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SUMMARY 

At present, a wealth of interest surrounds the epidemiology of ametropia and ocular 
structural and functional correlates across the spectrum of refractive error. Myopia is the 
most common ocular condition globally, and its prevalence is continuing to increase. 
Myopia is not a purely refractive condition, being a major cause of visual impairment and 
blindness worldwide. Consequently, numerous studies have investigated various optical 
and non-optical interventions to limit its progression in childhood. This thesis describes 
the correlates of structural and functional parameters on the development of myopia in 
children. The investigation of these differences is expected to aid a deeper 
understanding of the aetiology of ametropia and subsequently assist with myopia 
amelioration. 

The data presented within form a collection of cross-sectional cohort studies, 
investigating ocular parameters of children and young adults with normally developing 
eyes and children with peripheral retinal anomalies. Measures of central and peripheral 
refractive error, visual fields, fundus imaging and ocular biometry are analysed and 
discussed.  

This thesis demonstrates that gender and ethnicity do not appear to have a significant 
influence on refractive error: axial length ratio. Furthermore, the distribution and degree 
of corneal or refractive astigmatism in children appears linked to increasing spherical 
hypermetropia and is not influenced by ethnicity, gender or axial length.  Pilot work also 
suggests that Retinitis Pigmentosa and Congenital Stationary Night Blindness are 
appropriate models for the investigation of the retinal periphery’s role in myopia 
development. The final study contained within found a reduction in foveal light sensitivity 
correlated with increasing myopia, perhaps suggestive of an increase in photoreceptor 
spacing. 

It is, therefore, recommended that normative refractive, astigmatism and axial length 
data should be tailored to individual characteristics. Future large-scale longitudinal 
studies should be designed to develop growth curves for axial length and refractive error 
such as those available for anthropometric characteristics. 
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1. LITERATURE REVIEW 

1.1 Myopia background 

1.1.1 Definition of myopia 

Refractive errors occur as a result of the inaccurate focusing of light rays, induced by a 

structural anomaly of the eye’s optical system. Myopia refers to the portion of the 

refractive error spectrum in which parallel light entering the eye is brought to a focus 

before reaching the retinal plane, resulting in the perception of a blurred visual image 

(Atchison and Smith, 2000; Rabbetts, 2007).  

Figure 1.1 Schematic drawing of the focal points of the a) emmetropic, b) myopic and c) 

hyperopic eye. 

 The degree of myopia is determined by the distance by which the focal point is removed 

anteriorly from the retina. Visual acuity in myopia can be restored with the use of 
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corrective lenses, by compensating for the focusing error via the introduction of a 

divergent element into the optical system.  

There is a broad range of ocular anomalies that can precipitate myopia including the 

corneal and crystalline lens surface curvature, refractive index gradient of the crystalline 

lens, and anterior and posterior chamber depth. Of these, increased posterior chamber 

depth (termed axial myopia) is the sole causative factor in the majority of cases (Tian et 

al., 2011), as myopic eyes are generally larger and longer than emmetropic eyes 

(Atchison et al., 2004; Logan et al., 2004b). Axial myopia occurs owing to a discrepancy 

between the length of the eye and its dioptric focusing ability. 

Along with axial myopia, other subdivisions by myopia aetiology are index and refractive 

myopia, each having a different underlying mechanism by which myopic blur is created. 

Refractive myopia is classified as myopia that is propagated by alterations in the 

refractive power of one or several of the refractive elements of the eye. Index myopia is 

a result of variations in the refractive index of the ocular media.  

1.1.2  Prevalence of myopia 

The prevalence of myopia has increased in recent decades worldwide (Bar Danyan et 

al., 2005; Durkin et al., 2007; Holden et al., 2016; Morgan and Rose, 2005; Vitale et al., 

2009) reaching epidemic levels in some countries. Myopia now represents the most 

common ocular condition (Whatham et al., 2009) and high myopia the leading cause of 

vision loss globally (Saw, 2006). In 2008 it was estimated by the WHO that 153 million 

people over five years were visually impaired due to uncorrected myopia and other 

refractive errors, and out of these, eight million people were blind (Resnikoff et al., 2008). 

A more recent paper published by the NICER study group estimated that myopia 

prevalence in UK children aged ten to 16 years has more than doubled over the past 50 
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years (McCullough et al., 2016). It is estimated that by the year 2050, world myopia 

prevalence will have increased from two billion in 2010 to five billion (half of the world 

population) (Holden et al., 2015). Of these five billion people, almost one billion will be 

highly myopic, with a refraction of more than - 5.00 D (Holden et al., 2015).  

The population prevalence of myopia is not uniform across nations. Until recently, 

myopia was only deemed to be epidemic in parts of Asia (Lam et al., 2004; Lin et al., 

2004; Saw, 2006). In urbanised areas of Japan, the prevalence of myopia has been 

reported as high as 40% (Sawada et al., 2008), in Taiwan 50% (Lin et al., 2004) and 

70% in Singapore (Wu et al., 2001). Differences in prevalence are also found within 

countries, with urban areas being more affected than rural communities (Flitcroft, 2014; 

Pan et al., 2013; Park and Congdon, 2004; Thorn et al., 2005a). In Asia, the prevalence 

commonly reaches over 80% in industrial centres (Pan et al., 2012) and highly educated 

groups (Lin et al., 2004; Woo et al., 2004; Wu et al., 1999). 

However, mounting evidence exists to suggest that Western and Northern Europe 

(Parsinen et al., 2012; Williams et al., 2015) as well as other non - Asian countries 

including but not exclusive to the USA (Lee et al., 2002; Vitale et al., 2008; Wang et al., 

1994), Australia (Rose et al., 2001) and Israel (Bar Danyan et al., 2005) are now 

experiencing a rapid rise in the prevalence of both high myopia and myopia in general. 

In 2007, it was estimated that over a third of the UK adult population were myopic 

(Simpson et al., 2007). Further evidence for an increase in myopia prevalence in Europe 

comes from the work of the E3 Consortium where refractive data for 61,946 adult 

participants (age range 44 to 78 years) was compiled from 15 population-based studies 

performed between 1990 and 2013 (Williams et al., 2015). The study found a significant 

cohort effect for increasing myopia prevalence across more recent birth decades. Age 

standardised myopia prevalence was found to increase from 17.8% in those born 
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between 1910 and 1939, to 23.5% in those born between 1940 and 1979 (Williams et 

al., 2015). 

Studies of refractive error in childhood have found that myopia is an increasingly 

common finding throughout the school years into early adulthood (Goh et al., 1994; 

Goldschmidt et al., 2003; Jorge et al., 2007; Kinge et al., 1999; Tan et al., 2000; Saw et 

al., 2002). Though myopia in the early years of life is rare, there has been an increase in 

the number of children who have early / juvenile onset myopia (Morgan and Rose, 2005), 

that is, myopia which occurs and progresses between the age of six and the teenage 

years (Grosvenor, 1987a). 

Autorefraction data from the USA National Health and Nutrition Examination Survey 

(NHANES), showed a higher prevalence of myopia in women (53.9%) than men (46.6%) 

aged 20 - 39 years, but no significant difference was found for any other age group (Vitale 

et al., 2008). 

1.1.3 Classification of myopia 

1.1.3.1 Classification by degree of myopia 

There is debate over the minimum level of refractive error that constitutes myopia, though 

this is generally for academic and research purposes. The classification of myopia by 

the degree of manifest refractive error is possibly the most clinically relevant way, as a 

structural measurement is not always available, and a detailed refractive history is not 

always obtainable. It is important to note that there is a risk of overestimating low levels 

of myopia due to a lack of cycloplegia, for example, instrument myopia. 

Although the exact grading boundaries vary from practitioner to practitioner, myopia is 

often defined as a refractive error of - 0.50 D or more. Up to - 3.00 D is considered low 
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myopia, - 3.00 D to - 6.00 D is moderate and greater than 6.00 D and 10.00 D are high 

and very high myopia respectively (Baird, 2010). It is important to appreciate that 

discrepancy may occur here depending on which meridian is used to determine which 

grouping is appropriate. For research purposes, it is most common for the mean 

spherical error to be used for classification or the most myopic meridian.  

1.1.3.2 Classification by age of onset 

It is a long-standing clinical observation that in the majority of cases, the earlier the 

manifestation of myopia the greater the progression and the higher the degree 

of eventual refractive error one will exhibit in adulthood (Blegvad, 1927, Mäntyjärvi, 

1985). Grosvenor (1987a) was the first to advocate this as a method of classification 

where he categorised myopia onset into four groups; congenital, early/juvenile onset, 

early - adult onset and late - adult onset. 

Congenital myopia describes myopia that is present in infancy and is maintained into 

school age. Juvenile onset myopia encompasses individuals who present with myopia 

between age six and their teenage years. Early adult onset is myopia that presents 

between 20 to 40 years and onset after the age of 40 is classified as late adult onset 

(Grosvenor, 1987a).  

1.1.3.3 Classification by associated pathology 

An important distinction to make is whether a person’s myopia is a result of normal 

physiological variation or whether there is an association with disease processes – the 

latter termed pathological myopia (Verkicharla et al., 2015). Physiological myopia refers 

to that which occurs as a normal variant of the ocular development process, where there 

is an anomaly in the coordination of the ocular refractive structures, yet the individual 

elements are inherently normal. Pathological myopia in comparison is a continuation of 
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physiological myopia that fails to halt when normal ocular growth would, and is the most 

severe form of myopia (Wong et al., 2014). It is important to note a further classification 

here – acquired myopia, where the refractive error is a result of pathology not associated 

with ocular development – such as cataracts and diabetes mellitus. 

General population studies in Chinese cohorts have found a prevalence of myopic 

retinopathy of 3.1% (Liu et al., 2010) and 0.9% (Gao et al., 2011). A study of a Japanese 

cohort found a prevalence of 1.7% (Asakuma et al., 2012), a Taiwanese cohort 1.7% 

(Chen et al., 2012) and an Australian cohort 1.2% (Vongphanit et al., 2002). These 

studies are described in more detail in Table 1.1. 

Table 1.1 Prevalence of pathological myopia. Reproduced with permission (Verkicharla 
et al., 2015) [Current and predicted demographics of high myopia and an update of its 
associated pathological changes, Verkicharla, P. K., Ohno-Matsui, K. and Saw, S. M. 
Ophthalmic and Physiological Optics Vol. 35, Copyright © 2015 The College of 
Optometrists]. 
 

Also of concern are the potential degenerative consequences of myopia. An association 

has been found between myopia and degenerative changes including retinal 

detachment, glaucoma, myopic maculopathy and chorioretinal changes (Flitcroft, 2012; 

Saw et al., 2005). Although any level of myopia can potentially precipitate degenerative 

change, eyes with myopic refractive errors over 6.00 D are the most susceptible (Saw, 

2006). The Australian Blue Mountains Eye Study (Vongphanit et al., 2002) found that 

population prevalence of pathological myopia increased from approximately 1% in low 
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myopes (≤ - 3.00 D) to over 50% in high myopes (≤ - 9.00 D). An even greater disparity 

has been found in Chinese populations, with the Beijing (Liu et al., 2010) and Handan 

(Gao et al., 2011) Eye Studies both finding a prevalence in low myopes of 1 - 19% rising 

to 70% in high myopes.  

The latest definition for the diagnosis and classification of pathological myopia is 

provided by the METAanalysis for Pathologic Myopia study (Ohno-Matsui et al., 2015), 

which has five distinct categories based on signs of myopic maculopathy. These stages 

are described in Table 1.2. According to this classification system, pathological myopia 

is only present when signs are of grade two and above. 

Table 1.2 Grading of pathological myopia according to the ‘METAanalysis for Pathologic 
Myopia Study’ Redrawn from (Ohno-Matsui et al., 2015). [International photographic 
classification and grading system for myopic maculopathy, Ohno-Matsui, K., Kawasaki, 
R., Jonas, J. B.,Cheung, C. M., Saw, S. M., Verhoeven, V. J., Klaver, C. C., Moriyama, 
M., Shinohara, K., Kawasaki, Y., Yamazaki, M., Meuer, S., Ishibashi, T., Yasuda, M., 
Yamashita, H., Sugano, A., Wang, J. J., Mitchell, P., Wong, T. Y. and META-analysis for 
Pathologic Myopia (META-PM) Study Group. Am J Ophthalmol. Am J Ophthalmol. Am J 
Ophthalmol. Vol. 159, Copyright © 2015 Elsevier Inc.]. 

 
Pathological myopia demonstrates a distinctly more unstable progression than 

physiological cases and is one of the most frequent causes of secondary blindness in 

the world (Takahashi et al., 2012). Flitcroft (2012), suggested that there is, in fact, no 

safe level of myopia, with the risk of developing ocular pathologies at low levels of myopia 

being found to be comparable to systemic disorders. Myopias between - 1.00 D and           
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- 3.00 D hold an increased risk of cataract and glaucoma. The risks of developing 

cataract or glaucoma associated with myopia were found to be similar to the risk of stroke 

in individuals who smoke over 20 cigarettes daily. It was also found that myopia carries 

a far greater risk for myopic maculopathy and retinal detachment than any known 

population risk factor for cardiovascular disease (Flitcroft, 2012).  

1.2  Human emmetropisation 

1.2.1 Background 

Emmetropia is a rare finding in the neonate (Cook and Glasscock, 1951), with most 

demonstrating significant refractive errors, notably hyperopia, which is considered to be 

normal rather than being an exception during early development (Wildsoet, 1997). 

However, these ametropias generally disappear throughout childhood as a consequence 

of ocular development and growth (Mutti et al., 2005). The mechanism by which there is 

structural compensation of ocular components eventuating in an emmetropic refractive 

error despite axial elongation is termed emmetropisation (McBrien and Barnes, 1984).  

Emmetropisation can be considered as a departure from a Gaussian (normal) distribution 

of refractive error at birth (McBrien and Barnes, 1984; Robinson, 1999), to a leptokurtic 

distribution that has a significant skew towards emmetropia (Sorsby et al., 1957; Sorsby 

et al., 1961; Trolio, 1992) (see Figure 1.2). The pattern of refractive error distribution in 

adults whereby there is a greater than expected frequency of emmetropia strongly 

suggests the existence of a mechanism that governs ocular and refractive state 

development (Flitcroft, 2014).  
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Figure 1.2 Refractive error frequency distributions. Data for newborns (Cook and 
Glasscock, 1951) and children between six and eight years are plotted (Kempf et al. 
1928). Reproduced with permission (Smith, 1998) [Spectacle lenses and 
emmetropization: the role of optical defocus in regular ocular development, Smith, E. L. 
3rd. Optometry and Vision Science Vol. 75, Copyright © 1998 American Academy of 
Optometry]. 
 

Though emmetropisation is considered to be a generally successful process (Sorsby and 

Leary, 1970), in some cases there can be a derailment of emmetropisation, or a failure 

to maintain emmetropia once achieved, resulting in significant myopic refractive errors 

into adulthood. Refractive variations can be partially attributed to genetics and 

physiological discrepancies in the coordination amongst normally distributed ocular 

structures, as a consequence of globe enlargement. However, animal studies have 

provided convincing evidence that eye growth is not an entirely passive process, and 

indicate the existence of an actively regulated vision dependent mechanism (Norton, 

1999; Smith et al., 1998; Wallman and Winawer, 2004; Wildsoet, 1997), which exerts 

feedback control to regulate the growth of one or more of the ocular parameters. 

1.2.2 Phases of emmetropisation 

Sorsby and Leary (1970) identified that the pace of eye growth was irregular over the 

period leading to ocular maturity and divided emmetropisation into two discrete phases: 

the rapid infantile and the slow juvenile phase.  
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1.2.2.1 Rapid infantile phase 

The rapid infantile phase is the description made by Sorsby and Leary (1970) to describe 

the period between birth and three years where the structures of the eye must 

compensate to reduce ocular refracting power by approximately 20 dioptres to account 

for an axial length (AXL) increase of 5 mm. Both cross-sectional and longitudinal studies 

have suggested that the majority of emmetropisation occurs between the first three and 

nine months of life (Mayer et al., 2001; Mutti et al., 2005; Pennie et al., 2001). The 

reduction in ametropia appears to occur very rapidly over this period and is concomitant 

with a reduction in population variance (Mutti et al., 2005). A transformation from a 

Gaussian distribution at three months to a leptokurtic distribution at nine months is clearly 

observable in Mutti et al.’s (2005) study. Figure 1.3 shows the distribution of refraction in 

studies by Mutti et al., 2005, and Ingram and Barr, 1979, for age groups between three 

months and three and a half years.  

 

 



 

29 

 

 
Figure 1.3 Four distributions of refraction from two different studies (a) Mutti et al., 2005 
and (b) Ingram and Barr (1979) from 3 months of age to 3.5 years (a) 3 - 9 months. (b) 
1 - 3 years. Reproduced with permission (Flitcroft, 2014) [Emmetropisation and the 
aetiology of refractive errors, Flitcroft, D. I. Eye Vol. 28, Copyright © 2014 Macmillan 
Publishers Limited]. 
 



 

30 

 

From these graphs, it is again clear that there is a progressive myopic shift in refraction 

and a significant reduction in the variability of refraction in this period. It is also clear that 

although the population as a whole is generally falling within a Gaussian distribution, the 

children who fall outside of this distribution are predominantly hyperopic (see Figure 1.3, 

these bars are shaded in dark grey). These subjects with higher levels of hyperopia are 

either emmetropising at a significantly slower rate or have failed to emmetropise 

altogether, and have been effectively ‘left behind’ as the rest of the subject’s refractions 

are moving towards emmetropia (Flitcroft, 2014). 

Saunders et al. (1995) performed modified Mohindra retinoscopy on 22 subjects in the 

first six months of life and again between 12 and 17 months of age. Subjects at baseline 

were selected according to the level of refractive error to be representative of the range 

of initial spherical ametropias between + 1.25 D and + 4.25 D. No child was observed to 

be myopic at baseline. The findings are depicted in Figure 1.4. 

These results are unambiguous in showing that it is normal for infants with normal visual 

development to initially exhibit high levels of hyperopia that then decrease steeply over 

the first year of life. This work makes it clear that emmetropisation is a process capable 

of achieving a significant reduction in the spread of ametropia between birth and 17 

months. 
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Figure 1.4 Individual data illustrating the change in ametropia between an initial 
refraction at zero to five months of age and a subsequent refraction during 12 - 17 months 
of age. Solid lines join data from the same subject. Reproduced with permission 
(Saunders et al., 1995) [Early refractive development in humans, Saunders, K. J., Survey 
of Ophthalmology, Vol. 40, Copyright © 1995 Survey of Ophthalmology]. 
 

The studies of both Saunders et al. (1995) and Mutti et al. (2005) indicate that higher 

initial degrees of hyperopia are associated with faster rates of refractive recovery. 

Though the work of Saunders et al. (1995) included no biometric data, AXL has been 

shown to change during the rapid infantile phase (Fledelius and Christensen, 1996) and 

the reduction in ametropia detailed in Mutti et al.’s 2005 paper was coincident with an 

increased rate of axial elongation. 

Biometric data have shown that corneal (Inagaki, 1986; Mutti et al., 2005) and lenticular 

power (Gordon and Donzis, 1985; Mutti et al., 2005) reduce in the rapid infantile phase, 

however, there is still a reduction in net hyperopia. This is indicative of a relationship 

whereby corneal and lenticular modulation is dependent on axial elongation, and that 

axial growth is the leading force and the pivotal structure implicated in the decrease in 

ametropia in this early period (Mutti et al., 2005). 
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Alongside the reduction in spherical refractive error in the first few years of life, there is 

also a significant reduction in astigmatism (Abrahammsson et al., 1988; Gwiazda et al., 

1984; Gwiazda et al., 2000, Hirsch et al., 1963) which appears to be uncorrelated to the 

change in spherical ametropia (Ehrlich et al., 1997).  

Emmetropisation begins to slow after the first three years of life, but by six years, most 

populations have achieved a clear leptokurtic distribution (French et al., 2012; Ojaimi et 

al., 2005; Watanabe et al., 1999). However, the distribution is positively skewed due to 

a higher proportion of hyperopes compared to the negative skew seen in adult 

populations (Flitcroft, 2014). Flitcroft (2014) stated that ‘if emmetropisation is considered 

to be the process whereby human refractive errors are minimised, then this process 

would appear to be largely complete by this age in terms of spherical refractive error, 

astigmatism and anisometropia’ (Gwiazda et al., 2000; Deng and Gwiazda, 2012). 

1.2.2.2 Slow juvenile phase 

The slow juvenile phase represents the period between approximately three and 13 

years of age where corneal and lens compensation continues. However, this is at a much 

slower rate as there is only a 1 mm increase in AXL (Sorsby and Leary 1970). In most 

populations that have been studied, there is a change from the positively skewed 

leptokurtic distribution present at the end of the rapid infantile phase, with an increase in 

myopia leading to a negative skew, a reduction in leptokurtosis and an increase in 

variance (Flitcroft, 2014). However, a continuation of emmetropisation has been found 

in studies of populations in Australia (French et al., 2012) and Vanuatu (Garner et al., 

1988), leading to a low incidence of myopia and hyperopia (Flitcroft, 2014).  

The increase in variance, reduction in leptokursis and negative skew is most pronounced 

in Eastern populations where there is a high prevalence of myopia and the fastest rise 
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in prevalence (Flitcroft, 2014). There is evidence that in these populations, the shift 

towards myopia appears as early as six years old (Lin et al., 2004; Matsumura and Hirai, 

1999). However, a longitudinal study conducted in Japan over 13 years showed that an 

increase in myopia prevalence from 49.3% to 65.6% was not reflected by any disruption 

of early emmetropisation, with the change in distribution only becoming apparent after 

five years (Matsumura and Hirai, 1999).  

The majority of physiological myopia results from a derailment of the emmetropisation 

process during the slow juvenile phase (Grosvenor, 1987b) with myopic errors becoming 

especially evident at the pivotal age of around nine years. Myopia which onsets after the 

age of six years has been found to occur as a rapid spurt of myopic shift following several 

years of relative stability in refraction or a slow decline in refractive error (Flitcroft, 2014; 

Mantyjarvi, 1985; Thorn et al., 2005b). The progression phase is initially linear (Goss and 

Winkler, 1983), but decelerates to a relatively steady myopia progression and usually 

levels out towards a relatively stable refraction into adulthood (Flitcroft, 2014; Goss et 

al., 1990; Goss and Winkler, 1983; Thorn et al., 2005b). What triggers the sudden 

acceleration of myopia and what process initiates the cessation of progression is 

currently unknown (Flitcroft, 2014). 

1.2.2.3 Age of cessation of myopia progression  

Various cross-sectional studies of myopia as a function of age have shown that generally 

at the age of 15 to 16 years, the rate of progression of childhood-onset myopia generally 

shows a significant reduction or plateaus (Bucklers, 1953; Goldschmidt, 1968; Goss and 

Cox, 1985; Goss et al., 1990; Goss et al., 1985; Goss and Winkler, 1983; Rosenberg 

and Goldschmidt, 1981). The recent advancement in ocular biometric instrumentation 

has enabled more accurate data to be collected which suggest that eye growth may 

persist into the early 20s and possibly even in late adulthood (Dirani et al., 2008). 
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A difference has been found in the age of cessation of myopia progression between 

males and females, with one study finding myopia to cease progressing one and a 

quarter years before it does so in males (15.25 years females, vs. 16.50 years males) 

(Goss and Winkler, 1983). 

1.3 Ocular structural components of change during emmetropisation 

1.3.1 Background 

The structures of the eye grow throughout the period between birth and early adulthood. 

For emmetropia to be achieved and maintained despite the axial elongation of the eye, 

compensatory adjustments must be coordinated in other ocular structures. It is evident 

that coordinated growth is vital to achieving the leptokurtic distribution of adult refractive 

errors in which emmetropia predominates. 

The manifest refractive error is the difference between the reciprocals of the focal lengths 

of the individual refractors of the eye, so it follows that in theory if the ocular structures 

grow exactly proportionally the ametropia will diminish. This is because as the AXL 

increases, so does the focal length of the eye, so a mismatch between the two means 

that refractive error becomes proportionally smaller as globe size increases. Although it 

is clear that proportional eye growth and scaling effects are insufficient to explain 

emmetropisation completely (Hoffstetter, 1969), once emmetropia is reached, 

proportional eye growth is likely to be instrumental in maintaining emmetropia (Mutti et 

al., 2005). 

It is thought that corneal power reduces while the crystalline lens thins and flattens during 

childhood, and it has been suggested that vitreous elongation is the driving force 

responsible for myopic shifts in refraction rather than lenticular changes (Mutti et al., 
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2005). Though the AXL and refractive state show a leptokurtic distribution in the adult 

population, all other refractive components are normally distributed (Mutti et al., 2005).  

The cornea represents the anterior ocular refracting surface and is responsible for two-

thirds of the eyes dioptric power (Gipson, 2007), with the other major refractor being the 

crystalline lens. The nature of the structural compensations made by both of these 

structures is therefore of great interest when investigating potential aetiologies of myopia. 

1.3.2 Axial length 

 A consistent pattern in AXL change with age has not been found (Atchison et al., 2008; 

Grosvenor, 1987b; Koretz et al. 1989; Leighton and Tomlinson, 1972; Ooi and 

Grosvenor, 1995). An increase in vitreous chamber depth is the primary correlate 

responsible for axial elongation in both normal emmetropisation and myopia 

development (McBrien and Millodot, 1987; Mutti et al., 2005; Garner et al., 2006, Goss 

et al., 1997). Although excessive axial elongation seems to be the primary correlate for 

both early and late onset myopia (McBrien and Adams, 1997; McBrien and Millodot, 

1987; Jiang and Woessner, 1996), it has been shown that there is a much wider variation 

in AXL for lower levels of myopia and AXL may fall within the accepted normal range for 

emmetropia. In these cases, it is likely that changes in the refractive structures of the 

eye, rather than purely axial expansion are responsible for myopia development.  

Goss (1990) found that stability of axial elongation occurs earlier in myopic females 

(between 14.6 and 15.3 years) than in myopic males (between 15.0 and 16.7 years), 

which typically coincides with the end of body growth. After this age, myopic progression 

is typically considerably slower, however still appears to be due to vitreous chamber 

expansion (Lin et al., 1999; McBrien and Adams, 1997). 
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Strang et al., (1998) proposed three potential models for the nature of growth in axial 

myopia: Equatorial stretch, global expansion and posterior pole stretch. More recently, a 

fourth model has been suggested: axial expansion (Verkicharla et al., 2012) (see Figure 

1.5).  

Figure 1.5 Current models of retinal stretching in myopia: a) global b) equatorial c) 
posterior polar and d) axial expansion. The solid circles represent the shape of the retina 
of an emmetropic eye; the dashed shapes represent the myopic retinas, and the arrows 
indicate the regions of stretching. Reproduced with permission (Verkicharla et al., 2012) 
[Eye shape and retinal shape, and their relation to peripheral refraction, Verkicharla, P. 
K., Mathur, A., Mallen, E. A., Pope, J. M. and Atchison D. A. Ophthalmic and 
Physiological Optics Vol. 32, Copyright © 2012 The College of Optometrists]. 
 

In the equatorial stretching model (Figure 1.5a), the axial stretch is confined to the 

equatorial region of the globe. Should this be the sole mechanism for axial elongation, 

no anatomical changes or change in sampling density should be observable at the 

posterior pole. With global expansion, vitreous chamber growth is achieved by uniform 

expansion across the entirety of the sphere, whereas, in the posterior pole model, stretch 

occurs radially and is confined to the posterior pole. The axial expansion model is a 

combination of the equatorial and posterior pole expansion models, unlike the other three 

models that result in a spherical surface, axial expansion would give a prolate ellipsoid 

surface (Verkicharla et al., 2012). For all models, there is less myopia in the periphery 

than the centre of the retina (relative peripheral hyperopia) as the image shell is closer 

to the retina in the periphery. This effect is greatest for posterior polar expansion, 
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followed by axial, equatorial and global expansion as seen in Figure 1.6 (Verkicharla et 

al., 2012).  

Figure 1.6 Positions of images relative to the myopic retina for the global, equatorial and 
posterior pole and axial expansion models. Redrawn from (Verkicharla et al., 2012) [Eye 
shape and retinal shape, and their relation to peripheral refraction, Verkicharla, P. K., 
Mathur, A., Mallen, E. A., Pope, J. M. and Atchison D. A. Ophthalmic and Physiological 
Optics Vol. 32, Copyright © 2012 The College of Optometrists]. 

  
Atchison and colleagues (2004), considered how many of their participants fitted into 

each expansion model category as described in Figure 1.5, and found that no single 

model was sufficient to define an entire myopic population, with a quarter of myopes 

exclusively fitting the global expansion model, and another quarter exclusively fitting the 

axial expansion model. However, when vertical dimensions (height of the eye) were 

considered, there was a slight shift towards the global expansion model (30% of myopes 

fitted this model vs. 26% for axial expansion). Conversely, when considering horizontal 

(width) dimensions of the eye, there was a shift in favour of axial expansion, with 47% of 

myopes fitting this model compared to 18% showing global expansion proportions.  
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1.3.3 Cornea 

The dioptric power of the cornea is directly related to its surface curvature. Steeper 

corneas have greater refractive capabilities and, therefore, result in a relatively more 

myopic focal point than flatter corneas. The structural changes in the cornea that have 

the potential to precipitate myopia are therefore important.  

