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Abstract 

Lipids containing polyunsaturated fatty acids are primary targets of oxidation, which 

produces reactive short-chain aldehydes that can covalently modify proteins, a process 

called lipoxidation. Improved mass spectrometry (MS) methods for the analysis of these 

adducts in complex biological systems are needed. Lysozyme and human serum albumin 

(HSA) were used as model proteins to investigate lipoxidation products formed by two short-

chain aldehydes, acrolein and pentanal, which are unsaturated and saturated aldehydes 

respectively. The adducts formed were stabilized by NaBH4 or NaBH3CN reduction and 

analysed by MS. Analysis of intact modified lysozyme showed a pentanal modification 

resulting from Schiff’s base formation (+70 Da), and up to 8 acrolein adducts, all resulting 

from Michael addition (+58 Da). Analysis of tryptic digests identified specific histidine, 

cysteine and lysine residues modified in both lysozyme and HSA, and determined 

characteristic amino acid-specific fragmentations. Eight different internal fragment ions were 

found that could be used as general diagnostic ions for pentanal- and acrolein-modified 

amino acids. The combined use of intact protein analysis and LC-MS/MS methods provided 

a powerful tool for the identification and localization of aldehyde-protein adduct, and the 

diagnostic ions will facilitate the development of targeted MS methods for analysis of 

adducts in more complex samples. 

 

 

 

  

Keywords 

Acrolein; lipoxidation; pentanal; diagnostic ions; aldehydes; immonium ion 

 

 

 

 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 3 
 

Introduction 

Lipoxidation is the modification of proteins and peptides by reactive lipid oxidation 

products, involving reaction of the nucleophilic side chain of cysteine, histidine, arginine and 

lysine residues with electrophilic sites on the oxidized lipid products [1]. Reactive short-chain 

oxidation products from poly-unsaturated fatty acid (PUFAs) can be divided according to 

their chemical structure and reactivity into alkanals, alkenals and substituted alkenals [2,3]. 

While the alkanal has a saturated carbon chain containing an aldehyde group, alkenals 

additionally contain an α,β double bond on the carbon chain. The substituted alkenals are 

more complex due to the presence of different functional groups, for example hydroxyl or 

carbonyl groups, commonly on C4, which increase the susceptibility to nucleophilic attack 

and makes these aldehydes highly reactive. Typical reactions are formation of a Schiff’s 

base between an amine and carbonyl group, a reversible covalent adduct resulting from the 

loss of a water molecule, or a Michael adduct, resulting from β-addition to an α,β-

unsaturated carbonyl moiety by a nucleophilic amino acid side chain [4]. The chemistry and 

analysis of these protein modifications have been described in more detail in various reviews 

[1,4–7], and there is significant evidence for their occurrence in vivo (reviewed in Domingues 

2013). 

Pentanal and acrolein are two short aldehyde models of alkanals and alkenals 

respectively. Acrolein is the shortest alkenal identified as a lipid oxidation product, and is 

highly reactive [8]. Besides being a product of lipid peroxidation, it can also be formed during 

the combustion of organic matter, for example being present in tobacco smoke [9]. It has 

been linked with inhibition of cell proliferation, enhancement of apoptosis, and disruption of 

gene expression necessary to regulate inflammation and antioxidant defense [8,10]. 

Pentanal is a 5 carbon saturated aldehyde, and while it has not been studied as intensively 

as acrolein, it has been found in increased amounts in the exhaled breath of lung cancer 

patients [11] as well as in urine of patients with prostate cancer where it may help with 

stratification of disease severity [12]. 

