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Abstract
We present a unified boundary integral approach for the stable numerical solution of the ill-posed Cauchy problem for the heat
and wave equation. The method is based on a transformation in time (semi-discretisation) using either the method of Rothe or the
Laguerre transform, to generate a Cauchy problem for a sequence of inhomogenous elliptic equations; the total entity of sequences
is termed an elliptic system. For this stationary system, following a recent integral approach for the Cauchy problem for the Laplace
equation, the solution is represented as a sequence of single-layer potentials invoking what is known as a fundamental sequence
of the elliptic system thereby avoiding the use of volume potentials and domain discretisation. Matching the given data, a system
of boundary integral equations is obtained for finding a sequence of layer densities. Full discretisation is obtained via a Nyström
method together with the use of Tikhonov regularization for the obtained linear systems. Numerical results are included both for
the heat and wave equation confirming the practical usefulness, in terms of accuracy and resourceful use of computational effort,
of the proposed approach.
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1. Introduction

In [10], an overview is given of a single-layer approach for the stable numerical solution to the classi-
cal Cauchy problem for the Laplace equation (for both two and three dimensional regions), that is for the
reconstruction of a harmonic function from knowledge of its function value and normal derivative on a part
of the boundary of a domain. Using the representation of the solution as a layer potential, by matching the
given Cauchy data, a system of boundary integral equations is obtained for the determination of the layer
density distribution over the boundary. Since only boundary integrals are involved, the dimension is reduced
compared to domain discretisation methods; this becomes particularly advantageous when simulating com-
plex phenomena for the Laplace operator, a recent example is in the field of chemistry in designing new
materials at nano-scale [18].

∗Corresponding author
Email addresses: chapko@lnu.edu.ua (Roman Chapko), b.t.johansson@fastem.com. (B. Tomas Johansson)

1



R. Chapko and B. T. Johansson / Applied Numerical Mathematics 00 (2018) 1–20 2

The single-layer approach surveyed in [10], and which follows naturally from ideas in [29] and [6],
is flexible and can be applied for various solution domains, both in two and three dimensions, including
unbounded regions, as well as to situations where cracks are present. For the discretization, a Nyström
type method is used for planar domains and in 3-dimensions a method in the same spirit is applied based
on [40] (does not involve discretisation of the boundary surface) together with Tikhonov regularization for
the obtained linear system.

The Cauchy problem (ill-posed) can also be formulated for the time-dependent heat equation, and it
also makes sense for the wave equation. By the Cauchy problem for time-dependent models, we mean that
data in the form of function values and the normal derivative is given on a lateral part of the cylindrical
space-time domain. It should not be confused with the classical well-posed Cauchy initial value problems,
where a set of data is given at the bottom of the cylindrical domain. We ask the reader to bear in mind that
we always mean the lateral Cauchy problem but will rarely write out the word lateral.

Since the (lateral) Cauchy problem makes sense for the heat and wave equation, it is then natural to
extend the boundary integral equation approach outlined in [10] to cover these equations, and this extension
is the investigation of the present paper.

The generalization we present has the clear advantage that it will work with virtually no change for both
the heat and wave equation. To achieve this, we shall make use of the works [14, 15]. There, the method
of Rothe respectively the Laguerre transform is employed for time-dependent boundary value problems to
obtain a sequence of inhomogeneous elliptic equations. Instead of applying the traditional and computation-
ally expensive domain discretisation approach of using a volume potential to solve these inhomogeneous
boundary value problems, in [14, 15] fundamental sequences are derived such that the solution of the inho-
mogeneous sequence of problems can be represented in terms of boundary integrals, thus avoiding domain
discretisation. We point out that we use the term system and sequence interchangeably for the total entity
of inhomogeneous elliptic problems.

In the unified approach we present, our time-dependent Cauchy problems are reduced, using a suitable
discretisation in time (either via the Rothe or Laguerre transform), to obtain a Cauchy problem for an
elliptic system. Using the fundamental sequence for this system given in [14] or [15] (depending on the
employed transformation in time), we derive a single-layer approach for this stationary Cauchy problem
leading to a system of boundary integral equations to determine a sequence of layer densities. Invoking
Tikhonov regularization for solving this system, assuming the data to be square integrable, a stable solution
is obtained.

Utilizing the semi-discretisation in time, we can then generate a numerical approximation to the original
time-dependent Cauchy problem for both the heat and wave equation. Numerical experiments included
confirm the stability and feasibility of this strategy.

It is important to remark here that the use of our semi-discretization approaches in time for the heat
and wave problems lead to Cauchy problems for the similar elliptic systems. By similar is understood that
the difference is only in the choice of (constant) coefficients in the obtained elliptic equations. If instead
time-dependent integral equations are applied as a mean of solving the above Cauchy problems, then these
integrals are principally different for the heat and wave equation, and thus have to be treated differently in
terms of discretisation and implementation. For the use of heat potentials for the parabolic Cauchy problem
we refer to [20].

Before we give the outline of this work, we mention that there is an extensive literature on regularizing
methods for the Cauchy problem and we do not attempt to give a general list of references. We only
state a few related integral approaches. Methods for Cauchy problems based on the boundary element
method (BEM) have been developed (mainly for bounded planar regions), see for example, [31, 32] (there
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are plenty more works by these authors, also now in the direction of meshless methods [25]). Boundary
integrals of the kind considered in the present work can be used to solve direct mixed problems and such
problems can be used iteratively to obtain a solution to the Cauchy problem, see [8] and [22], and references
therein. An analysis of a layer approach for the Cauchy problem for the Helmholtz equation was recently
presented in [5]. The reader can get a glimpse of other works and results by consulting, for example,
[23, 24, 7, 4, 9, 13].