Interestingly, it has been shown that eyes that are axially larger generally have flatter 

corneas (Chang et al., 2001; Grosvenor and Goss, 1998), even though myopic eyes 

have been found to have steeper corneas than emmetropes (Garner et al., 2006; Goss 

et al., 1997). There also seems to be meridional differences in corneal curvature in 

myopic eyes (Goss and Erickson, 1987), with the vertical reported as steeper than the 

horizontal meridian. It should be noted that this, however, is not true for late-onset 

myopia (Bullimore et al., 1992)  

It has been shown that corneal power reduces in early life, coinciding with axial 

elongation (Sorsby et al., 1962). Mean corneal power between three and nine months of 

age reduces from 43.90 D to 42.83 D (Mutti et al., 2005). Although the reduction in 

corneal power correlates with the increase in AXL, there is no significant correlation 

between the changes in refractive error in this period (Mutti et al., 2005) 

1.3.4 Crystalline lens 

There is a substantial reduction in crystalline lens power during infancy (Wood et al., 

1996). A  longitudinal study by Mutti et al. (2012) reported that there was a substantial 

inhibition of lens thinning and flattening one year before or within a year of myopia onset 

in children who became myopic during the study (age at baseline, six to 14 years). In 

this period, a reduction in refractive index and power loss of the lens was also seen. This 

provides further support for the notion that early-onset myopia is a product of a 
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breakdown in the independent relationship between lens changes and axial elongation 

(Mutti et al., 2012). Mutti et al. (2012) hypothesised that hypertrophy of the ciliary muscle 

or cessation of scleral growth around the lens equator may be responsible for the 

prohibition of lens thinning and flattening.  

Interestingly, it has been shown that there is a tendency for the lens to be thinner in 

myopic eyes than in emmetropic eyes (McBrien and Adams, 1997; McBrien and Millodot, 

1987; Zadnik et al., 1995), despite the breakdown in coordination between lens thinning 

and axial elongation. Gernet and Olbrich  (1989) hypothesised that this might be due to 

the increased equatorial diameter in larger eyes which would result in more tension being 

exerted on the zonular fibres, resultantly flattening and reducing the optical power of the 

lens. 

1.4 Why do refractive errors exist if emmetropisation occurs? 

1.4.1 Background 

Emmetropisation is not the sole homeostatic or disruptive process which affects eye 

development throughout life (Flitcroft, 2013). A child’s refraction at age six can be 

principally attributed to their initial level of refraction at birth, and the degree of 

emmetropisation that has occurred in their first six years of life (Flitcroft, 2013). In order 

for a child to have a significant refractive error at age six, there must have been either 

an initial refractive error which was too high to emmetropise fully, deficient 

emmetropisation in spite of an initial refractive error within the normal range, or a 

combination of these two factors (Flitcroft, 2014). Consequently, a primary failure of 

emmetropisation is responsible for ametropia that is present at the age of six years 

(Flitcroft, 2013). However, it is clear that myopia and hyperopia follow different courses; 

the positively skewed distribution of refractive errors at age six suggests that most cases 
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of hyperopia that occur at this age are due to a failure of emmetropisation which results 

in persisting infantile hyperopia (Flitcroft, 2014). Conversely, the majority of cases of 

myopia onset after the age of six years, indicating that most cases of myopia occur in 

eyes that had successfully emmetropised in early life (Flitcroft, 2014). It is, therefore, 

clear that in most cases myopia is a result of a secondary failure of the emmetropisation 

mechanism to maintain the level of emmetropia or low hyperopia which it initially 

achieved (Flitcroft, 2014).  

It is well reported that biological processes are often influenced by other random variable 

factors which have a probability distribution, which can be expressed at a genetic or 

phenotypic level (Flitcroft, 2014; Raj and Van Oudenaarden, 2008). The existence of 

anisometropia and refractive error variations in monozygotic twins provide evidence for 

the existence of such factors (Flitcroft, 2014).  

The eyes of anisometropic individuals both experience the same environmental 

influences and the same genetics throughout life, but have different refractive errors 

(Flitcroft, 2014). Evidence has shown that there is a slight decline in the prevalence of 

anisometropia between six months and five years of age from 1.96% to 1.27% (Deng 

and Gwiazda, 2012). During this period, many anisometropias spontaneously resolve, 

and a similar number of new cases emerge (Abrahamsson et al., 1990). The prevalence 

of anisometropia then increases up to 12 - 15 years of age to 5.77%, coinciding with the 

increasing variance in refractive error (Deng and Gwiazda, 2012). There is also an 

association between the level of ametropia and anisometropia, with an increasing 

frequency of anisometropia in populations with increasing refractive error, regardless of 

whether the refraction is myopic, hyperopic or astigmatic (Deng and Gwiazda, 2012; Qin 

et al., 2005). The lack of close regulation of growth after the fifth to the sixth year of life, 

therefore, results in increased inter-subject variability as well as increased variability 
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between both eyes of the same subject (Flitcroft, 2014). A similar pattern has been 

observed in monozygotic twins, with a significant association being found between the 

refractive error and the degree of refractive discordance with the discordance increasing 

with absolute refractive error (Hammond et al., 2001, Sorsby et al., 1962).  

1.4.2 Refractive differences in eyes with pathology 

Myopia is not always an entirely benign, purely refractive condition. A study examining 

all children presenting to two ophthalmology departments over three years found only 

8% of high myopias to be ‘simple high myopia’, that is, myopia associated with no ocular 

or systemic morbidity (Marr et al., 2001). In a later study which looked at children 

presenting to their community optometrist or orthoptist with more than 5.00 D of myopia, 

44% of myopias were associated with morbidity (Logan et al., 2004a). It is clear that high 

myopia is associated with a high prevalence of ocular and systemic abnormalities in 

young children. Some children have large ametropias from birth; however, this is rare 

(Hiatt et al., 1965), and refractive errors of this nature are often associated with genetic 

disorders (Marr et al., 2001; Marr et al., 2003). Stickler syndrome (Wilson et al., 1996) 

and Leber’s Congenital Amaurosis (Abouzeid et al., 2006) are examples of conditions in 

which congenital and stationary ametropia has a clearly genetic basis.  In conditions 

such as these, there seems to be a strong genetic bias away from emmetropia, and the 

emmetropisation mechanism generally has little effect on the large initial refractive errors 

(Flitcroft, 2014).  

Several retinal dystrophies can be associated with myopia (Marr et al., 2001). The retinal 

dystrophy can be stationary, as in congenital stationary night blindness, or progressive 

with conditions such as cone-rod dystrophy, Retinitis Pigmentosa, Bardet-Biedl 

syndrome and other ciliopathies. Inherited retinal dystrophies are frequently associated 
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with refractive errors (Chassine et al., 2015). It should be noted that congenital 

dystrophies such as Leber’s Congenital Amaurosis, are frequently linked to high 

hyperopias in the range of + 6.00 D to + 12.00 D, especially so in the very early forms of 

the condition (Hanein et al., 2006). However, in retinal dystrophies that are not apparent 

at birth but onset in early life or later, for example, Retinitis Pigmentosa, refractive error 

is significantly skewed towards moderate myopia and astigmatism (Francois and 

Verriest, 1962). A mean spherical error of - 1.86 D has been found in a population with 

Retinitis Pigmentosa in comparison with + 1.00 D in a population without eye disease 

(Sieving and Fishman, 1978).  

Clinical observations of patients with discrete central or peripheral retinal anomaly, 

whether this is natural or iatrogenic, provide support for the idea that peripheral visual 

signals can significantly influence the emmetropisation process and resultantly the 

genesis of central ametropia. The study of patients with peripheral pathologies such as 

Retinopathy of Prematurity (ROP) and Retinitis Pigmentosa has shown that in these 

cases larger than normal ranges of central refractive errors and, on average, more 

significant central refractive errors are frequently exhibited (Connolly et al., 2002; Knight-

Nanan and O’Keefe, 1996; Nathan et al., 1985; Sieving and Fishman 1978) (See Figure 

1.7). In this respect, children who have pathologies primarily affecting the peripheral 

retina usually exhibit larger central refractive errors than children with primarily central 

anomalies (Nathan et al., 1985). The mechanism by which these refractive errors may 

be induced may be by interference from the abnormal retina with the signalling controlling 

emmetropisation.  
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Figure 1.7 Distribution of refractive errors in healthy human eyes and eyes with ocular 
pathology. Redrawn from Rabin et al., 1981. [Emmetropization: a vision dependent 
phenomenon, Rabin, J., Van Sluyters, R. C. and Malach, R. Investigative Ophthalmology 
and Visual Science, Vol. 20, Copyright © 1981 Association for Research in Vision and 
Ophthalmology Incorporated]. 
 

1.5 The current understanding of the mechanism of myopia development 

1.5.1 Genetics 

More than 40 genetic loci have now been associated to or linked with myopia (Zadnik et 

al., 2015). Various twin and family studies of human refraction have also shown that 

myopia has some degree of heritability (Baird et al., 2010). Though the exact contribution 

of genetic factors remains disputed, as it is likely that the interactions are polygenic and 

receive extremely complex input from environmental conditions. 

Twin and family studies have indicated that there is a strong genetic contribution to 

myopia (Baird et al., 2010; Hawthorne and Young, 2013; Williams et al., 2013).  The 

NICER study of 661 white Northern Irish children aged 12 to 13 identified that the children 

with one myopic parent were 2.91 times more likely to be myopic, with those with two 

myopic parents being 7.79 times more likely to be myopic than children with emmetropic 
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or hyperopic parents (O’Donoghue et al., 2015). Nevertheless, the rapidity of the recent 

increase in myopia prevalence, strongly suggests that genetic variation alone is not 

sufficient to explain myopia genesis and that there must exist significant extraneous 

environmental influence (Pan et al., 2015). It was traditionally thought that that high and 

extreme myopia may have more of a genetic basis than moderate and low myopia, which 

were thought to receive a higher contribution from environmental factors (Pan et al., 

2015). However, studies have shown that high myopia too is increasing in prevalence at 

a higher rate than can be explained solely by genetics (Jung et al., 2012; Sun et al., 

2012). 

1.5.2 Environmental factors 

Various environmental influences have been linked to myopia in recent years. However, 

these are only sufficient to explain a small fraction of the variation in myopia prevalence 

(O’Donoghue et al., 2015). Time spent outdoors has been identified as the most 

consistent environmental influence linked to myopia development in childhood (Jones et 

al., 2007; Pan et al., 2015; Rose et al., 2008). Amongst the other potential influences are 

higher levels of education (Mutti et al., 2002), physical activity (Jacobsen et al., 2008), 

body stature (Dirani et al., 2008), socioeconomic status (Ojaimi et al., 2005; Rahi et al., 

2011), parental smoking (Stone et al., 2006), birth order (Rudnicka et al., 2008) and 

parental education level (Rudnicka et al., 2008). It should be noted that equivocal data 

have been published on other risk factors including breastfeeding status (Chong et al., 

2005; Rudnicka et al., 2008) and time spent performing near work (Ip et al., 2008; Mutti 

et al., 2002; Saw et al., 2002). 



 

45 

 

1.5.3 Deprivation myopia 

Form deprivation myopia has been experimentally induced in animal models by neonatal 

lid suturing (Sherman et al., 1977; Wallman et al., 1978; Wiesel and Raviola, 1977;  

Yinon, 1980), corneal opacification (Wiesel and Raviola, 1979), and the use of pattern 

vision attenuating occluders (Wallman et al., 1978). Induced myopia, however, fails to 

occur in dark reared, lid-fused monkeys (Raviola and Wiesel, 1978). It follows that it is 

not deprivation alone, but exposure to anomalous patterned stimuli that is a precipitant 

of myopia, at least in an animal model.  

In contrast to the conclusions of the above animal models, O’Leary and Millodot (1979) 

studied humans with early onset ptosis. Similarly, there was an increased incidence of 

myopia in ptotic eyes. However, this was not consistently associated with amblyopia. It 

was therefore concluded that it is partial or full occlusion that causes myopia in these 

individuals rather than attenuated pattern vision. 

Rabin et al. (1981) investigated emmetropisation in humans with ocular pathologies 

known to disrupt pattern vision in early life. There was a significant increase in the 

incidence of myopia in subjects with both bilateral and unilateral ocular anomalies, 

regardless of the underlying pathology. Bilateral pathologies were: congenital cataract, 

optic atrophy, macular dystrophy and retrolental fibroplasia. Unilateral anomalies were: 

Retrolental fibroplasia, persistent pupillary membrane, vitreous debris, ptosis with and 

without lens opacity, trauma and traumatic cataract. Although it is possible that there is 

an innate disease process in all of these pathologies that cause myopia, it seems more 

reasonable to suggest that regardless of the aetiology behind the disruption to form 

vision, prolonged exposure to pattern blur in infancy can induce myopia through the 

disruption of emmetropisation. 
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1.6 Myopia induced with refractive lenses 

1.6.1 Background 

The exact mechanism by which the eye develops and emmetropises is not fully 

understood (Mutti et al., 2005). The compensatory changes in the lens and cornea which 

were discussed in the previous chapter clearly indicate that passivity is an important 

feature of the emmetropisation process (Mutti et al., 2005), and that at least part of the 

developmental drift in refractive error towards emmetropia can be attributed to a simple 

optical artefact of eye growth (Wildsoet, 1997). 

However, the correlation of the various ocular components cannot be explained solely in 

terms of genetics and the physical characteristics of the growing eye. The passive nature 

of these factors would imply that clinical manipulations, for example of spectacle lens 

power are unlikely to influence refractive outcomes (Wildsoet, 1997). Nevertheless, 

accumulating data from animal studies of myopia and visual deprivation on eye growth 

have indicated that emmetropisation has a strong, active component, which is guided by 

visual experience and feedback (Irving et al., 1992; Schaeffel et al., 1988; Smith et al., 

1999; Wallman et al., 1995; Wildsoet, 1997). However, the question of what the 

mechanism for feedback is and to what extent passive features such as genetic control 

are relied upon remains largely unanswered (Trolio, 1992). 

Central to the visual feedback model is the assumption that defocus is able to modulate 

eye growth to decrease refractive error during emmetropisation (Mutti et al., 2005). A 

number of experimental paradigms have been applied to a wide range of species, and 

they have revealed that altered retinal image quality is the primary aetiological candidate 

for the onset and development of myopia as it can lead to consistent and predictable 

changes in eye development (Read et al., 2010). It is clear that emmetropisation does 
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contain an active component that is vision dependent, and that altered visual experience 

can induce myopia (Irving et al., 1992; Schaeffel et al., 1988; Smith et al., 1999; Wallman 

et al., 1995; Wildsoet, 1997). 

Animal models making specific experimental manipulations to deprive the eye of clear 

form vision during early development in the absence of pathologically induced image 

degradation have induced predictable compensatory ocular structural change, altering 

emmetropisation (Sivak et al., 2012). In these cases, the myopia is precipitated as a 

result of both spatial form deprivation and induced hyperopic defocus.  

1.6.2  Myopia induced with refractive lenses 

Compensatory growth due to induced optical defocus was first demonstrated in the 

monkey model of Wiesel and Raviola (1977) and the young chick model of Wallman and 

colleagues (1978), where modest environmental manipulation resulted in marked 

myopia. It has since been shown that ocular growth can be tuned to the sign and power 

of lenses simulating refractive errors (Schaeffel et al., 1988). While many experiments 

investigating the development of refractive error are performed on chick eyes, various 

other mammalian and avian models have been studied (Sivak et al., 2012). Form 

deprivation myopia has also been shown to occur in another bird, the American Kestrel 

(Andison et al., 1992), as well as tree shrews (Marsh-Tootle and Norton, 1989), guinea 

pigs (Howlett and McFadden, 2006; Ouyang et al., 2003), grey squirrels (McBrien et al., 

1993), mice (Tejedor and de la Villa, 2003), cats (Kirby et al., 1982) and primates (Hung 

et al., 1995; Smith, 2013a; Smith 2013b; Wallman et al., 1978). 

Form deprivation generally induces myopia (Sivak et al., 2012). Shaeffel and colleagues’ 

1988 study showed that both myopia and hyperopia could be induced by using either 

concave or convex lenses to alter the retinal image. Other studies have further 
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demonstrated that a wide range of refractions can be induced with the use of refractive 

spectacle lenses and goggles (Irving et al., 1991; Irving et al., 1995). In short, induced 

hyperopic defocus (simulated with the use of concave lenses) acts as a stimulus for axial 

elongation and, as a result, the eye is myopic when the lens is removed (Sivak et al., 

2012). Conversely, under conditions of myopic defocus (induced by the use of convex 

lenses) there is an inhibition of ocular growth (Liu and Wildsoet, 2011). It is likely that 

this occurs via some form of homeostatic feedback system whereby the eye either grows 

or does not grow to keep the retinal plane as close to the focal position of the image as 

possible (Sivak et al., 2012). Zhu and colleagues (2005) have shown that in chick eyes, 

compensatory ocular changes occur within one to two hours of the introduction of both 

positive and negative lenses.   

There has been varied data on whether there is complete refractive compensation. Irving 

et al. (1992), noted that in a chick model the compensatory response exactly matched 

the degree of lens-induced defocus, for the range - 10.00 D to + 15.00 D. Compensation 

did not occur to the same extent as in the earlier study by Schaeffel et al. (1988). 

Differences in the chick breed and the age of exposure to the blur condition may explain 

this disparity.  

Smith (2008) systematically induced varying degrees of hyperopic and myopic retinal 

blur in monkeys with the use of divergent and convergent optical lenses (see Figure 1.8).  
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Figure 1.8 Graphs showing the age of the monkey against refractive error, under 
differing lens conditions, with data from Hung et al., 1995. Reproduced with permission 
(Smith, 1998) [Spectacle lenses and emmetropization: the role of optical defocus in 
regular ocular development, Smith, E. L. 3rd. Optometry and Vision Science Vol. 75, 
Copyright © 1998 American Academy of Optometry]. 
 

The research was conclusive in showing that ocular growth can be manipulated 

predictably and proportionally according to the severity of induced blur. + 3.00 D,                

+ 6.00 D and + 9.00 D lenses all inhibited axial elongation, with the effect being markedly 

enhanced at each higher dioptre trial (increased myopic blur). Predictably, divergent 

lenses of - 3.00 D, and - 6.00 D both induced significant axial elongation, with the higher-

powered lens showing a more marked effect. Though entire visual recovery occurs after 
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the removal of convergent lenses, myopia remained after exposure to negative lenses. 

However, some recovery was evident. 

It has been shown that recovery from form deprivation myopia occurs by a relative 

slowing of the rate of vitreous chamber elongation, while the other ocular components 

continue to grow as normal (McBrien et al., 2000; Wallman and Adams, 1987) the net 

result is a relative increase in hyperopia (reduction in myopia). Modulation of choroidal 

thickness has also been implicated in chick eyes (Wallman et al., 1995) and monkeys 

(Hung et al., 2000). 

1.6.3 Understanding of the mechanism for detecting defocus 

As it is apparent that optical blur affects growth, it follows that there must be a mechanism 

that can detect the sign of defocus, for the appropriately modified axial growth to occur. 

Ascertaining the nature and characteristics of such a mechanism is crucial in further 

understanding emmetropisation (Schaeffel and Wildsoet, 2013). It is also important to 

localise the mechanism. However, data remains equivocal on whether the retina itself 

contains the machinery to process images to determine the sign of defocus, or whether 

it receives cerebral input from higher centres in the visual pathway (Schaeffel and 

Wildsoet, 2013).  

As discussed previously (see Sections 1.4.2 and 1.6.2), it is known that both 

experimental (Sherman et al., 1977; Wallman et al., 1978; Wiesel and Raviola, 1977; 

Wiesel and Raviola, 1979; Yinon, 1980) and pathological (Rabin et al., 1981) optical 

image degradation leads to excessive axial elongation. But, this does not occur in cases 

of induced myopic defocus, where the degraded image falls anterior to the retina – at 

least in animal models. Thus, it is apparent that deprivation myopia cannot be the sole 
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mechanism for uncoordinated ocular growth, as there is clearly a way to recognise the 

location of blur relative to the photoreceptor layer.  

Optic nerve section studies in animals support the theory that the retina has, at least, the 

complete machinery to convert image features into growth signals (Schaeffel and 

WIldsoet, 2013; Trolio and Wallman, 1991). The development of form deprivation myopia 

continues post optic nerve section (Norton et al., 1994; Trolio et al. 1987; Wildsoet and 

Pettigrew, 1988). In chicks, the eye is able to distinguish whether the input visual signal 

is over or under-focused and in chicks at least, rapidly adjusts the retinal position and 

therefore the focal length of the eye, by altering the thickness of the choroid accordingly 

(Wallman et al., 1995). The rate of ocular growth then either accelerates or slows down 

resulting in a more permanent change in refractive state, subsequently ending up in an 

eye that is either too long or too short (Sivak et al., 2012). However, myopia does not 

develop in response to negative lenses (Wildsoet and Wallman, 1995). Wildsoet and 

Wallman (1995) state that this suggests that compensation for hyperopic defocus 

requires the central nervous system. 

Thus, it seems that both retinal and central elements are involved in the normal active 

feedback process of emmetropisation and that the retina must be able to provide some 

biochemical signal as a response to local defocus, which controls eye growth, (Wallman 

and Winawer, 2004). 

However, it is clear that observations from animal studies cannot always be applied to 

human refractive development. Though data from chicken models strongly suggests that 

the retina can determine the sign of induced defocus, this does not always appear to be 

true according to findings from studies of human subjects. For example, should an image 

focused on the vitreal side of the retina be a cue for the inhibition of axial elongation, 

under-correction should be an effective modality for myopia control (Schaeffel and 
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Wildsoet, 2013). However, this does not seem to be the case in humans (Chung et al., 

2011). It has been suggested that perhaps the accommodation system becomes ‘lazy’ 

during under-correction causing the focal plane to shift in the opposite direction during 

near work (Schaeffel and Wildsoet, 2013). Similarly, the same theory should be 

applicable to uncorrected myopia, which according to this thinking should be a self-

limiting condition, but is clearly not (Schaeffel and Wildsoet, 2013). Accommodation 

inaccuracy in myopes has also been implicated, as studies have found that 

accommodation is less accurate than in emmetropes (Gwiazda et al. 1995; Gwiazda et 

al. 1993; Mutti et al., 2006), perhaps because myopes have a higher tolerance to 

incorrectly focussed images (Abbott et al., 1998).  Consequently, accommodation may 

be too weak during reading, which could stimulate more axial growth, despite the eye 

already being myopic (Schaeffel and Wildsoet, 2013). 

1.7 Peripheral image focus and refraction 

1.7.1 Introduction 

The human reliance on macular vision has long led to the assumption that defocus 

signals corresponding to foveal vision are the prevailing force governing the 

emmetropisation process and in cases of its failure, the precipitation of ametropia 

(Verkicharla et al., 2012). Due to the relative vastness of the peripheral retina and the 

quantity of photoreceptors compared to the discrete foveal zone, it seems reasonable to 

suggest that the contribution of the peripheral retina should not be discounted.  

Experimental animal models published in the 1970s have helped to promote further 

understanding by legitimising the study of the relationship between environmental factors 

and the refractive development of the eye (Sivak et al., 2012).  
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It has long been hypothesised that the state of image focus on the peripheral retina may 

have the potential to affect refractive development (Sivak et al., 2012). It is known that 

retinal quality (Jennings and Charman, 1981; Navarro, 1993) and spatial resolution 

(Weymouth, 1958) reduces as a function of increasing retinal eccentricity. Nevertheless, 

avian studies have shown that even when only very low spatial frequency information is 

available, the sign of defocus remains detectable, and consequently appropriate ocular 

growth towards emmetropia can be coordinated (Schaeffel and Diether, 1999). 

Furthermore, Wallman and Winawer (2004) indicated that the defocus signal in the 

periphery of the retina should be stronger than at the retina owing to the fact that there 

are more neurones in that region. Similarly, Ho and colleagues (2012) found that the 

human retina has an electrical response which is sensitive to defocus and that the 

paracentral retina has a more vigorous response to optical defocus than is seen at the 

central retina.  

1.7.2 Animal studies 

Animal studies of myopia development have provided mounting evidence to suggest the 

existence of a mutually dependent relationship between central and peripheral retinal 

signalling (Huang et al., 2009; Smith et al., 2009; Smith et al., 2005; Wallman et al., 

1987). They also show the significant contribution made by the peripheral retina to 

emmetropisation and the development of ametropia resulting from abnormal visual 

experience (Smith et al., 2005). 

In chicks (Diether and Schaeffel, 1997; Miles and Wallman, 1990) and primates (Smith 

et al., 2009; Smith et al., 2010), hemifield form deprivation results in excessive eye 

growth localised to the affected area only. Further evidence comes from the Smith et al. 

(2005; 2007) studies with primate models where visual input is altered in discrete retinal 
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locations. In Smith et al.’s 2005 experiment, a translucent goggle with a central aperture 

deprived the peripheral retina alone of form vision. Regardless of the fact that central 

vision was unrestricted, eyes under these conditions developed form deprivation myopia 

to a comparable extent to those in which vision in the entirety of the visual field was 

disrupted.  Smith et al.’s following experiment (2007) disrupted the central retina 

exclusively, by rendering it non-functional by thermal laser ablation. Under these 

conditions, emmetropisation was either unaffected or form deprivation myopia 

developed. However, in cases where form deprivation myopia occurred, the eyes 

recovered comparably to intact eyes, despite the non-functionality of the fovea. This 

research is crucial in indicating that foveal signals do not appear to be essential for many 

aspects of vision-dependent ocular development; that peripheral visual signals can, in 

isolation exert control over refractive development; and that, in cases of conflicting visual 

signals from the retinal  centre and periphery, the peripheral retinal signals can dominate 

central development and ocular growth (Sankaridurg et al., 2011). 

Animal studies have led to the widely accepted understanding that hyperopic defocus 

caused by hyperopia in infancy can modulate the growth of the eye to reduce refractive 

error (Smith et al., 1999; Wildsoet, 1997). The mechanism by which this occurs is thought 

to be that hyperopic images falling behind the retina cause the eye to elongate towards 

the hyperopic focal plane in an attempt to gain an clear image, and consequently, 

hyperopia reduces. In more recent years, off-axis refractive error has been called into 

question as being critical in emmetropisation, the notion being that peripheral hyperopic 

image shells can independently drive central growth, in turn leading to myopic ametropia 

(Smith et al., 2007). 
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1.7.3 Relative peripheral hyperopia 

Studies that have cited relative peripheral hyperopia as important in myopia development 

do so on the basis that hyperopia reflects the relatively more prolate shape of myopic 

eyes, in which the AXL exceeds the equatorial diameter (Yamaguchi et al., 2013). 

Human myopia has been associated with relatively prolate globe shapes (Mutti et al., 

2000). Consequently, post refractive correction when the visual image is optimally 

focussed on the fovea, the image shell falls posterior to the retina in peripheral locations 

(see Figure 1.9). The defocus induced in the periphery is termed ‘relative peripheral 

hyperopia’. Consequently, an emmetropic eye with a steeper retina or an already myopic 

eye may elongate causing myopia, as a response to the induced peripheral hyperopic 

defocus. 

Figure 1.9 Schematic diagram to illustrate the hypothesis that peripheral hyperopic blur 
may act as a stimulus for axial expansion of the eye as the eye grows towards the 
position of the peripheral image shell. 
 

However, this model is known to be over-simplified as eyes are rarely rotationally 

symmetric (Verkicharla et al., 2012). Therefore, the peripheral refraction varies in 

different meridians of the visual field (Verkicharla et al., 2012). Additionally, rather than 

being generally spherical, the majority of emmetropic eyes demonstrate low levels of 
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peripheral myopia, and most emmetropic retinas are oblate in shape rather than 

spherical (Atchison et al., 2005a).  

The pencil of light coming from an off-axis object point on a plane surface, passing 

through a symmetrical optical system does not come to a point focus, but instead is 

focussed as lines at two positions (Verkicharla et al., 2012). One of these lines 

corresponds to the light which is refracted in the plane which contains the object point 

and the optical axis (the tangential plane) while the other corresponds to the plane 

perpendicular to this (the sagittal plane) (Verkicharla et al., 2012). For a range of object 

points across the surface, there will be two image shells formed as seen in Figure 1.10a.  

Should the shape of the retina influence growth, it will be by summation of signals across 

the retina, not merely at a single position (Verkicharla et al., 2012). 

 

Figure 1.10 a) formation of tangential (T-dotted line) and sagittal (S-dashed line) images 
either side of the retina (R-bold line). b) Formation of the mean of the image shells and 
its location relative to the retina for three different retinal shapes. Reproduced with 
permission (Verkicharla et al., 2012) [Eye shape and retinal shape, and their relation to 
peripheral refraction, Verkicharla, P. K., Mathur, A., Mallen, E. A., Pope, J. M. and 
Atchison D. A. Ophthalmic and Physiological Optics Vol. 32, Copyright © 2012 The 
College of Optometrists]. 
  

For an emmetropic eye with the assumed ‘normal’ retinal shape of a sphere with a 12 

mm radius of curvature, the image shell corresponding to the average of the tangential 
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and sagittal image shells (far-point sphere) would coincide approximately with the retinal 

sphere (Verkicharla et al., 2012). However, the retinal sphere and mean far-point sphere 

will no longer coincide in emmetropic eyes with other retinal curvatures, this can be seen 

in Figure 1.10b. Light from a distance off-axis location still coincides with the ‘normal’ 

retinal position, resulting in relative peripheral myopia for flatter retinas, and conversely 

relative peripheral hyperopia for steeper retinas. This can also be applied to myopic eyes, 

assuming that the optics are the same besides the longer AXL (Verkicharla et al., 2012). 