Several physiological and pathological events have been linked with lipoxidation, and 

lipoxidation adducts have been found in several inflammatory diseases, including 

atherosclerosis [13] and Alzheimer’s disease [14]. However, the detection and analysis of 

these adducts in biological samples is challenging, especially due to their low abundance 

[1,4]. Several studies were able to identify lipoxidation in biological samples using various 

techniques, including antibodies, chemical probes and mass spectrometry [1,4]. The latter is 

nowadays the technique of choice for the identification of protein-lipid adducts, since it can 

detect the mass shift caused by the adducts, and when used in tandem mode, enables 

localization of the modified amino acid within the protein sequence [15,16].  However, while 

in simple samples this technique can be straightforward, in more complex samples the data 
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output is much greater, potentially generating more false positive identifications, and the 

probability of failing to detect the lower abundance modified peptides in the presence of high 

abundance unmodified ones increases, making the identification of modifications difficult and 

time-consuming. To help overcome this, the information in the fragmentation spectra can be 

used to identify reporter ions, fragment ions characteristic and specific for each modification 

rather than the peptide sequence. These reporter ions can then be used to look specifically 

for the modification in more complex samples, using semi-targeted mass spectrometry 

approaches such as precursor ion scanning (PIS) or neutral loss scanning (NLS), that 

identify peptides which give rise to the diagnostic ions, simplifying the analysis [1,4–7,17,18]. 

Such an approach has shown promise previously for HNE-protein adducts, although mainly 

in simple biological samples [17,18].  

In the study reported here, we used liquid chromatography coupled to tandem mass 

spectrometry to investigate protein modifications caused by acrolein and pentanal. Two 

proteins were used as models for the study of small aldehyde lipoxidation: lysozyme (14,306 

Da), a small hydrolase, rich in lysine and cysteine, and human serum albumin (66,437 Da), 

the most abundant human plasma protein and one which is known to be modified in 

oxidative stress conditions. Non-physiologically high concentrations of aldehydes were used, 

as the aim was to generate abundant adducts in order to localize the amino acids modified 

by these aldehydes, and identify possible reporter ions for these modifications that would 

facilitate targeted identification of these adducts in biological or clinical samples in future 

studies. 

 

Materials and Methods 

Chemicals 

All reagents were purchased from Sigma-Aldrich Chemical Co. (Dorset, UK) unless 

otherwise indicated. All solvents were of LCMS grade and Milli-Q water was used for the 

buffers and reactions. Formic acid and dithiothreitol (DTT) were purchased from Thermo 

Fisher (Runcorn, UK). 

 

Synthesis of aldehyde-protein adducts 

Lysozyme (1 mg/mL) was first reduced with 100 mM DTT. This step was omitted for 

HSA, which was used in its native form (1 mg/mL). Acrolein was added to the protein 

solution at 4, 8 or 14 mM and allowed to react for 2 hours at room temperature. Pentanal 

was added to the protein solution at 16.6 mM and allowed to react for 24h at 37°C. To 

stabilize adducts, 50 mM NaBH4 was added to the reaction and left for 1 hour at room 

temperature, with the exception of the HSA-pentanal reaction, which was instead reduced 

with 50 mM NaBH3CN. For direct infusion mass spectrometry analysis, excess DTT in the 
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reduced lysozyme samples was removed prior to the reaction with the aldehydes using 

Microcon Ultracel YM-10 10,000 MWCO centrifugal concentrators (Millipore, Massachusetts, 

USA) using the manufacturers protocol. 

 

Direct infusion MS analysis of modified lysozyme 

Modified lysozyme samples were dissolved in 50% acetonitrile, 0.5% formic acid in water 

and analysed by direct infusion into a 5600 TripleToF mass spectrometer (Sciex, 

Warrington, UK) using loop injection directly into a 2 µL/min flow rate of the same solvent 

and introduced into the source via either a 20 µm i.d. steel capillary mounted on a standard 

nanospray source with a spray voltage of 2.4 kV, a source temperature of 150°C, 

declustering potential of 100V and a curtain gas setting of 25, or a TurboIon source fitted 

with a 50 µm i.d. emitter with a spray voltage of 5.5 kV, a source temperature of 150°C, 

declustering potential of 100V, nebulizing gas flow of 15 and a curtain gas setting of 25.  

Data was summed for 3-5 minutes and deconvoluted using the Bio Tool Kit plugin and 

PeakView 2.2 software (Sciex, Warrington, UK) with a step size of 0.5 Da at high (30,000) 

resolution and Gaussian smoothed with a 3 point window.  