We point out that the considered integral equation approach can be applied in the case of a homogeneous
linear differential equation (or a system) of parabolic or hyperbolic type with constant coefficients and for
inhomogeneous materials. In the latter case, we need to know the corresponding Green’s matrix, see [12].
There are also iterative methods for non-linear inverse problems related to the reconstruction of a portion of
the boundary of the solution domain, which lead to the solution of a set of direct time-dependent problems
at each iteration step. The suggested integral equation approach is then suitable to apply to such a problem
also [16].

For the outline, in Section 2, we show how to discretize our Cauchy problem with respect to time using
either the method of Rothe or the Laguerre transform. In Section 3, we present the layer approach for
the stationary elliptic system obtained after semi-discretisation with respect to time. The system obtained
by matching the layer ansatz against the given Cauchy data is analyzed in the space of square integrable
functions, see Theorem 3.3. Full discretization involving the Nyström method and Tikhonov regularization
for bounded planar domains is outlined in Section 5. In the final section, Section 6, numerical simulations
are given both for the heat and wave equation.

2. Semi-discretization with respect to time

We assume that we have a two-dimensional physical body modelled as a doubly connected domain D

in IR2. This domain is such that it has two simple closed boundary curves Γ1 and Γ2, with Γ1 lying in
the interior of Γ2. From a theoretical point of view, there is no hindrance in considering 3-dimensional
domains. However, to work out the details and handling the various singularities in the kernels of the
integral equations we derive, we focus on the planar case. To extend it to higher dimensions one can build
on what is presented here together with results from [11].

2.1. Lateral Cauchy heat problem and its time-discretisation

We first formulate the ill-posed Cauchy problem for the heat equation. The physical body is then
conducting and the temperature together with flux measurements are taken on the external boundary curve
(given data functions f2 respectively g2). As a mathematical model, the bounded function u is a solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
c

∂u

∂t
= Δu in D × (0, T ),

u = f2 on Γ2 × (0, T ),
∂u

∂ν
= g2 on Γ2 × (0, T ),

u(·, 0) = 0 in D,

(1)

where the functions f2 and g2 are given and sufficiently smooth, ν is the unit outward normal to the boundary,
and the constant thermal diffusivity c > 0 and final time T > 0 are also given. We assume that data
are compatible such that there exists a solution; the solution is unique according to [39] but does not in
general depend continuously on the data. Note that for uniqueness, the initial condition is irrelevant, see for
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example [23, Theorem 3.3.10]. Hence, of particular interest is to find the Cauchy data on the boundary part
Γ1.

We then outline two strategies for reducing the above transient Cauchy problem to a sequence of sta-
tionary ones.

A) Rothe’s method. The time derivative in the heat equation (1) is discretized by a finite difference
approximation. Thus, on the equidistant mesh

{tp = (p + 1)ht, p = −1, . . . ,Nt − 1, ht = T/Nt, Nt ∈ IN}
we approximate the solution u to (1) by the sequence up ≈ u(·, tp), p = 0, . . . ,N − 1; the elements of this
sequence satisfy the equations

Δup − γ2up = −γ2up−1, u−1 = 0, γ2 =
1

cht

with boundary conditions

up = f2,p,
∂up

∂ν
= g2,p, on Γ2,

where f2,p = f2(·, tp) and g2,p = g2(·, tp). Considering up−1 as known, then the above equation for up is a
Cauchy problem for a Helmholtz type operator; this is also an ill-posed problem, see, for example, [4]

It is possible to use higher order approximations for the time-derivative. To obtain a scheme using a
second order approximation in time, we assume that u is two-times continuously differentiable with respect
to the time variable. Then the following differences can be derived,

∂u

∂t
(x, tp) =

u(x, tp) − u(x, tp−1)
ht

+
ht

2
utt(x, tp − θpht), θp ∈ [0, 1] ,

∂u

∂t
(x, tp−1) =

u(x, tp) − u(x, tp−1)
ht

− ht

2
utt(x, tp − θ̃pht), θ̃p ∈ [0, 1] .

Substituting these relationships in (1) and adding the obtained equations, we get

2
cht

up − 2
cht

up−1 − Δup − Δup−1 + O(h2
t ) = 0.

From this, taking into account that u−1 = 0 and by using induction, we then obtain the approximation

Δup − γ2up =

p−1∑
m=0

βp−mum, p = 0, . . . ,Nt − 1, γ2 =
2

cht
, βi = (−1)i 4

cht
, (2)

for i = 1, . . . ,Nt − 1.
We point out that the method of Rothe [38] is nowadays a standard approach for reducing well-posed

time-dependent initial-boundary value problems. General accounts on this method are, for example, [30,
Chapt. 3, Sect. 16] and [26, 37], where in particular convergence results can be found in various function
spaces.

B) Laguerre transform. In this approach, we search for the solution u of (1) as the (scaled) Fourier
expansion with respect to the Laguerre polynomials, that is an expansion of the form

u(x, t) = κ
∞∑

p=0

ũp(x)Lp(κt), (3)
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where

ũp(x) :=
∫ ∞

0
e−κtLp(κt)u(x, t) dt, p = 0, 1, 2, . . . . (4)

Here, Lp is the Laguerre polynomial of order p, and κ > 0.
For the Fourier–Laguerre coefficients ũp(x), by using the recurrence relations for the Laguerre polyno-

mials, it can be shown (see [14]) that these satisfy the following sequence of Cauchy problems,

Δũp − βũp = β

p−1∑
m=0

ũm in D (5)

with boundary conditions

ũp = f̃2,p on Γ2 and
∂up

∂ν
= g̃2,p on Γ2. (6)

Here,

f̃2,p(x) :=
∫ ∞

0
e−κtLp(κt) f2(x, t) dt, p = 0, 1, 2, . . .

and

g̃2,p(x) :=
∫ ∞

0
e−κtLp(κt)g2(x, t) dt, p = 0, 1, 2, . . .

are the Fourier–Laguerre coefficients of the given boundary values and β = κ/c. The numerical approx-
imation to the solution of the Cauchy problem (1) is a partial sum of the series (4). Therefore, we have
p = 0, . . . ,N, with N ∈ IN, in (5)–(6).