1.7.4 Human peripheral refraction 

The peripheral refraction of the eye has been investigated since the investigations of 

Thomas Young (Young, 1801) and has recently made a resurgence as a topic of great 

interest due to the current focus on the possible roles of eye shape and peripheral 

refraction in refractive development.  

In the 1930s, the work of Ferree and colleagues examined the peripheral refraction of 21 

subjects, using an objective refractometer in the horizontal plane to an eccentricity of 60˚ 

(Ferree and Rand, 1933; Ferree et al., 1931; Ferree et al., 1932). Three distinct ‘types’ 

of peripheral refraction pattern were identified. Two further patterns were identified in a 

later work by Rempt et al. (1971). Descriptions of each type are shown in Table 1.3. 
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Name given to 
peripheral 

refraction pattern 

 

Tangential refraction (along 
horizontal meridian) 

 

Sagittal 
Refraction 

(along vertical 
meridian) 

 

 

Skiagram 
Feree 
et al., 
1931 

Rempt 
et al. 
1971 

Type B Type I Becomes more hyperopic Becomes more 
hyperopic 

 

 

Type II Becomes more hyperopic Becomes more 
hyperopic 

 

Type C Type III Asymmetrical astigmatism – 
peripheral refraction differs 

between the nasal and 
temporal sides of the 

peripheral field 

Becomes more 
hyperopic 

 

Type A Type IV Becomes more myopic Becomes more 
hyperopic 

 

 

Type V Becomes more myopic Becomes more 
myopic 

 

Table 1.3 Five types of skiagrams (peripheral refraction plots) described by Ferree et al., 
1931, and Rempt et al., 1971. The curves are shown as parabolas, but real plots are 
seldom as regular. For all graphs, visual field position is represented on the x-axis and 
refraction on the y-axis. Skiagrams redrawn from (Verkicharla et al., 2012) [Eye shape 
and retinal shape, and their relation to peripheral refraction, Verkicharla, P. K., Mathur, 
A., Mallen, E. A., Pope, J. M. and Atchison D. A. Ophthalmic and Physiological Optics 
Vol. 32, Copyright © 2012 The College of Optometrists]. 
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1.7.5 Models of shape and their relation to peripheral refraction 

It is likely that eye shape, retinal shape and peripheral refraction are related (Verkicharla 

et al., 2012). However, Verkicharla and colleagues (2012) suggest that the true picture 

is often over-simplified due to unwarranted linking of the concepts. For example, a 

specific shape of the eye is taken to infer a particular pattern of refraction such as a 

prolate shape causes relative peripheral hyperopia or vice versa (Verkicharla et al., 

2012). In a similar way, retinal shape may be interchanged with the more nebulous 

concept of eye shape. Owing to this, the large variation in measures of peripheral 

refraction and the fact that the eye’s optics, not retinal shape alone contribute to 

peripheral refraction, Verkicharla and colleagues (2012) recommend great caution is 

taken when using and interpreting these relative quantities.  

Peripheral refraction studies have typically concluded that myopic eyes appear to be 

prolate or less oblate in shape than emmetropic and hyperopic eyes (Logan et al., 

2004b), while Atchison et al. (2005a) found that the retina itself while showing the same 

trend remains oblate in shape for myopic eyes though to a lesser degree than in 

emmetropia (discounting high myopia). A recent study using T2 weighted MRI by 

Gilmartin et al. (2013) concluded that prolate ellipse posterior chamber shapes were 

rarely found in subjects with myopia. It was hypothesised that this is likely to be because 

axial elongation is attenuated if the shape of post-equatorial regions of the posterior 

chamber approaches a spherical shape. This spherical shape may act as a 

biomechanical limitation to further axial elongation in myopia (Gilmartin et al., 2013). It 

was further added that prolate ellipse shapes of the posterior chamber, may therefore 

only occur in eyes with very high degrees of myopia and associated pathological 

changes (Gilmartin et al., 2013). It has also been hypothesised that the expansion of the 

retina is dictated by the size of the orbit owing to the posterior section of the eye having 
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least restraint from the orbital walls and, therefore, allowing it to grow more than any 

other parameter (Atchison et al., 2005a).  

Atchison and colleagues’ 2004 study compared the ocular dimensions of 88 participants 

aged between 18 and 36 years (cornea to retina AXL, height and width) and were able 

to associate ocular shape with refractive error. Although there was significant variation 

between participants, myopic eyes were found to be larger in all respects than 

emmetropic and hyperopic eyes. This was particularly pronounced for AXL measures 

(Atchison et al., 2004). Atchison and colleagues’ later (2006) study went on to look at 

peripheral refraction readings taken in both the vertical and horizontal meridians. Myopia 

was found to have a more pronounced effect in the horizontal aspect of the periphery 

than in the vertical direction. This is consistent with the current understanding of the 

shape of myopic eyes (Atchison et al., 2004; Atchison et al., 2005; Atchison et al., 2006). 

The models of Charman and Jennings (1982) and Dunne et al. (1987) can largely explain 

the myopic shifts in peripheral refraction in emmetropes turning to relative hyperopic 

peripheral shifts in refraction in myopic subjects along the horizontal field (Atchison et 

al., 2006). These models work on the assumption that the retinal equator stays the same 

distance from the visual axis as myopia increases (Charman and Jennings, 1982; Dunne 

et al., 1987). However, the eye is known to increase in size horizontally, vertically and 

axially in myopia (Atchison et al., 2004; Atchison et al., 2005a). As this increase is 

asymmetric, and much more marked in the vertical than horizontal direction, the retina 

will be flatter along the vertical than the horizontal meridian, thus reducing the tendency 

for relative peripheral hyperopia vertically as central myopia advances (Atchison et al., 

2006).  

The Orinda Longitudinal study of myopia (Mutti et al., 2000) measured refraction centrally 

and 30º nasally, in a cohort of 822 children aged between five and 14 years. Relative 
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peripheral myopia was found in both emmetropic and hyperopic cohorts though this was 

more marked in the hyperopic subjects. It was suggested that this demonstrates an 

oblate shape. Conversely, myopic participants demonstrated relative peripheral 

hyperopia, and it was suggested that this was a sign of a relatively prolate ocular shape. 

Sng et al. (2011a) measured peripheral refraction at 15 and 30 degrees either side of 

fixation in 250 Singaporean children aged between three and 15 years. While children 

with moderate and high myopia (≤ - 3.00 D) displayed relative peripheral hyperopia at all 

eccentricities, those with low central myopia (- 0.50 D to - 2.99 D) only showed relative 

peripheral hyperopia at 30 degrees not at 15 degrees. Relative peripheral myopia was 

present for emmetropes and hyperopes at both eccentricities. Calver et al. (2007) 

examined peripheral refraction measurements at 10, 20 and 30 degrees from fixation in 

emmetropic and myopic adults.  A significant difference between emmetropes and 

myopes was only found at 30 degrees in the temporal retina. In contrast to the work of 

Sng et al. (2011a) when mean spherical refractive error was considered, myopes did not 

show a change in peripheral refraction, although emmetropes did become more myopic 

in the periphery. Owing to these findings, Calver et al. (2007) concluded that myopia did 

not appear to be associated with changes in peripheral refraction during distance or near 

vision.  

1.7.6 Peripheral refraction and progression of myopia 

In 1971, a study followed the refraction of 214 trainee pilots over an unspecified number 

of years suggested that peripheral refractive state may be an indicator for as well as a 

precipitant of myopia (Hoogerheide et al., 1971). Candidates with hyperopic peripheral 

refractive errors with the type I profile (see Table 1.3) on enrolment on the course were 

more predisposed to develop myopia over the following few years than those with initially 
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emmetropic or myopic peripheral refractive errors.  The proportions in each refractive 

profile group who eventually developed myopia were as follows: type I 47%, type II 7%, 

type III 21%, type IV 3% and type V 0% (Hoogerheide et al., 1971). 

The studies of Stone and Flitcroft (2004), and Wallman and Winawer (2004) revisited the 

work of Hoogerheide et al. (1971), gaining momentum for the consideration of peripheral 

optics as being able to influence the development of myopia either due to peripheral 

refraction or retinal shape. However, a review of Hoogerheide and colleagues 1971 work 

and Rempt and colleagues 1971 work by Rosen and colleagues (2012) questions the 

suggestion that peripheral refractive error can be used as a predictor for myopia on the 

grounds that these works have been misinterpreted since publication.  Rosen et al. 

suggested that the peripheral hyperopia data which is presented may have been taken 

following the development of ametropia and consequently cannot be used when 

determining myopia indicators (Rosen et al., 2012).  

Studies have found that age (Atchison et al., 2005b; Chen et al., 2010) and ethnicity 

(Kang et al., 2010) have no real effect on peripheral refraction patterns. A number of 

studies have found emmetropic individuals to have a weak relative peripheral myopia 

(Atchison et al., 2006; Chen et al., 2010; Kang et al., 2010; Mutti et al., 2000), although 

some have found a weak tendency towards hyperopia in either one or both sides of the 

visual field (Millodot, 1981). A study of emmetropic eyes also noted that some individuals 

shift from a relative peripheral myopic pattern at angles over 45 degrees to a hyperopic 

pattern (Gustafsson et al., 2001).  Hyperopic groups have been found to have relative 

peripheral myopia (Atchison et al., 2005b; Millodot, 1981). Other studies of human 

children and young adults have also concluded that myopic eyes exhibit relative 

peripheral hyperopia (Atchison et al., 2006; Berntsen et al., 2010; Chen et al., 2010; 

Kang et al., 2010; Millodot, 1981; Mutti et al., 2000; Radhakrishnan et al., 2013: 
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Yamaguchi et al., 2013). It has been shown that to some extent, the degree of relative 

peripheral hyperopia increases according to the degree of myopic ametropia (Atchison 

et al., 2006). Atchison and colleagues (2006) also found that peripheral astigmatism 

decreases with increasing myopia.  

Moreover, a longitudinal study examining the eyes of 979 children, of whom 605 became 

myopic, concluded that relative peripheral hyperopia can be an important predictor of the 

onset and the future development of myopia in children (Mutti et al., 2007). However, in 

2011, the works of Mutti et al. (a continuation of the group’s 2007 study) evaluated that 

over time, the state of peripheral refraction in children, did not, in the end, have a 

consistent influence on myopia development. There was found to be a mean annual 

progression of myopia of only - 0.024 D per dioptre of relative peripheral hyperopia (Mutti 

et al., 2011). In the same year, Sng and colleagues (2011) carried out a one-year 

longitudinal study of Chinese Singaporean children aged four to ten years and found that 

baseline peripheral refractions were similar for children regardless of whether they 

became myopic during the study or not. On follow - up, the children who were myopic at 

baseline or became myopic over the duration of the study had relative peripheral 

hyperopia, whereas children who did not become myopic retained relative peripheral 

myopia. It was concluded that these results indicate that relative peripheral hyperopia 

might not be an essential factor in myopia development. Furthermore, Charman and 

Radhadkrishnan (2010) had previously suggested that in cases where relative peripheral 

hyperopia is associated with the onset of myopia, rather than being a causative factor, it 

may simply be a consequence of the development of myopia. In this paper, Charman 

and Radhadkrishnan (2010) also discussed the work of Logan et al. (2004b) which 

suggested that eye shape in people of Chinese origin is more axially symmetric than in 

Caucasian eyes - owing to this, they drew the conclusion that the state of peripheral 

refraction may not be associated with the development of myopia in all ethnic groups.  
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Understanding of the role that the peripheral defocus plays in human myopia 

development has become increasingly important with the increasing prevalence of the 

condition. Recent efforts have addressed the question of whether peripheral refraction 

could be exploited to reduce myopia progression in children (Sivak et al., 2012). Smith 

and colleagues (2005) suggested that altering peripheral retinal image quality may be 

exploited as a treatment modality to control eye growth and affect the refractive 

development of the eye.  

The results of recent clinical trials involving children with myopia have indicated that both 

myopia progression and AXL elongation can be slowed with the use of lenses that 

introduce more positive power in the periphery (Sivak et al., 2012). The work of 

Sankaridurg et al. (2010) compared three different specialised spectacle lens designs 

and one single-vision, control, spectacle lens, worn by 210 Chinese children aged six to 

16 years old, over a period of one year, with the intention of reducing defocus on the 

peripheral retina. Lens one was rotationally symmetric, with a clear, 20 mm central zone 

and a ramped treatment zone in the periphery with an increasing positive power up to     

+ 1.00 D at 25 mm. Lens two was of a similar design but with a 14 mm central zone and 

+ 2.00 D addition in the periphery. Lens three was an aspheric design, with a clear central 

zone which extended 10 mm inferiorly, nasally and temporally from the centre. The 

intention of this lens design was to reduce astigmatism in the horizontal meridian, while 

simultaneously inducing + 1.90 D of additional peripheral plus, 25 mm from the centre. 

Though no significant reduction in myopia progression was found for any of the lens 

types, a minimal reduction in myopia progression (0.29 D, p = 0.004) could be made in 

children less than 12 years old with myopic parents and wore the type three lens 

(Sankaridurg et al., 2010). 
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Later studies have examined the use of multifocal contact lenses, anticipating that they 

may yield more marked results owing to them remaining properly aligned on the eye 

regardless of ocular movement (Sivak et al., 2012). Anstice and Phillips (2011) fitted 40 

children of multi-ethnic backgrounds with contact lenses which were specifically 

designed to be an intervention to limit the progression of myopia. These soft contact 

lenses had a central distance correction zone and concentric peripheral treatment zones 

containing a + 2.00 D addition, intended to impose simultaneous peripheral myopic 

defocus when the child is viewing both distance or near targets. The lenses were worn 

in one eye for the first ten-month phase before being swapped to the other eye for the 

following ten months. Myopia progression was reduced by 30% in 70% of the children 

wearing the test lens. It was, therefore, concluded that the approach of inducing 

continuous myopic defocus alongside simultaneous clear images can affect central 

ametropia and significantly reduce the rate of myopia progression (Anstice and Phillips, 

2011).  

Similar findings were also made in a study examining the use of multifocal contact lenses 

with a central clear zone  with progressing positive power in the periphery (+ 1.00 D 

addition at 2 mm, increasing to + 2.00 D at the edge of the 9 mm treatment zone) in a 12  

month study of 45 Chinese children (Sankaridurg et al., 2011). Compared to 40 children 

in the control group who wore conventional sphero-cylindrical spectacle lenses, the 45 

children wearing the test contact lens showed less progression in myopia (- 0.57 D vs.    

- 0.86 D).  

A more recent study (Lam et al., 2014) assessed a ‘Defocus Incorporated Soft Contact’ 

(DISC) contact lens. This lens was a concentric ring design similar to that used in Anstice 

and Phillips’ 2011 study, however, it incorporated a positive addition of + 2.50 D,                  

+ 0.50 D stronger than the earlier study. In this study, 221 children aged eight to 13 years 
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wore either the DISC lens or single vision contact lenses. At study completion, the DISC 

group were found to have a reduction in myopia progression of 25%, with a correlated 

reduction in axial elongation (Lam et al., 2014). 

It is not just custom designed contact lenses designed for the sole purpose of myopia 

control which have been used in such studies. Commercially available centre-distance 

multifocal contact lenses (Proclear Multifocal ‘D’; CooperVision, Fairport, New York) 

were fitted to 40 myopic children aged eight to 11 years (Walline et al., 2013). After two 

years of wearing the lenses, myopic progression was reduced by 50% and AXL 

elongation by 29% in these children compared to children who wore single vision contact 

lenses.  

1.8 Other influences on myopia development 

1.8.1 The role of the sclera and choroid in growth regulation 

The aetiological link between the choroid and sclera is currently receiving much interest 

as it has been found that defocus can affect both choroidal thickness and scleral growth 

rate in humans (Read et al., 2010).  Choroidal thickness changes in response to defocus 

have been demonstrated in both chick (Wallman et al., 1995) and primate (Hung et al., 

2000) models. Defocus elicits a choroidal response within minutes of exposure, but this 

always precedes the subsequent growth change mediated by the sclera (Read et al., 

2010). Transient changes in choroidal thickness have been shown to be mechanistically 

linked to the scleral synthesis of macromolecules and thus, have an important role in the 

homeostatic control of eye growth in myopia (Nickla and Wallman, 2010). Hyperopic 

retinal defocus promotes a thinning of the choroid and an increase in scleral growth rate, 

both resulting in a posterior movement of the retina towards the focal plane. Conversely, 

myopic defocus causes choroidal thickening and slows scleral growth, leading to an 
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anterior movement of the retina. A work by Read et al. (2010) was the first to investigate 

whether these choroidal responses to sustained blur exist in the human eye. Small 

increases in AXL were observed in response to hyperopic defocus and small decreases 

were found with imposed myopic defocus. Diffuse defocus lead to a small increase in 

AXL. These changes were found to occur by 60 minutes of exposure. Read et al. 

concluded that the bidirectional nature of the changes observed suggests that the human 

visual system is able to detect the presence and the sign of defocus and alter AXL 

accordingly (Read et al., 2010). 

1.8.2 Dysfunction of the ciliary apparatus and near induced transient myopia 

Without the ciliary apparatus, the eye would be unable to exert any lenticular 

accommodative response. It is a long-standing observation that sustained, excessive 

and high cognitive demand near work may cause myopia (Angle and Wissman, 1980; 

Richler and Bear, 1980; Rosenfield and Gilmartin, 1998; Zadnik et al., 1994). To date, 

no consistent link between myopia and near work has been established, however, 

malfunctions of accommodation have been implicated (Allen and O’Leary, 2006). It has 

been suggested that this may result from a dysfunction of the ciliary body following 

cessation of sustained near vision (near induced transient myopia) and collaterally, a 

dysfunction of the accommodative response (lag of accommodation) (Ciuffreda and 

Vasudevan, 2008; Vera-Díaz et al., 2002; Wolffsohn et al., 2003a; Wolffsohn et al., 

2003b). There are some ramifications of dysfunction that affects retinal image quality via 

accommodation and or oculomotor control. Anatomical studies have shown that the 

choroid and ciliary muscle may be continuous, forming a smooth muscle layer that 

encapsulates the entire eye (van Alphen, 1986). It has followed that accommodation 

may, therefore, be intrinsically linked to eye shape and resultantly AXL.  
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The true nature and causation of the dysfunction of the ciliary apparatus remain elusive. 

One proposal, based on longitudinal ocular growth data collected from emmetropic and 

myopic children, suggests that there is a developmental failure of ciliary body expansion 

which causes mechanical tension to be exerted by the crystalline lens or ciliary body 

(Berntsen et al., 2012; Mutti et al., 1998; Zadnik et al., 1995). It is hypothesised that this 

tension inhibits equatorial globe expansion, resulting in elliptical expansion and 

therefore, axial elongation (Berntsen et al., 2012). It follows that proportional growth and 

crystalline lens thinning could become insufficient to offset the axial elongation during 

emmetropisation leading to progressing myopia (Mutti et al., 2012). 

Berntsen et al. (2012) also suggest that an increased effort to accommodate may be 

required as a result of the higher ciliary/choroidal tension in myopes. This would result in 

higher lags of accommodation and AC/A ratios in these children. According to this theory, 

high accommodative lag in myopes would be a physiological effect of rather than a 

precipitant of myopia (Berntsen et al., 2012).  It is important to determine how any 

dysfunction of the ciliary apparatus may lead to ocular structural changes. Current 

opinion is that a deficit in the ciliary apparatus associated with accommodation 

inaccuracy is likely to produce central hyperopic retinal defocus, which could be a 

putative stimulant for axial growth by the same or similar mechanism to that described 

as a response to blur created with spectacle lenses (Berntsen et al., 2012). 

There is evidence to show that during accommodation there is a transient increase in 

AXL, which has been put forward as a potential trigger for myopia in those who do 

prolonged near work (Maheshwari et al., 2011). This is supported by population studies 

in which it is demonstrated that groups that regularly perform high cognitive demand 

tasks have a much higher prevalence of myopia than those who do not (Goldschmidt, 

1968; Simensen and Thorud, 1994). 
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Mallen et al. (2006) found that the transient increase in AXL is more marked in myopes. 

Axial elongation is 0.06 mm for myopes and 0.04 mm for emmetropes under conditions 

of 6.00 D of accommodation. This level of accommodation however far exceeds the task 

demand for near work in most normal situations. This suggests that this is unlikely to be 

the true mechanism stimulating axial growth. Woodman et al. (2011) have since shown 

that as myopia progresses a marked increase in transient AXL fluctuations occurs. 

Accommodative inaccuracy may be a result of the inducement of accommodative lag at 

near, or via indirect means such as altered AC/A ratios, CA/C ratios or fusional reserves 

via an alteration in the synergistic link with the near vision triad. Studies have 

demonstrated a significant correlation between myopia progression and AC/A ratio as 

well as lag of accommodation (Gwiazda et al., 2004; Mutti et al., 2006; Price et al., 2013).  

Mutti et al. (2006) studied the accommodative lags of 1107 myopic (≤ - 0.75 D) and 

emmetropic (- 0.25 D to + 1.00 D) children and concluded that though there were 

significant differences in accommodative lag for a 4.00 D target, this only became 

apparent after the onset of myopia and they concluded that it is, therefore, unlikely to be 

of value as a predictor for myopia development. Gwiazda et al. (1995; 1993) performed 

a longitudinal study of 80, six to 18 year old children including 26 who acquired myopia 

of at least - 0.50 D and 54 who remained emmetropic (- 0.25 D to + 0.75 D). Non-

cycloplegic refractive error, accommodation, and phorias were measured annually over 

a period of three years. It was found that myopic subjects accommodate less accurately 

than emmetropic subjects (Gwiazda et al. 1995; Gwiazda et al. 1993), this is supportive 

of the theory that hyperopic defocus may be a precipitant of human myopia (Mutti et al., 

2006). Increased response AC/As was also a feature of the myopic data; although these 

were not measured by Mutti. It was therefore concluded in contradiction to the prior 
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observations of Mutti et al. (2006) that oculomotor factors during near work tasks do 

seem to contribute to the genesis of myopia. 

As a result of the above research Gwiazda and colleagues’ COMET study (2004) and 

Berntsen et al.’s STAMP study (2012) were set up and both found statistically (not 

clinically) significant effects of the use of progressive addition lenses for slowing myopia 

progression. The children presenting with the greater degrees of accommodative lag and 

near esophoria were found to progress at the slowest rate after treatment with PALs in 

COMET. Although the positive addition increases accommodation accuracy by providing 

a relative myopic shift in the image shell, it is thought that the main factor altering 

progression rate may be an indirect modification of the inferior peripheral retinal image. 

Because of the near addition in PALs, a peripheral myopic shift in defocus in the superior 

retinal quadrant is expected compared with single vision lenses when a child is looking 

in primary gaze.  

  



 

71 

 

2. INSTRUMENTATION 

2.1 Introduction 

The technical specifications and operational procedures of instruments used for data 

collection in this thesis are described in this chapter. All instrumentation and ophthalmic 

drugs used within the project are standard instruments used in Optometric and/or 

Ophthalmological practice for the assessment of ocular function and health, although 

one instrument has a bespoke attachment commissioned for the collection of off-axis 

refractive data. This adaptation will also be discussed in detail. Details of experimental 

design specific to a single experiment are described in the relevant chapter. 

2.2 Vision and visual acuity measurement 

Distance monocular vision and visual acuity were recorded using an Early Treatment 

Diabetic Retinopathy Study (ETDRS) chart (Precision Vision, La Salle, IL, USA) 

positioned at four metres from the participant. This instrument was used to determine if 

participants met eligibility criteria based on visual acuity in the studies described in 

Chapters 6 and 7. 

LogMAR notation was used throughout the study. LogMAR charts address some of the 

widely recognised deficiencies of the Snellen chart and, therefore, allow for the most 

accurate quantification of vision and visual acuity (Ferris et al., 1982). Perhaps most 

importantly for the scope of this study, it allows for consistent testing at all levels of visual 

acuity due to the equal number of optotypes per line and regular geometric progression 

in letter size (Bailey and Lovie, 1976).  
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The particular instrument used in this study is a portable device with an integrated light 

box to provide back illumination of the test card (see Figure 2.1). Though the chart is 

portable, it was positioned in the same location and position for all participants, thus 

allowing for more careful control and consistency of ambient lighting levels.  

Figure 2.1 Illuminated 4m ETDRS chart. 

2.3 Intra-ocular pressure 

Assessment of Intra-ocular pressure (IOP) was made before cycloplegia for participants 

in the study described in Chapter 6, using the Tiolat iCare TA01 rebound tonometer 

(iCare Finland Oy, Finland). This instrument utilises the impact-rebound principle, 

whereby a magnetised probe is fired towards the cornea by a solenoid (Nakamura et al., 

2006). Motion data is analysed at the point where the probe makes contact with the 

cornea. Analysis of these motion parameters allows for the IOP at the time of impact to 

be calculated (Kageyama et al., 2011). This instrument does not require topical corneal 

anaesthesia and has been shown to be better tolerated than non-contact techniques in 

walkers
Cross-Out
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a child population (Kageyama et al., 2011). Tonometry readings from the iCare 

tonometer have been found to be in reasonable agreement with Goldmann applanation 

tonometry (Abraham et al., 2008; Van der Jagt and Jansonius, 2005), however other 

studies have reported an overestimation of IOP compared to Tonopen XL (Medtronic 

Solan, Jacksonville, FL) (Garcia - Resua et al., 2006).  

2.4  Cycloplegia 

Cycloplegia was used prior to refractive data collection in the studies contained in 

Chapters 4, 5 and 6. Each eye was cyclopleged by the instillation of one drop of 

Cyclopentolate Hydrochloride 1% following instillation of one drop of Proxymetacaine 

Hydrochloride 0.5%. Both are supplied in minims (Bausch and Lomb UK Ltd). 

Cyclopentolate Hydrochloride is a muscarinic antagonist that is administered topically in 

optometric and ophthalmic practice to reduce ciliary muscle function, therefore, 

controlling accommodation. 

Cyclopentolate acts as a blockade of the parasympathetic nervous system by preventing 

the miotic action of acetylcholine on the muscarinic receptors of the sphincter pupillae 

(Titcomb, 2003). Additionally, there is a blockade of ciliary muscle contraction (Siu et al., 

1999) preventing the crystalline lens from becoming more convex, resulting in impaired 

accommodative capability (Eperjesi and Jones, 2005). The binding of Cyclopentolate to 

muscarinic receptors is reversible, and the inhibitory effect is commensurate with the 

bioavailability of the drug (Siu et al., 1999). It is important for practitioners to recognise 

that Cyclopentolate has a latent period of 30 - 40 minutes until cycloplegia is adequately 

established. Measurements taken during this period are likely to be unreliable 

unrepeatable and inaccurate (Eperjesi and Jones, 2005).  
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The use of topical anaesthesia before cycloplegia is common and is intended to increase 

absorption and drug effectivity to ensure that maximal cycloplegia is attained with the 

shortest latent period possible. Topical anaesthesia before cycloplegia has been found 

to shorten significantly the time taken to achieve maximum cycloplegia, especially in 

individuals with darkly pigmented irides (Siu et al., 1999). 

The pharmacological mode of action by which prior topical anaesthesia assists 

cycloplegia is not yet fully understood. It is unclear whether local anaesthetic has any 

interaction with Cyclopentolate at the receptor level (Siu et al., 1999). It has been 

postulated that topical anaesthesia disrupts the corneal epithelium, leading to increased 

corneal permeability, enhancing the bioavailability and reducing the action time of 

Cyclopentolate (Herse and Siu., 1992).  Using a topical anaesthetic and Cyclopentolate 

together may also prolong the presence of the drugs in the tears as reduced basal tear 

production and blink rate directly reduce the pre-corneal tear turnover rate (Patton and 

Robinson, 1975). 

It is known that Cyclopentolate does not achieve absolute cycloplegia, with residual 

accommodation levelling at 1.50 D or less (Leat et al., 1999). However, this is adequate 

for the scope of this study. 

 It has been reported that the presence of dilated pupils that are non-responsive to light 

along with a push-up amplitude of accommodation over 2.00 D is likely to reap unreliable 

and inaccurate measures of refraction (Amos, 2001). However, the presence of a small 

level of residual accommodation means that no adjustment of refraction needs to be 

made to account for ciliary muscle tonus (Viner, 2004). A Royal Air Force (RAF) Rule 

(Richmond Products, Albuquerque, NM) was used to check that the participants’ 

accommodative amplitude had reduced to below two dioptres before proceeding to 

collect refraction data. 
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2.5 Biometry 

Measures of AXL, anterior chamber depth (ACD) and corneal curvature (CR) were 

collected for all studies contained in this thesis (Chapters 4, 5, 6 and 7). Traditionally, A-

scan ultrasound has been used to collect AXL and ACD data. However, A-scan has been 

largely superseded by the Zeiss IOLMaster (Carl Zeiss, Jena, GmbH) (see Figure 2.2). 

The IOLMaster is a non-contact technique that utilises the principle of partial coherence 

interferometry (PCI). Clinical advantages of the IOLMaster over A-scan include: negating 

the need for topical anaesthesia, avoiding the risk of corneal injury secondary to 

applanation, being less challenging for the patient and having greater precision.  

Figure 2.2 The Carl Zeiss IOLMaster 500. 

2.5.1 Measurement of axial length 

The IOLMaster has been widely reported as a safe, reliable and accurate instrument for 

AXL determination in adults (Goyal et al., 2003; Kielhorn et al., 2003; Lam et al., 2001; 

Rose and Moshegov, 2003; Santodomingo-Rubido et al., 2002) and children (Carkeet et 
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al., 2004; Hussin et al., 2006). The repeatability of optically measured AXL readings has 

been reported to be superior to those obtained by A - scan (Carkeet et al., 2004; Hussin 

et al., 2006; Kielhorn et al., 2003).   Data are, however, equivocal on whether there is an 

agreement between IOLMaster and A - scan data. Though Santodomingo-Rubido et al. 