 

Protein in-gel digestion 

The reaction products from above were separated by 12.5 or 15 % SDS-

polyacrylamide gel electrophoresis followed by staining with Coomassie blue to visualize the 

bands prior to further processing. Bands present in the gel were then excised and tryptic 

digestion was performed according to Verrastro et al., 2016 [19]. The peptide extracts were 

dried for storage, and resuspended in H2O/acetonitrile (98%/2%) with 0.1% formic acid prior 

to MS analysis. 

 

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis 

Peptides were separated and analysed using an Ultimate 3000 system (Thermo 

Scientific, Hemel Hemstead, UK) coupled to a 5600 TripleTOF (ABSciex, Warrington, UK). 

The analysis was performed as previously described by Verrastro et al., 2016 [19]. Briefly, 

the peptide solution was loaded onto a C18 trap column (C18 PepMapTM, 5 µm, 0.5 x 5mm, 

Thermo Scientific, Hemel Hemstead, UK) at 30 µL/min in 2% acetonitrile 0.5% formic acid 

followed by a 4 minute wash, before separation on a nano-HPLC column (C18 PepMapTM, 5 

µm, 0.075 x 150mm, Thermo Scientific, Hemel Hemstead, UK) at 300 nL/min using a 

gradient elution running from 2% to 45% aqueous acetonitrile, 0.1% formic acid over 45 

minutes. Ionization of the peptides was achieved with spray voltage set at 2.4 kV, a source 

temperature of 150°C, declustering potential of 100V, nebulizing gas flow of 15 and a curtain 
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gas setting of 25. Survey scans were collected in positive mode from 350 to 2000 Da using 

high-sensitivity TOF-MS mode. Information-dependent acquisition (IDA) was used to collect 

MS/MS data using the following criteria: the 10 most intense with +2 to +5 charge states and 

a minimum intensity of 200 cps were chosen for analysis, using dynamic exclusion for 12 s 

and standard rolling collision energy settings. 

 

Database Search 

The Mascot® probability based search engine (Matrix Science, London, version 2.4.0) 

was used to interrogate the SwissProt 2017-07 primary database. LC-MS .wiff files of each 

sample were searched for protein identification and oxidative post-translational modifications 

(oxPTMs). For protein identification, variable modifications of methionine oxidation and 

carbamidomethyl cysteine were used. For the analysis of the lipoxidation products, the initial 

searches additionally used a variable modification list including pentanal and reduced 

pentanal at lysine and histidine and reduced and unreduced acrolein adducts at cysteine, 

lysine and histidine for pentanal and acrolein modified samples respectively.  The data was 

then re-searched using the Mascot error tolerant search function. Other parameters for the 

searches were as follows: Enzyme: Trypsin; Peptide tolerance: ±0.6 Da; MS/MS tolerance: 

±0.6 Da; Peptide charge state: +2, +3; Max Missed cleavages: 1; #13C: 0; Quantitation: 

None; Instrument: ESI-QUAD-TOF; Data format: Mascot Generic; Experimental mass 

values: Monoisotopic; Taxonomy: Chordata.  All data identifying modifications were manually 

validated before inclusion. 

 

Results 

Direct infusion mass spectrometry was used to monitor the modification of lysozyme 

by either acrolein or pentanal.  To increase the potential for reaction between the protein and 

the aldehyde, the disulfide bonds on the lysozyme were first reduced with DTT. The effect of 

reduction with DTT is shown in Supplementary Figure 1; a DTT concentration of 200 mM 

was required to reduce the DTT completely. After deconvolution of the charge state 

envelope, the lysozyme was observed at a mass of 14,314 Da when fully-reduced (4 

disulfide bonds reduced, corresponding to a mass increase of 8 Da over the native form at 

14,306 Da). Intermediate DTT treatments resulted in partial reduction of the protein with 

average masses of 14308, 14310 and 14312 Da corresponding to reduction of the 

equivalent of 1, 2 and 3 disulfides respectively. However, as the high DTT concentration 

required to achieve full reduction interfered with the aldehyde treatments, in subsequent 

experiments 100 mM DTT was used, which typically reduced 2-3 disulfide bonds. 

