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Abstract— The channel law for amplitude-modulated solitons
transmitted through a nonlinear optical fiber with ideal distrib-
uted amplification and a receiver based on the nonlinear Fourier
transform is a noncentral chi-distribution with 2n degrees of
freedom, where n = 2 and n = 3 correspond to the single- and
dual-polarisation cases, respectively. In this paper, we study the
capacity lower bounds of this channel under an average power
constraint in bits per channel use. We develop an asymptotic
semi-analytic approximation for a capacity lower bound for
arbitrary n and a Rayleigh input distribution. It is shown that
this lower bound grows logarithmically with signal-to-noise ratio
(SNR), independently of the value of n. Numerical results for
other continuous input distributions are also provided. A half-
Gaussian input distribution is shown to give larger rates than a
Rayleigh input distribution for n = 1, 2, 3. At an SNR of 25 dB,
the best lower bounds we developed are approximately 3.68 bit
per channel use. The practically relevant case of amplitude shift-
keying (ASK) constellations is also numerically analyzed. For
the same SNR of 25 dB, a 16-ASK constellation yields a rate of
approximately 3.45 bit per channel use.

Index Terms— Achievable information rates, channel capacity,
mutual information, nonlinear optical fibres, nonlinear Fourier
transform, optical solitons.

I. INTRODUCTION

OPTICAL fibre transmission systems carrying the over-
whelming bulk of the world’s telecommunication traffic
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have undergone a long process of increasing engineering com-
plexity and sophistication [1]–[3]. However, the key physical
effects affecting the performance of these systems remain
largely the same. These are: attenuation, chromatic dispersion,
fibre nonlinearity due to the optical Kerr effect, and optical
noise. Although the bandwidth of optical fibre transmission
systems is large, these systems are ultimately band-limited.
This bandwidth limitation combined with the ever-growing
demand for data rates is expected to result in a so-called
“capacity crunch” [4], which caps the rate increase of error-
free data transmission [4]–[7]. Designing spectrally-efficient
transmission systems is therefore a key challenge for future
optical fibre transmission systems.

The channel model used in optical communication that
includes all three above-mentioned key effects for two states
of polarisation is the so-called Manakov equation (ME)
[7, eq. (1.26)], [8, Sec. 10.3.1]. The ME describes the propa-
gation of the optical field for systems employing polarisation
division multiplexing. The ME therefore generalises the popu-
lar scalar nonlinear Schrödinger equation (NSE) [6]–[9], used
for single-polarisation systems. In both models, the evolution
of the optical field along the fibre is represented by a nonlinear
partial differential equation with complex additive Gaussian
noise.1 The accumulated nonlinear interaction between the
signal and the noise makes the analysis of the resulting channel
model a very difficult problem. As recently discussed in, e.g.,
[10, Sec. 1], [11], [12], exact channel capacity results for fibre
optical systems are scarce, and many aspects related to this
problem remain open.

Until recently, the common belief among some researchers
in the field of optical communication was that nonlinearity
was always a nuisance that necessarily degrades the system
performance. This led to the assumption that the capacity of
the optical channel had a peaky behaviour when plotted as a
function of the transmit power.2 Partially motivated by the idea
of improving the data rates in optical fibre links, a multitude
of nonlinearity compensation methods have been proposed
(see, e.g., [16]–[21]), each resulting in different discrete-time
channel models. Recently, a paradigm-shifting approach for

1The precise mathematical expressions for both channel models are given
in Sec. II-A.

2However, nondecaying bounds can be found in the literature, e.g., in [10]
and [13] (lower bounds) and [14] and [15] (upper bounds).
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overcoming the effects of nonlinearity has been receiving
increased attention. This approach relies on the fact that both
the ME and NSE in the absence of losses and noise are exactly
integrable [22], [23].

One of the consequences of integrability is that the signal
evolution can be represented using nonlinear normal modes.
While the pulse propagation in the ME and NSE is nonlin-
ear, the evolution of these nonlinear modes in the so-called
nonlinear spectral domain is essentially linear [24], [25]. The
decomposition of the waveform into the nonlinear modes
(and the reciprocal operation) is often referred to as non-
linear Fourier transform (NFT), due to its similarity with
the application of the conventional Fourier decomposition in
linear systems [26].3 The linear propagation of the nonlinear
modes implies that the nonlinear cross-talk in the NFT domain
is theoretically absent, an idea exploited in the so-called
nonlinear frequency division multiplexing [24], [27]. In this
method, the nonlinear interference can be greatly suppressed
by assigning users different ranges in the nonlinear spectrum,
instead of multiplexing them using the conventional Fourier
domain.

Integrability (and the general ideas based around NFT) has
also lead to several nonlinearity compensation, transmission
and coding schemes [28]–[38]. These can be seen as a gener-
alisation of soliton-based communications [8], [9], [39, Ch. 5],
which follow the pioneering work by Hasegawa and Nyu [40],
and where only the discrete eigenvalues were used for com-
munication. The development of efficient and numerically
stable algorithms has also attracted a lot of attention [41].
Furthermore, there have also been a number of experimental
demonstrations and assessments for different NFT-based sys-
tems [33]–[38]. However, for systems governed by the ME,
the only results available come from the recent theoretical
work of Maruta and Matsuda [32].

Two nonlinear spectra (types of nonlinear modes) exist
in the NSE and the ME. The first one is the so-called
continuous spectrum, which is the exact nonlinear analogue
of the familiar linear FT, inasmuch as its evolution in an
optical fibre is exactly equivalent to that of the linear spectrum
under the action of the chromatic dispersion and the energy
contained in the continuous spectrum is related to that in
the time domain by a modified Parseval equality [26], [31].
The unique feature of the NFT is, however, that apart from
the continuous spectrum, it can support a set of discrete
eigenvalues (the nondispersive part of the solution). In the
time domain, these eigenvalues correspond to stable localised
multi-soliton waveforms immune to both dispersion and non-
linearity [8]. The spectral efficiency of the multiple-eigenvalue
encoding schemes is an area actively explored at the moment
[29], [42], [43]. Multi-soliton transmission has also received
increased attention in recent years, see, e.g., [44] and [45]
and references therein. Finding the capacity of the multi-
eigenvalue-based systems in the presence of in-line noise that
breaks integrability still remains an open research problem.
If only a single eigenvalue per time slot is used, the problem is

3In mathematics and physics literature, the name inverse scattering trans-
form method for the NFT is more commonly used.

equivalent to a well-known time-domain amplitude-modulated
soliton transmission system.4 In this paper, we consider this
simple set-up, where a single eigenvalue is transmitted in
every time slot. The obtained results are applicable not only to
classical soliton communication systems, but also to the novel
area of the eigenvalue communications.

