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ABSTRACT 

This study aims to evaluate the effects of mineral types and water on the adhesion properties 

and debonding behaviours of bitumen-mineral interface systems. A molecular dynamics 

modelling approach was employed to simulate the interactions between minerals and bitumen 

with and without the presence of water. Four representative minerals (quartz, calcite, albite and 

microcline) were selected to build the mineral-bitumen interface systems and the mineral-

water-bitumen interface systems in the molecular dynamics models. The adhesion property 

between minerals and bitumen was quantified by work of adhesion, defined as the energy 

required to separate a unit area of the bitumen-mineral interface. The debonding behaviour 

between minerals and bitumen is characterised by work of debonding, defined as the energy 

required to displace bitumen by water at the mineral-bitumen interface. The simulation results 

were validated by available experimental results reported in the literature. It was found that the 

work of adhesion and the work of debonding for the four bitumen-minerals interface systems 

are ranked microcline > albite > calcite > quartz at both dry and wet conditions. Moisture can 

reduce the adhesion between minerals and bitumen by 82%, 84%, 18% and 1% for the quartz, 

calcite, albite and microcline, respectively. The adhesion between minerals and bitumen is 

attributed to the non-bond interaction energy, in which the major component is van der Waals 

interaction for neutral minerals (e.g., quartz) and the electrostatic interaction for the alkali 

minerals (e.g., calcite, albite and microcline). The bitumen-mineral debonding is a 

thermodynamically favourable process with reduced total potential energy of the system. It is 

concluded that the bitumen-mineral adhesion and debonding behaviours strongly depends on 

the chemistry and mineralogical properties of the minerals. This work provides a fundamental 

understanding of the adhesion and debonding behaviours of the bitumen-mineral interface at 

the atomistic scale. 
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1. Introduction  

Asphalt pavements are subjected to heavy and repeated traffic loading, leading to severe cracks 

and moisture damages when water exist in the pavement structures. Zhang and Lytton et al. 

investigated the crack initiation and evolution in asphalt mixtures under compressive and tensile 

loads [1-2]. They found that the bond energy of an asphalt mixture dominated the crack 

initiation and propagation processes and it increases with aging period and loading rate and 

decreases with temperature [3-4]. Previous studies have reported that the mechanical 

properties of asphalt mixtures had a strong dependency upon the interfacial bond between 

bitumen and aggregate [5-6]. Therefore, the adhesion of the bitumen-aggregate interface needs 

to be strong and durable under the complex traffic and environment conditions. Fundamentally 

this is caused by that water diffuses into asphalt layer of the pavements and weakens the 

bitumen-aggregate adhesive bond in asphalt mixtures. Stripping happens when the adhesive 

debonding occurs between bitumen and aggregate. In order to understand the stripping 

mechanism of asphalt mixtures and extend the pavement service life, there is a fundamental 

need to investigate the adhesion properties and moisture damage mechanisms of the bitumen-

aggregate interface. 

Researchers have developed experimental testing methods to investigate the mechanism of 

adhesion between bitumen and aggregate with and without moisture effect. Lytton et al. [7] 

measured surface energy components of bitumen and aggregate and derived the adhesive bond 

strength between aggregate and bitumen to quantify the moisture susceptibility of the asphalt 

mixture. Khattak et al. [8] performed the lap-shear test to study binder-aggregate adhesion at 

low temperature. Canestrari et al. [9] used the Pneumatic Adhesion Tensile Testing Instrument 

(PATTI) to evaluate the influence of water on cohesive and adhesive properties of bitumen-

aggregate systems. Moraes et al. [10] investigated the feasibility of the Bitumen Bond Strength 

(BBS) test for moisture damage characterization of the bitumen-aggregate interface. Fini and 

Al-Qadi [11] developed a pressurized blister test to characterize the interfacial adhesion 

between aggregate and bituminous materials. Fischer et al. [12] employed atomic force 

microscopy (AFM) to investigate the interfacial interaction between bitumen and the minerals 

as present in asphalt mixtures. These experimental studies provided a good understanding of 

bitumen-aggregate adhesion and moisture susceptibility of the asphalt mixtures. 