Peaks corresponding to reduced acrolein adducts of intact lysozyme were observed at 
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mass increases of +58 Da, consistent with formation of a Michael adduct (+56 Da) and 

subsequent stabilization by borohydride reduction (+2 Da) (Figure 1). The optimal conditions 

for formation of acrolein-protein adducts were investigated. Reaction with acrolein for longer 

than 2h (data not shown) or increasing the aldehyde concentration above 8 mM resulted in 

more extensive modification but overall lower adduct peak intensities (Figure 1A-D). These 

conditions typically gave rise to a maximum of 6-8 adducts of acrolein linked to lysozyme. 

Based on this protocol, the pentanal-lysozyme reaction was also investigated; however, 

pentanal was much less reactive and only a single adduct was observed even at the highest 

treatment concentration (16.6 mM) and longest incubation time used (24 hr). For the 

reduced pentanal adducts, the observed mass difference was +70 Da, corresponding to a 

reduced Schiff's base on a lysine residue (-H2O + 2H) (Figure 1 E).   

To determine the specific amino acid residues modified, bottom up analysis was 

carried out by tryptic digestion of the modified protein and LC-MS/MS analysis of the 

peptides. Initially MASCOT software [20] was used to identify peptides modified with either 

acrolein or pentanal, and each potential modification was also confirmed by manual analysis 

of the MS/MS spectrum (examples in Supplementary Figure 2). The intensity of the MS/MS 

spectra for pentanal-modified peptides from lysozyme was low, and only two pentanal 

adducts could be identified on Lys13 and Lys116 (all numbering is based on the mature 

protein sequence). The MS/MS spectrum for the peptide with modification on Lys13 is 

shown in Supplementary Figure 2B. This bottom-up approach allowed the identification of 

several peptides from lysozyme modified by acrolein, based on the peptide molecular 

weight, mass/charge ratio and charge of the peptide ion, ion score, and LC retention time.  

The majority of acrolein adducts occurred on cysteine residues, although some lysine 

adducts were also identified (Table 1). One lysozyme peptide was found to contain 3 

acrolein adducts, at Cys76, Cys80 and Lys96. Two diagnostic fragmentation products of 

acrolein-cysteine adducts resulting from internal fragmentation to give an immonium ion 

(breaking of two bonds in the peptide either side of the amino acid residue) were consistently 

observed at m/z 134.06 and 117.04 Da, while acrolein-lysine adducts gave a diagnostic 

fragment at m/z 159.15 Da (Table 1).  

The same approach was applied to determine the sites of aldehyde modification in 

human serum albumin (HSA). Figure 2 shows examples of HSA peptides modified by 

acrolein on Lys137 (A) and pentanal on Lys525 (B), where the peptides could be fully 

sequenced using the b and y fragment ions. In both cases the modified lysine immonium 

ions and other specific internal fragment ions could be detected, and are shown in the 

expanded low mass regions of the spectra. Pentanal-lysine internal fragment ions were 

observed at m/z 199.17, 171.18 and 154.15 Da (Figure 2C). For acrolein modification of 

lysine a diagnostic internal fragment ion was apparent at m/z 142.13 Da (Figure 2D).  These 
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diagnostic ions occurred consistently in all the aldehyde-modified HSA peptides and are 

listed in Table 2. In total, eight different diagnostic fragment ions were identified, three for 

pentanal modification of lysine, and five for the acrolein modifications, specifically two for 

lysine, two for cysteine and one for histidine. The proposed structures of these diagnostic 

ions are shown in Figure 3.  

 

Discussion 

In this focused study, the modification of proteins by two model aldehydes, acrolein 

and pentanal, was evaluated as a model of lipoxidation adducts that may occur in 

inflammatory diseases. The aim was to map the sites of modification using LC-MS/MS and 

identify potential diagnostic for adducts with different amino acid residues. To ensure 

extensive adduct formation and to allow MS characterisation of the adducts formed, high 

concentrations of the aldehydes were used. While these do not correspond to the 

physiological levels of free aldehydes in plasma, it has been suggested previously that local 

levels of aldehydes are higher than plasma levels and in membranes may even reach low 

millimolar levels [21]. Pentanal modifications were identified in 2 lysozyme and 14 HSA 

peptides, all Schiff’s base adducts at lysine residues stabilized by reduction, in agreement 

with the theoretical reactivity of this alkanal, which is limited to Schiff’s base formation with 

amines. Acrolein modifications were found in 5 lysozyme and 11 HSA peptides, and were 

predominantly formed by Michael addition reactions with cysteine, histidine and lysine amino 

acid residues, based on the mass increases of 56 Da or 58 Da for unreduced or reduced 

forms respectively, despite the potential for this α,β-alkenal also to form Schiff’s base 

adducts. Additionally, 3 diagnostic immonium ions for pentanal-lysine adducts and 5 

diagnostic ions for acrolein adducts with cysteine, histidine and lysine were consistently 

observed in the spectra of modified peptides.  