(2002) and Hussin et al. (2006) both report almost perfect agreement between devices, 

other studies found IOLMaster readings to be consistently higher (Goyal et al., 2003; 

Kielhorn et al., 2003; Rose and Moshegov, 2003). Lam et al. (2001) reported that the 

IOLMaster produced slightly shorter AXL measurements than A - scan though this was 

not statistically significant. 

Marginal discrepancies in ocular distance measurement may be attributable to 

ultrasound wavelengths being reflected from the internal limiting membrane, whereas 

PCI signals return from a deeper retinal structure: the RPE (Hussin et al., 2006). Corneal 

indentation during ultrasound applanation also has the potential to result in shorter AXL 

values.  

PCI uses an inbuilt infrared diode laser to measure the distance between the corneal 

apex and the retinal pigment epithelium (RPE) (see Figure 2.3). Light from the diode 

laser (λ 780 mm) is split into two equal coaxial beams (CB1 and CB2) by a beam splitter 

(BS1) which both then enter the eye. Reflections occur at the level of the cornea (CB1C 

and CB2C) and retina (CB1R and CB2R). The four light beams emerging from the eye 

enter a photodetector. The mirror (M1) is moved at a constant speed to produce a 

particular interference pattern. The resulting extent of the mirror displacement can be 

accurately measured and related to the signals received at the photoreceptor, for a 

precise quantification of corneal to retinal distance to be made (Santodomingo-Rubido 

et al., 2008).      
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Figure 2.3 Operating principal of the IOLMaster. Reproduced with permission 
(Santodomingo-Rubido et al., 2008) [A new non-contact optical device for ocular 
biometry, Santodomingo-Rubido, J., Mallen, E. A., Gilmartin, B. and Wolffsohn, J. S. 
British Journal of Ophthalmology Vol. 86, Copyright © 2002, BMJ Publishing Group 
Limited]. 

2.5.2 Measurement of corneal radius 

The IOLMaster uses image analysis methods to measure the central corneal radius 

(Elbaz et al., 2007). Measurements of corneal curvature taken by the IOLMaster closely 

correlate with those taken by conventional keratometers such as the Javal-Schiotz and 

videokeratoscopy (Németh et al., 2003; Santodomingo-Rubido et al., 2002).  

To take a measurement, the practitioner aligns a graticule with a central light spot 

reflected from the participant’s anterior tear film surface. Surrounding the central spot 

are six further points of light which are arranged in a hexagon of 2.3 mm diameter (Elbaz 

et al., 2007). These light points must be brought into focus by manual manipulation of a 

joystick by the practitioner. Once adequately focussed, the joystick is depressed, on 

which the machine will take five rapid measurements of corneal radius, taking 0.5 
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seconds in total (Emerson and Tompkins, 2003). An average value for the curvature of 

each of the two principal meridians is displayed. The IOLMaster software derives these 

values by comparing the actual known separation of each of the three pairs of opposite 

light points with the imaged separation once projected onto the cornea.  

2.5.3 Measurement of anterior chamber depth 

Anterior chamber depth is measured along the optic axis, from the posterior face of the 

cornea to the anterior face of the crystalline lens. The IOLMaster projects a 0.7 mm wide 

optic section beam 38 degrees temporal to fixation through the anterior chamber 

(Emerson and Tompkins, 2003). The practitioner must align the corneal and lens 

sections within a boxed area marked on the instrument screen. On depression of the 

joystick, the instrument takes a photograph and measures the distance between the 

corneal vertex and the anterior lens section (Elbaz et al., 2007; Santodomingo-Rubido 

et al., 2002). An average of five readings is displayed.  

The IOLMaster has been reported to give greater values for anterior chamber depth than 

with A-scan ultrasound (Elbaz et al., 2007; Lam et al., 2001; Santodomingo-Rubido et 

al., 2002). It has been suggested that this may be due to compression of the globe during 

A-scan ultrasonography or due to the temporal positioning of the light source of the 

IOLMaster (Lam et al., 2001).  

2.6  Refractive error 

Refractive error was measured objectively, using the Shin Nippon Nvision-K 5001 

infrared autorefractor (Shin Nippon, Rexxam, Japan) for all studies described in this 

thesis (Chapters 4, 5, 6 and 7).  Autorefraction is appropriate for refractive error studies 



 

79 

 

as it is more repeatable than subjective refraction or retinoscopy (Bullimore et al., 1998; 

Walline et al., 1999; Zadnik et al., 1992). 

The Nvision-K 5001 is an open-view autorefractor, allowing the participant to view an 

object binocularly in free space. It is thought that this promotes the relaxation of 

accommodation, as well as reducing the influence of proximal accommodation (Tang et 

al., 2014). The Nvision-K 5001 has been shown to be highly accurate and repeatable for 

on and off-axis measurement (Davies et al., 2003), and has been used widely in studies 

of human refractive error (Chen et al., 2010; Ehsaei et al., 2011a; Ehsaei et al., 2011b; 

Kang et al., 2010; Logan et al., 2005) and accommodation (Wolffsohn et al., 2011; Yang 

et al., 2011). 

The Nvision-K 5001 can measure refraction and corneal curvature simultaneously 

(Nvision-K 5001 operations manual, 2004). Alignment of the participant and fixation can 

be monitored throughout the measurement session, on a colour LCD screen. The 

instrument first projects a ring target of infrared light through the entrance pupil of the 

eye that is then reflected by the retina. Following this, three infrared arcs of light of a 

smaller radius of curvature than the initial ring are projected. A motorised lens rack within 

the instrument brings the reflected images into focus, and the toroidal objective refraction 

is calculated by multiple-meridian digital analysis of the reflected image. Refractive 

prescriptions in the range of ± 22.00 D of spherical error and ± 10.00 D of cylindrical error 

in one-degree steps for cylinder axis can be measured (Davies et al., 2003). The 

instrument can be programmed to measure at 0, 10, 12 and 13.5 mm back vertex 

distances. The machine also gives a value for interpupillary distance up to 85 mm.  
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2.6.1 Peripheral refraction 

Recent years have seen increasing interest in the impact of peripheral refraction and its 

potential role in the failure of emmetropisation and subsequent ametropia, leading to the 

development of bespoke modifications to standard instruments to make them suitable 

for the collection of ocular shape data. 

The Nvision-K 5001 has been cited as being both the most useful autorefractor and being 

valid for collecting measures of peripheral refraction (Fedtke et al., 2009). This was 

mainly attributed to its ability to measure with a pupil aperture of 2.3 mm (Fedtke et al., 

2009). 

For the study described in Chapter 6, a custom-made mechanical addition was fitted to 

the housing of the NVision-K 5001 to allow for precise manipulation of fixation to obtain 

measurements at the desired eccentricities. This instrument is shown in Figure 2.4 and 

the mechanism for target-angle manipulation is shown in more detail in Figure 2.5. The 

instrument is mounted upon a wooden housing which sits over the casing of the 

autorefractor. A protractor and rotating disc attached to the peripheral arm allow it to be 

placed at differing eccentricities (Figure 2.5). The participant views a Maltese cross target 

through a Badal lens system also attached to the arm. The Badal Optometer (Badal, 

1876) is an optical instrument which is used to present a target of constant angular size 

at a range of vergences to the eye (Smith and Atchison, 1997). The Badal system was 

set up using a + 5.00 D lens at a distance of 20 cm to induce zero accommodation (see 

Figure 2.4).  
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Figure 2.4 Shin Nippon NVision-K 5001 with a custom attachment for peripheral 
refraction. 
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Figure 2.5 Aerial view of the mechanism which allows for rotation and alignment of the 
peripheral refraction instrument. Alignment positions 30 degrees from fixation are circled 
in red. 
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The eye which was not being measured was occluded with an eye patch. The measured 

points were at ten-degree increments to a maximum eccentricity of 30 degrees nasal 

and temporal to the fovea along the horizontal meridian. The casing for the auto refractor 

would likely occlude visualisation of the fixation target at angles any more eccentric than 

this. An average of three readings at each location was taken. The order that the 

positions are measured in was determined by the random selection of cards that were 

shuffled between visits. 

2.7 Perimetry 

Perimetry is a key parameter in the assessment and monitoring of visual function in 

patients with ophthalmic and neurological diseases (Harbert et al., 2012). In children, the 

feasibility and reliability of formal perimetric assessment improves with age (Patel et al., 

2015). Clinical visual field assessment is achievable in children from the age of five years 

(Patel et al., 2015). HFA SITA algorithms and Goldmann perimetry are the two most 

common perimetric approaches in children with suspected or confirmed visual field loss 

in UK hospitals (Walters et al., 2012). 

The studies presented in this thesis examine a wide age range of child participants, from 

five to 15 years of age. Different tests were used depending on the study, participant’s 

age, ability and level of cooperation. 

For the study presented in Chapter 6, Goldmann Bowl perimetry was performed on 

participants with retinal pathology (see Section 6.3 for further information). The extent of 

the visual field was assessed monocularly using standard clinical methodology as used 

in ophthalmological practice (V4e kinetic target). The Goldmann perimeter has been 

shown to be the measure of choice for changes in peripheral vision and test-retest 

variability can be < 20% (Bittner et al., 2011). The target was brought from non-seeing 
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to seeing along a minimum of six meridians, including the superior, inferior nasal and 

temporal directions. The tested points were mapped and connected with straight lines to 

form isopters.  

Visual fields were measured using the Carl Zeiss Humphrey Field Analyser 750 (HFA) 

for the study presented in Chapter 7 (specific details of testing algorithms and methods 

will be presented in detail in Section 7.2). The HFA is considered to be the gold standard 

automated perimeter. The test requires the participant to fixate on a central light target 

within a bowl-shaped screen while responding to the presentation of discrete peripheral 

light stimuli.  

Small amounts of defocus due to sub-optimal or lack of refractive correction are capable 

of causing a reduction in retinal sensitivity during perimetry (Weinreb and Perlman, 

1986). Therefore, it is imperative that optimal refractive correction must be worn to 

correct both spherical and astigmatic errors during visual field testing. Clear contact 

lenses or full aperture trial case lenses are suitable modalities of correction for perimetry. 

The use of full aperture lenses negates the problem of artefacts often caused by the 

frames of reduced aperture or spectacle lenses.  

2.8 Fundus photography 

Photographs of both fundi were taken for children participating in the study described in 

Chapter 6, using the Topcon TRC - NW8 non-mydriatic fundus camera (Topcon 

Corporation, Tokyo, Japan) (see Figure 2.6). This model has nine internal fixation points, 

which facilitate the composition of wide-angle views of the retina, which is of particular 

advantage when imaging peripheral retinal pathology. 



 

84 

 

Figure 2.6 The Topcon TRC - NW8 fundus camera. 

2.9 Data analysis and statistics 

Raw data were inputted into a Microsoft Excel spreadsheet (Microsoft Corporation, 

Washington, USA). All statistical analyses were carried out using SPSS version 21 

(SPSS Incorporated, Chicago). Both parametric and non-parametric tests were used, 

depending on the distribution of the data. These tests will be described in further detail 

in the experimental chapters of this thesis. 
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3. INTRODUCTION TO STUDY OBJECTIVES 

This thesis has been written to describe a collection of studies encouraged by the 

increasing prevalence and epidemic of myopia, with the primary aim of producing a 

cohesive investigation of the impact of central and peripheral retinal disease on myopia 

progression. The initial protocol and background to this study as approved by the 

National Research Ethics Service is presented in Appendix 10.8. However, recruitment 

to this study was severely limited and resultantly, the original study objectives were not 

met. This complication necessitated a departure from the study’s original design and 

aims. Though the proposed research question could not be answered and the scope of 

the study is much curtailed, data collected for the original project is still utilised, taking 

the form of a feasibility study (Chapter 6). Instead, data from previous studies is analysed 

alongside newly collected data, to produce a collection of unique studies on the biometry 

of myopic and non-myopic eyes more broadly.  

To benefit the overall flow of the thesis, the studies and their data have not been ordered 

chronologically with regards to when the data were collected / analysed, but rather in an 

order which allows for the presentation of studies producing normative data prior to the 

later studies which draw comparisons with them. For further clarity and to assist the 

reader, an explanation of the order and content of the experimental Chapters of thesis 

as set-out within is detailed below.  

Chapter 4 describes a large sample, cross-sectional, study in which Decision Tree 

Analysis is used to investigate the influences of: axial length, refractive group, age, 

ethnicity and gender on the well-known axial length: refractive error ratio. Research 

questions are: (a) does axial length, refractive group, age, ethnicity or gender influence 

variations in this ratio in healthy eyes? (b) Is any relationship between axial length and 

this ratio predicted by effectivity? (c) What are the normative variations? 
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Chapter 5 contains a description of another large sample, cross-sectional, study in which 

Decision Tree Analysis is used to investigate the influences of: axial length, refractive 

group, age, ethnicity and gender on corneal and refractive astigmatism (power and axis 

orientation). Research questions are: (a) Does axial length, refractive group, age, 

ethnicity or gender influence these forms of astigmatism in healthy eyes? (b) What are 

the normative variations?  

Chapter 6 presents a feasibility study on the investigation of peripheral refraction and 

axial length in eyes with peripheral retinal disease. This is an appended version of the 

project initially designed. Research questions are now: (a) Is studying eyes with these 

forms of ocular disease feasible? (b) At first glance, do the cases show striking 

differences to the normative data provided by Chapters 4 and 5? 

Chapter 7 contains a feasibility study on the influence of axial length and refractive error 

on central and peripheral retinal light sensitivity. Research questions are: (a) Does retinal 

light sensitivity depend on axial length and refractive error? (b) Can this tell us anything 

about the nature of retinal stretching in myopia? 

The final chapter (Chapter 8) provides a summary of the research, reviews the answers 

to the research questions, comments on study limitations and makes recommendations 

for further research. 
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4. THE INFLUENCE OF AGE, REFRACTIVE GROUP, ETHNICITY AND GENDER ON 

THE RELATIONSHIP BETWEEN AXIAL LENGTH AND REFRACTIVE ERROR  

4.1 Background 

A strong negative correlation between AXL and refractive error has been shown in both 

adult (Bullimore et al., 1992; Chui et al., 2008; Grosvenor and Scott, 1993; Strang et al., 

1998) and child populations (Gwiazda et al., 2002; Lam et al., 1991). It is also clear that 

changes in eye size or its components are responsible for changes in the refractive 

properties of the eye (Gwiazda et al., 2002). It is well established that axial elongation is 

the main correlate responsible for myopia progression during childhood (Grosvenor and 

Scott, 1991; Grosvenor and Scott, 1993; Larsen, 1971; Mutti et al., 2012; Sorsby et al., 

1961; Sorsby and Leary, 1970; Stenstrom, 1948). Studies have shown that while after 

the first few years of life corneal power does not alter significantly; there is a gradual 

reduction in lens power with age (Mutti et al., 2005; Zadnik et al., 1995; Zadnik et al., 

2003). However, a consistent course of AXL change with age has not yet been identified 

(Atchison et al., 2008; Grosvenor, 1987b; Koretz et al. 1989; Leighton and Tomlinson, 

1972; Ooi and Grosvenor, 1995). It, therefore, seems likely that the correlation between 

AXL and refractive error may alter at different stages of ocular development as the 

compensatory relationship between the lens and the AXL changes.  

As discussed in Section 1.3.2, axially myopic eyes have longer AXLs than eyes that are 

emmetropic or hyperopic (Mayer et al., 2001; Mutti et al., 2005). Studies by Atchison et 

al. (2004) and Deller et al., (1947) found that the mean increase in AXL per dioptre of 

myopia was 0.33 mm and 0.35 mm respectively for an adult population. It is known that 

the relationship between ocular components is not stable throughout emmetropisation, 

and so it follows that there may be potential for the relationship between refractive error 
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and axial length to vary according to age, and, therefore, these values may not be 

applicable to children.  

Calculations based on the manipulation of Gullstrand reduced model eye parameters 

(power 60 D; refractive index,1.33; radius; 5.5 mm; AXL, 22.5 mm) predict a reduction in 

MSE: AXL ratio as the axial length of the eye is increased. In this modelling, AXL is 

adjusted to produce refractive errors ranging from hyperopia to myopia. Refractive error 

is then plotted as a function of AXL. A line of best fit plotted through the data 

demonstrates the non - linearity and non - constant nature of the relationship (see Figure 

4.1). 

The predicted magnitude of the reduction in the dioptre per mm of AXL expansion 

relationship is shown in Table 4.1. Determining the relationship between AXL and 

refractive error is an essential consideration in studies investigating the effects of myopia 

control, particularly when assessing the efficacy of myopia control interventions based 
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Figure 4.1 The relationship between axial length (AXL) and refractive error (Rx) as 
predicted from calculations using Gullstrand reduced model eye parameters. 
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on axial length changes as the principal outcome measure and when considering target 

treatment age. As the main aim of myopia control interventions is to limit axial expansion, 

it is important to be able to gauge efficacy as a one millimetre difference may correspond 

to differing amounts of ametropia in differently aged populations.  

AXL 
(mm) 

AXL (m) L (D) L' (D) Rx (D) D/mm of 
change 

19.5 0.0195 -68.21 -8.21 8.21 - 
20.5 0.0205 -64.88 -4.88 4.88 3.33 
21.5 0.0215 -61.86 -1.86 1.86 3.02 
22.5 0.0225 -59.11 0.89 -0.89 2.75 
23.5 0.0235 -56.60 3.40 -3.40 2.52 
24.5 0.0245 -54.29 5.71 -5.71 2.31 
25.5 0.0255 -52.16 7.84 -7.84 2.13 
26.5 0.0265 -50.19 9.81 -9.81 1.97 
27.5 0.0275 -48.36 11.64 -11.64 1.83 
28.5 0.0285 -46.67 13.33 -13.33 1.70 
29.5 0.0295 -45.08 14.92 -14.92 1.58 
30.5 0.0305 -43.61 16.39 -16.39 1.48 
31.5 0.0315 -42.22 17.78 -17.78 1.38 
32.5 0.0325 -40.92 19.08 -19.08 1.30 
33.5 0.0335 -39.70 20.30 -20.30 1.22 

Table 4.1 Output values of Gullstrand reduced model eye calculations demonstrating 
that optical theory predicts a reduction in the Rx: AXL ratio as AXL increases (see D/mm 
of change column).  

A recent systematic review and quantitative meta-analysis of the worldwide prevalence 

of myopia in childhood and adolescence by Rudnicka and colleagues (2016) quantified 

the striking ethnic differences in myopia prevalence, which become more marked with 

age. These differing prevalences are detailed in Table 4.2. East Asians showed the 

highest prevalence of myopia (≤ - 0.50 DS) and highest increase in prevalence over time, 

with over 90% of Singaporean East Asians and 72% of Chinese East Asians aged 18 

years exhibiting myopia (Rudnicka et al., 2016). South Asians however, had much lower 

rates with limited evidence of change over time. Interestingly, there were marked 

differences between those living in South Asia compared with migrant South Asian 



 

90 

 

populations (Rudnicka et al., 2016). As myopia prevalence figures alter dramatically 

according to geographic location it also seems crucial to determine whether the 

relationship between refractive error and AXL is influenced by ethnicity at different stages 

of ocular development. 

Table 4.2 Estimated prevalence of myopia by age and ethnicity in boys and girls 
combined. Reproduced with permission (Rudnicka et al., 2016) [Global variations and 
time trends in the prevalence of childhood myopia, a systematic review and quantitative 
meta-analysis: implications for aetiology and early prevention, Rudnicka, A. R., 
Kapetanakis, V. V., Wathern, A. K., Logan, N. S., Gilmartin, B., Whincup, P. H., Cook, 
D. G. and Owen, C. G. British Journal of Ophthalmology, Vol 100, Copyright © 2016 BMJ 
publishing Group Limited]. 

This study will first determine normative data for AXL and refractive error correlations, 

and then examine if they are influenced by age, gender and ethnicity in a cross-sectional 

sample of two groups of UK children (aged six to seven and 12 - 13 years) and one group 

of UK adults (aged 18 - 25 years). The skew and kurtosis of refraction and ocular 

biometric parameters will also be assessed. This study examines children and young 

adults from the Birmingham area of the UK, which has high ethnic diversity. Comparisons 

will be made with similar UK and non-UK studies, which are on largely ethnically 

homogenous white populations. Pre-presbyopes were chosen as lens changes in 

incipient presbyopia or presbyopia itself may influence and alter a subject’s refraction. 

This study will then determine the association between the amount of myopia per 
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millimetre of axial expansion in the different age groups. The influences of gender and 

ethnicity on the Rx: AXL ratio will also be examined. 

4.2 Methods 

4.2.1 Participants 

This chapter presents an analysis of data previously collected by Dr Parth Shah and 

colleagues for the ‘Aston Eye Study’ (AES) a cross-sectional study designed to 

determine the prevalence and associated ocular biometry of refractive error in a large 

multi-racial sample of school children from the metropolitan area of Birmingham, UK. 

Data are also analysed for a cohort of adult participants which were collected on a 

student population by Dr Nicola Logan and colleagues at Aston University, Birmingham, 

UK.  

AXL and refractive error data were analysed for 760 subjects (365 male, 395 female) 

across three cohorts. Data for two separate cohorts of children, who participated in the 

AES were analysed as well as data for one cohort of 18 - 25 year olds recruited from 

Aston University’s Optometry student body. To aid comparison with previous studies of 

childhood refractive error and astigmatism, the AES recruited children either aged six - 

seven or 12 - 13 years of age (Ojaimi et al., 2005; O’Donoghue et al., 2010).  

The AES is a cross-sectional study of childhood refractive error conducted in 

Birmingham, England. A stratified random cluster sampling strategy was used for 

recruitment for this study. This system was devised based on known information about 

schools in the relevant geographical area (Logan et al., 2011). Target schools for the 

AES were stratified taking age and deprivation index of the geographical ward into 

consideration. Birmingham is made up of 40 separate ‘wards’. Each of these wards is 



 

92 

 

given an index of multiple deprivation score, which is reflective of the wards individual 

deprivation characteristics (http://www.birminghameconomy.org.uk). Tertiles of 

deprivation were created using data from January 2000 (http://www.statistics.gov.uk), 

and these were used to stratify the sample. This technique was used to ensure an equal 

representation of schools from each deprivation category.  

2004 census data (National Statistics Office, http://www.statistics.gov.uk) was used to 

determine the ethnic composition of children resident in Birmingham. The criterion of the 

sampling models were picked in order to recruit schools with a sufficient ethnic mix, and 

to include children from similar ethnic backgrounds with similar demographic and 

educational characteristics (Logan et al., 2011). The ethnic composition of each school 

was incorporated into the sampling models, using information provided by Birmingham 

City Council (Logan et al., 2011). Schools with a proportion of children of any one 

ethnicity ≥ 70% were excluded from the study.  

4.2.2 Instrumentation 

Refractive error was measured with an open-field autorefractor (Shin Nippon, Rexxam, 

Japan) while AXL was assessed with an IOLMaster 500 (Carl Zeiss, Jena, GmbH). One 

drop each of Proxymetacaine Hydrochloride (0.5%) and Cyclopentolate Hydrochloride 

(1%) (Minims, Chauvin Pharmaceuticals) were administered to child participants before 

measurement. Participants were instructed to focus on a maltese cross target placed at 

a distance of four metres. The average was taken from a minimum of five reliable 

readings for both refractive and AXL data. See Chapter 2 for more information on these 

devices. 
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4.2.3 Group demographics 

Measurements were taken on the right eyes of three age-specific cohorts of participants; 

Children participating in the AES aged six to seven years inclusive (n = 343): Children 

participating in the AES aged 12 to 13 years inclusive (n = 294) and adult participants 

(age 18 to 25 years inclusive, n = 123) recruited from Aston University's Optometry 

student body. 

The majority of subjects averaged across age groups were of British South Asian 

(56.3%) or white ethnicity (24.7%). See Table 4.3 for a breakdown of cohort 

demographics by age group.   

 Number Age (years) Ethnicity (%) Gender (%) 

6-7 
years 

343 Mean 
 

7.1 South Asian  
White 
Black 
Mixed 
Other 

East Asian 

61.2 
19.2 
12.5 
4.4 
1.8 
0.9 

 

Female 
 

Male 
 

SD 0.35 48.1 51.9 

Range 6.1 
to 
7.9 

12-13 
years 

294 Mean 13.1 South Asian  
White 
Black 
Mixed 
Other 

East Asian 

38.8 
38.4 
13.6 
5.1 
2.4 
1.7 

Female Male 
SD 0.32 55.4 44.6 

Range 12.3 
to  

13.9 
18-25 
years 

123 Mean 20.6 South Asian 
White 
Black 
Mixed 
Other 

East Asian 

85.4 
7.3 
2.4 
1.6 
2.4 
0.8 

Female Male 
SD 1.91 54.5 45.5 

Range 18.1 
to 

25.8 

Table 4.3 Cohort demographics by age group. 
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4.2.4 Ethical considerations 

Ethical approval was granted by Aston University Research Ethics Committee. The 

research adhered to the tenets of the Declaration of Helsinki. Written informed consent 

was obtained from adult participants and each child’s parent or guardian before 

participation in the study. 

4.2.5 Sample size calculation 

A priori power analysis was performed using G*Power 3 (Faul et al., 2007). A two-tailed, 

linear bivariate regression (one group, size of slope) with an α level of 0.05 and a β level 

of 0.2 was performed to compute required sample size. Calculating for a medium effect 

size of 0.3 (Cohen, 1988; Prajapati et al., 2010) resulted in a total required sample size 

of 82 in each group. Division by the asymptotic relative effectivity correction (ARE 0.91) 

for non-parametric data adjusted the sample size to a total requirement of 91 participants 

per group.  

4.2.6 Statistical analysis 

Distributions of refraction and AXL are described in terms of central tendency and spread 

(mean and SD), skewness and kurtosis. Statistical analysis of skewness and kurtosis 

enables further characterisation of the location and variability of the data. Skewness is a 

measure of the lack of symmetry of a data set around its centre point. Kurtosis is a 

measure of the number of outliers relative to a normal distribution. Data sets with low 

kurtosis tend to have ‘heavy tails’ (outliers), while sets with low kurtosis have light tails 

(a lack of outliers) (Laerd statistics ©, 2013, Lund Research Ltd.).  

Results of correlation gradients, Mann - Whitney U testing, Spearman’s rank - order 

correlation and Decision Tree Analysis (DTA) are all reported. All confidence intervals 
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(CI) are 95%. For this study, myopia was defined as MSE refraction (sphere +        

(cylinder / 2)) ≤ - 0.50 D, emmetropia as MSE > - 0.50 D to < + 2.00 D, and hyperopia as 

MSE ≥ + 2.00 D. 

Decision tree analysis (DTA) using the chi-squared automatic interaction detection 

(CHAID) method was also performed to determine the hierarchical influence of each 

nominal independent variable on the dependent variables. DTA is a form of multivariate 

analysis where each node of a decision tree represents a statistical analysis on an 

attribute, while the branches represent the outcomes of the individual tests. The 

advantage of this form of analysis is that all variables are accounted for at once, therefore 

influence of confounding is removed. DTA and CHAID have previously been used by 

other studies in the field of optometry to achieve multivariate analysis (Dunstone et al., 

2013; Guillon and Maissa, 2005). 

At each stage of the analysis, chi-squared testing was performed at splitting and 

Bonferroni adjustments were applied to p-values to account for multiple testing. At each 

stage, the strongest interaction with the dependant variable is determined by CHAID. 

The CHAID model contains as series of nodes, including the the root node (the 

dependant variable), parent nodes (a node which has other nodes stemming from it) and 

child nodes (a node coming from another node). It has been suggested that minimum 

node sizes should be set depending on overall sample size (Collins et al., 2010) and for 

larger sample sizes a minimum size of 20 for the parent node and 10 for the child node 

is appropriate (the Measurement group 1999-2005). For the purposes of this study, 

parent nodes of 30 and child nodes of 15 were used, as a sample size of 30 is generally 

accepted as large enough to define as a population and is therefore large enough to 

analyse (Bailey, 2008).  
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4.3 Results 

4.3.1 Prevalence of myopia 

The prevalence of myopia (MSE = ≤ - 0.50 D) was 8.8% (CI, 5.8 – 11.7) in the six - seven 

years cohort, 26.5% (CI, 21.5 – 31.6) in the 12 - 13 year-old cohort and 54.5%  (CI, 45.7 

– 63.3) for the 18 - 25 years group. 

4.3.2 Normality of data 

Normality of the data was tested using a Shapiro-Wilk test. For all groups, the mean 

spherical refractive error was not normally distributed (p < 0.05). AXL was normally 

distributed in all groups. p values were as follows: children aged six - seven, p = 0.15, 

12 to 13 years p = 0.56 and adult group p = 0.61. See Table 4.4 for mean MSE and AXL 

values for each cohort. Analyses of skewness and kurtosis are presented in Table 4.5. 

Age  
Group 

Mean 
MSE 
(D) 

SD Range (D) Mean 
AXL 
(mm) 

SD Range (mm) 

6-7 +0.87 1.39 +7.60 to -8.81 22.70 0.78 19.66 to 25.26 

12-13 -0.06 1.42 +5.56 to -5.66 23.49 0.86 20.56 to 26.09 
18- 25 -1.41 1.95 +3.08 to -10.48 23.98 1.12 21.40 to 27.70 

Table 4.4 Mean MSE and AXL values for each cohort. 