Recently, with the development of the high-performance computation, atomistic and molecular 

modelling has become an effective way to interpret the material properties or system behaviours 

from fundamental molecular processes. Researchers employed molecular dynamic (MD) 

simulation to investigate the molecular interaction and basic properties of bitumen and the 

mechanical behaviours of asphalt concrete. Zhang and Greenfield [13-14] and Li and 
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Greenfield [15-16] developed the model bitumen systems to represent the real bitumen and 

analysed the physical properties of the model bitumen (e.g. viscosity, relaxation time, diffusion 

coefficient, and dynamics) using molecular simulation. Lu and Wang [17-18], Wang et al. [19], 

and Xu and Wang [20] performed MD simulation to evaluate the mechanical properties of the 

bitumen-aggregate interface. MD simulation has also been applied to investigate the oxidative 

aging behaviours [21-23], diffusion and self-healing mechanisms [24-26], and 

micromechanical properties of bitumen [27-29]. These research efforts have produced 

important results for better understanding the physical, rheological, and thermodynamic 

properties of the real bitumen from a more fundamental perspective.  

However, most of the research effort was spent on the effect of the bitumen or bitumen 

compositions on the adhesion, whereas little work has been focused on the effect of aggregate 

mineral compositions on the adhesion and debonding behaviours between aggregate and 

bitumen at the atomistic scale. Some experimental studies have shown that the chemical and 

mineralogical compositions of the aggregate minerals significantly affect the stripping 

properties of asphalt mixtures. Lyne et al. [29] reported that the elemental composition of a 

mineral affected its dispersive adhesion to bitumen. Horgnies et al. [30] presented that the 

adhesion of the bitumen on micas and quartz was better than the one on alkali feldspars. More 

fundamental studies by atomistic modelling are needed to reveal the mechanisms of the 

debonding between aggregate minerals and bitumen when different mineral compositions are 

present. 

The objective of this study is to investigate the effects of aggregate mineral types on the 

adhesion property and debonding behaviour of the bitumen-mineral interface with and without 

the presence of water using an atomistic modelling approach. The molecular models of four 

representative minerals were employed to construct the mineral-bitumen and mineral-water-

bitumen interface systems. The interface molecular interactions were quantified using the 

molecular dynamics (MD) simulations. The adhesion and debonding properties of the bitumen-

mineral interface were evaluated using the work of adhesion and the work of debonding. 

Furthermore, the wet interface stripping mechanism was analysed through investigating the 

mineral-bitumen debonding process at the atomistic scale. 

2. Aggregate minerals 

Aggregates used in pavement structure are mineral rocks. The composition of the aggregates, 

based on chemistry and mineralogy, are quite complex and have diverse mineralogical 

composition. Some aggregates mainly contain one mineral such as quartzite (SiO2) and 

limestone (CaCO3). Other aggregate types are composed of several different minerals. For 
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example, the major minerals in granite are quartz, mica and feldspar. 

A mineral is an element or chemical compound that is normally crystalline and has been formed 

as a result of geological processes [31]. The eight most common elements of the minerals in 

the earth’s crust are oxygen, silicon, aluminium, iron, calcium, sodium, potassium and 

magnesium [32]. Natural rock mineral is polycrystal with local periodicity. A crystal structure 

is based on the orderly internal atomic or ionic arrangement. The structure of a mineral in the 

geometric form is often expressed by a box with parallel sides called the unit cell. The box with 

periodicity in all three dimensions is defined by six lattice parameters (lengths a, b, c, and angles 

α, β, γ). The crystal structure greatly affects a mineral’s physical properties, and it together with 

the mineral chemical composition defines a mineral. Therefore, a mineral has a characteristic 

chemical composition and a regular atomic structure, leading to specific physical properties. 

In this study, four representative minerals (quartz, calcite, albite, and microcline) were selected 

to investigate their debonding behaviour with bitumen using MD simulation. These four 

minerals were selected based on that 1) they are the common minerals existing in the aggregates 

that are used for constructing asphalt mixtures and 2) the four minerals have been 

comprehensively measured for their surface energy in the literature by Little and Bhasin [33]. 

3. Simulation models and methods 

3.1 Molecular dynamics simulation 

Molecular dynamics (MD) is a computational modelling technique for analysing the 

fundamental material properties such as density, modulus, viscosity, diffusion and surface 

energy and the material performance such as deformation and debonding at nanoscale through 

simulating the material atomistic movements and interactions. The principles of MD simulation 

are statistical mechanics and Newton’s law of motions. MD is used to calculate the 

thermodynamic performance of a material system, in which the motion of each atom obeys 

Newton’s law of motions. 