 The bottom-up proteomic approach allowed identification of 8 lysozyme residues 

modified by acrolein: Cys6, Cys30, Cys64, Cys76, Cys80, Lys96, Cys155 and Lys116, which 

fitted well with the observation by intact protein analysis that up to 8 acrolein molecules were 

covalently bound per lysozyme. For HSA, mainly histidine and lysine residues were found to 

be modified: Cys 34, His67, Lys137, His146, Lys262, Lys276, His288, His338, Lys414, 

Lys525 and Lys574. The high number of cysteines modified in lysozyme is likely to result 

from the reduction prior to reaction with the aldehyde increasing the number of free cysteine 

residues, and confirms that the free cysteine residues are highly susceptible to acrolein 

modification. HSA was reacted in its physiologically relevant native state, where only a single 

cysteine (Cys34) is in the free thiol form, and consequently modifications of lysine and 

histidine were more prevalent. The tryptic peptide containing the HSA free cysteine (Cys34) 
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was challenging to detect, as it is a long peptide that gives low ion intensity, but it was 

identified in its carbamidomethylated and Michael adduct-modified form in a number of 

samples.  Some of the peptides identified contained missed cleavages owing to modification 

of lysine residues, which could complicate relative quantification against control samples, but 

all showed the expected diagnostic ions. A number of the lysines and histidines observed to 

be modified were ones that have been reported previously to be susceptible to electrophilic 

attack, and the occurrence of acrolein-protein adducts has previously been reported both in 

vitro and in vivo [22,23], including studies of acrolein modification of albumin [24]. It is also 

worth noting that in a biological sample the product of a fully reduced malondialdehyde 

adduct, which could be formed from either lipoxidation and glucoxidation events, would be 

indistinguishable from the acrolein adduct.  

In contrast, the alkanal pentanal has been much less studied, despite being known as 

a product of lipid peroxidation and detected as a volatile component of breath condensate 

and urine [11,12]. It was interesting that while there was overlap in the lysine residues of 

HSA that were modified by acrolein and pentanal, there were a significant number of 

residues that appeared to be susceptible to formation of pentanal adducts where no acrolein 

adducts were observed (Lys12, Lys73, K162, Lys199, Lys205, Lys212, Lys281, Lys351, 

Lys402, and Lys545).   

A major aim of the study was to identify the diagnostic ions for the aldehyde adducts 

that could subsequently be used in targeted mass spectrometry approaches, such as 

precursor ion scanning or multiple reaction monitoring, or to confirm peptide identifications. 

The lower m/z range of the MS/MS spectra contains signals from immonium and related 

internal fragmentation ions specific to amino acids present in the peptides; these ions are 

potential MS/MS reporter ions for modified amino acid residues. From the MS/MS spectra of 

the modified tryptic peptides, several potential diagnostic ions for the pentanal and acrolein 

modifications were identified (Figure 3). While protein-acrolein adducts have been 

extensively studied previously [25–27], the focus was on the identification of the sites of 

adduction, and it appears that there aren’t any specific studies of reporter ions that could be 

used for these modifications. In contrast, the predominant diagnostic fragment ions detected 

for pentanal-lysine adducts are in agreement with the diagnostic ions reported by Fenaille et 

al. for Nα-acetyl lysine and apomyoglobin adducts with hexanal and pentanal, specifically 

those at m/z 154 and 199 for pentanal [28]. Thus the present study not only confirmed the 

diagnostic ions of pentanal modification of lysine in modified proteins, but also uncovered a 

new, commonly formed diagnostic ion at m/z 171, which will help to increase specificity in 

the detection of this form of lipoxidation.  