 

 6 – 7 years   12 – 13 years 18 – 25 years 
  SE Z  SE Z  SE Z 

MSE Skew. -0.90 0.13 -6.83 -0.62 0.14 -7.04 -1.42 0.22 0.65 
Kurt. 13.55 0.26 51.50 3.63 0.28 12.83 3.05 0.43 7.04 

AXL Skew. -0.12 0.13 -0.87 -0.09 0.14 -0.64 0.28 0.22 1.29 
Kurt. 0.85 0.26 3.24 -0.34 0.28 -1.22 0.33 0.43 0.77 

Table 4.5 Skewness, kurtosis and z values for each cohort. AXL and MSE are presented 
separately. For both skewness and kurtosis, z-scores within ± 2.58 are determined to be 
normally distributed (Laerd statistics ©, 2013, Lund Research Ltd). 
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4.3.3  Correlation between MSE and AXL 

A Spearman's rank - order correlation was run to assess the relationship between MSE 

and AXL for all three of the participant groups. Preliminary analysis showed the 

relationship in each group to be monotonic, as assessed by visual inspection of a 

scatterplot. There was a significant negative correlation between MSE and AXL in all 

three groups.  The results were as follows; children aged six - seven, rs (341) = - 0.37 p 

= < 0.005 (see Figure 4.2), children aged 12 - 13, rs (292) = - 0.48, p = < 0.005 (see 

Figure 4.3) and adults, rs (121) = - 0.68, p = < 0.005 (see Figure 4.4). 

Figure 4.2 The correlation between AXL (mm) and MSE (D) for children aged six - seven 
years. 
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Figure 4.3 The correlation between AXL (mm) and MSE (D) for children aged 12 - 13 
years. 

Figure 4.4  The correlation between AXL (mm) and MSE (D) for adults aged 18 - 25 
years. 

4.3.4 Refractive change per unit of axial expansion 

Theoretical dioptric values per 1 mm increase in AXL were derived by calculating the 
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correlate with - 3.58 D of refractive change for the six - seven year olds, - 3.10 D for the 

12 – 13 year olds and - 2.49 D for the young adult group. To enable comparison with 

previous studies, this equates to values per dioptre of increasing myopia as 0.28 mm for 

the six - seven year olds, 0.32 mm for the 12 – 13 year olds and 0.40 mm for the 18 – 

25 year olds.  

4.3.5 Distribution of data by gender 

Table 4.6 shows the distribution of mean AXL measures by age group and gender, while 

Table 4.7 shows the distribution of mean MSE by gender. 

Group Female Male MWU 
 Mean 

(mm) 
SD Range 

(mm) 
Mean 
(mm) 

SD Range 
(mm) 

p 
value 

6-7 22.49 0.76 20.49 to 
25.26 

22.90 0.75 19.66 to 
24.91 

<0.005 

12-13 23.32 0.88 20.56 to 
26.09 

23.71 0.79 21.90 to 
25.71 

<0.005 

18-25 23.99 1.22 21.40 to 
27.42 

23.96 0.98 21.49 to 
26.83 

0.93 

Table 4.6 Distribution of AXL by age group and gender. p values from Mann - Whitney 
U (MWU) statistical analysis of the difference in distribution between female and male 
participants are presented in the rightmost column. 
 

Group Female Male MWU 
 Mean (D) SD Range (D) Mean (D) SD Range (D) p value 

6-7 0.83 1.64 6.43 to -8.81 0.91 1.11 7.60 to -2.06 0.98 
12-13 -0.26 1.56 4.12 to -5.66 0.132 1.22 5.56 to -3.61 0.28 
18-25 -1.87 2.20 1.39 to -10.47 -0.85 1.42 3.08 to -6.14 0.01 

Table 4.7 Distribution of MSE by age group and gender. p values from MWU statistical 
analysis of the difference in distribution between female and male participants are 
presented in the rightmost column. 

Results of Mann - Whitney U analysis showed that there was a significant difference in 

the distribution of AXL between males and females in both the six - seven and 12 - 13 

year age groups (p = < 0.005) and that female participants had a significantly shorter 
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AXL than males (six – seven years = 22.49 mm vs. 22.90 mm and 12 - 13 years = 23.32 

mm vs. 23.71 mm). However, no significant difference was found in the distributions for 

the 18 to 25 years age group (p = 0.93).  

Conversely, in terms of MSE, Mann - Whitney U testing found that there was no 

significant difference in the distribution of MSE between male and female participants for 

the six -seven and 12 - 13 years age groups (p = 0.98 and p = 0.28 respectively). 

Females in the adult group were found to have significantly more myopic mean spherical 

errors than male subjects (- 1.87 D vs. - 0.85 D, p = 0.01).  

4.3.6 Factors influencing Rx: AXL ratio - decision tree analysis 

Decision tree analysis (DTA) was performed with Rx: AXL ratio as the dependent 

variable, and independent variables of: age, gender, ethnicity, refractive grouping and 

axial length. The output of this analysis is shown in Figure 4.5.  

For the purposes of this analysis, Rx: AXL ratio was determined for each participant by 

dividing MSE refractive error (D) by axial length (mm). To aid clarity and interpretation, 

each ratio was then classified as either > 3 mm/D or <3 mm/D. The independent variables 

age group, gender and ethnicity were all analysed directly, whereas axial length was 

categorised as ‘below average’, ‘average’ or ‘above average’ based on the average axial 

length value for participants in their corresponding age cohort.   

No association was found between Rx: AXL ratio and ethnicity, gender or axial length 

(all p > 0.05). The first nodal splitting occurred on the basis of refractive error category 

(myopic, emmetropic or hyperopic), with 82.2% of emmetropes having a Rx: AXL ratio 

of less than 3 mm/D, compared to 61.1% of myopic or hyperopic participants (X2 (1) = 

38, p = < 0.005). The myopic/hyperopic node then differentiated further on the basis of 
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age with adult particiants more likely to have ratios less than 3 mm/D than child 

participants (adult ratio < 3 mm/D = 76.5% vs. child ratio < 3 mm/D = 54.2%, X2 (1) = 9, 

p = 0.005). The final child node of the DTA was a subsequent splitting of the child 

participants resulting in a differentiation between myopes and hyperopes, with myopes 

less likely to have a ratio of < 3 mm/D compared to hyperopes (myopes 49.1 % vs. 

hyperopes 66.7%, X2 (1) = 3, p = 0.05). 
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Figure 4.5 Decision tree output of the influence of the dependent variables age, gender, 
ethnicity, refractive grouping (refraction) and axial length on the Rx: AXL ratio.  
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4.4 Discussion 

As this is a cross-sectional study, the conclusions drawn from this data are not applicable 

to specific changes within individual eyes over time, rather, they apply to populations in 

general. However, these findings provide a cross-sectional measure of a large group of 

ethnically diverse UK children and adults with a wide range of refractive errors.   

There was a myopic shift in mean MSE between younger and older cohorts (see Table 

4.4). The prevalence of myopia in this study was 8.8% for the six to seven year olds, 

26.5% for the 12 - 13 year olds and 54.5% for the adult group. For both child cohorts, 

the prevalence of myopia is considerably higher than that found in either the SMS or 

NICER studies (6-7 years prevalence NICER = 2.0%, SMS = 0.7%, 12-13 years 

prevalence NICER = 15%, SMS = 4.6%) (French et al., 2012). The finding in the 12 - 13 

year olds is more comparable with the USA CLEERE study which found a prevalence of 

23.8% (Mutti, D., oral communication, September 2011, as cited in French et al., 2012). 

The prevalence of myopia in adults in this study, though higher than expected in a 

general population, is consistent with previous cross-sectional studies of student 

populations, such as the work of Logan et al. (2005) who found a myopia prevalence of 

52.7% in a sample of 373 Aston University, UK students (mean age 19.55 years, SD = 

2.99). It is also comparable to the Scandinavian studies of Fledelius et al., 2000 and 

Kinge et al., 1998, who found prevalences of 50% and 47% respectively. The finding of 

this study is however slightly lower than that of Loman et al., 2002 who found a 

prevalence of 66% in 179 students in the USA.  

A peaked (leptokurtic) and left-skewed distribution of mean spherical equivalent 

refractive error was present for all cohorts. The adult data were significantly more skewed 

than in the other groups, while kurtosis was significantly higher for the six to seven year 

old children. These refractive findings are consistent with reports that there is a departure 
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from a Gaussian distribution of refractive error, with a clear leptokurtic distribution evident 

by the age of six years (French et al., 2012; Mutti et al., 2005; Ojaimi et al., 2005; 

Watanabe et al., 1999). Though a negative skew has been identified in adult populations, 

studies have consistently shown a positive skew in childhood, due to a higher prevalence 

of hyperopia (Flitcroft, 2014; French et al., 2012). This was not the case for the children 

examined in this study, likely to be attributable to the higher proportion of myopia and 

markedly more myopic mean MSE than previous studies (French et al., 2012; Ojaimi et 

al., 2005).  

Mean AXLs were longer than those reported by the SMS and NICER studies but 

comparable to those of the Zadnik et al.’s CLEERE study (2003). This is unsurprising as 

the prevalence and level of myopia was much more closely matched in the current study 

and CLEERE.  A Gaussian distribution of AXL was present for all cohorts, consistent 

with SMS (French et al., 2012) NICER (French et al., 2012) and the work of Ojaimi et al. 

(2005). The skewness of AXL data was also similar to NICER and SMS (French et al. 

2012), these. The distribution of AXL in the six-seven years and 12 - 13 years groups 

showed some kurtosis (six - seven years = 0.85, adult group = 0.33), however was flatter 

in the 12 - 13 year old children (- 0.33). Conversely, SMS and NICER found lower levels 

in the 6 - 7 group and a higher lever in the 12 - 13 year group (See Table 4.8) (French et 

al., 2012). 
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 6-7 years 12-13 years 
 SMS NICER Current SMS NICER Current 

MSE (D) +1.40 +1.41 +0.87 +0.83 +0.66 -0.66 
MSE kurtosis 15 7.2 13.5 19.5 5.9 3.6 

MSE skew 2.5 2.2 -0.9 0.3 1.2 0.14 
AXL (mm) 22.58 22.51 22.70 23.24 23.30 23.49 

AXL kurtosis 0.38 0.40 0.85 1.22 1.72 -0.33 
AXL skew -0.2 -0.3 -0.1 0.00 -0.1 0.3 

Table 4.8 Comparison of MSE and AXL between children living in Australia (SMS), 
Northern Ireland (NICER) and England (current study). Data for SMS and NICER 
redrawn with data from French et al., 2012. [Comparison of refraction and ocular 
biometry in European Caucasian children living in Northern Ireland and Sydney, 
Australia, French, A. N., O’Donoghue, L., Morgan, I. G., Saunders, K. J., Mitchell, P. and 
Rose, K. Invest Ophthalmol Vis Sci. Vol 53, Copyright © The Association for Research 
in Vision and Ophthalmology, Inc.].  

When data were analysed by gender, it was found that the eyes of females in both of the 

child groups had a significantly shorter AXLs than their male counterparts, despite there 

being no significant difference found between MSE. Though other studies of children 

have also found males to have longer AXLs than females, the discrepancy in the current 

study is larger, at  0.41 mm difference compared to the 0.23 mm and 0.32 mm difference 

in AXL found in previous studies (Gwiazda et al., 2002; Zadnik et al., 2002). No difference 

was found for AXL in the adult group, however, females had significantly more myopic 

MSEs than males. This differs from previous work, which has found no significant 

difference in MSE, but that females have significantly shorter AXLs than males (Logan 

et al., 2005). 

The correlation coefficient for the relationship between AXL and MSE became stronger 

for each increasing age group and were as follows; age six - seven = - 0.37,                          

12 - 13 = - 0.48 and adult = - 0.68. The COMET study (Zadnik et al., 2002) and a study 

by Jensen (1991) found correlation coefficients of - 0.32 and - 0.49 respectively. 

However, these were not broken down into age categories (COMET, 6 - 11 years, 

Jensen, 6 - 12 years) as in the current study. The ranges also differed, with these studies 

only examining myopic subjects (COMET = - 1.25 D to - 4.50 D, Jensen, - 1.25 D to           



 

106 

 

- 6.00 D). Zadnik et al. (2002) stated differences in the range of refraction as the reason 

for these differences in correlation between the two studies. SMS, NICER (French et al., 

2012) and Ojaimi et al. (2005) have also shown significant correlations between AXL and 

MSE in child populations.  

From the dioptric values of the regression slopes (see Section 4.3.4), it would appear 

that in childhood, 1 mm of axial expansion has a more profound effect on refractive error 

than in an adult population. It would also seem that the effect is more marked for the 

younger (six - seven years) than the older (12 - 13 years) children. This finding is 

coincident with an elongation of mean AXL as the cohorts increase in age, and is likely 

a reflection of the predicted reduction in Rx: AXL ratio forecast by the optical modelling 

presented earlier in this Chapter (see Section 4.1 and Table 4.1). This is further 

supported by the DTA described in Figure 4.5 which found refractive error to be the most 

significant influence on Rx: AXL ratio in this study.  

The AXL: Rx values of 0.33 mm/D and 0.35 mm/D given for adult participants in the 

studies of Deller et al. (1947) and Atchison et al. (2004) are most closely matched the to 

the value for the 12 - 13 year old cohort in this study (0.32 mm/D). The adult value was 

longer than this (0.40mm/D) and the six - seven year old value shorter (0.28 mm/D). It is 

clear that estimations made for the change in eye size per dioptre increase in myopia 

are related to the distribution and magnitude of myopia in a population. A value of three 

millimetres of axial elongation per dioptre of myopic error taken from studies of adult 

populations such as those of Deller et al (1947) and Atchison et al (2004) is commonly 

used a clinical approximation to help to understand and estimate the link between AXL 

and MSE. The findings of this study lead us to make the recommendation that caution 

should be taken when applying these assumptions to populations with different refractive 

characteristics, as one standard approximation figure is not universally applicable and is 
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not necessarily representative, given the changing prevalence of refractive error with 

ocular development and growth. Instead, an appropriately matched figure should be 

used. The Rx: AXL ratio values presented in the present study are of particular use, as 

in terms of age and refractive distribution they are representative of populations which 

are commonly used in myopia control investigations. The failure to use appropriate 

figures to approximate the efficacy of myopia control interventions has the potential to 

either obscure or overestimate the effect of the treatment modality in question.  

This study found that gender and ethnicity had no influence on the AXL: RX ratio (both 

DTA, p > 0.05). This suggests that despite known differences in the prevalence of myopia 

that are known to occur alongside these demographic characteristics the mechanism by 

which the myopia is occurring in these cases is the same.Ocular growth and refraction 

are dynamic and change irregularly over the period leading to ocular maturity (Ojaimi et 

al., 2005; Sorsby and Leary, 1969). Alongside axial expansion, changes in refractive 

components have been shown to occur during this period. This fluidity in the coordination 

of ocular components may be sufficient to cause dissimilar relationships between AXL 

and refractive error in eyes at different stages of development. Longitudinal (Pennie et 

al., 2001) and cross-sectional studies (Mutti et al., 2005) have shown that in terms of 

refraction and ocular growth, the older eye cannot be considered as a simple scaled up 

version of the infant eye. However the only way of truly understanding the interplay 

between refractive error and axial length change is to examine it by means of a 

longitudinal study designed to following a large cohort of children, with a wide range of 

refractive errors over a long time frame encapsulating emmetropisation to adulthood.  

Charts for plotting physical characteristics such as height and weight ranges and 

comparing the data with normative centile ranges are widely used in primary and 

secondary paediatric care for the routine surveillance and monitoring of a child’s 
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development. Future work to consider would be the development of similar charts but 

derived from normative AXL data such as the data presented in this chapter. Such charts 

may be a useful tool in an optometric or ophthalmological setting, particularly myopia 

control.  As well as being an easy indicator of whether the ametropia was axial or 

refractive/index related (see Section 1.1.1), it may be beneficial to develop growth curves 

for AXL for children in the same way that we have height and weight charts for children. 

Extending this study to be longitudinal would also allow the development of such charts 

to include an adult AXL or refraction predictor comparable to those available for 

predicting adult height and stature currently. This may be of use when explaining and 

answering a parent’s concerns and worries about myopia progression and end point of 

refraction. Another advantage of such a tool would be that the risk of myopia progression 

could be identified from a range of children with similar refractive characteristics.  
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5. THE INFLUENCE OF AGE, REFRACTIVE ERROR, ETHNICITY, GENDER AND 

AXIAL LENGTH ON CORNEAL AND REFRACTIVE ASTIGMATISM 

5.1 Introduction 

Astigmatism is a common refractive error (Huynh et al., 2006) which is highly prevalent 

at birth. However, its prevalence greatly reduces by the age of two years old 

(Abrahamsson et al., 1988; Gwiazda et al., 2000; Gwiazda et al., 1984; Hirsch et al., 

1963). Numerous associations have been made with astigmatism, including certain 

ocular diseases, ethnicity, genetics, ocular biomechanics, and spherical ametropia (Kee 

et al., 2013; Lyle, 1991; Read et al., 2007). 

Despite the fact that astigmatism is common and degrades visual performance 

(Abrahamsson and Sjostrand, 2003; Flitcroft et al., 2005; Harvey et al., 2004; Lyle, 1991; 

Somer et al., 2002), what causes astigmatism and whether it interferes with refractive 

development is unclear (Kee, 2013). Though a potential association between 

astigmatism in early life and myopia development has been postulated (Fulton et al., 

1982), there is significant paucity of prospective research data available on the changing 

profile of an individual’s astigmatic ametropia during the school years (O’Donoghue et 

al., 2015; Tong et al., 2004). In addition, the role of astigmatism in emmetropisation is 

unclear (Gwiazda et al., 2000) and whether it is a cause or an effect of ametropia 

development also remains unelucidated (Farbrother et al., 2004; Kee, 2013; 

O’Donoghue et al., 2015).  

Numerous studies have reported on the prevalence of refractive astigmatism in children 

of school age (Dandona et al., 2002; Gwiazda et al., 2000; Harvey et al., 2006; He et al., 

2004; He et al., 2007; Hirsch, 1963; Huynh et al., 2007; Kleinstein et al., 2003; Mutti et 

al., 2004; Naidoo et al., 2003; O’Donoghue et al., 2011; O’Donoghue et al., 2015; 
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Villarreal et al., 2000). However, reports of the levels in children with European ancestry 

have published widely differing prevalence figures. A prevalence of 26% was found in 

the United States CLEERE study (Kleinstein et al., 2003) with a much lower prevalence 

of 6.7% reported in Australia (Huynh et al., 2007) and Sweden (5.2%) (Villarreal et al., 

2000). The Northern Irish NICER study (O’Donoghue et al., 2011) found that the 

prevalence of refractive astigmatism is stable between six and seven years and 12 and 

13 years with prevalences of 24% and 20% found for each group respectively. 

As well as studies presenting widely disparate figures on the prevalence of refractive 

astigmatism in childhood, there is also disagreement on whether, and if so, how 

refractive astigmatism changes throughout infancy (O’Donoghue et al., 2011). Several 

studies have reported that the prevalence of refractive astigmatism increases throughout 

childhood (Dandona et al., 2002; He et al., 2007; Naidoo et al., 2003), however He et al. 

(2004) found a decrease with age. Some studies have shown considerable change 

during childhood (Gwiazda et al., 2000; Mutti et al., 2004) whereas other cross-sectional 

and longitudinal reports have suggested that refractive astigmatism is relatively stable 

throughout later childhood (five to 15 years approximately) (Harvey et al., 2006; Hirsch, 

1963; Huynh et al., 2007; O’Donoghue et al., 2011; Kleinstein et al., 2003). However, as 

these studies analyse data for cohorts as a whole it is not always clear what happens to 

an individual’s astigmatic error over this period (O’Donoghue et al., 2015).  

Prospective cohort studies have demonstrated equivocal findings: an association has 

been found between astigmatism and the development of myopia in childhood (Gwiazda 

et al., 2000; Hirsch, 1964) and myopia progression (Fan et al., 2004; Grosvenor et al., 

1987; Parnissen et al., 2015). However, a study monitoring myopia progression over a 

three-year period did not find an association between the magnitude of lower levels of 

astigmatism (≤ 2.00 DC) and myopia progression (Parnissen, 1991).  
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Few studies, except surveys of non-Caucasian populations (Hervey et al., 2006) have 

examined the prevalence of astigmatism in childhood beyond the age of 12 to 13 years. 

The work of O’Donoghue et al. (2015) which followed-up the children participating in the 

2011 NICER study, confirmed previous longitudinal (Hirsch, 1963) and cross-sectional 

(Huynh et al., 2007; O’Donoghue et al., 2011) studies which report that the prevalence 

of astigmatism remains relatively stable throughout childhood and also demonstrates 

that prevalence of astigmatism remains constant after 12 to 13 years of age. However, 

the authors state that these prevalence data are misleading as results from the 2015 

study showed that there was a notable minority of participants whose astigmatic profiles 

are dynamic rather than static within this period. Their study also found that the three 

year incidence of astigmatism in the younger cohort of the study was 11.6% and as such 

was very similar to that found for children in a similar age bracket in Singapore (Tong et 

al., 2004). They also found that astigmatic errors ≥ 1.00DC are likely to develop in 

approximately 10% of children during their early teenage years (O’Donoghue et al., 

2015). 

The degree and axis of astigmatism have also been put forward as being possible factors 

in how astigmatism changes with age (O’Donoghue et al., 2011) with some papers 

reporting that astigmatism in myopes increases whereas astigmatism in hyperopes 

decreases with age (Shih et al., 2004; Tong et al., 2004). There are also reports of 

increases in the prevalence of lower amounts of astigmatism (≤ 0.75 DC) but not higher 

levels of astigmatism (≥ 2.00 DC) throughout childhood (Dandona et al., 2002; He et al., 

2007). O’Donoghue et al. (2015) found a weak association between increasing 

astigmatism and a hyperopic shift in the spherical component of the refraction in two 

cohorts of children (aged six - seven and 12 - 13 years at baseline) followed-up three 

years after enrolment (Spearman p younger cohort = 0.15, p = 0.01, Spearman p older 

cohort = 0.22, p = < 0.001). An association between increasing with the rule astigmatism 
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(see Section 5.3.2 for definition) and a myopic shift in refraction was also found, but for 

the older cohort only (Spearman p = - 0.31, p = 0.006). However, as the correlation was 

low, neither the amount of astigmatism at phase one nor the change in astigmatism over 

the three year period are of use as clinical predictors of the change in the spherical 

component of refractive error over the same time frame (O’Donoghue et al., 2015).  

The prevalence of myopia is known to be population specific (Ip et al., 2007). It is 

therefore hypothesised that similar patterns may be present in the distribution and 

refractive characteristics of astigmatism. This study aimed first to determine the 

prevalence of corneal and refractive astigmatism in two large, multi-racial groups of UK 

children, aged six to seven and 12 - 13 years, and one group of young adults, all from 

the metropolitan area of Birmingham, England. The influences of: axial length, refractive 

group, age, ethnicity and gender on corneal and refractive astigmatism (power and axis 

orientation) were investigated. Research questions are: (a) Do demographic or refractive 

parameters influence these forms of astigmatism in healthy eyes? (b) What are the 

normative variations? The findings will be discussed in terms of previous works on 

astigmatism in both UK and non - UK studies.  

5.2 Ethical considerations 

Ethical approval was granted by Aston University Research Ethics Committee. The 

research adhered to the tenets of the Declaration of Helsinki. Written informed consent 

was obtained from adult participants and each child’s parent or guardian before 

participation in the study. 

5.3  Methods 

Data from two cohorts of children, taken from the Aston Eye Study (AES), and one cohort 

of Aston University students aged 18 - 25 years were analysed. These cohorts are the 
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same as those analysed in Chapter 4 of this thesis. See Section 4.2.1 for details of 

participant recruitment. This study again is an analysis of data previously collected by Dr 

Parth Shah and colleagues for AES and by Dr Nicola Logan at Aston University, 

Birmingham.  

Participant numbers vary slightly from those described in Chapter 4 due to participants 

being excluded from this analysis owing to missing corneal curvature data. For 

participant numbers and demographics for this study see Table 5.1. 

 Number Age (years) Ethnicity (%) Gender (%) 

6-7 
years 

336 Mean 7.2 South Asian  
White 
Black 
Mixed 
Other 

East Asian 

61.6 
19.0 
12.5 
4.5 
1.8 
0.6 

 

Female 
 

Male 
 

SD 0.30 48.5 51.5 

Range 6.1 
to 
7.9 

12-13 
years 

293 Mean 13.1 South Asian  
White 
Black 
Mixed 
Other 

East Asian 

38.6 
38.6 
13.7 
5.1 
2.4 
1.7 

Female Male 

SD 0.30 55.3 44.7 

Range 12.3 
to  

13.8 
18-25 
years 

117 Mean 20.5 South Asian 
White 
Black 
Other 
Mixed 

East Asian 

84.6 
7.7 
2.6 
2.6 
1.7 
0.9 

Female Male 

SD 1.86 54.7 45.3 
Range 18.4  

to  
25.8 

Table 5.1 Cohort demographics by age group 
 

For child participants, both eyes were cyclopleged prior to participation with one drop of 

Cyclopentolate Hydrochloride 1% (minims ® single dose, Bausch & Lomb, 

http://www.bausch.co.uk). One drop of Proxymetacaine Hydrochloride 0.5% (minims® 

single dose, Bausch & Lomb) was instilled prior to cycloplegia. A minimum of 30 minutes 

was waited between the instillation of Cyclopentolate Hydrochloride and commencement 
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of measures of refractive error. Confirmation of adequate cycloplegia was made by 

ensuring the presence of dilated pupils that were non-responsive to light, alongside an 

amplitude of accommodation of less than two dioptres.   

Refractive error was measured with a binocular open-field autorefractor, with the 

participant fixating on a high-contrast maltese cross target at four metres from the auto-

refractor. An average of a minimum of three measurements was used for analysis. 

Measures of corneal curvature were taken using the Zeiss IOLMaster. The average of 

three corneal curvature readings was taken. Right eye data was used in analysis. For 

further details on cycloplegia, autorefraction and corneal curvature measurements and 

equipment see Chapter 2.  

5.3.1 Sample size calculation 

A priori power analysis was performed using G*Power 3 (Faul et al., 2007). A two-tailed, 

linear bivariate regression (one group, size of slope) with an α level of 0.05 and a β level 

of 0.2 was preformed to compute required sample size. Calculating for a medium effect 

size of 0.3 (Cohen, 1988; Prajapati et al., 2010) resulted in a total required sample size 

of 82 in each group. Division by the asymptotic relative effectivity correction (ARE 0.91) 

for non-parametric data adjusted the sample size to a total requirement of 91 participants 

per group.  

5.3.2 Definitions and statistical analysis 

Mean Spherical Equivalent (MSE) refers to the spherical refraction plus half of the 

cylindrical refraction.  Myopia was defined as MSE ≤ - 0.50 D, emmetropia as > - 0.50 D 

to < + 2.00 D and hyperopia as ≥ + 2.00 D. All confidence intervals (CI) are 95%. 
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At present, there is no widely accepted definition of what level of astigmatism is classed 

as significant (O’Donoghue et al., 2015). The American Association for Paediatric 

Ophthalmology and Strabismus Vision Screening Committee recommend that 

astigmatism of greater than 1.50 DC should be detected and corrected in children aged 

four years or older (Leat, 2011; O’Donoghue et al., 2015). However, when surveyed, UK 

hospital optometrists reported that 50% of practitioners would consider prescribing for 

non-oblique astigmatism of ± 1.00 DC (Farbrother et al., 2008). For the purposes of this 

study, astigmatism is classed as a cylindrical error of ± 1.00 DC or higher, without 

reference to cylindrical axis for prevalence analysis as this enables better comparison 

with previous prevalence data (Harvey et al., 2006; Huynh et al., 2006; Mutti et al., 2004; 

O’Donoghue et al., 2015; O’Donoghue et al., 2011; Tong et al., 2002). Astigmatism was 

grouped into prevalences of ≥ 1.00 DC, ≥ 1.50 DC and ≥ 2.00 DC. This classification was 

used as it was used to allow comparison with O’Donoghue et al.’s 2011 study. 

Refractive astigmatism refers to the absolute cylindrical value taken from the 

autorefractor readings. Corneal astigmatism is taken as the difference between the 

flattest and steepest corneal meridian taken from the IOLMaster keratometry readings 

when the axis of astigmatism is taken as the flattest meridian.   

Though there is much variation between studies in the classification of astigmatism as 

WTR, ATR or OBL (Harvey et al., 2006), for the purpose of this study, WTR astigmatism 

includes negative cylinder axes falling between one and 15 degrees and 165 to 180 

degrees, and ATR is defined as axes between 75 and 105 degrees, while OBL 

astigmatisms are defined as those with negative axes from 16 to 74 and 106 to 164 

degrees. These criteria were chosen in order to make for easier comparison to other 

studies of refraction and astigmatism (O’Donoghue et al., 2011; Fan et al., 2004; Huynh 

et al., 2007).  
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To facilitate the comparison between corneal and refractive astigmatism, the axes of 

astigmatism were converted into their power vector form (Thibos et al., 1997) for both 

refractive and corneal astigmatism. Conversion was made by applying a Fourier 

transformation using the equations shown in Equation 5.1. 