The essential input to the MD simulation is an interatomic potential which defines the forces 

between atoms and is characterised by force field. A number of force fields have been 

developed by researchers for different materials [34]. An appropriate force field should be able 

to mimic the nature of atomic interaction in a material system. The Condensed-phase Optimized 

Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field is the first ab 

initio force field that can effectively consolidate the atomic parameters of organic and inorganic 

materials. It has been successfully applied for simulating the bitumen-aggregate interface in a 

previous study [35]. Thus the COMPASS force field is selected for this study and described as 
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[36]: 

Etotal = Eval + Enon-bond                                                         (1) 

Eval = Eb + Eθ + Eφ + Eχ + Ebb’ + Ebθ + Ebφ + Eθφ + Eθθ’ + Eθθ’φ                    (2) 

Enon-bond = Eelec + ELJ                                                          (3) 

The total potential energy (Etotal) consists of valence and non-bond interaction terms. The 

valence term (Eval) include the interactions of bond stretching (Eb), angle bending (Eθ), internal 

torsion (Eφ), out-of-plane bending (Eχ) and the cross-coupling terms (Ebb’, Ebθ, Ebφ, Eθφ, Eθθ’, 

and Eθθ’φ). The non-bond interaction term (Enon-bond) quantifies the non-covalent contributions 

including Coulomb electrostatic energy (Eelec) and the van der Waals energy (ELJ).  

MD simulations were performed using Materials Studio [37] with the COMPASS force field. 

In the simulation, the mineral-bitumen interface model consists of aggregate mineral and 

bitumen layers. The component of the aggregate mineral is the crystal with a periodic crystalline 

structure, while the bitumen is an amorphous material model. In order to successfully simulate 

the interface system, it is critical to construct reasonable atomistic models representing the real 

aggregate mineral and bitumen. The following sections explain how the atomistic models for 

minerals, bitumen and mineral-bitumen interface are built in the MD simulations. 

3.2 Molecular model of minerals 

Quartz, calcite, albite and microcline are selected as the minerals in this simulation. The unit 

cell structures and lattice parameters of these four minerals are summarized in Table 1. To 

model the mineral substrate, the bulk crystal was first cleaved along [1, 0, 0] direction to expose 

the corresponding surface. After geometry transformation, the crystal surface was extended to 

generate a two-dimension (2D) structure by repeating the unit cell in x and y directions. Then 

a vacuum slab was included above this extended surface to create a mineral block called a 

supercell with three-dimension (3D) periodic boundary conditions. Fig. 1 shows the final 

mineral model used for the simulation (use microcline as an example). 

 



Gao, et al.  7 

Fig. 1. An atomistic model of microcline substrate used for the simulation. 

3.3 Bitumen molecular model  

Bitumen has a quite complex chemical composition. It contains a high percentage of 

hydrocarbons with a few structurally analogous heterocyclic species and functional groups 

including oxygen, sulphur and nitrogen atoms. Research efforts have been made to construct 

bitumen model with reasonable chemical composition. American Society for Testing and 

Materials (ASTM) D4124-09 proposed SARA (saturate, aromatic, resin and asphaltene) 

classification system. To better understand the physical, rheological and mechanical properties 

of the bitumen, three 12-component model bitumen systems were developed by Li and 

Greenfield [15] to represent the AAA-1, AAK-1, and AAM-1 bitumen, which were validated 

by experimental values from Jones [38]. The 12-component AAA-1 bitumen model was 

employed in this study, and the bitumen model compositions are listed in Table 2. The bitumen 

model contains two types of saturates (S), two types of aromatics (A), five types of resins (R), 

and three types of asphaltenes (A).  

A bulk bitumen model was first constructed using amorphous cell module in Materials Studio. 

The molecules of the twelve components in the AAA-1 bitumen model were filled into a cubic 

box with an initial density of 0.1g/cm3 in 3D periodical condition on the basis of the assigned 

weight proportions of each constituent shown in Table 2. After a geometry optimization process, 

the MD simulation with the isothermal-isobaric (NPT) ensemble was conducted for 100 ps with 

a time step of 1 fs to reduce the system volume. Then this configuration was further equilibrated 

in the constant volume and temperature (NVT) ensemble for another 100 ps to approach a stable 

state. The target density can be obtained from the last frame of the simulation. 

Table 1 The details of four minerals used in MD simulation. 

