are strong Brønsted solid acids, reported to be stronger than common 

inorganic acids such as HCl, H2SO4, HBr and HClO4, as shown in Table 1.1 [58].  

Table 1.1 – pKa values for various heteropolyacids and other mineral acids in acetic 

acid solutions [59, 60] 

Acid pKa 

H3PW12O40 4.7 

H4SiW12O40 4.7 

H3PMo12O40 4.8 

CF3SO3H 5.0 

HClO4 4.9 

HBr 5.6 

H2SO4 7.0 

HCl 8.4 

Phosphotungstic acid (HPW), with the formula H3PW12O40, is one example of a Keggin 

type heteropolyacid, which possess three acidic protons; similar Keggin HPAs are 

H4SiW12O40, H3PMo12O40, H4SiMo12O40. In aqueous media, the acid is fully dissociated, 

whilst in other solvents, such as acetone, acetonitrile, ethanol are more stable and pKas 

are measurable [58-60]. The strong acidity of HPAs arises from their ability to delocalise 

the negative charge (-3) of the heteropolyanion, over 40 oxygen atoms. The Keggin 

structure is considered the most stable of all possible HPAs structures. The nature of the 

addenda- and central-atom play a crucial role determining the acid strength and the 

redox properties; as general rule for solid HPAs is that W-based materials are stronger 

R P
R

P

(a) Surface-type

reaction

(b) Bulk-type reaction:

-Pseudoliquid

-Redox
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acids than Mo-based ones, as elucidated from ammonia adsorption calorimetry [58, 61]. 

Changing the central atom also leads to differences into solid acidity, with acidity 

increasing with the increase of central atom oxidation state, following the order: P5+> Si4+ 

~ Ge4+ > B3+ > Co2+ [58, 62, 63]. The acid strength of supported HPAs changes with 

support and follows the order: SiO2 > Al2O3 > carbon, which suggests that the greater 

interaction with the support results in reduced retainment of the bulk acid strength.  

Understanding proton mobility, their location, and thus their interaction with the polyanion 

is challenging and different techniques have been applied to gain a greater 

understanding, examples include IR [64], LCAO-Mo calculation [65], DFT quantum 

chemical calculation [66], SEDOR NMR [67], 31P, 1H and 17O magic-angle spinning NMR 

[52, 68, 69]. Figure 1.8 shows a simplified tertiary structure of four Keggin units, wherein 

H atoms are displayed either as free protons or the hydronium ion H3O+. In the former, 

protons can coordinate to bridging oxygens, known as Ob, also referred to as core (Oc) 

and edge (Oe), depending on the link being either is M-O-X or M-O-M respectively, or to 

terminal oxygen atoms, Ot in the case of M=O. In the latter, H+ exist as protonated water 

monomers H3O+ and/or dimers H5O2
+ situated between the polyanions and functioning 

as a bridge between two or more primary structures.  

Figure 1.8 – Tertiary structure of hydrated phosphotungstic acid. 

Uchida et al.[70] studied the influence of the HPW hydration on the surface, and the 

species present, H3O+ or H5O2
+ by MAS-NMR analysis, and observed that the formation 

of aqueous dimers are prevalent when the number of water molecules per polyanion is 
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greater than 4. Water molecules cover significant importance in proton mobility, 

facilitating the migration of H+ between neighbouring HPW clusters.  

The thermal stability of HPA varies dramatically depending on the type of HPA, some 

are highly stable and can carry out reaction at high temperatures in the vapour-phase, 

while others decompose easily under mild conditions and are not suited for catalytic 

purposes [71]. Kozhevinkov et al. [49] reported that thermal stability can be improved 

with the formulation of oxide composites of HPAs with zirconia or niobia, although this is 

at the detriment of acid strength. Such procedures calcine the oxides composite at 

temperatures higher than HPAs decomposition (> 350 °C), aiming to form HPAs 

fragments linked to niobia or zirconia, which eventually exhibit both Brønsted and Lewis 

acidity.  

1.3.4 Applications 

Heteropolyacids and their derivatives, at both laboratory and industrial scale, have been 

shown to be capable to catalyse a vast array of reactions [52, 53, 71-74], with examples 

of some of the more common applications including; paraffin and aromatics alkylation, 

Friedel Crafts or acylation of benzoyl chloride with p-xylene [75], trans alkylation of 

phenols to prepare antioxidant compounds [76-78], esterification reactions for biodiesel 

production [79-83], alcohol oxidation [84], and isomerisation reaction of terpenes [85-

88]. In addition, the catalytic dehydration of alcohols has also been investigated for C1-

C6 alcohols, in both liquid and gas phase. Liquid phase oxidation reactions have also 

been carried out with supported heteropolyacids, in their HPW form or modified with 

metal ions [89]. Epoxidation of cyclic alkenes, over HPW and HSiW on MCM-41, with 

H2O2 in t-butanol at 80 °C [90], and the oxidation of benzenethiol to the sulphonic acid, 

employing HPW and H2O2 are also known [91, 92]. Water-tolerant HPA systems have 

been developed to facilitate their application in aqueous reaction media, through the 

introduction of Cs+ as counter cation replacing H+. Water-tolerant HPAs have been 

applied in sugar dehydration, of glucose and fructose, to obtain high-value compounds 

such as 5-hydroxymethylfurfural (HMF) [93]. Combination of noble metals and 

heteropolyacids have been investigated as bifunctional catalysts, two examples are the 

commercialised Pd-HPA system used for the two-steps hydration-oxidation reactions 

from ethylene to acetic acid [94], and Pt-Cs2.5HPW for the isomerisation reactions of n-

butane whereby the noble metal prevent catalysts deactivation. The proposed reaction 

mechanism includes a (i) dehydrogenation on metal sites of butane to butene, (ii) an 

acid-catalysed isomerisation of butenes to iso-butylene and (iii) hydrogenation on the 

metal sites [95]. Glycerol oxidative-dehydration to acrylic acid is catalysed by vanadium 
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substituted CsHPW and CsHPMo, which works also as a bifunctional catalyst, with the 

first step being the alcohol dehydration over the acid site to acrolein and the second step 

the oxidation of acrolein to acrylic acid [96].  

HPAs have been utilised as photocatalysts in both the homogeneous [97, 98] and 

heterogeneous catalytic splitting of water, the reduction of metal salts for the preparation 

of nanoclusters, and the degradation of organic compounds for water waste treatment 

[99, 100]. HPAs have also been employed as an additive in fuel cells to enhance proton 

conductivity and therefore the overall cell performances, through either immobilisation 

at the electrodes  or incorporation in the ion exchange membrane [101].  

1.4 α-Pinene isomerisation 

1.4.1 Introduction 

The isomerisation of α-pinene is an important chemical reaction for the green synthesis 

of limonene, camphene and other key compounds in the perfumery, pharmaceutical, 

alimentary and fine chemicals industry. In nature, pinene is found in the volatile fraction 

of resins of pine trees or other plants part of the Coniferae family. The non-volatile resin 

component, called rosin, is also used for several applications. Industrially, pinenes, α- 

and β-, are the major components of crude turpentine, extracted from wood, and by 

product of the forestry and manufacturing industry. Turpentine is a potential bio-source 

of green chemicals, capable of fulfilling the ideal principles of a sustainable biorefinery 

resulting in the environmentally and economically viable production of fine chemicals.  

1.4.2 Sustainable chemicals from Turpentine 

Turpentine is a mixture of oleoresins obtained from trees, predominantly terpene-based 

compounds, isomers of C10H16, and its production reaches 350000 ton/annum [102]. The 

flammable composition can be used pure, as an industrial solvent, or as a source of 

chemicals for organic synthesis, production of drugs, pesticides, insecticides, and fuel 

additives [103, 104]. To obtain turpentine, wood residues, wood chips and logs, must be 

transformed into a pulp via mechanical or chemical processes.  

- The mechanical pulping separates the wood fibres through the collapse of the

structure by mechanical grinding. The two-common process are known as: the stone 

ground wood process (SGW) also called pressurised ground wood process (PGW), 

where wood and water pass through a rotating grinder stone made of silicon carbide or 

aluminium oxide grits; and the refiner mechanical pulping (RMP), where the pulp is 

produced from wood passing between grooved discs. Additionally, processes soften the 
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wood before the mechanical grinding using steam or chemical treatments, known as 

thermomechanical (TMP) and chemi-thermo mechanical pulping process (CTMP). High-

quality turpentine is obtained as a by-product during the wood softening process, through 

steam distillation [105].  

- In contrast, chemical pulping processes cook the wood residues in an aqueous

solution of chemicals which separate the fibres and extract the cellulose. The pulping 

chemicals can be acidic, alkaline and neutral. The Kraft process is the most widely used 

and accounts for the 80% of the US pulp manufacturing [106]; additionally, acid sulfite 

and neutral sulphite semi-chemical processes are also used. In the Kraft process, the 

pulping chemicals are sodium hydroxide and sodium sulfide, also called white liquor. 

During the process, volatiles compounds are formed and condensed, with the collected 

mixture being the sulphate turpentine and the remaining pulp further purified and 

processed [107]. Turpentine is obtained from desulfurisation of crude sulfate turpentine 

(CST), the major by-product of the Kraft process and contains from 1 to 6 wt% of sulphur 

[108]. Unpurified CST has been evaluated as a potential motor fuel, but corrosion and 

contamination prevented it application. Desulfurisation of CST can be achieved using 

heterogeneous catalysis, for example supported CoO/MoO3 and NiO/MoO3 on Al2O3 

materials [108, 109].  

Comparison of the two methods to obtain turpentine, mechanical and chemical, reveals 

that the Kraft process (chemical) is more efficient, producing up to 16 kg of turpentine 

per ton of pulp, while the thermomechanical reaches only 0.3 kg/ton [110]. Energy and 

waste calculation revealed that the chemical treatment generates enormous volumes of 

toxic waste compared to the mechanical, suggesting that the former better fulfils the 

environmental requirements of green and sustainable engineering. The market value of 

crude sulphate turpentine was valued in 2015 at USD 213.87 million and is supposed to 

reach USD 279.5 million by 2022, with an annual growth rate of 4.10% [111] 

1.4.3 α-Pinene market and derivatives 

α-Pinene, a valuable compound, is a colourless water insoluble compound with a boiling 

point of 155 °C, and characteristic aroma reminiscent of woody pines, citrus and spicy. 

Pinenes, α- and β-, are hydrocarbons derived from isoprene, and are part of the terpenes 

family, which is a vast class of organic compounds produced naturally from plant and 

some insects. At an industrial scale, terpenes and terpenoids (functionalised terpenes), 

are obtained via distillation of turpentine [112].  

In 2010, the estimated α-pinene world consumption was 230000 lb per annum [113] and 

tremendous number of catalytic chemical processes have been developed for the 
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production of pinene derivatives through hydrogenation, oxidation, 

isomerization/rearrangement, hydration, hydroformylation, condensation, cyclization 

and ring contraction. Pinene derivatives are used for a wide range of different 

applications, such as bioaromas, biopolymers and biofuels; moreover, they are 

described as good therapeutic agents, antibacterial, acaricidal and anti-inflammatory 

[114-116]. Among these applications, recent studies reported also antispasmodic, 

anticancer, antimutageni properties [117]. The great variety of chemicals obtained from 

α-pinene transformations is depicted in Scheme 1.1. 

The epoxidation of α-pinene to obtain α-pinene epoxide (POX), has been investigated 

employing supported titanium oxide on silica based materials as heterogeneous catalyst. 

Different supports and bifunctional catalysts, including trivalent ions as Fe3+ or Al3+, have 

been also investigated by several groups, improving the selectivity towards POX [80]. 

Hydrogen peroxide and tert-butyl hydroperoxide (TBHP) have used as epoxide agents, 

which are beneficial and form non-toxic recyclable compounds at the end of the reaction. 

Further isomerisation of POX leads to a variety of compounds, including d-verbenone, 

campholenic aldehyde, pinocarvenol, trans-carvenol, p-cymene which are widely used 

in the fragrance industry and are highly valuable fine chemicals [118, 119]. The Lewis 

and/or Brønsted character of the heterogeneous catalyst plays a crucial role when 

considering selectivity towards one of these compounds. Campholenic aldehyde is the 

most desired compound because is a key intermediate in the synthesis of santalol, a 

sandalwood-like fragrance [119, 120]. 

Hydration of α-pinene leads to the α-terpineol, which possesses the typical lilac odour 

and is used as a fragrance in soaps and cosmetics. It can be obtained from either pinene 

or turpentine, using aqueous inorganic acids or Brønsted solid acids, such as HPAs, 

either bulk or supported. The reaction leads to a mixture of pinene’s hydrated derivatives, 

as terpineol and terpineols oligomers, or pinene isomers like limonene and terpinenes. 

Further acetoxylation of terpineol can be carried out using organic acetic acid to obtain 

α-terpinyl acetate (woody and bergamot aroma) and dihydromyrcenol (citrus and floral 

type aroma), both valuable compounds in the fragrance and alimentary industry. 
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Scheme 1.1 – Valuable compounds obtained from α-pinene [80]. 
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Pinenes are also used for the synthesis of homo and co-biopolymers. Although both α- 

and β- pinene can be polymerised, the β-structure is preferable due to the highly reactive 

exo-methylene double bond. Lu et al. [121] obtained the poly(β-pinene) employing a 

Shift-based Ni catalyst by cationic polymerisation and methyl aluminoxane (MAO) as 

initiator at 40 °C. The optimisation of the synthesis to more environmentally friendly 

condition made the low-weight terpene derived polymers more industrially interesting to 

produce epoxy resins and polyols [122]. Another interesting monoterpene obtained from 

α-pinene isomerisation, and used for bio-polymer production, is limonene. The 

functionalisation of limonene as a thiolene is a powerful technique to convert a C=C bond 

into a HS-R group, which is more active in polymerisation reactions and easily initiated 

either thermally or via UV, under air and in water. Epoxidation of limonene can also be 

used for the synthesis of polycarbonates and polyurethanes, both widely used for 

electronical, automotive and aircraft components, medical and niche applications, i.e. 

including drinking bottles, food containers, but also screens/glasses/lenses that require 

higher impact-resistance than glass. Limonene is also the precursor of p-cymene, which 

can be oxidised to produce terephtalic acid, the monomer of the polyalkylene 

terephtalate, more commonly known as PET. In the last few decades, a wide range of 

copolymers has been synthesised using several polymerisation techniques, employing 

terpenes and terpenoids for biodegradable, non-toxic and biocompatible materials [122, 

123]. Limonene is also used for the menthol synthesis, which whilst it can be extracted 

from mint its market demands exceed production solely from extraction and thus 

alternative routes are required.  

Camphene is a bicyclic monoterpene, derived from α-pinene isomerisation, with 

approximately 10 tons per annum used as a fragrance additive and 12 tons per annum 

as solvent in the automotive industry [102]. Camphene is also used for the synthesis of 

camphor which is widely used for the synthesis of fine chemicals, such as insect 

repellents, celluloid (made from the mixture of nitrocellulose and camphor), plastics, and 

explosives [102].  

1.4.4 Isomerisation reaction 

The isomerisation reaction is the most feasible and useful α-pinene transformation, 

which leads to two different classes of valuable compounds, called monocyclic and 

polycyclic monoterpenes, whereby limonene and camphene are the major compounds 

respectively. Figure 1.9 reports the major products obtained during the isomerisation, 

discerning between polycyclic compounds: camphene, β-pinene, triclycene and 
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fenchene, and monocyclic compounds: limonene, terpinolene, α- and γ-terpinene and p-

cymene.  

Figure 1.9 – α-Pinene isomerisation reaction mechanism. 

The liquid phase α-pinene isomerisation reaction, employing a heterogeneous catalyst, 

was first investigated by Gurvich et al. in 1915 [124]. From that time, a paramount 

number of catalysts and different reaction conditions have been investigated to govern 

the reaction mechanism and terpene rearrangements.  

In 1972, Stanislaus and Yeddanapalli [125] studied the vapour phase catalytic 

isomerisation of α-pinene using alumina-based materials as solid acid catalysts. They 

were the first to prove that acid strength has a strong influence on product distribution, 

concluding that isomerisation of the bi- and tricyclic compounds (camphene family) 

occurred only over strong acid sites. Ohnishi et al. [126] observed comparable results 

and studied the possible correlation between acidity and catalytic activity/selectivity of 

NiSO4, SiO2-Al2O3, and ZnS (calcined at different temperatures) as heterogeneous 

catalysts, with both Brønsted and Lewis acidic properties. They concluded that the 

isomerisation reaction does not occur in the presence of Lewis acids in an aprotic 

solvent, but starts with the irreversible protonation of both α- and β-pinenes, investigated 

separately, over Brønsted acid sites, which is the beginning of the isomerisation 

pathway. The industrial conversion of α-pinene occurs under mild conditions, employing 

acidified TiO2 treated with an acid solution of sulfuric acid, at 150 °C, which reaches 30% 

conversion and revealed a zero order of reaction [127]. Severino et al [128, 129] tried to 

improve the catalytic performances of acidic titania by varying the amount of sulfuric acid 

and studying the effect of catalyst activation temperature on conversion and selectivity. 

Results revealed that catalyst activity followed a volcano-like trend as a function of the 

amount of acid, observing a maximum at 5%, whilst higher catalyst activation 

temperatures led to higher camphene selectivity at the expense of conversions. The 

Camphene

Limonene p-Cymene-TerpineneTerpinolene

Polycyclics

Monocyclics

-Pinene

+

-Pinene

+ +
+

  -Terpinene

Triclycene

+

Fenchene

+



43 

increased selectivity was attributed to increase of accessibility to catalyst pore structure. 

Findik et al. [130] studied the activity of 100 g of wood turpentine (containing 85% of α-

pinene) with different heterogeneous solid acid catalysts (2.5 g) such as halloysite 

treated with acetic acid, HCl activated clay, activated TiO2 on SiO2 with NaOH and HCI, 

activated carbon and clinoptilolite (natural zeolites). Their results showed that turpentine 

conversion to camphene is increased with reaction temperature, reaching the maximum 

at 155 °C, with clinoptilolite being the most active catalyst; whereas activated carbon 

and titanium-based catalysts treated with NaOH were inactive. To shed further insight 

on the greater performances of clinoptilolite catalysts, Allahverdiev et al. [131, 132] 

carried out the solventless isomerisation of α-pinene in autoclave (in N2 atmosphere) 

with pressures ranging, 1-20 bar, employing 2 g of catalysts, activated at 520 °C prior 

analysis. It was found that reaction perform increases with pressure over the range 1-10 

bar, above this value rates were independent on pressure; reaction kinetics was 

described as first order against α-pinene consumption, with activation energy being 80.9 

kJ mol-1. It was proposed that upon α-pinene transformation, camphene slowly 

isomerises to tricyclene, and eventually reaches equilibrium concentration; in contrast 

limonene rapidly isomerises to other monocyclic products, via double bond migration.  

The catalytic activity of zeolites towards α-pinene isomerisation was investigated by 

Lopez et al. [133] employing dealuminated mordenites (MOR), faujasite (FAU) and an 

amorphous 13% alumina aluminosilicate, at 120 °C in a batch reactor. Mordenite proved 

to be the most promising catalyst, giving a maximum of 54% selectivity to camphene 

calculated based on the sum of camphene and limonene yields (68%). Undefined by-

products are also observed over microporous zeolites, with the degree of their formation 

proportional to pore diameters. Furthermore, α-pinene isomerisation rate was 

normalised to the number of Al3+ per unit cell (Al3+ density) in order to compare activities 

obtained for different zeolites structures. A volcano-like curve was observed displaying 

a maximum of activity for about 1 and 6 Al3+ per unit cell, as calculated in the MOR and 

FAU structures, respectively. Mesoporous silicas for the isomerisation of α-pinene were 

firstly investigated by Yamamoto et al. [134] employing 50 mg of FMS-16 modified with 

Al. Pretreatment temperature dependence on catalytic activity was investigated showing 

a maximum at 400 °C, for which 77.8% conversion and 41% of selectivity towards 

camphene were obtained. Additionally, although the number of Lewis acid sites 

increased with the calcination temperature, camphene selectivity was reported being 

unchanged, suggesting that Lewis acid sites did not participate in the reaction. The role 

of Brønsted and Lewis acid sites is extremely controversial and still under debate. In 

2002, Besun et al. [135] investigated in detail the effects of surface area, pore size 
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distribution and ratio Brønsted /Lewis on α-pinene isomerisation employing acid-

activated montmorillonite (clay). As a result, they concluded that pure strong Brønsted 

acid catalysts with high pore volumes and mesopore diameters (> 2 nm), with low 

dealumination degrees, are good catalysts for the production of camphene. Interestingly, 

for materials that showed both types of acidity, via pyridine chemisorption and IR 

analysis, the ones with the highest ratio L/B exhibit higher selectivity towards camphene, 

and that increasing the Brønsted acidity of a catalyst results in a great degree of the 

secondary reaction of limonene. Ecormier et al. [136, 137] studied the isomerisation 

reaction at 60 °C employing 100 mg of sulfated zirconia as Brønsted and Lewis acid 

catalysts. They observed that increasing the amount of sulfur the selectivity ratio 

camphene: limonene decreases. Furthermore, the group also hypothesized that at low 

S wt%, weak Brønsted acid sites are formed, which favour camphene, while high S 

loadings promote limonene production due to the presence of stronger Brønsted acid 

sites. Hammett indicators were used as a method to discern strong/weak acid sites and 

no further study was made on the role of Lewis acid sites on selectivity nor upon the ratio 

Brønsted: Lewis sites. Further studies on sulfated zirconia did not consider the Brønsted: 

Lewis ratio but obtained similar results to previous literature [138]. In 2003, Masini et al. 

[139] first employed SiO2 supported phosphotungstic acid (HPW) as heterogeneous acid

catalyst for the isomerisation of α-pinene, investigating the effect of calcination 

temperature (300-500 °C) on catalytic performances. In the study, they observed that 

decreasing the calcination temperature, conversion is higher and reached its highest 

value of 40%. Further studies [140, 141] of HPW on different supports, TiO2, ZrO2, and 

SiO2 proved that SiO2 is a better support for HPW because showed greater 

performances for α-pinene activity. Newman et al. [86, 87] studied the activity of HPW 

commercial silica with pores sized 10 nm at different wt%, investigating the effect of 

HPW dispersion on catalytic activity. They suggested that an optimum catalyst activity 

is observed for the sub-monolayer coverage when HPW form tetramers that trap 

crystalline water. Conversion reached 45% for the ~30 wt% of HPW on silica, with almost 

a 1 to 1 selectivity towards camphene and limonene. Cs-doped HPW [82], different HPAs 

supported on natural zeolites and MCMs materials [142-144] have been employed to 

improve catalyst activity, lowering the ratio catalyst: substrate and investigating the 

effects of the ratio Brønsted: Lewis acid sites on the isomerisation pathways. Pd-Zn/Al 

SBA-15 catalysts were employed by Golets et al. [145] for the selective production of p-

cymene from α-pinene, by isomerisation and dehydrogenation of the substrate. 
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1.5 Bioethanol dehydration 

1.5.1 Introduction 

The largest use of ethanol is as a fuel or fuel additive in automotive engines. In Brazil, 

gasoline is blended with at least 25% of anhydrous ethanol, with 90% of new cars able 

to use as fuel the azeotropic mixture of ethanol and water [146]. As a blended agent, 

ethanol increases the oxygen content of the gasoline allowing a more complete 

combustion and oxidation with reduced amounts of CO, CHx and aromatic compounds. 

Ethanol has higher octane number than gasoline and when blended has the ability to 

enhance the octane number of the mixture. Disadvantages of bioethanol as a fuel is that 

it possesses only 66% of the energy density of gasoline reducing car efficiency at starts. 

More recent application of bioethanol, apart being a widely used solvent in the 

manufacturing industry (in cosmetics, pharmaceuticals, detergent and coatings), is as a 

feedstock for the synthesis of important building blocks in the organic chemistry, 

including ethylene, ethers, ethyl-amines and ethyl acrylate. Important bulk chemicals 

derived from ethanol are acetic acid formed via oxidation over silver catalysts [147], ethyl 

acetate via oxidation using PdO/SiO2 [148] and acetone employing Cu/ZnO/Al2O3 [149]. 

Butadiene can also be produced from ethanol either via one step reaction at 400-450 °C 

using silica gel impregnated with tantalum oxide (Lebedev process [150]) or via two 

steps reaction, producing acetaldehyde from ethanol dehydrogenation followed by aldol 

condensation with a second molecule of ethanol and dehydration. Ethanol can also be 

used in the synthesis of longer chain alcohols, as butanol, albeit with relatively low yields 

and harsh reaction conditions [151]. 

1.5.2 Ethanol vs Bioethanol 

Although synthetic ethanol (from crude oil) and bioethanol are the same compound that 

behaves identically under reaction conditions, they differ in their isotopic compositions 

in the amount of 14C. This is an important feature since new tax credits are intended for 

blends of bioethanol and gasoline. Although synthetic ethanol is currently half the cost 

of ethanol derived from sugar cane, environmental concerns and the increase of petrol 

costs has leaded to several companies expanding their synthetic ethanol plants to also 

process bioethanol [152]. 

Synthetic ethanol is readily produced from natural gas, coal and petrol fractions. Annual 

production of synthetic ethanol reaches 2 million tons, which is mainly produced in Saudi 

Arabia, Africa, the United States of America, Europe and Japan. The production of 



46 

ethanol from petroleum ethylene is a one-step process, where direct hydration of 

ethylene with steam employing phosphoric acid supported on silica as catalyst occurs in 

a fixed bed reactor. The reaction is reversible and exothermic. The reaction is carried 

out at 220 °C to limit by-product formation, while 60-70 atm pressure is used to drive 

alcohol formation, at the expense of increased operating costs. The final mixture of 

water, ethanol and other impurities are separated in a series of distillation columns, 

where finally the azeotropic mixture of ethanol and water, 95% and 5% respectively, is 

obtained. 

Bioethanol as an energy source is not a new idea, and its applicability has been 

investigated since the 1990’s [153]. Unfortunately, due to higher production costs 

compared to petrol it has been mostly ignored for almost two decades [1]. In today’s 

market, bioethanol is gaining greater attention, as a green and sustainable biofuel and 

bio-reactant, locally produced from renewable raw materials. The bar chart in Figure 

1.10 illustrates the world bioethanol production, expressed in billions of gallons between 

2007 and 2015, highlighting the contribution of each country or region per year. In 2015, 

the United States was the world largest producer of bioethanol, by producing 14 billion 

of gallons alone mainly from corn, followed by Brazil with 7 billion of gallons obtained 

from sugar cane; together, the USA and Brazil, produce almost 85% of the world’s 

bioethanol.  

Figure 1.10 – Global bioethanol production by country/region and year [154]. 

Bioethanol is obtained from fermentation of sugars derived from biological feedstocks 

classified as sucrose-containing feedstocks (e.g. sugar cane and sugar beet), starchy 

materials (e.g. wheat and corn), and lignocellulosic biomass (e.g. wood and straw). The 
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type of feedstock and complexity of the production process strongly influence the overall 

ethanol yields, whilst the availability of raw materials and their possible competition with 

food crops is also of concern. The selection of biological feedstock depends on the local 

and agroecological conditions of the considered country/region. For instance, the USA 

and Europe have based their bioethanol production on starch rich substrates as they are 

more economically viable, while in Brazil sugar cane is the most utilised feedstock. Table 

1.2 reports the ethanol production potentials depending on the type of substrate [155]. 

Values are directly correlated to the amount of fermentable sugars, which, for example, 

is higher in corn and rice compared to sugar cane and sugar beet. It is worth mentioning 

that although sugar-based materials have lower production potentials compared to 

starchy materials, their productivity for cultivated hectare is higher resulting in higher 

ethanol annual yields [156]. Lignocellulosic materials seem to be a more suitable 

substrate for the production of bioethanol as they are not dependent on the climate 

changes, easily available in tropical and temperate countries, their production is not 

related to food production, avoiding an entirely biofuels-dedicated crop situation, and 

their processing can be integrated to existing industrial plants [157]. 

Table 1.2 – Substrate for bioethanol production and their production potentials 

Feedstock Bioethanol production potential / L ton-1 

Sugar cane 70 

Sugar beet 110 

Sweet potato 125 

Potato 110 

Cassava 180 

Maize 360 

Rice 430 

Barley 250 

Wheat 340 

Bagasse and other cellulose biomass 280 

Lignocellulosic biomass, as corn stover, wheat and rice straw, is converted to bioethanol 

via either thermochemical or biochemical routes. The thermochemical production starts 

with biomass gasification, which converts raw materials into syngas, H2 and CO. The 

syngas is then transformed in a mixture of alcohols either catalytically or by bacteria. 

Unfortunately, due to the high costs of the processes and low yields obtained (50%), the 

thermochemical production of ethanol is economically unviable. In contrast, the 

biochemical process involves (1) extraction of simple fermentable sugars from biomass, 

(2) fermentation of sugars and (3) final separation from water at low temperatures [158].

The first step to obtain fermentable sugars is crucial and allows the biomass breakdown. 
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Two operations are generally involved: pretreatment and hydrolysis [159]. The 

pretreatment increases the yields obtainable from hydrolysis by 80%, through softening 

the hardest cellulosic structures, but the step needs to be both economically viable whilst 

also avoiding degradation of carbohydrates and formation of side-products[160]. 