Although the set-up we consider in this paper is one
of the simplest ones, its channel capacity is still unknown.
Furthermore, the only results available in the literature [29],
[42], [43], [46]–[49] are exclusively for the NSE, leaving
the ME completely unexplored. In particular, previous results
include those by Meron et al. [48], who recognised that mutual
information (MI) in a nonlinear integrable channel can (and
should) be evaluated through the statistics of the nonlinear
spectrum, i.e., via the channel defined in the NFT domain.
Using a Gaussian scalar model for the amplitude evolution
with in-line noise, a lower bound on the MI and capacity of
a single-soliton transmission system was presented. The case
of two and more solitons per one time slot was also analysed,
where data rate gains of the continuous soliton modulation
versus an on-off-keying (OOK) system were also shown. A bit-
error rate analysis for the case of two interacting solitons
has been presented in [50]. The derivations presented there,
however, cannot be used straightforwardly for information
theoretic analysis. Yousefi and Kschischang [29] addressed
the question of achievable spectral efficiency for single- and
multi-eigenvalue transmission systems using a Gaussian model
for the nonlinear spectrum evolution. Some results on the
continuous spectrum modulation were also presented. Later
in [42], the spectral efficiency of a multi-eigenvalue transmis-
sion system was studied in more detail. In [43], the same
problem was studied by considering the correlation functions
of the spectral data obtained in the quasi-classical limit of
large number of eigenvalues. Achievable information rates
for multi-eigenvalue transmission systems utilising all four
degrees of freedom of each scalar soliton in NSE were
analytically obtained in [46]. These results were obtained
within the framework of a Gaussian noise model provided
in [29] and [47] (non-Gaussian models have been presented
in [51] and [52]) and assuming a continuous uniform input
distribution subject to peak power constraints. The spectral
efficiency for the NFT continuous spectrum modulation was
considered in [53]–[55]. Periodic NFT methods have been
recently investigated in [56].

In [49], we used a non-Gaussian model for the evolution of
a single soliton amplitude and the NSE. Our results showed
that a lower bound for the capacity per channel use of such
a model grows unbounded with the effective signal-to-noise
ratio (SNR). In this paper, we generalise and extend our
results in [49] to the ME. To this end, we use perturbation-
based channel laws for soliton amplitudes previously reported
in [51] and [52] (for the NSE) and [57] (for the ME). Both
channel laws are a noncentral chi (χ) distribution with 2n
degrees of freedom, where n = 2 and n = 3 correspond to
the NSE and ME, respectively. Motivated by the similarity of

4Since the imaginary part of a single discrete eigenvalue is proportional to
the soliton amplitude.
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the channel models mentioned above, in this paper we study
asymptotic lower bound approximations on the capacity (in
bit per channel use) of a general noncentral chi channel with
an arbitrary (even) number of degrees of freedom. To the best
of our knowledge, this has not been previously reported in the
literature. Similar models, however, do appear in the study of
noise-driven coupled nonlinear oscillators [58].

The first contribution of this paper is to numerically obtain
lower bounds for the channel capacity for three continuous
input distributions, as well as for amplitude shift-keying (ASK)
constellations with discrete number of constellation points.
For all the continuous inputs, the lower bounds are shown
to be nondecreasing functions of the SNR under an average
power constraint. The second contribution of this paper is to
provide an asymptotic closed-form expression for the MI of
the noncentral chi-channel with an arbitrary (even) number of
degrees of freedom. This asymptotic expression shows that the
MI grows unbounded and at the same rate, independently of
the number of degrees of freedom.

II. CONTINUOUS-TIME CHANNEL MODEL

A. The Propagation Equations

The propagation of light in optical fibres in the presence of
amplified spontaneous emission (ASE) noise can be described
by a stochastic partial differential equation which captures
the effects of chromatic dispersion, nonlinear polarisation
mode dispersion, optical Kerr effect, and the generation of
ASE noise from the optical amplification process. Throughout
this paper we assume that the fibre loss is continuously
compensated along the fibre by means of (ideal) distributed
Raman amplification (DRA) [59], [60]. In this work we
consider the propagation of a slowly varying 2-component
envelope E(�, τ ) = [E1(�, τ ), E2(�, τ )] ∈ C2 over a nonlinear
birefringent optical fibre, where τ and � represent time and
propagation distance, respectively. Our model also includes the
2-component ASE noise N(�, τ ) = [N1(�, τ ), N2(�, τ )] due
to the DRA. We also assume a uniform change of polarised
state on the Poincaré sphere [61].

The resulting lossless ME is then given by [7, eq. (1.26)],
[8, Sec. 10.3.1], [57], [62]5

ı E� − β2

2
Eττ + 8γ

9
〈E, Ē〉 E = N(�, τ ), (1)

where the retarded time τ is measured in the reference
frame moving with the optical pulse average group veloc-
ity, E ≡ E(�, τ ) represents the slowly varying 2-component
envelope of electric field, β2 is the group velocity dispersion
coefficient characterising the chromatic dispersion, and γ is
the fibre nonlinearity coefficient. The pre-factor 8/9 in (1)
comes from the averaging of the fast polarisation rotation
[8, Sec. 10.3.1], [61]. For simplicity we will further work
with the effective averaged nonlinear coefficient γ ∗ � 8γ /9

5Throughout this paper, vectors are denoted by boldface symbols x =
[x1, x2, x3, ...], while scalars are denoted by nonboldface symbols. The scalar
product is denoted by 〈· , ·〉, and over-bar denotes complex conjugation. The
Euclidean norm is denoted by ‖x‖2 � |x1|2 + |x2|2 + . . .. The partial
derivatives in the partial differential equations are expressed as subscripts, e.g.,

E� � ∂E
∂� , Eττ � ∂2 E

∂τ2 , etc. The imaginary unit is denoted by ı � √−1.

when addressing the ME. In the case of a single polarisation
state, the propagation equation above reduces to the lossless
generalised scalar NSE [6], [9]

ı E� − β2

2
Eττ + γ |E |2 E = N(�, τ ). (2)

In this paper we consider the case of anomalous dispersion
(β2 < 0), i.e., the focusing case. In this case, both the ME
in (1) and the NSE in (2) permit bright soliton solutions
(“particle-like waves”), which will be discussed in more detail
in Sec. II-B.

It is customary to re-scale (1) to dimensionless units.
We shall use the following normalisation: The power will
be measured in units of P0 = 1 mW since it is a typical
power level used in optical communications. The normalised
(dimensionless) field then becomes q = E/

√
P0. For the

distance and time, we define the dimensionless variables z
and t as z = �/�0 and t = τ/τ0, where

�0 = (γ ∗ P0)
−1, τ0 = √

�0|β2| =
√

|β2|
γ ∗ P0

. (3)

For the scalar case (2), we use the same normalisation but we
replace γ ∗ by γ . Then, the resulting ME reads

ı qz + 1

2
qt t + 〈q, q̄〉 q = n(z, t), (4)

while the NSE becomes

ıqz + 1

2
qtt + |q|2 q = n(z, t). (5)

The ASE noise n(z, t) = [n1(z, t), n2(z, t)] in (4) is a
normalised version of N(�, τ ), and is assumed to have the
following correlation properties

E [ni (z, t)] = E
[
ni (z, t) n j (z

′, t ′)
] = 0,

E
[
ni (z, t) n̄ j (z

′, t ′)
] = D δi j δ

(
z − z′) δ

(
t − t ′

)
, (6)

with i, j ∈ {1, 2}, with δi j being a Kronecker symbol, E [·]
is the mathematical expectation operator, and δ (·) is the
Dirac delta function. The correlation properties (6) mean that
each noise component ni (z, t) is assumed to be a zero-mean,
independent, white circular Gaussian noise. The scalar case
follows by considering a single noise component only.