Minerals  Unit cell structure  Lattice parameters  Chemical formula 

Quartz 

 

a=b=4.910 Å, c=5.402 Å 

α=β=90, γ=120 

SiO2 
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Calcite 

 

a=b=4.990 Å, c=17.061 Å 

α=β=90, γ=120 

CaCO3 

Albite 

    

a=8.115 Å,  

b=12.762 Å,  

c=7.158 Å 

α=94.218, β=116.803, 

γ=87.707 

NaAlSi3O8 

Microcline 

    

a=8.573 Å,  

b=12.962 Å,  

c=7.219 Å 

α=90.567, β=115.917, 

γ=87.750 

KAlSi3O8 

 

Table 2 Compositions of the employed bitumen molecular model for MD simulations [15]. 

Label Molecules in model Molecular 

formula 

Number of 

molecules 

Mass 

fraction (%) 

SA-1 Saturate Squalane C30H62  4 5.35 

SA-2 Hopane C29H50  4 5.05 

AR-1 Aromatic 

(Naphthene 

aromatic) 

PHPN C35H44  11 16.19 

AR-2 DOCHN C30H46  13 16.74 

RE-1 Resin 

(Polar 

aromatic) 

Quinolinohopane C34H47N  4 5.95 

RE-2 Thioisorenieratane C40H60S  4 7.26 

RE-3 Benzobisbenzothiophene C18H10S2  15 13.80 

RE-4 Pyridinohopane C30H45N  4 5.32 

RE-5 Trimethybenzeneoxane C29H50O  5 6.57 

AS-1 Asphaltene Asphaltene-phenol C42H50O 3 5.42 

AS-2 Asphaltene-pyrrole C66H81N 2 5.63 

AS-3 Asphaltene-thiophene C51H62S 3 6.72 
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A confined bitumen layer with the target density was created using amorphous cell tool in order 

for the mineral-bitumen interface modelling in Section 3.4. The width and length of the 

confined bitumen layer was constructed to match with that of the mineral substrate created in 

Section 3.2. The bitumen layer model first ran a geometry optimization to minimize system 

energy, and the MD simulation with NVT ensemble was then performed for 100 ps to generate 

an equilibrated model. The confined bitumen layer in the z-direction was non-periodic and had 

a flat surface, which was different from the bulk bitumen model that was periodic in z-direction.  

3.4 Molecular model of the mineral-bitumen interface  

The mineral-bitumen interface system was constructed by attaching the confined bitumen layer 

to the mineral substrate. A vacuum layer of 30 Å was then added to the top open surface of this 

confined bitumen layer. The interface models are illustrated in Fig. 2 (a) where a microcline 

mineral was used as an example.  

Based on the interface model, the moisture effect was studied by adding water molecules at the 

mineral-bitumen interface. A thin confined layer of 200 water molecules was placed between 

mineral and bitumen layers to construct a mineral-water-bitumen model, as shown in Fig. 2 (b) 
(use the microcline mineral as an example). The mineral-water-bitumen model assumed that 

water interrupted the mineral-bitumen interface and caused the debonding between mineral and 

bitumen, which was considered as the major mechanism of the moisture-induced damage 

(stripping) in asphaltic mixtures [39-40]. 

In the MD simulations, the interface models with or without water molecules were first 

subjected to a geometry optimization, and then a dynamic equilibration run of 100 ps with NVT 

ensemble was carried out to further optimize the model configuration. In this study, all MD 

simulations were conducted at 298 K with a time step of 1 fs and the cut-off distance for 

atomistic interactions was 15.5 Å. These parameters have been proved to be appropriate for 

simulating the asphalt materials [23]. 
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                                                          (a)                                                                (b) 

Fig. 2. Molecular interaction models for (a) the microcline-bitumen interface system and (b) 

microcline-water-bitumen interface system. 

4. Results and discussion 

4.1 Simulation results of molecular dynamics modelling 

The structures of mineral-bitumen interface for the four selected minerals after the MD 

simulations (namely, geometry optimization and dynamic equilibration) are shown in Fig. 3. 

The adhesive interactions between the minerals and bitumen can be intuitively observed based 

on the distance between minerals and bitumen which reflects the interfacial bonding strength 

between the two materials. A smaller distance between the two materials indicates a higher 

atomic interacting force and therefore a higher bonding strength for the mineral-bitumen system. 

This is due to the fact that the mineral-bitumen interactions are dominated by the non-bond 

terms including Coulomb electrostatic and van der Waals forces. They both are associated with 

the distance between atoms, which means that a smaller atomic separation distance leads to a 

higher atomic force. Thus, from Fig. 3, it can be found that the adhesion of microcline with 

bitumen is the strongest among the four minerals while quartz with bitumen has the weakest 

adhesion.  
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Fig. 3. Mineral-bitumen interface systems after MD simulations: (a) quartz-bitumen model; (b) calcite-

bitumen model; (c) albite-bitumen model; (d) microcline-bitumen model; and (e) locally enlarged 

interface structure for microcline-bitumen model. 

