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Abstract
Aims/hypothesis Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a circulatory macrophage-derived factor that increases
with obesity and leads to a higher risk of cardiovascular disease (CVD). Despite this, its role in adipose tissue and the adipocyte is
unknown. Therefore, the aims of this study were to clarify the expression of Lp-PLA2 in relation to different adipose tissue depots
and type 2 diabetes, and ascertain whether markers of obesity and type 2 diabetes correlate with circulating Lp-PLA2. A final aim
was to evaluate the effect of cholesterol on cellular Lp-PLA2 in an in vitro adipocyte model.
Methods Analysis of anthropometric and biochemical variables from a cohort of lean (age 44.4 ± 6.2 years; BMI 22.15 ± 1.8 kg/
m2, n = 23), overweight (age 45.4 ± 12.3 years; BMI 26.99 ± 1.5 kg/m2, n = 24), obese (age 49.0 ± 9.1 years; BMI 33.74 ± 3.3 kg/
m2, n = 32) and type 2 diabetic women (age 53.0 ± 6.13 years; BMI 35.08 ± 8.6 kg/m2, n = 35), as part of an ethically approved
study. Gene and protein expression of PLA2 and its isoforms were assessed in adipose tissue samples, with serum analysis
undertaken to assess circulating Lp-PLA2 and its association with cardiometabolic risk markers. A human adipocyte cell model,
Chub-S7, was used to address the intracellular change in Lp-PLA2 in adipocytes.
Results Lp-PLA2 and calcium-independent PLA2 (iPLA2) isoforms were altered by adiposity, as shown by microarray analysis
(p < 0.05). Type 2 diabetes status was also observed to significantly alter gene and protein levels of Lp-PLA2 in abdominal
subcutaneous (AbdSc) (p < 0.01), but not omental, adipose tissue. Furthermore, multivariate stepwise regression analysis of
circulating Lp-PLA2 and metabolic markers revealed that the greatest predictor of Lp-PLA2 in non-diabetic individuals was
LDL-cholesterol (p = 0.004). Additionally, in people with type 2 diabetes, oxidised LDL (oxLDL), triacylglycerols and HDL-
cholesterol appeared important predictors, accounting for 59.7% of the variance (p < 0.001). Subsequent in vitro studies deter-
mined human adipocytes to be a source of Lp-PLA2, as confirmed by mRNA expression, protein levels and immunochemistry.
Further in vitro experiments revealed that treatment with LDL-cholesterol or oxLDL resulted in significant upregulation of Lp-
PLA2, while inhibition of Lp-PLA2 reduced oxLDL production by 19.8% (p < 0.05).
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Conclusions/interpretation Our study suggests adipose tissue and adipocytes are active sources of Lp-PLA2, with differential
regulation by fat depot andmetabolic state. Moreover, levels of circulating Lp-PLA2 appear to be influenced by unfavourable lipid
profiles in type 2 diabetes, which may occur in part through regulation of LDL-cholesterol and oxLDL metabolism in adipocytes.
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Abbreviations
AbdSc Abdominal subcutaneous
cPLA2 Calcium-dependent PLA2
CVD Cardiovascular disease
iPLA2 Calcium-independent PLA2
Lp-PLA2 Lipoprotein-associated PLA2
MAPK Mitogen-activated protein kinase
oxLDL Oxidised LDL
PLA2 Phospholipase A2
qPCR Quantitative PCR
SVF Stromal vascular fraction

Introduction

Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a
member of the phospholipase A2 superfamily of enzymes,
which promote the formation of oxidised LDL (oxLDL),
a producer of proinflammatory mediators such as

lysophosphatidylcholine and oxidised fatty acids (enhanced
in states of metabolic disease) [1, 2]. Prior studies highlight
that circulating Lp-PLA2 directly increases arterial inflamma-
tion, while cytosolic calcium-dependent PLA2 (cPLA2) and
calcium-independent PLA2 (iPLA2) appear to contribute to
inflammation via immunological cells [3]. To date, much at-
tention has focused on changes in circulating Lp-PLA2 and
disease (arising from epidemiological studies), and has
highlighted that Lp-PLA2 is upregulated in conditions of obe-
sity, inflammation and cardiovascular disease (CVD) [4–7].

Macrophage-derived Lp-PLA2 has been shown to promote
the instability of vulnerable atherosclerotic plaques, increasing
the risk of coronary events; Lp-PLA2 inhibitors have been
shown to reduce the frequency of these occurrences [8].
Despite this clear connection with CVD, few studies have
explored the impact of circulating Lp-PLA2 in people with
type 2 diabetes, which is often considered to precede CVD.
The literature suggests that individuals with type 2 diabetes
have raised circulating Lp-PLA2 levels, and that these are
positively correlated with adiposity and cardiometabolic risk
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factors [9, 10]. While these studies indicate that increased Lp-
PLA2 with adiposity arises as a result of macrophages, the
importance of human adipocytes in Lp-PLA2 metabolism re-
mains unclear. This is despite the knowledge that adipocytes
possess many overlapping immune cell characteristics, includ-
ing the production of proinflammatory biomarkers [11, 12].

