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ABSTRACT

We propose a nonlinear Landweber method for the inverse problem
of locating the brain tumour source (origin where the tumour formed)
based on well-established models of reaction–diffusion type for brain
tumour growth. The approach consists of recovering the initial density
of the tumour cells starting from a later state, which can be given by a
medical image, by running the model backwards. Moreover, full three-
dimensional simulations are given of the tumour source localization
on two types of data, the three-dimensional Shepp–Logan phantom
and an MRI T1-weighted brain scan. These simulations are obtained
using standard finite difference discretizations of the space and time
derivatives, generating a simple approach that performs well.
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1. Introduction

Brain cancer is a common cancer worldwide [1]. In 2012, it was the seventeenth most
common cancer. Despite therapeutic progress, brain tumours are still rarely fully curable.

Imaging plays an important role in the diagnosis, follow up and treatment of brain
cancer.Medical images provide information about the current state of the tumour, and this
information can be used together with mathematical tumour growth models to determine
the future state of the tumour given the present (initial) state.

Treatment of brain tumours includes surgery, radiotherapy and chemotherapy and is
based on a number of factors, with the location in the brain where the tumour formed
being of pivotal importance. Therefore, an effective step to improve brain tumour therapy
is to better localize its source. From source localization of brain tumours, clinicians can be
provided with new indices that can be used for further diagnosis.

In this work, largelymotivated by the potential impact of tumour source localization, we
apply techniques from the field of inverse problems to models of reaction–diffusion types,
parabolic partial differential equations (PDEs), for locating the source of brain tumours.
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Unlike the majority of the research done in this area, which aim at approximating the
nonlinear PDE models by systems of ODEs (for example with the Eikonal equation [2,3]),
we propose a novel and altogether different mathematical approach.

We take advantage of the theory of inverse problems to reconstruct the initial data in
parabolic equations, that is we recast the source reconstruction as a backward parabolic
problem (see Chapter 9 in [4] for an overview of backward problems). In doing this, we
work with the reaction–diffusion model directly, and this removes sources of uncertainty
introduced when reducing the model to ODEs. Consequently, by bringing in inverse
problems into this field, better understanding and quality of the reconstructions can be
obtained.

In the work [5], the authors took a basic but well-established model for tumour growth,
andpresented somemathematical results in terms of existence anduniqueness of a solution
in appropriate function spaces.Moreover, the laborious taskwas undertaken there of doing
full three-dimensional numerical simulations of the forward problem to see how themodel
predicts the tumour growth for various parameters in the model. It is then natural to see
how to run themodel backwards in time. In [6], an initial study was done for the backward
problem in two dimensions. We build on this and extend into three dimensions. Although
backward parabolic problems are classical from a theoretical point of view, they still have
to be carefully regularized to obtain a stable numerical solution. In the linear case, iterative
regularizing methods that preserve the governing partial differential equation have been
successfully employed, see the initial works [7–9].

Thus, following these, we propose a nonlinear Landwebermethod for the regularization.
We derive some necessary conditions for convergence, but a full analysis is not the main
focus. It is instead presenting three-dimensional numerical simulations showing that stable
numerical solutions to the source reconstruction can be obtained. Realistic set up is used in
that we use the three-dimensional Shepp-Logan phantom as well as an MRI T1-weighted
brain scan as the domain for the numerical experiments. In the simulations,weuse different
parameters (including nonlinearities) for the forward model compared with the backward
model as a way to simulate noise in the data. The analysis and simulations altogether
counts as the main novelty of the present work. It is not aimed to get perfectly modelled
results; we use a standard widely used model but there are extensions of it for even better
prediction of tumour growth. The current work can be seen as an initial start. With the
developed techniques one can then make simulations for backward problems for the more
advanced tumour models.

For the outline of the work, in Section 2, we present some further background on brain
tumours, reaction–diffusion tumour growth models and works related with the brain
tumour source localization problem. In Section 3, we propose a Landweber type method
applied to the backward reaction–diffusion models for reconstructing the tumour initial
state given a later tumour state obtained from a medical image. Then, in Section 4, we
describe numerical implementation of the procedure and perform numerical experiments
using full three-dimensional imaging datawith different source terms, different parameters
and different positioning of the tumour. Finally, some conclusions and remarks are given
in Section 5.
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2. Background on reaction–diffusionmodels for brain tumour growth

A brain tumour is a mass of abnormally growing normal tissue cells in the brain due
to genetic and epigenetic events. Brain tumours are classified according to their origin
into primary brain tumours that start in the brain and rarely spreads, and secondary or
metastatic brain tumours that have spread to the brain from another location in the body.
A growing tumour will eventually compress, shift, invade and damage healthy brain tissue
thereby interfering with normal brain functions.