Fig. 4 shows the structures of mineral-water-bitumen interface systems for the four selected 

minerals after MD simulations. It can be observed that an obvious gap exists between the quartz 

or calcite and the bitumen molecules in the presence of water. This results from the degraded 

adhesion and debonding between quartz or calcite and bitumen when water diffuses into the 

interface. In comparison the albite-water-bitumen and microcline-water-bitumen models did 

not show any obvious gaps, indicating a strong adhesion between the minerals and bitumen. 

Thus, it can conclude that the adhesion of albite and microcline with bitumen is stronger than 

those of quartz and calcite with bitumen under wet condition. This observation will be 

quantitatively validated by the work of adhesion determined from the MD simulation in Section 

4.2. 

Fig. 4 also shows that the water molecules in the quartz-water-bitumen model are interspersed 

in the gap between quartz and bitumen, while for the calcite-water-bitumen model, the water 

molecules have moved more closely to the calcite mineral surface. This may result from that 

the quartz has a symmetric molecular structure and exhibits very neutral and weak adhesion 

force with water molecules. In contrast, the calcite has an unsymmetrical molecular structure 

with calcium ions, leading to a higher secondary atomic bond and a relatively higher adhesion 

 

(a) (c) (b) (d) 

(e) 
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force with water molecules.  

 

Fig. 4. Mineral-water-bitumen interface systems after MD simulations: (a) quartz-water-bitumen model; 

(b) calcite-water-bitumen model; (c) albite-water-bitumen model; and (d) microcline-water-bitumen 

model. 

4.2 Adhesion between minerals and bitumen at dry and wet conditions 

In order to quantify the adhesion between minerals and bitumen, the work of adhesion of 

mineral-bitumen system is calculated in this study. The work of adhesion is defined as the 

energy required to separate a unit area of an interface into two free surfaces in a vacuum [33]. 

It reflects the bonding strength of the mineral-bitumen interface. The work of adhesion (WMB) 

is defined by Eq. (4) using an interaction energy (∆EMB) which is derived from Eq. (5) [33] 

[41]. Note that the parameters in Eqs. (4) and (5) are calculated based on the MD simulation 

results of the mineral-bitumen models and the mineral-water-bitumen models to obtain the 

work of adhesion in dry and wet conditions, respectively. 

WMB = ∆EMB / A                                                                (4) 

∆EMB = EM + EB – EMB                                                         (5) 

where WMB is the work of adhesion between a mineral and bitumen; ∆EMB is the interaction 

energy between the mineral and bitumen; EM and EB are the potential energies of the mineral 

and bitumen at a thermodynamic equilibrium, respectively; EMB is the total potential energy of 

mineral-bitumen system at the thermodynamic equilibrium; and A is the contact area of the 

interface between mineral and bitumen calculated using the Connolly area of mineral surface. 

The Connolly area can reflect the morphological feature of mineral and bitumen and thus more 

reasonably describe the interface contact area [41].  

(a) (c) (b) (d) 
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Table 3 lists the calculated interaction energy (∆EMB) and the work of adhesion (WMB) between 

minerals and bitumen at dry and wet conditions. At dry condition, the work of adhesion (WMB-

dry) for the quartz-bitumen bond is 42.87 mJ/m2, while the work of adhesion (WMB-dry) of the 

calcite-bitumen bond is 57.13 mJ/m2. Thus, the work of adhesion (WMB-dry) between calcite and 

bitumen is greater than that between quartz and bitumen, which means the calcite-bitumen bond 

is stronger than the quartz-bitumen bond under dry condition. This agrees well with the 

laboratory measurements finding that limestone (in which calcite is the major component) 

shows larger adhesion strength with bitumen than granite with quartz as its main component 

[42]. The ranking for the adhesion between the four minerals with bitumen is as follows: 

microcline > albite > calcite > quartz, as shown in Table 3. This indicates that mineral type has 

a significant impact on the adhesion between minerals and bitumen. Furthermore, it is noted 

that the work of adhesion (WMB-dry) for the microcline-bitumen bond (3241.55 mJ/m2) and the 

albite-bitumen bond (1257.25 mJ/m2) is much higher than that for the quartz-bitumen bond and 

the calcite-bitumen bond. This is because microcline and albite are strongly alkaline minerals 

with highly positive electronic charges. This finding verifies the existing experimental results 

that a mineral with an alkaline nature (with electro-positive charge) has a stronger adhesion 

with the weakly acidic bitumen than an acidic mineral [43-44].   
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Table 3 The adhesion property between minerals and bitumen at dry and wet conditions. 