2.2. Lateral Cauchy problem for the wave equation and time-discretisation

The ill-posed Cauchy problem for the wave equation (with speed of sound a > 0) is to search for a
solution u such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
a2

∂2u

∂t2 = Δu in D × (0, T ),

u = f2 on Γ2 × (0, T ),
∂u

∂ν
= g2 on Γ2 × (0, T ),

∂u

∂t
(·, 0) = u(·, 0) = 0 in D.

(7)

This type of Cauchy problem is considerable less studied than the corresponding parabolic one. Suitable
Sobolev spaces for this Cauchy problem is given in [3, Sect. 3.1]. Uniqueness of a solution (in case it exists)
holds, see [2, p. 888]. It is an ill-posed problem, that is stability of a solution can not be guaranteed. An
example highlighting the instability is presented in [27, Sect. 1]. In terms of applications, reconstructions
from lateral Cauchy data for the wave equation occur, for example, in the imaging method of thermoacoustic
tomography, see [17].

As for the parabolic problem, both the method of Rothe and the Laguerre transform can be applied to
reduce the problem to a sequence of stationary ones. We briefly give some details.

For the method of Rothe applied to (7), we use the following finite difference approximation (the mesh
points tp are as in the previous section)

∂2u

∂t2 (x, tp) ≈ u(x, tp) − 2u(x, tp−1) + u(x, tp−2)

h2
t

, p = 0, . . . ,Nt − 2.
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This leads then to the following sequence of elliptic equations to be solved for up(x) ≈ u(x, tp),

Δup − γ2up = α0up−1 + α1up−2 in D

with the constants γ2 = 1
a2h2

t

, α0 = − 2
a2h2

t

and α1 =
1

a2h2
t

.
If we instead apply the above Laguerre transform to the wave equation in (7), we get a sequence for the

Fourier-Laguerre coefficients,

Δũp − γ2ũp =

p−1∑
m=0

βn−mũm in D

with βp =
κ2

a2 (p + 1), p = 0, 1, 2, . . ., and γ2 = β0.

2.3. An elliptic system for the lateral Cauchy heat and wave problems

Interestingly, the various semi-discretisation approaches described in the previous two sections for lat-
eral Cauchy problems for the heat and wave equation, all lead to a stationary problem that can be written
into the following form,

Δup − γ2up =

p−1∑
m=0

βp−mum in D, (8)

up = f2,p on Γ2,
∂up

∂ν
= g2,p on Γ2, (9)

with given functions f2,p and g2,p, p = 0, . . . ,N, N ∈ IN, γ2 = β0 and the explicit expressions for the
(known) constants βi depend on the type of employed semi-discretization (Rothe or Laguerre) together with
the type of underlying partial differential equation (heat or wave equation).

The Cauchy problem (7) can also be considered in a weak formulation. Then the Laguerre transform
again leads to a sequence of stationary problems in the corresponding Sobolev spaces (see [35]). This
can potentially be advantageous for more complicated discontinuous material parameters and solutions.
Since we consider a classical solution, the finite difference method is a suitable classical way for the semi-
discretization.

3. Boundary integral equation method for the system (8)–(9)

The structure of the Cauchy problem (8)–(9) is different compared with the standard Laplace equation,
however, as we shall show it is still possible to do as in [10], that is to reduce the Cauchy problem to
boundary integral equations. The standard way of handling a non-homogeneuous equation like (8) is to use
a volume potential (leading to computationally expensive domain discretisation). To avoid this and only use
boundary integrals, the existence of an explicit fundamental solution is needed. In the present situation of
a system of equations, we have to clarify what is meant by a fundamental solution and we then undertake
some work to explicitly construct it.

3.1. A fundamental sequence to (8)

We start with the definition and then go ahead and construct the corresponding fundamental solution (a
similar definition was employed in [14, 15], where well-posed boundary values problems for equations of
the form (8) are studied).

6
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Definition 3.1. The sequence of functions {Φp}Np=0 is denoted a fundamental sequence for the equations (8)
provided that

ΔxΦp(x, y) − γ2Φp(x, y) −
p−1∑
m=0

βp−mΦm(x, y) = δ(x − y), (10)

where δ is the Dirac delta function.

This definition makes sense in that writing (8) as a system for a vectorial solution, the reader can check
that the above definition is then precisely the standard definition of a fundamental solution for systems.

For the existence of a fundamental sequence, we can rely on abstract existence results of a fundamen-
tal solution to (strongly) elliptic systems [33, pp. 197–200]. However, we shall in fact explicitly give a
fundamental sequence.

To give such a sequence, we need the modified Bessel functions

I0(z) =
∞∑

k=0

1
(k!)2

(
z

2

)2k

, and I1(z) =
∞∑

k=0

1
k!(k + 1)!

(
z

2

)2k+1
, (11)

of order zero and one, respectively, and also the modified Hankel functions

K0(z) = −
(
ln

z

2
+C
)

I0(z) +
∞∑

k=1

ψ(k)
(k!)2

(
z

2

)2k

,

K1(z) =
1
z
+

(
ln

z

2
+C
)

I1(z) − 1
2

∞∑
k=0

ψ(k + 1) + ψ(k)
k!(k + 1)!