This study sought to investigate the role of Lp-PLA2 in the
adipocyte and the impact of various metabolic states within
adipose tissue on Lp-PLA2 expression. Our aims were to: (1)
characterise PLA2 gene expression and its related isoforms in
adipose tissue; (2) determine the depot-specific expression
within adipose tissue and the impact of obesity and type 2
diabetes; (3) define how cardiometabolic risk factors are asso-
ciated with circulating Lp-PLA2 levels within different meta-
bolic states; and (4) evaluate the molecular impact of LDL-
cholesterol and oxLDL on Lp-PLA2 expression within
adipocytes.

Methods

Participants Ethical approval was obtained from the Local
Research Ethics Committee and all participants gave writ-
ten and informed consent. For this study, 114 women
undergoing elective abdominal surgery were recruited.
The cohort consisted of lean (age 44.4 ± 6.2 years; BMI
22.15 ± 1.8 kg/m2, n = 23), overweight (age 45.4 ±
12.3 years; BMI 26.99 ± 1.5 kg/m2, n = 24), obese (age
49.0 ± 9.1 years; BMI 33.74 ± 3.3 kg/m2, n = 32) and
women with type 2 diabetes (age 53.0 ± 6.13 years; BMI
35.08 ± 8.6 kg/m2, n = 35). Detailed medical drug histo-
ries were taken and those participants with cancer, thyroid
disorders or taking steroids or medication considered to
alter inflammatory status, including thiazolidinediones,
were excluded.

Serum and tissue collectionVenous blood samples were taken
after an 8–10 h overnight fast. Adipose tissue was obtained by
needle biopsy and then flash frozen and/or used for in vitro
studies.

In vivo assessment of biochemical profile Fasting blood sam-
ples were collected from participating volunteers. Lipid pro-
files and fasting plasma glucose were determined using rou-
tine laboratory methods at the University Hospitals Coventry
and Warwickshire NHS Trust. In brief, the routine blood tests
included glucose and a standard lipidaemic/cholesterol profile
(triacylglycerols, HDL-cholesterol and LDL-cholesterol), as
noted in Table 1. OxLDL and Lp-PLA2 were measured by
ELISA (oxLDL ELISA kit, Mercodia, Uppsala, Sweden;
intra-assay %CV = 6.4; inter-assay %CV = 7.4; and Human
PLA2G7/PAF-AH/Lp-PLA2 Quantikine ELISA, R&D
Systems, Abingdon, UK; intra-assay %CV= 6.8, inter-assay

%CV = 9.6; respectively). Insulin measurements were per-
formed using a solid-phase enzyme amplified sensitivity mul-
tiplex immunoassay (Millipore, Watford, UK), and glucose
was measured by a glucose oxidase method (YSL 200 STAT
plus, Yellow Springs Instruments, Yellow Springs, OH, USA).

Analysis of circulating endotoxins Serum endotoxin was
analysed using the QCL-1000 LAL endpoint assay (Lonza,
Allendale, NJ, USA). The assay, and the values given by the
manufacturer for intra-assay %CV (3.9 ± 0.46%) and inter-
assay %CV (9.6 ± 0.75%), have been validated in our labora-
tory, as detailed previously [13, 14].

Isolation of pre-adipocytes, stromal vascular fraction and ma-
ture adipocytes Abdominal subcutaneous (AbdSc) adipose
tissue was digested as previously described to isolate stromal
vascular fraction (SVF), pre-adipocytes and mature adipo-
cytes [15]. In short, adipose tissue was incubated with colla-
genase for 30 min, the digest was then filtered through a cot-
ton mesh and centrifuged. Differential centrifugation resulted
in floating mature adipocytes and pellets of SVF. The pre-
adipocytes were cultured, while RNA was extracted directly
from SVF and mature adipocytes.

Protein determination and western blot analysis A subgroup
of paired human AbdSc and omental adipose tissue biop-
sies from participants who were lean (age 43.6 ± 6.2 years;
BMI 22.5 ± 2.2 kg/m2; n = 9), overweight (age 47.5 ±
11.5 years; BMI 27.4 ± 1.5 kg/m2; n = 10) or obese (age
48.1 ± 8.5 years; BMI 34.0 ± 2.9 kg/m2; n = 5) was used
for protein analysis. The adipose tissue was homogenised
in Phosphosafe extraction buffer (Novagen, Merck,
Darmstadt, Germany) and cultured adipocytes were har-
vested in RIPA buffer (Cell Signaling, Denver, MA, USA)
with a cocktail of protease inhibitors, to extract total pro-
tein. Protein concentrations were measured using the Bio-
Rad Detergent Compatible protein assay kit (Bio-Rad,
San Diego, CA, USA) [16]. Western blotting was per-
formed as described elsewhere [17], and protein levels
of cPLA2 (1:100, Cell Signaling), iPLA2 (1:500, Sigma,
Poole, UK) and Lp-PLA2 (1:200, R&D Systems) were
assessed with rabbit and goat monoclonal antibodies.