The noise intensity D in (6) is (in dimensionless units)

D = σ 2
0
�0

P0τ0
= σ 2

0√
γ ∗ |β2| P3

0

, (7)

where σ 2
0 is the spectral density of the noise, with real world

units [W/ (km · Hz)]. For ideal DRA, this σ 2
0 can be expressed

through the optical fibre and transmission system parameters
as follows: σ 2

0 = αfibreKT · hν0, where αfibre is the fibre
attenuation coefficient, hν0 is the average photon energy, KT

is a temperature-dependent phonon occupancy factor [6].
From now on, all the quantities in this paper are in

normalised units unless specified otherwise. Furthermore,
we define the continuous time channel as the one defined by
the normalised ME and the NSE. This is shown schematically
in the inner part of Fig. 1, where the transmitted and received
waveforms are x(t) ≡ q(0, t) and y(t) ≡ q(Z , t), respectively,
where Z is the propagation distance.
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Fig. 1. System model under consideration. The symbols X = [X1, X2, X3, . . .] are converted to amplitudes, and then mapped to a waveform x(t). The noisy
received waveform y(t) is obtained by propagating x(t) in (4). The forward NFT processes the waveform y(t) symbol-by-symbol, and gives a soft estimate
of the transmitted symbols Y = [Y1,Y2,Y3, . . .].

B. Fundamental Soliton Solutions

It is known that the noiseless (n(z, t) = 0) ME (4) pos-
sesses a special class of solutions, the so-called fundamental
bright solitons.6 In general, the Manakov fundamental soliton
is fully characterised by 6 parameters [57] (4 in the NSE
case): frequency (also having the meaning of velocity in
some physical applications), phase, phase mismatch, centre-
of-mass position, polarisation angle, and amplitude (the latter
is inversely proportional to the width of the soliton). In this
paper we consider amplitude-modulated solitons, and thus,
no information is carried by the other 5 parameters. The initial
values of these 5 parameters can therefore be set to arbitrary
values. In this paper, all of them have been set to zero. For
the initial frequency, this can be further motivated to avoid
deterministic pulse walk-offs. As for the initial phase, phase
mismatch, and centre-of-mass position, as we shall see in the
next section, their initial values do not affect the marginal
amplitude channel law. Under these assumptions, the soliton
solution at z = 0 is given by [57], [62]

q(0, t) = [q1(0, t), q2(0, t)] = [cosβ0, sin β0] A sech(At),

(8)

where A is the soliton amplitude and 0 < β0 < π/2 is the
polarisation angle. The value of β0 can be used to control how
the signal power is split across the two polarisations.

For any β0, the Manakov soliton solution after propagation
over a distance Z with the initial condition given by (8),
is expressed as

q(Z , t) = [cosβ0, sin β0] A sech(At) exp

(
ı A2 Z

2

)
(9)

= q(0, t) exp

(
ı A2 Z

2

)
. (10)

The soliton solution for the NSE in (5) can be obtained by
using β0 = 0 in (8)–(10),7 which gives

q(0, t) = A sech (At) , (11)

and

q(Z , t) = A sech (At) exp

(
ı A2 Z

2

)

= q(0, t) exp

(
ı A2 Z

2

)
. (12)

6Fundamental solitons are “bright” only for the focusing case we consider
in this paper, i.e., for anomalous dispersion.

7This corresponds to the case where all the signal power is transmitted in
the first polarisation.

As shown by (10) and (12), the solitons in (8) and (11) only
acquire a phase rotation after propagation. When the noise is
not zero, however, these solutions will change. This will be
discussed in detail in the following section.

III. DISCRETE-TIME CHANNEL MODEL

A. Amplitude-Modulated Solitons: One and
Two Polarisations

We consider a continuous-time input signal x(t) =
[x1(t), x2(t)] of the form

x(t) =
∞∑

k=1

sk(t), (13)

where sk(t) = [sk,1(t), sk,2(t)] and k is the discrete-time
index. Motivated by the results in Sec. II-B, the pulses sk(t)
are chosen to be

sk(t) = [cosβ0, sin β0] Ak sech [Ak(t − kTs)] , (14)

where Ts is the symbol period. In principle, it is also possible
to encode information by changing the polarisation angle
β0 from slot to slot. However, in this paper, we fix its
value to be the same for all the time slots corresponding
to a fixed (generally elliptic) degree of polarisation. Thus,
the transmitted waveform corresponds to soliton amplitude
modulation, which is schematically shown in Fig. 2 for the
scalar (NSE) case.

At the transmitter, we assume that symbols Xk are mapped
to soliton amplitudes Ak via Ak = X2

k . This normalisation is
introduced only to simplify the analytical derivations in this
paper. To avoid soliton-to-soliton interactions, we also assume
that the separation Ts is large, i.e., exp(−Ak Ts) � 1, ∀k.
The receiver in Fig. 1 is assumed to process the received
waveform during a window of Ts via the forward NFT [22],
[32] and returns the amplitude of the received soliton, which
we denoted by Rk = Y 2

k .
Before proceeding further, it is important to discuss the role

of the amplitudes Ak on a potential enhancement of soliton-
soliton interactions. The interaction force prefactor is known
to scale as the amplitude cubed [8, Ch. 9.2], [9, Ch. 5.4]. How-
ever, the interaction also decays exponentially as exp(−AkTs).
This exponential decay dominates the interaction, and thus,
considering very large amplitudes (or equivalently, very large
powers, as we will do later in the paper), is in principle not a
problem. At extremely large amplitudes, however, the model
used in this paper is invalid for different reasons: higher order
nonlinearities should be taken into account. This includes
stimulated Brilloin scattering (for very large powers) or Raman
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Fig. 2. Schematic visualisation of the amplitude modulation of soliton sequence (scalar NSE case).

scattering (for very short pulses). Studying these effects is,
however, out of the scope of this paper.

We would also like to emphasise that for a fixed pulse
separation Ts , the channel model we consider in this paper
is not applicable for low soliton amplitudes. This is due to
two reasons. The first one is that for low amplitude solitons,
the perturbation theory used to derive the channel law becomes
inapplicable as the signal becomes of the same order as noise.
Secondly, low amplitude solitons are also very broad, and
thus, nonnegligible soliton interactions are generated. These
two cases can be overcome if the soliton amplitudes are
always forced to be larger than certain cutoff amplitude â,
which we will now estimate. For the first case (noise-limited),
the threshold ânoise is proportional to σ 2

N . In the second
case (interaction-limited), the threshold is proportional to the
symbol rate, i.e., âinter ∝ T −1

s . This shows that for fixed system
parameters, the threshold â = max{ânoise, âinter} is a constant.
The implications of this will be discussed at the end of Sec. IV.