Gliomas are a type of brain tumour that make up about 80% of all malignant brain
tumours. According to theWorld Health Organization (WHO) grading system [10], there
are two types of gliomas:

Low-Grade Gliomas (LGG), including grades I and II, are slow growing tumours that
look almost normal and infiltrate into normal brain ground tissue. Their progression to a
high-grade glioma is almost inevitable [11].

High-Grade Gliomas (HGG), including grade III and IV, look abnormal and are
characterized by rapid proliferation, infiltration into large areas. They might also have
a necrotic core, form new vascularization to support growth and push the surrounding
tissue causing a mass effect [12].

In addition to the uncontrolled proliferation that characterize all types of tumours, brain
tumour cells are widely known to be highly diffusive and infiltrating comparing to other
types of tumours. Therefore, in order to develop mathematical models describing brain
tumour growth, researchers focused on these two main processes namely proliferation
and diffusion. As a paradigm, at a given spatial location, new tumour cells appear either
by division (proliferation), or by moving from a close location (diffusion).

A well-established model for brain tumour growth was formulated by Murray in [13]
as the following reaction–diffusion formalism:⎧⎨

⎩
∂tu − div(D∇u)− f (u) = 0, in�× (0,T)

D∇u · n = 0, on ∂�× (0,T)
u(x, 0) = ϕ, in�

(1)

Here, u(x, t) is the tumour cells density in the spatial position x of the brain region �
inside the skull at time t. The diffusion term div(D∇u), where div and ∇ are respectively
the divergence and the gradient operators, and D the diffusion coefficient, models the
‘passive diffusion’ (random walk of cells, also called a brownian or fickian process) of
tumour cells as a diffusive flux proportional to the gradient of the cell density. It does not
model cell migration (that is active motion of cells), nor invasion (that is destruction of the
extra-cellular matrix). The reaction term f (u) is the proliferation function of the tumour
cells; it describes the growth of the population of tumour cells, which can be exponential
f (u) = ρu with constant proliferation rate ρ, stating that cellular division obeys a cycle,
with doubling time (ln(2)/ρ), or logistic f (u) = ρu(1− u) by decreasing the proliferation
parameter ρ in areas of high cellular density. The initial tumour cell density ϕ is given
at time t = 0, and the Neumann boundary condition on ∂� states that tumour cells do
not diffuse outside the brain region, with the outward unit normal to the boundary being
denoted by n.

In early works, the diffusion tensor was considered homogeneous in all of the brain
structure�:D = dI , with I the identity matrix and d > 0 a constant value for the diffusion
coefficient. Murray et al. in [14] related the velocity v of the moving boundary of the
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tumour to the proliferation rate ρ and the diffusion coefficient d such that v = 2
√
ρd. This

work lead the way to studies by Tracqui et al. [15] that gave rise to the first approximations
of the model parameters d and ρ using CT scans for HGG. An extension of the model to
three dimensions has been done by Burgess et al. in [16] for LGG and HGG.

An improvement to the model done by Swanson et al. in [17] consisted in introducing a
diffusion parameter higher in white matter than in grey matter: D = d(x)I , where I is the

identity matrix and the diffusion coefficient is d(x) =
{

dg in grey brain tissue
dw in white brain tissue where

dw >> dg > 0 are the diffusion coefficients in the white and grey matter, respectively.
Swanson et al. in [18] extended the model further to three dimensions taking advantage
of the information about white and grey matter areas extracted from the BrainWeb
anatomical atlas [19,20]. They showed how the model parameters could be estimated
using only in vivo post-contrast T1-weighted and T2-weighted MRI data.

Other extensions to the model have been done, for example, including biomechanical
properties of the brain for HGG, [21], and taking into account that glioma cells migrate
more easily along the direction of white matter tracts by assuming an anisotropic cell
diffusion tensor, deduced from the water diffusion tensor for LGG, [22]. These models
were constructed from Diffusion Tensor Imaging (DTI) data.

Besides the prediction of brain tumour growth, this model has been recently used for
source localization.

In fact, in [23],Hogea et al. used thismodel to build anEulerian framework formodelling
tumour growth and its subsequent mechanical impact on the surrounding brain tissue
known as themass-effect and introduced an adjoint-based, PDE-constrained optimization
problem to estimate the initial tumour seed. For the numerical experiments, they only
provided the one-dimensional case without including real images, brain geometry or tissue
heterogeneity. Recently, Gholami et al. in [24], extended this work for LGG by solving the
optimization problem with a reduced space Hessian method.

Konukoglu et al. in [2] proposed a different tool to estimate the time elapsed between
the emergence of the tumour and its detection. Based on the reaction–diffusion formalism,
they deduced the anisotropic Eikonal equation:

√∇u·(D∇u)√
ρu = 1, u(∂�) = u0, describing

the extents of the tumour starting from the visible tumour contour in the MR image. With
this, one can obtain ODEs to solve for the cell density rather than a PDE. Later on, Rekik
et al. in [3] also used this method with the Powell minimization algorithm to estimate the
tumour source location for LGG.

