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Abstract: Trapping light within cavities or waveguides in photonic crystals is an effective 
technology in modern integrated optics. Traditionally, cavities rely on total internal reflection 
or a photonic bandgap to achieve field confinement. Recent investigations have examined 
new localized modes that occur at a Dirac frequency that is beyond any complete photonic 
bandgap. We design Al2O3 dielectric cylinders placed on a triangular lattice in air, and change 
the central rod size to form a photonic crystal microcavity. It is predicted that waves can be 
localized at the Dirac frequency in this device without photonic bandgaps or total internal 
reflections. We perform a theoretical analysis of this new wave localization and verify it 
experimentally. This work paves the way for exploring localized defect modes at the Dirac 
point in the visible and infrared bands, with potential applicability to new optical devices. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction
Photonic crystals (PCs) are a kind of artificial material composed of periodic dielectric 
structures. They have been widely studied due to their theoretical value and engineering 
applications in recent decades. Their fascinating electromagnetic properties provide us with 
an ideal platform for controlling the propagation of waves in various fields such as photonic 
crystal fiber amplifiers [1], slab mirrors [2], fiber lasers [3], biochemical or optical sensors 
[4,5] and photonic crystal LEDs [6]. Meanwhile, PCs with defects that form cavities [7] or 
waveguides [8] are an efficient medium to confine light waves and realize localization of 
modes. The internal physical mechanism of trapping photons is traditionally attributed to 
photonic bandgaps or total internal reflections (TIR) [9]. The light field profiles of these 
modes obey an exponential energy decay in space. However, this restricts the future 
development of novel devices due to the high decay rate. 

Recently, the Dirac point within the triangular series lattice [10–12] photonic band 
structures has attracted much attention due to the strong similar conical singularities in the 
electronic band structures of graphene [13]. This special band region with linear dispersion 
and linearly vanishing density of states leads to a set of quantum effects such as Klein 
tunneling [14], Zitterbewegung [15], the absence of Anderson localization [16] and pseudo-
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diffusive transmission [17] in PC, in analogy with graphene. Two-dimensional (2D) localized 
modes in PC [18], 2D spatial algebraic solitons in nonlinear photonic lattices [19] and guided 
modes in photonic crystal fibers [20], have been studied near the Dirac frequency. The 
diverse approaches for photon capturing lead to an unusual algebraic decay of state and a 
unique frequency located beyond the bandgaps. However, these modes have not been 
identified experimentally. 

Recently, two theoretical and experimental studies have been performed by building 
artificial graphene in the microwave domain: one with a honeycomb lattice of dielectric 
resonators [21–23] and the other with a triangular lattice of metallic rods [24,25]. Edge modes 
were found in these studies. Meanwhile, J. Böhm et al. [26] demonstrated the 
implementations of the continuous quantum wave search algorithms and directed wave 
transport in artificial graphene lattice. In this ingenious experiment, localized search states 
were brought into resonance with an extended lattice state near the Dirac point. 

In this study, we experimentally demonstrate an inner cavity mode that is localized inside 
the lattice around a defect at the Dirac frequency. Since structures which operate in the visible 
and infrared light bands are quite difficult to manage due to their exquisite precision of 
dimension, the experiment is performed in the microwave bands where modern micro-
fabrication technology is mature and complex periodic structures can be prepared with good 
precision. The dimensions of PCs can be scaled in proportion to any wavelength so that the 
results obtained in the microwave band are applicable to the visible and infrared bands. This 
work may lead to new theory and applications of guided waves. 