Having defined the transmitter and receiver, we can now
define a discrete-time channel model, which encompasses
the transmitter, the optical fibre, and the receiver, as shown
in Fig. 1. Due to the assumption on solitons well-separated
in time, we model the channel as memoryless, and thus,
from now on we drop the time index k. This memoryless
assumption is supported by additional numerical simulations
we performed, which are included in Appendix A. Never-
theless, at this point it is important to consider the impli-
cations of a potential mismatch between the memoryless
assumption of the model and the true channel in the context
of channel capacity lower bounds. In particular, if in some
regimes (e.g., low power or large transmission distances) the
memoryless assumption would not hold, considering a mem-
oryless channel model would result in approximated lower
bounds on the channel capacity. Provable lower bounds can be
obtained by using mismatched decoding theory [63] (as done
in [64, Sec. III-A and III-B]) or by considering an average
memoryless channel (as done in [6, Sec. III-F]). Although
both approaches can in principle be used in the context of
amplitude-modulated solitons, they both rely on having access
to samples from the true channel, and not from a (poten-
tially memoryless) model. Such samples can only be obtained
through numerical simulations or an optical experiment, which

is beyond the scope of this paper. In this context, the channel
capacity lower bounds in Sec. IV, should be considered as a
first step towards more involved analyses.

The conditional probability density function (PDF) for the
received soliton amplitude R given the transmitted amplitude
A was obtained in [57, eq. (15)] using standard perturbative
approach and the Fokker-Planck equation method. The result
can be expressed as a noncentral chi-squared distribution

pR|A(r |a) = 1

σ 2
N

r

a
exp

(
−a + r

σ 2
N

)
I2

(
2
√

ar

σ 2
N

)
, (15)

where

σ 2
N = D · Z

2
(16)

is the normalised variance of accumulated ASE noise, and
I2(·) is the modified Bessel function of the first kind of order
two. The expression in (15) is a noncentral chi-squared distri-
bution with six degrees of freedom (see, e.g., [65, eq. (29.4)])
providing non-Gaussian statistics for Manakov soliton ampli-
tudes. By making the change of variables Y = √

R, and using
X = √

A, the PDF in (15) can be expressed as

pY |X (y|x) = 2

σ 2
N

y3

x2 exp

(
− x2 + y2

σ 2
N

)
I2

(
2xy

σ 2
N

)
, (17)

which corresponds to the noncentral chi-distribution with six
degrees of freedom. An extra factor 2y before the exponential
function comes from the Jacobian.

For the NSE, it is possible to show that the channel law
becomes [49], [51], [52]

pY |X (y|x) = 2

σ 2
N

y2

x
exp

(
− x2 + y2

σ 2
N

)
I1

(
2xy

σ 2
N

)
, (18)

which corresponds to a noncentral chi-distribution with four
degrees of freedom.

We note that although in this paper we only consider an
amplitude modulation Ak (or in the NFT terms the imaginary
part of each discrete eigenvalue), it is possible to include
other discrete degrees of freedom corresponding to various
soliton parameters in (14) in order to improve the achievable
information rates. This is, however, beyond the scope of
this paper. Furthermore, the channel models presented in this
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section were obtained via a perturbative treatment, and thus,
in the context of soliton/eigenvalue communications they are
technically valid only at high SNR.8 Despite that, in the
current paper we will also study capacity lower bounds of
a general noncentral chi-channel with an arbitrary number of
degrees of freedom at any range of SNR. While admittedly
the low-SNR region is currently only of interest when n = 1
(noncoherent phase channel) we believe its generalisation for
n > 1 can still be of interest for the new generation of
nonlinear optical regeneration systems.

B. Generalised Discrete-Time Channel Model

The results in the previous section show that both scalar
and vector soliton channels can be modelled using the same
class of the noncentral chi-distribution with an even number of
degrees of freedom 2n, with n = 2, 3. The simplest channel of
this type corresponds to n = 1, which describes a fibre optical
communication channel with zero-dispersion [13] as well as
the noncoherent phase channel studied in [66] (see also [67]).
Motivated by this, here we consider a general communication
channel described by the noncentral chi-distribution with an
arbitrary (even) degrees of freedom 2n. Although we are
currently not aware of any physically-relevant communication
system that can be modelled with n ≥ 4, we present results
for arbitrary n to provide an exhaustive treatment for channels
of this type.

The channel in question is therefore modelled via the PDF
corresponding to noncentral chi-distribution

pY |X (y|x) = 2

σ 2
N

yn

xn−1 exp

(
− x2 + y2

σ 2
N

)
In−1

(
2xy

σ 2
N

)
,

(19)

with n ∈ N and where N � {1, 2, 3, . . .}. This channel law
corresponds to the following input-output relation

Y 2 = 1

2

2n∑

i=1

(
X√
n

+ Ni

)2

, (20)

where {Ni }2n
i=1 is a set of independent and identically dis-

tributed Gaussian random variables with zero mean and vari-
ance σ 2

N . The above input-output relationship is schematically
shown in Fig. 3, which particularises to (17) and (18), for
n = 3 and n = 2, respectively.

IV. MAIN RESULTS

In this section, we study capacity lower bounds of the
channel in (19). We will show results as a function of the
effective SNR defined as ρ � σ 2

S /σ
2
N , where σ 2

S is the second
moment of the input distribution pX and σ 2

N is given by (16).
The value of σ 2

S also corresponds to the average soliton
amplitude, i.e., σ 2

S = E
[
X2

] = E [A]. It can be shown that
for given system parameters, the noise power (in real world
units) is constant and proportional to σ 2

N , and the signal power
(in real world units) is proportional to σ 2

S . The parameter ρ
therefore indeed corresponds to an effective SNR.

8More precisely, when the total soliton energy in the time slot is much
greater than that of the ASE noise.

Fig. 3. Generalised discrete-time channel model: noncentral chi-channel with
2n degrees of freedom.

As previously explained, the inter-symbol interference due
to pulse interaction can be neglected due to the large enough
soliton separation assumed, and thus, the channel can be
treated as a memoryless (see Appendix A for more details).
The channel capacity, in bits per channel use, is then given
by [68], [69]

C(ρ) � max
pX (x): E[X2]≤σ 2

S

IX,Y (ρ), (21)

where

IX,Y (ρ) � E

[
log2

pX,Y (X,Y )

pX (X) · pY (Y )

]
(22)

= hY (ρ)− hY |X (ρ), (23)

and where hY (ρ) � − E[log2 pY (Y )] and hY |X (ρ) �
− E[log2 pY |X (Y |X)] are the output and conditional differ-
ential entropies, respectively. The optimisation in (21) is
performed over all possible statistical distributions pX (x)
that satisfy the power constraint. In our case this constraint
corresponds to a fixed second moment of the input symbol
distribution or, equivalently, to a fixed average signal power
in a given symbol period.