Hydrolysis commonly proceeds via acidic or enzymatic conditions. Once the mixture of 

fermentable sugars is obtained, containing glucose, xylose, mannose, galactose and 

arabinose, carefully selected microorganisms can convert those sugars into ethanol and 

carbon dioxide. In theory, 1 kg of sugars produces 0.51 kg of ethanol and 0.49 kg of 

CO2, however, in practice part of the sugars are actually consumed by the 

microorganisms for their own growth [160]. Starchy compounds undergo the same types 

of treatments, albeit with milder process conditions due to starch being easier to convert 

into sugars [161].  

Lignocellulosic biomass, as raw material, is a promising path for the production of 

bioethanol. Possible technologies in this area are extensively investigated at industrial 

scale, and their application in the medium/long term would improve worldwide 

sustainability.  

1.5.3 Ethanol Dehydration 

In 1950, technologies to obtain ethylene from ethanol by dehydration were readily 

available in the United States and in Europe. However, the development of processes 

based on steam cracking of hydrocarbons from natural gas and petroleum fractions 

allowed a large-scale cost-effective ethylene production. In the current time, with the 

decrease of bio-ethanol production costs and growing environmental concerns, a 

biomass-based route is gaining more attention and is expected to replace at least 

partially fossil fuel based production in the near future. Further advantages to produce 

ethylene from bioethanol are: (i) post-process ethylene purification steps are significantly 

reduced/eliminated  due to the high purity of bioethylene, reducing operation costs, 

investment, and offering fast returns; (ii) raw materials are locally available and not 

limited by resource distribution; (iii) technology feasible and readily available with no 

need for commissioning of complex equipment or plant construction [162].  

Ethylene is one of the main components in the chemical industry, from which almost 

75% of all chemical products are produced, such as plastics, fertilisers, polymers, toys, 

car components and a wide range of everyday use products. It is the monomer for 

polyethylene (PE), which is used in low-density (LDPE), linear low density (LLDPE), and 

high density (HDPE) structures, poly(ethylene terephthalate) (PET); it is precursor of 

ethylbenzene and styrene, ethylene oxide, glycol ethers, ethylene mono and dichloride, 
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bromide [163]. In 2012, ethylene production reaches 100 million tons per year and 

continues to grow.  

Current technologies operating to produce bioethylene are Braskem (Brasil), Chematur 

(Sweden), the Hummingbird process of British Petroleum (BP), and the Atol process, 

born as a joint collaboration between Axens, Total and IFPEN. The ethanol to ethylene 

Brazilian plant Braskem has the capacity to produce 200 000 tons per year from sugar 

cane. In 2010, the company also started producing green polyethylene, which was the 

first biopolymer to be produced at industrial scale [164]. The Chematur process capacity 

ranges between 5000 and 200000 tons of bioethylene per year, employing Syndol 

catalyst, which is an Al2O3-MgO/SiO2 based catalyst, in a four adiabatic reactors [165]. 

The Hummingbird process, announced in 2013 by BP, is capable of producing between 

50000 and 300000 tons of bioethylene per year, employing heteropolyacid based 

catalysts, between 160–270 °C at 1–45 bar with unreacted ethanol recirculated into the 

reactor [166]. The Atol process produces similar amounts of bioethylene per year, 

working, however, under harsh conditions, between 400-500 °C [166].  

Although these processes seem capable of producing a great amount of bioethylene, it 

is shaded compared to the annual capacity of a steam cracker, as the Formosa 

Petrochemical Corporation (Taiwan) which produces 2935000 tons of ethylene per year 

[162].  

Dehydration of bioethanol starts with the protonation of the hydroxyl group of the alcohol, 

which leaves a water molecule; this result in the loss of a proton from the  methyl group, 

to complete the catalytic cycle and thus regenerate the acidic catalyst, and subsequent 

hydrocarbon rearrangement to ethylene [162]. To improve the green credentials of the 

process, catalysts, reaction conditions, and reactor designs have been investigated. 

Herein, the different types of catalysts will be reviewed, and classed within four main 

categories, to summarise the achievements of scientific research of the last 60 years, 

these being phosphoric acid systems, oxide catalysts, molecular sieves catalysts and 

heteropolyacids.  

- Phosphoric acid derived catalytic materials were the first employed (in 1930) for

the industrial dehydration of ethanol. Easily produced by loading the phosphate group 

on clay or coke [167-169], but suffering  easy deactivation and requiring long 

regeneration times have result in these materials no longer being used.  

- Mixed oxides are another class of catalysts used for the dehydration of ethanol,

which are mainly alumina-based catalysts. In 1967, de Boer et al. [170] published a study 

on the dehydration of ethanol on η and γ-Al2O3 suggesting that the former exhibited 

higher reaction rates because possesses higher Al density per m2 of the outer surface 
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compared to the latter. It was also reported that ethylene production obeyed the 

Langmuir-Hinshelwood mechanism, while diethyl ether formation occurred following the 

Rideal-Eley mechanism. Roca et al [171] studied the reaction employing Si-Al catalytic 

system finding that the two reactions towards ethylene and diethyl ether are parallel 

reactions. In 1980, Halcon/Scientific Design Company developed the Syndol catalyst for 

dehydration reaction operating at 650 °C in an adiabatic reactor, obtaining 97% of 

ethylene selectivity and 97-99% ethanol conversion [172]. The catalysts, which was 

active for 8-12 months, is a multi-oxide catalyst based on Al2O3-MgO/SiO2 [168]. The 

extreme reaction temperatures brought researchers to investigate more thoroughly the 

Syndol-based catalytic systems, especially in trying to dope Al2O3 with mixed oxides. 

Ezzo et al [173, 174] investigated on the catalytic dehydration of ethanol employing γ-

Al2O3-Cr2O3 catalysts, discovering that the use of Cr2O3 helps to reduce the reaction 

temperature to 300 °C. El-Katatny et al. [175] synthesised dispersed α-Fe2O3 species 

(0-10 wt%) on γ-Al2O3 catalytic materials to use at low temperatures, between 140 and 

250 °C. Results revealed that the major improvement was observed only with high FeOx 

loading, 10 wt%, obtaining higher ethylene selectivity compared to raw γ-Al2O3. Doheim 

et al. [176] developed an Al2O3 catalyst adding MnO2 and Na2O to the structure, 

achieving high ethanol conversion at 350-450 °C and relatively low space time velocity. 

Chen et al.[177] improved the reaction setup by using a micro-channelled reactor, over 

the range of 380-440 °C, equipped with 10 wt% TiO2 on γ-Al2O3 catalyst. Ethanol 

conversion achieved 99.96%, and an ethylene yielded of 26 g gcat
-1 h-1. Platelet γ-Al2O3 

was recently tested by Lee et al. [178], proving that there is no difference in products 

distribution based on catalyst shape. It is also concluded that on γ-Al2O3, the ethoxide 

species is the key intermediate rather than the molecular ethanol, suggesting also that 

the formation of diethyl ether increases with ethanol pressure.  

The activated alumina based catalysts, although their good thermal stability, need high 

reaction temperatures and low space time velocities to have appreciable activity, 

increasing the overall energy consumptions and costs.  

- Molecular sieves catalysts are another class of catalysts suitable for dehydration

reactions. As described previously, molecular sieve materials have defined and ordered 

structures, with different physical and chemical properties, both tunable depending on 

the reagents used and synthesis procedure. A great variety of molecular shape-selective 

materials have been investigated, with ZSM-5 types and SAPO (Si-Al-phosphate) being 

the most studied.  

ZSM-5 molecular sieved catalysts are widely used in the petrochemical industry, being 

excellent shape-selective acid catalysts with a pore structure (0.56 x 0.55 nm) suitable 

for the transformation of light hydrocarbons. At first, these materials were utilised without 
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any modification, reaching high conversion and high selectivity. Anderson et al. [179] 

described in 1980 the wide range of catalytic reactions carried out with these type of 

materials, including alcohol dehydration. ZSM-5 materials are good catalysts for the 

dehydration of ethanol, and active at relatively low temperatures, between 200-300 °C; 

unfortunately, their acidity leads to the formation of coke and carbonaceous species, 

which deposit on the surface, reducing the efficiency of the catalyst on stream during the 

reaction time. Moser et al. [180] studied the dehydration of dilute bioethanol (20% 

vol/vol), obtained from the fermentation process, prior to distillation, employing ZSM-5 

and by varying the ratio Si: Al. Operating at high temperatures, 500 °C, the group found 

that higher selectivity towards ethylene was observed when the zeolite is silicon rich 

(high Si:Al). Modification of ZSM-5 is mainly focused on the prevention of coking, to 

increase life-time of the catalysts, and allow for operation at mild temperatures. It is 

reported that impregnating ZSM-5 with H3PO4 helps to reduce catalyst deactivation from 

coking, and retaining ethylene selectivity; however, in order to improve the catalytic 

conversion, higher temperatures are required (>300 °C) [169, 181-184]. Alkali 

compounds [185] have been also used to reduce acid strength and reduce catalyst 

deactivation. Zn and Mn on ZSM-5 [186] were also investigated as possible dehydration 

catalysts, showing no diethyl ether formation at 400 °C, revealing, however, low stability 

with time on stream. Cu and NaCu-ZSM-5 have been also investigated by Bun et al. 

[187], but side reactions, effected ethylene selectivity. Ni modified zeolites have been 

also investigated [188] and was shown to be a good co-catalyst to limit the production of 

heavy compounds. La-P modified ZSM-5 is the most promising catalyst, which operates 

at low temperature (240 °C) and is highly selective [189]. The most favourable 

composition is 0.5% La and 2% P, prepared by impregnation of the commercial catalyst 

with H3PO4 and La(NO3) solutions, dried and then calcined. Stability of over 70 hours 

was reported, although further investigations into stability at different operating 

conditions and evaluation on production cost are required to be applied on an industrial 

scale. Investigations on the activity of other zeolites, H-MOR, H-BEA, H-Y, H-USY, H-

FER and H-MFI, have been also carried out. Phung et at. [190, 191] found that coke is 

produced more on H-MOR and H-BEA, and that H-MOR is the most active converting 

ethanol. H-FER and H-USY exhibit the highest selectivity towards ethylene at 300 °C.  

SAPO type materials are a family of silico-alumino-phosphate materials (SAPO-n, where 

n indicates a specific structure type), developed by the Union Carbide Corporation (UCC) 

in New York, USA, 1984 [192]. SAPOs, name that derives from (SixAlyPz)O2, possess a 

crystalline microporous structure, with properties in between of zeolites and of 

aluminophosphates. Arias et al. [193] studied the activity of SAPO-5 and SAPO-11 

comparing these with the alumino-phosphate counterparts, AlPO4-5 and AlPO4-11, 
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focusing on the effects of structural pore architecture and Brønsted-Lewis character on 

products distribution. The group found that SAPO-n catalysts were more active and have 

higher yields towards ethylene at 320 °C compared to AlPO-n materials. SAPO-5 

showed 90% ethylene yield whereas SAPO-11 only 60%, which is correlated to the 

higher Brønsted acid density measured on the former. They concluded that no structural 

properties were observed to influence ethylene yields since pores of SAPO-5 are 

broader than the ones of SAPO-11. Zhang et al. [181] reported the metal modified 

SAPO-34, Ni-SAPO-34, is more selective than the undoped material, enhancing 

ethylene selectivity from 85% to 92% when the reaction is carried out at 350 °C. Chen 

et al. [194] reported Zn2+ and Mn2+ modified SAPO-11 and SAPO-34, revealing that M2+ 

catalysts are more active in dehydrating ethanol compared to their relative undoped 

materials, with Mn being more active than Zn. The group suggested that the introduction 

of M2+ led to the formation of a greater number of weak acid sites, which help the catalytic 

system in addition to the strong sites, while too strong acidity leads to ethylene 

polymerisation.  

Compared to alumina-based catalysts, modified molecular sieved are very active 

catalysts that work efficiently at low temperatures. Unfortunately these suffer from 

deactivation, through coking, and high production costs which have prevent their 

application for the industrial production of ethylene from ethanol dehydration [168].  

- Heteropolyacids are very versatile materials, which can be used for ethanol

dehydration to ethylene. They benefit for being active at lower temperature than other 

classes of catalytic systems, but suffer decreased ethanol conversion. Saito et al. [195] 

was one of the first study to employ heteropolyacids for the dehydration of ethanol, 

investigating on the transient behaviour based on pseudo-liquid catalysis model. They 

observed that even after the ethanol feed had stopped, formation of ethylene persisted 

for a considerable time, whilst diethyl ether production decreased with time, suggesting 

that ethylene formation proceeds via a unimolecular decomposition of adsorbed ethanol, 

whilst ether formation occurs between an activated molecule and physorbed ethanol 

molecules. In 1989, Okuhara et al. [68] employed Cs modified HPW as the catalyst for 

ethanol dehydration, finding that Cs-based materials have lower absorption capacities 

compared to their acid forms and higher partial pressures of ethanol are required to 

observe a pseudoliquid catalytic system. Haber et al. [196] studied the catalytic 

behaviour of supported HPW on Y-type zeolite and silica via simple wet impregnation 

carrying out the reaction at between 125 and 370 °C. They found that, at 300 °C, low 

loading of HPW on HY are much more active than their counterparts on silica, due to the 

absence of pseudo liquid phase arising from higher dispersion, indicating that the degree 

of HPW agglomeration is critical when silica is employed as support. The effect of HPW 
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loading was investigated by Bokade et al. [197], using montmorillonite as the support at 

250 °C. Additionally, the effect of diluted ethanol (80% m/m in water) was investigated 

on the reaction activity, as a more environmentally friendly feedstock. The 30 wt% of 

HPW was found the most active catalyst converting 74% of ethanol with 92% of 

selectivity at 250 °C, with Na doped HPW and HPMo also investigated although no 

catalytic improvements were apparent. The use of different HPAs as acid catalysts for 

the dehydration of ethanol was investigated by Varisli et al. [198]. They studied the 

activity of unsupported HPW, HSiW and HPMo, and discovered that both acid strength 

and thermostability are responsible for the higher performances of HPW, achieving 77% 

of ethylene selectivity, against 58% and 20% for HSiW and HPMo, respectively at 250 

°C. In 2011, Gurgul et al. [199] studied the activity of Ag modified HPW catalyst, 

Ag3PW12O40, for the dehydration of ethanol using air as carrier gas. The influence of air 

humidity on the catalytic activity of APW was also investigated, and it was found that, at 

220 °C with 2% of humidity, 70% of ethanol was converted achieving 99.8% of ethylene 

selectivity. However, SEM imaging and XPS analysis of the spent catalytic material 

revealed surface composition changes, with the formation of silver nano-structures. 

Increasing humidity to 9% leaded to full ethanol conversion but lower ethylene selectivity; 

although at these conditions the AgPW was stable. Ciftci et al. [200] studied the catalytic 

activity of HPW incorporated in MCM-41, comparing material prepared using a one-pot 

hydrothermal procedure against HPW impregnated of MCM-41. At 250 °C, the two 

catalysts showed different catalytic activity with the impregnated material being the most 

active and the most selective, 65% ethanol conversion and 70% ethylene selectivity, 

compared to the incorporated HPW, which achieved 30% conversion and 30% ethylene 

selectivity. In terms of catalyst stability, however, the incorporated HPW did not 

deactivate and no coke formation was observed up to 300 °C. Varisli et al. [201] studied 

the catalytic activity of HSiW supported on calcined and uncalcined MCM-41, proving 

that calcined MCM-41 lead to higher performances, with 80% ethanol conversion at 225 

°C, than the uncalcined one, with only 30%; although no information regarding catalyst 

stability and life span was reported. In 2015, Holclajtner-Antunovic et al. [202] 

synthesised Ag-modified and unmodified HPW supported on SBA-15 and TiO2 with 30 

wt% loading. The TiO2 supported catalyst showed poorer activities compared to the 

SBA-15 counterparts with AgPW/SBA-15 giving almost full conversion (98%) at 250 °C 

and 99% ethylene selectivity. Unfortunately, rapid deactivation lead to a loss of 50% 

activity and selectivity after only 5 hours on stream at 300 °C. Popa et al. [203] studied 

Cs modified HPMo (CsH2PMo12O40) supported on SBA-15 at different loadings, and 

observed that even at the low temperature of 150 ºC acetaldehyde was formed as a by-

product, with it reaching 20% selectivity at 300 °C. Popa et al. [204] found high amount 
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of by-products for Ni-PMo on SBA-15, which they attributed to Ni incorpotation leading 

to similar activation energies for both ethylene (dehydration path) and acetaldehyde 

(dehydrogenation path) formation.  

In conclusion, a great number of catalytic materials and reaction conditions have been 

investigated for ethanol dehydration. The production process of bioethylene is feasible 

and could easily integrated to other industrial processes, making it more economically 

advantageous. The worldwide demand for ethylene is enormous and whilst bioethanol 

to bioethylene is currently not at the stage to replace the fossil fuel based synthetic 

pathway further development, including catalysts design and refinement, will be critical 

if bio-derived ethylene is to become the major production route. 

1.6 Thesis aims 

To investigate HPA catalytic systems for surface-type reactions, the solventless liquid 

phase α-pinene isomerisation, and bulk-type reactions, the gas-phase dehydration of 

ethanol, to identify structure function relationships.  

To design heterogeneous supported catalysts based on the HPA family employing two 

different silica-based supports with different architecture and pore structure, being 

commercial non-porous fumed silica and the lab synthesised highly ordered mesoporous 

SBA-15, and to investigate the role of support on the physiochemical properties of the 

deposited HPAs. 

To study the reaction mechanism of α-pinene and ethanol dehydration over pure 

Brønsted acid HPA catalysts, and elucidate the underlying factors that result in 

deactivation of HPAs. 
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2.1 Catalyst synthesis 

2.1.1 Synthesis of SBA-15 

Well-ordered hexagonal (space group P6mm) mesoporous silica (SBA-15) was 

synthesised following the amphiphilic triblock copolymer procedure proposed by Zhao 

et al. [1]. Hence in order to form the emulsion, 10 g of Pluronic 123 was dissolved in H2O 

(75.5 cm3) at 40 °C, and stirred until complete dissolution. An aqueous solution 2 M of 

HCl (291.5 cm3) is added to facilitate the precipitation. The desired amount of silica 

precursor, tetraethyl orthosilicate (15.5 cm3), was added and left under vigorous stirring 

for 20 h at 40 °C. The precipitate was aged for 24 h at 80 °C, and finally the solid was 

filtrated and washed with distilled water and ethanol (total volume 1000 cm3) until 

complete neutralisation of the pH. Soft template removal was carried out by calcination, 

under air, for 6 h at 500 °C (1 °C/min).  

2.1.2 Synthesis of supported heteropolyacids 

A series of heteropolyacids, phosphotungstic acid (HPW), silicotungstic acid (HSiW) and 

phosphomolibdic acid (HPMo), supported on SBA-15 and fumed silica were prepared 

via wet impregnation [2], using different W or Mo wt% loadings (ranged 2-60 wt%). To 

perform the wet impregnation, the required amount of HPA (obtained using Equation 

2.1 [3]) was dissolved in 30 cm3 of methanol in a round bottom flask, containing either 

support and stirred for 12 h at room temperature. The solvent was evaporated at room 

temperature, and the remaining solid ground and stored in air, without additional thermal 

treatment. Adsorbed water is extremely important to retain chemical and physical 

properties of HPAs, as protonic acidity and cluster aggregation.  

Theoretical loading%=100%×
WHPA

(WHPA+ WSupport)

Equation 2.1 – Calculation of the theoretical loading. 

where WHPA is the mass of HPA corrected for the amount of crystalline water measured 

by thermogravimetric analysis and WSupport is the mass of support used. 
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2.2 Catalyst characterisation 

2.2.1 X-ray Fluorescence (XRF) 

Bulk elemental analysis was carried out via X-ray fluorescence on a Bruker S8 Tiger 

instrument, with the mass percentage of each element determined by SPECTRA 

software.  

Fluorescence occurs when a core electron is hit by high-energy X-ray causing its ejection 

as a photoelectron. Destabilisation of the K-shell, due to the resulting core hole, results 

in atomic relaxation with an electron from a high energy orbital dropping into the core 

hole [4], the demoted electron. This is accompanied by an energy loss through 

secondary X-ray photoemission at a unique wavelength characteristic of each atom. 

Emission lines in the XRF spectra typically identify K-L and L-M, transitions according to 

IUPAC nomenclature as shown in Figure 2.1.  

Figure 2.1 – Illustrative representation of X-ray fluorescence. 

Equation 2.2 describes the energy of the fluorescent photon associated with electron 

relaxation, termed Moseley’s law: 
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Equation 2.2 – Moseley’s law, 

where, me is the electron mass, qe is the electron charge, qz represents the nuclear 

charge, Z atomic number, h is Planck’s constant, ε0 is the vacuum permittivity and nf and 

ni are the quantum numbers of the final and initial electron states respectively. 

2.2.2 Carbon, Hydrogen, Nitrogen and Sulphur elemental analysis (CHNS) 

Bulk carbon content of spent catalysts was determined on a Thermo-Scientific Flash 

2000 CHNS/O analyser, equipped with Scientific MAS 200R autosampler, using He as 

carrier gas.  

For CHNS elemental determination, sample flash combustion process takes place in a 

quartz tube reactor heated at ~1000 °C, converting carbon to carbon dioxide, hydrogen 

to water, nitrogen to nitrogen gas or oxide and sulfur to sulfur dioxide, other products 

formed during the combustion are removed via adsorbents. The resultant gases are 

passed over high purity copper to remove any trace of oxygen and to convert the sample 

into the elemental gases (i.e. nitrogen oxide into nitrogen gas). GC separation and 

thermal conductivity detection (TCD) detection are used for the quantification of the 

elements.  

2.2.3 Powder X-ray diffraction (XRD) 

Powder XRD patterns were recorded on a Bruker D8 Advance Diffractometer equipped 

whit a LynxEye high-speed strip detector. Cu Kα (1.54 Å, 8.04 KeV) radiation was 

produced, monochromated using a nickel filter and calibrated to the diffraction pattern of 

quartz. Low angle data collection occurred between 2θ = 0.45-8° (step size 0.01° and 

scan speed of 0.014° s-1) and wide angle collection between 2θ = 10-80° (step size 0.02° 

and scan speed of 0.02° s-1). Powder samples were placed in a spinner, ensuring the 

surface was flat, without any further treatment.  

In situ measurements were performed under N2 flow, heating the sample to the desired 

temperature (ramp rate 10 °C min−1), and collecting the diffraction pattern after 60 min 

at each temperature. In-situ measurements were performed using an Anton-Paar XRK-

900 cell fitted with beryllium windows and gas flow was controlled using Bronkhorst EL-

flow select mass flow controllers (error of ± 0.1 ml min-1) and an Eurotherm 2604 

advanced controller. The X-ray source was aligned using the parallel beam geometry for 
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in-situ measurements, using a Gӧbel mirror and 0.2 mm slit, resulting in a spot size of 

0.3 mm. 

Solid matter is described as amorphous, for which there is a random arrangement of 

atoms, or crystalline where atoms are arranged in a two or three-dimensional ordered 

repetition of same unit cells. In crystalline solids, the interaction between X-rays and the 

powder sample, results in a specific X-ray diffraction pattern, characteristic of the unique 

atomic arrangement. Laboratory X-ray photons are typically produced from a copper 

anode, which in turn is excited by high-energy electrons generated from a tungsten 

filament. Cu Kα X-ray photons are directed at the finely packed powder sample, in which 

crystalline or ordered phases are homogeneously distributed. As shown in  

Figure 2.2, the elastic scattering of the incident radiation, in all directions, will generate 

constructive, if in-phase, and destructive, if not in-phase, interference. These 

interference diffraction patterns are indicative of the phase and structural order within 

solids [4-6]. 

Figure 2.2 – Schematic of X-ray interference with atomic lattice (top); relation between 

lattice spacing (d) and correlation between λ and θ (bottom). 

According to the Bragg’s Law (Equation 2.3), constructive interference occurs for specific 

values of θ when the distance between scatters is equal to the X-ray wavelength 

multiplied by an integer value [7]: 
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nλ = 2d sin (θ) 

Equation 2.3 – Bragg’s law. 

where, n is an integer number (1, 2, 3 …), referred to the number of reflections, λ is the 

wavelength of the incident wave, d is lattice distance, and θ is the diffraction angle.  

Lattice planes of crystallites are denoted by the Miller indices (h, k, l), which indicate the 

set of all planes with same symmetry, that intercept the unit cell. The indices are 

inversely proportional to the lattice vectors. When the unit cell is described as a cubic 

system, the lattice vectors are equals (a = b = c), and the planes spacing can be also 

calculated as: 

d=
a

√h
2
+k

2
+l

2

Equation 2.4 – d spacing calculation, where a = lattice parameter and h,k,l are Miller 

indices. 

For laboratory X-ray sources, crystalline materials and ordered porous solids generate 

diffraction peaks only when the length scale of periodicity exceeds around 2 nm; 

additionally, a decrease of particle size leads to an increase of peak width. Thus, large 

crystallites with numerous lattice planes create well-defined and more intense peaks due 

to multiple constructive diffractions; whereas, in small crystals this effect does not occur 

leading to less intense peaks [6]. The Scherrer Equation describes the relation between 

particle size and peak FWHM [8]:  

PSav = 
kλ

(√(B2
+S

2)cosθ)

Equation 2.5 – Scherrer equation. 

where S is the systematic broadening caused by the diffractometer; B is the FWHM of 

the diffraction peak; k is a constant (0.9); and PSav is the averaged particle size (Å). 

As deduced from Bragg’s law (Equation 2.3), the position of the diffraction peaks is 

inversely proportional to sample’s periodicity. Thus, crystalline materials display 

diffraction peaks at high values of 2θ, within 10-80° (wide angle analysis), whereas 

macromolecules and highly ordered porous materials, as SBA-15 and MCM-14, which 

exert a long-range order due to the pore network, exhibit peaks between 0-10° (low angle 
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analysis). Figure 2.3 displays how to derive structural properties of mesoporous 

materials from XRD analysis.  

Figure 2.3 – Schematic of the relationship between the hexagonal SBA-15 structure, d 

(100) = layer spacing and a = pore spacing.

When Miller indices and Bragg’s law are combined, as in Equation 2.6, the space 

between layers, d(100), is measured, and a can be finally deduced by geometrical 

relationship. Additionally, pore spacing can be hence combined with porosimetry 

analysis to calculate wall thickness of the ordered mesoporous structure by simply 

subtraction with pore diameter.  

a=
λ√h

2
+k

2
+l

2

2 sin θ

Equation 2.6 – Inter layer spacing calculation. 

where a = lattice parameter; λ is wavelength of Cu Kα radiation; h,k,l are Miller indices; 

and θ is the diffraction angle. 

2.2.4 Nitrogen porosimetry 

Nitrogen porosimetry was conducted on a Quantachrome Nova 4200e porosimeter, 

employing, for data analysis, Novawin v11.0 software. Samples were degassed at 120°C 

for 4 h prior to N2 adsorption at −196 °C. BET surface areas calculated over the range 

P/P0 = 0.05–0.2, in which a linear correlation was observed [9]. Mesopore size 

distributions were obtained on the desorption isotherm, and calculated using the BJH 

model [10]. 
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Adsorption, of atoms or molecules on surface of materials, occurs by two methods, 

physisorption or chemisorption. N2 adsorption at low temperature is classified in the 

former and is widely used to characterise textural properties of solid materials. 

Physisorption occurs due to weak van der Waals forces (dipole-dipole interaction) that 

occur between the adsorbate, in this case nitrogen, and adsorbent, the surface of the 

solid.  

At constant temperature and pressure, adsorption leads to a decrease in system 

entropy, thus, if the process is to be spontaneous (negative Gibbs free energy), then 

adsorption enthalpies must always be negative (exothermic) [11, 12]. The enthalpy of 

physisorption is usually <20 kJ mol-1, insufficient for bond breaking, with the energy 

produced dissipated as thermal motion [12]. N2 adsorption is performed at its 

condensation temperature, -196 °C, at which temperature adsorption is dominated by 

London forces (sub-category of the van der Waals) through induced dipoles. These 

dispersion forces are responsible for attractive adsorbate-adsorbate and adsorbate-

surface interactions. According to the dynamic equilibrium of the system, the rate of 

adsorption equal the rate of desorption, and the volume of N2 adsorbed is recorded as a 

function of pressure at constant temperature to produce an adsorption isotherm [13]. 

The isotherm shape depends on the nature of the adsorbent; IUPAC classification [14] 

define six different types as shown in Figure 2.4-left. Microporous materials (such as 

activated carbon, zeolites and some porous oxides) display a reversible type I isotherm, 

where adsorbent and adsorbate strongly interact within the micropores. Type II isotherm 

is observed for non-porous and macroporous materials, in which point a represents the 

monolayer completion and the beginning of multilayer adsorption. Type III occurs when 

interactions between adsorbate molecules are stronger than those with the adsorbent, 

characteristic of non-porous material. Type IV isotherm possess, as type II, a rounded 

knee shape (point a), which indicates monolayer formation prior to multilayer formation; 

this isotherm also exhibits a hysteresis loop associated with capillary condensation 

occurring within the mesopores. Type V isotherms also show hysteresis, which is 

common for materials that have mesoporosity; however, for type V a greater interaction 

occurs between adsorbate molecules than adsorbate-adsorbent. Finally, type VI 

isotherms display a stepwise multilayer sorption, which is due to a uniform non-porous 

surface. 
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Figure 2.4 – (left) IUPAC nomenclature for the six type of isotherms; relative pressure 

is defined as P/P0; the volume adsorbed (cm3 g-1); (right) IUPAC nomenclature for the 4 

types of hysteresis loop. [15] 

As described above, mesoporous structures exhibit, generally, either type IV or type V 

isotherms, where capillary condensation leads to the formation of a hysteresis loop. 