2. Discussion of the problem
The Dirac point (Upper-right inset in Fig. 2) in the photonic band structure has a conical 
singularity with linearly vanishing density of states and linear dispersion in its vicinity. 
Maxwell’s equations near the Dirac point can be reduced to the 2D massless Dirac 

equation ( )D x y Div
x y

σ σ ω ω ∂ ∂− + Ψ= − Ψ ∂ ∂ 
, where vD is the group velocity, ωD is the angular 

Dirac frequency, σx and σy are Pauli matrices, and Ψ = (ψ1, ψ2)
T represents the envelope 

amplitudes ψ1, ψ2 of a doublet of two degenerate Bloch states at the corners (K points) of the 
hexagonal first Brillouin zone [17,27]. The solution of this equation satisfies the relation 
ψ1,2∝ 1/(x + iy)m at the Dirac frequency. By analyzing the general solutions of eigenstates in 
the vicinity of the K points, we can obtain the nontrivial cylindrical wave solution in the PC 
as Hz∝r-m· JM(Kr)e ± i(M - m)θ, (M = 0, ± 1, ± 2, ± 3,…), where JM is the Mth order Bessel 
function, and θ is the azimuth angle varying from 0 to 2π [18]. When Kr is sufficiently large, 
the Bessel function JM can be approximately expressed as JM(Kr) ≈2(2πKr)-1/2cos(Kr-π/4 - 
Mπ/2). It is easy to see that the amplitude of such modes decay algebraically at large distances 
in the form of 1/rm+1/2. Instead of existing in a complete bandgap, it settles at the Dirac 
frequency. The phase of the wave that passes through the origin jumps between ± π when the 
sign of the cosine term changes because the complex exponential terms are known in this 
range. Apparently, the wave is not a traveling wave but a standing wave. The above 
discussion explains the appearance of wave localization at the Dirac frequency in the PC, and 
confirms the algebraic profile of the modes. When we introduce a defect into this structure, 
the wave can exist around the defect as localized modes. Therefore, light confinement at the 
Dirac frequency is realized in agreement with theoretical considerations. 

Prior to performing the experiments, some numerical calculations based on the well-
known plane wave expansion (PWE) and finite difference time domain (FDTD) analysis 
[18,20,28] were performed to design the structure and acquire key parameters from the band 
structures and mode profiles. The detailed simulations and settings are presented in the 
following discussions. 
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3. 2D microwave PC design
A 2D microwave PC that consists of a triangular lattice of alumina ceramic (Al2O3) cylinders 
in air is designed. This material is transparent in the microwave frequency range, with a 
refractive index n = 3.13 and a very low loss factor at 10 GHz [29]. The analysis starts with 
an optimization of the Dirac cone of a 2D triangular lattice without defects, so as to establish 
the ratio of the cylinder width versus lattice constant, as well as the normalized frequency of 
the Dirac point. Then, a defect is introduced by changing the radius of a cylinder. The optimal 
parameter of the defect that supports well-confined modes at the Dirac frequency is 
determined. Finally, additional calculations are performed to study the special features of this 
structure. The edge states are discussed in the last section. 

3.1 Optimizing the Dirac cone 

An illustration of the top view of the 2D triangular lattice PC is shown in the lower-left inset 
of Fig. 1(a). The structure is composed of Al2O3 (εd ≈9.8) cylinders in air. The properties of 
the structure are determined by the lattice constant a, the ratio of the radius of the cylinders to 
the lattice constant r/a, and the refractive index n of the material. The ratio r/a affects the size 
of the Dirac cone and the location of the Dirac frequency. TE and TM band structures 
calculated using PWE for r/a = 0.25 are plotted in Fig. 1(a). A Dirac cone that satisfies the 
massless Dirac equation is found between fa/c = 0.5163 ~fa/c = 0.6664 in the TE band 
structure. There is no Dirac cone found in the TM band structure, therefore, only the TE 
modes need to be considered. Variations of the Dirac cone edges and the Dirac frequency as 
the ratio r/a changes from 0.25 to 0.35 are shown in Fig. 1(b). The distance from the lower 
edge of Dirac cone to the Dirac point reaches its largest value of 0.225 when r/a is equal to 
0.3. The normalized Dirac frequency at this point is fda/c = 0.4763. Because the lower margin 
of the Dirac cone is much smaller than the upper margin, it is a top priority in the 
optimization process. The value r/a = 0.3 is chosen for our experiment to achieve an adequate 
size for the lower margin. 