The exact solution for the power-constrained optimisation
problem (21) with the channel law (19) is unknown. For the
noncentral chi-distribution with 2 degrees of freedom (i.e.,
to the noncoherent additive noise channel), it was shown [66]
that the capacity-achieving distribution is discrete with an
infinite number of mass points. To the best of our knowledge,
that proof has not been extended to higher number of degrees
of freedom, however, we expect that will be the case for (19)
too.

In this paper, we do not aim at finding the capacity-
achieving distribution, but instead, we study lower bounds on
the capacity. We do this because the capacity problem is in
general very difficult, but also because of the relevance of
having nondecreasing lower bounds on the capacity for the
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optical community. To obtain a lower bound on the capacity,
we will simply choose an input distribution pX (x) (as done in,
e.g., [5], [49]). Without claiming the generality, we, however,
consider four important candidates for the input distribution.
First, following [49], we use symbols drawn from a Rayleigh
distribution

pX (x) = 2x

σ 2
S

exp

(
− x2

σ 2
S

)
, x ∈ [0,∞). (24)

As we will see later, this input distribution is not the one
giving the highest lower bound. However, it has one important
advantage: it allows some analytical results for the mutual
information. The other three distributions are considered later
in this section as numerical examples.

The next two Lemmas provide an exact closed-form
expression for the conditional differential entropy hY |X (ρ)
and an asymptotic expression for the output differential
entropy hY (ρ).

Lemma 1: For the channel in (19) and the input distribu-
tion (24)

hY |X (ρ) =
(

2ρ + n − n

2
ψ(n)

)
log2 e − 1

+n − 1

2

(
log2 ρ + ψ(1) log2 e

)

−n log2 e

2

ρ

ρ + 1
�

(
ρ

ρ + 1
, 1, n

)

−ρ−1
(
ρ + 1

ρ

)(n−1)/2

Fn(ρ) log2 e, (25)

where ψ(x) � d log�(x)/dx is the digamma function and
�(α, 1, n) is the special case of the Lerch transcendent func-
tion [70, eq. (9.551)]

�(α, 1, n) � − log(1 − α)

αn
−

n−2∑

k=0

αk+1−n

k + 1
. (26)

The function Fn(ρ) is defined as

Fn(ρ) �
∞∫

0

ξKn−1(
√

1 + ρ−1 ξ) In−1(ξ) log
[
In−1(ξ)

]
dξ,

(27)

and Kn(x) is the modified Bessel function of the second kind
of order n.

Proof: See Appendix B.
Lemma 2: For the channel in (19) and the input distribu-

tion (24)

hY (ρ) = 1

2
log2 ρ +

(
1 − ψ(1)

2

)
log2 e − 1 + O

[
ρ−1

]
,

ρ → ∞ (28)

Proof: See Appendix C.
The next theorem is one of the main results of this paper.
Theorem 1: The MI for the channel in (19) and the input

distribution (24) admits the following asymptotic expansion

IX,Y (ρ) = 1

2
log2

(
e1−ψ(1)

4π
ρ

)

+ O
[
ρ−1

]
, ρ → ∞. (29)

Fig. 4. The MI IX,Y (ρ) in (23) (numerically calculated) for the chi-
distribution with different degrees of freedom and the channel model (19).
The asymptotic estimate given by Theorem 1 is also shown. Lower and
upper bounds for n = 1 are also shown.

Proof: We expand the function Fn(ρ) in (27) defining
the conditional entropy in Lemma 1. At fixed large ρ the
integrand asymptotically decays as exp (−ξ/2ρ), i.e., with
small decrement (which can be proven by a standard large
argument asymptotes of the Bessel functions). This means
that the main contribution to the integral comes from the
asymptotic region 1 � ξ � ρ in most part of which the
large argument expansion of both Bessel functions is indeed
justified. Using it uniformly we obtain

Fn(ρ) = 2ρ2 + ρ

2

[
log

1

ρ
+ 1 − log 4π − ψ(1)

]
+ O [1] ,

which used in (25) gives the asymptotic expression

hY |X (ρ) = 1

2
log2 πe + O

[
ρ−1

]
, ρ → ∞. (30)

The proof is completed by combining (30) and (28)
with (23).

The result in Theorem 1 is a universal and n-independent
expression. The expression in (29) shows that the capacity
lower bound is asymptotically equivalent to half of logarithm
of SNR plus a constant which is order-independent. Fig. 4
shows the numerical evaluation of IX,Y (ρ) for n = 1, 2, 3, 12
obtained by numerically evaluating all the integrals in the exact
expressions for the conditional and output entropies in (25)
and (53), as well as the asymptotic expression in Theorem 1.
Interestingly, we can see that even in the medium-SNR region,
the influence of the number of degrees of freedom on the MI
is minimal, and the curves are quite close to each other. In this
figure, we also include the lower and upper bounds for n = 1
given by [67, eq. (21)] and [66, eq. (41)], resp. These results
show that the asymptotic results in Theorem 1 correctly follow
these two bounds.
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Fig. 5. MI estimates (by numerically evaluating (23) via Monte-Carlo
integration) for different trial continuous input distributions and different
values of n (different line types). Different distributions are shown with
different colours.

The main reason for considering a Rayleigh input distrib-
ution was that it yields a semi-analytical lower bound on the
the capacity. In the following example, we consider three other
input distributions and numerically calculate the resulting MI.

Example 1: Consider the geometric (exponential), half-
Gaussian, and Maxwell-Boltzmann distributions given by

pX (x) =
√

2

σS
exp

(

−
√

2 x

σS

)

, x ∈ [0,∞), (31)

pX (x) =
√

2√
πσS

exp

(
− x2

2σ 2
S

)
, x ∈ [0,∞), (32)

and

pX (x) = 3
√

6 x2

√
πσ 3

S

exp

(
−3 x2

2σ 2
S

)
, x ∈ [0,∞), (33)

respectively. The MIs for these three distributions for
n = 1, 2, 3 are shown in Fig. 5 and show that the lower bound
given by the geometric input distribution in (31) displays
high MI in the low SNR regime (ρ < 10 dB), whereas the
half-Gaussian input distribution in (32) is better for medium
and large SNR. On the other hand, the Maxwell-Boltzmann
distribution in (33) gives the lowest MI for all SNR. Numerical
results also indicate that all the presented MIs asymptotically
exhibit an equivalent growth irrespective of the number of the
degrees of freedom 2n.

The following example considers the use of discrete con-
stellations. In particular, we assume that the soliton amplitudes
take values on a set X � {x1, . . . , xM }, where M � |X | = 2m

is the cardinality of the constellation, and m is a number of

Fig. 6. MI estimates (numerically calculated) for equally-spaced M-ASK
constellations with M = {2, 4, 8, 16} constellation points.

bits per symbol. The MI (23) in this case can be evaluated as

IX,Y (ρ) = 1

M

∑

x∈X

∞∫

0

pY |X (y|x)

· log2
pY |X (y|x)

1
M

∑
x ′∈X pY |X (y|x ′)

dy, (34)

where we assumed the symbols are equally likely.
Example 2: Consider ASK constellations X = {0, 1,

. . . ,M − 1} with m = 1, 2, 3, 4 and second moment σ 2
S ,

which correspond to OOK, 4-ASK, 8-ASK, and 16-ASK,
respectively. The MI numerically evaluated for these constel-
lations is shown in Fig. 6 for chi-channel with n = 1, 2, 3.
As a reference, in this figure we also show (black lines)
the MI for the (continuous) half-Gaussian input distribution.
The results in this figure show that in the low SNR regime,
the use of binary modulation is in fact better than the half-
Gaussian distribution. This can, however, be remedied by
using a geometric distribution, which, as shown in Fig. 5,
outperforms the half-Gaussian distribution in the low SNR
regime. In the high SNR regime, however, this is not the case.