Although challenging to solve due to its nonlinear term,we shall base our reconstruction
of the tumour source on the model (2) since it is the standard model used.

3. Source localization

3.1. Backward reaction–diffusionmodels

Theoretical analysis is not the main aim but numerical implementation. However, as a
service to the reader, we include some theory and results on the iterative method to show
that it is theoretically underpinned. In principle, on an abstract level, it is known results
but we work them out for our nonlinear brain tumour model.

The brain region is denoted by� and is a bounded sufficiently smooth region in three-
dimensional space. We denote by Hk(�), k a positive integer, the set of all functions u
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defined in � such that its distributional derivatives of order |s| = ∑k
i=1 si ≤ k all belong

to L2(�). Furthermore, Hk(�) is a Hilbert space with the norm

‖u‖Hk(�) =
⎛
⎝∑

s≤k

∫
�

∣∣∣∂ su
∂xs

∣∣∣2 dx
⎞
⎠

1/2

The space Lp(0,T;Hk(�)), p > 1, consists of all functions u such that for almost every
t ∈ (0,T), the element u(t) belongs to Hk(�). Hence, Lp(0,T;Hk(�)) is a normed space
with the norm

‖u‖Lp(0,T;Hk(�)) =
(∫ T

0
‖u‖pHk(�)

dt

)1/p

,

where p > 1 and k is a positive integer.
We recall the problem⎧⎨

⎩
∂tu − div(D∇u)− f (u) = 0, in�× (0,T)

D∇u · n = 0, on ∂�× (0,T)
u(0) = ϕ, in�

(2)

with existence of a uniqueweak solutionu ∈ L2(0,T;H1(�))havingu′
t ∈ L2(0,T; L2(�)),

outlined in [5]. For ease of notation, we let u(x, t) = u(t).
The inverse problem we study is to find u(x, 0), where u satisfies the first two equations

in (2) and the given final time data u(x,T) = ψ .
The operator A : L2(�) → L2(�) is defined by

A(ϕ) = u(T) (3)

with u the unique (weak) solution to (2). The operator A is in general nonlinear since the
governing equation in (2) is nonlinear.

The inverse problem under consideration can then be recast as finding a solution ϕ to

A(ϕ) = ψ. (4)

There are results of uniqueness for backward parabolic problems, and we tactically assume
that data are such that there exists a unique solution.

To devise a regularizingmethod for solving the above operator equation, it is important
to findwhat is known as the Fréchet derivative ofA. The general definition of this derivative
is given in, for example, [25, Chapter 4.2].

For the operator A defined in (3) to have a Fréchet derivative at ϕ there should exist a
linear mapping, denoted A′(ϕ), with

A(ϕ + z)− A(ϕ) = A′(ϕ)z + o(‖z‖L2(�)) (5)

for z in a neighbourhood of zero. Here, o(‖z‖L2(�))means that

o(‖z‖L2(�))/‖z‖L2(�) → 0 as ‖z‖L2(�) → 0.



6 R. JAROUDI ET AL.

Weshall then verify thatA indeedhas a Fréchet derivative and give an explicit expression
for it. For this, we need the following problem⎧⎨

⎩
∂tv − div(D∇v)− f ′

u(u(ϕ))v = 0, in�× (0,T)
D∇v · n = 0, on ∂�× (0,T)

v(0) = z, in�
(6)

Well posedness of this linear parabolic problem is standard.
We temporarily use the notation u(ϕ) tomean the weak solution to (2) for a given initial

element ϕ, and similarly v(z) is the solution to (6) for a given z. Let

w = u(ϕ + z)− u(ϕ)− v(z). (7)

One can verify that⎧⎨
⎩
∂tw − div(D∇w)− f ′

u(u(ϕ))w = F(u, z), in�× (0,T)
D∇w · n = 0, on ∂�× (0,T)

w(0) = 0, in�
(8)

where
F(u, z) = f (u(ϕ + z))− f (u(ϕ))− f ′

u(u(ϕ))(u(ϕ + z)− u(ϕ)). (9)
Applying standard estimates for weak solutions to parabolic equations, together with

the assumption that f is differentiable, it follows that

‖w(T)‖L2(�) ≤ o(‖u(ϕ + z)− u(ϕ)‖L2(0,T;(L2�))). (10)

The solution to (2) depend continuously on the initial data, see [26, 12.2, Remark (b)], thus
we can further estimate

‖w(T)‖L2(�) ≤ o(‖z‖L2(�)). (11)
Using the definition of the operator A from (3) and the element w given by (7), together
with the definition of the Fréchet derivative (5), we conclude thatA has a Fréchet derivative
at ϕ, A′(ϕ), and

A′(ϕ)z = v(ϕ)(T) (12)
with v the solution to (6).