(
z

2

)2k+1
(12)

of order zero and one, respectively. Here, ψ(0) = 0,

ψ(k) =
k∑

m=1

1
m
, k = 1, 2, . . . ,

and C = 0.57721 . . . denotes the Euler constant. The functions I� and K� are (independent) solutions to the
modified Bessel differential equation with parameter �, for � = 0, 1; more on these functions can be found
in [1, Chapter 9.6]) (other names attached to the modified Hankel function are Bessel function of the third
kind, Basset’s function and Macdonald’s function).

The fundamental solution to the modified Helmholtz equation (8) with zero right-hand side is given by
1

2πK0(γ|x − y|), see [36, Chapter 7.3.2]. It seems natural then to build on this function in order to generate a
fundamental sequence. We need the polynomials vp and wp defined by

vp(r) =
[ p

2 ]∑
m=0

ap,2mr2m and wp(r) =

[
p−1

2

]∑
m=0

ap,2m+1r2m+1, (13)

respectively, for p = 0, 1, . . . ,N, with the convention that w0 = 0, and [q] is the largest integer not greater
than q. The coefficients in (13) are generated by putting ap,0 = 1 for p = 0, . . . ,N, and then using the two
recurrence relations,

ap,p = − 1
2γp
β1ap−1,p−1 (14)

7
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and

ap,k =
1

2γk

⎧⎪⎪⎨⎪⎪⎩4
[
k + 1

2

]2
ap,k+1 −

p−1∑
m=k−1

βp−mam,k−1

⎫⎪⎪⎬⎪⎪⎭ , k = p − 1, . . . , 1, (15)

for p = 1, . . . ,N.
Straightforward calculations show that these polynomials satisfy the following two sequences of (cou-

pled) ordinary differential equations

v′′p (r) +
1
r

v′p − 2γw′p =

p−1∑
m=0

βp−mvm,

(16)

−2γv′p + w′′n (r) − 1
r

w′p +
1
r2 wp =

p−1∑
m=0

βp−mwm

for p = 0, . . . ,N.
We then have,

Theorem 3.2. The sequence of functions {Φp}Np=0 with

Φp(x, y) = K0(γ|x − y|)vp(|x − y|) + K1(γ|x − y|)wp(|x − y|) (17)

for p = 0, . . . ,N, where K0 and K1 are the modified Hankel functions of order zero and one, see (12),
and vp and wp are the polynomials given by (13), constitute a fundamental sequence of (8) in the sense

of Definition 3.1.

The proof of this is straightforward; to verify that (10) is satisfied, simply differentiate (17) the necessary
number of times remembering that 1

2πK0(λ|x − y|) is the fundamental solution of the modified Helmholtz
equation and making use of the modified Bessel differential equation for the function K0,

z2K′′0 (z) + zK′0(z) − z2K0(z) = 0 (18)

for z � 0 together with the relation K1 = −K′0 and (18), the details are left to the reader.

3.2. Reduction of (8)–(9) to a boundary integral equation

Following the direct integral approach [10] for the Cauchy problem for the Laplace equation, we search
for the solution of the Cauchy problem (8)–(9) in the following potential-layer form

up(x) =
1
π

2∑
�=1

p∑
m=0

∫
Γ�

q�m(y)Φp−m(x, y) ds(y), x ∈ D (19)

with the unknown densities q1
m and q2

m, m = 0, . . . ,N, defined on the two (closed) boundary curves Γ1 and
Γ2, respectively, and Φp is given by (17).

The boundary integral operators in (19) have the similar jump properties as the classical single-layer op-
erator for the Laplace equation; this can be verified by noticing from the expansion (12) that the functions in

8
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the fundamental sequence each have at most a logarithmic singularity. Therefore, matching (19) against the
data (9) and employing the jump properties, we obtain the following system of boundary integral equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π

2∑
�=1

∫
Γ�

q�p(y)Φ0(x, y) ds(y) = Fp(x), x ∈ Γ2,

q2
p(x) +

1
π

2∑
�=1

∫
Γ�

q�p(y)
∂Φ0(x, y)
∂ν(x)

ds(y) = Gp(x), x ∈ Γ2,

(20)

for p = 0, . . . ,N, with the right-hand sides

Fp(x) = f2,p(x) − 1
π

2∑
�=1

p−1∑
m=0

∫
Γ�

q�m(y)Φp−m(x, y) ds(y)

and

Gp(x) = g2,p(x) −
p−1∑
m=0

q2
m(x) − 1

π

2∑
�=1

p−1∑
m=0

∫
Γ�

q�m(y)
∂Φp−m(x, y)
∂ν(x)

ds(y).

We have then reduced the Cauchy problem (8)–(9) to the system of boundary integral equations (20).
As mentioned above in connection with jump properties, kernels appearing in these integral equations can
contain logarithmic singularities and we will take this into account when proposing numerical discretisation.

Following the proof of [6, Theorem 4.1], it is possible to verify that the corresponding operator matrix
for the system (20), built from the integral operators in (20), has the following properties,

Theorem 3.3. The operator corresponding to the system (20) is injective and has dense range, as a mapping

between L2-spaces on the boundary.

Therefore, due to this result, Tikhonov regularization can be applied to solve (20) in a stable way.

4. Full discretization of the system of boundary integral equations (20)

We assume that the boundary curves Γ�, � = 1, 2, are sufficiently smooth and given by a parametric
representation

Γ� = {x�(s) = (x1�(s), x2�(s)), s ∈ [0, 2π]}.
The system (20) can then be written in parametric form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2π

2∑
�=1

∫ 2π

0
ψ�p(σ)H0

�,2(s, σ) dσ = Fp(s), s ∈ [0, 2π],

ψ2
p(s)

|x′2(s)| +
1

2π

2∑
�=1

∫ 2π

0
ψ�p(σ)Q0

�,2(s, σ) dσ = Gp(s), s ∈ [0, 2π],

(21)

for p = 0, . . . ,N, where for the parametrized densities

ϕ�p(s) = q�p(x�(s))|x′�(s)|,
9



R. Chapko and B. T. Johansson / Applied Numerical Mathematics 00 (2018) 1–20 10

and where for ease of presentation a new sequence of (unknown) densities has been introduced by

ψ�p(s) =
p∑

m=0

ϕ�m(s).