 It is also important to consider potential physiological consequences of lipoxidation, 

as serum albumin has many biological functions that could be affected by modification. For 
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example, His67 was readily modified by both pentanal and acrolein, and is one of the 

residues contributing to the zinc binding site on albumin [29] [30], so its modification could 

disrupt zinc binding to and transport by albumin. As decreased binding of zinc can result in 

increased levels of fatty acids in the blood [31], acrolein modification of this site could 

contribute to plasma lipid changes in cardiovascular diseases and diabetes. Several of the 

lysine residues modified by pentanal have also been previously reported to undergo post-

translational modifications and affect drug binding. K199, K205 and K281 are part of the 

albumin IIA subdomain and are near a major drug binding site in HSA, the Sudlow Site I, 

which binds drugs such as warfarin.  K199, K205 and K281 were found to be modified in 

minimally glycated HSA, forming Nε-carboxymethyl-lysine (CML) and this protein was shown 

to have different binding behaviour depending on the glycation levels [32]. It is conceivable 

that pentanal modification of this residue could have similar physiologically relevant effects. 

Nε-carboxymethyl-lysine (CML) and Amadori-modified lysine (AML) formation on K351 and 

K525 have been found in HSA glycated peptides from clinical diabetic plasma, and N(ε)-

(carboxyethyl)lysine (CEL) modification on lysine K525 [33,34]; Korwar et al. approached 

this by constructing a library of fragment ions from modified HSA peptides using SWATH, an 

untargeted MS technique [33].  

While acrolein and pentanal were found to modify many relevant residues, under 

physiological conditions the profile of the modifications could be different, and only the most 

susceptible sites might be significantly modified. The data presented here and previous 

literature suggest that the cysteine residues would be major sites of modification [4,35]. 

Furthermore, the sequence coverage obtained was incomplete and varied depending on the 

treatment (typically 55-85%), and some potential modification sites, such as the N-terminal, 

were not covered; hence no conclusions can be drawn about whether modifications occurred 

at these sites. Nevertheless, these examples show how important this approach is to identify 

the location of protein modifications correctly and understand the relevance to disease. 

 

Conclusion 

In summary, this study has provided new data on the sites of modification in two model 

proteins by the aldehydes pentanal and acrolein, and has identified novel diagnostic 

fragment ions for pentanal adducts of lysine, and acrolein adducts of cysteine, lysine and 

histidine. This shows the power of combined use of direct infusion and LC-MS/MS to identify 

the type, the number and the location of protein adducts. The diagnostic ions can be used in 

targeted mass spectrometry approaches, such as precursor ion scanning or multiple reaction 

monitoring, to identify and quantify aldehyde adducts, and further research is needed to test 

this in complex biological or clinical samples. The MS approaches described here could also 
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be applied to study other types of adducts as biomarkers of lipoxidation in cells and tissues 

under pathophysiological conditions. 
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Figure Legends 

 

Figure 1. Deconvoluted ESI-MS spectra of lysozyme obtained after reaction with acrolein or 

pentanal. (A) DTT-reduced lysozyme untreated with aldehyde showing partial reduction of 

disulphide bonds (2-3 disulphides reduced). (B) Treatment with 4 mM acrolein for 2 h 

showing the formation of several acrolein Michael adducts, each adding +58 Da. (C) 

Treatment with 8 mM acrolein for 2 h. (D) Treatment with 14 mM acrolein for 2 h. (E) 

Treatment of partially-reduced lysozyme (1-2 disulfides reduced) with 16.6 mM pentanal for 

24 h showing formation of a single adduct at +70 Da. Note that the x-axis scale has been 

expanded in this spectrum.  

 

Figure 2. MS/MS spectra of different human serum albumin tryptic peptides (KYLYEIAR and 

KQTALVELVK) modified on a lysine residue by pentanal (A) and acrolein (B). The y and b 

ions indicated by the arrows confirm the peptide sequence and the modification on the lysine 

residue. Additionally, the ions at m/z 154.15, m/z 171.18 and 199.17, diagnostic of pentanal-

modified lysine (C) and the ion at m/z 142.13, diagnostic of acrolein-modified lysine (D) are 

highlighted.  