Models  ∆EMB-dry 

(kcal/mol) 

WMB-dry 

(mJ/m2) 

∆EMB-wet 

(kcal/mol) 

WMB-wet 

(mJ/m2) 

Quartz-bitumen 230.29 42.87 40.58 7.56 

Calcite-bitumen 250.54 57.13 41.07 9.36 

Albite-bitumen 6361.98 1257.25 5234.93 1033.88 

Microcline-

bitumen 

16520.00 3241.55 16346.78 3206.41 

 

Fig. 5 shows the energy components that contribute to the work of adhesion (WMB-dry) between 

mineral and bitumen at the dry condition. It can be found that the total energy equals to the non-

bond energy for the four mineral-bitumen systems (note that based on Eq. (1), the total energy 

= covalent energy + non-bond energy which includes van der Waals and electrostatic energy). 

This indicates that the adhesion between minerals and bitumen completely results from the non-

bond interaction. The covalent interaction contributes little or nothing to the mineral-bitumen 

adhesion bond, indicating that no chemical bond is formed between minerals and bitumen. 

Within the non-bond energy components, the van der Waals interaction contributes to the main 

adhesion between quartz and bitumen. This is reasonable since the quartz is an electronically 

neutral mineral, having a very weak or none electrostatic interaction with other materials. 

However, the electrostatic interaction becomes the major contribution for the adhesion between 

the bitumen and those alkali minerals (i.e., calcite, albite and microcline), as demonstrated in 

Fig.5. This finding is consistent with the previous study, in which Mirzababaei [45] has 

reported that calcareous aggregates that have a high amount of calcite show a strong 

electrostatic adhesion with bitumen. In sum, the adhesion between minerals and bitumen is 

attributed to non-bond interaction energy, where the major contribution results from van der 

Waals interaction for the neutral minerals like quartz and from the electrostatic interaction for 

the alkali minerals such as calcite, albite and microcline.  

Under the wet condition, the work of adhesion (WMB-wet) between mineral and bitumen is also 

calculated, as shown in Table 3. The work of adhesion (WMB-wet) of the quartz-bitumen bond is 

7.56 mJ/m2, while the work of adhesion (WMB-wet) of the calcite-bitumen bond is 9.36 mJ/m2. It 

is concluded that calcite-bitumen bond is still stronger than the quartz-bitumen bond even in 

the presence of water. This is in agreement with the previous study from Lu and Wang [46] 

who found that calcite was more prone to adsorb bitumen than quartz at the wet condition. The 

microcline-bitumen model has the largest work of adhesion (WMB-wet) of 3206.41 mJ/m2 and the 

work of adhesion (WMB-wet) of the albite-bitumen model is 1033.88 mJ/m2. The ranking for the 
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adhesion between the four minerals and bitumen at wet condition remains unchanged from that 

at the dry condition, which is: microcline > albite > calcite > quartz. However, it can be found 

that the moisture reduces the adhesion between minerals and bitumen and the decrease of the 

work of adhesion between minerals and bitumen from dry to the wet condition is different 

depending on the mineral types.  

To quantify the susceptibility of the mineral-bitumen adhesion to the presence of water, 

adhesion degradation percentage (RAD) from dry to wet conditions is proposed using the work 

of adhesion. In this study, the degradation ratio (RAD) is calculated as the difference of the work 

of adhesion for the mineral-bitumen model at dry and wet conditions divided by the work of 

adhesion at the dry condition, as shown in Eq. (6). A higher value of (RAD) means a greater 

degradation of the mineral-bitumen adhesion and indicates a higher susceptibility of the 

mineral-bitumen interface to water. 

RAD = (WMB-dry - WMB-wet) / WMB-dry                                              (6) 

where WMB-dry is the work of adhesion between mineral and bitumen at the dry condition, and 

WMB-wet is the work of adhesion between mineral and bitumen at the wet condition. 