RNA extraction and quantitative PCRRNAwas extracted from
samples using an RNeasy lipid tissue kit (Qiagen,Manchester,
UK) according to the manufacturer’s instructions, followed by
a DNase digestion step. cDNAwas synthesised using reverse
transcription reagents (Bioline, London, UK). Quantitative
(q)PCR was performed with TaqMan probes (18S,
Hs03003631_g1; PLA2G7, Hs00173726_m1; PLA2G4,
Hs00233352_m1; PLA2G6, Hs00185926_m1; CD68,
Hs02836816_g1; CD206 [also known as MRC1] ,
Hs00267207_m1; HLA-DRA, Hs00219575_m1; CIITA,
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Hs00172106_m1; EMR1 [also known as ADGRE1],
Hs00173562_m1; Applied Biosystems, Warrington, UK).
Transcript abundance was measured with an Applied
Biosystems 7500 Real-Time PCR System with TaqMan uni-
versal PCR master mix. All reactions were multiplexed with
the housekeeping gene 18S, to normalise qPCR data.

Immunohistochemistry Adipose and placenta tissue samples
were incubated with primary polyclonal Lp-PLA2 antibody
(R&DSystems) in a dilution of 1:100. Sections were developed
using peroxidase substrate kit VIP (Vector Laboratories,
Peterborough, UK) for Lp-PLA2. To demonstrate specific
binding, the primary antibody was omitted for negative control
for Lp-PLA2 independently.

Microarray analysis RNA from the adipose tissue samples was
used for gene expression analysis with the Human Genome
U133A plus 2.0 DNA microarrays (Affymetrix, Santa Clara,
CA, USA). Preparation of cRNA and hybridisation to DNA
microarrays were performed according to standard Affymetrix
protocols, as previously described [18, 19]. PLA2 mRNA
expression was investigated using the 219064_AT probe set.

Cell cultures AbdSc pre-adipocytes were grown to confluence
in DMEM/F-12 containing 10% (vol./vol.) fetal bovine se-
rum, 1% (vol./vol.) penicillin/streptomycin and transferrin
(62.5 pmol/l) at 37°C, 5% CO2 incubation. For cell differen-
tiation, AbdSc pre-adipocytes were maintained in PromoCell
pre-adipocyte differentiation media (PromoCell, Heidelberg,
Germany) for 48 h. Subsequently, the cells were maintained in

the PromoCell adipocyte nutrition media (PromoCell,
Heidelberg, Germany) for 14 days, with the medium changed
every 2 days. The differentiated adipocytes were then given a
24 h wash out in DMEM/F12 supplemented with 0.5% (wt/
vol.) BSA. Chub-S7 cells, a human AbdSc pre-adipocyte cell
line, were grown under the same conditions [20].

The differentiated AbdSc Chub-S7 cells (n = 6) were treated
with LDL-cholesterol (67 pmol/l) ± 20 μmol/l of the Lp-PLA2
inhibitor (Darapladib, Cayman Chemical, Ann Arbor,
Michigan, USA) or oxLDL (43 pmol/l; Kalen Biomedical,
Germantown,MD,USA) for 3, 6, 24 and 48 h. PBS containing
0.34 mmol/l EDTAwas used as the control. Experiments were
conducted with six technical replicates per treatment.

Statistical analysis For microarray data analysis, one-way
ANOVA was performed for each selected PLA2 gene.
Significance ofmRNA expression and protein levels in different
adiposity, fat depot and type 2 diabetes status datawere analysed
with paired t tests. For the cell culture, treatments were com-
pared using two-way ANOVA. All quantitative variables are
shown as the mean ± SEM, unless otherwise stated.

Determination of correlations in gene expression analysis
was performed using Pearson’s correlation coefficient.
Spearman’s rank correlation coefficient was used to determine
correlations for serum Lp-PLA2 and metabolic markers be-
cause of the non-parametric distribution. Furthermore, multi-
variate stepwise regression was applied to calculate predictors
of systemic Lp-PLA2 and Bonferroni correction was used to
adjust the p value to 0.0045. Power analyses to determine
sample size were carried out using G*Power version 3.1.9.2

Table 1 Selected characteris-
tics of the study participants with
and without type 2 diabetes

Characteristic Non-diabetic Type 2 diabetic
(n = 35)

Lean
(n = 23)

Overweight
(n = 24)

Obese (n = 32)