Finally, let us address the impact of the cutoff â we
introduced in Sec. III. All our results for continuous input
distributions have been obtained for the input distributions
that are not bounded away from zero (see (24), (31)–(33)).
Therefore, symbols Xk are generated below the threshold
x̂ = √

â, where the channel law considered in this paper does
not hold. We shall now only consider here the case of the
Rayleigh input (24) as this distribution was used to obtain the
main result of this section. We will prove that in the high-
power (i.e., high SNR) regime, the effect of the cutoff on the
achievable data rate tends to zero. To do so, we note that
for fixed fibre parameters and propagation distance, the cutoff
x̂2 = â = max{ânoise, âinter} is also fixed, while σ 2

S = ρσ 2
N

grows linearly with SNR. In other words, one can achieve
high SNR at the expense of high power solitons for fixed
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noise variance. One possible way of showing that the effect
of the cutoff on the achievable rate is zero as SNR tends to
infinity is to consider a transmitter which generates a dummy
symbol every time Xk ≤ x̂ . The value of the threshold x̂ is
message-independent and thus, can be assumed to be known
to the receiver which will discard sub-threshold symbols. This
allows us to keep the main results of the paper at the expense
of a data rate loss (since part of the time, dummy symbols
are transmitted). The probability of such “outage” event η is
given by an the integral of the input distribution from zero to
the threshold. For the Rayleigh input PDF (24) this probability
is given by η = 1 − exp

(−â/σ 2
S

)
(see (64)–(67)). Therefore

asymptotically η(ρ) ≈ â/(ρσ 2
N ) → 0 when ρ → ∞. The

average rate loss is then given by 1 − η(ρ), which tends to
zero as ρ → ∞.

An alternative and more rigorous solution to the problem
above is to consider directly the difference between the MI
asymptote obtained in the current paper (i.e., Theorem 3)
and that obtained by a truncated input Rayleigh distribution
which simply does not generate sub-threshold symbols. This
difference can be shown to tend to zero as ρ → ∞. This proof
is given in Appendix D.

V. CONCLUSIONS

A non-Gaussian channel model for the conditional PDF of
well-separated (in time) soliton amplitudes was used to study
lower bounds on the channel capacity. Results for propagation
of signals over a nonlinear optical fibre using one and two
polarisations were presented. The results in this paper demon-
strated both analytically and numerically that there exist lower
bounds on the channel capacity that display an unbounded
growth with the effective SNR, similarly to the linear Gaussian
channel. All the results in this paper are given in bit per
channel use only, and thus, they should be considered as a first
step towards analysing the more practically relevant problem
of channel capacity in bit per second per unit bandwidth. This
is a considerably more challenging problem, which is left for
further investigation.

Apart from the ME soliton channel model this paper also
studied lower bounds on the capacity of an abstract general
noncentral chi-channel with an arbitrary number of degrees
of freedom. Similar channel models appear in the study of
relatively general systems of noise-driven coupled nonlinear
oscillators [58]. Therefore, we believe that the results for
large number of degrees of freedom might also some day find
applications in nonlinear communication channels.

The results obtained in this paper for the general noncentral
chi-channel are true capacity lower bounds for that channel
model. For the case of the application considered in this paper
(amplitude-modulated soliton systems), however, the pre-
sented analysis was based on a perturbative-based model
which holds at high SNR. This model also does not consider
potential interaction between solitons, and thus, the results
in this paper are limited to solitons well separated in time.
Another way of interpreting these results is that the obtained
expressions are approximated lower bounds on the capacity of
the true channel. Bounds that consider memory effects are left

TABLE I

SIMULATION SYSTEM PARAMETER

for further investigation. Furthermore, another interesting open
research problem is the derivation of capacity upper bounds
for amplitude-modulated soliton systems. This is also left for
further investigation.

APPENDIX A
MEMORYLESS PROPERTY OF THE DISCRETE-TIME

CHANNEL MODEL

In this section, we present numerical simulations to verify
the memoryless assumption for the discrete channel model
in Sec. III. To this end, we simulated the propagation
of sequences of N = 10 soliton symbols through the
scalar waveform channel given by (5). Two launch powers
(−1.5 and 1.45 dBm) and two propagation distances (500 km
and 2000 km) are considered. The simulations were carried
out via the standard split-step Fourier method. The soliton
amplitudes were generated as i.i.d. samples from a Rayleigh
input distribution (see (24)) and the variance of X was chosen
to be 1.25 and 20, so that the resulting soliton waveforms have
powers of −1.5 and 1.45 dBm, respectively. The transmitted
waveform x(τ ) was created using (13) at a symbol rate of
1.7 GBd. To guarantee an accurate simulation, the time-
domain samples were taken every 4.6 ps and the step size
was 0.1 km. White Gaussian noise was added at each step to
model the ideal DRA process. The simulation parameters are
similar to those used in [44] and are summarised in Table I.

Fig. 7 shows the waveforms before and after propagation
through the channel given in (5). As expected, the received
signal is a noisy version of the transmitted waveform, where
the noise increases as the propagation distance increases.
These results show that doubling the transmission distance
and/or (approximately) doubling the launch power has very
little effect in the soliton shapes.

The noisy waveforms shown in Fig. 7 were then used
to obtain soliton amplitudes Y � [Y1,Y2, . . . ,Y10] via the
forward NFT. Each amplitude is obtained by processing the
corresponding symbol period via the spectral matrix method
[28, Sec. IV-B]. To test the memoryless assumption, we per-
form a simple correlation test. In particular, we consider the
normalised output symbol correlation matrix, whose entries
are defined as

ckk′ � E [(Yk − E [Yk]) (Yk′ − E [Yk′ ])]

E [Yk] E [Yk′ ]
. (35)

The obtained correlation matrices are shown in Fig. 8, where
statistics were gathered by performing 103 Monte-Carlo runs
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Fig. 7. Continuous-time input x(τ ) and output y(τ ) soliton waveforms for 10 solitons and distributed noise due to DRA. Two launch powers are considered:
(a) −1.5 dBm and (b) 1.45 dBm. The solitons are propagated 500 and 2000 km.

of the signal propagation. As we can see from Fig. 8, the matri-
ces are almost diagonal. Since our communication channel
is believed to be non-Gaussian, the absence of correlation
does not of course necessarily imply the memoryless property
(understood here as the statistical independence). However,
it does constitute an important quantification of the qualitative
criterion exp(−AkTs) � 1 as given in Sec. III-A.