Fig. 1. (a) Calculated photonic band structure of a triangular lattice of dielectric rods in air. 
The rods are constituted of Al2O3 material with a dielectric constant εd = 9.8 and a radius-to-
pitch ratio r/a = 0.25. Blue lines: TE polarization. Red dashed lines: TM polarization. Black 
dot-dashed line at fda/c = 0.5244 marks the Dirac point in the TE band structure. Lower-left 
inset: top view of the 2D triangular lattice PC. Lower-middle inset: first Brillouin zone of the 
reciprocal lattice, revealing the high-symmetry points Γ, M, K at the corners of the irreducible 
Brillouin zone of the structure. (b) The variation of the Dirac cone edge with the radius-to-
pitch ratio r/a. Blue diamond lines: Dirac cone edges. Black circle line: Dirac point. 

3.2 Optimizing the defect size 

A microcavity can be created by introducing a defect by altering either the radius or the 
relative permittivity of a single rod in the PC. For a practical device, it is more convenient to 
change the size of a cylinder instead of its inherent physical properties. Therefore, the radius 
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of an Al2O3 rod is modified to form the defect in this study. Localized modes are calculated 
by the PWE method in a 5 × 5 supercell system which includes a defect at the center. Figure 2 
shows the dependence of the fundamental TE localized modes (M = m = 1) as the defect 
radius R changes. A localized Dirac mode appears near the Dirac frequency within the Dirac 
cone. The wave is confined in the PC and its energy is distributed nearby the defect rod. The 
mode, as shown in the lower-left inset of Fig. 2, resonates precisely at the Dirac frequency fd 
= 0.4763c/a when R/r = 0.854. The ratio of the two integers 6/7 = 0.857 is in close proximity 
to the calculated ideal value R/r. Therefore, we set the diameter of the normal rods to d = 7 
mm, and that of the defect rod to D = 6 mm. The lattice constant can be calculated as a = 
d/0.6 = 11.67 mm, the wavelength corresponding to the Dirac frequency as λ = a/0.4763 = 
24.5 mm, and the Dirac frequency as fd = c/λ = 12.24 GHz. The designed microwave PC will 
be further studied in experiments using these parameters. 

Fig. 2. Dependence of the frequency of the localized modes on the defect rod radius R. PC 
structure parameters are: εd = 9.8, r/a = 0.30. Magenta solid curve: localized defect modes 
calculated by PWE method. Red diamonds: data points of the localized modes simulated by 
FDTD method. Green line: the Dirac point with the normalized frequency fd = 0.4763c/a. 
Lower-left inset: profile of the localized modes at Dirac frequency superimposed on geometric 
structures of the crystals. Upper-right inset: conventional band structure in dimensionless 
frequency units. The Dirac cone is formed between the second and third photonic band for TE 
polarized waves. 

3.3 Features of localized modes at Dirac point in microwave PC 

To further confirm the rationale for designing the PC, 2D FDTD is applied to evaluate the 
resonant frequency, mode profile, phase on the profile, quality factor, and attenuation 
characteristics of localized modes. A 50 cm × 50 cm microcavity, with 31 × 41 rods is 
analyzed. The detailed parameters are set as described in the previous section except for the 
defect size. A magnetic dipole source, which is not located in the defect’s center, is used to 
excite the evolvement of waves. The source is set with a short lifetime to ensure that the 
external source is timely switched off so that the dipole radiation couples freely. The 
dependence of the eigenfrequency of the localized mode with changes in the radius of the 
defect rod is plotted in Fig. 2. By appropriate adjustment of the defect radius, the resonance 
peak can be exactly moved to the Dirac frequency. This occurs at D = 6.07 mm, which results 
in a difference of only 1.2% compared to the result obtained using the PWE method. The 
results of our numerical computations are presented in Fig. 2 as red diamonds. Figure 3(a) 
shows the time-domain evolution of the magnetic field amplitude hz at the center of the 
resonator. The field remains approximately constant with the progression of time, which 
ensures that such modes in the cavity are self-sustainable and that stable optical bound states 
are maintained. In Fig. 3(b) the pattern of frequency components of the magnetic field is 
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shown. The Gaussian pattern matches well with the result obtained using PWE, as shown by 
the inset in Fig. 2. The modulus of the frequency component |Hz| multiplied by r3/2 is plotted 
against distance r in Fig. 3(c). A relatively constant amplitude of oscillation occurs at the tail 
of the product |Hz|·|r