BMI (kg/m2) 22.15 ± 1.8 26.99 ± 1.5*** 33.74 ± 3.2*** 35.08 ± 8.6***

Glucose (mmol/l) 4.61 ± 0.1 4.84 ± 0.1 5.12 ± 0.2** 8.56 ± 0.4***†††

HOMA-IR 0.89 ± 0.1 1.12 ± 0.1 2.64 ± 0.3*** 6.21 ± 0.8***†††

Cholesterol (mmol/l) 4.55 ± 0.2 4.96 ± 0.2 5.24 ± 0.2* 4.97 ± 0.2

Triacylglycerol (mmol/l) 0.76 ± 0.1 0.91 ± 0.1 1.52 ± 0.2*** 1.44 ± 0.1***

LDL-cholesterol (mmol/l) 2.32 ± 0.2 2.73 ± 0.2 3.07 ± 0.1** 3.24 ± 0.2**

HDL-cholesterol (mmol/l) 1.88 ± 0.1 1.81 ± 0.1 1.45 ± 0.1** 1.24 ± 0.1***†

LDL-cholesterol
/HDL-cholesterol

1.31 ± 0.5 1.66 ± 0.2 2.39 ± 0.2*** 2.87 ± 0.2***†

Insulin (pmol/l) 28.95 ± 8.0 33.24 ± 7.6 69.45 ± 7.6*** 91.55 ± 7.8***†

Endotoxin (EU/ml) 2.12 ± 0.2 2.91 ± 0.3* 4.39 ± 0.4*** 6.95 ± 0.3***†††

OxLDL (U/l) 39.17 ± 1.5 41.08 ± 2.5 51.87 ± 3.1*** 66.88 ± 4.4***††

Lp-PLA2 (pmol/l) 2.39 ± 0.14 2.81 ± 0.21 2.98 ± 0.19* 2.94 ± 0.16*

Data are means ± SEM, except for BMI which is mean ± SD

Unpaired t test was used to compare means

*p < 0.05, **p < 0.01 and ***p < 0.001 for lean vs overweight, obese and type 2 diabetic

†p < 0.05, ††p < 0.01 and †††p < 0.001 for obese vs type 2 diabetic
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(G*power, Düsseldorf, Germany). Analyses and graphing
were performed using SPSS version 18.0 for Windows
(SPSS, Chicago, Illinois, USA) and GraphPad Prism version
7.01 (GraphPad, La Jolla, CA, USA), respectively. Levels of
statistical significance were set at *p < 0.05, **p < 0.01 and
***p < 0.001, unless otherwise stated.

Results

PLA2 microarray expression profile in adipose tissueAmicro-
array approach containing 20 probes was used to obtain a com-
prehensive picture of genes differentially expressed in AbdSc
and omental adipose tissue from lean and obese participants.
The probes corresponded to genes encoding for four isoen-
zymes in the platelet-activating factor acetylhydrolase family
(PLA2G7, PAFAH2, PAFAH1B1 and PAFAH1B2), three isoen-
zymes in the cPLA2 family (PLA2G4A, PLA2G4C and
PLA2G4D), four isoenzymes in the iPLA2 family (PLA2G6,
PNPLA2, PNPLA4 and PNPLA5) and nine isoenzymes in the
secretory PLA2 family (PLA2G1B, PLA2G2A, PLA2G2D,
PLA2G2E, PLA2G2F, PLA2G5, PLA2G10, PLA2G12A and
PLA2G12B). Increased expression (p < 0.05) was noted for
PLA2G7 (encoding Lp-PLA2), while PLA2G6 (encoding
iPLA2) showed downregulation (p < 0.05) in AbdSc adipose
tissue taken from obese individuals compared with lean indi-
viduals (Fig. 1a). Our raw array data are available online at
Open Science Network (https://osf.io/s6rw3/).

PLA2 family mRNA and protein levels in adipose tissue To
further characterise PLA2 in relation to adiposity, we investi-
gated PLA2G7, PLA2G6 and PLA2G4 (encoding cPLA2) ex-
pression in subcutaneous and omental adipose tissue sampled
from lean, overweight and obese individuals.

The level of PLA2G7 mRNA was significantly higher in
AbdSc than omental adipose tissue in obese participants
(p < 0.05); no difference was observed between the other
groups (Fig. 2a). PLA2G7 gene expression was raised in adi-
pose tissue samples from overweight or obese individuals
compared with lean individuals, but the difference was not
significant (Fig. 2a). Analysis of Lp-PLA2 protein indicated
that increasing adiposity alone did not increase Lp-PLA2
levels in adipose tissue (Fig. 2b).

Analysis of PLA2G4 gene expression demonstrated that
PLA2G4 was expressed preferentially in OM adipose tissue
depots of lean individuals rather than AbdSc adipose tissue
(p < 0.001; Fig. 2c). Overweight and obese individuals had
higher levels of PLA2G4 gene expression in the AbdSc adi-
pose tissue depot compared with their lean counterparts
(p < 0.05). Interestingly, in the omental adipose tissue depot,
PLA2G4mRNA expression was significantly decreased in the
obese participants (p < 0.001; Fig. 2c). Subsequent cPLA2

protein analysis confirmed the gene expression findings for
AbdSc and omental adipose tissue (Fig. 2d).