The right-hand sides (data functions) in (21) are given by

Fp(s) = f2,p(x2(s)) − 1
2π

2∑
�=1

p−1∑
m=0

∫ 2π

0
ϕ�m(σ)Hp−m

�,2 (s, σ) dσ

and

Gp(s) = g2,p(x2(s)) − 1
2π

2∑
�=1

p−1∑
m=0

∫ 2π

0
ϕ�m(σ)Qp−m

�,2 (s, σ) dσ.

The kernels in (21) are given as

H0
�,k(s, σ) = 2Φ0(xk(s), x�(σ)), H

p

�,k
(s, σ) = 2[Φp(xk(s), x�(σ)) − Φ0(xk(s), x�(σ))] (22)

and
Q0
�,k(s, σ) = 2

∂Φ0(x, y)
∂ν(x)

|x=xk(s),y=x�(σ),

Q
p

�,k
(s, σ) = 2

∂[Φp(x, y) − Φ0(x, y)]
∂ν(x)

|x=xk(s),y=x�(σ)

for s � σ, �, k = 1, 2, p = 1, . . . ,N. The subtraction of the elementΦ0 in the expression for H
p

�,k
respectively

Q
p

�,k
is due to the definition of the densities ψp. The functions Φp are the fundamental sequence given in

Theorem 3.2.

4.1. Handling the singularities in the kernels

We write the kernels of the previous section in a such a way that the singularities become explicit making
it easer to propose numerical approximations of boundary integrals involving such kernels.

For the singular kernels H
p

�,�
in (22), using the explicit expression (17) for the elements in the fun-

damental sequence, together with the expansions (11)–(12) and the governing relations (13)–(16), careful
calculations lead to the following representation,

H
p

�,�
(s, σ) = H

p,1
�,�

(s, σ) ln
(
4
e

sin2 s − σ
2

)
+ H

p,2
�,�

(s, σ),

where
H0,1
�,�

(s, σ) = −I0(γ|x�(s) − x�(σ)|),

H
p,1
�,�

(s, σ) = −I0(γ|x�(s) − x�(σ)|)(vp(|x�(s) − x�(σ)|) − 1)
(23)

+I1(γ|x�(s) − x�(σ)|)wp(|x�(s) − x�(σ)|)
and

H
p,2
�,�

(s, σ) = H
p

�,�
(s, σ) − H

p,1
�,�

(s, σ) ln
(
4
e

sin2 s − σ
2

)
10
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with diagonal terms

H0,2
�,�

(s, s) = −2C − 1 − 2 ln
(
γ|x′�(s)|

2

)
, H

p,2
�,�

(s, s) =
2ap,1

γ
, p = 1, 2, . . . ,N,

with C being the Euler constant defined above and the coefficient ap,1 is given by (15).
For the representation of the kernels Q

p

�,k
, we introduce the function

h�,k(s, σ) =
(x�,1(s) − xk,1(σ))x′�,2(s) − (x2,�(s) − xk,2(σ))x′�,1(s)

|xk(σ) − x�(s)|
as well as the polynomials

ṽp(r) = γ
[ p

2 ]∑
m=1

ap,2mr2m − 2

[
p−1

2

]∑
m=1

map,2m+1r2m

and

w̃p(r) = γ

[
p−1

2

]∑
m=0

ap,2m+1r2m+1 − 2
[ p

2 ]∑
m=1

map,2mr2m−1.

Then the kernels Q
p

�,k
can be written in the form

Q0
�,k(s, σ) = 2γh�,k(s, σ)K1(γ|x�(s) − xk(σ)|)

and

Q
p

�,k
(s, σ) = 2h�,k(s, σ) {K1(γ|x�(s) − xk(σ)|)ṽp(|x�(t) − xk(σ)|)

+K0(γ|x�(s) − xk(σ)|)w̃n(|x�(s) − xk(σ)|)}
for s � σ and p = 1, 2, . . . ,N.

The kernels Q
p

�,�
have logarithmic singularities; similar calculations as when rewriting the singular ker-

nels H
p

�,�
give

Q
p

�,�
(s, σ) = Q

p,1
�,�

(s, σ) ln
(
4
e

sin2 s − σ
2

)
+ Q

p,2
�,�

(s, σ),

where
Q0,1
�,�

(s, σ) = γh�,�(s, σ)I1(γ|x�(s) − xk(σ)|),

Q
p,1
�,�

(s, σ) = h�,�(s, σ) {I1(γ|x�(s) − xk(σ)|)ṽn(|x�(s) − xk(σ)|)
(24)

−I0(γ|x�(s) − xk(σ)|)w̃n(|x�(s) − xk(σ)|)}
and

Q
p,2
�,�

(s, σ) = Q
p

�,�
(s, σ) − Q

p,1
�,�

(s, σ) ln
(
4
e

sin2 s − σ
2

)

with diagonal terms

Q0,2
�,�

(s, s) =
x′�,2(s)x′′�,1(s) − x′�,1(s)x′′�,2(s)

|x′
�
(s)|2 , Q

p,2
�,�

(s, s) = 0, p = 1, 2, . . . ,N.