Depending on the pore structure, a variety of shapes have been characterised and are 

here reported in Figure 2.4-right [14]. H1 and H2 are often attributed to uniform well-

shaped pores and ink-bottle pores respectively, while slit-shaped pores produce H3 and 

H4 (with type I character). 

The surface area measurement employs the Brunauer-Emmet-Teller (BET) [9] 

calculation (Equation 2.7) and is widely used to characterise textural properties of 

solids.  
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sa=
VmσNa

mv

Equation 2.7 – BET equation. 

where P is pressure; P0 is the saturation pressure; Va refers to the volume absorbed and 

Vm to the monolayer volume; C is the multilayer adsorption parameter; sa is the surface 

area, σ is the N2 cross-sectional area (0.162 nm2), assuming hexagonal close packing; 

Na, the Avogadro number; m, sample mass, and, finally, v, the gas molar volume. 

Pore size distributions were calculated using the BJH method (form the researchers 

Berret, Joyner and Halenda) [10], which is the most widely used for mesoporous 

materials. It employs an extension of the Kelvin model (Equation 2.8) to describe pore 

filling, assumes cylindrically shaped pores, and a hemispherical meniscus with zero 

contact angle.  

ln (
P

P0

)=-(
2γυcos θ

RTrm
) 

Equation 2.8 – Kelvin equation. 

where P/P0 refers to the relative pressure in equilibrium with condensed gas meniscus; 

γ is the liquid surface tension; ʋ is the condensed adsorbate molar volume; cosθ, the 

adsorbate surface contact angle (0 for N2 thus cosθ = 1); R, the gas constant; T the 

temperature, and, finally, rm, the mean radius of condensed gas meniscus.  

2.2.5 Scanning transmission electron microscopy (STEM) and energy dispersive 

X-ray analysis (EDX)

Scanning TEM (STEM) images were recorded on an aberration-corrected JEOL 2100F 

FEG STEM operating at 200 keV and equipped with a spherical aberration probe 

corrector (CEOS GmbH) and a Bruker XFlash 5030 EDX. The powder samples were dry 

deposited onto 300-mesh carbon coated copper grids. Micrographs were analysed using 

ImageJ 1.41 software. 

A scanning transmission electron microscope (STEM) is a type of transmission electron 

microscope (TEM) in which the electron beam is scanned over the sample in a raster 

(moving from side to side and from top to bottom), similarly to scanning electron 

microscope (SEM). In the STEM configuration (see Figure 2.5), a high-energy electron 

beam is firstly focused to form a small probe via a series of condenser lenses to provide 
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an atomic-scale spot and enhance the resolution. The probe is further reduced and fired 

onto the sample via a combination of objective lenses and an aberration system. The 

scan coils allow the beam to be moved rastering the sample, which, makes the STEM a 

suitable technique for analytical purposes, employing Z contrast dark-field imaging 

(called high-angle annular dark-field HAADF), energy dispersive X-ray (EDX) and 

electron energy loss spectroscopy (EELS). When the probe strikes onto the sample, the 

elastically transmitted electrons exhibit different angles with the respect of the optical 

axis [16, 17]. Bright field detector, perpendicular to the transmitted beam, collects 

information about the electrons that leave the sample with a relatively low angle 

compared to the incident beam convergence angle. HAADF is an annular detector that 

collects the electrons transmitted at higher scattering angles. Signals are proportional to 

sample density and thickness but also to the atomic number of the sample, hence the 

heavier the atom, the higher the intensity of the scattering, and the brighter the image 

will be [18]. The combination of HAADF and the raster scan technique, allow the exact 

identification of the atoms in the specimen. When the electrons transmitted are no-

elastically scattered, the amount of energy loss can be measured (EELS) giving 

information about the chemical bonding, valence and conduction bands electronic 

properties and so. EDX measurements use the X-rays emitted from the sample hit by 

the probe, which excites core holes in atoms within the sample. Relaxation of higher 

energy electrons into these core holes is accompanied by X-ray fluorescence with an 

energy characteristic of the element and hence provides information about the atomic 

composition of the sample [19]. 
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Figure 2.5 – Schematic STEM microscope configuration [20]. 

2.2.6 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) was performed on a Mettler Toledo TGA/DSC 2 Star 

System calibrated with Al2O3, using Mettler StarI analysis software for data analysis 

(Figure 2.6). Samples (5-10 mg) were placed into an alumina crucible (70 µL) and 

heated between 40 and 800°C employing a ramp rate of 10°C min-1, under N2 (~60 mL 

min-1). The sample’s mass was recorded as function of temperature, and analysed after 

subtraction of the corresponding mass loss of an empty crucible.  

TGA is an important technique, which monitors mass changes under applied heat, and 

reveals the thermal stability of components within a sample. For instance, TGA analysis 

of HPA samples was employed to determine water desorption, which occurs in two 

discrete steps (as reported in Chapter 3), and heteropolyanion decomposition. Analysis 

of the support also revealed possible synthetic residues.  
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Figure 2.6 – Picture showing Mettler Toledo TGA/DSC 2 Star System. 

2.2.7 Propylamine chemisorption and temperature programmed desorption 

(TPD) 

N-propylamine (Sigma Aldrich, ≥99%) chemisorption, followed by temperature

programmed desorption (TPD) allowed acid strength analysis of solid samples. 10 mg 

of materials were impregnated with 0.5 cm3 of n-propylamine and dried under vacuum, 

prior analysis, at 40°C. Samples (5-10 mg) were placed into an alumina crucible (70µL), 

and TPD was performed on a Mettler Toledo TGA/DSC 2 Star System between 40 and 

800°C, using a ramp rate of 10°C min−1 employed with a Pfeiffer Vacuum, ThermoStar 

MS spectrophotometer detector (Figure 2.6).  

Solid acidity was determined studying the desorption temperature (indicated by mass 

loss) of reactively-formed propene, formed at the catalyst acid sites (followed by MS). 

The reaction to ammonia and propene is an elimination similar to the Hofmann reaction, 

which produces alkenes from quaternary ammonium salts via anti-Saytsev elimination 

[21]. In our case, the alkyl amine reacts with the acid sites of the sample in a 

concentrated elimination, and extraction of the most available proton of the alkyl chain 

hence forming the alkene [22-24]. n-Propylamine was chosen over other amine, as 

ethylamine or butylamine, because it is less subject to secondary reactions; while the 

iso-amine was rejected due to the lower temperature of reaction to alkene and ammonia. 
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In Figure 2.7 is reported the proposed mechanism that occurs over the surface of 

catalysts: 

Figure 2.7 – n-Propylamine proposed mechanism over protonic acid sites [22]. 

2.2.8 Diffusive reflection infrared Fourier transform spectroscopy (DRIFTS) 

DRIFT spectra were collected on samples diluted in KBr (5 wt%) powder and stored at 

70 °C under vacuum before analysis. Spectra were recorded at 120 °C on a Thermo 

Scientific Nicolet iS50 FT-IR spectrometer equipped with a praying mantis environmental 

cell (Figure 2.8). Data collection was employed with Omnic software and spectra plotted 

in Kubelka-Munk form as function of wavenumber. In situ measurements were 

performed on samples diluted in KBr (10 wt%) powder and stored at 120 °C prior 

analysis. Spectra were collected under N2 heating the sample at the desired temperature 

(ramp rate 10 °C min−1), between 120 and 600 °C, after 30 min at each temperature.  

Infrared (IR) spectroscopy is a non-destructive technique which studies “vibrational 

transitions” associated with changes in dipole moment during exposure of molecules to 

infrared light [7]. IR radiation has lower energies than visible light, i.e. longer wavelength 

and lower frequencies. The infrared region (from 100 μm to 1 μm of the electromagnetic 

spectrum) is divided into three sub-regions named on their energy values compared with 

the visible range: Near-IR (close to the visible range), Far-IR and Mid-IR. Depending on 

the functional groups and sample surface roughness, incident radiation can be 

transmitted or reflected with energy adsorptions characteristic of the molecular species 

present whose vibrational modes are excited [12].  

Samples were first diluted with an inert IR transparent material, potassium bromide, to 

prevent complete adsorption of incident photons. Analysis was performed in reflections 

mode (DRIFTS) employing the Kubelka-Munk formalism to reflection spectra [25]: 
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f(R∞)=
(1-R∞)

2

2R∞

=
k

s

Equation 2.9 – Kubelka-Munk equation. 

where R∞ is the absolute reflectance of the layer, s is the scattering coefficient and k is 

the molar absorption coefficient. 

Figure 2.8 – Scheme showing DRIFT configuration (right) and the praying mantis 

environmental cell (left). 

2.2.9 NH3 titration and temperature programmed desorption (TPD) 

Surface acidity was also studied via ammonia chemisorption using a Quantachrome 

ChemBET3000 system with a MKS Minilab MS detector. Samples (25–50 mg) were 

placed in a quartz U-shaped chemisorption cell and outgassed at 150°C under flowing 

He (150 cm3 min−1) for 4 h prior to titration. Manual injections (0.05 cm3) of 10 vol% NH3 

in He were carried out at 100°C, and the NH3 signal (17 m/z) monitored in real-time. 

Consecutive injections were performed until complete saturation of acid sites (indicated 

by first breakthrough and then a plateau in the signal of non-adsorbed ammonia, see 

Figure 2.9) occurred. Temperature programmed desorption (TPD) was subsequently 

performed on ammonia saturated samples between 100 and 800°C employing a ramp 

rate of 10°C min−1 under flowing He (150 cm3 min−1).  

Gas inlet

Gas outlet

Incident beamReflected beam

Focusing mirrors



81 

Figure 2.9 – Photo showing consecutive performed injections, revealing the 

breakthrough zone and the plateau zone. 

As already described for N2 porosimetry, atoms and molecules can adsorb on the 

surface of solid compound via physical or chemical adsorption [12]. NH3 adsorption over 

solid acids occurs via the latter. In chemisorption, strong interactions exist between 

adsorbate species and specific sites on the surface, which in the case of a catalyst 

usually correlate with the active sites. The enthalpy of adsorption due to chemical bond 

formation varies greatly depending on the adsorbate and surface involved; NH3 

chemisorbed on Fe for instance exhibits a ΔHads around 200 kJ mol-1 [12]. Chemisorption 

can be molecular (non-dissociative) or dissociative depending on the nature of the 

components, temperature and pressure.  

The technique is used to calculate the amount (mmol) of ammonia chemisorbed per g 

of sample, assuming a 1:1 stoichiometry between ammonia and acid sites, thus, enables 

the determination of the acid site density of samples. TPD can be also performed to 

determine the adsorption energy of NH3 from measurement of its desorption temperature 

during sample heating.  

2.2.10 X-ray photoelectron spectroscopy (XPS) 

XPS analysis was carried out on a Kratos Axis HSi photoelectron spectrometer equipped 

with a charge neutralizer and magnetic focusing lenses, employing monochromatic Al 

Kα radiation (1486.6 eV). Spectral fitting was performed using CasaXPS version 2.3.14, 
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with W 4f spectra and Mo 3d spectra fitted with a common Doniach-Sunjic lineshape and 

FHMW. Errors were estimated by varying a Shirley background across reasonable limits. 

XPS analysis gives useful information on elemental composition, electronic and 

chemical state of solid sample, oxidation state, and electronegativity of any ligands. It is 

a surface-sensitive technique due to the short mean free path of excited photoelectrons, 

which in laboratory instruments are typically only detectable from the top 1-3 nm of a 

surface [11]. Electron analysers detect the intensity of emitted photoelectrons with kinetic 

energies spanning 0-1500 eV, which yields the surface composition of the material [26]. 

Measurements are normally made under ultra-high vacuum (UHV) due to the short mean 

free path of the photoelectrons which must be detected, with spectra usually reported 

according to the binding energy of photoelectrons. Photo-excitation occurs as previously 

described, with incident X-ray photons exciting core electrons, which are ejected as 

photoelectrons with kinetic energies characteristic of each element (Figure 2.10). Atomic 

relaxation results in X-ray fluorescence, and the emission of secondary photoelectrons 

via the Auger process, in which some energy from a demoting electron is transferred to 

a valence electron which is ejected from the atom with a specific kinetic energy. Auger 

energies are independent of the X-ray radiation source inducing them and hence can be 

used to discriminate elements whose photoelectron energies from direct core-hole 

excitation overlap [26].  

Figure 2.10 – Photoemission and Auger process. 

The binding energy of an emitted photoelectron is related to its kinetic energy by 

Rutherford’s law (Equation 2.10).  
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Ek=hν-Eb-φ 

Equation 2.10 – Kinetic energy evaluation via XPS. 

where Ek is the kinetic energy of the photoelectron, h is Planck’s constant, 𝜈 is the 

frequency of the exciting radiation, Eb is the binding energy of the photoelectron, and 𝜑 

represents the work function of the spectrometer, and is related to the instrument.  

This technique allows the discrimination of photoelectrons arising from quantum states. 

The cumulative angular momentum of electrons (j) is described by the relation j = l + s; 

where s is the spin angular momentum (s) and l, the orbital angular momentum, 0, 1, 2, 

3… labelled respectively as s, p, d, f… . Thus, for each l ≥ 1, being s either +1/2 or -1/2, 

j will possess a couple of sub-levels, which will generate two photoemission peaks.   

Quantum theory calls this effect the spin-orbit splitting, with the energy separation (due 

to angular momentum coupling) and relative intensity of spin-orbit split components 

determined by the atomic orbitals from which the photoelectron arises.  

2.2.11  Raman spectroscopy 

Raman spectra were obtained on a InVia Raman Microscope Renishaw fitted with 532 

and 633 nm lasers, and Wire 3.4 software. Data were collected ranging between 100–

1200 cm−1, employing a 532 nm source and x20 lens magnification; samples were 

exposed for 10 sec to the beam source, recoding 50 accumulations at 50 % laser power. 

Raman spectroscopy originates from the interaction of light with matter; however, it 

focuses on molecular vibrations associated with inelastically scattered photons 

generated by an intense laser radiation [7]. According to quantum theory, molecules 

exhibit discrete rotational and vibrational energy levels. When hit by a photon, the energy 

of a compound transits to an excited virtual state. The descending process, to a lower 

real state, occurs via photoemission. The emitted photons which exhibit different 

frequencies than the ν0, lead to Stokes and anti-Stoke emissions, as depicted in Figure 

2.11 [4, 12]. The Stokes emission possesses longer wavelength (lower energy) than the 

incident radiation, while it is greater than ν0 for the anti-Stokes.  



84 

Figure 2.11 – The Raman effect. 

2.3 Catalytic tests 

Catalytic tests were performed employing synthesised solid catalysts, to study the effect 

of support architecture and acidic strength (by changing the type of HPA) first, on the 

alpha-pinene isomerisation, a batch type reaction; and second, on ethanol dehydration 

a flow type reaction.  

2.3.1 Batch reaction – α-Pinene isomerisation 

The catalytic conversion of α-pinene was carried out in a Radleys Starfish glass reactor 

(25 mL), mixing the solution with a magnetic stirrer, under air at 60 °C (Figure 2.12). 

The reaction mixture was prepared mixing 0.2 cm3 of internal standard tetradecane to 

126 mmol of α-pinene in a round-bottom flask. The homogeneous mixture was stirred at 

700 rpm and heated, thus 100 mg of catalyst were added. Aliquots (0.25 mL) were 

sampled periodically during 6 h of reaction, filtered, diluted in DCM and analysed by 

using a Bruker Scion 456-GC with an 8400 autosampler, fitted with a CP-5 column (30 

m × 0.32 mm × 0.25 µm) and flame ionisation detector.  
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Figure 2.12 – Pictutre showing the Radleys Starfish reactor. 

Response factor values determined from multipoint calibration curves allowed the 

calculation of product yield. An exemplary chromatogram is reported in Figure 2.13. 

Conversion and selectivity were determined employing Equation 2.11; activities were 

obtained from the linear portion of reaction profiles. Experiments were repeated twice 

for reproducibility and values are quoted±2.  

Conversion / %=(
[molt=0-molt]

molt
)×100 

Product selectivity / %=(
moli

∑molproducts
)×100 

Equation 2.11 – Conversion and product selectivity. 
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Figure 2.13 – Typical chromatogram for α-pinene isomerisation. 

 

2.3.2 Continuous flow reaction – Ethanol dehydration 

Gas phase reactions were undertaken using a glass tube continuous plug-flow reactor 

(10 mm of inner diameter, 420 mm of total length), packed with 5 cm3 of fixed catalytic 

bed, and reaction occurred at atmospheric pressure ( 

Figure 2.14). All the lines were heated at 100 °C in order to prevent condensation of 

liquid compounds along the system. The quartz reactor was heated using a Carbolite 

VST 12/200 Split Tube furnace. On-line GC analysis for product detection were 

performed using a Shimadzu GC-2014 fitted with HP-PLOT Q column 

(30mm×0.53mm×40µm), flame ionisation detector (FID) and thermal conductivity 

detector (TCD) and equipped with Vici Valco Instrument E36-220 gas-sampling valve 

100°C. Data analysis was performed with LabSolutions software. Multipoint calibration 

curves were employed to calculate response factor of liquid and gas compounds, using 

liquid solutions and well-defined gas mixtures (see List of chemicals) respectively.  
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Figure 2.14 – Continuous flow reactor – photo (top); scheme (bottom). 
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Figure 2.14-bottom, liquid feed was added to the N2 stream using a 1200 capillary Iso 

Pump Infinity Agilent, to avoid back-pressure of gas. At the evaporator unit, a ½” 

stainless steel tube filled with quartz chips, the total stream was homogenously mixed 

and in gaseous phase. By-pass line and reactor line, were switched alternatively as 

required. Reaction conditions were as follows: 

Ethanol dehydration 

Nitrogen 50 cm3min-1, Ethanol 0.2 mLmin-1 liquid (0.0034 mol min-1). Stainless steel 

pipes heated at 100 °C and reactor temperature ranging between 150-350°C. 

Figure 2.15 – Typical chromatogram for ethanol dehydration reaction. 
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2.4 List of chemicals 

• Pluronic 123 (poly(ethylene glycol)-block-poly(propylene glycol)-block-

poly(ethylene glycol)), Sigma Aldrich, Mn ~5,800. 

• Hydrochloric acid (HCl), VWR Chemicals, 37%). 

• Tetraethyl orthosilicate (TEOS), Sigma-Aldrich, ≥99.999%. 

• Ethanol, VWR Chemicals, ACS reagent.  

• Silica, fumed, Sigma Aldrich, powder. 

• Phosphotungstic acid (HPW), Sigma Aldrich, ≥99.9%. 

• Silicotungstic acid, (HSiW), Sigma Aldrich, ≥99.9%. 

• Phosphomolybdic acid (HPMo), Sigma Aldrich, ≥99.9%. 

• Methanol, VWR Chemicals, ACS reagent. 

• α-Pinene, Sigma Aldrich, 99.9%. 

• Tetradecane, Sigma Aldrich, ≥99%. 

• Dichloromethane (DCM), Thermo Fisher Scientific, Laboratory reagent grade. 

• β-Pinene, Sigma Aldrich, ≥98%. 

• γ-Terpinene, Sigma Aldrich, 97%. 

• Terpinolene, Fluka analytical, purum, ≥97%. 

• Camphene, Sigma Aldrich, 95%. 

• α-Terpinene, Sigma Aldrich, 85%. 

• Absolute, Ethanol, Thermo Fisher Scientific, ≥99.9%. 

• 1-Butene gas, Varian Analytical Ins, 1.2% (mol/mol). 

• Ethylene gas, Air Product Inc., 1% (vol/vol). 

• CO2, Air Product Inc., 10% (vol/vol). 

• Diethyl ether, Fluka analytical, ≥99.0% (GC). 

• Potassium bromide (KBr), Spectograde for IR spectroscopy, Thermo Fisher 

Scientific 
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3.1 Introduction 

Heteropolyacids (HPAs) and their salts, often referred to as polyoxometalates as they 

are part of the family of mixed oxides [1], are unique solid acids, widely utilised as 

heterogeneous catalytic materials due to their highly tuneable properties, which facilitate 

their application for a broad spectrum of chemical transformations. Their synthesis arises 

from the condensation of oxoanions, and the final crystal structure depends on the 

number of condensed units, as depicted in Figure 3.1.  

 

Figure 3.1 – Representation of the most common HPAs architectures. 

Kegging structured HPAs, with the general formula Hn(MX12O40)n−, have been studied, 

with both unsupported and supported variants. Silica support materials, fumed silica and 

high surface area mesoporous SBA-15 were utilised to optimise HPA dispersion and 

therefore proton availability, with the resulting positive effect expected to be beneficial in 

the catalytic conversion of gas and liquid substrates [2, 3]. The physiochemical 

properties of the catalytic materials have been evaluated through the utilisation of a wide 

range of characterisation techniques, which will facilitate the elucidation of structure 

relationships in subsequent catalytic screening chapters.  

3.2 Results and discussion 

3.2.1 Phosphotungstic acid based materials 

The inherent properties of supported and unsupported phosphotungstic acid (HPW), on 

fumed silica and SBA-15, are reported to probe on the role of both support architecture 

and HPW loading.  

3.2.1.1 X-ray Fluorescence (XRF) 

Elemental analysis of the supported materials, synthesised using the incipient wetness 

impregnation methodology, as described in Chapter 2, was carried out to determine 
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actual wt%. Table 3.1 compares nominal with calculated HPW loadings, which were 

obtained from the stoichiometry of H3PW12O40 using the W wt% measured via XRF 

analysis. Data reveal that the calculated loadings are close to those desired (nominal), 

indicating that the synthetic protocol chosen is a reliable way to support HPW on Si-

based materials. From here on, the physicochemical properties of catalytic materials will 

be evaluated to the bulk W mass loadings reported. 

Table 3.1 – XRF elemental analysis of HPW supported on fumed SiO2 and SBA-15 and 

corresponding unsupported material. 

HPW/Fumed Silica  HPW/SBA-15 

Measured 
bulk W 
loading / wt% 

Calculated 
HPW loading 
/ wt% 

Nominal 
HPW loading 
/ wt% 

 Measured 
bulk W 
loading / wt% 

Calculated 
HPW loading 
/ wt% 

Nominal 
HPW loading 
/ wt% 

2.2 (±0.1) 2.9 (±0.3) 5  3.2 (±0.3) 4.3 (±0.3) 5 

6.1 (±0.1) 8.2 (±0.1) 10  9.0 (±0.1) 12.1(±0.1) 10 

6.2 (±0.1) 8.3 (±0.1) 15  11.9 (±0.1) 16.0 (±0.1) 15 

11.7 (±0.1) 15.7 (±0.1) 20  16.9 (±0.1) 22.8 (±0.1) 20 

15.5 (±0.1) 20.9 (±0.1) 30  19.9 (±0.1) 26.8 (±0.1) 30 

34.9 (±0.1) 47.1 (±0.1) 40  25.4 (±0.1) 34.2 (±0.1) 40 

37.6 (±0.1) 50.7 (±0.1) 50  38.2 (±0.1) 51.6 (±0.1) 50 

59.6 (±0.1) 80.4 (±0.1) 75  55.7 (±0.1) 75.2 (±0.1) 75 

74.0 (±0.1) 100.0 (±0.1) 100  74.0 (±0.1) 100.0 (±0.1) 100 

 

3.2.1.2 Powder X-ray diffraction (XRD) 

Low angle diffraction patterns of the parent SBA-15 support and HPW derivatives 

revealed the characterisitic refelctions of P6mm SBA-15 space group, over the 2θ range 

of 0.8°-3°, which are indexed as the d(100), d(110) and d(200) reflections, shown in 

Figure 3.2, confirming a highly ordered nature of the porous SBA-15 material and its 

preservation after impregnation with HPW. Unit cell calculations from the d(100) 

reflection using Bragg’s law and pore spacing (see Chapter 2, Equation 2.3 and Figure 

2.3) were calculated for HPW/SBA-15 samples only. Fumed silica does not possess a 

long-range ordered pore structure and therefore does not exhibit reflections in the low 

angle region. As shown in Table 3.2, for HPWs supported on SBA-15, the mesopore 

architecture is unaffected with neither expansion nor contraction of the unit cell is 

observed as a function of W loading.  
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Figure 3.2 – (a) Low angle powder XRD pattern of parent SBA-15 and (b) low angle 

powder XRD of HPW functionalised SBA-15. 

Table 3.2 – Unit cell parameter and corresponding pore spacings for HPW/SBA-15 

samples.  

HPW/SBA-15 

Bulk W loading / wt% d(100) / nm Pore spacing (a) / nm 

SBA-15 8.5 (±0.1) 9.9 (±0.1) 

3.2 8.6 (±0.1) 9.9 (±0.1) 

9.0 8.6 (±0.1) 10.0 (±0.1) 

19.9 8.6 (±0.1) 10.1 (±0.1) 

38.2 8.7 (±0.1) 10.0 (±0.1) 

55.7 8.7 (±0.1) 10.1 (±0.1) 

Figure 3.3 shows the wide angle XRD patterns of the two supports, fumed silica and 

SBA-15, the HPW functionalised materials, and the pattern of unsupported HPW. The 

bare supports reveal a single broad reflection peak within 22-23°, for both mesoporous 

SBA-15 and fumed silica, revealing the amorphous nature of these materials. The 

pattern of the unsupported HPW (74 wt% of bulk W) is in good agreement with the 

literature [4], which possesses a cubic structure, space group Pn3m (CCB), with a 

calculated unit cell of 12.1 Å which agrees with the literature reported value of 12 Å [5-

7], evaluated from the most intense d(222) reflection peak at 25.4°, and all observed 

reflections can be index against the peaks of HPW, which is indicative of its high 

crystalline purity. 
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Figure 3.3 – (a) Powder XRD patterns for fumed silica and HPW/fumed silica, and (b) 

SBA-15 and HPW/SBA-15 with pure HPW shown for reference.  

As reported in Figure 3.3-(a), the HPW/fumed silica materials exhibit the characteristic 

reflections of phosphotungstic acid crystals at loading >6.2 wt%, with increasing 

reflection intensity with W loading. For the HPW/SBA-15 series (Figure 3.3-(b)), clear 

reflections appear at the higher loading of 16.9 wt%, again with increasing intensity with 

W wt%. This observation of reflections at higher loadings for the SBA-15 series, is 

attributed to increased dispersion of the Keggin units (K.U.), with smaller crystallites 

which are not XRD visible earlier in the series being size detection limits ~2-3 nm. Thus, 

the level of interaction between the K.U. and silica surface is greater on SBA-15 than on 

fumed silica, due to its porosity and therefore intrinsic high surface area, which enhances 

dispersion and inhibit HPW aggregation (responsible of the formation of bigger clusters). 

In addition, all HPW supported samples display comparable diffraction patterns, with no 

evidence of unit cell growth or contraction, from the absence of peak shift, with constant 

unit cells of 12.1 Å. Particle size, see Table 3.3, were evaluated using the Scherrer 

equation (Chapter 2, Equation 2.5), using the most intense reflections; in both series, 

the averaged crystallite size increases as a function of loading. As discussed in Chapter 

1, the solid-state architecture of heteropoly compounds can be described hierarchically, 

with primary, secondary and tertiary substructures. The single Keggin polyanion, the 

primary structure, is ca. 0.8 nm [8]; the HPW coordinated to protons and water molecules 

represents the secondary structure ca. 1.2 nm, and finally the tertiary structure considers 

bigger agglomerates of nonporous crystallites ~10 nm [1]. Additional 5-8 nm particles 

can be associated to medium size agglomerates, which fall in a sub-tertiary structure. 

Particle size results show that tertiary and sub-tertiary structured HPW are XRD visible 
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because above the detection limitation of the technique, with nanoparticles sized 9-11 

nm, formed on SBA-15 only at high loading (>16.9 wt%), while on fumed silica, the 

particles range in size between 9.2 and 18.3 nm, from 6.2 wt%. 

Table 3.3 – Particle size dependence on W loading for fumed silica and SBA-15 series.  