 

Figure 3. Proposed structures of the diagnostic ions found for the reduced pentanal 

modifications on lysine residues (1-3) and for the reduced acrolein modifications on lysine 

(4,5), cysteine (6,7) and histidine residues (8). 
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Table 1. Modifications of lysozyme by reactive aldehydes 

Lysozyme modified peptide sequence  

(a 
b) 

Theoretical 

mass of 

modified 

peptide 

Observed 

mass of 

modified 

peptide 

m/z 

(charge 

state) 

Ion 

score 

Rt 

(min) 

Diagnostic 

Ions c 

Pentanal       

C
6
ELAAAMK

+70
R

14
 1118.59 1118.62 373.9 (3+) 41 30.95 - 

C
115

K
+70

GTDVQAWIR
125

 
1402.74 1402.79 368.6 (4+) 37 36.36 - 

Acrolein       

C
6

+56
ELAAAMK

13
 891.07 891.42 446.5 (2+)  18 36.19 - 

C
6

+58
ELAAAMK

13
 893.12 893.44 447.5 (2+) 79 27.57 6,7 

G
22

YSLGNWVC
+58

AAK
33

 1325.16 1325.64  663.6 (2+) 80 38.35 - 

W
62

WC
+58

NDGR
68

 993.06 993.41 497.5 (2+) 35 32.31 6 

N
74

LC
+56

NIPCSALLSSDITASVNCAK
96

 2506.26 2506.19 836.4 (3+) 77 42.39 - 

N
74

LC
+58

NIPCSALLSSDITASVNCAK
96

 2508.31 2508.20 837.1 (3+) 50 43.84 6,7 

N
74

LCNIPC
+58

SALLSSDITASVNCAK
96

+58
 2509.33 2509.22 837.4 (3+) 92 44.29 6 

N
74

LC
+58

NIPC
+58

SALLSSDITASVNCAK
96

+58
 2510.33 2510.24 838.1 (3+) 60 44.84 6 

C
115

+58
KGTDVQAWIR

125
 1333.21 1333.68 445.4 (3+) 17 31.19 - 

C
115

+56
K

+58
GTDVQAWIR

125
 1389.19 1389.71 464.1 (3+) 28 30.24 5 

C
115

K
+58

GTDVQAWIR
125

 1390.21 1390.70 464.4 (3+) 30 31.08 5 

a (subscript) – amino acid position in the mature protein for the start and end residues 

b (superscript) -  mass difference corresponding to the modification on the affected residue (shown in bold red) 

c (superscript) – numbers refer to the structures shown in Figure 3. 
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Table 2. Modifications of human serum albumin (HSA) by reactive aldehydes 

HSA modified peptide sequence (a 
b) 

Theoretical 

mass of 

modified 

peptide 

Observed 

mass of 

modified 

peptide 

m/z 

(charge) 

Ion 

score 

Rt 

(min) 