11
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4.2. Discrete linear equations

The effort in rewriting the kernels now pays off in that we can employ the following standard quadrature
rules [28] for numerical discretisation,

1
2π

∫ 2π

0
f (σ) dσ ≈

2n−1∑
k=0

f (sk),

1
2π

∫ 2π

0
f (τ) ln

(
4
e

sin2 s − σ
2

)
dτ ≈

2n−1∑
k=0

Rk(s) f (sk),

with mesh points
sk = kh, k = 0, . . . , 2n − 1, h = π/n, (25)

and the weight functions

Rk(s) = − 1
2n

⎛⎜⎜⎜⎜⎜⎜⎝1 + 2
n−1∑
m=1

1
m

cos m(s − sk) − 1
n

cos n(s − sk)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

in order to approximate the boundary integrals in (21).
Collocating the approximation at the nodal points using the mesh points {sk} lead to the sequence of

linear systems
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n−1∑
j=0

{
ψ1

p, j

1
2n

H0
1,2(si, s j) + ψ2

p, j

[
R j(si)H

0,1
2,2(si, s j) +

1
2n

H0,2
2,2(si, s j)

]}
= F̃p,i,

2n−1∑
j=0

{
ψ1, j

1
2n

Q0
1,2(si, s j) + ψ2

p, j

[
R j(si)Q

0,1
2,2(si, s j) +

1
2n

Q0,2
2,2(si, s j)

]}
+
ψ2

p,i

|x′2(si)| = G̃p,i

(26)

for i = 0, . . . , 2n − 1, with the right-hand sides

F̃p,i = f2,p(x2(si)) −
2n−1∑
j=0

p−1∑
m=0

{
ϕ1

m, j

1
2n

H
p−m

1,2 (si, s j)+

(27)

ϕ2
m, j[R j(si)H

p−m,1
2,2 (si, s j) +

1
2n

H
p−m,2
2,2 (si, s j)]

}

and

G̃p,i = g2,p(x2(si)) −
2n−1∑
j=0

p−1∑
m=0

{
ϕ1

m, j

1
2n

Q
p−m

1,2 (si, s j)

(28)

+ϕ2
m, j[R j(si)Q

p−m,1
2,2 (si, s j) +

1
2n

Q
p−m,2
2,2 (si, s j)]

}
,

where ϕ�0, j = ψ
�
0, j and ϕ�

p, j = ψ
�
p, j − ψ�p−1, j, p = 0, . . . ,N.

12
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We point out that the matrix corresponding to (26) is the same for every p but having a recurrence
right-hand side containing the solutions of previous systems. Clearly, each of the linear systems has a high-
condition number since the Cauchy problem (8)–(9) is ill-posed and Tikhonov regularization therefore have
to be incorporated

We end this section by giving formulas for the Cauchy data on the boundary Γ1. Using (19) we have the
following representation of the function value

f1,p(x) := up(x) =
1
π

2∑
�=1

p∑
m=0

∫
Γ�

q�m(y)Φp−m(x, y) ds(y), x ∈ Γ1

and for the normal derivative

g1,p(x) :=
∂up

∂ν
(x) = −

p∑
m=0

q1
m(x) +

1
π

2∑
�=1

p∑
m=0

∫
Γ�

q�m(y)
∂Φp−m(x, y)
∂ν(x)

ds(y), x ∈ Γ1.

The numerical approximation of these expressions up,n and ∂up,n/∂ν can be obtained using the given quadra-
ture rules via similar calculations as those given above.

Remembering the semi-discretisation in time from Section 2 that gave rise to the elliptic system (8)–(9),
the above expressions then generates approximations to the sought time-dependent lateral Cauchy data.

As mentioned, the given approach can also be applied to non-stationary Cauchy problems in 3-dimensional
domains, by extending what has been presented together with details from [11].

5. Numerical experiments

We demonstrate the efficiency of our method using examples in two different planar domains. The first
domain D1 is given by the following parametric representation of the boundary curves (see further Fig. 1a)

Γ1
1 := {x1(s) = (0.6 cos s, 0.4 sin s), s ∈ [0, 2π]}, Γ1

2 := {x2(s) = (cos s, sin s), s ∈ [0, 2π]}.
The second domain D2 has boundary curves given by (see Fig. 1b)

Γ2
1 := {x1(s) = (

√
(0.5 cos s)2 + (0.25 sin s)2(cos s, sin s), s ∈ [0, 2π]}

and
Γ2

2 := {x2(s) = [(cos s)10 + (sin s)10]−0.1(cos s, 5 sin s), s ∈ [0, 2π]}.
The upper index indicates which domain the boundary curve belongs to, it is not always written out if it is
clear from the context which domain that is considered.

We illustrate the robustness of the proposed method for both exact and noisy data. In the case of noisy
data, random pointwise errors are added to the normal derivative g2 on the outer boundary curve with the
percentage given in terms of the L2-norm.

To avoid the “inverse crime”, we use a finer mesh in the calculation of the input data. The regularisation
parameter α can be chosen by Morozov’s discretization principle [34] or by the L-curve criterion [21]. As is
common in inverse problems, it is usually more straightforward to run the simulations for a range of values
and select by inspection a suitable value for α, this is known as selection by trial and error [28, Chapt. 15.2,
p. 271]. In our case, the value for α is then chosen by trial and error; we calculated the numerical solutions
for α = 10−� with � = 1, . . . , 15 and used the value giving the most accurate result.

13
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Γ1

Γ2

−1 0 1

−1

0

1

a) The domain D1

−1 0 1

−1

0

1

Γ1
Γ2

b) The domain D2

Figure 1. The two solution domains used in th numerical experiments

Ex. 1 (Sequence of elliptic equations). A key step in our procedure to solve the ill-posed Cauchy
problem for both the heat and wave equation, is to be able to solve the corresponding sequence of elliptic
Cauchy problems (8)–(9). In Section 3, we outlined a boundary integral equation method for this sequence
of problems. In the present example, we therefore test our proposed numerical method for the Cauchy
problem for the sequence of elliptic equations (8)–(9).