3/2|, implying a 1/ r3/2 algebraic decay rather than an exponential one for 
the mode. As seen from Fig. 3(d), the phase of the mode flips between ± π as distance 
changes, which implies a standing wave condition. The dependence of the quality factor Qtotal 
of the cavity on the eigenfrequency of the mode is shown in Fig. 3(e). The Q factor achieves 
its maximum value of ~6 × 105 at the Dirac frequency, and decreases rapidly as the frequency 
deviates from the Dirac frequency. These properties of the localized mode at the Dirac 
frequency are quite different from the traditional bandgap modes or TIR modes. Hence, the 
Dirac localized mode is a non-trivial alternative to the traditional bandgap modes, which has 
potentially meaningful applications. 

Fig. 3. Numerical investigations (by FDTD) of the Dirac mode at the Dirac frequency fd = 
12.24 GHz for the structure: lattice constant a = 11.67 mm, rods diameters d = 7 mm, defect 
diameter D = 6 mm, material relative permittivity εd = 9.8 for both normal rods and the defect 
rod. The numerical computations are set with a step size ∆x = a/50, ∆y = ∆x·sin(60°), time step 
c∆t = 0.6484∆x. Cavity area are S = 50 cm × 50 cm, and the boundary conditions are PML 
boundary. (a) Time domain evolution of the magnetic field amplitude hz at the cavity center. 
(b) Pattern of frequency component of the magnetic field |Hz| at fd. (c) Dependence of product
of the |Hz| and |r3/2| on the length in the x-axis. (d) Phase of the mode profile along the x axis.
(e) Total quality factor Qtotal variation with resonant frequency. The resonant frequency is
dependent on the diameter D of the defect rod. The vertical green line marks the position of the
Dirac frequency. The value of Qtotal reaches its maximum at this frequency.
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4. Experimental study
The measurement of the Dirac localized modes for complete PC is shown in Fig. 4. 
According to the design parameters and machining accuracy, dozens of Al2O3 dielectric 
cylinders are produced, for which the actual relative permittivity is 9.8 ± 0.7 and the cross-
sectional diameter is 6.85 ± 0.1 mm. These rods are inserted between two layers of punched 
organic glass boards. The center-to-center distance of the holes is taken as 11.7 mm, and the 
hole diameter is 7 mm. This is larger than the rods size for easy insertion and removal. The 
space between the two boards is appropriately adjusted during the experiments. In order to 
incorporate a defect into the PC, the diameter of the central hole is reserved to be 6.1 mm, 
which is marginally larger than the designed diameter of the defect rod. To ensure the 2D 
nature of the structure [30,31], the rods are designed to be 200 mm long, which is much 
longer than the lattice constant of the crystal. In the PC shown in Fig. 1(a), localized modes at 
the Dirac frequency only occur for TE modes. For this polarization, a PC slab terminated by a 
perfect magnetic conductor on both ends at fixed z is equivalent to a 2D PC with an infinite 
length in the z direction. Unfortunately, perfect magnetic conductors do not exist. 
Nonetheless, the boundary conditions at the interface between two dielectric media with a 
large refractive index difference approaches that of the surface of a perfect magnetic 
conductor. The PC slab, which includes both cylinders and air spaces, can be considered as a 
bulk structure with an effective refractive index. Therefore, the PC slab with a finite thickness 
as previously shown with an open circuit on the z-axis, can be approximately considered as a 