The solution operator of (2) is completely continuous (a weakly converging sequence is
turned it a strongly convergent sequence under that operator) viewed as a mapping from
L2(�) to L2(0,T; L2(�)), see [27, Theorem 10.6 and p. 246] (for a more general result
involving also dependence with respect to the coefficients in the equation, see [28]). Since
the operator A in (3) is a restriction of the solution to (2) to a fixed instance in time, we
conclude that also A is completely continuous. This implies, according to [29, Theorem
4.21], that the Fréchet derivative A′(ϕ) is a compact operator. An equation involving a
compact linear operator is the prototype of an ill-posed problem, see for exemple [30].
Thus, simply linearising in (4) will not remove the instability.

Instead, to obtain a stable solution to (4), we apply nonlinear Landweber iterations
(updating in the direction of steepest descent),

ϕk+1 = ϕk − A′∗(ϕk)(A(ϕk)− ψ). (13)
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To apply this, we need to find an expression for the adjoint of the Fréchet derivativeA′(ϕ),
denoted A′∗(ϕ). Now, A′(ϕ) is a linear operator, and one can therefore apply the similar
techniques as in [31] to obtain:
Theorem 3.1: For the adjoint of the Fréchet derivative A′(ϕ), given by (12), let v solve

⎧⎨
⎩
∂tv + div(D∇v)+ f ′

u(u(ϕ))v = 0, in �× (0,T)
D∇v · n = 0, on ∂�× (0,T)

v(T) = z, in �
(14)

then

A′∗(ϕ)z = v(0). (15)

Comparing this expression for the adjoint with the Fréchet derivative (12), we conclude
that A′(ϕ) is self-adjoint. Since, as remarked above, A′(ϕ) is a compact operator, spectral
theory are at our disposal to analyse A′(ϕ) further, although we shall not pursue it here.

For convergence of the nonlinear Landweber method, we assume that

‖A(ϕ)− A(ϕ0)− A′(ϕ0)(ϕ − ϕ0)‖ ≤ η‖A(ϕ)− A(ϕ0)‖ (16)

with 0 < η < 1/2 . This guarantees convergence provided ‖A′‖ ≤ 1, see, for example,
[32]. In general, one can introduce a parameter γ to guarantee that the norm is less than
or equal unity (that is γ ‖A′‖ ≤ 1). However, in the numerical experiments, working
without a parameter (that is γ = 1 and hence assuming ‖A′‖ ≤ 1) worked fine although
improvements can most likely be done by elaborating on this parameter.

It might seem puzzling at first why it is not ‖ϕ − ϕ0‖ in the right-hand side of (16)
since A is Fréchet differentiable. One has to remember though that we have an ill-posed
problem, thus the term ‖ϕ − ϕ0‖ can be much larger that ‖A(ϕ) − A(ϕ0)‖, making the
above estimate more restrictive.

As has been commented on in the literature, it is in general hard to verify (16), that is to
find a neighbourhood of ϕ0 where this estimate holds. In our case, it might be possible to
explicitly find such a neighbourhood due to the estimate (10), however, this would involve
technicalities like estimating dependence and size of constants in estimates for quasilinear
parabolic equations, and it would take us too far off from the purpose of the present work.

We simply assume that the initial guess of the nonlinear Landweber iterations is
sufficiently near the solution of the inverse problem such that (16) holds; the estimate (10)
guarantees that it is possible to find such an initial guess.

3.2. Numerical scheme

Following the scheme (13), we start by solving

⎧⎨
⎩
∂tu1 − div (D(x)∇u1)− f (u1) = 0, in�× (0,T)

∂nu1 = 0, on ∂�× (0,T)
u1(0) = ϕ0, in�

(17)
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Given that uk, k ≥ 1, has been constructed, we proceed by solving the linear adjoint
problem

⎧⎨
⎩
∂tvk + div (D(x)∇vk)+ f ′

u(uk)vk = 0, in�× (0,T)
∂nvk = 0, on ∂�× (0,T)

vk(T) = uk(T)− ψ , in�
(18)

to obtain vk. Then uk+1 is constructed as the solution to
⎧⎨
⎩
∂tuk+1 − div (D(x)∇uk+1)− f (uk+1) = 0, in�× (0,T)

∂nuk+1 = 0, on ∂�× (0,T)
uk+1(0) = uk(0)− vk(0), in�

(19)

We iterate in the last two steps until the desired level of accuracy has been obtained. In
case of noise data a stopping rule is needed to terminate the iterations.

It is straightforward to verify that the above procedure corresponds to the nonlinear
Landweber method for solving (4).

4. Numerical simulations

Weevaluate theproposed solution schemeon two types of datawith synthetically generated
tumours obtained via the forwardmodel.We point out that we have avoidedwhat is known
as the ‘inverse crime’ since the constructed data is generated with a different approach and
parameters values than the reconstructions.