1.1. The domain chosen is D1 with boundary curves Γ1
1 and Γ1

2 (see Fig. 1a) and the Cauchy data are
given as

f2,p(x) =
1

2π
Φp(x, x∗), g2,p(x) =

1
2π
∂Φp

∂ν
(x, x∗), x ∈ Γ1

2, p = 0, 1, . . . ,N

with x∗ = (0, 2) and {Φp}Np=0 the fundamental sequence of Theorem 3.2. Clearly, the exact solutions of the
Cauchy problems (8)–(9) has the form up(x) = Φp(x, x∗).

We make use of the following relative L2-errors on the inner boundary (where no data is specified)

e2
p =

∫ 2π

0
[ f1,p(x1(s)) − up,n(x1(s))]2 ds

∫ 2π

0
f 2
1,p(x1(s)) ds

and

q2
p =

∫ 2π

0
[g1,p(x1(s)) − ∂up,n

∂ν
(x1(s))]2 ds

∫ 2π

0
g2

1,p(x1(s)) ds

.

For the numerical calculation of the integrals in the above two error terms, we use the trapezoidal rule.
The obtained results for exact data with Tikhonov regularization parameter α = 10−13, and for noisy

data with α = 10−2, are given in Table 1 for both the Laguerre and Rothe cases (that is for the various
choices of parameters in (8)–(9) corresponding to these two cases). We demonstrate the results for various
numbers p of Cauchy problems. Here, we used κ = 2, βi = κ, i = 0, . . . , p − 1, for the Laguerre transform

14
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Table 1. Errors for Ex. 1.1

Laguerre approach Rothe’s approach
Exact data 5% noisy Exact data 5% noisy

p ep qp ep qp ep qp ep qp

0 3.37E-4 8.33E-3 6.31E-2 2.76E-1 2.91E-3 3.47E-2 2.11E-1 4.55E-1
5 1.58E-3 1.20E-2 1.07E-1 1.99E-1 2.71E-4 6.60E-3 3.62E-2 1.55E-1

10 9.19E-4 3.02E-2 3.14E-1 1.35E 0 1.45E-4 5.11E-3 2.10E-2 1.23E-1
15 9.21E-4 1.04E-2 5.17E-1 1.50E 0 1.10E-4 4.64E-3 1.60E-2 1.13E-1
20 3.53E-3 1.75E-2 1.36E 0 1.94E 0 8.65E-5 4.42E-3 1.35E-2 1.08E-1

and ht = 0.2, γ2 = 1/ht, βi = 0, i = 1, . . . , p − 2, βp−1 = −1/ht for the Rothe method; the discretization
parameter is n = 32 in (25) for all cases considered.

From Table 1, we see that the error continues to decrease more for the method of Rothe than for the
Laguerre transform, before reaching the threshold when the linear systems become too ill-posed for the
errors to decrease any further. Once the error starts to increase, it is no sudden increase but rather mild.

Other domains and data can be used and results of the similar kind is generally to be expected.
1.2. To support the claim that other domains and data can be used, we then consider the Cauchy problem

for the system (8)–(9) in the domain D2 (Fig. 1b) instead, with parameters corresponding to the Laguerre
transform. The Cauchy data are generated by solving the corresponding direct Dirichlet boundary value
problem with boundary functions

f�,p(x) =
e2(2 + κp(κ(p − 1) − 4)

(κ + 1)p+3 (x1 + x2), x ∈ Γ2
� , p = 0, 1, . . . . (29)

The corresponding L2 errors are reflected in Table 2. Here κ = 1, βi = κ, i = 0, . . . , p and n = 32.

Table 2. Errors for Ex. 1.2: Laguerre approach

Exact data (α=1E-5) 5% noisy (α=1E-2)
p ep qp ep qp

0 1.11E-3 7.92E-3 3.23E-2 6.96E-2
5 2.09E-3 8.53E-3 5.29E-2 6.26E-2

10 1.12E-3 6.76E-3 2.23E-2 5.51E-2
15 1.91E-3 1.26E-2 1.39E-1 5.29E-1
20 6.65E-3 3.35E-2 2.13E 0 6.51E 0

The behaviour of these results are similar to the ones in Table 1. Again, the errors do not increase
dramatically when the number p of the considered Cauchy problem in the sequence (8)–(9) is increased
beyond the threshold when the ill-posedness starts to take over the calculations. It is possible also to use the
method of Rothe, but not to overload the presentation with data, we left them out.

Ex. 2 (Heat equation). We consider here two Cauchy problems for a heat equation.
2.1. The first one is a test example related to the use of the fundamental solution of heat equation as an

exact solution of the corresponding Cauchy problem.
Let

uex(x, t) =
1

4πt
e−
|x−x∗|2

4t , x ∈ D1, t ∈ (0, 1], x∗ = (0, 2).
15
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It is straightforward to show that in the case of the Laguerre transform there holds
∫ ∞

0
uex(x, t)Lk(κt)e−κtdt =

1
2π
Φk(x, x∗), k = 0, 1, . . . (30)

with βn = κ.
We solve the parabolic Cauchy problem (1) with c = 1 and the data

f2(x, t) = uex(x, t), g2(x, t) =
∂uex

∂ν
(x, t), x ∈ Γ1

2, t ∈ (0, 1]. (31)

We use the following transient L2-errors

e2 =

∫ T

0

∫ 2π

0
( f1(x1(s), t) − uN,n(x1(s), t))2 ds dt

∫ T

0

∫ 2π

0
f 2
1 (x1(s), t) ds dt

and

q2 =

∫ T

0

∫ 2π

0
(g1(x1(s), t) − ∂uN,n

∂ν
(x1(s), t))2 ds dt

∫ T

0

∫ 2π

0
g2

1(x1(s), t) ds dt

.