Diagnostic 

Ions c 

Pentanal       

F11K
+70DLGEENFK20 1295.69 1295.68 648.9 (2+) 58 35.30 1, 3 

S65LHTLFGDK+70LC*TVATLR81 2001.11 2001.12 668.1 (3+) 76 47.16 1, 3 

K137
+70YLYEIAR144 1124.66 1124.69 563.3 (2+) 39 37.19 1, 2, 3 

Y161K
+70AAFTEC*C*QAADK174 1731.79 1731.81 578.3 (3+) 58 28.88 1, 3 

L198K
+70C*ASLQK205 1016.61 1016.62 509.3 (2+) 37 25.15 1, 3 

C200*ASLQK+70FGER209 1264.66 1264.68 633.3 (2+) 42 30.91 1, 2, 3 

A210FK+70AWAVAR218 1088.65 1088.68 363.9 (3+) 51 37.12 1, 2, 3 

Y263ICENQDSISSK+70LK276 1753.89 1753.91 585.6 (3+) 78 34.16 1, 3 

L275KEC*C*EK+70PLLEK286 1615.87 1615.88 539.6 (3+) 34 28.84 1, 3 

L349AK+70TYETTLEK359 1365.77 1365.78 456.3 (3+) 35 30.00 1, 3 

Q390NC*ELFEQLGEYK+70FQNALLVR410 2668.37 2668.43 890.5 (3+) 130 49.68 1, 2, 3 

K414
+70VPQVSTPTLVEVSR428 1709.01 1709.03 855.5 (2+) 77 36.55 1, 2, 3 

K525
+70QTALVELVK534 1197.76 1197.77 599.9 (2+) 55 37.32 1, 2, 3 

E542QLK+70AVMDDFAAFVEK557 1909.99 1910.01 637.7 (3+) 65 37.48 1, 3 

Acrolein       

S65LH+58TLFGDK73 1074.59 1074.57 359.2 (3+) 43 28.51 8 

K137
+58YLYEIAR144 1112.63 1112.62 557.3 (2+) 16 27.69 4,5 

R145H
+58PYFYAPELLFFAK159 1956.03 1956.03 653.0 (3+) 66 41.35 8 

A258DLAK+58YICENQDSISSK274 1998.95 1998.96 667.3 (3+) 73 31.29 5 

Y263ICENQDSISSKLK276
+58 1741.86 1741.86 581.6 (3+) 109 26.71 4 

S287H
+58CIAEVENDEMPADLPSLAADFVESK313 3031.34 3031.38 

1011.5 

(3+) 
61 42.41 8 

R337H
+58PDYSVVLLLR348 1524.89 1524.88 509.3 (3+) 83 34.59 8 

Q390NC+56ELFEQLGEYK402 1655.72 1655.75 829.4 (2+) 42 41.14 6 

K414
+58VPQVSTPTLVEVSR428 1696.97 1696.97 566.3 (3+) 59 30.89 4 

K525
+58QTALVELVK534 1185.76 1185.73 396.3 (3+) 52 28.84 4 

K574
+58LVAASQAALG584 1198.73 1198.73 600.4 (2+) 62 33.67 4 

a (subscript) – amino acid position in the mature protein for the start and end residues 

b (superscript) -  mass difference corresponding to the modification on the affected residue (shown in bold red) 

c (superscript) – numbers refer to the structures shown in Figure 3. 
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Figure 1. Deconvoluted ESI-MS spectra
of lysozyme obtained after reaction with
acrolein or pentanal. (A) DTT-reduced
lysozyme untreated with aldehyde
showing partial reduction of disulphide
bonds (2-3 disulphides cleaved). (B)
Treatment with 4 mM acrolein for 2 h
showing the formation of several
acrolein Michael adducts, each adding
+58 Da. (C) Treatment with 8 mM
acrolein for 2 h. (D) Treatment with 14
mM acrolein for 2 h. (E) Treatment of
partially-reduced lysozyme (1-2
disulfides cleaved) with 16.6 mM
pentanal for 24 h showing formation of a
single adduct at +70 Da. Note that the x-
axis scale has been expanded in this
spectrum.

B
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Figure 2. MS/MS spectra of different human serum albumin tryptic peptides (KYLYEIAR
and KQTALVELVK) modified on a lysine residue by pentanal (A) and acrolein (B). The y
and b ions indicated by the arrows confirm the peptide sequence and the modification on
the lysine residue. Additionally, the ions at m/z 154.15, m/z 171.18 and 199.17, diagnostic
of pentanal-modified lysine (C) and the ion at m/z 142.13, diagnostic of acrolein-modified
lysine (D) are highlighted.
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Figure 3. Proposed structures of the diagnostic ions found for the
reduced pentanal modifications on the lysine residues (1-3) and for the
reduced acrolein modifications on the lysine (4,5), cysteine (6,7) and
histidine residues (8).
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A mass spectrometry approach for the identification and localization of small 

aldehyde modifications of proteins. 

 

Afonso et al.  

 

Highlights 

• 5 lysozyme and 11 HSA peptides were modified with acrolein 

• 2 lysozyme and 14 HSA peptides modified with pentanal were identified 

• 8 diagnostic ions for pentanal and acrolein modifications were identified 

• Acrolein and pentanal modifications could have physiological effects 

• MS is a valuable technique for identifying protein modifications 

 