Rather thandoingwhat is standard in the inverse community tohave the samegoverning
model for the forward and inverse problem, we take on the following challenge: the source
localization is done using an exponential nonlinearity on a density constructed with the
logistic function, and vice versa. We do this, since in real practise we cannot exactly know
what nonlinearity was used to generate the data. Thus, with our approach, we do not need
to simulate additional noisy data, they are in this sense already noisy. Thus, we ask the
reader to bear this in mind when studying the results.

4.1. Data

We use two types of three-dimensional (3d) imaging data. The first setting is the standard
3d Shepp-Logan phantom [33] describing a simple geometry, and the second setting is an
MRI T1-weighted brain scan [34] from the Internet Brain Segmentation Repository (IBSR)
[35] describing a complex geometry.

In the synthetic setting of the 3d Shepp-Logan phantom, we manually selected hypo-
thetical white and grey matter regions as shown in Figure 1. Unlike in the 3d Shepp-Logan
image, theMRI data image has ground truth segmentation ofwhite and greymatter regions
provided by experts, see Figure 2 for illustration of these regions. In these two figures, the
regions are shown on three different and orthogonal planes (slices) through the brain.
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Figure 1. Image plane visualizations of a synthetic, but prototypical, segmentation of the 3d Shepp-
Logan phantom.�, which is defined by white and gray regions, corresponding to white and graymatter
of the brain, defines the feasible region in which the tumour can evolve.

Figure 2. Ground truth segmentation of an MRI T1 volume where � is defined by white and gray
colors indicates white and gray matter regions. Tumour growth in this volume is a significantly more
challenging problem than the synthetic example shown in Figure 1 due to the presence of many thin
and spurious structures, in particularly, made up by white matter tissue as seen in the middle and right
panels. Ventricles (black regions encompassed by white and gray matter) are not described by � and
we do not take into account tissue deformation caused by tumour growth nearby these ventricles, but
simply model tumour growth in the white and gray regions. Note that source localization for a tumour
grown ‘around’ a ventricle is harder than a tumour grown in a homogeneous medium since the former
case will exhibit severe nonlinear ‘retraction’ behaviour, which is also confirmed by our evaluation.

4.2. Discretization

For numerical implementation of the reaction–diffusion model, we consider our model as
an evolution equation of the form:

∂tu = Au + f (u),

where A is a spatially dependent linear differential operator containing derivatives on its
diagonal. The following explicit iterative discretization scheme is used in time due to its
simplicity:

ui+1 = ui + hAui + hf (ui),

where i = 0, 1, . . ., is the current iteration,h > 0 is the stepsize and thematrixA, also known
as the stencil, can be expressed via a sparse representation making memory requirements
less demanding.

We then need to approximate also the spatial derivatives present in A. We adopt
a generic forward Euler discretization strategy using finite differences to approximate
derivatives in parabolic PDEs [36]. Expanding the divergence term, we have:
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div(D∇u) = div

⎡
⎣
⎛
⎝d11 0 0
0 d22 0
0 0 d33

⎞
⎠
⎛
⎝∂xu∂yu
∂zu

⎞
⎠
⎤
⎦ = ∂x(d11∂xu)+ ∂y(d22∂yu)+ ∂z(d33∂zu),

(20)
where the sub-index of d is the corresponding components in terms of rows and columns
of D. We point out that the elements of D are dependent on space.

The terms in (20) involve derivatives up to second order. We approximate these
derivatives by averaging the forward, ∂+, and backward, ∂−, finite difference operators
using the following alternating scheme of forward and backward differences for the x-, y-
and z-directions:

∂x(d11∂xu) ≈ 1
2
(∂+

x (d11∂
−
x u)+ ∂−

x (d11∂
+
x u))

∂y(d22∂yu) ≈ 1
2
(∂+

y (d22∂
−
y u)+ ∂−

y (d22∂
+
y u))

∂z(d11∂zu) ≈ 1
2
(∂+

z (d33∂
−
z u)+ ∂−

z (d33∂
+
z u)). (21)

Letting the size of one voxel be 1 (other sizes can easily be adjusted for) given in the x-, y-
and z-directions, we derive the forward ∂+ and backward ∂− finite difference operators as
second order approximations from a third order Taylor series expansion in the x-, y- and
z-directions:

∂+
x u = u(x + 1, y, z)− u(x, y, z)
∂−
x u = u(x, y, z)− u(x − 1, y, z)

∂+
y u = u(x, y + 1, z)− u(x, y, z)
∂−
y u = u(x, y, z)− u(x, y − 1, z)

∂+
z u = u(x, y, z + 1)− u(x, y, z)
∂−
z u = u(x, y, z)− u(x, y, z − 1).