𝐽𝐽0 = −  
𝐶𝐶
2

 x 𝑐𝑐𝑐𝑐𝑐𝑐2 ∝ 

𝐽𝐽45 =  −  
𝐶𝐶
2

 x 𝑠𝑠𝑠𝑠𝑠𝑠2 ∝ 

Equation 5.1 Fourier transformation equations for the calculation of vectors J0 and J45 
from the sphero-cylindrical refraction form. C refers to cylinder power in negative form 
and ∝ refers to cylinder axis (Thibos et al., 1997).  

 

Converting to vector form produces two values, termed J0 and J45. J0 represents 

Cartesian astigmatism, that is, astigmatism with its axes set at 90 and 180 degrees. WTR 

astigmatism is represented by a positive J0 value, and ATR is indicated by a negative J0 

value (Liu et al., 2011). J45, however, is representative of oblique astigmatism, where a 

cross cylinder is set at 45 and 135 degrees. A positive J45 indicates that the power is 

greatest in the 135 meridian, whereas a negative J45 indicates that the 45 degree 

meridian has the greatest power. When interpreting astigmatism in terms of power 

vectors, it may be helpful to note that cylindrical power is equal to two times the square 

root of the sum of J0
2 and J45

2 (Liu et al., 2011). 

Specific statistical analyses used in this Chapter are; chi-square testing, Mann - Whitney 

U analysis, Spearman rank - order correlation, Kruskal - Wallis H analysis and decision 

tree analysis (DTA) using the chi-squared automatic interaction detection (CHAID) 

method. DTA analysis has been explained elsewhere in this thesis (see Section 4.2.6). 

Although the methodology and the data input process is the same as explained 

previously, it should be noted that the DTAs described in Sections 5.4.5 and 5.4.7 also 

incorporated ANOVA analysis due to the numerical nature of some variables.  
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5.4 Results 

5.4.1 Prevalence of myopia 

The prevalence of myopia (MSE ≤ - 0.50 DS) was lower in six to seven year-old children 

(8.9%, CI, 5.9 – 12.0) compared with 12 to 13 year old children (26.6%, CI, 21.6 - 31.7). 

The prevalence in the adult group was 53.0% (CI, 44.0 - 62.0). Prevalences of hyperopia 

were as follows: six - seven years = 10.4% (CI, 7.2 - 13.7), 12 - 13 years = 3.41% (CI, 

1.3 - 5.5), 18 - 25 years = 0.8% (CI, 0 - 2.4).  

5.4.2 Prevalence of refractive astigmatism  

The prevalence of refractive astigmatism (≥ 1.00 DC) was 12.5% (CI, 9.0 - 16.0) in six to 

seven year old children and 12.3% for the 12 - 13 year old children (CI, 8.5 - 16.1). The 

prevalence in the adult group was 19.7% (CI, 12.5 - 26.9). 

See Figure 5.1 for a breakdown of prevalence by degree of astigmatic error. For all levels 

of astigmatism, there were no statistically significant differences between age groups in 

the prevalence of refractive astigmatism (all X2 = > 0.05). 
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Figure 5.1 Prevalence of refractive astigmatism assessed with autorefraction. 
Comparison of six-seven year old children (n = 336), 12 - 13 year old children (n = 293) 
and 18 - 25 year olds (n = 117). 
 

A chi-square test for association was conducted between age groups for the prevalence 

of refractive astigmatism over 1.00 DC. There was no statistically significant difference 

between groups (X2 (2) = 4.68, p = 0.10). 

5.4.3 Prevalence of corneal astigmatism  

The prevalence of corneal astigmatism (≥ 1.00 DC) was 33.6% (CI, 28.6 - 38.6) in six to 

seven year-old children and 29.4% (CI, 24.1 - 34.6), in 12 - 13 year old children. The 

prevalence in the adult group was 48.7% (CI, 39.6 - 57.8). 

See Figure 5.2 for a breakdown of prevalence by degree of corneal astigmatism. A 

significant difference between groups was found in the < 1.00 DC (X2 (2) = 14.04, p = 

0.001) and ≥ 1.00 DC (X2 (2) = 9.03, p = 0.01) categories. For both levels over 1.50 DC, 

no statistically significant difference in the prevalence of corneal astigmatism between 

age groups was found (both p = > 0.05). 
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Figure 5.2 Prevalence of corneal astigmatism assessed with ocular biometry measures 
of corneal curvature. Comparison of six-seven year old children (n = 336), 12 - 13 year 
old children (n = 293) and 18-25 year olds (n=117). * denotes a significant difference in 
prevalence between age groups in these corneal astigmatism categories (X2 p < 0.05). 

5.4.4 Distribution and level of refractive astigmatism  

Mann - Whitney U testing found no significant difference (U = 47,701, z = - 0.67, p = 

0.50) in median level of refractive astigmatism between age groups six-seven and 12 - 

13 (age six – seven median level = - 0.44 D, IQR = 0.39, age 12 – 13 median = - 0.45 D, 

IQR = 0.59). However, the distribution of refractive astigmatism between the adult group 

(adult median = - 0.70 D, IQR 2.23) and the six - seven years group was found to be 

significantly different (U= 21,976, z = - 2.20, p = 0.03), and also between the 12 - 13 year 

group and the adult group (U = 18,972, z = 1.98, p = 0.05). 

5.4.5 DTA of factors influencing the level of refractive astigmatism 

DTA of the dependent variable refractive cyclinder power is presented in Figure 5.3. 
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Figure 5.3 DTA of refractive astigmatism (cylinder) and the independent variables 
ethnicity, gender, age group, axial length and spherical error. 
 

The DTA first differentiated the data on the basis of age at node one, with a higher mean 

level of refractive astigmatism reported for adult participants than for child participants    

(- 0.77 DC vs. -0.56 DC). Though there was no further splitting from the adult branch, 

the child node futher differentiated on the basis of spherical error, with hyperopes over            
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+ 1.91 DS demonstrating a higher mean level of refractive astigmatism compared to 

participants with < + 1.91 DS of spherical ametropia (- 0.77 DC vs. - 0.54 DC). No 

significant associations were found for the variables ethnicity, gender or AXL (all p > 

0.05). 

5.4.6 Distribution and level of corneal astigmatism  

When age groups were analysed separately by Mann - Whitney U analysis, no significant 

difference was found in the distribution of corneal astigmatism between the six - seven 

and 18 - 25 years age groups (U = 22,137, z = 1.45, p = 0.15). However, a significant 

difference in distribution was found when the six-seven year cohort was compared 

against the 12 - 13 years cohort (U = 54,531, z = 2.33, p = 0.02). There was also 

significant difference between the 12 - 13 and 18 - 25 year old cohorts (U = 21,109, z = 

3.06, p = < 0.005. Median levels of corneal astigmatism were as follows: age six - seven 

median level = - 0.82 DC (IQR = 0.59), Age 12 - 13 median level = - 0.75 DC (IQR = 

0.57), Age 18 - 25 median level = - 0.58 DC (IQR = 0.74). 

5.4.7 DTA of factors influencing the level of corneal astigmatism 

DTA analysis of the factors influencing corneal astigmatism found no significance for any 

of the independent variables (all p = > 0.05). Variables included in analysis were, age, 

gender, ethnicity and AXL.  

5.4.8 Prevalence of refractive WTR, ATR and OBL astigmatism 

Chi-squared testing found no significant difference in the prevalence of WTR refractive 

astigmatism (≥ 1.00 DC) between age groups (X2 (2) = 4.01, p = 0.14). However, the 
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proportions of ATR and OBL astigmatism were significantly different (ATR X2 (2) = 11.57, 

p = < 0.005, OBL X2 (2) = 15.95, p = < 0.005).  

For the six to seven year old children, most refractive astigmatism was classified as 

oblique (61.9%, CI, 47.2 – 76.6). The proportion of WTR astigmatism was 26.2% (CI, 

12.9 - 39.5), while the remaining 11.9% was ATR (CI, 2.1 – 21.7). For the 12 to 13 year 

old children, again most refractive astigmatism (≥ 1.00 DC) was classified as OBL 

(50.0%, CI, 33.7 - 66.3) WTR astigmatism proportion was 33.3% (CI, 17.9 - 48.7) ATR 

was 16.7% (CI, 4.5 - 28.9). For the adult cohort, again most refractive astigmatism (≥ 

1.00 DC) was classified as OBL (65.2%, CI, 45.0 – 84.7). 30.4% had WTR corneal 

astigmatism (CI, 11.6 – 49.2) and 4.3% had ATR (CI, 0.0 – 12.6). 

5.4.9 DTA of factors influencing the prevalence of WTR, ATR and OBL refractive 

astigmatism 

DTA analysis is presented in Figure 5.4. The dependent variable was category of 

astigmatism (WTR, ATR and OBL) while independent variables were ethnicity, gender, 

age, axial length, absolute spherical error and cylindrical error. 

The DTA bifurcates first on the basis of cyclindrical error at the level of - 1.19 DC (X2 (2) 

= 34, p = < 0.005). Levels of astigmatism lower than this value are more likely to be OBL 

(64.1% vs. 47.3%). A further differentiation was identified within the subjects with 

cylinders under 1.19 DC on the basis of age, with a higher proportion of OBL astigmatism 

in the adult cohort than in either of the child cohorts (X2 (2) = 14, p = < 0.005). No 

association was found for the variables gender, ethnicity, axial length or spherical error 

(p > 0.05). 
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Figure 5.4 DTA of category of refractive astigmatism (WTR, ATR or OBL) and the 
independent variables ethnicity, gender, age group, axial length, spherical error and 
cylindrical error (cylinder). 
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5.4.10 Prevalence of corneal WTR, ATR and OBL astigmatism 

Chi-squared testing found a significant difference in the prevalence of WTR, ATR and 

OBL corneal astigmatism (≥ 1.00 DC) when age groups were compared with each other 

(WTR X2 (2) = 108.55, ATR X2 (2) = 171.90, OBL X2 (2) = 20.30, for all categories p = 

< 0.005).  

Most corneal astigmatism (≥ 1.00 DC) in the six to seven year-old children was WTR 

(65.2% CI, 56.4 – 74.0), 2.7% was ATR (CI, 0.0 – 5.7) and 32.1% was OBL (CI, 23.5 – 

40.8). In the 12- to 13-year-old children, 88.4% was WTR (CI, 81.3 – 95.2), 4.7% ATR 

(CI, 0.2 – 9.2) and 7.9% OBL (CI, 2.2 - 13.6). However, in the adult cohort, most corneal 

astigmatism (≥ 1.00 DC) was classified as ATR (84.2%, CI, 74.7 – 93.7). 14.0% had 

oblique corneal astigmatism (CI, 5.0 – 23.0) and 1.8% had WTR (CI, 0.0 – 5.3). 

5.4.11 DTA of factors influencing the prevalence of WTR, ATR and OBL corneal 

astigmatism 

The findings of the DTA can be seen in Figure 5.4. The DTA found the most significant 

difference was on the basis of age, with all 3 groups splitting separately (X2 (4) = 341, p 

= < 0.005). All groups then bifurcated on the basis of absolute cylindrical power (see 

Figure 5.5 for statistical analyses). For both child groups the DTA identified an increasing 

prevalence of WTR astigmatism with increasing cylinder power, with the highest 

prevalences in the < - 0.79 DC category (67.3%) for the six - seven year olds and in the 

< - 1.05 DC category (91.9%) for the 12 - 13 year olds. ATR astigmatism became more 

prevalent with increasing cylinder size for the adult participants. The highest prevalence 

in adults was in the < - 0.94 DC category, with a percentage of 84.7 %. Despite a further 

splitting on the basis of gender for children aged 6-7 with a cylinder of - 0.80 DC to - 0.34 

DC, no other associations were found for gender, ethnicity or axial length (p > 0.05). 
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5.4.12 Graphical representation of axes of astigmatism 

However, as the classification of astigmatism into WTR, ATR and oblique has been 

described as rather arbitrary (O’Donoghue et al., 2011), the distribution of the axes of 

both refractive and corneal astigmatism have been plotted in graphical form to better 

display the relationship between the magnitude and axis of astigmatism (for graphs of 

refractive astigmatism see Figure 5.6, Figure 4.4 and Figure 5.8) (for graphs of corneal 

astigmatism, see Figure 5.9, Figure 5.10 and Figure 5.11). These figures illustrate that 

for all groups, most refractive and corneal astigmatism is ≤ 2.00 DC. 

In terms of refractive astigmatism, for all cohorts there is a fairly even distribution of the 

axes of astigmatism under 2.00 DC. The majority of refractive astigmatisms over 2.00 

DC are WTR. Apart from the six-seven years cohort, corneal astigmatism less than 2.00 

DC shows a less even distribution than the axes of refractive astigmatism, with the 

majority of 12 - 13 year old participants having WTR corneal astigmatism, and the 

majority of 18 - 25 year old participants having ATR. 

 



 

127 

 

Figure 5.6 Plot of refractive astigmatism against axis of astigmatism for participants aged 
six - seven years (n = 336). The bar above the graph indicates which sections of the x-
axis correspond to with the rule (WTR), against the rule (ATR) and oblique (OBL) 
astigmatism.  

 
 

Figure 5.7 Plot of refractive astigmatism against axis of astigmatism for participants ages 
12 - 13 years (n = 293).  
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Figure 5.8 Plot of refractive astigmatism against axis of astigmatism for adult participants 
(n = 117).  

 

 

 

Figure 5.9 Plot of corneal astigmatism against axis of astigmatism for participants aged 
six - seven years (n = 336).  
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Figure 5.10 Plot of corneal astigmatism against axis of astigmatism for participants ages 
12 - 13 years (n = 293).  

 

 

 
Figure 5.11 Plot of corneal astigmatism against axis of astigmatism for adult participants 
(n = 117).  
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5.4.13 Relationship between refractive astigmatism and refractive error 

A statistically significant correlation was found between a greater amount of absolute 

refractive astigmatism and the absolute value of spherical refraction in the 12 – 13 year 

old age group (Spearman correlation, rs (291) = - 1.76, p = < 0.005) (see Figure 5.13). 

However, no significant correlation was found in the six - seven year old cohort (rs (334) 

= - 0.08, p = 0.17) (Figure 5.12) or adult cohort (rs (117) = - 0.15, p = 0.10) (Figure 5.14). 

Figure 5.12 Relationship between absolute spherical refractive error and absolute 
cylindrical refractive error for the six-seven years old cohort (n = 336). 
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Figure 5.13 Relationship between absolute spherical refractive error and absolute 
cylindrical refractive error for the 12 - 13 years old cohort (n = 293). 
 

Figure 5.14 Relationship between absolute spherical refractive error and absolute 
cylindrical refractive error for the 18 - 25 years old cohort (n = 117). 

 
Figure 5.15 illustrates that the presence of refractive astigmatism of at least 1.00 DC is 
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Figure 5.15 Distribution of refractive astigmatism ≤1.00D by absolute spherical refractive 
error category for children of 6 - 7 years (n = 42) and 12 - 13 years (n = 36) and adults 
aged 18 - 25 years (n =23). 

 
Kruskal - Wallis H analysis of all age groups found no statistically significant difference 

in the median level of absolute spherical error between the three axis classifications 

(WTR, ATR and OBL) (six - seven years p = 0.71, 12 - 13 years p = 0.38, 18 - 25 years 

p = 0.30). Similarly, no difference was found for the median level of MSE (six - seven 

years p = 0.24, 12 - 13 years p = 0.33, 18 – 25 years p = 0.99).  

5.4.14 Relationship between corneal and refractive astigmatism 

Figure 5.16, Figure 5.17 and Figure 5.18 show the correlation between corneal and 

refractive J0 and J45 astigmatism for each cohort separately. Spearman rank - order 

analysis found no significant association between corneal and refractive J0 or J45 for any 

age group (all p = > 0.2), except for the adult group for J45, where a significant negative 

correlation was found (rs (293) = - 0.23, p = 0.02) (see Figure 5.18). 
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Figure 5.16 Relationship between corneal J0 and J45 values for children aged six - seven 
years (n = 336). 
 

Figure 5.17 Relationship between corneal J0 and J45 values for children aged 12 - 13 
years (n = 293). 
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Figure 5.18 Relationship between corneal J0 and J45 values for adults aged 18 - 25 
years (n = 117). 
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astigmatism appears to remain relatively stable between the ages of five and 15 years 

(Harvey et al., 2006; Hirsch et al., 1963; Huynh et al., 2007; Kleinstein et al., 2003; 

O’Donoghue et al., 2011). Other, cross-sectional studies have however found an 

increase (Dandona et al., 2002; He et al., 2007, Naidoo et al., 2003), or a decrease 

(Anstice, 1971; He et al., 2004) in refractive astigmatism in this period. In the current 

study, no difference in the distribution of refractive astigmatism was found between the 

child cohorts, yet, both child cohorts were found to be significantly different from the adult 

distribution. 

The data from the current study found the prevalence of refractive astigmatism (≥ 

1.00DC) to be 12.1% and 12.3% in the 6 - 7 and 12 - 13 year age groups respectively. 

This finding is approximately midway between the prevalences found in the similarly 

designed SMS (Huynh et al., 2007) and NICER (O’Donoghue et al., 2001) studies, which 

reported 4.8% in six year olds and 6.7% in 12 year olds (SMS) and 24.0% for six to seven 

year olds and 20.0% for 12 - 13 year olds in the NICER study.  

The current study found a higher mean level of astigmatism in the adult cohort than the 

child cohort (DTA, - 0.77 DC adult cohort vs. -0.54 DC child cohort). For adults the 

highest prevalence of refractive astigmatism greater than 1.00 DC was found in the - 

0.50 DS to + 0.50 DS category. However, for both child cohorts, the highest prevalence 

occurred in the + 0.50 DS to + 2.00 DS group. As all groups had a low prevalence of 

hyperopia it may be that there is in fact higher prevalences of astigmatism in the higher 

categories of spherical ametropia, however these are being masked by the low number 

of participants in these categories in this particular cross-section of the population. 

Interestingly, the NICER study which had a much higher percentage of refractive 

astigmats than this study also had a higher proportion of spherical hyperopes. This is 

supported by the DTA finding that child participants with hyperopias greater than                 
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+ 1.91 DS also had higher cylindrical errors (- 0.77 DC vs. - 0.54 DC). This suggests that 

in childhood the degree of refractive astigmatism is linked more with hyperopia than 

myopia. This would also corroborate previous studies which have reported that hyperopic 

eyes are more likely to be astigmatic than myopic eyes (Baldwin and Mills, 1981; Dobson 

et al., 2007; Garber, 1985). Although the exact reason for the difference found by these 

studies remains unclear, it may be that there is more potential for changes or reductions 

in astigmatism in myopic eyes as they are still growing and elongating. The DTA used in 

this study does, however, suggest that the degree of refractive astigmatism in children 

and adults does not appear to be influenced by variations of ethnicity, gender or axial 

length.  

Studies have previously reported that corneal astigmatism exceeds refractive 

astigmatism (Grosvenor and Ratnakaram, 1990; Huynh et al., 2006; Huynh et al., 2007; 

O’Donoghue et al., 2011). This was also the case for both child cohorts in this study, with 

both the prevalence (refractive astigmatism, six - seven years = 12.2%, 12 - 13 years = 

12.3%, corneal astigmatism, six - seven years = 33.6%, 12 - 13 years = 29.4%) and 

magnitude (median refractive astigmatism, six - seven years = - 0.44 DC, 12 - 13 years 

= - 0.45 DC, median corneal astigmatism, six-seven years = - 0.82 DC, 12 - 13 years = 

-0.75 DC) of corneal astigmatism exceeding those of refractive astigmatism. In the adult 

cohort, 48.7% of participants had corneal astigmatism compared to 19.7% with refractive 

astigmatism, however, the median level of corneal astigmatism was lower (- 0.58 DC vs. 

- 0.70 DC). In the cohorts examined in this study no link was found between magnitude 

of corneal astigmatism and age, gender, ethnicity or axial length.  

In this study, the majority of refractive astigmatism was oblique for all cohorts. This was 

also found in the NICER and SMS studies. However DTA analysis on our data further 

revealed that the categorisation of astigmatism as WTR, ATR or OBL is linked to the 
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level of cylindrical error. DTA identified that it is only refractive astigmatisms less than        

1.19 DC which are more likely to be of oblique orientation. It has been suggested that 

oblique astigmatism varies significantly between geographical locations (Abrahamsson 

and Sjostrand, 2003). The same study reported that oblique astigmatism is a particular 

amblyogenic characteristic. However, similarly to the NICER study, graphical plotting of 

astigmatism showed the axes of astigmatism to be relatively evenly distributed, and in 

the cases of higher levels of astigmatism there was a tendency for it to be WTR or ATR. 

O’Donoghue et al. (2011) suggested that this may reduce the risk of developing 

astigmatic amblyopia in these individuals. The current study found that gender, ethnicity, 

axial length and spherical error had no influence on the categorisation of refractive 

astigmatism as WTR, ATR or OBL. Similarly, in terms of the distribution of axes of 

corneal astigmatism, DTA found no significant correlations on the grounds of ethnicity or 

axial length. Child participants showed an increase in the prevalence of WTR corneal 

astigmatism with increasing cylinder power while adults showed increasing ATR corneal 

astigmatism.   

In the NICER study (O’Donoghue et al., 2011) there was a correlation between change 

in refractive and corneal J0 for both the younger and older cohorts. However, this was 

not the case for the J45 values, where change in refractive and corneal J45 only correlated 

in the younger cohort. In the current study, no correlation was found for any cohort for J0 

or J45 in the child populations. However there was a correlation for J45 in the adult group. 

A limitation to this study is that the young adults were from a selected University 

population, so are not necessarily representative of a general population. However, the 

method of recruiting child participants means that the sample in these groups are 

representative of a school-age general, Birmingham population. As with the NICER study 

(O’Donoghue et al., 2011), measures of corneal astigmatism in this study were made 
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solely on the basis of changes to the anterior curvature of the central cornea. It cannot 

be assumed that the posterior and peripheral curvature of the cornea or lens do not also 

contribute to the origin of astigmatism. Lens curvature is of particular interest as it has 

been proposed as a contributory source of myopic astigmatism, (Gwiazda et al., 2000; 

Kaye et al., 1997). Future studies would be strengthened by including measures of 

corneal topography and lens curvature.  
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6. A FEASIBILITY STUDY ON THE INVESTIGATION OF PERIPHERAL 

REFRACTION AND AXIAL LENGTH IN EYES WITH PERIPHERAL RETINAL 

DISEASE 

6.1 Background 

Although a great deal of research interest currently surrounds emmetropisation and the 

development of myopia, their mechanisms remain largely undiscovered (Flitcroft, 2012; 

Trolio et al., 1992). The consensus belief is that the aetiology of myopia is multifactorial, 

with structural (Mutti et al., 2005), environmental (O’Donoghue et al., 2015) and genetic 

factors (Zadnik et al., 2015) all playing a role in the determination of one’s eventual 

refractive status. Nevertheless, the animal studies discussed in Section 1.7.2 of this 

thesis make it clear that eye growth has an actively regulated component that is vision 

dependent, alongside presenting significant evidence to suggest that the retina may be 

the pivotal structure in the creation of signals to guide refractive development (Schaeffel 

et al., 1998; Wallman et al., 1978). 

Whether the human retina contains the discrete machinery to guide ocular growth 

remains undetermined (Schaeffel and Wildsoet, 2013).  Findings from primate eyes are 

suggestive that a weighted importance of signals from separate retinal regions may exist, 

with most evidence seemingly suggesting that signals from the retinal periphery have a 

greater influence on the developmental mechanism (Sankaridurg et al., 2011; Smith et 

al., 2005; Smith et al., 2007).  

Myopia is not always an entirely benign, purely refractive condition. Studies have found 

that in 92% of cases of high myopia referred to a HES (Marr et al., 2001) and 44% seen 

in a community optometry or orthoptic setting (Logan et al., 2004a) high myopia is 

associated with an ocular or systemic morbidity.  
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It is as yet unclear to what extent studies manipulating emmetropisation in animal models 

apply to human ocular development, but it is obvious that it is an important mechanism 

to consider. Clinical observations of patients with discrete central or peripheral retinal 

anomaly, whether this is natural or iatrogenic, provides support for the idea that 

peripheral visual signals can significantly influence the emmetropisation process and 

resultantly the genesis of central ametropia. The study of patients with peripheral 

pathologies such as ROP and Retinitis Pigmentosa (RP) has shown that in these cases 

larger than normal ranges of central refractive errors and, on average, more significant 

central refractive errors are frequently exhibited (Connolly et al., 2002; Knight-Nanan and 

O’Keefe, 1996; Nathan et al., 1985; Sieving and Fishman, 1978) (see Figure 6.1).  

Figure 6.1 Distribution of refractive errors in healthy human eyes and eyes with ocular 
pathology. Redrawn from (Rabin et al., 1981) [Emmetropization: a vision dependent 
phenomenon, Rabin, J., Van Sluyters, R. C. and Malach, R. Investigative Ophthalmology 
and Visual Science, Vol. 20, Copyright © 1981 Association for Research in Vision and 
Ophthalmology Incorporated]. 
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errors may be induced may be by interference from the abnormal retina with the 

signalling controlling emmetropisation. 

Inherited retinal dystrophies are frequently associated with refractive errors (Chassine et 

al., 2015), and several retinal dystrophies can be associated with myopia (Marr et al., 

2001). It should be noted that congenital dystrophies such as Leber’s Congenital 

Amaurosis, are frequently linked to high hyperopias in the range of + 6.00 D to                       

+ 12.00 D, especially so in the very early forms of the condition (Hanein et al., 2006). 

However, in retinal dystrophies that are not apparent at birth but onset in early life or 

later, for example RP, refractive error is significantly skewed towards moderate myopia 

and astigmatism (Francois and Verriest, 1962). A mean spherical error of - 1.86 D has 

been found in a population with RP in comparison with + 1.00 D in an age-matched 

population without eye disease (Sieving and Fishman, 1978). The precise mechanism of 

development, or the nature of myopia in these conditions is not understood.  

This study presents a paradigm for the investigation of eye structure and function in the 

eyes of human children with certain retinal pathologies inspired specifically by the 

primate models of Smith et al.’s 2005 and 2007 studies (see Section 1.7.2). In these 

primate models visual input was altered in discrete retinal locations and the effect on 

axial length and refractive error measured using A-Scan Ultrasonography and 

Retinoscopy.  

In Smith et al.’s 2005 experiment, a translucent goggle with a central aperture (24° or 

37°) was applied bilaterally to 12 infant monkeys, depriving the peripheral retina of form 

vision while leaving central vision unrestricted. Regardless of unrestricted central vision, 

eyes which were peripherally deprived had more variable refractive errors and were 

significantly more myopic than controls (treated + 0.03 D ± 2.39 D vs. control + 2.39 D ± 

0.92 D). Form deprivation myopia was found to develop to a comparable extent to eyes 
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in which vision in the entirety of the visual field was disrupted. Following the restoration 

of peripheral vision by diffuser removal, all eyes recovered from form deprivation myopia 

(Smith et al., 2005).  

Smith et al.’s following experiment (2007) disrupted the central retina (fovea and the 

majority of the perifovea – ten to 12° in diameter) of 13 infant monkeys exclusively, by 

rendering it non-functional by thermal laser ablation. Emmetropisation was either 

unaffected or form deprivation myopia developed. In cases where form deprivation 

myopia occurred, the eyes recovered comparably to intact eyes, despite the non-

functionality of the fovea (Smith et al., 2007).  

Both studies (Smith et al., 2005; Smith et al., 2007) clearly indicate that signals from the 

fovea do not appear to be essential for many aspects of vision-dependent ocular 

development and that good central vision does not necessarily ensure normal refractive 

development. Also, peripheral visual signals can in isolation exert control over refractive 

development and result in large refractive errors if there is abnormal visual experience. 

It also appears that in cases of conflicting visual signals from the retinal  centre and 

periphery, the peripheral retinal signals can dominate central development and ocular 

growth (Sankaridurg et al., 2011). 

Though these experiments are informative to emmetropisation and the development of 

ametropia in a primate model, it is unclear how applicable these findings are to the 

human eye. This study was designed with the primary aim of investigating refraction and 

biometry in children who have pathological damage of the central vs. the peripheral 

retina. It was hoped that this would explicate whether it is an appropriate and comparable 

model and similarities could be drawn with the findings of Smith et al.’s 2005 and 2007 

primate studies. To ascertain the relative contributions of the central and peripheral retina 

in the developing eye, eye structure and function in children with normally developing 
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eyes were to be compared to children with certain retinal pathologies. It was hoped that 

this would advance the understanding of the role of the retinal periphery with regards to 

myopia development in humans and illuminate physiological and pathological variations 

in the structure of the human eye. Although current trials are attempting myopia 

amelioration by manipulating the peripheral image through modalities such as contact 

lenses, (Sankaridurg et al., 2011) a deeper understanding of the characteristics of the 

developmental mechanism is necessary to underpin this work. As explained later in this 

chapter, the above aims of this study were hampered by difficulties with recruitment and 

as such the original aims became unachievable. Resultantly, this chapter, though still 

written to describe and give reference to the original study design and aims will be 

discussed in terms of a feasibility study and analysed with regard to whether the results 

from children with retinal pathology show grossly striking differences from children with 

normally developing eyes described in the previous chapters of this thesis.   

6.2 Participants 

This study aimed to recruit children aged five to 15 years and pathologies eligible were 

entirely retinal. Conditions that also affected other ocular structures were excluded from 

data collection. Conditions included in this study were retinal conditions affecting either 

only the central retina or only the peripheral retina.  