The numerical results in the case of the combination of the Laguerre transform and the integral equations
approach of Section 3.2, with n = 64, κ = 2, α = 10−9 for exact data and α = 10−2 for noisy data, are
presented in Table 3.

Table 3. Ex. 2.1. Errors: Laguerre approach

Exact data 5% noisy
N e q e q

20 1.81E-2 6.99E-2 5.32E-2 2.41E-1
30 1.20E-2 2.93E-2 5.37E-2 2.48E-1
40 7.60E-3 2.47E-2 5.24E-2 2.61E-1

Table 4 contains errors obtained by instead using the Rothe method and the integral equation approach
of Section 3.2. Here, n = 64, α = 10−7 for exact data and α = 10−3 for noisy data. Note here, that it is of
crucial importance to balance the relation between time and space discretization parameters.

2.2. In this example, we change the solution domain and input data. To keep the presentation at rea-
sonably length, we do not produce further tables and do not intend to use both approaches. Instead, in this
example, we focus on the Laguerre approach and shall generate some figures of the obtained approxima-
tions.

The input data for the parabolic Cauchy problem with thermal diffusivity c = 1 is generated by solving
the Dirichlet initial boundary value problem with boundary functions

f�(x, t) = t2e−t+2(x1 + x2), x ∈ Γ2
� , t ≥ 0.

16
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Table 4. Ex. 2.1. Errors: Rothe approach

Exact data 5% noisy
N e q e q

5 2.50E-5 2.50E-1 4.97E-2 3.34E-1
10 6.39E-5 1.99E-1 3.64E-2 2.70E-1
15 1.21E-4 1.29E-1 3.45E-2 2.03E-1

Note that ∫ ∞
0

f�(x, t)e−κtLp(κt)dt = f�,p(x), p = 0, . . . , � = 1, 2,

where f�,p are defined as in (29).
The results of the numerical experiments using the Laguerre transform and the integral equations ap-

proach of Section 3.2, are given graphically in Fig. 2 and Fig. 3 both for exact and noisy data as specified
in each figure caption. To generate these figures, we used κ = 2, N = 20, n = 32 and T = 4.

a) boundary function on Γ2
1 b) exact data (α = 1E − 5, e = 0.0067) c) 5% noisy (α = 1E − 3, e = 0.113)

Figure 2. Reconstruction of the boundary function on Γ2
1 (parabolic case)

a) normal derivative on Γ2
1 b) exact data (α = 1E − 5, q = 0.110) c) 5% noisy (α = 1E − 3, q = 1.192)

Figure 3. Reconstruction of the normal derivative on Γ2
1 (parabolic case)
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It is particularly pleasing to see that also the normal derivative is reconstructed with acceptable accuracy
even in the case of noisy data. Differentiation in itself is an ill-posed problem and in general for Cauchy
problems to also reconstruct numerically the normal derivative in a stable way is an additional challenge.
It is also known [19] that for the ill-posed Cauchy problem for the heat equation, the approximation will in
general deteriorate for t = T (causality principle). Tendencies to this deterioration is present in the given
figures.

Ex. 3 (Wave equation). The Cauchy problem for the wave equation is, as mentioned above, considerable
less studied in particularly from a numerical point of view. This can partly be explained by the more
complicated fundamental solution that the wave equation has (involving a Heaviside function) compared
with the heat equation, making direct boundary integral approaches complicated. Thus, our aim with this
example is to show that one can indeed by-pass this difficulty by the present approach of reducing the wave
equation to a sequence of stationary problems. We only produce a set of figures for one set of data to show
that the present approach is promising. A fuller investigation for the wave equation is deferred to a future
work.

The input data for the Cauchy wave problem (hyperbolic) (7) with wave speed a = 1 is generated by
solving the Dirichlet initial boundary value problem with boundary functions

f�(x, t) = t2e−t+2x1x2, x = (x1, x2) ∈ Γ2
� , t ≥ 0.

The results of the numerical experiments using the Laguerre transform and the integral equations ap-
proach of Section 3.2, are presented in Fig. 4 and Fig. 5. Here, we used κ = 2, N = 20, n = 32 and
T = 4.

As for the heat equation, as is seen in Fig. 5, the normal derivative can also be reconstructed with some
accuracy both with exact and noisy data.

a) boundary function on Γ2
1 b) exact data (α = 1E − 5, e = 0.0068) c) 5% noisy (α = 1E − 2, e = 0.159)

Figure 4. Reconstruction of the boundary function on Γ2
1 (hyperbolic case)

To conclude this numerical section, we remark the following. Ideally, one should compare the obtained
results with others in the literature. To do this in an objective way tends to be difficult and very much depen-
dent on what is being compared. For the heat equation, we can at least say that the results are comparable
to the ones obtained in [? ]. For the wave equation, we have not been able to locate any numerical results
for the two-dimensional case to compare against.
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a) normal derivative on Γ2
1 b) exact data (α = 1E − 5, q = 0.104) c) 5% noisy (α = 1E − 2, q = 1.501)

Figure 5. Reconstruction of the normal derivative on Γ2
1 (hyperbolic case)

6. Conclusion

A unified boundary integral approach has been developed for the ill-posed Cauchy problem for the
heat and wave equation. The transient problems are each reduced, via either the Laguerre transform or
the method of Rothe, to the similar sequence of elliptic Cauchy problems. For this sequence, a boundary
integral approach, based on the derivation of a fundamental solution, was given and analysed. For the
discretisation a Nyström method together with the Tikhonov regularization are employed for the stable
numerical approximation. The included numerical experiments showed the feasibility of the approach.
In particular, accurate reconstructions of both the solution and its normal derivative on the boundary part
where data are initially missing, were obtained with small computational effort both for the heat and wave
equation.
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