HPW/Fumed Silica   HPW/SBA-15 

Bulk W loading / 
wt% 

Particle size / nm 
 

 
Bulk W loading / 

wt% 
Particle size / nm 

 

2.2 -  3.2 - 

6.1 9.2 (±0.2)  4.3 - 

6.2 9.4 (±0.2)  9 6.8 (±0.2) 

11.7 9.5 (±0.2)  16.9 7.9 (±0.2) 

15.5 11.6 (±0.2)  19.9 8.8 (±0.2) 

34.9 14.3 (±0.2)  38.2 9.7 (±0.2) 

59.6 18.3(±0.2)  55.7 10.2 (±0.2) 

Unsupported H3PW12O40=48.3 nm 

In-situ wide angle XRD of the unsupported HPW was conducted to elucidate the intrinsic 

thermal stability, and results are shown in Figure 3.4. XRD patterns were collected over 

the temperatures range of 25 to 600 °C with 50 ºC intervals, thermal stability was 

ensured through a 60-minute delay prior to data collection. The hexahydrate 

phosphotungstic acid structure is stable between 50-100 °C; at temperature >100 °C 

and up to 200 ºC, the characteristic diffraction peaks shift to high 2θ values, d(222) 

reflection shift by 0.75, due to the removal of crystalline water which induces a shrinkage 

of the cubic Pn3m structure with the unit cell decreasing to 1.16 Å. The thermal 

transformation of the K.U. structure is induced at 250 °C with the removal of hydrogens 

and oxygen atoms from the polyoxometalate; from this temperature, the diffraction 

patterns reflect a mixture of defective species and intact HPW clusters. Finally, at 600 

°C, full decomposition of the structure occurs, leading to the characteristic peaks related 

to monoclinic WO3. Figure 3.5 shows particle size dependence with temperature, with 

unsupported HPW crystallite sintering from 50 and 200 °C. As temperature increases 

further to 350 °C, the formation of defective Keggin units is observed, which eludes to 

the loss of structural water, with HPW crystallites size decreasing drastically from 60 to 

21 nm (data obtained from reflection d(222) between 25.6-26.3 °) and defective species 

of ~19 nm (calculated at 24.8°). As temperature increases again, defective species 

remain constant in size before phase transformation of the structure to WO3 at 600 ºC 

which have a crystallites size of 29.4 nm.  
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Figure 3.4 – In-situ XRD pattern of the unsupported HPW collected from 25 to 600 °C 

(10 °C min-1) under N2 flow (10 mL min-1). 

  

Figure 3.5 – Effect of temperature on particle sizes from in-situ study.  

3.2.1.3 Nitrogen porosimetry 

N2 adsorption analysis was carried out to evaluate surface areas, pore diameters and 

volumes. Figure 3.6 shows the adsorption isotherms of the bare supports, fumed silica 

(a) and SBA-15 (b); fumed silica displays type II isotherm typical of a non-porous or 

microporous material, whereas SBA-15 displays the characteristic type IV isotherm 
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which is indicative of a mesoporous materials [9]. The N2 adsorption and desorption 

branches are due to the architecture of the silica-based material, where at low relative 

pressure values, the adsorption curve exhibits a rounded knee shape, which indicates, 

initially, the monolayer formation and, as it follows, the multilayer formation in the low 

inflection region. At increasing pressure, mesopore filling occurs in the case of type IV 

isotherms, and capillary condensation is apparent (gas-liquid transition); this effect is 

accompanied by hysteresis for pore diameters greater than ~4 nm, due to difference 

between the adsorption and desorption process. Hysteresis loop manifests different 

forms due to different pore shape and interconnections, here the ordered mesoporous 

materials, SBA-15, have uniform cylindrical pores, which exhibit H1 hysteresis type.  

  

Figure 3.6 – Isotherms with adsorption and desorption branches for both supports, 

fumed silica (a) and SBA-15 (b). 

The textural properties of both supports are retained after HPW wet impregnation, as 

shown in Figure 3.7, with HPW/fumed silica series displaying the characteristic type II 

isotherms, as observed for the undoped support, whereas HPW/SBA-15 series the type 

IV of the parent SBA-15. In both series, increasing W loading results in a decrease in 

the volume of N2 adsorbed/desorbed relative to their parent supports suggesting a 

decrease of surface area mainly due to the presence of HPW species, which display 

negligible specific surface area values. 
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Figure 3.7 – Isotherms of adsorption and desorption for supported materials at different 

W wt% HPW/fumed silica offset by 50 cm3 g-1 (a), and HPW/SBA-15 offset by 150 cm3 

g-1 (b). 

Figure 3.8 shows (a) BET and (b) micropore surface areas (calculated via t-plot method) 

normalised to silica mass, in order to mitigate for inherent distortions at high loading of 

W wt%. HPW/fumed silica BET values exhibit an increasing surface area increasing the 

W wt%, suggesting that the three-dimensional HPW crystallites are located on the 

external surface of the support. Materials microporosity revealed that an initial drop of 

micropores area, within the range 0-15.5 wt%, to further increase to higher values 

indicating that the enhancement of surface area is due to the formation of intercrystalline 

micropores between adjacent HPW agglomerates. In contrast, the HPW/SBA-15 series 

exhibit an initial BET drop of 140 m2 gSiO2
-1 compared to the parent material within the 

range of 0-9 wt%, which is attributed to filling or blocking of the complementary 

microporosity in SBA-15 [10-13], as confirmed also via t-plot method which shows the 

same drop over the same W range. Further increases in W wt%, results in both BET and 

micropore areas values plateauing, suggesting that only negligible mesopore blockage 

occurs up to the highest W loading, where the BET value is reduced by ~ 33% (dropping 

from 756 to 507 m2 gSiO2
-1), while micropores surface area remain constant at 200 m2 

gSiO2
-1; thus, suggesting mesopore blockage.  
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Figure 3.8 – Surface area values of HPW/fumed silica and HPW/SBA-15 (N2 BET) (a); 

micropore surface area (on first and second y-axis) HPW/Fumed silica and HPW/SBA-

15 (N2 t-plot) (b). 

Detailed inspection of BJH pore size distribution plots, Figure 3.9-(a), further confirm 

that there are no changes in the average pore size with W loadings. Figure 3.9-(b) shows 

total pore volume obtained at 0.975 P/P0 and mesopore BJH diameter obtained on the 

desorption branch isotherm of HPW/SBA-15 samples. The former mirrors the BET 

results, showing an initial drop followed by a plateau and a second decrease at the 

highest W wt% loading, whereas the latter remains unchanged ~5.8 nm across the entire 

series. Results suggest that mesopores blockage occurs only at the highest loading 

showing a dramatic decrease in pore volume, while pore volume losses at lower loadings 

is due to micropores filling/blockage. Thus, the BJH diameter and pore volumes 

demonstrate that the HPW units are highly dispersed within the mesopores of SBA-15.  
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Figure 3.9 – BJH pores size distributions of HPW/SBA-15 (a); and pore diameter and 

pore volume of HPW/SBA-15 as function of W loading (b).  

In addition, as shown in Equation 3.1, the theoretical HPW surface coverage over the 

supports was calculated, where each Keggin units possess a cross section area of  

1.44 nm2, and are in a hexagonal closed packed arrangement [8, 14, 15].  

θ=AreaKU∙
NA∙ωHPW

MWHPW

∙
1

SAsupport

 

Equation 3.1 – where SAsupport is the BET measured surface area per gram of support, 

NA is the Avogadro number, and ωHPW is the mass fraction. 

Figure 3.10 reports surface coverage (θ) values for HPW supported on SBA-15 and 

fumed silica, at different W wt% loading. The uniform HPW dispersion is confirmed by 

the increase of surface coverage on both supports, which is noticeably lower on SBA-15 

due to its architecture, highlighting a greater dispersion of the K.U. 

(a)

0

1

2

3

4

5

6

7

0 5 10 15 20 25

d
V

(l
o

g
d

)

Pore diamter / nm

SBA-15
3.2 wt%
4.3 wt%
9.0 wt%
16.9 wt%
19.9 wt%
38.2 wt%
55.7 wt%

(b)

0.3

0.6

0.9

1.2

5.0

5.2

5.4

5.6

5.8

6.0

0 20 40 60

( 
) P

o
re

 vo
lu

m
e

 / c
m

3
·g

S
iO

2
-1

( 
) 

P
o

re
 d

ia
m

e
te

r 
/ 

n
m

Bulk W loading / wt%



103 
 

 

Figure 3.10 – Surface coverage dependence of silica supported HPW. 

3.2.1.4 Scanning transmission electron microscopy (STEM) 

STEM micrographs allow visualisation of the HPW phase on the two support 

architectures, showing results in agreement with previous discussed techniques. SBA-

15 facilitates higher HPW dispersions, with a preferential two-dimensional growth, 

relative to the lower surface area fumed silica support. HPW deposited on fumed silica 

exhibit larger particle sizes compared to HPW/SBA-15, in agreement with the reduced 

dispersions observed by wide angle XRD. For fumed silica series, Figure 3.11-(a) shows 

the presence of nanoclusters on the surface of the non-porous support at 2.2 wt% W, 

with sizes spanning 1-3 nm which reflect 1-2 K.U.. An increase in loading to 15.5 wt%, 

Figure 3.11-(b and c), results in the formation of a considerable degree of HPW 

agglomerates of 10-20 nm, which agree with the size evaluated from wide angle XRD 

patterns via the Scherrer equation. In contrast HPW/SBA-15 STEM images (Figure 

3.11-(d-f)) shows discrete K.U., uniformly dispersed on the parent support with HPW 

diameters in agreement with literature values of 1.2 nm [8]. At both low and high HPW 

loadings, 3.2 and 55.7 wt%, we observed incorporation of the clusters within the 

mesopore channels of SBA-15, as illustrated in the EDX line scan profiles which are 

reported as W to Si ratio as function of distance (spatial resolution being 0.5 nm). For 

the 55.7 wt% HPW/SBA-15 sample, the identification of the single units was not possible 

with mesopores channels fully decorated (Figure 3.11-(c)).  
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Figure 3.11 – STEM dark-field images of (a) 2.2 wt% HPW/fumed silica, (b) 15.5 wt% 

HPW/fumed silica, (c) 59.6 wt% HPW/fumed silica; (c and d) 3.2 wt% HPW/SBA-15, (e) 

55.7 wt% HPW/SBA-15. Insets show corresponding EDX atomic ratio lines profiles.  

3.2.1.5 Thermogravimetric analysis (TGA) 

The thermal stability of unsupported HPW and silica supported variants were evaluated 

by thermogravimetric analyses under N2 (60 mL min-1). Scheme 3.1 shows the thermo-

decomposition of HPW, with three discrete transformation occurring [2, 16, 17]. 

H3PW12O40∙6H2O + nH2O
<100
→ H3PW12O40∙6H2O

<200
→ H3PW12O40

>450
→ WO3,PO4, etc..

Scheme 3.1 – Proposed thermo-decomposition process of phosphotungstic acid under 

N2 flow [18].  

In Figure 3.12, decomposition steps are reported as sample mass loss (%) plotted 

against temperature for unsupported HPW, both supported series, on fumed silica and 

SBA-15, and undoped supports.  

(a)

(d)
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Figure 3.12 – Thermal analysis expressed as % mass loss as function of temperature 

on HPW/fumed silica series (a) and HPW/SBA-15 (b).  

The first mass loss, at < 100 ºC, is related to physisorbed water weakly bonded on the 

surface, which for pure HPW is only minor, whereas in the case of the supported systems 

a significant increase in mass loss is observed over the same temperature range. This 

is attributed to physisorbed water on the support, which is also visible to the same degree 

in the parent fumed silica and SBA-15. The two series exhibit different amount of 

physorbed water desorbed due to the hydrophobicity of each support and the support 

surface areas. For bare fumed silica and SBA-15 (reported in the graph as 0 wt% of W 

loading), 0.5% and 6.5% of mass loss were measured respectively between 40 and 110 

ºC, suggesting that on the amorphous silica higher hydrophobicity is observed compared 

to mesostructured SBA-15 [19]. The better adsorption of water is correlated not only to 

higher values of SBA-15 surface area, but also to its greater amount of hydroxyl groups 

on the surface [20]. To further confirm the higher hydrophilic character of SBA-15, silanol 

density (≡Si-OH) was estimated on both supports, calculating the mass loss between 

250 - 800 °C due to dihydroxylation of the surface followed by water desorption [21]. 

Calculation revealed that mesoporous SBA-15 possesses almost 4 times the density of 

surface silanols of fumed silica, being 2.8 mmol g-1 against 0.7 mmol g-1 respectively.  

As reported in Figure 3.13-(a), for HPW/fumed silica mass loss results (taken within 40 

and 110 ºC) evidence that across the series the amount of weakly bonded water 

molecules is almost constant ~ 1.5%, with values comparable to pure HPW. In the 

contrary, HPW/SBA-15 show higher mass loss values similar to their parent support, ~ 

6.5%, which plateaus within 3.2 and 38.2 wt%, while it decreases at the highest loading. 
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Figure 3.13 – Physisorbed water (a) and crystalline water (b) mass loss for unsupported 

HPW and supported HPW on fumed silica and SBA-15.  

The second loss, around 200 °C, reflect desorption of the crystalline water, which is due 

to entrapment of polar molecules, e.g. water, between the Keggin units of bulk HPW 

agglomerates and nanoclusters [22]. Figure 3.13-(b) reports mass loss % related to the 

desorption of crystalline water for each sample, between 120-240 °C, which indicates 

the level of aggregation of K.U.: the higher is the water mass loss, the higher will be the 

aggregation. For pure HPW, the amount of crystalline water measured revealed the 

H3PW12O40∙6H2O stoichiometry as also observed in the literature [6, 23]. For supported 

species, HPW/fumed silica series shows a fast increase of water mass loss within 2.2-

15.5 wt% to further plateauing at ~ 1.5 % at higher loadings, indicating highly dispersed 

K.U. at low W loadings (<20 wt%), and two-dimensional arrays at W > 20 wt%. In 

contrast, SBA-15 supported HPW exhibits a single linear trend as a function of W 

loading, due to the presence of only highly dispersed species.  

For supported species, differential profiles were calculated form the mass loss trends 

and plotted in Figure 3.14, wherein the two regions highlighted in blue and yellow 

indicate desorption of physisorbed water and crystalline water respectively. Differential 

profiles were chosen as a better method to evaluate the consistency of desorption 

temperatures. For HPW on fumed silica, mass losses related to crystalline water are 

clearly visible within the same temperature range of unsupported HPW; across this 

series, excluding the lowest loading, 2.2 wt%, the mass losses are greater increasing 

the W wt%. For samples supported on SBA-15, this feature grows progressively slower 

with HPW loading, suggesting that isolated highly dispersed K.U. trap significantly less 
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water molecules; while for larger agglomerates, at loading ≥ 38.2 wt%, a distinct peak is 

observed. Profiles related to crystalline water desorption for the two series suggest that 

on fumed silica, the formation of larger agglomerates occurs at lower loadings, in 

agreement with XRD and STEM analysis, and hence the amount of trapped water is 

greater. The final broad peak, observed across both series, is related to the gradual 

decomposition of the HPW structure, which starts at 300 °C [24], into tungsten trioxide. 

Figure 3.14 – Differential thermal analysis of supported HPW as a function of loading, 

HPW/fumed silica (a) and HPW/SBA-15 (b). 

3.2.1.6 n-Propylamine chemisorption and temperature programmed desorption 

(TPD) 

Acid site density and strength were probed by n-propylamine TPD, monitored by Mass 

Spectrometry (MS), a widely used technique due to its simplicity in both experimental 

set up and data processing [25]. Alkyl-amines chemisorb at the acidic proton site of the 

solid sample, forming the alkyl-ammonium ion, subsequent desorption, at elevated 

temperature, can proceed via two routes; first through decomposition to propene and 

ammonia or second without reaction in which the amine desorbs. Via TPD-MS, the 

desorption of ammonia, propene and unreacted n-propylamine from the respective 

fragmentation channels of 17, 41 and 30 m/z (unique fragments for the 3 species), are 

monitored. Acid site strength is evaluated from the temperature at which reactive 

desorption (decomposition) occurs, i.e. the temperature at which ammonia and propene 

are simultaneously detected. Increasing acid strength exhibits propene and ammonia 

desorption at decreasing temperature, i.e. more reactive sites. Figure 3.15 reports the 

data for supported HPWs, with pure HPW shown for comparison. Pure HPW exhibits a 
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first peak at 264 °C, which is associated to the strongest acid sites, and a second peak 

at ~400 ºC, which is related to medium and weak strength acid sites, with observed lines 

shapes in agreement with literature [26]. Physisorbed species were not detected, being 

apparent at lower temperatures, ~120 °C, as reported in other studies [27, 28]. For 

supported materials, HPW on fumed silica shows similar behaviour with similar lines 

shapes, displaying the two peaks in the same temperature range but less intense. In 

contrast, on HPW/SBA-15 catalysts, the first propene desorption occurs at 245 °C, which 

appears at 30 °C lower than for unsupported HPW. The second peak, at ~400 °C, is 

apparent in all supported materials, suggesting that medium/weak acid sites are 

unaffected by the supporting of HPW. 

Figure 3.15 – n-propylamine TPD relative intensities of m/z normalised per g of sample 

for supported HPW on fumed silica (a) and on SBA-15 (b). *Signal multiplied for 10. 

Total acid site densities were obtained over the temperature range of propene 

desorption, by calculating the moles of propene desorbed, with acid site to propene 

stoichiometry of 1:1. The acid site loading results,  

Table 3.4, show that for W loading ≤20 wt%, both series possess similar values, 

suggesting that the alkyl amine finds equal numbers of reactive protons both in highly 

dispersed Keggin units on SBA-15 and in nano-clustered of HPW on fumed silica. At 

higher loadings, >20 wt%, acid densities of HPW/SBA-15 are greater than those from 

the HPW/fumed silica series, which suggest acid site accessibility to the amine is 

hindered by larger crystallites.  
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Table 3.4 – n-Propylamine measured acid sites densities of supported HPW. 

HPW/Fumed silica  HPW/SBA-15 

Bulk W loading 
/ wt% 

Acid loading / 
mmol g-1 

Bulk W loading 
/ wt% 

Acid loading / 
mmol g-1 

2.2 0.19 (±0.01) 3.2 0.16 (±0.01) 

6.2 0.19 (±0.01) 9 0.17 (±0.01) 

6.1 0.20 (±0.01) 11.9 0.17 (±0.01) 

11.7 0.25 (±0.02) 16.9 0.23 (±0.02) 

15.5 0.26 (±0.02) 19.9 0.34 (±0.03) 

34.9 0.38 (±0.03) 25.4 0.51 (±0.04) 

37.6 0.42 (±0.03) 38.2 0.79 (±0.05) 

59.6 0.49 (±0.03) 55.7 0.92 (±0.06) 

Unsupported H3PW12O40=0.79 (±0.05) mmol g-1 

To shed insight on the nature of acid sites, desorption profiles were deconvoluted in 

three different peaks, associated to strong, medium and weak acid sites. Low 

temperature reaction of propylamine with the 3 free protons of intact K.U. define the 

nature of strong acid sites, whereas medium and weak acid sites are related to partially 

decomposed HPA species, such as H2PW12O39.5
-1 and HPW12O39

-2, and reaction occurs 

at higher temperatures. Deconvolution fitting was conducted with Casa XPS software, 

and Gaussian-Lorentzian line shape GL(30) (70% Gaussian and 30% Lorentzian) was 

used to fit all peaks. Figure 3.16 displays two example fittings of the MS fragment 41 

m/z obtained from similar W wt% samples on fumed silica and SBA-15. For both 

materials, profiles deconvolution reveals three peaks, which are related to reactively 

formed propene and its desorption from strong, medium and weak acid sites. Again, 

HPW/fumed silica catalyst shows that the majority of propene desorbed comes from 

weak and medium acid sites, whereas the contribution from the strong sites is little; in 

contrast, HPW/SBA-15 possesses a higher number of strong acid sites displaying a clear 

propene desorption profile. 
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Figure 3.16 – Fitting example of mass normalised 41 m/z MS channel from n-

propylamine TPD-MS for 15.5 wt% W on fumed silica (a), and 16.9 wt% W on SBA-15 

(b).  

The strong, medium and weak acid site loadings, evaluated from deconvolution peak 

areas, are reported in Figure 3.17 as function of bulk W loading for both supports. 

Fumed silica samples, apart from the lowest loading, display the majority of acid sites 

being of weak nature character, with an almost constant value of 0.38 mmol g-1, followed 

by medium strength sites, with only a small contribution of strong acid sites. This 

indicates that tertiary HPW structures (with a certain level of aggregation) possess 

similar acidic properties. HPW supported on SBA-15, (Figure 3.17- (b)) displays a strong 

dependence on the W loading, witnessing a volcano trend of strong acid site, peaked at 

38.2 wt%, in concomitance with the rise of weak and medium acid character as W wt% 

increases. In the case of SBA-15 systems, acid sites possess more of the strong 

character compared to fumed silica, thus more intact HPW structure with three acid 

protons. It is worth mentioning that in discrete heteropolyanion protons are both 

interacting with the support, to allow the attachment, and directly bonded to the terminal 

[29, 30] or to bridging [22, 31] oxygen atoms, with the true position of debate. HPW 

interaction with the support occurs in two different ways, either with direct hydrogen bond 

with one or more silanol at the surface, or via dehydration: 

(≡SiOH2)+(H2PW12O40)-  or (≡Si)+(H3-mPW12O40)m- + mH2O 

Attempts to discern between the two species have proven to be inconclusive and still 

under debate. It is suggested that during the anchoring of HPW species, dehydrated 
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silanol are more likely to be formed on fumed silica, whereas protonated species on 

SBA-15, being the protonated silanols still able to react. The hypothesis would therefore 

explain why on fumed silica although strong acid sites are of the same strength (being 

at the same temperature), are less in quantity. To further investigate on the nature of 

acid sites of the two series, ammonia titration and TPD analysis were undertaken. 

Figure 3.17 – Relative acid loading for strong, medium and weak sites based on the 

relative peak area % (obtained from profile deconvolution) and the total acid loading as 

function of W wt% on both supports, fumed silica (a) and SBA-15 (b).  

3.2.1.7 NH3 titration and Temperature programmed desorption (TPD) 

Ammonia TPD was carried out to further evaluate solid acidity of HPWs samples, with 

the results reported in Figure 3.18. These revealed three distinctive desorption peaks at 

~ 200, 450 and 610 °C, being more clearly visible in the inset, which show the profile of 

the unsupported HPW. As with propylamine, each desorption peak relates to a different 

adsorption site, but as the desorption is not-reactive i.e. ammonia adsorbs and 

desorbed, desorption temperature is proportional to acid site strength. The first peak, at 

~ 200 ºC, is attributed to ammonia coordinated with protons of partially hydrated HPW 

units, its position remains constant across both series revealing no discernible 

differences in the strength of the weakest acid sites. At higher temperatures, the Keggin 

units are dehydrated and partially decomposed, and the peak at 450 °C is due to the 

coordination of ammonia to the last charge-balancing protons of heteropolyanion, in 

agreement with the result described in the thermogravimetric analysis [22, 32, 33]. The 

final desorption peak, at ~600 °C, is attributed to ammonia adsorbed with defective 
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polyoxometallates which possesses the strongest ammonia chemisorption sites [2, 7, 

24, 29, 34].  

Figure 3.18 – Stacked NH3 TPD data of HPW/fumed silica (a) and HPW/SBA-15 (b). 

Inset, TPD profile obtained for unsupported HPW. 

Table 3.5 reveals acid site densities of both series, evaluated by ammonia titration, with 

HPW/fumed silica possessing lower acid site densities compared to HPW/SBA-15. Even 

at the lowest loadings, 2.2 and 3.2 wt% of bulk W on fumed silica and SBA-15 

respectively, the difference in acid loading is doubled.  

Table 3.5 – NH3-TPD measures acid site densities of supported HPW. 

HPW/Fumed silica  HPW/SBA-15 

Bulk W 
loading/wt% 

Acid loading / 
mmol g-1 

Bulk W 
loading/wt% 

Acid loading / 
mmol g-1 

2.2 0.06 (± 0.02) 3.2 0.15 (± 0.01) 

6.2 0.16 (± 0.02) 3.6 0.23 (± 0.02) 

6.1 0.16 (± 0.02) 9 0.24 (± 0.02) 

11.7 0.19(± 0.02) 16.9 0.27 (± 0.03) 

15.5 0.20 (± 0.02) 19.9 0.29 (± 0.03) 

34.9 0.20 (± 0.02) 38.2 0.30 (± 0.03) 

59.6 0.26 (± 0.03) 55.7 0.54 (± 0.05) 

Unsupported H3PW12O40=1 mmol g-1 

As for n-propylamine analysis, ammonia desorption profiles were deconvoluted in three 

different peaks, and fitting was conducted with Casa XPS software, and Gaussian-
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Lorentzian line shape GL(30) (70% Gaussian and 30% Lorentzian) was used to fit all 

peaks. Figure 3.19 displays two example fittings of ammonia desorption profile obtained 

by MS analysis (fragment 17 m/z) and obtained from similar W wt% samples on fumed 

silica and SBA-15. In both cases, profile deconvolution reveals the three peaks related 

to the distinct adsorption sites.  

Figure 3.19 – Fitting example of mass normalised 17 m/z MS channel from ammonia 

titration and TPD for 6.2 wt% W on fumed silica (a), and 9.0 wt% W on SBA-15 (b).  

The weak, medium and strong acid site loading, evaluated from deconvolution peak 

areas, is reported in Figure 3.20 as function of bulk W loading for both supports. 

HPW/fumed silica series exhibit an increase in medium acid sites loading with the W 

wt%, while the weak and strong remain almost constant across the series. In contrast, 

HPW/SBA-15 series show a linear increase of relative acid loading up to 38.2 wt% for 

all the adsorption sites (weak, medium and strong), accompanied to plateauing profiles 

at further loading. Comparison between ammonia titration and TPD and n-propylamine 

reveals similar acid loadings for the two supported HPW series, indicating a good 

correlation between the two techniques. Comparison of desorption temperatures from 

strong, medium and weak acid sites is more complicated. On one side ammonia TPD 

gives interesting information about the strength of interaction/adsorption between the 

small probe molecule and surface of solid materials; while on the other hand, n-

propylamine TPD gives a narrower indication of the catalytic acid sites of catalysts [35]. 
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Figure 3.20 – Relative acid loading for strong, medium and weak sites based on the 

relative peak area % (obtained from profile deconvolution) and the total acid loading as 

function of W wt% on both supports, fumed silica (a) and SBA-15 (b). 

3.2.1.8 Diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) 

DRIFTS was initially carried out on the two parent support silicas to evaluate differences 

in surface silanol densities, which represent anchoring sites for the attachment of HPW 

and thus influencing the resulting agglomeration. Figure 3.21-(a) is in agreement with 

our TGA findings about the different silanols density of the two supports, with SBA-15 

exhibiting OH stretches of isolated, vicinal and germinal OH groups being four time 

greater than those for fumed silica, with results comparable to the literature [19]. The 

evolution of isolated hydroxyl density as a function of bulk W loading for the two series 

is shown in Figure 3.21-(b). Surface OH groups, responsible for anchoring the HPW 

active phase, allow elucidation into the preferred aggregation model, monolayer or 

multilayer phases. Across both series, OH intensity is inversely proportional to HPW 

loading, exhibiting elimination of the isolated OH stretch for bulk W >35 wt%, for both 

series, indicating that above this loading the multilayer growth is the only possible. The 

higher OH intensities accompanied to higher surface area available, reflects a greater 

capacity for monolayer growth. In agreement with TGA and XRD analysis, at W loadings 

<35 wt%, the plot shows that on fumed silica, HPW preference is for the formation 

multilayers, whereas on SBA-15 results in monolayer growth of HPW. 
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Figure 3.21 – DRIFT spectra of SBA-15 and fumed silica, and assigment of silanol group 

function to vibrational signal (a); isolated OH K-M intensities as function of bulk W loading 

for HPW supported on fumed silica and SBA-15 [36] (b). 

Furthermore, DRIFTS analysis was employed to examine the Keggin unit’s structural 

integrity and potential effect of impregnation on both supports. IR spectral peaks of P-O, 

and W-O of HPW are observed in the region of 1150-700 cm-1 wavenumbers [31, 37], 

as reported in Figure 3.22, with the upper loadings on both supports clearly exhibiting 

these features signifying retention of the HPW phase. At low loadings, the asymmetric 

P-O stretching and the internal stretching mode O-W-O are masked by the silanol 

vibrations, which are clearly visible at 1100 and 800 cm-1 in the parent supports. Due to 

this loss in resolution between the heteropolyacid feature and those from the support. 

Raman spectroscopy was conducted to further prove the authenticity of the H3PW12O40 

structure, results are reported in the following section.  
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Figure 3.22 – Stacked DRIFT spectra of supported HPW on fumed silica (a), and SBA-

15 (b) as function of W bulk wt%, pure HPW and supports are reported for comparison. 

In situ DRIFTS of the unsupported HPW was carried out to further invetigate the thermo-

decomposition steps of the Keggin unit, with an aim of studying how the structure 

decays. In Figure 3.23-(a), the vibrational bands of W-O, W-O-W and P-O stretches, 

over the the region 600-1200 cm-1 wavenumbers, are shown as a function of temperature 

from 120 to 600 °C. Bridging vibrations, W-O-W, were discriminated as bridging core 

(Wbc) and bridging edge (Wbe), the former referring to O atoms which interact with the 

central P atom; the latter refers to O atoms residing at the edge of the Keggin unit as the 

external surface. Figure 3.23-(b) reports Kubelka-Munk intensity of W=O and W-Obc-W 

as function of temperature; W=O terminal vibration (984 cm-1) decreases as the 

temperature increases. The W-Ob-W vibration of core atoms varies following three 

different steps: starting at 120 up to 250 °C, shows a steady decrease of K-M intensity 

(in the same range was observed the dehydration of the HPW structure by XRD and 

TGA); a drammatic drop between 250 and 400 °C may reveal that the removal of the 

strucutral water begins with the extraction of the bridging oxygens which are more 

unstable, and destroying therefore the HPW structure; the final step, between 400 and 

600 °C, shows the complete brakedown of the strucuture and partial disapperance of W-

Obc-W. The ratio between the two stretching reveals the structure stability as function of 

temperature, indicating that the integrity of the HPW architecture is preserved when the 

the ratio W-O-W to W=O is stable (120-250 °C), while it drops dramatically mainly due 

to the decomposition of the W-O-W group.  
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Figure 3.23 – DRIFTs spectra of unsupported HPW collected from 120 to 600 °C (a); 

and dependence of Kubelka-Munk intensities on temperature indicating thermal stability 

of HPW units (b).  