2D PC. The Maxwell equations of the TE wave are 0
x z

r x

E H
j

t y
ε ε ∂ ∂

= −
∂ ∂

, 

0
y z

r y

E H
j

t x
ε ε

∂ ∂
− = +

∂ ∂
, 0

yxz
EEH

t y x
μ

∂∂∂
= −

∂ ∂ ∂
 for the 2D PC, where jx,y is the transverse 

current density, which plays the role of the wave source. The electric current imported from 
the side of the PC excites the localized modes at the Dirac frequency. This structure is 
different from that of Refs [21–23,26], where the PCs are thin slabs with non-negligible 
thickness effects. 

To obtain the range of the band gaps and the Dirac cone, horizontal transmission spectra 
of PCs are measured [30–32]. As shown in Fig. 4, the microwave signals produced by the 
analyzer are imported to the transmit antenna and they then pass through the PC, before 
finally flowing back to the ZVA40 through the receive antenna. The ZVA40 Vector Network 
Analyzer (Rohde & Schwarz) is used as the source to emit microwave signals through the 
transmit antennas, and the transmission spectra are collected via the receive antennas (WR - 
62 Waveguide Standard Horn Antennas operating from 12 GHz to 18 GHz). The antennas are 
directly connected to two ports of the ZVA40. The boundaries of the PCs as well as the 
antennas are covered by the microwave absorbing materials. Thus, a long and narrow channel 
is formed to limit the receiving aperture of the antennas. Careful consideration should be 
exercised to minimize stray wave scattering and to maximize antenna directivity and 
detection efficiency. Appropriate adjustment of these settings allows the diffuse reflection, 
edge scattering, and incident wave from other directions to be effectively excluded. The 
radiation field is in an extent of the distance away from the PC, which can be viewed as 
satisfying the far-field condition. Therefore, the electromagnetic wave can strike the surface 
of PC perpendicularly in a particular direction. 
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Fig. 4. Experimental setup for measurement of the transmission spectra of the PC cavity. 
Parameters of the cavity are: a = 11.7 mm, εd = 9.8 ± 0.7, d = 6.85 ± 0.1 mm, and D = 6 mm. 

The transmitted power of the TE polarization versus the frequency in the ΓM direction is 
plotted in Fig. 5(a). The TE band structure of the PC indicates that two partial bandgaps exist, 
which range from 11.66 to 15.41 GHz and 16.04–17.75 GHz along this direction, as shown in 
Fig. 5(b). Within the bandgaps, the fields decay exponentially with distance and the 
transmitted power is significantly attenuated in the aforementioned frequency ranges. This 
therefore indicates the position of bandgaps. The experimentally measured bandgaps are 
situated in the frequency ranges of 12.2–15.6 GHz and 16.2–17.3 GHz, which confirms the 
band structure calculations. 

The measured spectra along the MK direction are shown in Fig. 5(c). Interestingly, the 
Dirac cone appears in this direction. S. Bittner et al. [24] proposed that an effective way to 
examine the Dirac point is to measure the frequency dependence of the transmitted (reflected) 
power. It was also shown that the transmitted power tends linearly to unity in the vicinity of 
the Dirac frequency. The band structure as shown in Fig. 5(d) reveals that partial stopband 
regions exist for 15.41 ~16.04 GHz and above 17.76 GHz, whereas the Dirac cone exists 
between 11.8 and 12.9 GHz. The transmittance of waves near the Dirac point obeys an 
unusual 1/L scaling law, namely, the law of pseudo diffusion [17]. The transmitted photon 
current near the Dirac point is therefore affected by the sample thickness. As a result, the 
transmitted power spectra exhibit a valley at the Dirac frequency, and the depth of the valley 
depends on the number of layers included in the sample. 
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Fig. 5. (a) Transmitted power vs. frequency for the PC along ΓM direction with 6 or 13 layers 
in the propagation direction. (b) The band structure in the ΓM direction. The grey regions 
indicate two partial bandgaps within the effective frequency of the horn antennas. The lower-
left inset shows the transmission direction. (c) Transmitted power vs. frequency for the PC 
along the MK direction with 10 or 20 layers in the propagation direction. The dashed lines 
mark the frequency range of the Dirac cone. (d) The band structure in the MK direction. The 
light grey regions indicate two partial bandgaps within the effective frequency of horn 
antennas. The dark grey region is the frequency range occupied by the Dirac cone. The lower-
left inset shows the transmission direction. 