From this, we get the approximations:

∂x(d11∂xu) ≈ 1
2
[(d11(x + 1, y, z)+ d11(x, y, z))(u(x + 1, y, z)− u(x, y, z))

− (d11(x − 1, y, z)+ d11(x, y, z))(u(x, y, z)− u(x − 1, y, z))]
∂y(d22∂yu) ≈ 1

2
[(d22(x, y + 1, z)+ d22(x, y, z))(u(x, y + 1, z)− u(x, y, z))

− (d22(x, y − 1, z)+ d22(x, y, z))(u(x, y, z)− u(x, y − 1, z))]
∂z(d33∂zu) ≈ 1

2
[(d33(x, y, z + 1)+ d33(x, y, z))(u(x, y, z + 1)− u(x, y, z))

− (d33(x, y, z − 1)+ d33(x, y, z))(u(x, y, z)− u(x, y, z − 1))]. (22)

Since the boundary of � is the (curved) boundary of the brain (union of white and
grey matter segments), special care is needed when computing the Neumann boundary
condition on irregular grids. We approach this problem by sequentially replicating the
boundary voxels in the outward normal direction of �. Any inconsistency for diagonal
flow vectors have not been observed in the simulations, in fact this straightforward strategy
performs remarkably well.
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Table 1. Description of different experiments.

Parameters
Construction f = ρu f = ρu(1 − u) f = ρu f = ρu(1 − u)
ρ 0.01 0.001 0.01 0.001 0.001 0.01
h 0.05 0.1 0.05 0.1 0.07 0.05
Reconstruction f = ρu f = ρu(1 − u) f = ρu(1 − u) f = ρu
ρ 0.001 0.01 0.001 0.01 0.01 0.001
h 0.1 0.05 0.1 0.05 0.02 0.1

Figuers

3d Shepp-Logan Figure 3 Figure 11 Figure 15
Figure 5

T1 MRI Figure 7 Figure 13 Figure 16
Figure 9

4.3. Parameters and set-up

For each of the data, we run the model to obtain a synthetic tumour at a time T > 0 for a
particular parameter configuration. In the Shepp-Logan phantom, we used the diffusivity
speed dw = 1 in the white matter and dg = 0.05 in the gray matter segment. For the MRI
image, we set diffusivity speed dw = 1 in the white matter region and dg = 0.1 in the grey
matter region. We have thereby followed the models biological assumption stating that
tumour cells diffuse more rapidly in white matter.

To aid the visualization, we created a numerical routine to render the corresponding
3d planes. In those illustrations, it is in general easier to see the position and growth of the
tumour. In the experiments, we place the tumour at various positions to illustrate different
scenarios.

To test the sensitivity of the presented approach, we choose to vary the time-step in the
Euler scheme and the parameter ρ influencing the degree of the nonlinearity of the source
terms in the PDE model (1).

We run the forward problem until T = 500 for the Shepp-Logan phantom and theMRI
image to construct the grown synthetic tumour ψ that should be extracted from image.
The overall problem (17), (18) and (19) is iterated 55 times in order to track improvements
in the source localization by performing additional iterations of the outer loop.

In the linearmodel corresponding to f (u) = ρu, we only need equations (17) and (19) in
the overall problem, and the initial condition is updated asuk+1(0) = uk(0)−γ (uk(T)−ψ)
for γ = 1. Convergence rates and stability results can be found in [7,8] for the linear
Landweber type method and in [37] for the nonlinear one.

4.4. Results

For each type of imaging data: the 3d Shepp-Logan image with simple geometry and
the T1 MRI data with complex geometry, as mentioned above, we consider constructing
the synthetic tumour with different models and reconstructing the source with different
models as well, as shown in Table 1.

In the first experiment, we have an exponential reaction term for both the construction
and the reconstruction procedures but with different parameters. We let the proliferation
rate parameter ρ and the update step h be either 0.01 or 0.001. We test this configuration
for two different positions, one which is close to the boundary for both the 3d Shepp-Logan
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Figure 3. Source localization with exponential reaction terms in construction and reconstruction with
large vs. small ρ and small vs. large stepsize h in the 3d Shepp-Logan image.

image and the T1 MRI data. Figures 3–9 illustrate this experiment. To explain the figures
containing tumours, such as for example Figure 3, we point out that:

(a) is the initial location and shape to be reconstructed, (b) shows the grown tumours
(grown from data in (a)) being the data ψ for two different sets of parameters, and (c) is
the corresponding reconstructions of the location with the first figure in (b) used as data
for the first reconstruction in (c) and correspondingly the second figure in (b) is used to
obtain the second figure in (c) with the parameters as stated. Note that we have stopped the
iterations before t = 0 by manually tracking and terminated by inspection such that the
source is still visible. The single tumours in (c) is the shape of the reconstructed tumour.
Note that it is the location that is the main focus. The nonsmooth shape corresponds to
the reconstructed tumour occupying only one or a few voxels. There cannot be perfect
reconstructions since the data was generated with a different set of parameters. Albeit this,
looking at the located position it seems to be a good reconstruction. Error plots as well as
errors (see Table 2) verify this.