Next, we investigated PLA2G6 gene expression between
paired AbdSc and omental adipose tissue and no effect of
adiposity was observed (Fig. 2e). Protein analysis, however,
revealed that levels of iPLA2 were higher in omental than
AbdSc adipose tissue in lean and overweight participants
(p < 0.05; Fig. 2f). Taken together, these results indicate that
depot specificity and differing levels of adiposity affect PLA2
expression in adipose tissue.

Influence of type 2 diabetes status on Lp-PLA2 Given that
PLA2 levels were markedly altered by adiposity, we investi-
gated the influence of type 2 diabetes status. Analysis of
PLA2G7 gene expression in AbdSc adipose tissue depots
from lean, obese and type 2 diabetic individuals showed a
significant increase in diabetic adipose tissue compared with
lean adipose tissue (p < 0.01; Fig. 3a). Consistent with these
findings, protein analysis demonstrated increased levels of
Lp-PLA2 in individuals with type 2 diabetes; however, this
increase was more modest and did not reach statistical signi-
ficance (Fig. 3b). There were no significant differences in
AbdSc adipose tissue mRNA and protein levels of cPLA2
and iPLA2 between the non-diabetic and type 2 diabetic
groups (data not shown). Thus, type 2 diabetes status appeared
to be associated with an upregulation of Lp-PLA2 in adipose
tissue.

Analysis of Lp-PLA2 and macrophage markers in adipocytes
and adipose tissue In view of the changes of Lp-PLA2 in
adipose tissue, our study further sought to investigate the source
of Lp-PLA2 in adipose tissue. Using immunohistochemical
staining, we observed the expression of Lp-PLA2, as denoted
by the brown staining observed around each cell, in mature
adipocytes from lean non-diabetic individuals (Fig. 4a).
Placental tissue was used as a positive control for Lp-PLA2
staining, with positive brown staining also shown, in addition
to negative staining noted in both tissue sections (Fig. 4a).

Consistent with these findings, protein analysis demonstrated
the presence of Lp-PLA2 in a pure human adipocyte cell line,
Chub-S7, pre- and post-differentiation (Fig. 4b). Analysis of Lp-
PLA2 content in cultured primary human adipocytes from
AbdSc adipose tissue also revealed the presence of Lp-PLA2
in both pre-adipocytes and mature adipocytes.

Given that macrophages are known to express Lp-PLA2 in
adipose tissue, we determined the expression of macrophage
markers in mature adipocyte samples. No differences were
observed in PLA2G7 mRNA expression between mature adi-
pocytes and SVF isolated from adipose tissue after collagenase
digestion (Fig. 4c). Mature adipocytes had reduced levels of
the macrophage markers CD68, CD206, HLA-DRA, CIITA
and EMR1 in comparison with SVF (Fig. 4c). Additionally,
no significant correlations were identified between the gene
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expression of these macrophage markers and PLA2G7 (see
electronic supplementary material [ESM] Fig. 1a-e).
Similarly, correlation analysis of EMR1 and PLA2G7 mRNA
expression in AbdSc adipose tissue showed no significant cor-
relation (r = 0.192, p = 0.530; Fig. 4d). The results presented
here clearly demonstrate the expression of Lp-PLA2 by adi-
pocytes from human adipose tissue.

Comparison of anthropometric and biochemical analytes in
subcohortsThe association of Lp-PLA2with selectedmetabolic
markers was investigated to further understand the influence of
metabolic states on circulating Lp-PLA2.

Table 1 shows baseline characteristics from fasted partici-
pants in four subcohorts. Obese participants and those with
type 2 diabetes status had significantly higher levels of Lp-
PLA2 compared with the lean group (p < 0.05); this associa-
tion was attenuated in the overweight group. Compared with
the lean study group, the obese and type 2 diabetic women also

had statistically different levels of all other metabolic markers,
apart from cholesterol in the obese group. These associations
were not seen in the overweight participants, except for endo-
toxin levels, which were significantly increased (p < 0.05).

The relationships between circulating Lp-PLA2 and key
metabolic markers were determined using linear regression.
Analysis of our full cohort revealed that Lp-PLA2 positively
correlated with cholesterol, LDL-cholesterol, oxLDL, BMI
and endotoxin (Fig. 5). Subsequent subcohort analysis re-
vealed significant positive correlations with metabolic
markers, including cholesterol, triacylglycerol, LDL-choles-
terol, LDL-cholesterol /HDL-cholesterol, endotoxin and
oxLDL in non-diabetic individuals (Table 2). Additionally,
strong correlations between Lp-PLA2 and HDL-cholesterol,
LDL-cholesterol/HDL-cholesterol and oxLDL were main-
tained in individuals with type 2 diabetes.