APPENDIX B
PROOF OF LEMMA 1

The MI is invariant under a simultaneous linear re-scaling
of the variables x → x/σN and y → y/σN . For notation
simplicity, and without loss of generality, throughout this
proof we thus assume σ 2

N = 1. Furthermore, we study the
conditional entropy as a function of ρ = σ 2

S and all the results
will be given in nats.

We express the conditional differential entropy as

hY |X (ρ) = −
∞∫

0

∞∫

0

pX,Y (x, y) log pY |X (y|x) dy dx (36)

= − log 2 − n E
[
log Y

] + (n − 1)E
[
log X

]

+E

[
X2

]
+ E

[
Y 2

]
− E

[
log In−1(2XY )

]
, (37)

where (37) follows from (19). In what follows, we will
compute the 5 expectations in (37).

The third and fourth terms in (37) can be readily obtained
using (24)

E
[
log X

] = 1

2
(logρ + ψ(1)) , (38)

E
[
X2] = ρ. (39)

To compute the second and fifth terms in (37), we first
calculate the output distribution as

pY (y) =
∞∫

0

pX,Y (x, y) dx (40)

= 2y

ραn−2 e− y2

ρ+1

(

1 − e−αy2
n−2∑

k=0

(αy2)k

k!

)

, (41)

where the joint distribution pX,Y (x, y) can be expressed using
(19) and (24) as

pX,Y (x, y) = 4

ρ

yn

xn−2 exp

(
− x2 + αy2

α

)
In−1(2xy), (42)
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Fig. 8. Normalised output symbol correlation matrices for the two launch powers and propagation distances in Fig. 7.

with

α � ρ

ρ + 1
< 1, (43)

and where (41) can be obtained using a symbolic integration
software. Using (41), we obtain (using a symbolic integration
software)

E
[
log Y

] = 1

2
(α�(α, 1, n) + ψ(n)) , (44)

where ψ(n) is the digamma function, �(α, 1, n) is given
by (26). The second moment of the output distribution is
obtained directly from the channel input-output relation (20),
yielding

E

[
Y 2

]
= ρ + n. (45)

Substituting (38), (39), (44) and (45) into (37), we have

hY |X (ρ) = − log 2 − n

2
α�(α, 1, n) − n

2
ψ(n) + n − 1

2
· (logρ + ψ(1))+ 2ρ + n − h(6)Y |X (ρ), (46)

where

h(6)Y |X (ρ) �
∞∫

0

∞∫

0

pX,Y (x, y) log
[
In−1(2xy)

]
dx dy. (47)

The last step is to compute the term h(6)Y |X (ρ), which
using (42) can be expressed as

h(6)Y |X (ρ) = 4

ρ

∞∫

0

∞∫

0

yn

xn−2 exp

(
− x2 + αy2

α

)

·In−1 (2xy) log
[
In−1(2xy)

]
dx dy. (48)

We then make the change of variables ξ = 2xy, η = y2, with
the Jacobian ∂(x, y)/∂(ξ, η) = (4y2)−1, yielding

h(6)Y |X (ρ) = 2n−2

ρ

∞∫

0

In−1(ξ) log
[
In−1(ξ)

]

·
∞∫

0

(
η

ξ

)n−2

exp

(
− ξ2

4ηα
− η

)
dη dξ. (49)
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The integration over η can be performed analytically, yielding

∞∫

0

(
η

ξ

)n−2

exp

(
− ξ2

4ηα
− η

)
dη

= 22−nα(1−n)/2 ξ Kn−1

(
ξ

α1/2

)
, (50)

where Kn(x) is the modified Bessel function of the second
kind of order n. Using (50) in (49) gives

h(6)Y |X (ρ) = α(1−n)/2

ρ

∞∫

0

ξKn−1

(
ξ

α1/2

)

·In−1(ξ) log
[
In−1(ξ)

]
dξ (51)

= α(1−n)/2

ρ
Fn(ρ). (52)

The proof is completed by using (52) in (46), the definition
of α in (43), and by returning to logarithm base 2.

APPENDIX C
PROOF FOR LEMMA 2

From (41), it follows that the output entropy can then be
expressed as9

hY (ρ)= log

(
ραn−2

2

)
−E

[
log Y

]+ 1

ρ + 1
E

[
Y 2

]
+ h(4)Y (ρ),

(53)

where α is given by (43),

h(4)Y (ρ) �
∞∫

0

pX (x)

∞∫

0

pY |X (y|x) g(4)Y (y) dy dx (54)

=
∞∫

0

pY (y) g(4)Y (y) dy, (55)

where pY (y) is given by (41) and

g(4)Y (y) � − log f (αy2) (56)

f (z) � 1 − e−z
n−2∑

k=0

(z)k

k! . (57)

Notice that from its definition it follows that the function f (z)
is confined to the interval 0 ≤ f (z) ≤ 1. We shall now
prove that h(4)Y (ρ) decays as O

[
ρ−1

]
or faster when ρ → ∞.

Indeed, one has

h(4)Y (ρ) = −
∞∫

0

2y

ραn−2 e− y2

ρ+1 f (αy2) log f (αy2) dy (58)

= − 1

ραn−1

∞∫

0

e−z/ρ f (z) log f (z) dz. (59)

9Similarly to Appendix B, the results in this proof are in nats.

Next, one notices that h(4)Y (ρ) is positive and can be upper-
bounded as follows

h(4)Y (ρ) ≤ 1

ραn−1

∞∫

0

(− f (z) log f (z)) dz (60)

� C

ραn−1 . (61)

It is therefore only left to prove that the integral converges,
i.e., that the constant C is finite. This can be done as follows:

C =
∞∫

0

(− f (z) log f (z)) dz

≤
∞∫

0

(1 − f (z)) dz

=
∞∫

0

e−z
n−2∑

k=0

zk

k! dz

= n − 1

< ∞,

where in the second line we have used an inequality −x ln x ≤
(1 − x), x ∈ (0, 1]. Therefore, asymptotically h(4)Y (ρ) decays
not slower than 1/ρ.

The asymptotic expression for the output entropy can be
written by combining (60), (44), (45) and (53), which yields

hY (ρ) = 1

2
logρ + 1 − ψ(1)

2
− log 2 + O

[
ρ−1

]
. (62)

The proof is completed by returning to logarithm base 2.

APPENDIX D
PROOF OF THE ASYMPTOTICALLY VANISHING RATE LOSS

Here we shall prove that an input distribution bounded
(truncated) away from zero gives the same results as
Theorem 1 in the limit of large average power σS → ∞.
To this end, consider a system where the transmitted ampli-
tudes X are drawn from a Rayleigh distribution with PDF
given in (24). Let us now introduce a threshold x̂ of amplitudes
realisations below which our channel law model is expected
to be inapplicable. Let us now introduce an alternative system
where the symbols X̃ are drawn from a “truncated” Rayleigh
distribution with PDF

pX̃ (x) = 1

1 − η
pX (x) H (x − x̂), x ∈ [x̂,∞), (63)

where H (x−x̂) is the Heaviside step function, and η is defined
as

η � P
[
X < x̂

]
. (64)

This probability can be expressed as

η =
x̂∫

0

pX (x) dx (65)
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= 2

σ 2
S

x̂∫

0

x exp

(
− x2

σ 2
S

)
dx (66)

= 1 − exp

(
− x̂2

σ 2
S

)
. (67)

As discussed in Sec. III-A and Sec. IV, the threshold x̂ is a
constant, and thus, limσS→∞ η = 0.