We have thus varied the parameters ρ and h, and the reconstructions seem stable with
respect to these, see further Table 2 for errors with different parameters. To keep down
the number of figures, we do not include figures for each set of parameters. We can report
that for the 3d Shepp-Logan image, the located tumour source is obtained after 8 iterations
when ρ is large and the step size is small and after 10 iterations otherwise for both positions
(see Figures 3–6).

However, in the T1 MRI image, it takes 22 and 38 iterations to find the source for large
ρ, small step size and small ρ, large step size, respectively (Figures 7–8).

We have varied the position of the source as well. It is more difficult to reconstruct the
source when the tumour is near the boundary (ventricles) as shown in Figures 9–10 after
7 iterations.

For the next experiment, we keep the same variations for the parameterρ and the update
step but set the reaction term to be logistic instead. We can report that much the same
behaviour as for the exponential term is obtained, see further Table 2. We therefore only
include two sets of figures and take then the more difficult case of the tumour near the
boundary, see Figures 11–14.

The results obtained for the 3d Shepp-Logan image after 10 and 8 iterations for
respectively large and small ρ, small and large step size for the critical position of the
tumour are displayed in Figures 11–12. Here, the reconstruction is again difficult when the
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Figure 4. Error in source localization with same reaction term f (u) = ρu in the 3d Shepp-Logan image.
The x-axis and the y-axis denote respectively the number of iterations of the nonlinear Landweber
method and the relative error in L2 between the exact source and the reconstructed one.

Figure 5. Source localization with exponential reaction terms in construction and reconstruction with
large vs. small ρ and small vs. large stepsize h in critical position (on the skull) of the tumour within the
3d Shepp-Logan image.

tumour is near the boundaries (ventricles), ρ is large increasing the nonlinearity and the
update step is small. Visually pleasing results are obtained in that the location appear to be
accurately identified.

For the MRI data, the results are the same but for different number of iterations: 50 for
large ρ and small step while only 4 iterations are needed for the other case, in both cases
the tumour is placed near the boundary (Figures 13–14).

Finally, we increase the challenge further by testing mixed reaction terms. For the
forward construction, we have a large ρ and step size being 0.05 when f is logistic and a
small step size 0.07 when f is exponential. For the reconstruction, it is vice versa except for
the step size with the logistic term is set to 0.02.

In the 3d Shepp-Logan setting for Figure 15, all combinations work well with 8 and 9
iterations needed.

Figure 16 shows that the best method here is to consider exponential f for construction
and logistic for reconstruction. In fact, despite the complex geometry of the MRI data, the
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Figure 6. Error in source localization with same reaction term f (u) = ρu in the 3d Shepp-Logan image:
the critical tumour position case. The x-axis and the y-axis denote respectively the number of iterations
of the nonlinear Landweber method and the relative error in L2 between the exact source and the
reconstructed one.

Figure 7. Source localization with exponential reaction terms in construction and reconstruction with
large vs. small ρ and small vs. large stepsize h in the T1 MRI image.

source of the tumour was located after only 4 iterations compared to 50 with the other
configuration.

To compare between the differentmethods shown above, we have calculated the relative
error in L2 between the ground truth initial density and the estimated tumour source for
the 3d Shepp-Logan and the T1MRI images for the various combinations of reaction terms
used (see Tables 2, 3). The results for both imaging data show that the parameter ρ and
the update step have important influence on the source reconstruction.

5. Remarks on the numerical simulations

The parameter ρ determines the influence of the source term and a larger value in the
construction yields a tumour cell density which is more anisotropic than with smaller
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Figure 8. Error in source localization with same reaction term f (u) = ρu in the MRI image. The x-axis
and the y-axis denote respectively the number of iterations of the nonlinear Landwebermethod and the
relative error in L2 between the exact source and the reconstructed one.

Figure 9. Source localization with exponential reaction terms in construction and reconstruction with
large vs. small ρ and small vs. large stepsize h in critical position (on the ventricles) of the tumour within
the T1 MRI image.

values,making the source localization in the reconstructionharder. Therefore, it is expected
that the error should increase as the value of ρ for the construction increases. This is seen
in the figures and errors calculated.

We also remark that when the initial source of the tumour is located close to the
boundary it is harder to reconstruct as the proposed regularizing procedure needs to
handle a severely anisotropic growth pattern.

The proposed approach assumes that the tumour cell density at the final time (needed
as input data) is measurable; typically it would be extracted from medical imagery.