Thereafter, multivariate stepwise regression analysis was
used to identify factors that influence circulating Lp-PLA2
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a
Fig. 1 Microarray data analysis
of the PLA2 gene family. The
data are represented as a ratio
between intensity signal from
lean and obese (a) AbdSc adipose
tissue and (b) omental adipose
tissue. Statistical analysis was
performed using one-way
ANOVA. White bars, secretory
PLA2; light grey bars, cPLA2;
dark grey bars, iPLA2; black bars,
platelet-activating factor
acetylhydrolase. *p < 0.05
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across non-diabetic and diabetic groups. In the whole study
population, LDL-cholesterol was the sole determinant of circu-
lating Lp-PLA2, accounting for 9.7% of the variance observed
(Table 3). Further analysis of type 2 diabetic individuals re-
vealed that oxLDL, triacylglycerol and HDL-cholesterol

account for 59.7% of the variance (p < 0.001). In non-diabetic
individuals, LDL-cholesterol was a significant predictor
(p = 0.02), but not after the Bonferroni correction was applied.

These findings indicate that oxLDL, triacylglycerol and
HDL-cholesterol are the most important predictors of Lp-
PLA2 in patients with type 2 diabetes; additionally, correlation
data show a clear link between lipid profile and Lp-PLA2
across different metabolic states.

Effect of Lp-PLA2 inhibitor, oxLDL and LDL-cholesterol on
Chub-S7 cells Given that our study revealed an association
between Lp-PLA2 and the unfavourable circulating lipid pro-
file in type 2 diabetic individuals, we sought to determine the
direct influence of lipid mediators on Lp-PLA2 activity.

Treatment of Chub-S7 cells with oxLDL induced an acute
rise in PLA2G7mRNA levels that was statistically significant
at 6 h post treatment, and which slowly declined up until 48 h
(p < 0.001; Fig. 6a). Protein levels displayed similar results,
with upregulation of Lp-PLA2 at 3 h and 6 h, followed by a
steep decline post 6 h, although still significantly higher than
the control (p < 0.001, Fig. 6b). Treatment with native LDL-
cholesterol resulted in increased PLA2G7 gene expression at
48 h compared with 3 h (p < 0.001; Fig. 6c). However, 6 h
stimulation with LDL-cholesterol diminishes PLA2G7 gene
expression (p < 0.001; Fig. 6c). Interestingly, Lp-PLA2 pro-
tein levels increased at every time point post LDL-cholesterol
treatment (p < 0.001, Fig. 6d).

Further analysis of LDL treatment explored whether adipo-
cytes were converting LDL into oxLDL, and how this conver-
sion was affected by an Lp-PLA2 inhibitor. At 72 h incubation,
the oxLDL level had significantly increased by 19.8% com-
pared with 24 h incubation (p < 0.05) (Fig. 6e). The increased
oxLDL production in medium significantly diminished when
the cells were treated with LDL-cholesterol plus Lp-PLA2 in-
hibitor (Fig. 6e). Thus, these studies indicate a functional re-
quirement for Lp-PLA2 in adipocytes for oxLDL production.

Discussion

The main purpose of this study was to evaluate the role of the
adipocyte as a source of Lp-PLA2, and its capacity to influence
oxLDL production as a contributing influence in inflammation
within obesity-mediated diabetes. To establish this, we com-
prehensively evaluated PLA2 isoforms in different states of
adiposity and diabetes status, noting the effect of cholesterol
on cellular Lp-PLA2 in an in vitro adipocyte model. We report
that PLA2 and its isoforms appear to be heavily influenced by
weight, metabolic state and circulating lipids. Moreover, Lp-
PLA2 is associated with an unfavourable circulating lipid pro-
file, including increased oxLDL and triacylglycerol, which is
exacerbated in type 2 diabetes. Furthermore, our in vitro adi-
pocyte studies show that Lp-PLA2 is expressed and functional,
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being influenced by LDL-cholesterol and oxLDL in a similar
fashion to monocyte studies [21].

Obesity contributes to a heightened inflammatory response
in adipose tissue [22]; the influence of the PLA2 superfamily in
this condition has been unclear to date [23]. Its importance in
adipose tissue may arise as cPLA2 is phosphorylated by c-Jun
N-terminal kinase (JNK), p38 mitogen-activated protein kinase
(MAPK) and p42/44 MAPKs—all known intracellular media-
tors of inflammation [24]. Similarly, iPLA2 and Lp-PLA2 are
also considered pathogenic inflammatory markers in monocytes
[25, 26]. Our microarray analysis of PLA2 isoforms in AbdSc
adipose tissue found that Lp-PLA2 and iPLA2 levels were al-
tered by adiposity, but this was not mirrored by subsequent gene
or protein expression data. However, cPLA2mRNAand protein
levels increased with adiposity. The apparent disparity between
our initial microarray results and subsequent mRNA and protein
analysis may have reflected the limited number of participants
available for microarray analysis. Furthermore, analysis of
PLA2 isoforms in adipose tissue from amale cohort (given their
higher metabolic risk for a given age and BMI) would add value
to our existing knowledge.