Fig. 6 shows the adhesion degradation ratio (RAD) for the four interface models. The quartz-

bitumen model has a RAD value of 82%, which is very close to that of the calcite-bitumen model 

(84%). However, the RAD values for the albite-bitumen and microcline-bitumen models are 18% 

and 1%, respectively, which are much smaller than those of the quartz-bitumen and calcite-

bitumen models. This is due to the fact that the highly alkali minerals such as microcline and 

albite induce very high and stable electrostatic interactions with bitumen as shown in Fig. 5, 

which can little be reduced by the presence of water. This result proves that the susceptibility 

of the adhesion to moisture depends on the mineral types and highly alkali minerals provide a 

stronger adhesion stability and less moisture susceptibility than weak alkali or neutral minerals. 
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(a) Quartz-bitumen model and calcite-bitumen model 

 

(b) Albite-bitumen model and microcline-bitumen model 

Fig. 5. Contribution of non-bond components including van der Waals and electrostatic energy to the 

total work of adhesion (WMB-dry) for different mineral-bitumen systems. 

 

Fig. 6. The adhesion degradation ratio (RAD) for the four mineral-bitumen systems. 

4.3 Work of debonding during stripping process 

Due to the water-loving nature of mineral and the hydrophobic nature of bitumen, water tends 

to separate the mineral-bitumen interface and thus has a detrimental influence on the bonding 

between mineral and bitumen. Therefore, it is extremely important to investigate how water, 

mineral and bitumen interact at their interface, and how water causes the debonding between 

mineral and bitumen, namely the stripping or moisture damage in asphalt concrete. 

Fig. 7 shows a process how water causes the debonding between mineral and bitumen [33]. 
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This process can be decomposed as two steps: 1) debonding occurs on the mineral-bitumen 

interface, and 2) water bonds with mineral and bitumen, respectively, and forms a water-

mineral interface and a water-bitumen interface. The work of debonding (WMBW), defined as 

the work required to displace bitumen by water on the mineral-bitumen interface, is expressed 

by Eq. (7). 

WMBW = (∆EMB-dry - ∆EMW - ∆EBW) / A                                            (7) 

where WMBW is the work of debonding in the process of water diffusing into the mineral-

bitumen interface; ∆EMB-dry is the interaction energy between mineral and bitumen with no 

presence of water (at dry condition); ∆EMW is the interaction energy between mineral and water 

with no presence of bitumen; ∆EBW is the interaction energy between bitumen and water with 

no presence of mineral; and A is the interface area where the debonding occurs. Based on the 

definition of the work of debonding (WMBW) in Eq. (7), a positive value of WMBW indicates that 

the mineral-bitumen interface system needs to absorb energy from the external sources to 

displace the bitumen by water (i.e., debonding or stripping). A negative value of WMBW means 

that energy is released during the displacement and the debonding will be occurring 

spontaneously and naturally without a need of the external energy. Physically the work of 

debonding (WMBW) describes how difficult the water can penetrate into the mineral-bitumen 

interface or how likely the debonding will be occurring. A higher magnitude of WMBW indicates 

that more energy is absorbed (positive WMBW) or released (negative WMBW) when water diffuses 

into the interface, thus the interface debonding is less likely to occur and the interfacial adhesion 

has a good resistance to water damage [46]. Note that the work of debonding (WMBW) 

determines the potential of the bitumen-mineral interface to resist the moisture damage during 

a stripping process rather than the bonding strength between the bitumen and minerals which 

should be quantified by the work of adhesion at dry or wet conditions. 

 

Fig. 7. Displacement of bitumen from the mineral-bitumen interface by water. 

Table 4 shows that the work of debonding (WMBW) for the four mineral-bitumen systems are 

all negative, which means that the debonding will be occurring spontaneously and naturally 

between bitumen and the four minerals. This finding is consistent with the laboratory 
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measurements finding that the total work done in the stripping process was less than zero (i.e., 

energy is released) for almost all bitumen-aggregate systems [33]. The results indicate that the 

mineral-bitumen systems during the debonding process do not need to absorb the external 

energy and stripping will occur spontaneously in the field for the four minerals when water 

exists. Fundamentally this is interpreted as that the mineral-bitumen debonding process is 

thermodynamically favourable and the debonding is a process of lowering the total potential 

energy of the system. 

Table 4 shows that the quartz-bitumen model has a WMBW value of -0.37 mJ/m2, whereas the 

WMBW value of the calcite-bitumen model is -2871.04 mJ/m2. The magnitude of WMBW for the 

calcite-bitumen model is much larger than that of the quartz-bitumen model, which indicates 

that calcite has a better resistance to stripping than quartz. This agrees with the previous 

findings from experiments [33] or simulations [46] that limestone had better anti-moisture 

damage property than granite. The WMBW values for the albite-bitumen and microcline-bitumen 

models are -3074.86 and -7187.55 mJ/m2, respectively. The ranking of the resistance to 

moisture damage for the four minerals is as follows: microcline > albite > calcite > quartz. 