By changing the size of the central cylinder, a point defect is incorporated into the PC. 
The transmitted power spectra of the PC with a defect rod of 5.9 mm in diameter is shown in 
Fig. 6(a). A comparison of the transmission spectrum shown in Fig. 5(a) without the defect 
with Fig. 6(a) reveals an extra peak in the latter corresponding to a defect mode at a frequency 
of 12.48 GHz. The FDTD simulations shown in Fig. 6(b) also exhibit a distinct peak in both 
the ΓM and MK directions at approximately 12.24 GHz. This is in agreement with the 
experimental measurements. The defect behaves as a resonant cavity; it introduces localized 
defect modes to the PC, so that the otherwise zero density of states at the Dirac point 
increases. A distinct transmission peak therefore occurs at the Dirac frequency due to the 
presence of the defect. The distinct resonant peak does not move when the transmission 
direction changes, which further confirms that this phenomenon is associated with localized 
defect states. This is because since the defect mode is isolated to a single part of the lattice, its 
Fourier representation is not characterized by any particular direction, so the same solution is 
found for all parts of the Brillouin zone. 

An ideal model of the PC cavity extends to infinity in both the x and y dimensions. 
However, for a practical device as in our experiments, the periodic cladding must be 
terminated at some point. It is known that defect edge states appear at the Dirac frequency 
and its vicinity [22,23,25,26] depending on the precise shape of the edges. As such, when the 
localized modes at the Dirac frequency is discussed, we must consider the influence of the 
edges. In our actual system, the zigzag and armchair edges, which are parallel to ΓK and MK 
directions, respectively, are present [25]. In general, only the zigzag edge can support edge 
states. We found that both the edge and cavity states can exist near the Dirac frequency. 
However, just as in the case of a cavity state, the edge state has its own eigenfrequency that is 
usually different from the Dirac frequency. Only by special treatments, e.g., by adjusting the 
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refractive index or radius of the periodic rods, the eigenfrequency of the edge state can be 
made to coincide with the Dirac frequency. In our experiments, five edge states are found at 
11.96, 12.19, 13.26, 14.28, and 14.81 GHz, while the eigenfrequency of the cavity state is 
tuned to the Dirac frequency of 12.24 GHz, so they are discriminable. Furthermore, the 
eigenfrequency of the edge state is fixed once the lattice is complete. It is noteworthy that the 
eigenfrequency of the cavity state depends on the parameters of the defect. The transmission 
peak is found to shift in position as the radius of the defect rod changes. To demonstrate this 
argument, we repeat the measurements for the defect rod of different diameters. The 
transmission peak is measured at 12.54, 12.48, and 12.39 GHz when the diameter of the 
defect rod is set to 5.8, 5.9, and 6.0 mm, respectively. This is convincing evidence that the 
measured peak near the Dirac frequency is associated with the cavity mode, rather than the 
edge modes. 

Fig. 6. (a) Transmitted power vs. frequency for the PC cavity with a defect. Red line: ΓM 
direction with 13 layers in the propagation direction. Blue line: MK direction with 19 layers in 
the transmission direction. The vertical green line marks the location of the resonant peak in 
both the ΓM and MK cases. (b) Numerically calculated (by FDTD) transmissivity of the 
photonic cavity with a defect (Red line: 13 layers on ΓM direction, blue line: 19 layers on MK 
direction). The vertical green line marks the location of the resonant peak in both the ΓM and 
MK cases. 