It is clear from prior studies that macrophages represent an
important source of Lp-PLA2 [27, 28], and increase with

adiposity in omental adipose tissue [29, 30]. Therefore, it was
important to ascertain the contribution of macrophages to Lp-
PLA2 in adipose tissue, as well as to explore the potential
cellular site of Lp-PLA2 expression. In brief, we: (1) evaluated
the influence of macrophages, using the macrophage marker
EMR1 to explore an association with Lp-PLA2 in adipose
tissue [31, 32]; (2) analysed, immunohistochemically, the ex-
pression of Lp-PLA2 in adipose tissue; and (3) used isolated
mature and differentiated human adipocyte cells to examine
Lp-PLA2 and macrophage expression. These studies suggest
that adipocytes can be viewed as an important contributing
source of Lp-PLA2 expression in adipose tissue and adipo-
cytes. Analysis of the mature adipocytes and adipocyte cell line
highlighted that any perceived prior contamination of macro-
phages in cell cultures did not represent a source of Lp-PLA2
mRNA or protein expression. Therefore, targeting adipocytes
in obese individuals with darapladib (an Lp-PLA2 inhibitor
known to reduce plaque instability in coronary events [33,
34]) may effectively influence adipose tissue dysfunction in
obese/type 2 diabetic individuals with and without CVD.

Prior studies have shown associations between Lp-PLA2
and CVD. Our studies examined circulating Lp-PLA2 and its
relationship with selected metabolic markers in type 2 diabetic
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individuals. The data showed that circulating Lp-PLA2 in-
creased significantly with both the level of adiposity and dia-
betes status. These findings support previous studies in women

with gestational diabetes [33] and South Asian individuals with
the metabolic syndrome [34], which report similar increases in
Lp-PLA2. Interestingly, relative to people without diabetes,
there is a fourfold increase in intracellular Lp-PLA2 levels in
adipose tissue from individuals with type 2 diabetes; this may,
in part, explain the systemic changes in Lp-PLA2 plasma levels
in type 2 diabetic individuals. It should also be noted that other
cell types secrete Lp-PLA2, such as monocytes, macrophages,
T lymphocytes and mast cells, providing an additional source
of circulating Lp-PLA2 in type 2 diabetes [35, 36].

In common with people with CVD, the participants with
type 2 diabetes in this study had a more unfavourable cardio-
metabolic risk profile than the obese individuals without diabe-
tes; this included increased oxLDL and LDL-cholesterol /HDL-
cholesterol ratio and diminished HDL-cholesterol levels. Our
multivariate stepwise regression analysis confirmed oxLDL,
triacylglycerol and HDL-cholesterol as the most important pre-
dictors of Lp-PLA2 in participants with type 2 diabetes.
Additionally, correlation data showed a clear link between lipid
profiles and Lp-PLA2 across different metabolic states. These
findings were partially affirmed by a study involving a cohort of
men with type 2 diabetes, where a multiple-regression model
found triacylglycerols as the key predictor of Lp-PLA2 [37].
Therefore, it appears that an unfavourable circulating lipid pro-
file may drive an increase in Lp-PLA2 in adipose tissue, and
this is more pronounced in individuals with type 2 diabetes.

The association of an unfavourable lipid profile with dia-
betes and the associated increase in intracellular Lp-PLA2 in
adipose tissue in type 2 diabetes led us to investigate the im-
portance of the adipocyte in LDL-cholesterol and oxLDL
modulation in a human adipocyte cell system. In this cellular
system, it was shown that acute oxLDL exposure increased
the new synthesis of Lp-PLA2, as observed by increasing
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Table 2 Correlations between
serum Lp-PLA2 and selected
metabolic markers

Characteristic Non-diabetic Type 2 diabetic
(n = 35)

Non-diabetic
(n = 79)

Lean
(n = 23)

Overweight
(n = 24)

Obese
(n = 32)