To prove that the rate loss tends to zero, we shall prove that

lim
σs→∞

[
IX,Y − IX̃ ,Ỹ

]
= 0 (68)

or equivalently,

lim
σs→∞

[
hY − hỸ

] = 0 (69)

and

lim
σs→∞

[
hỸ |X̃ − hY |X

]
= 0. (70)

To prove (69), we have the following:

pỸ (y) =
∞∫

0

pY |X (y|x) pX̃(x)dx (71)

= 1

1 − η

∞∫

x̂

pY |X (y|x) pX(x) dx (72)

≤ 1

1 − η

∞∫

0

pY |X (y|x) pX(x) dx (73)

= 1

1 − η
pY (y). (74)

The Kullback-Leibler divergence (relative entropy) between
the distributions pỸ (y) and pY (y) is defined as

D
(

pỸ (y) ‖ pY (y)
)

� E

[
log

pỸ (Y )

pY (Y )

]
(75)

=
∞∫

0

pỸ (y) log
pỸ (y)

pY (y)
dy (76)

≤ log
1

1 − η

∞∫

0

pỸ (y) dy (77)

= − log (1 − η) (78)

= x̂2

σ 2
S

. (79)

Using the nonnegativity property of the relative entropy
together with (79), we obtain

lim
σS→∞ D

(
pỸ (y) ‖ pY (y)

) = 0. (80)

Using the fact that the relative entropy is zero if and only
if pỸ (y) = pY (y) almost everywhere [69, Th. 8.6.1],
we conclude that (69) is fulfilled since the integrands in the
differential entropy integrals differ on a set with measure zero.

Let us now turn to the first conditional differential entropy
in (70), for which we have

hỸ |X̃ � −
∞∫

0

∞∫

0

pY |X (y|x) pX̃(x) log pY |X (y|x) dxdy (81)

=
∞∫

0

pX̃ (x) g(x) dx, (82)

where

g(x) � −
∞∫

0

pY |X (y|x) log pY |X (y|x) dy (83)

represents the conditional differential entropy of pY |X (y|x),
and pY |X (y|x) is given by the noncentral chi-distribution (19).

Using (63), the conditional differential entropy hỸ |X̃ can be
expressed as

hỸ |X̃ = 1

1 − η

∞∫

x̂

pX (x) g(x) dx, (84)

= hY |X
1 − η

− 1

1 − η

x̂∫

0

g(x) pX(x) dx . (85)

The first term on the r.h.s. of (85) tends to the conditional
entropy of the untruncated distribution. We shall now prove
that the last (integral) term in (85) tends to zero when
σS → ∞. We note that according to (24) the input distri-
bution pX (x) tends to zero uniformly in the interval [0, x̂]
as σS → ∞. Then, according to the bounded convergence
theorem, in order to prove that integral term in (85) is asymp-
totically vanishing, it is sufficient to prove that the function
g(x) remains bounded within the interval [0, x̂]. We shall do
so by providing separate upper and lower bounds for this
function.

The upper bound for g(x) can be obtained by considering
a relative entropy between the channel law pY |X (y|x) and
an auxiliary distribution p�

Y (y) supported on [0,∞). The
nonnegativeness of the relative entropy immediately provides
an upper bound for the differential entropy (83), namely,

g(x) ≤ − E
[

log p�
Y (Y )

] = −
∞∫

0

pY |X (y|x) log p�
Y (y) dy.

(86)

Choosing a half-Gaussian distribution p�
Y (y) =(

2/
√
π

)
exp

(−y2
)

immediately gives an upper bound
g(x) ≤ E

[
Y 2

] − log
(
2/

√
π

)
. The second moment for the

noncentral chi distribution is readily available, e.g., from
(20), leading to the following upper bound:

g(x) ≤ x2 + n σ 2
N + log

√
π

2
. (87)

Note that this upper bound is bounded inside an arbitrary finite
interval [0, x̂].
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Establishing a lower bound for g(x) is slightly more
involved. The first step is to transform the noncentral chi distri-
bution into a noncentral chi-squared distribution by making the
following change of variable in the integral (83): z = 2y2/σ 2

N .
Introducing the additional notation λ = 2x2/σ 2

N and n = k/2,
where k is a number of degrees of freedom of noncentral chi-
squared distribution, we obtain

pZ |�(z|λ) = 1

2

( z

λ

)(k−2)/4
exp

(
− z + λ

2

)
I(k−2)/2(

√
λz)

(88)

with z ∈ [0,∞). We can now express g(x) in (83) as an
average with respect to the noncentral chi-squared distribution:

g(λ) = −
∞∫

0

pZ |�(z|λ) log

[
23/2 z1/2

σN
pZ |�(z|λ)

]
dz (89)

= g(1)(λ)+ g(2)(λ)+ 3

2
log 2 − logσN , (90)

where we have introduced two functions: g(1)(λ), which rep-
resents the differential entropy of the noncentral chi-squared
distribution pZ |�(z|λ), i.e.,

g(1)(λ) � −
∞∫

0

pZ |�(z|λ) log pZ |�(z|λ) dz, (91)

and g(2)(λ), which stands for minus half of the so-called
expected-log, i.e.,

g(2)(λ) � −1

2
E

[
log Z

]
. (92)

The motivation for the above transformation stems from the
fact that it has been proven in [71] that the noncentral chi-
squared distribution function (88) is log-concave (i.e., log of
pZ |�(z|λ) is concave) if the number of degrees of freedom
k ≥ 2, i.e., n ≥ 1, which is always the case. On the other
hand, the differential entropy of any log-concave distribution
function can be lower-bounded as [72, Th. 3]

g(1)(λ) ≥ log
(

2
√

Var [Z ]
)

= 1

2
log (k + 2λ)+ 3

2
log 2.(93)

Finally, let us now provide a lower bound for g(2)(λ) in (92).
This can be obtained by applying Jensen’s inequality:

g(2)(λ) ≥ −1

2
log E [Z ] = −1

2
log (k + λ) . (94)

Combining (90), (93), and (94), and returning to the original
notation, we obtain

g(x) ≥ 1

2
log

(
2x2 + nσ 2

N

x2 + nσ 2
N

)
− log σN + 3 log 2. (95)

This lower bound on g(x) is bounded inside an arbitrary
finite interval x ∈ [0, x̂]. Thus, the function g(x) in the
integral (85) is uniformly bounded via (87) and (95) in [0, x̂].
Since in the asymptotic limit σS → ∞ one has η → 0 and
pX (x) → 0 from (85), it follows that (70) is fulfilled as well,
which concludes the proof.
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