During the interface debonding, the alkaline minerals calcite, albite and microcline have 
stronger bonds with the acidic bitumen due to their strong electrostatic interactions, while 

quartz with an acidic nature has a very weak adhesion with bitumen which results only from 

the van der Waals interaction. Thus, the minerals calcite, albite and microcline have better 

resistance to moisture stripping than quartz. This result indicates that the resistance to wet 

stripping of the mineral-bitumen interface is strongly dependent on the chemistry of the mineral 

surface. 

Table 4 The work of debonding for four mineral-bitumen models. 

Models ∆EMB-dry 

(kcal/mol) 

∆EMW 

(kcal/mol) 

∆EBW 

(kcal/mol) 

WMBW 

(mJ/m2) 

Quartz-bitumen 230.29 117.79 114.47 -0.37 

Calcite-bitumen 250.54 12752.15 89.66 -2871.04 

Albite-bitumen 6361.98 21885.39 36.16 -3074.86 

Microcline-

bitumen 

16520.00 53056.87 93.18 -7187.55 

Through investigating the work of adhesion and the work of debonding for the mineral-bitumen 

interface, the bitumen-mineral interface stripping mechanism can be analysed at the atomistic 

scale. Since the work of debonding is all negative, the debonding always occurs for the four 

minerals with bitumen when water exists. During the debonding, water diffuses into the 

interface between the minerals and bitumen. However, residual adhesion still exists between 
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the aggregate minerals and the bitumen even though water has been diffused throughout the 

interface, which is quantified by the work of adhesion at wet condition. For the acidic or weak 

alkali minerals, such as quartz or calcite, their adhesion with bitumen at wet condition is so low 

which can be easily exceeded by the external loadings such as traffic loading or thermal loading. 

When this occurs, the stripping will be happening in the asphalt mixtures.  

5. Conclusions 

In this study, the effects of aggregate minerals and water on adhesion property and debonding 

behaviour of the bitumen-mineral interface were investigated using molecular dynamics (MD) 

simulation. Four representative minerals (quartz, calcite, albite, and microcline) were selected 

to build the interface models, and the molecular interactions between minerals and bitumen 

were quantified through MD simulations. The work of adhesion was defined to characterise the 

adhesion strength of the bitumen-mineral interface at dry and wet conditions. The work of 

debonding was used to quantify the difficulty of a stripping process when water diffuse into the 

interface between minerals and bitumen. The main findings from this study are as follows: 

(1) For both dry and wet conditions, the calcite-bitumen bond is stronger than the quartz-

bitumen bond, and the adhesion of the four minerals with bitumen is ranked as: 

microcline > albite > calcite > quartz. However, the moisture can reduce the adhesion 

between minerals and bitumen by 82%, 84%, 18% and 1% for the quartz, calcite, albite 

and microcline, respectively. 

(2) The calcite has a better resistance to wet stripping than quartz. The ranking of the 

resistance to water damage for the four minerals is microcline > albite > calcite > quartz. 
The resistance to wet stripping of the mineral-bitumen interface is strongly dependent 

on the chemistry of the mineral surface. 

(3) The adhesion between minerals and bitumen is attributed to non-bond interaction 

energy, where the major contribution is from van der Waals interaction for the neutral 

minerals like quartz and from the electrostatic interaction for the alkali minerals such 

as calcite, albite and microcline. 

(4) The mineral-bitumen debonding process is spontaneous when water exists, which 

proves that stripping is thermodynamically favourable and the debonding is a process 

of lowering the total potential energy of the bitumen-mineral system. Through 

investigating the work of adhesion and the work of debonding for the mineral-bitumen 

interface, the wet interface stripping mechanism can be analysed at the atomistic scale. 
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This study explained the stripping mechanism of asphalt mixtures from the perspective of 

molecular interactions. The molecular dynamics simulation was proved to be able to effectively 

investigate the adhesion and debonding of the mineral-bitumen interface at the nanoscale. 

However, only pure minerals were studied in this paper. Future study should evaluate the effects 

of aggregates composed of different minerals on the adhesion property and debonding 

behaviours between bitumen and aggregate.  
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