BMI 0.271* 0.146 0.113 0.138 −0.042
Glucose 0.123 0.306 0.011 0.025 0.236

HOMA-IR 0.249 0.395 0.468 0.215 0.143

Cholesterol 0.404** 0.537* 0.310 0.315 0.176

Triacylglycerol 0.365** 0.459 0.288 0.299 0.146

LDL-cholesterol 0.442** 0.607* 0.221 0.400* 0.306

HDL-cholesterol −0.281* 0.207 0.113 0.420* −0.536**

LDL-cholesterol
/HDL-cholesterol

0.449*** 0.596* 0.025 0.486** 0.588***

Insulin 0.304* 0.297 0.465 0.250 0.122

Endotoxin 0.368** 0.590** 0.125 0.326 0.071

OxLDL 0.353** 0.460* 0.196 0.328 0.657**

The values shown are Spearman’s correlation coefficients

*p < 0.05, **p < 0.01 and ***p < 0.001
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gene expression. In comparison, oxLDL treatment in human
THP-1 monocyte cell cultures also upregulated Lp-PLA2,
suggesting that adipocytes may act in a similar manner to
macrophages [21, 38]. Lp-PLA2 protein levels appeared to
be induced at an even earlier time point than mRNA expres-
sion. This apparent disparity may have arisen because of the
capacity of the adipocyte to influx and digest oxLDL and
LDL-cholesterol, releasing fatty acid, cholesterol and Lp-
PLA2 [39]. As such, Lp-PLA2 is transported into the adipo-
cyte bound to apolipoprotein B on LDL-cholesterol, its pri-
mary carrier [40]. Therefore, the protein expression of Lp-
PLA2 likely reflects the exogenous Lp-PLA2 available, while
the mRNA expression represents the newly synthesised Lp-
PLA2. Of note, LDL-cholesterol treatment led to similar fin-
dings for Lp-PLA2 protein levels: following acute treatment
we observed elevated levels of Lp-PLA2, with a gradual re-
duction over time. To further implicate Lp-PLA2 in the regu-
lation of lipid mediators, co-treatment of LDL-cholesterol
with an Lp-PLA2 inhibitor was tested, resulting in diminished
oxLDL-mediated inflammation. Thus, Lp-PLA2 functionality
within adipocytes may be required for oxLDL production, and
the ability to modify oxLDL production from adipose tissue
through the Lp-PLA2 pathway may be an important mecha-
nism to target. Future knockdown studies of Lp-PLA2 could
further evaluate these effects on adipocyte cellular functions.
This may also ascertain whether adipocyte Lp-PLA2 is a use-
ful therapeutic target to improve the lipid profile of people
with type 2 diabetes. While still appreciating that downregu-
lating Lp-PLA2 in adipocytes may be significant in reducing
systemic triacylglycerols and oxLDL levels, it should be
stressed that, as lipid control is a multifactorial process, exa-
mining more than one mediator would enhance our under-
standing of the potential impact on lipid profiles.

In conclusion, this work has highlighted that AbdSc adipose
tissue and the adipocyte may act as separate and significant
sources of oxLDL production (i.e. separate from foam cells
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Fig. 6 Effects of an Lp-PLA2 inhibitor, oxLDL and LDL-cholesterol
on Lp-PLA2 gene expression and protein levels. Differentiated Chub-S7
adipocytes (n = 6) were treated for 3, 6, 24 and 48 h with: (a) 43 pmol/l
oxLDL, PLA2G7mRNAwas measured; (b) 43 pmol/l oxLDL, Lp-PLA2
protein levels were measured (black circles, control; white circles,
oxLDL-treated cells); (c) 67 pmol/l LDL-cholesterol, PLA2G7 mRNA
was measured; and (d) 67 pmol/l LDL-cholesterol, Lp-PLA2 protein
levels were measured (black circles, control; white circles, LDL-choles-
terol-treated cells). (e) Cells were treated with 200 μg protein/ml LDL-
cholesterol and with or without 20 μmol/l Lp-PLA2 inhibitor for 24, 48
and 72 h. The oxLDL levels (mU/l) were normalised to individual total
protein concentration. Statistical analysis was performed using two-way
ANOVA. *p < 0.05 and ***p < 0.001 vs 0 h. Ctrl, control; LDL-C, LDL-
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Table 3 Variables statistically
associated with circulating Lp-
PLA2 in multivariate stepwise
regression analysis

Independent variables Standard βa Adjusted R2b p value for R2

Non-diabetic – 0.096 0.020

LDL-cholesterol 0.34 ± 0.18 – –

Type 2 diabetic – 0.597 1.5×10−5

OxLDL 0.77 ± 0.09 – –

Triacylglycerol −0.38 ± 0.13 – –

HDL-cholesterol −0.30 ± 0.14 – –

All – 0.097 0.004

LDL-cholesterol 0.33 ± 0.11 – –

The following independent variables were considered for the model: BMI, fasting glucose, HOMA-IR, choles-
terol, triacylglycerol, LDL-cholesterol, HDL-cholesterol, insulin, endotoxin, oxLDL
a Standardised regression β coefficient ± SEM
bAdjusted coefficient of determination

p values for adjusted R2 are significant at <0.0045 (Bonferroni adjusted p value)
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within unstable atherogenic plaques noted in coronary artery
disease) [41]. Furthermore, human adipose tissue and adipocytes
appear active sources of Lp-PLA2, with expression induced by
LDL-cholesterol and oxLDL. Lp-PLA2 expression is raised in
AbdSc adipose tissue from people without diabetes, and this is
further enhanced in the type 2 diabetic state. The observed in-
crease of Lp-PLA2 in type 2 diabetic people appears to be asso-
ciatedwith an upregulation in systemic lipids. As such, increased
Lp-PLA2 protein from adipocytes in obesity and type 2 diabetes
may contribute to increased circulating oxLDL levels. In turn,
this may further promote inflammation and increase the athero-
sclerotic risk. Therefore, Lp-PLA2 action within adipocytes ap-
pears to represent a novel and important therapeutic target to
reduce inflammation, atherosclerotic risk and the development
of cardiometabolic complications in type 2 diabetes.
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