In our experimental setup, incident waves from the air constitute an external source to the 
PC structure. For this configuration, edge states are hardly excited in the experiment. It is 
well-known that edge states are surface waves. Their dispersion curves lie below the light 
line. These waves are nonradioactive since there is a mismatch between their momentum 
values in air and at the edges. Moreover, the excitation of the edge states requires the use of 
internal sources near the edges [25,26]. In the previous FDTD simulations (Figs. 2 and 3), an 
inspection of the magnetic field profiles revealed that no edge state is excited, even in the 
presence of internal sources. This is because no eigenfrequency of the edge state for this 
experiment coincides with the Dirac frequency. As the eigenfrequency deviates from the 
Dirac frequency, the Q factor of the mode quickly decreases so that all the edge states are 
very lossy in this case. They are so leaky that energy from the internal dipole source cannot 
be accumulated sufficiently fast to form field patterns of the modes. This explains why no 
peaks are found at the eigenfrequencies of the edge states in the transmitted power spectrum 
in Fig. 6. 

The dielectric constant of Al2O3 rod is assumed to have an empirical value of 9.8 in the 
design process, whereas in the actual manufacture and application stage, this value is allowed 
to vary between 9.8 ± 0.7. The tolerance of the Dirac frequency on the errors of the dielectric 
constant of Al2O3 is analyzed. As observed in Fig. 7(a), the ± 0.7 variation in the dielectric 
constant of the sample results in a shift of the frequency of the Dirac point by 5%. Recalling 
that the measured transmission peak shown in Fig. 6(a) occurs at 12.48 GHz, while the FDTD 
simulated transmission peak shown in Fig. 6(b) occurs at 12.24 GHz, a discrepancy of 
approximately 2% still exists. The main cause of this discrepancy may be attributed to the 
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variation in the dielectric constant of the material. The uneven size of the dielectric cylinders 
is also taken into consideration during error analysis. Figure 7(b) shows the folded photonic 
band structure of a 5 × 5 supercell where the diameters of the 25 rods are set to uneven 
random values within 6.85 ± 0.1 mm. The standard photonic band structure of an ideal, 
uniform lattice for d = 7 mm is superimposed to show the original position of the Dirac 
frequency. It can be seen that the Dirac frequency remains almost unchanged as the diameter 
of the 25 rods of the supercell are unevenly varied and randomly varied by ± 0.1 mm near d = 
6.85 mm. The position of the Dirac frequency is not sensitive to the rod size, which implies 
that the relative bias in the rod’s dimensions does not significantly affect the experimental 
results. 

Fig. 7. (a) The partial bandgap edges and the Dirac point vary with the relative permittivity εd. 
Red rectangle lines: first partial gap edges in the ΓM direction as well as the Dirac cone edge. 
Blue diamond lines: second partial gap edges in the ΓM direction. Black circle line: Dirac 
point. (b) Red lines: Folded band structure of a 5 × 5 lattice with uneven rod sizes randomly 
varied between d = 6.85 ± 0.1 mm. Blue lines: The standard photonic band structure of an 
ideal, uniform lattice for rod diameters d = 7 mm. The Dirac points (black dot-dashed line) for 
the two cases almost coincide with each other. 

5. Summary
In summary, we designed a 2D microwave PC with a defect in the center, and calculated the 
localized cavity modes at the Dirac frequency. The transmission spectra of PCs with and 
without defects were measured experimentally. A resonant peak occurs at the Dirac frequency 
only when a defect is introduced. The frequency of the peak does not shift when the incident 
wave changes direction. No edge states are excited in this testing configuration. The 
experiment validated the existence of a Dirac mode, which is a localized cavity mode at the 
Dirac frequency. Although the experiment is performed in the microwave frequency range, it 
is scalable to any other electromagnetic frequency band. In addition, the particular properties 
of the Dirac mode were explained using PWE and FDTD. 
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