3.2.1.9 Raman spectroscopy 

Raman spectroscopy was employed to further confirm the HPW structure of the two 

supports, and thus strengthen the conclusion drawn from XRD and DRIFT analysis. 

Figure 3.24 reveals the Raman spectra of the bare SBA-15 support, with fumed silica 

the same shifts, and commercial WO3, a potenial species from HPW decompostion. Both 

silcias exhibit Raman shifts at 976, 802, 607, and 487 cm-1, in agreement with the 

literature values [38], with a strong background signal due to fluorescence interference. 

The Raman shift at 976 cm-1 is related to surface silanols 

Si-OH, whereas shifts at 800 cm-1 are related to the Si-O-Si linkage and at 607 and 487 

cm-1 to three and four-membered siloxanes [39, 40]. WO3 Raman spectra displays

intense shifts at 805, 715, referred to ν(W-Ob-W), and at 270 cm-1 related to δ(W-Ob-W), 

again as reported in literature [41]. 
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Figure 3.24 – Raman spectra of mesoporous SBA-15 (a) and commercial WO3 (b). 

Figure 3.25 reports the Raman spectra of the supported HPW samples; all samples 

possess the characteristics bands related to H3PW12O40 in the “cage-like” Keggin 

arrangement, revealing no segregation has occurred during impregnation. HPW/SBA-

15 materials display an increasing peak intensity with HPW loading. Along the series, 

for loading ≤16.9 wt%, vibrations have broad peaks and strong background signal due 

to support interference. The main shifts observed are at 1010, 990, 935, 890,525 and 

225 cm-1 are assigned to νs(W-Ot), νas(W-Ot), ν(P-Oa), νas(W-Ob-W), νs(W-Obc-W), νs(W-

Obe-W) respectively. The various types of oxygen are distinguished as b, bc, be and t; 

where Ob is the bridging atom between two W metals, Obc is internal bridging atom (core), 

whereas Obe is the bridging edge oxigen atom, and Ot is a terminal oxygen as W=O [42]. 

These stretches are in good agreement with those reported [43], and are similar to those 

of the  bulk HPW shown in Figure 3.24. The same features are observed for samples 

on fumed silica with increasing peak intensities with increasing the W loading. 

Background interference is only appreciable for the lowest loadings, 2.2 wt%HPW/fumed 

silica and 3.2 wt% HPW/SBA-15, but even so the feature of HPW are still observed, and 

at loadings above 11.7 wt% this interfirence is not observed.  
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Figure 3.25 – Stacked Raman spectra of HPW/Fumed silica (a); and HPW/SBA-15 (b). 

Labelled peaks (▼) are referred to unsupported HPW features. 

Closer inspection of the major HPW peaks a 1010 cm-1, shown in Figure 3.26, which is 

related to terminal W-O symmetric vibration are shifted to higher energies in both series, 

with Δν ~ 20 cm-1 and 10 cm-1 for HPW on fumed silica and SBA-15 respectivetly. In the 

literature, shifts of the same band are associated either for HPW treated thermically, in 

which the heat leads to structural defections and increases the band shift [43], or when 

HPW coordinates with a different counter-cation than H, and interfiers with the W=O, 

vibration [44, 45]. In our case, however, both cases are to esclude meanig that the Δν 

might be related to a defection in the structure, which changes the W-Ot vibrational mode 

and hence its position. HPW species on fumed silica display a greater effect, and 

therefore can be descibed as being more defective compared to the samples on SBA-

15, which suggest that a degree of the Keggin units are not fully intact, although the level 

of this is negligible due to of the absence of peaks related to WO3 (at 805, 715 and 270 

cm-1 [41]).
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Figure 3.26 – Stacked Raman spectra with dotted line indicating relative peak position, 

for HPW on fumed silica (a) and SBA-15 (b). 

3.2.1.10 X-ray photoelectron spectroscopy (XPS) 

XPS was conducted on the supported HPW series, with the W 4f signal of major interest, 

shown in Figure 3.27 and Figure 3.28. The spectra for all samples can be deconvoluted 

into two distinct chemical species; the first W 4f7/2 peak at 36.1 eV, and a spin-orbit 

splitting of 2.15 eV, is associated to the bulk W in the (VI) oxidation state, with the second 

W 4f7/2 peak, associated to perturbed W species on the surface which are interacting 

either with the surface silanols or perturbed by vicinal HPW species [46-48], is observed 

at 34.5 eV.  

HPW/fumed silica XPS spectra are reported in Figure 3.27, where unsupported HPW 

was plotted for comparison. Supported materials show same binding energies related to 

bulk W doublet of their parent at 36.1 eV; the additional doublet of interfacial W shifted 

of 1.6 eV towards lower binding energies exhibits same spin-orbit splitting of 2.15 eV. 

As reported in Figure 3.27-(b) across the series is observed the decreasing of interface 

species relative to the bulk, with increasing W loading. At low W loadings (<20 wt%), the 

ratio interfacial:bulk W species is almost constant at ~0.5 [49], at higher loadings, the 

value drops to ~0.3 and is due to the formation of big agglomerates, as also confirmed 

by XRD and STEM analysis. Surface W quantification indicates that when 59.6 wt% of 

bulk W (measured from XRF) is loaded on the support, only ~10.5 wt% is actually 
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detected from XPS, indicating the fast 3-D growth of HPW clusters on fumed silica (from 

bulk W >6.1 wt%) as confirmed from XRD, TGA, STEM and DRIFTs. 

 

Figure 3.27 – Background subtracted W 4f XP spectra of HPW/fumed silica series (a); 

and ratio of integrated signal of interfacial to bulk W 4f species across the loading on 

SBA-15, and correlation between surface and bulk W wt% loadings(b). 

Similarly, on Figure 3.28-(a) HPW/SBA-15 exhibit equal binding energies and spin-orbit 

splitting of the two W species, bulk and interfacial, observed on fumed silica. Again, the 

ratio between relative intensities of W 4f surface and bulk species (Figure 3.28-(b)) 

decreases as bulk loading increases, suggesting that the interfacial W doublet is 

attenuated by with the formation of bigger particles, as observed previosly. At the sub-

monolayer coverage, between 3.2 and 16.9 wt%, species are widely dispersed on the 

surface and K.U. exhibit a trimodal coordination mode [46], which can lead to highly 

perturbed W=Ot species. For loadings ≥38.2%, agglomeration is favoured, in agreement 

with the results from TGA, STEM and XRD.  

Across both series, the level of perturbed W atoms may be higher than expected which 

could be due to the interaction of W with surface OH, due to the surface sensitivity of the 

techniques, or alternatively due to defective HPW that is too small to be detectable via 

other techniques including XRD and DRIFTs, but which are still able to perturb the 

neighbouring W and are indicated in the Raman analysis which shows a Δν for the most 

intense band, which is related to terminal W-O vibrations. 
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Figure 3.28 – Background subtracted W 4f XP spectra of HPW/SBA-15 series (a); and 

ratio of integrated signal of interfacial to bulk W 4f species across the loading on SBA-

15, and correlation between surface and bulk W wt% loadings (b). 

3.2.2 Silicotungstic and phosphomolybdic acid based materials 

Silicotungstic and phosphomolybdic acids (HSiW and HPMo respectively), Keggin type 

heteropolyacids, have been studied in order to investigate the influence of the central 

atom and heteroatoms on physiochemical properties and subsequent catalytic activity. 

The two alternative heteropolyacids, HSiW and HPMo, were deposited onto SBA-15, 

chosen due to it greater capacity towards higher dispersion of the HPAs units. Herein, 

the physiochemical properties of HSiW and HPMo on SBA-15 are reported, as 

elucidated by a wide array of characterisation techniques.  

3.2.2.1 X-ray Fluorescence (XRF) 

SBA-15 supported HSiW and HPMo were synthesised utilising the same incipient wet 

impregnation method as for the HPW series. XRF elemental analysis was carried out to 

determine the actual wt% of bulk W and Mo, and prove the efficiency of our protocol. 

Table 3.6 compares nominal with actual loadings, where each value is affected by 

standard error as reported by the instrument. 
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Table 3.6 – XRF elemental analysis data of synthesised materials. 

HPMo/SBA-15  HSiW/SBA-15 

Measured 
bulk Mo 
loading / 
wt% 

Calculated 
HPMo 
loading / 
wt% 

Nominal 
HPMo 
loading / 
wt% 

Measured 
bulk W 
loading / 
wt% 

Calculated 
HSiW 
loading / 
wt% 

Nominal 
HSiW 
loading / 
wt% 

2.2 (± 0.3) 3.4 (± 0.3) 5 2.6 (± 0.3) 3.5 (± 0.3) 5 

8.7 (± 0.1) 13.8(± 0.1) 15 9.9 (± 0.1) 13.3 (± 0.1) 15 

32.3 (± 0.1) 51.3(± 0.1) 50 30.9 (± 0.1) 41.7(± 0.1) 50 

3.2.2.2 Powder X-ray diffraction (XRD) 

XRD analysis allowed the structural integrity of the mesoporous support, and any 

influence of the impregnation protocol, to be evaluated, and furthermore, allowed for the 

degree of aggregation, as a function of loading, of HSiW and HPMo on the SBA-15 

support to be studied. 

Low angle powder XRD analysis on both HPMo and HSiW on SBA-15 (Figure 3.29) 

confirm the retainment of the SBA-15 P6mm space group after impregnation as 

observed in (Figure 3.2-(a)). The three d(100), d(110) and d(200) reflections were 

observed over the 2θ range of 0.8°-3°, and indicate a mesoporous structure. For both 

series, unit cell calculations from the d(100) reflection was calculated and reported in 

Table 3.7. As observed for the HPW/SBA-15 series, the value is independent on the W 

wt% with no changes in unit cell and thus pore spacing observed.  

Figure 3.29 – Low angle powder XRD pattern of HPMo/SBA-15 (a) and HSiW/SBA-15 

(b). 
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Table 3.7 – Unit cell parameters and corresponding pore spacings for supported HPMo 

and HSiW on SBA-15. 

Bulk Metal loading / 
wt% 

d(100) / nm Pore spacing (a) / nm 

SBA-15 0 8.5 9.9 

HPMo 2.2 9.0 10.3 

8.7 9.0 10.3 

32.3 8.9 10.2 

HSiW 2.6 8.7 10.0 

9.9 8.7 10.1 

30.9 8.9 10.2 

Wide angle XRD analyses for the two supported series and those for the unsupported 

HPMo and HSiW, which shown for comparison, are reported in Figure 3.30. Diffraction 

patterns of unsupported HPMo in Figure 3.30-(a), 63 wt% of bulk Mo loading, displays 

a triclinic structures of H3PMo12O40·13H2O with most intense peaks at 26.2° and 27.7° , 

and a, b and c unit cell parameter of 14.54 , 14.79 and 13.65 Å respectively [50-52]. The 

unsupported HSiW XRD pattern in Figure 3.30-(b), 76.6 wt% of bulk W loading, displays 

the typical peaks of HSiW Keggin structure at 10.9°, 25.5°, 34.7°, which is in agreement 

with the literature [53-55]. For HSiW, the resulting pattern indicates a highly hydrated 

HSiW in an orthorhombic unit structure, with cell parameters a, b, c as 20.83, 13.09 and 

18.87 Å respectively, in the final formula of H4SiW12O40·24H2O [53]. The HSiW structure 

becomes cubic after controlled removal of water in the hexahydrate arrangement. For 

supported HPAs, in both series, at metal loadings ≤9%, only the broad peak of SBA-15 

at 23.2° is visible, revealing well dispersed HPAs structures over the support. Broad 

peaks of the characteristic patterns of parents are observed for 32.3 wt% and 30.9 wt% 

of heteroatom loading (W or Mo) of HPMo/SBA-15 and HSiW/SBA-15 respectively. 
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Figure 3.30 – Wide angle XRD patterns for (a) HPMo/SBA-15, and (b) HSiW/SBA-15 as 

function of metal loading. Unsupported HPAs are added as reference. 

Particle size results (Table 3.8) show that at low loading (5-8 wt%) HSiW/SBA-15 

samples exhibit only discrete K.U., being HSiW peaks not detectable; at higher metal 

loading, 30.9 wt%, nano-clusters of ~4 K.U. are observed. Similar features are detected 

for HPMo/SBA-15 materials, where only at 32.2 wt% Mo loading are observed 

agglomerates of 7/8 K.U. suggesting that agglomeration is slightly higher compared to 

their counterpart HSiW. 

Table 3.8 – Particle size dependence of Mo and W loading on SBA-15. 

HPMo/SBA-15  HSiW/SBA-15 

Bulk Mo loading / 
wt% 

Particle size / nm Bulk W loading / 
wt% 

Particle size / nm 

5 - 5 - 

8.7 - 8 - 

32.2 6.8 (±0.2) 30.9 3.2 (±0.2) 

Unsupported H3PMo12O40=42.6 nm Unsupported H4SiW12O40=101.4nm 

3.2.2.3 Nitrogen porosimetry 

N2 porosimetry was carried out to evaluate surface area, pore diameter and volume, for 

comparison with those textural properties of parent SBA-15 support material, shown in 

Figure 3.6 and Figure 3.9. Figure 3.31 reveal characteristic type IV isotherms for both 

series, HPMo/SBA-15(a) and HSiW/SBA-15 (b), which are typical of mesoporous 
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materials with both exhibiting type H1 hysteresis loops due to the mesopore diameters 

of SBA-15 and confirm the parent architecture is maintained [56].  

Figure 3.31 – Stacked isotherms of nitrogen adsorption and desorption for SBA-15 

supported HPAs at different metal wt%; HPMo/SBA-15 (offset of 100 cm3 g-1) (a) and 

HSiW/SBA-15 (offset of 150 cm3 g-1) (b). 

The textural properties of HSiW and HPMo supported materials are reported in Table 

3.9, where BET measurements and total pore volume were normalised per mass of 

silica. As for HPW/SBA-15, supported HPMo and HSiW show lower BET values 

compared to their parent SBA-15. Across both series, increasing the metal loading, 

surface areas exhibit almost constant values at ~850 m2 g-1
 SiO2. Micropore surface area 

calculated via N2 t-plot method showed diminishing values as both Mo and W wt% 

increases, suggesting micropores filling during silica impregnation. For the two series, 

pore volume values decrease constantly from 1.04 cm3 g-1 of the parent material to 0.59 

and 0.63 cm3 g-1 obtained for 32.3 wt% HPMo/SBA-15 and 30.9 wt% HSiW/SBA-15 

respectively. 

Pore diameter measurements witnesses a small decrease for high loading samples, 

suggesting that HPAs Keggin units are dispersed over the surface of SBA-15, and have 

a narrow pore size distribution, as confirmed in Figure 3.32. It can be deduced that 

independently from the type of HPAs used, the high surface area of SBA-15 and its pore 

dimensions are highly suitable to disperse Keggin structures within the range of 0-38 

wt%.  
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Table 3.9 – Textural properties of HPMo and HSiW on SBA-15 across the metal loading, 

wt%.  

Sample/ 
SBA-15 

Bulk metal 
loading / wt% 

Pore 
diameter (a) / 

nm 

Pore volume 
(b) / cm3 gSiO2

-1

Surface area 
(c) / m2 g-1

 SiO2

Micropore 
surface area 
(d) / m2 g-1

 SiO2

SBA-15 0 5.86 1.04 923 441 (± 44) 

HPMo 2.2 5.37 0.97 799 (± 79) 106 (± 10) 

8.7 5.36 0.91 804 (± 80) 137 (± 14) 

32.3 5.36 0.93 859 (± 86) 0 (± 10) 

HSiW 2.6 5.36 0.89 849 (± 85) 302 (± 30) 

9.9 5.26 0.74 801 (± 80) 167.8 (± 17) 

30.9 5.50 0.85 870 (± 87) 163.3 (± 16) 
(a)BJH desorption branch of isotherm, (b)Total pore volume recorded at 0.975 P/P0, (c)N2 

BET, (d)N2 t-plot

Figure 3.32 – BJH pore size distribution for HPMo/SBA-15 series (a), and HSiW/SBA-

15 series (b).  

3.2.2.4 Thermogravimetric analysis (TGA) 

The thermal stability of HSiW and HPMo supported on SBA-15 was evaluated by TGA, 

and is shown alongside the unsupported materials for comparison in Figure 3.33. As 

with the HPW, both HPMo and HSiW decompose following defined steps; first the loss 

of physisorbed water (<100 °C), second the loss of crystalline water trapped within HPA 

clusters that define the hydration stoichiometry (110-200 °C), and third the 

decomposition of the Keggin structure. Differential mass loss calculation was carried out 

to highlight each decomposition step, and results are reported in Figure 3.34. 
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The first desorption process is related to physisorbed water and is present at in all SBA-

15 supported samples (highlighted in blue). The desorption of crystalline water 

(highlighted in yellow ) for unsupported HPMo, where crystalline water desorption was 

observed at 100 °C [6], is equal to 7.1% of weight loss and suggesting H3PMo12O40·8H2O 

stoichiometry, whereas for HSiW this occurs at 180 °C [57, 58], and correspond to a 

14.2% weight loss from the bulk, and is equivalent to ~23.6 of water molecules. In the 

case of HPMo, the water stoichiometry is lower than the amount determined by XRD (13 

H2O), which given its relatively lower temperature of adsorption can be attributed to the 

difference in temperature that the two techniques are conducted at, 25 °C for XRD 

whereas TGA starts at 50 ºC under constant gas flow. In contrast, the TGA determined 

water of crystallinity for HSiW, with significantly higher desorption temperature, is in 

excellent agreement with XRD confirming the H4SiW12O40·24H2O stoichiometry.  

Figure 3.33 – Thermal analysis expressed as % mass loss as function of temperature 

on HPMo/SBA-15 series (a) and HSiW/SBA-15 (b). 

For the two supported series, the desorption of water of crystallinity is only visible at 

loading >10 wt%, as at low loadings, the highly dispersed Keggin units result in reduction 

in the degree of crystalline water present. The final evolution is the decomposition of the 

heteropolyacids, and witnesses the loss of constitutional water which for HPMo and 

HSiW starts at 240 and 300 °C respectively, and is completed at 450 °C for both series 

[23, 52]. 
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Figure 3.34 – Thermogravimetric analysis of SBA-15 supported materials, HPMo (a) 

and HSiW (b). 

3.2.2.5 n-Propylamine chemisorption and temperature programmed desorption 

(TPD) 

The acidity of the solid catalysts, HSiW and HPMo on SBA-15, were investigated by n-

propylamine chemisorption and TPD. From the HPW analysis (Figure 3.15), strong 

acidity was observed at 264 °C, with two further acid sites with medium and weak acidity, 

due to propene desorption being apparent at 340 and 414 °C respectively. Figure 3.35-

(a) shows propene desorption from unsupported HPMo starting at 290 °C and finishing

at 550 °C, with the HPMo supported on SBA-15 revealing the same trend, which can be 

attributed to common acidity, same acid strength, and confirming that the acid properties 

were unaffected by impregnation. Table 3.10 reports the measured acid densities for 

supported and unsupported HPMo; with each evaluated from the corresponding mass 

loss with appropriate background correction using the untreated catalyst. Acid site 

density is proportional to bulk Mo loading, reaching the maximum of 1.32 mmol g-1 for 

pure HPMo. The unsupported HSiW and supported on SBA-15 (Figure 3.35-(b)), display 

propene desorption in the range 200-530 °C. As reported in Table 3.10, acid site 

densities of HSiW series are comparable to those of the HPMo series, which increases 

as function of loading and reach a maximum of 1.16 mmol g-1 for the unsupported HSiW, 

which agrees with the literature value [55]. 
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Figure 3.35 – n-Propylamine TPD relative intensities of m/z normalised per g of sample 

for SBA-15 supported HPA over the metal wt% series; HPMo/SBA-15 (a) and 

HSiW/SBA-15 (b). 

Table 3.10 – n-Propylamine measured acid sites densities of SBA-15 supported HPMo 

and HSiW. 

HPMo/SBA-15 HSiW/SBA-15 

Bulk Mo loading / 
wt% 

Acid loading / 
mmol g-1 

Bulk W loading / 
wt% 

Acid loading / 
mmol g-1 

5 0.09 5 0.08 

8.7 0.27 8.0 0.23 

50 0.60 50 0.54 

Unsupported H3PMo12O40=1.32 mmol g-1 Unsupported H4SiW12O40=1.16 mmol g-1 

To evaluate the degree of strong, medium and weak acid sites, deconvolution of the MS 

propene spectra was conducted. Figure 3.36 shows s fitting example on both series, 

where signals have been deconvoluted in weak, medium and strong acid sites, as 

previously done for the HPW series, which showed peaks at 264, 367 and 407 °C. HPMo 

based materials desorbed propene at 310, 380 and 410 °C indicating that the Mo based 

materials are the weakest solid acids of the HPAs investigated, and that the replacement 

of W with Mo induces the greatest impact on the acidic strength [59].The HSiW series 

showed slightly weaker acid strength compared to HPW, exhibiting the desorption of 

propene at higher temperatures for the strong acid site (at 285 °C) and lower desorption 

temperature 335 and 402 °C suggesting a stronger weak character compared to HPW. 
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The two materials differ especially for the medium type acid site, which changes of ΔT = 

30 °C, and is related to the substitution of the central atom, P to Si [59]. 

Figure 3.36 – Fitting example of 41 m/z MS channel normalised for the g of solid sample, 

collected during n-propylamine chemisorption and TPD analysis, and obtained via Casa 

XPS software on and HPMo/SBA-15, bulk Mo 8.7 wt% (a), and HSiW/SBA-15, bulk W 

9.9 wt% (b). 

3.2.2.6 Diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) 

DRIFT measurements of the supported HPMo and HSiW, are reported in Figure 3.37, 

along with unsupported species and the parent SBA-15 support. For the HPMo/SBA-15 

series, the same characteristic peaks of the unsupported HPMo are apparent, with 

intensity increasing as a function of loading. Reported  literature values [45, 60-62], allow 

the following assignments; Mo-O-Mo asymmetric vibrations at 870 and 790 cm-1 are 

related to the Mo stretching with bridging and core oxygen atoms, respectively; 

stretching of Mo=O are observed at 963 and P-O at 1070 cm-1, with Si-O-Si stretching 

observed for on the supported materials at 1100 cm-1, as seen previously for HPW on 

SBA-15. The unsupported HSiW, and deposited on SBA-15, exhibit vibrations that show 

a small shift in frequency relative to HPW counterparts, due to the different central atom, 

Si instead of P. Stretching at 880 and 800 cm-1 are attributed to W-O-W vibrational 

modes interacting with bridging and internal oxygen atoms, whereas ν at 980 cm-1 are 

associated to W=O. For this type of series, two different Si-O signals are observed, one 

due to the support at 1100 cm-1, and a second due to Si being the central atom of the 
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Keggin structure, which is observed at 930 cm-1 and in agreement with literature values 

[57, 63]. 

Figure 3.37 – Stacked DRIFT spectra of HPMo/SBA-15 series (a), and HSiW/SBA-15 

series (b), as function of metal loading wt%, pure HPAs and support are reported for 

comparison. 

3.2.2.7 Raman spectroscopy 

Raman spectroscopy was utilised to further confirm the retention of the Keggin structure 

after impregnation on SBA-15, and support the conclusion drawn from XRD and DRIFT 

analysis. Figure 3.38 reports Raman shifts of unsupported HSiW and HPMo samples 

along with their supported species, revealing that for both series the heteropolyacid 

structure is retained after impregnation on the silica support and no formation of MoO3 

and WO3 discernible. The spectra of unsupported HPMo is in agreement with the 

literature, showing shifts at 998, 975, 909, 630, 251 cm-1 which correspond to νs(Mo-Ot), 

νas(Mo-Ot), νas(Mo-Obe-Mo), νs(Mo-Obe-o), νs(Mo-Obc-Mo), and νs(Mo-Oa-P), respectively 

[61]. The supported species display the same features of their parent, with intensity 

proportional to loading, as observed before, and at low loading, bulk Mo 2.2 wt%, the 

signal suffers of background interference. HSiW supported series showed excellent 

agreement with the unsupported species, displaying peaks at 995, 972, 890, 500 related 

to νs(W-Ot), νas(W-Ot), νas(W-O-W), [58, 64]. Again, no chemical shifts are observed 

suggesting the absence of defected species and further proving the integrity materials.  
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Figure 3.38 – Stacked Raman spectra of HPMo/SBA-15 (a); and HSiW/SBA-15 (b). 

3.2.2.8 XPS – X-ray photoelectron spectroscopy 

XPS analysis were carried out on both series, HPMo/SBA-15 and HSiW/SBA-15, to 

investigate the surface character of the catalysts. As with the HPW supported on silica, 

we observe two metal M(VI) species, where M is either Mo or W, one representing 

unaffected metal atoms and the second due to perturbed species which arise from the 

interaction with neighbouring silanol groups or from defected species, although the latter 

was not apparent by alternative techniques such as Raman spectroscopy. 

Figure 3.39-(a) reports the evolution of HPMo species on SBA-15, showing the Mo  

3d 5/2 doublet at 232.90 eV characteristic of Mo(VI) species with a spin orbit digit of 3.15 

eV [65, 66], accompanied with a second doublet at 231.17 eV related to perturbed 

species, possibly with a lower oxidation state, due to the linear dependence of Mo 

electronic state with the binding energy values [67]. Deconvolution allows the effect of 

loading on the ratio of bulk to perturbed to be determined, which is shown Figure 3.39-

(b), where the ratio between interfacial to bulk Mo species decreases with loading. 

Additional studies were carried out to verify the dispersion of HPMo species on the silica 

support and to compare findings with the HPW/SBA-15 series. As reported in Figure 

3.39–(b), the amount of surface Mo increases to a maximum of 7 wt%, which is 

significantly lower than the bulk loading of 32.3 wt% indicating an important degree of 

agglomeration of the Keggin units. At lower wt%, there is a good correlation between 

bulk and surface loadings, suggesting greater dispersion, with values comparable to 

those obtained with HPW/SBA-15. 
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Figure 3.39 – Background subtracted Mo 3d XP spectra of HPMo/SBA-15 series (a); 

and ratio of integrated signal of interfacial to bulk Mo 3d species across the loading on 

SBA-15, and correlation between superficial and bulk Mo wt% (b). 

The evolution of HSiW species on SBA-15 is reported in Figure 3.40-(a), showing the 

W 4f 7/2 doublet at 35.7 eV characteristic of W(VI) species with a spin orbit splitting of 

2.15 eV; and a second doublet at 34.5 eV associated to the perturbed species. 

Compared to the HPW/SBA-15 series, there is a doublet shift of ~0.4 eV, changing from 

P to Si as central atom, for only bulk species, meaning that for perturbed species of HPW 

and HSiW were observed at same eV. Figure 3.40-(b) show the surface loading as a 

function of bulk, and as with the HPMo series, at the highest loading there is a significant 

discrepancy which again is attributed to agglomeration of the Keggin unit, with at least 

1/3 of the W at the support surface interface. The ratio of interface to bulk species is also 

reported, evaluated via spectra deconvolution, with the contribution from the perturbed 

(interface) species, relative to the bulk, decreasing with loading, down to 0.3 ratio, as 

observed also for previous supported series (HPW and HPMo).  
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Figure 3.40 – Background subtracted W 4f XP spectra of HSiW/SBA-15 series (a); and 

ratio of integrated signal of interfacial to bulk W 4f species across the loading on SBA-

15, and correlation between superficial and bulk W wt% (b). 

 

3.3 Conclusions  

Two series of supported HPW, on fumed silica and SBA-15, have been prepared and 

fully characterised to probe the physiochemical nature of both the support materials and 

subsequent catalysts through the utilisation of a broad range of analytical techniques. 

The structure of parent HPW was preserved over both supports; for fumed silica 

agglomeration was more prominent showing stronger diffraction peaks in XRD analysis 

even at low loadings and high crystalline water mass loss; whereas SBA-15 allowed 

highly dispersed Keggin units and/or low dimensional clusters, which entrapped less 

water. Solid acidity measurements proved that the acid strength was consistent for both 

series with unsupported HPW; on fumed silica proton density was lower compared to 

SBA-15 series.  

Two additional series were synthesised and characterised, phosphomolibdic acid and 

silicotungstic acid supported on SBA-15 within 2-30 wt% of W/Mo, to investigate the 

effect of HPAs type on catalyst preparation and physicochemical properties. 