For the purpose of this study, central conditions included any pathology that occurred 

within the retinal vessel arcades, and peripheral conditions were those where the 

damage was outside these blood vessels. Data were only collected in cases where the 

pathology had onset/been diagnosed at least six months before participation in the study. 

The following conditions are examples of those which were eligible for the study.  
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Central retinal pathologies that were considered for recruitment included but were not 

exclusive to: Retinoblastoma cases with small macular tumours, Stargardt’s disease, 

Best Macular Dystrophy, other macular dystrophies and solar maculopathy. 

Peripheral retinal pathologies under consideration were ones which fall outside the 

vessel arcades, for example, Congenital Stationary Night Blindness (CSNB), Familial 

exudative vitreoretinopathy (FEVR) without retinal traction, RP, and other peripheral 

retinal dystrophies. 

Despite the varied range of conditions that were eligible for participation in this study, 

positive responses came only from participants with RP and CSNB. Therefore, only 

these conditions are described in Sections 6.2.1 and 6.2.2. 

Four participants (one male and three females), of the age range eight to 15 years who 

had already been diagnosed with RP (two children) or CSNB (two children) participated 

in this study. These children were recruited via Birmingham Children’s Hospital. MSE 

ranged from + 2.36 D to - 14.89 D (SD = 6.71). AXL ranged from 21.41 mm to 26.80 mm 

(SD = 2.00). 

Axial length and refractive error data for healthy children with no current or previous 

history of ocular disease were used for comparison. These data were collected from six 

- seven year old and 12 - 13 year old Birmingham school-children participating in the 

Aston Eye Study and are described in detail in Chapter 4. There were 343 children in the 

six - seven years age group (mean age = 7.2 years, SD = 0.35). MSE ranged from + 

7.60D to                 - 8.81 D (mean MSE = + 0.87 D, SD = 1.39). AXL ranged from 19.66 

mm to 25.26 mm (mean AXL = 22.70 mm, SD = 0.78). In the 12 - 13 years age group 

there were 294 children (mean age = 13.1 years, SD = 0.32). MSE ranged from + 5.56 
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D TO - 5.66 D (mean MSE = - 0.06 D, SD = 1.42). AXL ranged from 20.56 mm to 26.09 

mm (mean AXL = 23.49 mm, SD = 0.86).  

For both age categories the majority of participants were of South Asian (six - seven 

years 61.2%, 12 - 13 years 38.8%) or white ethnicity (six – seven years 19.2%, 12 - 13 

years 38.4%). See Section 4.2.3 for full ethnicity breakdown. 

6.2.1 Retinitis Pigmentosa 

Retinitis Pigmentosa (or rod-cone dystrophy) is the name given to a group of hereditary 

retinal pathologies that are characterised by degenerations of the rod and cone 

photoreceptors (Hartong et al., 2006). In most typical cases of RP, the reduction in rod 

sensitivity is far in excess of the loss of cone function (Birch et al., 1999). RP affects 

around one in four-thousand people worldwide and as such is the most frequent form of 

inherited retinal dystrophy (Chassine et al., 2015). The most common inheritance of RP 

is in the autosomal recessive form, which is thought to account for 50 - 60% of cases. 

RP may instead be inherited as the autosomal dominant form in 30 - 40% of cases, or in 

the X-linked form in 10 - 15% of patients (Bunker et al., 1984; Chassine et al., 2015; 

Novak-Laus et al., 2002).  
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Figure 6.2 Optomap image of the fundus of a patient with Retinitis Pigmentosa. Image 
courtesy of BBR Optometry Ltd. 
 

The signs, symptoms and course of RP are highly variable. The age of onset of the 

disease is generally accepted to be the age at which a person begins to experience 

visual symptoms (Hartong et al., 2006). In some cases, patients will experience 

symptomatic visual loss in childhood whereas in other instances, visual symptoms will 

not manifest until mid-adulthood. It is thought that the rate of disease progression may 

be influenced by the stage of the disease and dietary, environmental and genetic factors 

(Hartong et al., 2006).  

Visual field loss in RP is characterised by a progressive restriction of far peripheral and 

night vision in adolescence, which eventually advances to tunnel vision in young 

adulthood and finally results in a total loss of central vision, typically by the age of 60 

(Hamel, 2006). These visual symptoms are due to the gradual loss of both the rod and 

cone photoreceptors. Attenuated retinal blood vessels is a universal finding in RP, whilst 

other observable fundus features are: bone spicule-shaped intra-retinal pigmentation in 
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the mid or far-periphery and optic disc pallor (Hartong et al., 2006; Chassine et al., 2015). 

However, these signs may both be absent in the early stages of the disease (Berson et 

al., 1980). Other common findings are posterior subcapsular cataracts that occur in 

approximately 50% of RP cases (Berson et al., 1980; Fishman et al., 1985; Heckenlively, 

1982; Pruett, 1983), and cells being present and observable within the vitreous humour 

(Hartong et al., 2006). Though RP is usually confined to the eye, it should be noted that 

30 syndromic forms exist which feature non-ocular disease, examples of these 

syndromes include Bardet—Biedl syndrome and Usher’s syndrome (Hartong et al., 

2006).  

Figure 6.3 Histological appearance of a healthy human retina (left) and retina of a patient 
with Retinitis Pigmentosa at a mid-stage of disease (right). The space between the retinal 
pigment epithelium and the outer nuclear layer in the diseased retina is a processing 
artefact. Reproduced with permission (Hartong et al., 2006) [Retinitis Pigmentosa. 
Hartong, D. T., Berson, E. L. and Dryja, T. P. The Lancet, Vol. 368, Copyright © 2006, 
Elsevier Limited]. 

The outer nuclear layer of the retina is made up of rod and cone nuclei and is severely 

damaged in individuals with RP (see Figure 6.3). The inner nuclear layer remains fairly 

well preserved until the late stages of the disease when many of the amacrine, bipolar 

and horizontal cells begin to degenerate (Hartong et al., 2006). The bone spicule 

pigmentation is deposited in the neural retina as a response to photoreceptor cell death 
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(Li et al., 1995). Electroretinogram studies of patients with RP have found that in most 

cases, photoreceptor function has begun to degenerate many years before any visual 

symptoms are reported and as early as six years old, even in patients who do not report 

visual symptoms until early adulthood (Berson, 1993).  

It should be noted that although in some individuals central field loss will occur in the 

initial stages of the disease, visual acuity may be of a normal level even in cases of 

advanced RP if a small central island of visual field remains. Patients can lose up to 90% 

of foveal cones before a reduction in acuity occurs (Gellar and Sieving, 1993). A visual 

acuity of + 0.10 LogMAR or better indicates the function of foveal cones (Holopigian et 

al., 1996). However, patients who have a visual field restricted more than approximately 

50 degrees in the horizontal meridian will begin to experience subjective difficulties with 

everyday tasks (Szlyk et al., 2001). A decline in contrast sensitivity is common in RP 

(Lindberg et al., 1981), and is often responsible for poor subjective vision in individuals 

who have a good high contrast resolution (Lodha et al., 2003). Colour vision may or may 

not be affected. Acquired Tritanopia (a deficiency in blue cone function) is a classic 

finding in advanced RP (Hartong et al., 2006). 

Refractive error is significantly skewed towards moderate myopia and astigmatism in RP 

(Francois and Verriest, 1962). A study by Sieving and Fishman (1978) found an MSE of 

- 1.86 D in Retinitis Pigmentosa compared to + 1.00 D in a population without ocular 

disease. Interestingly, it was also concluded that there was a variance in refractive error 

between groups of RP patients with differing inheritance patterns. Individuals with X-

linked Retinitis Pigmentosa were found to have significantly higher myopic refractive 

errors (mean MSE = - 5.51 D) than those with other forms of RP (mean  MSE = - 1.20 

D).  Other studies have shown that X-linked RP is consistently associated with myopia 

(Jayasundera et al., 2010; Pelletier et al., 2007), and one study observed that X-linked 



 

149 

 

cases had average myopias over - 2.00 D (Fishman et al., 1998). Conversely, autosomal 

dominant RP has been shown to be associated with hyperopic refractive errors (Berson 

et al., 1980; Fishman et al., 1988).  

6.2.2  Congenital Stationary Night Blindness 

CSNB describes a group of rare, clinically and genetically heterogeneous genetic 

disorders of the retina that predominantly affect signal processing within the 

photoreceptors, retinoid recycling in the RPE, or signal transmission via the retinal 

bipolar cells (Zeitz et al., 2007).  Fundus appearance may be normal or abnormal (Zeitz 

et al., 2015).  

A common visual symptom reported by individuals with CSNB is night or dim light vision 

disturbance or delayed dark adaptation due to impaired photoreceptor transmission; 

however, some patients also report photophobia (Zeitz et al., 2015). Though night 

blindness is a common feature of many progressive retinal disorders, CSNB is present 

at birth and is a generally stable condition that does not feature RPE changes (Zeitz et 

al., 2015). Some forms of CSNB may have other associated ocular findings such as; 

reduced VA, refractive error (most commonly myopia, but occasionally hyperopia), 

nystagmus, strabismus, and abnormalities of the fundus (Bijveld et al., 2013, Miyake et 

al., 1987). CSNB can be classified as X-linked, autosomal recessive or autosomal 

dominant, according to the pattern in which it is inherited (Carr et al., 1974). ERG is an 

important diagnostic tool in CSNB (Zeitz et al., 2015). Abnormal rod ERGs and an 

abnormal dark-adaptation curve are a universal finding in cases of CSNB (Godara et al., 

2012). X-linked CSNB can be further sub-divided into two forms, complete (also known 

as CSNB1) and incomplete (CSNB2). Though both forms of X-linked CSNB have similar 

signs and symptoms, the incomplete form is less severe, not always associated with 
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night blindness and there is a reduced but measurable rod cell response to light, whereas 

the response is absent in the complete form (Bijveld et al., 2013). Oguchi disease is a 

distinctive form of autosomal recessive CSNB with an abnormal fundus appearance 

(Oguchi, 1907). 

6.2.3 Exclusion criteria 

This study had a variety of different exclusions, ranging from medical reasons to potential 

difficulty in performing the tasks. Participants were ineligible for participation in the study 

if they had poor general health or a systemic general health problem. This criterion also 

encompassed individuals with collagen/connective tissue disorders, for example, Marfan 

or Stickler syndromes. 

Ocular reasons for being excluded included any ocular comorbidity inclusive of cornea, 

media or lens pathologies. Participants with surgically induced ametropia or those who 

had had previous refractive surgery were also excluded.  Additionally, participants who 

were at the time of the study or have previously been involved with medicinal trials or 

refractive intervention (e.g. myopia control) studies were excluded. 

Individuals who were born more than eight weeks prematurely were excluded. Long-term 

studies of refractive error have shown that there is a higher frequency of myopia in these 

patients compared to babies carried to full term (Choi et al., 2004; Holmstrom et al., 

1998). Participants who are unable to perform the tests for example due to poor fixation 

or an inability to place their chin on a headrest were also excluded.  

6.3 Methods 

Data were collected from both eyes. A short ocular and general health history 

encompassing inclusion/exclusion criteria was taken before the measurement to ensure 



 

151 

 

participant eligibility. Distance VAs were recorded in LogMAR notation using an 

illuminated 4m ETDRS chart (Precision Vision, La Salle, IL, USA). For participants who 

were unable to perform the task with letter optotypes, a 3 m crowded Kay Picture Test 

book was used (Kay Pictures, Tring, Hertfordshire) and results were again recorded in 

LogMAR notation.  

One drop of Proxymetacaine (0.5%) and Cyclopentolate (1%) (Minims, Chauvin 

Pharmaceuticals) were administered to participants, and a period of at least 30 minutes 

was left before measurement. A Royal Air Force (RAF) Rule (Richmond Products, 

Albuquerque, NM) was also used to check that the participants’ accommodative 

amplitude had reduced to below two dioptres before proceeding to collect refraction data.  

The extent of the visual field was assessed in participants with retinopathy using 

monocular Goldmann perimetry using a V4e target. The Goldmann perimeter has been 

shown to be the measure of choice for changes in peripheral vision and test-retest 

variability can be as low as < 20% (Bittner et al., 2011). The target was brought from 

non-seeing to seeing along a minimum of six meridians, including the superior, inferior, 

nasal and temporal directions. The tested points were mapped and connected with 

straight lines to form isopters.  

Central and peripheral cycloplegic autorefraction were measured with an open-field 

objective autorefractor (Shin-Nippon NVision-K 5001, Shin-Nippon, Japan), with a 

bespoke custom addition to allow for the collection of peripheral data. Participants were 

asked to fixate on a Maltese cross target at a distance of 20cm through a + 5.00 D Badal 

lens system and the mean of five readings were taken for each subject (see Section 

2.6.1 for further details on autorefraction methodology and the Badal system used). AXL 

was measured using the IOLMaster 500 (Carl Zeiss, Jena, GmbH). Again, the average 

was taken from a minimum of five readings. Fundus photographs were taken with the 
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Topcon TRC-NW8 fundus camera (Topcon Corporation, Tokyo, Japan). For further 

information on the instrumentation used in this study see Chapter 2. 

A debrief, and an opportunity for the participant to ask any further questions was given 

at the end of their involvement in the study. If the investigator had any concerns about 

the participant’s vision or eye health, their parent / guardian was informed directly and 

appropriate referral/management was made. Following data collection, referrals were 

made to Birmingham Children’s Hospital for two control group child participants without 

retinal pathology for the further investigation of their rapidly progressing high myopia. 

6.4 Results 

Four participants with retinal pathology participated in this study. Due to the small sample 

size, these are discussed in a case study style and age and or refraction is matched to 

other participants where appropriate. Depending on their age at time of participation, 

data for each participant were compared with normative data from either the six - seven 

or the 12 – 13 year old children studied in Chapter 4 of this thesis. This methodology was 

used to ensure that comparisons were drawn with a group which was as closely age 

matched with each individual participant as possible. All peripheral refraction data are 

presented graphically on a ten dioptre scale. 

6.4.1 Participant A 

Participant A is a female of Pakistani ethnic origin with Autosomal Recessive CSNB, who 

was eight years old at the time of participation in this study. Participant A was diagnosed 

with CSNB at one year old. Participant A has a positive family history of the condition, 

with her older teenage Sister and Mother both affected by the condition too. There is also 

a history of myopia in the family with both parents being moderately short-sighted.  
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On examination, distance LogMAR VAs were RE + 0.40 and LE + 0.36. A right alternating 

Esotropia was present at distance and near (Distance = 10 ∆ base out, Near = 50 ∆ base 

out) along with a fine horizontal jerk nystagmus. Visual fields are depicted in Figure 5.4. 

Figure 6.4 Goldmann perimetry plots of  left and right eyes for participant A. Degrees 
from fixation are displayed on a scale extending vertically from the centre of each plot. 

 

Participant A had no general health conditions, and IOP was normal on examination      

(15 mmHg bilaterally). Central refraction was found to be: 

RE: - 13.68 / - 2.42 x 177, LE: - 13.20 /- 2.39 x 21 
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For peripheral refraction plots see Figure 5.5. AXL was RE: 26.80 mm LE: 26.54 mm. 

See Figure 5.6. 

Figure 6.5 Plot of right and left eye peripheral refraction for participant A. Standard 
deviation error bars surround each point. Eccentricities from fixation are depicted on the 
x-axis. 

Figure 6.6 AXL for participant A (orange markers) plotted against normative data from 
aged 12 - 13 participants (blue markers). 

Measurement of anterior chamber depth was not possible for this participant but WTR 

corneal astigmatism (see Section 5.3.2 for definition) was found in both eyes with 

keratometry readings of: 
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RE: 7.32 x 168, 7.00 x 78 and LE: 7.34 x 175, 7.09 x 85. 

6.4.2 Participant B 

Participant B is a female of South Asian ethnic origin with CSNB, who was 15 years old 

at the time of participation in this study. Participant B was diagnosed with Autosomal 

recessive CSNB and is registered as Severely Sight Impaired (SSI). There is a positive 

history of the condition on the maternal side of her family, with her Mother having the 

condition from childhood too.  

On examination, distance LogMAR VAs were RE + 0.45 and LE + 0.52. Participant A 

had a manifest latent nystagmus and an intermittent alternating Exotropia. Visual fields 

were found to be restricted by Goldmann Bowl perimetry (see Figure 6.7). 

Figure 6.7 Goldmann perimetry plots of  left and right eyes for participant A.  

 
Participant B is being treated by her family doctor for migraines and alopecia, but no 

other general health problems were present. IOP was normal on examination. Central 

refraction was found to be: 

RE: - 6.76 / - 1.54 x 118, LE: - 4.06 / - 1.50 x 66. 
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For peripheral refraction values see Figure 5.8. AXL was RE: 24.72 mm LE: 24.32 mm 

(see Figure 6.9). Anterior chamber depth was measured as 3.76 mm in the right eye and 

3.68 mm in the left eye. 

Figure 6.8 Plot of right and left eye peripheral refraction for participant B. Standard 
deviation error bars surround each point. Eccentricities from fixation are depicted on the 
x-axis. 

Figure 6.9 AXL for participant B (orange markers) plotted against normative data from 
aged 12 - 13 participants. 
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RE: 7.45 x 169, 7.36 x 79 and LE: 7.49 x 35 and 7.30 x 125. 

6.4.3 Participant C 

Participant C is a female of South Asian ethnic origin with Autosomal Recessive bilateral 

progressive rod/cone dystrophy (type: RP), who was 11 years old at the time of 

participation in this study. Participant C was diagnosed with RP at eight years old and 

has a strong family history of the condition on the maternal side of her family with her 

cousins and grandma affected by the condition. It should be noted that participants C 

and D are siblings. Her older brother (participant D, see Section 6.4.4) has also been 

diagnosed with RP. 

On examination, distance monocular LogMAR VAs were + 0.5 in each eye. There was a 

moderate right exotropia observable on dissociation, which recovered following blink. 

Visual fields were found to be severely restricted by Goldmann Bowl perimetry (see 

Figure 6.10). 

Figure 6.10 Goldmann perimetry plots of left and right eyes for participant C.  
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Mild mid-peripheral pigmentation outside of the vessel arcades was observable. 

Participant C had no general health or other ocular condition, and IOP was normal on 

examination (17mmHg bilaterally). Central cycloplegic autorefraction was found to be: 

RE: + 3.29 / - 1.86 x 10, LE: + 3.10 / - 2.28 x 179. 

For peripheral refraction, plots see Figure 6.11. AXL was RE: 21.50 mm LE: 21.41 mm 

(see Figure 6.12). Anterior chamber depth was found to be 3.47 mm in the right eye and 

3.39 mm in the left. 

Figure 6.11 Plot of right and left eyes for participant C. Standard deviation error bars 
surround each point. Eccentricities from fixation are depicted on the x-axis. 
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 Figure 6.12 AXL participant C (orange markers) plotted against normative data from 
aged 12 - 13 participants. 

There was WTR corneal astigmatism in both eyes. Keratometry results were: 

RE: 7.49 x 2, 7.14 x 92 and LE: 7.52 x 173, 7.18 x 83. 

6.4.4 Participant D 

Participant D is a male of South Asian ethnic origin with RP, who was 14 years old at the 

time of participation in this study. Participant D was diagnosed with Autosomal Recessive 

Bilateral Progressive Rod/Cone Dystrophy (type:  Retinitis Pigmentosa) at eight years 

old and has a strong family history of the condition on the maternal side of his family with 

his cousins and grandma affected by the condition. It should be noted that participants 

C and D are siblings. Participant D’s younger sister (participant C, see Section 6.4.3) 

was diagnosed with RP after him.   
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On examination, distance LogMAR VAs was + 1.00 in the right eye and + 0.92 in the left. 

Visual fields were found to be severely restricted by Goldmann Bowl perimetry (see 

Figure 6.13). 

Figure 6.13 Goldmann perimetry plots of left and right eyes for participant D.  

 

A 30∆ left constant exotropia was present as well as horizontal nystagmus. Mild mid-

peripheral pigmentation outside of the vessel arcades was observable. Participant D has 

asthma, but no other general health or other ocular condition, and IOP was normal on 

examination (15 mmHg bilaterally). Central refraction was found to be: 

RE: - 0.38 /- 2.94 x 1, LE: - 0.13 / - 3.29 x 180. 

Due to high the high amplitude of the nystagmus, it was only possible to measure 

peripheral refraction at 30 degrees nasal and temporal to the macula for each eye (see 

Figure 6.14). 
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Figure 6.14 Plot of right eye for participant D. Standard deviation error bars surround 
each point. Eccentricities from fixation are depicted on the x-axis. 

 

AXL was RE: 23.58 mm LE: 23.52 mm (see Figure 6.15). Measurement of anterior 

chamber depth was not possible for this participant. Both eyes exhibited WTR corneal 

astigmatism. Corneal curvature was: 

RE: 7.89 x 4, 7.40 x 94 and LE: 7.97 x 180, 7.35 x 90. 

Figure 6.15 AXL for participant D (orange markers) plotted against normative data 
from aged 12 - 13 participants. 
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6.5 Discussion 

This Chapter describes a cross-sectional study to elucidate the feasibility of collecting 

peripheral refraction, axial length and perimetry data in children aged five to 15 years 

with peripheral retinal pathology. The data collected was also analysed to determine if 

there are any obvious, striking differences between data in these cases compared to the 

normative data collected from children already described in Chapters 4 and 5 of this 

thesis.  

Due to a small sample size, the data in this chapter are presented as a series of case 

studies. Owing to the nature of this format, there is no statistical testing possible to truly 

determine the nature of the relationship between AXL and refractive error in participants 

with CSNB and RP. Instead, here we are looking merely at the position of each 

participant’s individual data relative to a normative sample of suitably age-matched 

children without ocular pathology. Consequently, comment is limited, except to say that 

the data from all four participants (A - D) appear grossly normal with regards to their 

position relative to the normative data and the line of best fit. It is clear that the myopic 

participants (A,B, and D) all have myopia which is accompanied by an increase in AXL. 

For all participants refractive error appears largely axial in nature rather than due to 

corneal or crystalline lens changes. The fact that the axial length of these eyes is in line 

with normal axial growth suggests that RP and CSNB are likely to be useful models to 

compare with normally developing eyes. However, it should be noted that for all eight 

eyes with pathology their data point sits slightly below the line of best fit. If there is a 

difference in the correlation between AXL and MSE in cases of peripheral retinal 

pathology such as RP or CSNB, it is only very slight and could only be elucidated with 

proper statistical testing with an appropriately large sample size. 



 

163 

 

To compare the difference in MSE between central and peripheral refraction, the central 

MSE was subtracted from the values for the 30 degree eccentricities (Mutti et al., 2000). 

The peripheral differences, from primary gaze refraction, for the nasal and temporal 

retina, for children with pathology are presented in Table 6.1. 

Case 
Study 

RIGHT EYE LEFT EYE 

MSE (D) T N MSE 
(D) N T 

A -14.89 H 
+5.59 

H 
+2.89 -14.40 H 

+1.41 
H 

+2.60 

B -7.53 H 
+3.41 

H 
+0.12 -4.81 M 

-0.30 
H 

+1.18 

C +2.36 M 
-1.95 

M 
-1.82 +1.96 M 

-0.25 
M 

-1.77 

D -1.85 M 
-0.81 

H 
+0.38 -1.76 H 

+1.76 
M 

-3.56 

Table 6.1 Peripheral refraction differences, from primary gaze refraction (MSE), for the 
nasal and temporal retina, for case studies A - D. H denotes a hyperopic relative 
peripheral refraction, while M denotes a myopic relative refraction.  
 

The peripheral refraction findings are largely typical of peripheral refraction patterns 

reported in previous studies of children and young adults without ocular disease. These 

studies have found that emmetropic and hyperopic groups tend to have relative 

peripheral myopia (Atchison et al., 2005b; Millodot., 1981; Mutti et al., 2000; Sng et al, 

2011a). Myopic eyes however, have been shown to exhibit relative peripheral hyperopia 

in the nasal and temporal fields compared to primary gaze (Atchison et al., 2006; 

Berntsen et al., 2010; Chen et al., 2010; Kang et al., 2010;  Millodot, 1981; Mutti et al., 

2000; Radhakrishnan et al., 2013; Sng et al., 2011a; Yamaguchi et al., 2013). For both 

participants (A and B) who had relative peripheral hyperopia nasally and temporally, the 

temporal retinal field was more hyperopic than the nasal retinal field.  This is consistent 

with the findings of Berntsen and Kramer (2013) Lin et al., (2010) and Sankaridurg et al., 

(2011). The most marked peripheral hyperopia was for participant A, who was vastly 

more myopic. This is supported by the work of Atchison et al. (2006) who found that to 
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some extent, the degree of relative peripheral hyperopia increases according to the 

degree of myopic central ametropia.  

The normal visual field extent in healthy eyes is approximately 100° temporally, 75° 

inferiorly and 60° nasally and superiorly (Spector, 1990). For the children with RP and 

CSNB in this study, visual fields were comparatively restricted, between ten and 60 

degrees for all meridians. For breakdown by meridian see Table 6.2. 

 Range of field 
restriction (degrees) 

Superior 5 to 45 
Inferior 7 to 50 
Nasal 5 to 50 

Temporal 5 to 60 

Table 6.2 Breakdown of visual field restriction for participants with retinal pathology by 
visual field meridian.  

 

It is known that a gradual loss of rod and cone photoreceptors is responsible for 

advancing tunnel vision in RP (Hamel, 2006). Both participants with RP in this study 

showed a restriction of visual field extent between 5 and 15 degrees. Both participants 

with CSNB had slightly larger isopters, between 16 and 50 degrees. These findings are 

not wildly dissimilar from the iatrogenic peripheral visual field deprivations induced in 

Smith et al.’s 2005 study, where diffusers with a 24° or 37° central opening were used to 

deprive the periphery of form vision. As with all studies of human disease, there is a 

range of severity and difference in progression course between individuals, so it is not 

possible to match the visual field restriction criteria for animal models exactly. 

Nevertheless, visual field statuses in RP and CSNB appear to be within a range to 

provide useful models for comparison with animal work in this respect. However, much 

larger numbers of participants, at least matching the original sample size calculation (see 

Appendix 10.8) would be needed to allow proper statistical analysis to be performed, and 
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to evaluate any correlations accurately. Participants should be further grouped into 

categories by severity of visual field restriction to allow for deeper analysis. A future study 

would also benefit from being longitudinal, to assess the effect of pathological peripheral 

damage on ocular development over time. Using RP and CSNB for this work would be 

of interest to compare the effect on refractive and biometric status of one progressive 

and one stationary retinal condition. 

Refractive and corneal astigmatism data were collected from all participants. All 

participants (A – D) had refractive astigmatism over 1.00 DC in both eyes. As a point of 

comparison, in the study described in Chapter 5 of this thesis, the proportions of six to 

seven year old and 12 to 13 year old children with refractive astigmatism ≥ 1.00DC were 

12.1% and 12.3% respectively. In the current study, three eyes had OBL refractive 

astigmatism, while the remaining five had WTR astigmatism. This is analogous to the 

findings of Chapter 5, where the majority of child participants had OBL astigmatism, 

however the majority of cases over 2.00 DC were WTR. Corneal astigmatism was also 

comparable with Chapter 5, with the most common corneal astigmatism condition being 

WTR (seven out of eight eyes). Seven out of eight eyes in the current study had corneal 

astigmatism ≥ 1.00 DC compared to 33.6% in the six to seven year olds, and 29.4% in 

the 12 to 13 year olds. Though no conclusions can be drawn about the state of 

astigmatism in RP and CSNB due to this study not being powered for statistical 

significance, the findings of this study mean it seems reasonable to suggest that there 

may be a high prevalence of astigmatism in these conditions, though the distributions of 

axes as WTR, ATR or OBL may be comparable to those found in a population without 

eye disease. 

In future work, ERG would be a useful tool, particularly in the cases of CSNB, to 

determine which photoreceptors are affected. Although both participants in this study 
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had Autosomal Recessive CSNB, it was not determined whether this was the complete 

or incomplete form. The incomplete type is characterised by both a reduced rod b-wave 

and substantially reduced cone response on ERG. The complete type is associated with 

a drastically reduced rod b-wave response but largely normal cone b-wave amplitude 

(Audo et al., 2009). Knowing whether both the rods and cones or just the rod cells are 

affected would give further insight into which retinal elements are important in 

emmetropisation. Furthermore, retinal OCT may be informative as to the integrity of the 

retina in participants with RP and CSNB. 

Depending on their age at time of participation, data for participants A - D were compared 

with normative data from either the six - seven or the 12 - 13-year-old children studied in 

Chapter 4 of this thesis. This methodology was used to ensure that comparisons were 

drawn with a group which was as closely age matched with each individual participant 

as possible, as it is clear from Chapter 4 of this thesis that the relationship between 

refractive error and AXL is different for differently aged populations. A limitation of this 

approach was that there was a maximum difference between participant and control 

matched group of up to 2 years in age (participant D). However, it would not have been 

possible to match participants with an appropriate individual control participant matched 

for age, gender and ethnicity due to limited recruitment. Future work should ensure closer 

age matching for improved accuracy. This could be achieved by extending a study of 

normative data on the correlation between MSE and AXL, such as that previously 

described in Chapter 4 of this thesis to include further age groups. 

In summary, this study suggests that RP and CSNB in children may be appropriate 

models for the investigation of the influence of the retinal periphery on emmetropisation 

in humans, however the validity of this research design would have to be confirmed by 

a study with an adequately large sample size. Having a large-scale longitudinal study 
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would elucidate further if the findings from animal studies can be applied to humans. 