We report that we have also tried the case with the same reaction term but different
time-step. This corresponds to the typical noise free case in inverse reconstructions. The
above reconstructed location of the source are already good with a rather small relative
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Figure 10. Error in source localization with same reaction term f (u) = ρu in the MRI image
corresponding to tumour critical position case. The x-axis and the y-axis denote respectively the number
of iterations of the nonlinear Landweber method and the relative error in L2 between the exact source
and the reconstructed one.

Figure 11. Source localization with logistic reaction terms in construction and reconstruction with
large vs. small ρ and small vs. large stepsize h in a critical tumour position (near ventricles) on the 3d
Shepp-Logan image.

Table 2. Relative error in L2 between the ground truth initial density and the estimated tumour source
for the 3d Shepp-Logan and the T1 MRI images using same reaction terms. Values with ∗ are the critical
position of the tumour that is near the ventricles or the skull.

Parameters
Construction f = ρu f = ρu(1 − u)
ρ 0.01 0.001 0.01 0.001
h 0.05 0.1 0.05 0.1
Reconstruction f = ρu f = ρu(1 − u)
ρ 0.001 0.01 0.001 0.01
h 0.1 0.05 0.1 0.05

Relative Error in L2

3d Shepp-Logan ∗0.76 ∗0.93 ∗0.77 ∗0.79∗0.76 ∗0.93 ∗1.04 ∗1.05
T1 MRI ∗0.87 ∗0.89 ∗1.05 0.798∗0.79 ∗1.03 ∗1.05 ∗0.93
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Figure 12. Error in source localization with same reactions terms f (u) = ρu(1 − u) in the 3d Shepp-
Logan image near the boundary. The x-axis and the y-axis denote respectively the number of iterations
of the nonlinear Landweber method and the relative error in L2 between the exact source and the
reconstructed one.

Figure 13. Source localization with logistic reaction terms in construction and reconstruction with large
vs. small ρ and small vs. large stepsize h in a critical tumour position (near ventricles) on the T1 MRI
image.

Table 3. Relative error in L2 between the ground truth initial density and the estimated tumour source
for the 3d Shepp-Logan and the T1 MRI images using different reaction terms.

Parameters
Construction f = ρu f = ρu(1 − u)
ρ 0.001 0.01
h 0.07 0.05
Reconstruction f = ρu(1 − u) f = ρu
ρ 0.01 0.001
h 0.02 0.1

Relative Error in L2
3d Shepp-Logan 0.93 0.93
T1 MRI 1.00 1.05
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Figure 14. Error in source localization with same reaction terms f (u) = ρu(1− u) in the MRI image. The
x-axis and the y-axis denote respectively the number of iterations of the nonlinear Landweber method
and the relative error in L2 between the exact source and the reconstructed one.

Figure 15. Source localization in the 3d Shepp-Logan image with large vs. small ρ, small vs. large
stepsize h and logistic vs. exponential reaction terms in construction and reconstruction respectively.

error. With the same reaction term, this error is decreased further. We choose not to
include any figure on this since it is visually not possible to see any comparable difference.

We provide some information about the computations. The numerical simulations pre-
sented are done inMATLAB R2016a version 9.0 and executed on an ordinary workstation
having an Intel(R) Core(TM) i5-5200U CPU at 2.20 GHz. The total number of voxels in
the Shepp-Logan model is 256 × 256 × 256 and for the MRI T1-weighted brain scan it is
256 × 256 × 54 (we do not take into account any differences of resolutions in the x-, y-
and z- directions). The total simulation time to generate a set of figures like Figure 3 for
the Shepp-Logan model is about 1 hour 40 minutes and to do a set like 9 for the T1 MRI
data is around 55 minutes. There is no big difference with respect to the reaction term. No
optimization of the code has been done and computational time can therefore be further
improved.
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Figure 16. Source localization in the T1 MRI image with large vs. small ρ, small vs. large stepsize h and
logistic vs. exponential reaction terms in construction and reconstruction respectively.

6. Conclusion

Reconstruction of tumours backwards in time has been investigated. The problem is
formulated as finding the initial state of the solution to a well-established parabolic
reaction–diffusion model for tumour growth, given the tumour at a final instance in
time. A nonlinear Landweber type method was proposed to obtain a stable solution. Some
mathematical analysis was undertaken to find the adjoint operator needed and to motivate
convergence. Numerical simulations were performed for two realistic brain models being
the three-dimensional Shepp-Logan phantom and an MRI T1-weighted brain scan. An
additional challenge was introduced in that the simulations was undertaken with the
data generated with a different set of parameters (including different nonlinearities). The
obtained results corroborated well with what could be expected theoretically, and indicate
that stable numerical results can be obtained opening for further investigations of more
advanced tumour growthmodels backwards in time.Moreover, future perspectives include
using extended models covering Diffusion Tensor Imaging type, validation against real
data, stability and convergence tests of the numerical schemes.
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