Again, the retention of the Keggin HSiW and HPMo structure on SBA-15, was confirmed 

as for the HPW series, and support architecture guaranteed high dispersion of both 
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HPAs. HPMo showed the lowest decomposition temperatures suggesting that is the less 

thermally stable material, and acidity measurements revealed that, compared to HPW, 

HSiW and HPMo are weaker solid acid but have higher acid density.  
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α-Pinene isomerisation 
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4.1 Introduction 

As discussed in Chapter 1, turpentine is a valuable bio-resource for green building blocks, such 

as camphene, limonene and terpinenes [1]. α-Pinene is the major compound in its formulation, in 

addition to β-pinene and terpinolene, although the actual composition is strongly dependent on 

regional and seasonal variations.  

The liquid phase isomerisation of α-pinene has been widely investigated, and is often used as a 

test-reaction to study acidic properties of solid catalysts [2]. The reaction leads to the formation 

of numerous high-value products; including camphene, limonene, terpinolene, β-pinene, α- and 

γ-terpinene, and p-cymene (Scheme 4.1). The resulting products distribution is strongly 

influenced by reaction conditions (gas/liquid phase, temperature and pressure) and the catalyst 

employed (homo/heterogeneous system). A number of heterogeneous catalysts are reported in 

the literature, alloys [3], clays [4, 5], zeolites [6-9], titania [10], sulfated zirconia [11-13] and 

heteropolyacids, both unsupported and supported on a range of different materials [2, 14-18]. 

Isomerisation leads predominately to the formation of monocyclic products (limonene, terpinenes, 

terpinolene etc.) and polycyclic products (camphene, β-pinene, fenchene and tricyclene); 

however, depending on the reaction conditions and the catalyst’s properties (architecture, 

porosity, acid Brønsted/Lewis ratio) heavier products, formed via polymerisation/condensation of 

polyterpenoids, can also be produced.  

Studies into the selectivity of the isomerisation pathway suggests that camphene production is 

favoured over catalysts possessing Brønsted acidity, with a clear production dependence  on acid 

strength, and is to the detriment of the production of the monocyclic products [4, 8, 9, 19]. 

Camphene and tricyclene are independent from α-pinene conversion while limonene, terpinenes 

and terpinolene, are highly dependent, due to consecutive secondary reaction [20-22]. The kinetic 

rate relative to α-pinene consumption is of the first-order, with the activation energy, calculated 

by the Arrhenius equation equal to 80 kJ/mol [23, 24]. 

Herein, α-pinene isomerisation activity was investigated as function of bulk W loading and support 

architecture at different reaction temperatures. The ratio, monocyclic to polycyclic products, was 

calculated to elucidate the dependence of camphene selectivity on catalysts acid strength, with a 

complimentary mechanism study conducted in order to elucidated the reaction network for the 

overall isomerisation process.  
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Scheme 4.1 – Principal products of α-pinene isomerisation.  

 

4.2 Results and discussion 

α-Pinene is a solventless reaction and conversion was calculated according to Equation 4.1:  

Conversion / % =(
molt=0-molt

molt=0
)×100 

Yield to product
i
 / % = (

moli

molt=0
)  × 100 

Selectivity to product
i
 / %= (

moli

∑mol product
)×100 

Equation 4.1 – Equation used to calculate ethanol conversion % and product selectivity. 

where molt=0 are the initial moles of α-pinene; molt refers to the moles of α-pinene at the sampling 

time (time 0, 5, 15, 30, 60, 120, 180, 240, 300, 360, 1440 min); and moli are the moles of product 

formed.  
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4.2.1 Reaction profiles on supported HPW: support architecture effect 

The α-pinene isomerisation was initially investigated at varying stirring rates, from 500 to 700 rpm, 

in order to check for and overcome potential bulk mass-transfer limitations, resulting from diffusion 

from the bulk liquid to the support. The influence of agitation on the initial activity, over the 3.2 

wt.% W/SBA-15 catalysts, is reported in Figure 4.1, with associated reaction profiles shown in 

Appendix A, Figure 1, and reveals an equal mass normalised initial rate of ~37 mmol h-1 gcat
-1 , 

indicative that, under these conditions, mixing is sufficient to eliminate external mass transport 

related problems, and therefore all further catalytic screening has been carried out using stirrer 

rate of 700 RPM.  

 

Figure 4.1 – Influence of stirring rate on the α-pinene normalised initial rate over 3.2 wt% of 

HPW/SBA-15. Reaction conditions: 126 mmol of α-pinene, 0.2 cm3 of tetradecane (as an internal 

standard), 60 °C, 0.1 g of catalyst. 

Having established an efficient mixing regime, α-pinene isomerisation was investigated employing 

supported HPW on SBA-15 and on fumed silica. Reaction profiles at 60 °C as function of time 

and W bulk loadings over the two supports are reported in Appendix A, Figure 2, with the two 

parent supports shown to be inactive toward α-pinene isomerisation under the mild reaction 

conditions utilised in the study herein. Figure 4.2 shows an example reaction profile, for W 9 wt.% 

of HPW/SBA-15, with α-pinene conversion and product yields reported as a function of time. The 

associated product yield clearly reveals that limonene and camphene are the two major products 

of the isomerisation reaction, and represent monocyclic and polycyclic product respectively. 
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Figure 4.2 – α-Pinene isomerisation reaction profile for 9.0 wt% of bulk W on SBA-15. Reaction 

conditions: 126 mmol of α-pinene, 0.2 cm3 of tetradecane (STD), 60 °C, 0.1 g of catalyst, 700 rpm 

of stirring rate 

As alluded to in Chapter 3, silica support architecture and W loading are a critical controlling 

factors on the dispersion of HPW. These parameters significantly influence the degree of active 

species, and thus the number of external surface protons that are readily accessible to apolar 

substrates that are incapable of diffusing into the HPW bulk [25].  

The activity dependency of α-pinene isomerisation as a function of support is reported in Figure 

4.3-(a), where unsupported HPW (74 wt% bulk W) values are added for comparison. The fumed 

silica supported series showed poor conversions <10% and low initial activities centred at 20 

mmol h-1 gcat
-1, being independent of HPW loading and comparable to the unsupported HPW. In 

comparison, the HPW/SBA-15 family revealed significantly enhanced conversions, with values 

reaching up to ~ 40%, with associated initial activities elevated to 121 mmol h-1 gcat
-1 for a W 

loading of 19.9 wt%, and with a strong volcano dependence on W loading. A dramatic loss in 

initial rate, for loading ≥38.2 wt% with values falling to ~56 mmol h-1 gcat
-1, is attributed to the lower 

number of accessible protons which is directly related to HPW aggregation. The isolated and 

highly dispersed Keggin clusters (as observed for low loadings via STEM, Chapter 3, Figure 

3.11) and low dimensional HPW arrays (confirmed via XRD and TGA), for loadings up to 19.9 

wt%, allows for apolar liquids to access surface Brønsted sites, enhancing conversion and thus 

mass normalised activity. Three-dimensional HPW agglomerates, observed at higher W loadings 
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on SBA-15, results in a high degree of localisation of acid sites within the multi-layered structures, 

which, are inaccessible to the α-pinene and thus correlates with the fall in catalytic activity. In 

comparison HPW on fumed silica, exhibits a drastically faster 3D growth rate, which is attributed 

to the fewer number of hydroxyl groups (than SBA-15), and thus a lower number of available site 

for catalysis relative to equivalent loadings on SBA-15 [26].  

Figure 4.3 – Effect of bulk W loading and silica supports on α-pinene isomerisation activity (a) 

and turnover frequencies (b). Reaction conditions: 126 mmol of α-pinene, 0.2 cm3 of tetradecane 

(STD), 60 °C, 0.1 g of catalyst, 700 rpm of stirring rate. 

Turnover frequencies values are reported on Figure 4.3-(b) as function of W loading and silica 

supports, and unsupported HPW (74 wt% of bulk W) performance is reported for comparison. 

Data were obtained dividing the α-pinene catalytic activity by the number of specific acid site of 

each catalyst, measured via propylamine chemisorption and TPD. As described previously, the 

proton density of synthesised solid samples (mmolH+ gcat
-1) increases almost linearly as the 

loading of bulk W increases, displaying higher values for the HPW/SBA-15, as confirmed also via 

ammonia titration. TOFs calculations mirror α-pinene activity, and the strong dependence on the 

W loading over both supports. Fumed silica supported samples disclose a constant TOF of ~ 50 

h-1, suggesting that big aggregates have poor acid accessibility with α-pinene isomerisation 

confined on the external surface. 

HPW/SBA-15 exhibit a formidable increase of TOF from 200 h-1 to 600 h-1 between 3.2 wt% and 

16.9 wt% indicating that dispersed K.U. are less active compared to sub-monolayer small HPW 
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agglomerates, which own a higher proton mobility due to water molecules held within the 

secondary heteropolyacid structure. With the agglomeration of more than ~5-6 K.U., for W 

loadings >20 wt% on SBA-15, the number of accessible proton to non-polar α-pinene decreases 

as the turnover frequencies drop to 50 h-1, which are comparable with the unsupported HPW.  

Scheme 4.2 represents the observation with regard to the two supports and their influence on 

TOFs, depicting the dependence of a non-polar isomerisation reaction on the W loading and the 

3D structure of HPW on both supports. A right balance between acidity and support porosity is 

required for optimal acid catalysed isomerisation of α-pinene at small cluster of HPW, which are 

only generated at mid loadings on SBA-15 [2].  

 

Scheme 4.2 – Dependence of α-pinene isomerisation reactivity on structure and loading of HPW 

supported on high surface area, mesoporous SBA-15 (left) and non-porous fumed silica (right).  

Selectivity results are reported as ratio between mono and polycyclic products, in which each 

term is the sum of products selectivity of the same family (Figure 4.4). For the two catalyst 

families, ratios are independent from the mass loading of bulk W, being ~1.2 across the two 

catalysts series, with selectivity toward monocyclics products being ~55% and slightly higher than 

the polycyclic species ~45%. In comparison, unsupported HPW displays comparable results, with 

a mono/poly ratio ~1. Selectivity data are in agreement with Wu et al. investigation carried out on 

the isomerisation of α-pinene employing thermally treated HPW on SBA-15, in which the 

selectivity was studied as function of T and catalyst amount [27]. Catalyst acid strength and 

reaction temperature are crucial factor to consider regarding product distributions [28], which are 

investigated herein.  
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Figure 4.4 – Product selectivity ratio as function of W wt% supported on SBA-15. Reaction 

conditions: 126 mmol of α-pinene, 0.2 cm3 of tetradecane (STD), 0.1 g of catalyst, at 60 °C, stirring 

rate 700 rpm (a). Dependence of monocyclic / polycyclic ratio to bulk W loading and silica supports 

(b). 

4.2.2 Reaction profiles on supported HPW: temperature effect 

As reported in the literature, α-pinene conversion and reaction temperature both play an important 

role in terms of selectivity toward camphene [20-22]. To study the effect of reaction conditions on 

the product distribution, i.e. the ratio mono to polycyclic products, α-pinene isomerisation was 

carried out at 30 °C, employing 0.1 g of catalyst, 126 mmol of α-pinene at 700 rpm of stirring rate. 

Reaction profiles at 30 °C as function of time and W bulk loadings over the two supports are 

reported in Appendix A-Figure 3. 

Figure 4.5 reports α-pinene activity as a function of W loading on both supports, SBA-15 and 

fumed silica, where unsupported HPW (74 wt% of bulk W) performances are reported for 

comparison. α-Pinene isomerisation was also performed in absence of catalyst to verify the 

authenticity of the catalytic process, which showed negligible conversion, with both silica supports 

also inert towards the isomerisation reaction. HPW/SBA-15 leaded to the best performances of 

α-pinene conversions, reaching 3% when 16.9 wt% of bulk W was employed. At higher loadings, 

conversion halved to 1.5%, confirming that a non-polar substrate reacts with accessible active 
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sites localised on the external surface, which are greater in number in the sub-monolayer 

coverage <20 wt% of W/SBA-15. In contrast, fumed silica supported samples showed constant 

values of conversion within the range 0.75-0.9%, which are comparable with HPW. All samples 

showed reduced activities (Figure 4.5-(a)), with the highest values obtained when SBA-15 was 

used as support. As observed at 60 °C for HPW supported on SBA-15, α-pinene isomerisation 

activity exhibits a clear dependence on mass loading, revealing a volcano plot as a function of 

loading across the W loading. In the range 3.2-16.9 wt% of W on SBA-15, the initial rate 

normalised for the mass of catalyst rises from 4.6 to 6.6 mmol h-1 gcat
-1, reflecting an increase of 

acid density. For W loading >20 wt%, which display a continual increase of the number of acid 

sites, the normalised activity decreases due to the formation of larger agglomerates and reduced 

acid site accessibility. The catalysts that exhibited the best performance at 30 °C are most active 

also at 60 °C, confirming our previous findings. Fumed silica samples mirror conversions trend, 

with constant values (between 2.5 and 3 mmol h-1 gcat
-1) even with the increase of the acid loading, 

with the presence of larger agglomerates across all loadings being detrimental to catalyst 

performance in the isomerisation reaction.  

 

Figure 4.5 – Effect of bulk W loading and silica supports on α-pinene isomerisation activity (a) 

and turnover frequencies (b). Reaction conditions: 126 mmol of α-pinene, 0.2 cm3 of tetradecane 

(STD), 30 °C, 0.1 g of catalyst, 700 rpm of stirring rate. 

TOF values, in Figure 4.5-(b), again reveal identical trends as observed at 60 °C, which reveal 

that proton accessibility of the non-polar substrate is a key role of isomerisation reaction, and thus 

(a)

0

5

10

15

20

0 20 40 60 80

In
it
ia

l 
ra

te
 /

 m
m

o
l
h

-1
g

c
a
t-1

Bulk W loading / %

HPW/SBA-15
HPW/Fumed silica

Unsupported 

HPW

(b)

Unsupported 

HPW

0

10

20

30

40

50

0 20 40 60 80

T
O

F
 /

 h
-1

Bulk W loading / %

HPW/SBA-15

HPW/Fumed silica



149 

increasing total acid sites, being simply increasing HPW loading, is not the sole governing factor. 

Herein, highest turnover frequency (volcano trend maximum) is attained employing 9 wt% sample 

of HPW/SBA-15 and it is ~38 h-1; 3.2 and 16.9 wt% samples reveal comparable TOF values being 

almost 20% lower compared to the maximum. At higher loadings, results display a strong 

decrease in TOF, losses of 84%, with TOFs values mirroring those of unsupported HPW. The 

effect of reduced temperature reveals a dramatic decrease in α-pinene isomerisation activity, with 

turnover frequencies and catalytic activities decreasing by an order of magnitude.  

Investigation into product distribution, under these milder reaction conditions, was evaluated from 

the ratio of monocyclic and polycyclic products, and is reported as function of loading (Figure 

4.6).  

Figure 4.6 – Dependence of monocyclic to polycyclic ratio to bulk W loading and silica supports. 

Across both series, camphene and limonene were the only products of α-pinene isomerisation, 

revealing that secondary products are strongly inhibited by the lower reaction temperature. As 

reported in the literature, limonene is more reactive than camphene and can be further 

transformed to terpinolene and terpinenes as the temperature or conversion increases [22-24, 

29]. Additionally, Brønsted acid sites facilitate limonene conversion increasing the reaction rate 

of secondary products [2-4]. Theoretical calculation of the formation energy of the reaction 

intermediates to camphene and limonene revealed that camphene is more favourable at lower 

temperature [30], which are in agreement with our findings. The monocyclic to polycyclic ratio 

decreases to values lower than 1 indicating a higher formation of polycyclic products.  
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4.2.3 Selectivity dependence on acid strength 

From the initial investigations, it is concluded that highly dispersed HPW Keggin units play a 

critical role in the α-pinene isomerisation reaction, with SBA-15 being a superior support due to 

enhanced accessibility of the heteropolyacid surface to no-polar substrate, with W loadings 

between 10-20 wt% having the highest number of available protons. 

To evaluate the role of acid strength on α-pinene isomerisation, the selectivity of camphene was 

investigated by employing the heterogeneous solid acids, phosphomolybdic acid (HPMo) and 

silicotungstic acid (HSiW), both supported on SBA-15, which exhibit the same Keggin structure 

of HPW. A loading of ~9 wt% of the heteroatom was chosen as the counterpart HPW on SBA-15 

showed optimal performances at both 30 and 60 °C. Synthesised materials, HSiW/SBA-15 and 

HPMo/SBA-15, were fully characterised in their physical and chemical properties, as reported in 

Chapter 3, with acid strength order being HPW>HSiW>HPMo, evaluated from n-propylamine and 

ammonia TPD, which is in agreement with the literature [31-36]. In addition, surface area 

measurements, pore diameter and pore volume suggested that textural properties of supported 

HPAs have comparable values, BET surface areas (normalised for the mass of silica support) 

span 750-800 m2 gSiO2
-1, pore dimeter and volumes of 5.8 nm and 0.67-0.8 respectively, 

suggesting highly dispersed K.U. The absence of powder XRD peaks further supports the 

presence of discrete nano-clusters (<2 nm).  

α-Pinene isomerisation was screened at 60 °C, employing HSiW/SBA-15 and HPMo/SBA-15, with 

heteroatom loading in the range of 8-9 wt%, and results compared with the counterpart 

HPW/SBA-15. Products yields for HPMo/SBA-15 and HSiW/SBA-15 are reported in Appendix 

A, Figure 4. Comparison of substrate conversions are reported in Figure 4.7-(a) in which 

HPW/SBA-15 reaches the highest values at 33%, followed by HPMo and HSiW, with 27% and 

22% respectively. In all cases, the α-pinene conversion rises rapidly in the first hour of reaction, 

and slowly reaches a plateau; additionally, colour change of catalysts, from white to brown, 

indicates some deposition of carbonaceous products on the catalytic material’s surface.  

TOFs are reported in Figure 4.7-(b) and mirror the close correlation between acid strength and 

reaction kinetics parameters. HPMo/SBA-15 exhibits lowest turnover frequencies at 275 h-1, value 

that rises to 315 h-1 when HSiW/SBA-15 is employed, tripling finally to 600 h-1 in the case of 

HPW/SBA-15. For equally dispersed heteropolyacids, with accessible protons and comparable 

values of acid site density, TOF differences are strictly related to the surface acidity. TOFs were 
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determined using total acid density, due to the presence of H5O2
+ or H3O+ species which facilitate 

the interanion migration of single protons, making unnecessary the discern between strong, 

medium and weak acid sites. As Uchida et al. reported in their study [37], in hydrated HPAs there 

are three types of proton migration; first is related to the H+ migration in the form of hydronium 

ion, which moves within large HPAs clusters; the second refers to interanion migration of isolated 

H+, and the third is related to the hopping of single protons from one oxygen atom to another (eg. 

from Ot to Ob and vice versa) in the same heteropolyanion structure. In hydrated HPAs, the 

interanion migration is mediated by the water molecules, which allow to delocalise the acid 

protons conferring high mobility and easy protonation of the substrate [37]. The strong correlation 

between acidity and water molecules force us to consider the acid sites in its total value. It is also 

worth pointing out that the H+ motion is 106-103 times faster than the organic transformation, and 

therefore the α-pinene reaction is not proton diffusion limited [37].  

Figure 4.7 – α-Pinene isomerisatino reaction profiles as function of time (min) depending on the 

heteropolyacid involved at 9 wt% of heteroatom supported on SBA-15 (a); and relative TOF (b). 

Reaction conditions: 126 mmol of α-pinene, 0.2 cm3 of tetradecane (STD), 0.1 g of catalyst, at 60 

°C, stirring rate 700 rpm. 

Dependence of selectivity toward polycyclic and monocyclic families on acid strength is reported 

in Figure 4.8, with camphene selectivity correlating to acid strength, and the weaker acid catalysts 

favouring limonene and its secondary products (monocyclics), with monocyclic to polycyclic ratio 

rising from 1.12 to 1.5 and finally to 1.7, when employing HPW, HSiW and HPMo respectively. 
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These findings suggest that stronger acids allow bicyclic rearrangements (leading to camphene), 

at the detriment of ring opening arrangements, responsible for limonene and it secondary 

derivative products family. Scheme 4.3, is generally accepted in the literature, reports the early 

steps of the α-pinene isomerisation, which starts with the irreversible protonation of the substrate 

forming pinylcarbonium ion (1) [11, 22-24, 38, 39]. Further bicyclic rearrangements of compound 

(1) is believed to form camphene; whereas its ring opening leads to monocyclic products, such

as limonene, terpinolene and α/γ-terpinene. Results suggests that weak solid acid, as 

HPMo/SBA-15, facilitates the formation of the more thermodynamically stable structure, that 

being the single ring structures.  

Figure 4.8 – Correlation between selectivity towards the two product families (monocyclics / 

polycyclic) and acid strength measured via n-propylamine chemisorption and TPD of common 9 

wt% W (or Mo) loading on SBA-15. 
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Scheme 4.3 – Acid catalysed routes to polycyclic versus monocyclic products from α-pinene. 

4.2.4 Mechanism study 

To gain a complete understanding of the overall reaction mechanism, including secondary 

reactions of primary products, catalytic screening of all potential products was conducted.  

In Table 4.1, the catalytic results for conversion (%) and product yields (%) after 6 hours of 

reaction. All reaction profiles are reported in Appendix A, Figure 5, for camphene, limonene, 

terpinolene, α/γ-terpinene, p-cymene and β-pinene. Limonene conversion reached 5.1%, with 

product yields of terpinolene being 2.2%, and α and γ-terpinene being 1.5% and 1.3% 

respectively, were formed after 6 h of reaction, clearly as secondary products of terpinolene (see 

Appendix A, Figure 5). 

+H+
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α-Pinene

Camphene

Limonene
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Table 4.1 – Conversion and yields obtained after 6 h of reaction employing 0.1 g of catalyst (16 

wt% W/SBA-15), 126 mmol of reagent, 0.2 cm3 of tetradecane (STD), at 60 °C, stirring rate 700 

rpm. 
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Limonene 5.1 0.0 
0.0 

- 0.0 2.2 
0.0 

1.5 1.3 
0.0 

Camphene 11.0 
0.0 0.0 0.0 

- 0.0
0.0 0.0 

0.0 
0.0 

Terpinolene 0.5 
0.0 0.0 0.0 0.0 

-
0.0 0.0 

0.4 
0.0 

p-Cymene 1.0 
0.0 0.0 0.0 0.0 

0.0 - 
0.0 0.0 0.0 

α-Terpinene 5.2 
0.0 0.0 

4.1 
0.0 

0.3
0.0 

- 
0.0 0.0 

γ-Terpinene 6.3 
0.0 0.0 

0.0 
0.0 

1.5
0.0 

3.8 - 
0.0 

β-Pinene 97.0 
0.0 

- 25.0 32.0 10.1
0.0 

5.0 3.4 2.4 

Camphene’s conversion reached 11% but only high retention time products (HRTP), attributed to 

dimers and trimers, were formed and not quantified because of the unknown composition of these 

species [40, 41]. The reaction with terpinolene resulted in very low conversion, only 0.5%, with 

the only product observed being γ-terpinene at 0.4% yield, whereas p-cymene’s conversion 

attained 1% and no products observed. α-Terpinene’s conversion reached 5.2%, with yields of 

limonene and terpinolene being 4.1 % and 0.3% respectively, whereas carrying out reaction with 

γ-terpinene, which showed similar conversion of 6.3%, resulted in the formation of terpinolene, 

with a yield of only 1.5%, and α-terpinene with a yield of 3.8%. Surprisingly, carrying out reaction 

with β-pinene almost full conversion was obtained, 97% after 6 h, leading limonene and 

camphene as major products, with 25% and 32% of yield respectively, followed by terpinolene 

(10%), α-terpinene (5%) and γ-terpinene (3.4%) and finally fenchene (2.4%), obtained from 

isomerisation of camphene [42].  

It is worth noticing that Nie et al. [38] carried out the isomerisation reaction using either β or α-

pinene or crude turpentine employing HPW supported on MCM-41 at different temperature and 

different HPW loading. The products distribution reported is similar to the present study, and they 

also observed similar superior conversion of β-pinene (75%) compared to α-pinene (50%) at 90 

°C reaction temperature, employing 0.4 g of 20 wt% of HPW loading. In the study, no further 
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investigation was carried out to better understand the striking difference between the two isomers. 

However, it appears that protonation (forming the pinylcarbonium ion ion) of the exocyclic double 

bond of the β-pinene on the highly dispersed HPW units is easier/faster compared to the 

endocyclic C=C of the α-isomer.  

To confirm our results regarding the higher performance of the exocyclic protonation, the β-pinene 

isomerisation was carried out employing supported HSiW and HPMo on SBA-15 with bulk metal 

loading of 9 wt%. Catalytic results (Appendix A, Figure 6-(a)) show high conversion of the β-

isomer, 100 % for HSiW/SBA-15 and 37% for the HPMo/SBA-15 and similar product distributions 

with camphene and limonene as major products, followed by terpinolene and terpinenes. 

Selectivity towards monocyclic and polycyclic products mirror the results obtained from 

isomerisation of the α-pinene with supported HPAs, confirming that increasing the catalyst’s acid 

strength favours polycyclic product formation (Appendix A, Figure 6-(b)).  

Rocha et al. [43] also investigated the isomerisation reaction of β-pinene to the α-isomer; 

theoretical calculations revealed high activation energies for the β→α isomerisation, and hence 

explains the absence of α-pinene during β-isomerisation. It was also shown that the exocyclic β-

pinene double bond coordinates with a transition metal centre, forming a π-allylic system which 

lowers the isomerisation energy barrier, enhancing pinene activity.  

Scheme 4.4 summarise our findings regarding the overall reaction network in which α-pinene or 

β-pinene are protonated forming the pinylcarbonium ion, a precursor of both monocyclic and 

polycyclic species. Consequently, two types of reaction may occur; rearrangement with ring 

opening, leading to terpynilcabonium ion (monocyclic), or rearrangement without ring opening, 

forming bornylcarbonium ion (bicyclic) [23, 24, 44]. Limonene, terpinolene and terpinenes are 

products of the ring opening rearrangement, when the pinyl cation reacts to from terpynil cation. 

Isomerisation catalytic tests carried out starting from the products, suggested that limonene is the 

main product of the deprotonation of terpynil cation, and that terpinolene is mainly obtained from 

double bond migration from the limonene structure, as reported in the literature [24], and because 

at low conversions of α-pinene, terpinolene is the second monocyclic compound after limonene. 

α and γ-terpinenes are formed as secondary products, which  occurs via the protonation of 

limonene or terpinolene [44], and are only observed after ~3 h of reaction. Rearrangements, 

without ring opening, lead to the formation of bi- and polycyclic compounds, principally from the 

bornylcarbonium ion. The latter, precursor of camphene, is believed to be formed via Wagner-

Meerwein rearrangement of the pinyl cation as reported in Appendix A, Scheme 1 [23, 24, 45]. 
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Independently from the type of rearrangement reaction, neither camphene or limonene and its 

secondary products can be converted to α/β-pinene [28].  

Scheme 4.4 – Proposed mechanism of the α-pinene isomerisation reaction. 

4.3 Conclusion 

The isomerisation of α-pinene is a solventless, non-polar, surface-type reaction for which catalyst 

activity and TOFs are strictly dependent on proton loading and accessibility. Findings revealed 

that SBA-15 allows superior HPW dispersion, relative to commercial low surface area fumed 

silica, facilitating a greater proton availability for a non-polar reagent unable to diffuse within the 

internal HPW cluster structures.  

Reaction temperature is a critical factor in the isomerisation of alpha pinene, with significantly 

influence on camphene selectivity; lower temperatures favour camphene production, whereas 

higher temperatures result in higher conversion of α-pinene and subsequent secondary reaction 

of limonene forming monocyclic secondary products.  
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HPA acid strength is also important, with camphene (and polycyclic products) selectivity increases 

with the increase of acid strength, whereas limonene and monocyclic are preferentially formed 

over weaker Brønsted acid.  

Mechanism studies allowed the elucidation of the overall reaction network, and revealed the 

higher activity of β-pinene isomerisation which further confirmed the direct correlation between 

polycyclic selectivity and acid strength. 
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5 Chapter 5 

Ethanol Dehydration 
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5.1 Introduction 

As previously described in Chapter 2, the dehydration of bio-ethanol is a challenging 

reaction to produce ‘green ethylene’ which has been studied since 1987 by Saito et al. 

using heteropolyacids as solid acid catalysts [1]. The literature agrees with ethylene and 

diethyl ether as the major products of ethanol dehydration, with the stoichiometric 

reactions, and associated enthalpy of formation, reported in Equation 5.1.  

C2H5OH ⟶ C2H4 + H2O    ∆H298
θ

= +44.9 kJ/mol  (1) 

2 C2H5OH ⟶ C2H5OC2H5 + H2O   ∆H298
θ

= -25.1 kJ/mol  (2) 

Equation 5.1 – Products formed by the direct dehydration of ethanol, with relative 

formation enthalpies at 25 °C [2].  

Reaction (1) displays the path to obtain ethylene, showing that is an endothermic 

process, which requires only one ethanol molecule, and is favoured over the temperature 

range 200-350 °C. Above this temperature, the catalytic decomposition of ethylene 

occurs forming undesirable secondary products. In contrast, reaction (2), leading to ether 

formation, is exothermic, requires two ethanol molecules and is favoured at lower 

temperatures. Several studies [1-8] have been carried out to identify the reaction 

pathways, and to determine if ethylene is a primary or secondary product.  