Though recruitment was limited, this study has shown that this nature of data collection 

in participants with RP and CSNB aged between five and 15 years is feasible.  
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7. A FEASIBILITY STUDY ON THE INFLUENCE OF AXIAL LENGTH AND 

REFRACTIVE ERROR ON CENTRAL AND PERIPHERAL RETINAL LIGHT 

SENSITIVITY 

7.1 Introduction 

It is well documented that many factors influence retinal sensitivity to light, with 

increasing age (Brenton and Phelps, 1986, Haas et al.,1986), certain pathologies and 

certain medications (Zulauf et al., 1986) all known to adversely affect responses. 

However, whether a correlation exists between AXL and visual field sensitivity remains 

undetermined and is relevant to understanding the structural variations that occur in 

ametropia.  

The majority of myopia is axial in nature with the principal correlate being an increase in 

vitreous chamber depth (Bullimore et al., 1992; Logan et al., 2005; Strang et al., 1998), 

and it is widely accepted that myopic eyes are generally larger in size than emmetropic 

or hyperopic eyes (Atchison et al., 2004; Atchison et al., 2005a; Logan et al., 2005; 

Gilmartin, 2004; Gilmartin et al., 2013; Singh et al., 2006). Evidence suggests that in 

these cases the normal retina is subject to stretch and accounts for the increased 

posterior globe size (Bradley et al., 1983; van Alphen, 1961). The retinal photoreceptor 

mosaic is the primary sampling matrix of the human visual system (Ahnelt, 1998), and 

its topography serves as a limit to resolution. It seems reasonable to suggest that in 

these cases, physical stretching of the retina may lead to changes in the maximum 

resolvable spatial frequency due to decreased retinal sampling density. The eccentricity 

at which this is measurable is currently unknown. 

Approximately 4.6 million cones and 92 million rod photoreceptors are packed in a non-

uniform distribution within the neurosensory retina (Curcio et al., 1990). The cone 
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photoreceptors are most highly concentrated at the fovea (approximately 199,000 

cones/mm2), and their density decreases with increasing eccentricity from the central 

retina (Curcio et al., 1990). There are minimal rods within the fovea and an area of 

approximately 0.35mm2 around the fovea in which is completely absent of rod cells 

(Curcio et al., 1990). Peak rod density occurs in an elliptical ring-shaped zone 

approximately 3 - 5 mm from the foveola (Curcio et al., 1990; Jonas et al., 1992). 

Furthermore, differences in cone density between retinal quadrants have been identified. 

A higher density of cones has been found in the inferior mid-peripheral retina compared 

to the superior mid-periphery (Curcio et al., 1990). Cone density in the nasal retina has 

also been shown to be 40-45% greater than at an equivalent degree from the fovea in 

the temporal meridian (Curcio et al., 1990).  

The mechanism of morphologic change in myopia development is currently unknown, 

but various models have been proposed. Identification of the mechanism by which 

elongation occurs is crucial to understanding why there is potential for differences in 

visual field sensitivity to occur with varying levels of ametropia.  Modern models of 

myopic growth propose that globe expansion does not occur regularly, and that stretch 

is not limited to the pre-retinal aspect of the globe. However, there is not as yet one 

model that receives universal agreement, and the consensus view is a combination of 

the existing models (Verkicharla et al., 2012).  

Strang et al. (1998) proposed three potential models for the nature of growth in axial 

myopia: equatorial stretch, global expansion, and posterior pole stretch. More recently, 

a fourth model has been suggested: axial expansion (Verkicharla et al., 2012) (see 

Figure 7.1). In the equatorial stretching model, the axial stretch is confined to the 

equatorial region of the globe. Should this be the sole mechanism for axial elongation, 

no anatomical changes or change in sampling density should be observable at the 
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posterior pole. With global expansion, vitreous chamber growth is achieved by uniform 

expansion across the entirety of the sphere, whereas, in the posterior pole model, stretch 

occurs radially and is confined to the posterior pole (Strang et al., 1998; Verkicharla et 

al., 2012). The axial expansion model is a combination of the equatorial and posterior 

pole expansion models (Verkicharla et al., 2012). Unlike the other three models which 

result in a spherical surface, axial expansion would give a prolate ellipsoid surface 

(Verkicharla et al., 2012). The global expansion, posterior polar and axial expansion 

stretch models would all theoretically lead to a decrease in photoreceptor cell density in 

eyes with axial myopia as the normal retina directly undergoes stretch to achieve the 

increased posterior ocular volume. Should this be the case, it is assumed that 

emmetropic and hyperopic eyes should show a relative increase in peripheral light 

sensitivity compared to myopic eyes.  

Figure 7.1 Current models of retinal stretching in myopia: a) global b) equatorial c) 
posterior polar and d) axial expansion. The solid circles represent the shape of the retina 
of an emmetropic eye, the dashed shapes represent the myopic retinas, and the arrows 
indicate the regions of stretching. Reproduced with permission (Verkicharla et al., 2012) 
[Eye shape and retinal shape, and their relation to peripheral refraction, Verkicharla, P. 
K., Mathur, A., Mallen, E. A., Pope, J. M. and Atchison D. A. Ophthalmic and 
Physiological Optics Vol. 32, Copyright © 2012 The College of Optometrists]. 
 

MRI has shown that the human eye is spherical in shape up until the posterior 25% where 

there are characteristic changes in conformation (Singh et al., 2006). There is good 

evidence to support axial growth occurring non-uniformly (Logan et al., 2004b). It is 

therefore expected that all retinal locations will not be affected equally in the ametropic 
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eye as there will be a disparity of stretch exerted across different retinal quadrants during 

ametropic expansion.  

This Chapter will describe a feasibility study on the influence of axial length and refractive 

error on central and peripheral retinal light sensitivity. The research questions posed are: 

does retinal light sensitivity depend on AXL and refractive error, and can this tell us 

anything about the nature of retinal stretching in myopia? Particular reference will be 

made to which axial expansion model (Strang et al., 1998; Verkicharla et al., 2012) is 

most applicable to the nature of ocular expansion in myopia.   

7.2 Methods 

Since differential light sensitivity decreases as a function of age, to minimise this effect, 

young observers from Aston University’s student population were recruited. 34 visually 

normal individuals (7 Males, 25 females) aged between 18 and 23 years (mean = 20 

years, SD = 1.37) were subsequently enrolled in this study. A short ocular and general 

health history encompassing inclusion/exclusion criteria was taken prior to the 

measurement to ensure participant eligibility. Exclusion criteria were: iatrogenic change 

in refractive status, for example, previous refractive surgeries or surgically induced 

ametropia; astigmatism of greater than 1.00 DC in the test eye; personal or family history 

of systemic disease; use of medication known to affect the retina; retinal disease; media 

opacity and glaucoma.  

Of the 34 subjects enlisted and screened, two were excluded from the study on account 

of having a corrected distance VA of less than 0.0 LogMAR and one excluded for having 

astigmatism of greater than 1.00 DC. The total number of participants whose data was 

analysed in this study is 31. 
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Right eye data were collected from each participant. Distance visual acuities were 

recorded in LogMAR notation using an illuminated 4 m ETDRS chart (Precision Vision, 

La Salle, IL, USA).  

Non-cycloplegic distance autorefraction was measured with an open-field objective 

autorefractor (Shin-Nippon NVision K 5001, Shin-Nippon, Japan). Participants were 

asked to fixate on a Maltese cross target viewed through a Badal lens system set up to 

ensure zero accommodation, and the mean of five readings were taken for each subject. 

AXL was measured using the IOLMaster 500 (Carl Zeiss, Jena, GmbH). Again, the 

average was taken from a minimum of five readings.  

The perimeter used for determining visual field sensitivity was a Humphrey Field 

Analyser 750 (Carl Zeiss, Jena, GmbH), generally considered to be the “gold standard” 

automated perimeter. The Humphrey Field Analyser 750 model has an integrated feature 

which allows the operator to programme their own visual field test by selecting the 

desired strategy and test locations (in graph coordinate form). Using this feature, a 

custom full threshold test that used a 4 - 2 dB double reversal staircase strategy was 

designed for use in this study (see Section 2.7). The number of stimulus locations was 

chosen in order to reduce testing time and therefore reduce the influence of the fatigue 

effect (see Figure 7.2), which is a documented confounding factor in perimetry and 

thought to derive from binocular rivalry, a cortical phenomenon (Blake, 1989; Blake and 

Overton, 1979). On this bespoke test, the measurement points were placed at 10-degree 

intervals along the horizontal and vertical midlines as well as along the diagonal 

meridians.  For further information on the instrumentation used in this study see Chapter 

2. Non-emmetropic participants were corrected prior to perimetry with their own distance 

vision contact lenses or in one case, a full aperture spectacle trial lens inserted into the 

lens-holder of the perimeter and placed as close to the lash plane as possible. 
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Figure 7.2 Graph showing the stimulus positions of the custom grid designed for the 
Humphrey 750 Field Analyser. Grid x-y coordinates (degrees) are shown below the data 
points and the degrees from fixation above each location. The foveal threshold (0,0) 
option was enabled. 

Each subject was assessed on two different occasions. At the first visit, subjects 

underwent autorefraction and biometry measurements in addition to perimetry. At the 

second visit, between five to 14 days after the initial test, perimetry was repeated. Only 

the results from this second visual field test were analysed in this study to minimise the 

known influence of learning on the visual field outcome (Marra and Flammer, 1991). 
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7.2.1 Ethical considerations 

Ethical approval was acquired from Aston University’s Research Ethics Committee (see 

Section 10.1). The study conformed to the tenets of the Declaration of Helsinki. Written 

consent/assent was obtained from all participants prior to measurement. An opportunity 

was given to address any questions or concerns that the participant had at this stage 

and throughout the remainder of their participation in the study.  

7.2.2 Sample size calculation 

The following values were analysed by a linear bivariate regression one-sample t-test to 

calculate target sample size (G*Power 3 (Faul et al., 2007)). α level was set at 5% and 

a β level at 0.5%. Based on previous studies, the average within-subject variabilty (short-

term fluctuation (SF)) in healthy-eyed individuals is between 1 and 2 dB (Cubbidge et al., 

2002; Flammer et al., 1985; Wild et al., 1998). Using a SF value of 2 dB, a sample of 31 

would give a 95% confidence level of detecting differences in visual field sensitivity. 

7.3  Results 

Mean Spherical Errors (MSE) were calculated for each participant. 11 subjects were non-

myopic (MSE = > - 0.50 D), and 20 were myopic (MSE = ≤ - 0.50 D). Refractive error 

(MSE) ranged between + 1.85 D and - 6.75 D. The mean MSE was - 1.91 D (SD = 2.15). 

The mean AXL was found to be 24.17 mm (SD = 1.33).  

The data were tested for normality using the Shapiro-Wilk statistical test. AXL and mean 

spherical error were both found to be normally distributed (p = 0.89 and p = 0.21 

respectively). Preliminary analysis showed the relationship to be linear as assessed by 

visual inspection of a scatter plot, there were no outliers.  
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Pearson’s correlation tests were run to determine the nature of the correlation between 

AXL and MSE. There was a strong negative correlation between MSE and AXL (r (31) = 

- 0.80 p < 0.005), with MSE statistically explaining 65% of the variation in AXL (see Figure 

7.3). 

Figure 7.3 Correlation between AXL (mm) and MSE (Dioptres). 

 

Light sensitivity (dB) at the foveal location (0,0) was analysed as a function of AXL. A 

Shapiro-Wilk test found that foveal light sensitivity was not normally distributed (p = 0.02). 

The reciprocal of the gradient (m) derived from the equation of the line of best fit (y = 

mx+c) was calculated for the data presented in Figure 7.3 Correlation between AXL (mm) 

and MSE (Dioptres). This produces a value for the amount of change in light sensitivity 

per mm increase in AXL. There was a decrease in foveal light sensitivity to the degree 

of 1.43 dB per mm increase in AXL. However, Spearman rank - order correlation analysis 

showed no statistical significance (rs (29) = - 0.31 p = 0.10) (Figure 7.4). 
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Figure 7.4 Correlation between foveal light sensitivity (dB) and AXL (mm). 

 

Figure 7.5 Correlation between foveal light sensitivity (dB) and mean spherical error 
(Dioptres). 

However, a weak positive correlation was found between light sensitivity and MSE, with 

each 1.00 D increase in myopia corresponding to a 2.05 dB decrease in light sensitivity. 

This was significant (rs (29) 0.39 p = 0.03) (Figure 7.5). 
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Furthermore, differential light sensitivity at each stimulus location was plotted as a 

function of both MSE (see Figure 7.6) and AXL (see Figure 7.8) and these were 

subjected to Spearman rank - order analysis. Apart from the foveal threshold described 

above, a statistically significant correlation was found at one location only in both the 

analysis of AXL and MSE. This point was at ten degrees from fixation along the horizontal 

midline of the temporal field (see Figures  7.7 and 7.9). 

Figure 7.6 p values for the correlation between light sensitivity and MSE at each stimulus 
location, showing a significant value only at the fovea and at 10 degrees temporally on 
the horizontal axis of the visual field (both positions are marked in orange with a 
surrounding box). 
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Figure 7.7 Correlation between MSE and light sensitivity for location (10, 0), where 
statistical significance was found. 
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Figure 7.8 p values for the correlation between light sensitivity and AXL at each stimulus 
location, showing a significant value only at 10 degrees in the temporal visual field 
(marked with a surrounding box). 
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Figure 7.9 Correlation between AXL and Light sensitivity for location (10, 0), where 
statistical significance was found. 

The difference in light sensitivity (dB) between the stimulus locations ten and 30 degrees 

from fixation were calculated for each diagonal quadrant as well as for the horizontal axis 

in order to quantify the drop - off in sensitivity for each individual participant. The mean 

drop off in sensitivity for each quadrant of the visual field were as follows: SN = - 4.65 dB 

(SD = 2.15), ST = - 4.55 dB (SD = 3.05), IN = - 4.23 dB (SD = 2.35), IT = - 2.94 dB (SD 

= 2.41).  

Regression Slopes were plotted as a function of MSE and AXL separately for each 

quadrant (Figure 7.10). Spearman rank- order analysis found no significant correlation 

for reduction in the threshold for any quadrant of the visual field except in the inferior 

nasal quadrant for MSE but not AXL (Figure 7.11).  
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Figure 7.10 Slope gradients (m) and probability values (p) for 10 to 30 degree light 
sensitivity drop-off compared to a) AXL and b) MSE in each quadrant of the visual field 
(SN = Superior-Nasal, ST = Superior-Temporal, IT = Inferior-Temporal, IN = Inferior-
Nasal).  
 

Figure 7.11 Change in light sensitivity (dB) between points 10 degrees and 30 degrees 
from fixation in the Inferior-Nasal visual field. 

7.4 Discussion 

This chapter describes the methodology and findings of a cross-sectional feasibility study 

on the effect of refractive error and ocular length on visual field functionality in a healthy 
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in myopia, as well as a reduced efficacy of the photoreceptor mosaic precipitated by this, 

would cause a reduction in visual field sensitivity in axially longer eyes. 

A statistically significant correlation was found between foveal AXL and refractive error, 

which is concordant with previous work (Bullimore et al., 1992; Chui et al., 2008; 

Grosvenor and Scott, 1993; Strang et al., 1998). A decrease in perimetric threshold of 

the fovea was found to exhibit a statistically significant correlation with increasing 

spherical refractive error alone but not increasing AXL. When individual stimulus 

locations were analysed in isolation, only one demonstrated a statistically significant 

correlation. This location was ten degrees from fixation in the temporal field, close to the 

physiological blind spot. There was no relationship between AXL and drop-off in visual 

field sensitivity in any quadrant of the visual field. There are clinically observable 

indications that myopia related stretching does seem to occur at retinal level. These 

include tigroid fundi and optic disc crescents, which have increased prevalence in myopic 

eyes (Logan et al., 2004b). Modern techniques have also made it possible to quantify 

structural changes at a cellular level. Histological (Grossniklaus et al, 1992), 

psychophysical (Chui et al, 2005, Chui et al., 2008) and adaptive optics camera studies 

(Kitaguchi et al., 2007) of cone density in humans have shown increased photoreceptor 

spacing in highly myopic eyes and eyes with increased AXL compared to those with 

emmetropia or mild to moderate myopia, with 15 dioptres of myopia approximately 

doubling the spacing between retinal neurons (Chui et al., 2005; Kitaguchi et al., 2007). 

It, therefore, does not seem unreasonable to propose that retinal stretch may be 

occurring in the myopic eyes in this study. Nevertheless, the change is of a magnitude 

undetectable by this experimental paradigm except at the fovea and one stimulus 

location ten degrees temporal to fixation. It should also be noted that alongside 

decreasing photoreceptor density, a mechanical increase in AXL may also cause 

physical damage to or the misalignment of photoreceptors. This would have the potential 



 

183 

 

to affect light sensitivity as photoreceptor cells are known to be direction specific (Stiles-

Crawford effect) and thus will only respond to light when in a specific fixed alignment. 

Furthermore, spatial summation may have an influence on negating the effects of retinal 

stretching, but the mechanism and nature of this potential effect is currently unknown 

and unmeasurable in this paradigm. 

An inherent limitation of all studies using perimetry is that short-term fluctuation (SF) in 

the visual field threshold may be greater than the change that is being attempted to be 

measured. SF represents the scatter observed when the same threshold is repeatedly 

measured during a single perimetric examination (Bebié et al., 1976; Flammer et al., 

1984). Typically in normal subjects it is approximately 2 dB (Cubbidge et al., 2002; Wild 

et al., 1998) which may have masked changes in sensitivity due to alterations in AXL. It 

may be the case in this study that the change is being masked by this effect.  Although 

sample size calculation indicated 31 participants were needed, the SF value used was 

taken from the literature, and as such may not be accurate for or representative of the 

characteristics of this sample. The fact that there is a statistically significant correlation 

between mean spherical error and light sensitivity but not for AXL though this is 

approaching significance is further indicative of a sample size effect. This discrepancy 

may be a result of refractive error not being entirely axial in some study participants. The 

majority of studies have found that the SF is dependent upon eccentricity (Brenton and 

Phelps, 1986; Greve and Wijnans, 1972; Heijl et al., 1987; Werner and Drance, 1977). 

This has the potential to contribute to the lack of correlation in the more eccentric stimulus 

locations. Another reason for this may be because there is more sensitivity to small 

increments of change at the fovea as a result of receptor fields being larger in the 

periphery.  
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Optical considerations should also be taken into account, and it should not be assumed 

that retinal stretch is the only factor with the potential to reduce visual performance in 

myopia. The increased AXL in myopic eyes may induce inaccuracy in perimetry by 

affecting luminance levels at the retina. It is also known that traditional optical correction 

for central myopia precipitates peripheral retinal defocus, owing to the non-spherical 

shape of the eye (Mutti et al., 2000). Myopic eyes exhibit relative hyperopic peripheral 

defocus, whereas hyperopes generally experience relative myopic peripheral defocus.  

This also has potential to affect sensitivity to light by the same mechanism by which 

central defocus reduces visual sensitivity. Optical aberrations can limit visual acuity in 

emmetropes (Campbell et al., 1965). Myopic eyes have increased monochromatic 

aberrations (Applegate, 1991), which could limit visual resolution on top of the limits 

imposed by increased neural spacing.  The issue of visual field sensitivity in ametropia 

may be further complicated by the consequences of optical magnification. Corrected 

axially myopic eyes experience a reduction in retinal image size. Consequently, there is 

an increase in the retinal spatial frequency of stimuli thus potentially leading to inaccurate 

recordings by lowering neural contrast sensitivity and reducing visual performance (Chui 

et al., 2005). However, this effect is not expected to significantly impact on the results of 

this study as only one participant wore spectacle correction, while the other non-

emmetropic participants wore contact lens correction which is known to avoid these 

magnification effects.  

In summary, the results of this study indicate that at the fovea, light sensitivity decreases 

as the degree of myopia increases, perhaps due to an increase in photoreceptor spacing, 

giving support to the global expansion, posterior pole expansion and axial expansion 

models of myopia induced retinal stretch.This effect was also seen at ten degrees 

temporal to fixation in the visual field. This area is known to be close to the physiological 

blind spot, and therefore this result may be reflective of structural differences in this 
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region. However, a significant correlation between myopia and visual field sensitivity 

could not be detected by this study design at more peripheral stimulus locations in the 

visual field, perhaps because of increased threshold variability in the periphery and the 

influence of short-term fluctuation. 
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8. DISCUSSION 

Myopia is the most common ocular condition worldwide, and rather than being merely a 

refractive anomaly, is a recognised major cause of visual impairment and blindness 

(Resnikoff et al., 2008). No ‘safe’ level of myopia has been identified (Flitcroft, 2012), 

and it carries an increased risk of associated pathology such as chorioretinal 

abnormalities, cataract, and glaucoma at all levels (Saw et al., 2005). This, coupled with 

the sharp increase in myopia prevalence documented in recent years means that better 

understanding the epidemiology and structural and functional differences in these eyes 

is imperative.  

Most cases of myopia which onset in childhood are due to an increase in AXL as a 

consequence of vitreous chamber elongation (Mutti et al., 2005). The causation and 

inheritance pattern of myopia is unclear and is clearly multifactorial, known to be 

influenced by genetics, behaviour and the environment (Mutti et al., 1996; 

Radhakrishnan, 2008; Schaeffel et al., 2003). Both optical and non-optical interventions 

have been trialled which aim to limit myopia progression in childhood. By better 

understanding the mechanism which drives myopia it may be possible to optimise 

myopia control modalities or even prevent myopia from developing in the first instance. 

This thesis describes the rationale, study design and results of a collection of cross-

sectional studies which aimed to investigate the influence and  associations of various 

structural and functional parameters on the development of myopia in children. These 

differences were investigated to aid a deeper understanding as to the aetiology of 

ametropia and subsequently underpin current research attempting to achieve the 

amelioration of myopia.    



 

187 

 

The correlation between refractive error and AXL is well established in both adult and 

child populations. However, ethnicity has been found to have a significant impact on the 

correlation in Australian children (Ip et al., 2007). The study presented in Chapter 4 of 

this thesis aimed to determine the correlation in a UK population of varying ages. 

Determining the interplay between AXL and refractive error is an important consideration 

in studies investigating the effects of myopia control, particularly when considering target 

treatment age and efficacy. Refractive error and AXL data were collected from six to 

seven year old children, 12 – 13 year old children and adults aged 18 - 25, and the 

correlations were compared. Refractive and axial component dimensions were found to 

be consistent with previous studies. The correlation coefficient between AXL and MSE 

became stronger as the age of the cohort increased, with 1mm of axial expansion having 

a more profound effect on refractive error in children than in an adult population. This 

finding is coincident with an elongation of mean AXL as the cohorts increase in age, and 

is likely a reflection of the predicted reduction in Rx: AXL ratio forecast by the optical 

theory. It is clear that estimations made for the change in eye size per dioptre increase 

in myopia should be related to the distribution and magnitude of myopia in a population. 

The use of an arbitrary value should be applied with caution in a clinical setting and not 

be used to approximate the efficacy of myopia control interventions in myopia research, 

as the use of an inappropriate ratio has the potential to either obscure or overestimate 

the effect of the treatment modality. This study found that gender and ethnicity had no 

influence on the AXL: RX ratio, suggesting that despite known differences in the 

prevalence of myopia that are known to occur alongside these demographic 

characteristics the mechanism by which the myopia is developing in these cases is the 

same.  

The prevalence of corneal and refractive astigmatism between these three differently 

aged cohorts was also investigated. No difference was found in either the prevalence or 
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magnitude of refractive astigmatism between age groups, which supports the findings of 

previous work that refractive astigmatism appears to remain relatively stable between 

the ages of five and 15 years (Harvey et al., 2006; Hirsch et al., 1963; Huynh et al., 2007; 

Kleinstein et al., 2003; O’Donoghue et al., 2011). The prevalence of refractive 

astigmatism over 1.00 DC was found to be approximately midway between those 

reported by the SMS (Huynh et al., 2007) and NICER (O’Donoghue et al., 2001) studies. 

This study suggests that in childhood the degree of refractive astigmatism is linked more 

with hyperopia than myopia, with children with hyperopias greater than +1.91 DC 

demonstrating significantly higher levels of refractive astigmatism. This corroborates 

previous studies which have reported that hyperopic eyes are more likely to be astigmatic 

than myopic eyes (Baldwin and Mills, 1981; Dobson et al., 2007; Garber, 1985). It also 

appears that the degree of refractive astigmatism in children and adults does not appear 

to be influenced by variations of ethnicity, gender or axial length. When the orientation 

of the axes of astigmatism were categorised as either ‘with the rule’, ‘against the rule’ or 

‘oblique’, it was found that higher levels of both corneal and refractive astigmatism were 

more likely to be ‘with the rule’ for children and ‘against the rule’ in adults. This finding 

may be protective against the development of astigmatic amblyopia. Ethnicity and axial 

length had no significant influence on axis categorisation.  

 

Although current trials are attempting myopia amelioration by manipulating the peripheral 

image through modalities such as contact lenses, (Sankaridurg et al., 2011) a deeper 

understanding of the level of mediation the peripheral retina holds on the 

emmetropisation mechanism in humans is critical to underpin this work. To ascertain the 

relative contributions of the central and peripheral retina in the developing eye, eye 

structure and function in children with normally developing eyes and children with certain 

retinal pathologies was compared. Due to a very small sample size, comment is limited, 
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but AXL data from the four participants with peripheral retinal dystrophy appeared grossly 

normal with regards to their position relative to the normative data and the line of best fit. 

Myopia in these individuals seems axial in nature. Peripheral refraction findings were 

largely typical of peripheral refraction patterns from previous studies of children and 

young adults without ocular disease. The restriction of the visual field in the participants 

was not wildly dissimilar from the iatrogenic peripheral visual field deprivations induced 

in Smith et al.’s 2005 study which deprived the periphery of primate eyes of form vision. 

Visual field statuses in RP and CSNB appear to be within a range to provide useful 

models for comparison with animal work in this respect. Overall, this study suggests the 

RP and CSNB in children appear appropriate models for the investigation of the influence 

of the retinal periphery on emmetropisation in humans. Though recruitment was limited 

and a future large scale longitudinal study is recommended, this study has shown that 

this nature of data collection in child participants with RP and CSNB is feasible.  

Magnetic resonance imaging has shown that the human eye is spherical in shape prior 

to the posterior 25% where there are characteristic changes in conformation (Singh et 

al., 2006). The effect that AXL variations in ametropia have on retinal function in terms 

of differential light sensitivity was investigated in adult eyes, with the aim of gaining 

further insight into the mechanisms and nature of myopic axial growth. A statistically 

significant correlation was found between foveal AXL and refractive error, which is 

concordant with previous work (Bullimore et al., 1992; Chui et al., 2008; Grosvenor and 

Scott, 1993; Strang et al., 1998). A decrease in perimetric threshold of the fovea was 

found to exhibit a statistically significant correlation with increasing spherical refractive 

error alone but not increasing AXL. When individual stimulus locations were analysed in 

isolation, only ten degrees from fixation in the temporal field, close to the physiological 

blind spot had a statistically significant correlation. This suggests that retinal stretch may 

be occurring in the myopic eyes in this study. Nevertheless, the change is of a magnitude 
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undetectable by this experimental paradigm except at the fovea and ten degrees nasal 

from the fovea. The results of this study indicate that at the fovea, light sensitivity 

decreases as the degree of myopia increases, perhaps due to an increase in 

photoreceptor spacing, giving support to the global expansion, posterior pole expansion 

and axial expansion models of myopia induced retinal stretch. This effect was also seen 

at ten degrees temporal to fixation in the visual field. 

8.1 Future work 

All of the studies presented in this thesis would have benefitted from a larger sample 

size. Several factors contributed to the difficulties recruiting participants. Firstly, due to 

staffing limitations and a busy out-patient department, recruitment of participants through 

the HES was difficult. Ethical restrictions also meant that screening was problematic, 

particularly owing to the narrow and complex inclusion criteria. There exists no 

centralised database for researchers to locate potential participants, so screening was 

limited to patients booked into clinic appointments, which means many children with 

retinal pathology on long recall intervals are likely to have been missed.  Many of the 

children who attend the HES have multiple, regular appointments, so parents may be 

hesitant to participate in further research. The use of cycloplegia may also have factored 

in the low recruitment rate. 

Extending the works presented in Chapters 4 and 5 of this thesis to be longitudinal would 

allow for the development of appropriate charts matched for a population’s refractive 

characteristics, derived from normative ocular component data. Such charts could 

include an adult AXL or refraction predictor similar to those currently available for 

predicting adult height and stature. This may be of use when explaining and answering 

a parent’s concerns and worries about myopia progression and end point of refraction. 

Another advantage of such a tool would be that the risk of myopia progression could be 



 

191 

 

identified from a range of children with similar refractive characteristics. These tools 

would also be of use in a research or myopia control setting to help ascertain how 

effective a treatment is at retarding myopia progression opposed to normal refractive and 

axial length development.  

This thesis also suggests that RP and CSNB in children appear appropriate models for 

the investigation of the influence of the retinal periphery on emmetropisation in humans. 

Having a large-scale longitudinal version of this study too, would elucidate further if the 

findings from animal studies can be applied to humans. Extending the study to be 

longitudinal would allow for the effect of progressing tunnel vision in RP to be assessed 

with regards to its impact on refractive and AXL development. A multi-site study of 

perimetry, axial length and refractive error in participants with RP and CSNB is 

suggested. ERG and OCT were not used in the current study, but would be useful tools 

to determine the state of retinal integrity and function in these participants. Future work 

should ensure close age matching with healthy-eyed controls for improved accuracy.  
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