The reaction proceeds under Brønsted acid conditions, with a great number of catalysts 

having been studied in an attempt to elucidate the reaction mechanism, which include γ-

alumina and microporous aluminophosphates [9, 10], H-mordenites, H-beta and H-

ZSM5 [2, 11-13], activated carbon [14], different metal oxides [15], and heteropolyacids 

[3, 16-19]. Saito et al.’s study [1] was one of the first to employ heteropolyacids as solid 

acid catalysts, pointing out on the role of the pseudoliquid phase on product yields, 

suggesting that it serves as reservoir of physisorbed ethanol molecules. The latter 

supposedly facilitating the formation of the undesired ether, which arises from the 

reaction between a chemisorbed and a physisorbed species, whereas ethylene is 

formed from the unimolecular decomposition of ethanol. Bokade et al. [16] studied the 

diluted ethanol (80% m/m) dehydration activity on phosphotungstic acid (HPW), its Na 

salt (NaPW) and phosphomolybdic acid (HPMo) supported on montmorillonite at 

different wt%. The best performances were obtained using the 30 wt% supported HPW 

to enhance the surface area, obtaining 74% of conversion and high ethylene yields. In 

the study, the use of diluted ethanol was chosen over anhydrous ethanol as a more 

realistic feedstock choice [16]. Cesium salts of HPMo and cerium, copper and nickel 
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salts of HPW have also been studied, showing greater selective catalysts for ethylene 

at low temperatures compared to their acids, leading, however, to the formation of 

acetaldehyde as a secondary product [3, 20].  

5.2 Results and discussion 

Ethanol conversion was calculated according to Equation 5.2, where molRt=0 are the 

initial moles before the feed stream passes through the reactor, and molRt are referred 

to the moles of ethanol detected with the GC at time t of reaction on stream. Selectivity 

values were also calculated, with the equation reported below, where molP is referred to 

the moles produced of product, and vP is the related stoichiometric coefficient and molR 

are the moles of reagent (ethanol converted). 

Conversion / % = (
molRt=0-molRt

molRt=0

) ×100 

Selectivity / %= (
νR ∙ molP

νP∙mol
Rt 

)×100 

Equation 5.2 – Equation used to calculate ethanol conversion % and products 

selectivity. 

In the current chapter, products are reported as space time yield (Equation 5.3) which 

measures the amount of product formed gi per unit of time (h) and volume of catalyst (L) 

at the outlet. 

Space time yield (STY) / 
g

L ∙h
=
molPt

h
×

MW

Vcatalyst

 

Equation 5.3 – Space time yield equation where molPt are the moles of ethylene or 

diethyl ether formed per unit of time, MW is the molecular weight of the compound of 

interest, and Vcatalyst is the volume of the fixed bed reactor.  

Reaction was performed under ethanol liquid flow rate, L= 0.0034 mol min-1, N2 flow G = 

50 cm3 min-1 (25 °C), with a volumetric flow of the mixture calculated at the inlet (100 °C) 

of 173 cm3 min-1. Space time was calculated based on the volume of catalyst V = 5 cm3 

per unit of volumetric flow of the stream. Repeated runs of ethanol dehydration were 

carried out to evaluate the error of each kinetic value. 
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5.2.1 Reaction profiles on unsupported HPA 

5.2.1.1 Unsupported HPW 

The dehydration of ethanol was initially investigated using unsupported HPW to study 

conversion dependence as a function of the mass of catalyst employed, which also 

allowed to define a protocol in which the intrinsic kinetics of reaction were not affected 

by mass-transport limitations (bulk diffusion). The influence of HPW mass (g) on activity 

was investigated using very mild conditions, 150 °C, to avoid any possible thermal 

degradation effect, with the total volume of the catalytic bed kept constant (5 cm3) by 

using a physical mixture of 50,100 and 150 g of HPW with quartz chips.  

Ethanol conversion values and products space time yields are reported in Appendix B-

Figure 1-2-3.  

As confirmed in Figure 5.1, steady state rates of ethanol dehydration normalised for the 

mass of W were independent from the amount of catalyst used, exhibiting constant 

values at approximately 380 mmol h-1 gW
-1. 

Figure 5.1 – Influence of the mass catalyst on ethanol dehydration at 150 °C. Values 

were averaged after 90 min on stream.  

Having established that substrate activity is independent on mass of catalyst used, 

ethanol dehydration was investigated as function of temperature, over the range of 150-

275 °C, with the mass of catalyst being 50, 100 or 150 mg. Figure 5.2 shows two 

examples of reaction profiles of ethanol conversion and products space time yields (sty), 

as function of time, at high and low temperature, employing 100 mg of catalyst.  
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Figure 5.2 – Ethanol dehydration reaction profiles carried out with unsupported HPW at 

different temperatures: 150 °C (a) and 275 °C (b). Reaction conditions: 100 mg catalyst, 

Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 150 and 275 °C. 

All reaction profiles for studies between 150 and 225 °C showed a constant ethanol 

conversion independently from the amount of catalyst; while a 7% loss in ethanol 

conversion was observed at 250 and 275 °C, suggesting some sort of deactivation 

process. This can be due to either site blocking for strong chemisorption of carbon 

species (poisoning), or thermal degradation of the active phase [21, 22]. Potential 

causes of catalyst deactivation will be investigated more in detail herein. To reduce the 

effect of catalyst deactivation on our measurements, all kinetic values were evaluated at 

30 minutes of reaction. Ethanol conversion as a function of increasing temperature is 

shown in Figure 5.3-(a), where nearly a linear increase of conversion is observed as 
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function of temperature within 180-225 °C, as also reported by Varisli et al. [19]. For the 

three series, highest performance was observed at 275 °C, for which 67.3% of ethanol 

was converted employing 150 mg of catalyst, followed by 62.8 and 36.2% obtained with 

100 and 50 mg respectively. Selectivity values were also investigated; results suggest 

that ethylene production increases with the temperature and is independent from the 

mass of HPW used (Figure 5.3-(b)), in agreement with the literature [19].  

 

Figure 5.3 – Influence of catalyst mass to volume ratio on ethanol conversion as function 

of temperature (a), and influence of temperature on ethylene selectivity (b). Reaction 

conditions: 50,100,150 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 

cm3 min-1 at 150, 175, 200, 225, 250 and 275 °C. 

Apparent activation energy of the HPW catalyst for ethanol dehydration was calculated 

using the Arrhenius equation [23] for the three different amounts of catalyst (50, 100, 

150 mg) within 150-275 °C. Figure 5.4 shows results obtained employing 100 mg of 

HPW, which gives an Ea = 27 kJ mol-1. Comparable Ea results are also obtained 

employing 50 and 150 mg of unsupported HPW, revealing no correlation with the catalyst 

mass, and confirming the absence of mass transfer limitations under the reaction 

conditions used. Additionally, the Ea value is in good agreement with the literature (43 

kJ mol-1) for a comparable temperature range [16]. 
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Figure 5.4 – Arrhenius Ea for ethanol dehydration reaction carried out on unsupported 

HPW. 

 

5.2.1.2 Unsupported HSiW and HPMo 

Ethanol dehydration was additionally carried out employing 100 mg of unsupported 

silicotungstic acid (HSiW) and phosphomolybdic acid (HPMo) to investigate dehydration 

kinetics and selectivity dependence on the nature of the heteropolyacid involved. Figure 

5.5 reports ethanol conversion and products space time yield profiles for both 

unsupported HSiW and HPMo at 225 °C. The plot reveals that HSiW seems to be more 

active than HPMo; but both catalysts suffer from ~ 15% decrease in ethanol conversion, 

and in the order of 50% loss in space time yields towards the products. It is hypothesised 

that the lower thermal stability (compared to HPW), affects onstream stability, which in 

turn leads to a in decreased activity and ethanol conversion (as confirmed by TGA 

analysis, Chapter 3, Figure 3.26).  
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Figure 5.5 – Ethanol dehydration reaction profile carried out with unsupported HSiW 

(a) and unsupported HPMo (b). Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3,

LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C. 

Figure 5.6 compares the results of the three unsupported HPAs, revealing that HPW 

displays the greatest performance for both ethanol conversion and ethylene selectivity. 

When HPW is employed at 225 °C, 43% conversion was obtained, while HSiW and 

HPMo reached 20% and 11% respectively. Selectivity toward ethylene follows the same 

trend across the different heteropolyacid species, indicating that both conversion and 

selectivity are related to difference in acid strength, in which strong acid sites increase 

dehydration reactions.  
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Figure 5.6 – Ethanol conversion and ethylene selectivity depending on the 

heteropolyacid used. Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 

0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C. 

Turnover frequencies and selectivity values as a function of catalyst acid strength is 

show in Figure 5.7, with acid strength evaluated by n-propylamine TPD described in 

Chapter 3. Unsupported HPW possess the strongest acidity, as observed from the 

desorption of propene at 264 °C; unsupported HSiW and HPMo revealed a weaker 

acidity with propene desorption at 280 and 310 °C respectively. The acid strength order 

observed for the three unsupported heteropolyacids, HPW>HSiW>HPMo, is in 

agreement with the literature [24-30], and strongly relates with ethylene selectivity and 

TOFs. Propylamine analysis also revealed that the H+ density on these materials follows 

the inverse order, HPMo>HSiW>HPW, indicating that neither ethylene selectivity nor 

TOFs are influenced by the acid site loading. Variations due to proton accessibility was 

not considered because all the considered unsupported HPAs display similar low surface 

area and crystallite size as reported in Chapter 3. The influence of proton accessibility 

will be studied later employing the supported HPA species.  
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Figure 5.7 – Ethylene selectivity dependence on the proton density and acid strength, 

determined via n-propylamine TPD of unsupported heteropolyacid, HPW (●), HSiW (▲) 

and HPMo (♦). Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol 

min-1, GN2 = 50 cm3 min-1 at 225 °C. 

Additional tests were carried out to study the influence of temperature on catalytic 

conversion of ethanol using HSiW and HPMo, at 175 and 250 °C. HSiW and HPMo 

reaction profiles of ethanol conversion and space time yields at three different 

temperatures and as a function of time are reported in Appendix B in Figure 4 and 5. 

In both series, at all temperatures, a reduction of 10% in ethanol conversion is observed 

over the 4 h of reaction, as well as products space time yields. Results suggested that 

catalyst undergoes through deactivation. Figure 5.8 reports conversion and selectivity 

values take at 30 minutes to minimise the influence of deactivation. For unsupported 

HSiW (a), ethylene selectivity increases significantly with the temperature, starting from 

5% at 175 °C and reaching 20% at 250 °C. A comparable trend is also observed when 

employing 100 mg of HPMo, in which 4.2% ethylene selectivity is obtained at the highest 

temperatures. In contrast to the HPW system, for both series ethanol conversion 

decreases with temperature, indicative that HSiW and HPMo are more susceptible to 

thermal deactivation [22].  
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Figure 5.8 – Ethanol dehydration dependence on reaction temperature employing 

unsupported HSiW (a) and HPMo (b). Reaction conditions: 100 mg catalyst, Vcatalyst = 5 

cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 175, 225 and 250 °C. 

5.2.2 Reaction profiles on supported HPAs 

5.2.2.1 Supported HPW: the influence of support architecture 

The effect of proton accessibility on the reaction kinetics was investigated by depositing 

HPW on two silica supports with different architecture, commercial non-porous fumed 

silica and well-ordered mesoporous SBA-15, previously synthesised and characterised 

in Chapter 3. Blank reactions, using 100 mg of both bare supports, were also conducted 

at 150, 200 and 250 °C showing negligible contribution in ethanol conversion.  

Catalyst screening was conducted at 225 °C employing 100 mg of supported catalyst, 

to probe differences in conversion and selectivity as a function of bulk W loadings over 

the two support materials. Reactions profiles are reported in Figure 5.9, where for all the 

samples, ethanol conversion is constant as function of time, with a slight 5% decrease 

only observed at higher loadings, behaviour also observed for ethylene space time 

yields. Appendix B-Figure 6 reports diethyl ether space time yields obtained for the two 

series. Ethylene and DEE were the major products with mass balance above 85%. Coke 

deposition and negligible formation of CO2 as well as butylene isomers, as detected from 

GC analysis, make up the unaccounted mass. 
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Figure 5.9 – Ethanol conversion and ethylene space time yields as function of time at 

225 °C, employing HPW/Fumed silica (a, c), and HPW/SBA-15 (b, d). Reaction 

conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-

1 at 225 °C. 

Figure 5.10 summarises the conversion of ethanol as a function of W loading, with 

reported conversion values taken at 30 min of reaction to minimise the influence of 

deactivation on-stream. HPW supported on fumed silica reach rapidly a plateau for W 

loading ≥15.5 wt% at approximately 62% of ethanol conversion. In comparison, HPW 

catalysts on SBA-15 exhibit a more linear trend within the loadings 3.2 and 38.2 wt%, 

for which the maximum of conversion (79%) is observed. At higher loadings, as observed 

for the fumed silica series, conversion values plateau, indicating that the two series 
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behave similarly at these wt%. The striking difference between the two series appears 

in the low loading region, where performances are greater over HPW deposited on 

fumed silica. This would suggest that structural differences in the HPW aggregation 

impart the controlling factor, for which the conversion is independent on the amount of 

HPW used. 

  

Figure 5.10 – Influence of bulk W loading on the conversion of ethanol for the two series, 

HPW/SBA-15 and HPW/Fumed silica. Reaction conditions: 100 mg catalyst, Vcatalyst = 5 

cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C. 

Selectivity data evaluated at iso-conversion values (within the range 25-50%) reveals 

that support architecture have no influence on product selectivity (see Figure 5.11), with 

constant DEE and ethylene selectivity of 78% and 19% respectively, these being 

consistent with bulk HPW. The plot indicates a common reaction mechanism across both 

supported and unsupported bulk HPW, revealing that the intrinsic chemistry of the 

unsupported HPW is retained after impregnation.  
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Figure 5.11 – Influence of W loading on the selectivity towards diethyl ether (DEE) and 

ethylene for the two series, HPW/SBA-15 and HPW/Fumed silica. Reaction conditions: 

100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C.  

Reaction rates normalised to the mass of W are shown in Figure 5.12. An inverse 

correlation between activity and bulk loading emerges for HPW on fumed silica, with 

catalysts with HPW loadings between 2.2-15.5 wt% exhibiting the highest activities, 

reaching 20000 mmol h-1 gW
-1 for the lowest wt%. At higher loadings, ≥34.9 wt%, activity 

decreases and plateaus at a value comparable to the unsupported HPW (74 wt%). The 

dehydration rates over the SBA-15 series show lower values than the fumed silica 

counterparts, being around 5000 mmol h-1 gW
-1 for the 3.2 wt% loading, and mirroring 

the fumed silica series at higher loadings (> 38.2 wt%). The activity dependence on HPW 

loading confirms the critical role that the physiochemical properties of the deposited 

active site plays, and suggesting that the most active system is the one that shows an 

optimal aggregation level rather than a more dispersed systems (as for the alpha 

pinene). 
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Figure 5.12 – Dependence of ethanol dehydration activity on bulk W loading and silica 

support. Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-

1, GN2 = 50 cm3 min-1 at 225 °C. 

To better understand why HPW on fumed silica is more active than comparable loadings 

on SBA-15, turnover frequencies were calculated based on the total acid density 

measured via n-propylamine chemisorption. The method was chosen over ammonia 

titration analysis as the probe molecule n-propylamine is closer in molecular size to 

ethanol, with values of 5.4 and 1.6 for n-propylamine and ammonia respectively, relative 

to 4.0 Å for ethanol (calculation made using Chem3D software). 

Turnover frequencies were investigated as function of bulk W loading for the two 

supports to highlight the effect of support architecture on catalyst activity. Results 

obtained for the two series are reported on Figure 5.13, showing again that, at 

comparable bulk W loadings, catalysts supported on fumed silica are far more active 

than on SBA-15. HPW on fumed silica display a volcano-like trend as function of W wt%, 

reaching ~4766 h-1 for 15.5 wt% catalysts, to further decrease to 3000 h-1 at higher 

loadings. On the other hand, TOF calculated for SBA-15 supported catalysts reveal 

almost constant values at ~2000 h-1, with TOF value more comparable with the 

unsupported HPW, as already observed by Haber et al. [31]. 
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Figure 5.13 – Turnover frequencies for ethanol dehydration as function of bulk W loading 

for HPW/SBA-15 and HPW/Fumed silica. Reaction conditions: 100 mg catalyst, Vcatalyst 

= 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C. 

As extensively described in Chapter 1, one of the unique characteristics of 

heteropolyacids is the ability to carry out bulk-type catalysis in the presence of polar 

reactant, in the so-called pseudoliquid phase, as well as an excellent proton mobility, 

both within the K.U. and within K.U. clusters [31-34]. When HPW are supported on silica, 

part of the protons is directly bounded with the surface and thus do not participate as 

catalytically active sites, while the other part is free, easily accessible and therefore able 

to take part in the catalytic active site turnover. Increasing the loading of HPW results in 

the genesis of bigger agglomerates, which are structurally similar to the unsupported 

species, where proton density is significant, resulting in the presence of a greater degree 

of so-called crystalline water. This crystalline water, trapped between adjacent K.U., is 

responsible of the further adsorption and subsequent reaction of ethanol within the bulk 

HPW structure, and serves as reservoir for ethanol, whilst also facilitating proton 

mobility. In order to evaluate whether the amount of crystalline water is a governing 

factor, the dependence of TOF on this physiochemical property, determined from the 

mass loss measured via thermogravimetric analysis (see Chapter 3, Fig 3.13), is shown 

in Figure 5.14. The plot reveals a striking linear correlation that is independent of support 

architecture, indicating the critical role that water of crystallinity plays in the catalytic 

activity towards the polar ethanol reactant forming more of the so called pseudoliquid 

phase in which higher levels of H3O+ and H5O2
+ are present.  
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Figure 5.14 – Correlation between ethanol dehydration TOFs and water mass loss 

measured for unsupported and supported HPW on fumed silica and SBA-15. Reaction 

conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-

1 at 225 °C. 

 

5.2.2.2 Supported HPW: recycling the catalyst 

The on-stream lifetime and recyclability of a catalyst are critical factors when designing 

a material for industrial application. To evaluate the recyclability of these systems, the 

W 38.2 wt% on SBA-15 was assessed for 3 consecutive reactions, at 225 °C, between 

each run the reactor was slowly cooled under inert gas (N2) with no catalyst reactivation 

process implemented. 

Figure 5.15-(a) shows the reaction profiles for the three consecutive runs. Ethanol 

conversion diminishes with each run, losing 50% of the initial value by the 3rd cycle. 

During each cycle, conversion values remain constant values over time, indicating that 

during the reaction the HPW is stable and is not effected by any sort of deactivation, with 

ethylene space time yield values for the three runs constant and thus supporting this 

conclusion, as reported in Figure 5.15-(b, c). Selectivity towards ethylene was also 

evaluated for each run (see Figure 5.15-(d)) which is reported with conversion at 30 

minutes. The plot clearly reveals that, although the catalyst loses 23% and 35% of its 

activity, after the 1st and 2nd run, selectivity is unaffected, suggesting only a loss in the 

total number of active sites arose from poisoning and/or a physiochemical change to an 

inactive phase.  
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Figure 5.15 – Reaction profiles for fresh and recycled 38.2 wt% of bulk W loaded on 

SBA-15: ethanol conversion (a), diethyl ether (b) and ethylene (c) space time yield, and 

comparison of conversion and ethylene selectivity after each run (d). Reaction 

conditions: 50 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3min-1 

at 225 °C. 

According to literature and from the previous characterisation (TGA, XRD and DRIFTs), 

hydrated HPW lose the so-called crystalline water at approximately 200 °C, with 

dehydrated structures stable up to 300 °C, and only at higher temperatures 

dehydroxylation takes place. During the reaction (at 225 °C), besides ethylene and 

diethyl ether, water is also formed, as a beneficial by-product, which is rapidly absorbed 

by the HPW and in turn partially rehydrates the structure. In addition, hydrogen bonded 

ethanol molecules have also been shown to play the same role as water in stabilising 
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the HPW structure [33]. Janik et al. 2003 [35] studied the reversibility of the dehydration 

process on phosphotungstic acid, proving by FTIR that samples, previously pre-treated 

at 200 °C and exposed to water vapour, are easily re-hydrated, evidenced by the 

reappearance of bending vibration of the six water molecules of the hydrated HPW 

structure at 1716 cm-1 wavenumber. The rehydration, however, is irreversible if the HPA 

is heated to 300 °C and above, when the dehydroxylation takes place. Under the recycle 

condition implemented, upon completion of the reaction, the catalytic bed was cooled 

under a flow of inert gas before the next cycle, potentially removing all the weakly bonded 

molecules, both protonated water and ethanol, and thus increasing the anhydrous 

character of the HPW structure. This hypothesis is further supported by the reserches of 

Furuta et al. [36], who showed that the presence of water vapours is crucial to stabilise 

both the primary and secondary structure of the Keggin units, and Micek-Ilnicka et al. 

[37] who found that the addition of water to the reactant stream can positively influence

the physicochemical properties of the HPW Keggin unit slowing the dehydration process, 

and hence keeping the structure hydrated, more stable and less prone to deactivation. 

To test this hypothesis, the role of water on catalyst stability and reaction kinetics was 

investigated, recyclability tests were carried out using ethanol spiked with a known 

amount of water. Two different water concentrations, 2.9 mol L-1 (~5% vol/vol) and 6.2 

mol L-1 (~10% vol/vol), were chosen, with the former molarity being akin to the azeotropic 

mixture, and the latter similar to the water concentration present in bioethanol, which is 

used as fuel blends [38] and widely produced. The tests carried out using the water 

concentration of 2.9 mol L-1 are reported in Figure 5.16, where reaction profiles of fresh 

and recycled 38.2 wt% HPW/SBA-15 catalyst are plotted as function of time. Figure 

5.16-(a) reveals that constant values of ethanol conversion are observed during the 4 h 

or reaction, as witnessed for anhydrous ethanol feedstock and further confirming that 

there is no thermal deactivation of materials at 225 °C. In comparison with the anhydrous 

test, for the first cycle, the presence of water slightly lowers ethanol conversion, as both 

compounds, ethanol and water, competitively adsorbed on the catalyst surface. 

Interestingly, after the 3rd cycle, only 13% of the initial conversion is lost (going from 

~56% to 43%), compared to 35% previously, clearly indicating that water helps to 

maintain the hydrated catalyst structure. Additionally, products space time yields are 

constant during the 4 hours of reaction with only a slightly decrease after each cycle 

(Figure 5.16-(b, c)), and change in selectivity is observed (Figure 5.16-(d)), displaying 

constant values with both fresh and spent catalyst 
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Figure 5.16 – Reaction profiles for fresh and recycled 38.2 wt% of bulk W loaded on 

SBA-15, employing a 2.9 M solution of water in ethanol as feed: ethanol conversion (a), 

and ethylene (b) and diethyl ether (c) space time yield, and comparison of conversion 

and ethylene selectivity after each run (d). Reaction conditions: 50 mg catalyst, Vcatalyst = 

5 cm3, LEthanol= 0.0033 mol min-1, LH2O= 0.0004 mol min-1,GN2 = 50 cm3 min-1 at 225 °C. 

The tests carried out on using water concentrations of 6.2 mol L-1 as the reaction stream, 

as reported in Figure 5.17, where reaction profiles of fresh and recycled 38.2 wt% 

HPW/SBA-15 catalyst are plotted as function of time. Figure 5.17-(a) displays constant 

values of ethanol conversion during the 4 h or reaction, as observed in both previous 

tests. In comparison, although the increase in the amount of water further lessened the 

conversion to 48%, the value remains constant for each cycle, suggesting preservation 
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of the HPW primary structure. Product space time yields are also constant over the 4 

hours of reaction (Figure 5.17-(b, c)), as is product selectivity (Figure 5.17-(d)) which 

again agree excellently with the previous studies. 

Figure 5.17 – Reaction profiles for fresh and recycled 38.2 wt% of bulk W loaded on 

SBA-15, employing a 6.2 M solution of water in ethanol as feed: ethanol conversion (a), 

and ethylene (b) and diethyl ether (c) space time yield, and comparison of conversion 

and ethylene selectivity after each run (d). Reaction conditions: 50 mg catalyst, Vcatalyst = 

5 cm3, LEthanol= 0.0032 mol min-1, LH2O= 0.0009 mol min-1,GN2 = 50 cm3 min-1 at 225 °C. 

The influence of water content on ethanol conversion and ethylene selectivity is reported 

in Figure 5.18, wherein data are compared based on the first reaction point of the steady 

state. Figure 5.18-(a) compares conversions between all recycling tests indicating that 

0

20

40

60

80

100

0 60 120 180 240

C
o

n
ve

rs
io

n
 /

 %

Time / min

1st cycle
2nd cycle
3rd cycle

(a) (b)

0

50

100

150

200

0 60 120 180 240

S
p

a
c
e

 t
im

e
 y

ie
ld

 /
 g

 L
-1

h
-1

Time / min

1st cycle
2nd cycle
3rd cycle

0

200

400

600

800

1000

0 60 120 180 240

S
p

a
c
e

 t
im

e
 y

ie
ld

 /
 g

 L
-1

h
-1

Time / min

1st cycle
2nd cycle
3rd cycle

(c)

0

20

40

60

80

100

1st cycle 2nd cycle 3rd cycle

C
o

n
ve

rs
io

n
, 

S
e

le
c
ti
vi

ty
 /

 %

Ethanol
Ethylene

(d)



181 

in the absence of water after each run there is a dramatic drop in conversion, which it is 

attributed to a loss in activity from the partial collapse of the Keggin structure. The 

addition of water helps to mitigate the loss of conversion, as it is believed to aid the 

rehydration and stabilisation of the catalytic structure, with this effect proportional to 

water concentration. Figure 5.18-(b) reports the selectivity values for all the recycling 

tests, revealing that selectivity independent to the amount of water present in the feed-

stream, which is indicative of water only stabilising the active phase and not inducing the 

formation of a different catalytically active species. 

Figure 5.18 – Comparison between conversion (a) and ethylene selectivity (b) after each 

run for anydrous ethanol (0 mol L-1), 2.9 and 6.2 mol L-1 of hydrous ethanol. Reaction 

conditions: 50 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034, 0.0033, 0.0032 mol min-1, 

LH2O= 0, 0.0004, 0.0009 mol min-1,GN2 = 50 cm3 min-1 at 225 °C. 

Figure 5.19 displays the retainment of catalytic activity after the three cycles 

independently from the conversion obtained, wherein catalyst longevity is linearly 

proportional to the concentration of water. Hence, only by employing the solution with a 

water concentration of 6.2 mol L-1 can the full catalytic active sites be retained after 

recycling, and it suggests any further increases in water will have no beneficial impact 

on active phase stability but would likely result in further decreases in ethanol conversion 

from increased competitive absorption. 
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Figure 5.19 – Influence of water content on the retainment of catalyst activity after three 

consecutive cycles. Reaction conditions: 50 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034, 

0.0033, 0.0032 mol min-1, LH2O= 0, 0.0004, 0.0009 mol min-1,GN2 = 50 cm3 min-1 at 225 

°C. 

 

5.2.2.3 Supported HPW: the influence of temperature 

The influence of temperature on selectivity and catalyst deactivation was investigated 

carrying out the reaction with HPW/SBA-15, using the 38.2 wt% W loading as it exhibits 

the highest conversion of ethanol at 225 °C, due to its optimal balance between 

dispersion (STEM), particle size (XRD) and degree of crystalline water (TGA).  

The resulting selectivity, determined for conversion values between 50-95 %, are 

reported in Figure 5.20, with each the average over the first 30 mins of reaction. We 

observed that ethylene selectivity is proportional to reaction temperature, at the expense 

of DEE, which is in agreement with previous studies [2, 16, 18, 19, 31]. DEE selectivity 

dramatically decreased to 20%, from an initial value of 70%, as temperature rises from 

225 °C to 275 °C, with ethylene selectivity rising to 60% from an initial 16%. As 

temperatures increases further the selectivity plateaus, at values of 70% for ethylene 

and DEE at 15 %. The unaccounted remaining products comprise carbonaceous 

species; CO2 and butylene isomers, which were observed in the GC/GCMS but only 

present in trace amounts, and ethoxy groups strongly chemisorbed to the Brønsted acid 
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sites, which are formed instantaneously on the catalyst surface, with their density 

inversely dependent on temperature [10].  

Figure 5.20 – Influence of temperature on selectivity toward ethylene and diethyl ether, 

for 38.2 wt% of bulk W loaded on SBA-15. Reaction conditions: 50 mg catalyst, Vcatalyst 

= 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225, 275, 300, 350 and 400 °C. 

The overall reaction mechanism in ethanol dehydration is one of contention and an area 

still under investigation [39]. From literature, in addition to the main products, 

acetaldehyde [9, 15, 40], short-chain hydrocarbon, as butylenes [41] and light gases 

[42], are also formed depending on the catalyst used. The degree of formation of these 

side products is typically very low, an therefore the overall mechanism commonly only 

considers the main two products, which can be obtained via parallel reactions [43], a 

series of sequential reactions, or both as an interconnected framework [5, 44]. Saito et 

al. [1] suggested that on heteropolyacids ethylene formation occurs via unimolecular 

decomposition of chemisorbed ethanol species while diethyl ether is obtained via 

condensation between a chemisorbed protonated species and physisorbed ethanol 

molecule. Takahara et al. [11] studied the catalytic activity of zeolites and silica-alumina 

with different % of Brønsted acid sites on ethanol dehydration, suggesting that strong 

Brønsted solid acid are responsible of the formation of ethylene. Varisli et al. [19] studied 

the reaction employing unsupported HPW, HSiW and HPMo, reporting results that are 

in agreement with those present herein, and put forward a mechanism that proceeds via 

parallel reactions, which is applied to the subsequent discussion. 

In parallel to the critical role that temperature impacts on reaction selectivity, it 

simultaneously leads to a diminishing loss in ethanol conversion with time on stream and 
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increasing discrepancies in mass balances. The effect of temperature on conversion is 

reported in Figure 5.21, where ethanol dehydration catalytic tests were carried out within 

the range of 225-400 °C. For reaction temperature ≤ 300 °C, conversion values are 

constant, with only a modest ~5% decrease drop over a 4 h reaction period, and optimal 

conversion levels are observed and 275 and 300 °C. As reaction temperature is 

increased to 350 °C and then further to 400 °C a dramatic drop in conversion with time 

on stream is observed, being indicative of catalyst deactivation.  

Figure 5.21 – Influence of temperature on ethanol conversion for 38.2 wt% of bulk W 

loaded on SBA-15. Reaction conditions: 50 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 

mol min-1, GN2 = 50 cm3 min-1 at 225, 275, 300, 350 and 400 °C.  

In Figure 5.22, space time yields of diethyl ether and ethylene are reported as a function 

of time. Interestingly, the plot reveals that of the two major products only ethylene is 

affected by the observed catalyst deactivation, displaying a significant decrease over the 

four hours of reaction for all the temperatures used, except for 225 °C, whereas the 

space time yield for DEE is influenced sole by temperature and not time, that is it remains 

reasonably constant of the duration of the reaction.  
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Figure 5.22 – Temperature influence on ethylene and DEE space time yields employing 

50 mg 38.2 wt% HPW/SBA-15 as function of time: diethyl ether space time yield (a) and 

ethylene space time yield (b). Reaction conditions: 50 mg catalyst, Vcatalyst = 5 cm3, 

LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225, 275, 300, 350 and 400 °C. 

In order to shed insight into the catalyst life time during the dehydration of ethanol, 

gradients of reaction rate vs time were calculated and plotted as function of temperature. 

Ethanol reaction rate normalised for amount of W over time at different temperatures, 

are reported in Figure 5.23-(a), while deactivation rate data are reported in Figure 5.23-

(b), revealing a strong dependency to temperature. For reactions carried out at T ≤ 300 

°C the dehydration activity reduces only slightly ~ 1000 mmol h-1 (in the order of 10% of 

the initial value) after 1 h of reaction, while for higher temperatures, at 350 and 400 °C, 

the activity is almost halved.  
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Figure 5.23 – Influence of temperature on ethanol activity (a), and catalyst deactivation 

rate (b). Reaction conditions: 50 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, 

GN2 = 50 cm3 min-1 at 225, 275, 300, 350 and 400 °C. 

Upon completion of 4 hour on stream, at 350 and 400 °C, it was observed that the 

catalyst displayed significant colour change, from pure white for the fresh material to 

black. From previous literature studies this can be attributed to either thermal 

decomposition of the active species, also observed post TGA analysis, or deposition of 

heavy organic, often aromatic compounds, or a combination of the two. Aromatics are 

suggested being formed via cyclo-polymerisation of adsorbed ethylene on strong acid 

sites, as reported in the literature when employing HZMS-5 zeolite at 400 °C [39, 41]. 

Formation of heavy compounds is also related to a drop with time onstream of ethylene 

space time yields and losses in mass balance which increase with temperature, being 

at 350 °C of only 75%, and at 400 °C of 60%.  

CHNS analysis accompanied with temperature programmed oxidation analysis (TPO) 

were utilised to evaluate the level of carbon deposition and to deduce different possible 

carbon species that have been deposited on the catalyst surface. 

The C wt% results measured via CHNS on spent catalyst are shown in Figure 5.24-(a), 

which reveals an exponential correlation between carbonaceous species formed on the 

surface and reaction temperature, suggesting that at elevated temperatures (at 350 ºC 

and above), the heat can initiate ethylene chain growth/or aromatisation reaction. Mass 

normalised CO2 desorption profiles are reported in Figure 5.24-(b), and correlate 

strongly with CHNS analysis, mirroring the increase of carbonaceous species with the 

increase of CO2 desorption peaks intensity. The two major peaks, at 485 and 530 °C, 
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are attributed to high aliphatic oligomers and polyaromatics respectively, referred to as 

also hard coke [45]. The shoulder observed at 380 °C, for spent catalysts at 350 and 

400 °C, is associated to lower molecular weight ethylene oligomers. 

Figure 5.24 – CHNS elemental analysis (a) and TPO (b) obtained on spent catalyst 

(38.2 wt% HPW/SBA-15) at different reaction temperatures. Reaction conditions: 50 mg 

catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1. 

To further investigate the catalyst’s deactivation process, wide angle XRD was 

conducted on the spent 38.2 wt% HPW/SBA-15 catalysts for the different reaction 

temperatures (Figure 5.25-(a)). XRD pattern of each catalyst displayed diffraction peaks 

related to HPW and WO3, which represent the active and deactivated phase of the 

catalytic material, respectively. Furthermore, information on the dominant crystalline 

phases, HPW or WO3, were determined for each sample (see Figure 5.25-(b)).  

As expected, HPW is the dominant phase in the fresh catalyst (97%); after reaction at 

225 and 275 °C, 76% of HPW crystalline phase is still present, whilst characteristic WO3 

diffraction peaks rise. Increasing the reaction temperature, further results into a flip of 

the dominate phase, with WO3 present at 56.4 % and 72.4 % for 350 and 400 ºC 

respectively. The preservation, albeit partial, of the HPW phase, even at the upper most 

temperature, explains the activity for the 38.2 wt% HPW on SBA-15 across all 

temperature studied. These observation being consistent with the thermal 

decomposition of the HPW structure, due to the loss of structural oxygen atoms, as water 

molecules, which initiates at ~300 °C (as shown in TGA analysis, Chapter 3, Figure 

3.12) with the break-down of the W-Ob-W chemical bond (as shown in DRIFT analysis, 

Chapter 3, Figure 3.23), which has also been reported in the literature [22].  
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To confirm the inactivity of WO3 towards ethanol dehydration, in particular at the highest 

temperatures, ethanol dehydration was screened at 400 °C, employing 100 mg of 

commercial WO3, revealing 4.8% of ethanol conversion, which was comparable with the 

non-catalytic ethanol conversion measured at 350 °C (5.7%). 

Figure 5.25 – XRD pattern of fresh and spent catalyst at different reaction temperatures 

(a); HPW and WO3 phase % calculated for each catalyst.  

The catalyst’s recyclability studied proved that water is important to maintain the 

hydration and thus stability of HPA Keggin structure. Furthermore, water is reported to 

have also the ability to diminish catalyst deactivation due to coke deposition. 

Kozhevnikov et al [45] studied the effect of water on coke formation over HPAs, revealing 

that adding water to the reactant stream decreases the rate of coke formation during 

propene polymerisation, suggesting that water and other polar solvents facilitate the 

desorption of coke precursors from the catalyst, thus, preventing its formation. In 

addition, Rossetti et al. [13] found that also on BEA-based catalyst, water helps limiting 

the coke, in the detriment of ethanol conversion. 

To further investigate on the role of water in the catalytic system, ethanol dehydration 

reaction was carried out at 350 and 400 °C, employing 50 mg of the sample 38.2 wt% of 

the HPW/SBA-15 series as catalyst, using the solution 6.2 mol L-1, 10% (vol / vol), of 

water in ethanol, as this previously proved to lead to the best performances in term of 

HPW stability. As reported in Figure 5.26, ethanol conversion decreased in the presence 

of water, which competes with the alcohol for the adsorption on the surface. Conversion, 

dropped from 95% to 56% and 65% for reaction carried out at 350 and 400 °C, 

respectively. During the reaction, ethanol conversion does not remain constant but 

decreases, although to a lesser extent as evidenced by the smaller gradient compared 
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to previous experiments, hence the deactivation effect is reduced. Space time yields for 

diethyl ether are constant, while, as observed previously, ethylene values gradually 

decrease throughout the reaction time.  

Figure 5.26 – Ethanol dehydration carried out with water as co-feed, using 38.2 wt% of 

HPW/SBA-15 as catalyst; ethanol conversion (a), and space time yields of ethylene and 

DEE (b). Reaction conditions: 50 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, 

GN2 = 50 cm3 min-1 at 350 and 400 °C. 

The new values of deactivation in rates carrying out the reaction at 350 and 400 °C, are 

reported in Figure 5.27, showing that important improvements were achieved through 

introducing water into the feed. The extent of deactivation was reduced by 55% 

compared to previous calculation at 350 °C, 1895 (mmol h-1 g-1) h-1, whereas at 400 °C, 

the deactivation, 2466 (mmol h-1 g-1) h-1, is 46% smaller compared to the experiment 

carried out using an anhydrous ethanol stream. Further proving the critical role that water 

plays on maintaining the HPW structure hydrated and active. 
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Figure 5.27 – Catalyst deactivation rate employing a solution 6.2 M of water in ethanol 

(10% vol/vol). Reaction conditions: 50 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol 

min-1, GN2 = 50 cm3 min-1 at 350 and 400 °C. 

The apparent activation energy of ethanol dehydration (in anhydrous conditions) for 

supported HPW was calculated using the Arrhenius equation [23], shown in Figure 5.28. 

The temperatures studied were decreased from 225-400 ºC to 150-275 ºC to reduce 

deactivation of the HPW structure arising from thermal decomposition. A calculated 

activation energy of 46 kJ mol-1 for the 9.0 wt% HPW/SBA-15 catalyst concurs with 

previous values obtained for unsupported HPW (27 kJ mol-1), and also agrees with the 

literature value [16].  
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Figure 5.28 – Arrhenius Ea for ethanol dehydration reaction over W loading 9.0 wt% on 

SBA-15. Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-

1, GN2 = 50 cm3 min-1 at 150, 175, 225 and 275 °C 

 

5.2.2.4 Supported HSiW and HPMo 

The influence of the nature of supported heteropolyacid on the ethanol dehydration 

reaction was evaluated at 225 °C, employing common loadings of HSiW, 30.9 wt%, and 

HPMo, 32,3 wt%, on SBA-15 with the results compared to the ones obtained for 38.2 

wt% of HPW/SBA-15. The metal loading at approximately 35 wt% was chosen as they 

display optimal dispersion of small HSiW and HPMo nano clusters, of ~ 4-8 K.U. akin to 

the HPW system. Figure 5.29 reports the ethanol conversion, and ethylene space time 

yields as function of time. Data referred to diethyl ether are in Appendix B-Figure 10. 
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Figure 5.29 – Ethanol dehydration kinetic parameters attained at 225 °C, employing 

SBA-15 supported HPAs as function of time: conversion (a) and ethylene space time 

yield (b). Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-

1, GN2 = 50 cm3 min-1 at 225 °C. 

Interestingly, the supported species exhibited better results compared to the bulk HPW, 

HSiW and HPMo, with W-based materials, phosphotungstic and silicotungstic acid, 

showed greater performances compared to the Mo-based catalyst. Ethanol conversions 

are steady during the 4 hours of reaction, reaching 80% for both HPW and HSiW, while 

only 5% for HPMo. Constant values as function time were also recorded for ethylene 

and diethyl ether space time yields, revealing that HSiW has the highest activity toward 

the unsaturated hydrocarbon.  

Figure 5.30 displays the dependence of ethylene selectivity and TOF as function of acid 

strength, as reported previously for unsupported HPAs. W-based materials (HPW and 

HSiW) possess similar selectivity (~25%) and similar turnover frequencies, while for 

HPMo/SBA-15 ethylene selectivity is halved and TOF dropped by two orders of 

magnitude compared to its counterparts. Remarkably, comparing results with the 

unsupported system: HPW on SBA-15 behaves just like the bulk with equal values of 

both TOF and ethylene selectivity; whereas SBA-15 supported HSiW is greatly enhance 

with ethylene selectivity more than doubled (from 11% to 26%) and TOFs elevated by 

an order of magnitude from 330 to 2500 h-1. Likewise, HPMo when supported, exhibits 

higher performances with ethylene selectivity growing from 1% to 7% and TOFs from 

120 to 285 h-1. Through comparison of the W-based and Mo-based heteropolyacid 

materials, it is clear that acid strength plays a crucial role in selectivity and activity; whilst 

comparison of the W-based materials, which possess similar acid strength, the slight 
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improvement in performance of the HSiW could result from the different amounts of 

crystalline water, being 4.1 % for HPW/SBA-15 against 5.8% for HSiW/SBA-15. 

 

Figure 5.30 – Ethylene selectivity and TOFs dependence on acid strength of SBA-15 

supported heteropolyacid, 38.2 wt% HPW/SBA-15 (●), 30.9 wt% HSiW/SBA-15 (▲) and 

32.3 wt% HPMo/SBA-15 (♦). Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, 

LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C. 

 

5.3 Conclusions 

Ethanol dehydration reactions were initially investigated over unsupported HPAs, 

proving that the most active and selective catalysts towards ethylene is HPW which is 

the most thermally stable materials and the strongest acid, as concluded in Chapter 3.  

Supported HPW on silica based materials, as fumed silica or SBA-15, exhibit greater 

ethanol conversion but impart no effect on ethylene selectivity. Support architecture 

influences the degree of HPW aggregation and therefore the amount of crystalline water, 

which together effect catalyst activity and TOF.  

High recyclability of supported HPW is only feasible if the HPW structure remain 

hydrated after each cycle, which can be achieved by co-feeding water in the ethanol 

stream which also inhibits coke formation.  

For HPAs on SBA-15, as witnessed for the unsupported equivalent materials, selectivity 

and TOFs are highly influenced by the type of the heteropolyacid involved, with both 
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HSiW and HPW on SBA-15 behave similarly whilst HPMo/SBA-15 exhibits considerable 

lowest performance due to its weak acid strength.  
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6.1 Conclusions 

The aim of this project was to investigate the chemistry of supported HPAs, focusing on 

the two supports; high surface area mesoporous SBA-15 and commercial low surface 

area fumed silica, and three different HPA; HPW, HSiW and HPMo, and evaluated for 

their catalytic potential relative to their bulk equivalents for α-pinene isomerisation and 

ethanol dehydration. 

6.1.1 Effect of type of support 

The role of support surface area, elucidated by employing a high surface area 

mesoporous silica (SBA-15) to compare to a commercial lower surface area silica, was 

shown to have a positive influence on dispersion of the HPAs (see Figure 6.1). On fumed 

silica, HPAs agglomeration occurs to a significantly greater extent, leading to the 

formation of large 3-dimensional structures, as detected by XRD and STEM, which in 

turn result in a higher degree of crystalline water evaluated by TGA analysis. In contrast, 

on SBA-15, HPAs form isolated sites, at lower loadings, and 2-dimensional rafts as 

loading increases, as observed by STEM, and, as a consequence, exhibits significantly 

reduced levels of crystalline water across the series relative to the fumed silica 

counterparts. The superior HPAs dispersion witnessed for the SBA-15 series resulted in 

the desirable elevation of accessible acid density, confirmed through TPD studies 

utilising n-propylamine and ammonia, which further highlighted that the acid strength of 

the bulk HPA was retained after impregnation for both supports.   

Figure 6.1 – Dependence of Keggin units dispersion and/or agglomeration on loading 

and support architecture for HPW/SBA-15 series (left) and HPW/fumed silica series 

(right).  

The catalytic activity of the two series towards  the low temperature solventless α-pinene 

isomerisation, a surface reaction wherein the rate is highly dependent on catalyst surface 

area and thus active sites accessibility [1], is shown in Figure 6.2-(a). The optimal TOFs 
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were observed for the lower loadings of HPAs on SBA-15, due to their highly dispersed 

nature. Upon formation of larger 3D HPAs agglomerates, as seen across all loadings on 

fumed silica and at the highest loadings for SBA-15, TOFs dropped dramatically due to 

a high majority of protons being localised within the bulk HPA architecture, and thus are 

inaccessible to the apolar substrate. In contrast, the gas-phase dehydration of ethanol 

is a bulk-like reaction, wherein the small polar alcohol is able to diffuse within the HPAs 

clusters and react with the inner protons; therefore, high surface areas with externally 

accessible protons do not govern optimal catalytic performances. It was observed that 

the degree of crystalline water trapped between K.U. was the controlling factor on 

catalytic performance as revealed in Figure 6.2-(b). This governed both stability and 

activity, with it serving as a diffusion media and reservoir for ethanol molecules whilst 

simultaneously maintaining the HPAs structure hydrated, and therefore intact (as 

previously reported  in the literature [2]). Therefore, supports and HPA loadings that 

enhance agglomeration, leads to higher TOFs for ethanol dehydration whereas supports 

and loading induce high dispersion are favourable for α-pinene isomerisation.  

Figure 6.2 – (a) TOFs for α-pinene isomerisation reaction as a function of bulk W 

loadings and (b) ethanol dehydration TOFs as a function of water mass loss (trapped 

crystalline water). 

6.1.2 Effect of HPA type 

Three varieties of heteropolyacids; phosphotungstic acid (HPW), silicotungstic acid 

(HSiW) and phosphomolibdic acid (HPMo) both supported and unsupported were 

investigated. Although, all three HPAs species possess the same Keggin structure, their 
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physiochemical properties differ, a common order of HPW>HSiW>HPMo for both 

thermal stability and acid strength was observed, whereas HPA dispersions are 

comparable for all three. 

α-Pinene isomerisation exhibited a variation in products distribution, which is attributed 

solely to changes in acid strength. Polycyclic compounds, such as camphene, were 

formed to a greater extent when HPW was employed, as reported in Figure 6.3-(a), 

being indicative that this pathway is favoured over strong Brønsted acid sites. Likewise, 

higher TOFs were also observed for HPW, which again arises due to is greater acid 

strength. The dehydration of ethanol also displays products distribution and TOFs that 

are dependent to the type of HPAs used, as reported in Figure 6.3-(b). In contrast to α-

pinene isomerisation, comparable results, TOFs and selectivity towards ethylene, were 

observed for the two W-based compounds, HPW and HSiW, which both greatly 

exceeded HPMo performances.  

Figure 6.3 – (a) Selectivity and TOFs for SBA-15 supported HPAs for α-pinene 

isomerisation reaction over a common 9 wt% of W or Mo; and (b) ethanol dehydration 

TOFs and ethylene selectivity for 38 wt% of W, 31 wt% of W, and 32 wt% of Mo, of SBA-

15 supported HPW, HSiW and HPMo respectively.  

6.1.3 Cost analysis 

Catalysts development at the bench and lab scale typically only considers catalysts 

optimisation, with little attention paid to the economic aspects of a large-scale production 

[3]. Herein, a brief study into the manufacturing costs to produce 1 kg of silica supported 

HPW has been carried out to evaluate the potential for their use in industrial production 

of bulk and fine chemicals. The prices for 500 g of HPW and fumed silica, and 1000 g of 
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commercial SBA-15 were taken from Sigma-Aldrich UK, whilst 2.5 L of methanol was 

from VWR Chemicals, with prices correct as of August 2017. The cost analysis of in-

house synthesis of SBA-15 was evaluated using the optimal price from Sigma Aldrich.  

Initial cost evaluations are made comparing commercial fumed silica and commercial 

SBA-15 against in-house synthesised SBA-15, and results are reported in Table 6.1. As 

would be expected, the non-porous fumed silica is the most economical support at only 

£ 137 per kg of solid material. In contrast, for the highly ordered high surface area 

mesoporous SBA-15s, both commercial and in-house produce, prices soar dramatically 

to between ~10-100 times higher than fumed silica. Unsurprisingly, the in-house 

synthesised SBA-15 is significantly more cost effective than the commercial one. The 

price reported for the in-house synthesised SBA-15 is based on a mass yield of 80 %.  

Table 6.1 – Costs evaluation for 1 kg of silica support. 

Price per kg / £ kg-1 

Commercial Fumed silica 137 

Commercial SBA-15 13548 

Synthesised SBA-15* 1288 

*Based on 80% yield.

Catalyst cost evaluation was carried out on HPW supported on SBA-15 and fumed silica, 

calculating the cost of 1 kg of supported HPW on both siliceous materials, and 

normalising on the amount of product yield obtained after 6 h of reaction, i.e. camphene 

and ethylene, expressed in £ kg-1, see Table 6.2. The amount of substrate needed to 

produce 1 kg of product was also calculated, allowing the estimation of a total costs, 

although economical aspects regarding energy consumption for the catalyst preparation 

and reactions have not been included. 

For α-pinene isomerisation, as shown in Table 6.2, SBA-15 supported HPW materials 

are considerably more cost effective than both the unsupported species and deposited 

on fumed silica, with the higher cost of the SBA-15 catalysts more than offset by their 

superior catalytic performance resulting in lower total prices for camphene production. 

Within the SBA-15 series, the 9.0 wt% and the 13.0 wt% are the most active catalysts 

showing the highest TOFs and therefore possess the lowest total costs, with the 9.0 wt% 

being slightly more economic than the 13.0 wt%, with a difference of 55.2£ kg-1
.  

In the case of ethanol dehydration, the most economical catalysts for each series, 55.4 

and 15.5 wt% for the SBA-15 and fumed silica families respectively, were compared to 

the unsupported HPW. The 15.5 wt% on fumed silica was the most active catalyst and 
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the most economical, with overall costs spanning 90.9 and 114.8 £ kg-1, following the 

order of 15.5 wt% HPW/fumed silica< Unsupported HPW< 55.4 wt% HPW/SBA-15.  

This cost evaluation has further highlighted the advantage of supported HPA in both 

reactions, with SBA-15 superior in α-pinene isomerisation whereas fumed silica is the 

preferred support choice in ethanol dehydration.  

Table 6.2 – Costs evaluation for 1 kg of supported HPW catalysts based on the amount 

of product formation.  

Reaction / 
support 

Bulk W 
loading /wt% 

TOF / h-1 
Cost for 
1 kg of 

catalyst / £ 

a / mmol of 
product 
after 6 h 

b / £ catalyst 
kg-1 of 

product 
Total cost / c 

α-Pinene 
isomerisation / 

SBA-15 
9.0 619.2 1263.5 14.7 63.0 2290.4 

α-Pinene 
isomerisation / 

SBA-15 
13.0 655.0 1232.6 14.3 62.9 2345.6 

α-Pinene 
isomerisation / 
Fumed silica 

59.6 50.7 408.4 4.4 67.4 7450.7 

α-Pinene 
isomerisation / 
Unsupported 

74.0 16.9 486 0.7 509.9 47456.3 

Ethanol 
dehydration / 

SBA-15 
55.4 1694 905.6 228.2 14.1 114.8 

Ethanol 
dehydration / 
Fumed silica 

15.5 4744 241.1 174.2 4.9 90.9 

Ethanol 
dehydration / 
Unsupported 

74.0 1125 486.0 194.1 8.9 108.2 

aAttained using 100 mg of catalyst 
bCost of 1 kg of catalyst to obtain 1 kg of product  
cTotal cost to obtain 1 kg of product based on the cost of catalyst and substrate 
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Appendix A – α-Pinene isomerisation 

Figure 1– Reaction profiles of α-pinene isomerisation as function of time employing bulk 

W 3.2 wt% on SBA-15. Reaction conditions: 126 mmol of α-pinene, 0.2 cm3 of 

tetradecane (STD), 0.1 g of catalyst, at 60 °C, stirring rate 500, 600 and 700 rpm.  

Figure 2 – Reaction profiles of α-pinene isomerisation as function of time and bulk W 

loadings over fumed silica (a), and SBA-15 (b). Reaction conditions: 126 mmol of α-

pinene, 0.2 cm3 of tetradecane (STD), 0.1 g of catalyst, at 60 °C, stirring rate 700 rpm.  
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Figure 3 – Reaction profiles of α-pinene isomerisation as function of time and bulk W 

loadings over fumed silica (a), and SBA-15 (a). Reaction conditions: 126 mmol of α-

pinene, 0.2 cm3 of tetradecane (STD), 0.1 g of catalyst, at 30 °C, stirring rate 700 rpm.  

Figure 4 – Reaction profiles of products yields of α-pinene isomerisation as function of 

time for supported HPMo and HSiW on SBA-15 with 9 wt% of bulk metal loading. 

HPMo/SBA-15 (a), HSiW/SBA-15 (b). Reaction conditions: 126 mmol of α-pinene, 0.2 

cm3 of tetradecane (STD), 0.1 g of catalyst, at 60 °C, stirring rate 700 rpm. 
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Figure 5– Reaction profiles of α-pinene isomerisation products as function of time 

employing 9.0 wt% of bulk W on SBA-15; γ-Terpinene (a), Limonene (b), Terpinolene 

(c), β-Pinene (d), α-Terpinene (e), Camphene and p-Cymene (f). Reaction conditions: 

126 mmol of reagent, 0.2 cm3 of tetradecane (STD), 0.1 g of catalyst, at 60 °C, stirring 

rate 700 rpm.  
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Figure 6– Reaction profiles of β-pinene isomerisation as function of time for supported 

HPAs on SBA-15 with 9 wt% of heteroatom. Reaction conditions: 126 mmol of β-pinene, 

0.2 cm3 of tetradecane (STD), 0.1 g of catalyst, at 60 °C, stirring rate 700 rpm. 

Scheme 1 – Reaction mechanism from isomerisation of α-pinene to the main products 

limonene and camphene.  

0

20

40

60

80

HPW HSiW HPMo

S
e

le
c
ti
vi

ty
 /

 %

Monocyclics

Polycyclic

0

20

40

60

80

100

0 60 120 180 240 300 360

C
o

n
ve

rs
io

n
 /

 %

Time / min

HPW/SBA-15

HSiW/SBA-15

HPMo/SBA-15

5

6

1

2

3

4

7

- Pinene

+H+ 5

6

1

2

3

4

7

5

7

1

2

3

4

6

5

7

1

2

3

4

6

-H+

LimonenePinyl carbonium ion Terpinyl carbonium ion

+H+

2

3
4

5

6
1

7

2

3

4

5

7
1

6

2

3
4

5

7
1

6

2

3
5

4

6
1

7

2

3

4

5

7
1

6

-H+

2

3

5

4

6

1

7

Camphene

=

Bornyl carbonium ion Isocamphyl carbonium ionPynil carbonium ion



208 
 

Appendix B – Ethanol dehydration 

 

 

Figure 7– Ethanol conversion as function of time at different temperatures ranged, using 

as catalyst 50 (a), 100 (b) and 150 (c) of unsupported HPW. Reaction conditions: 50, 

100, 150 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 

150, 175, 200, 225, 250, 275 °C. 

 

0

20

40

60

80

100

0 60 120 180 240

C
o

n
ve

rs
io

n
 /

 %

Time / min

150 175 200

225 250 275
(a)

0

20

40

60

80

100

0 60 120 180 240
C

o
n
ve

rs
io

n
 /

 %
Time / min

150 175 200

225 250 275
(b)

0

20

40

60

80

100

0 60 120 180 240

C
o

n
ve

rs
io

n
 /

 %
 

Time / min

150 175 200

225 250 275
(c)



209 

Figure 8 – Diethyl ether space time yield as function of time at different temperatures, 

using as catalyst 50 (a), 100 (b) and 150 (c) of unsupported HPW. Reaction conditions: 

50, 100, 150 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 

at 150, 175, 200, 225, 250, 275 °C. 
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Figure 9 – Ethylene space time yield as function of time at temperatures ranged 150-

275 °C, using as catalyst 50 (a), 100 (b) and 150 (c) of unsupported HPW. Reaction 

conditions: 50, 100 and 150 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol min-1, GN2 

= 50 cm3 min-1 at 225 °C. 
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Figure 10 – Ethanol dehydration reaction values obtained employing unsupported HSiW 

as function of time: conversion (a), diethyl ether space time yield (b) and ethylene space 

time yield (c). Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol 

min-1, GN2 = 50 cm3 min-1 at 175, 225, 250 °C. 
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Figure 11 – Ethanol dehydration reaction values obtained employing unsupported HSiW 

as function of time: conversion (a), diethyl ether space time yield (b) and ethylene space 

time yield (c). Reaction conditions: 100 mg catalyst, Vcatalyst = 5 cm3, LEthanol= 0.0034 mol 

min-1, GN2 = 50 cm3 min-1 at 175, 225 and 250 °C. 
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Figure 12 – Diethyl ether space time yield as function of time at 225 °C, employing 

HPW/SBA-15(a), and HPW/Fumed silica. Reaction conditions: 100 mg catalyst, Vcatalyst 

= 5 cm3, LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C. 

Figure 13 – Diethyl ether space time yield attained at 225 °C, employing SBA-15 

supported HPAs as function of time. Reaction conditions: 50 mg catalyst, Vcatalyst = 5 cm3, 

LEthanol= 0.0034 mol min-1, GN2 = 50 cm3 min-1 at 225 °C. 
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