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We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of
stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in
three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization
by a low-dimensional external potential in graded-index media, and also predict the existence of
stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the
main conclusions of our numerical studies we employ a variational approach and derive analytically
the stability criterion for input powers for the collapse stabilization.
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Optical solitons [1] are usually associated with low-
dimensional nonlinear systems such as single-mode opti-
cal fibers or planar waveguides, and their existence in
higher-dimensional systems in the form of spatiotem-
poral localized waves is relatively rare, and it requires
strong nonlinearity saturation [1], spatial nonlocality [2],
or other physical mechanisms arresting wave collapse
[3, 4]. Wave collapse (also known as blow-up or self-
focusing) occurs in a range of physical systems includ-
ing nonlinear optics, plasmas, fluid dynamics, physics of
atmosphere and ocean, and solid state physics [5]. Typ-
ically, wave collapse is associated with multidimensional
physical problems [3–13]. From a broader perspective,
wave collapse is the process of the singularity formation
in a finite time (or at a finite distance), which is typically
arrested by higher-order effects not accounted for in the
original model. Effect of wave collapse can be exploited
for compression of optical pulses [8–11] and optical pulse
fusion [11, 12]. An arrest of wave collapse and emer-
gence of stable coherent structures in higher-dimensional
systems have been studied in various physical contexts
(see, e.g. the review paper [14] and references therein).
Solitons localized in time and one transverse spatial di-
mension have been observed in quadratic media [15], and
such solitons suffer from modulation instability which
breaks elliptical beams into filaments. Three-dimensional
spatiotemporal solitons were demonstrated in arrays of
weakly coupled optical waveguides [16, 17], but such soli-
tons are largely controlled by the lattice discreteness be-
ing stable for a weak coupling.

For long time, the use of single-mode optical fibers was
the solution of choice for long-haul communication sys-
tems, allowing to avoid spatial scattering of light for de-
livering optical signals without spatial-mode dispersion
over thousands of kilometers. However, a fast-growing
demands on capacity of fiber systems and challenges im-
posed by nonlinear signal interaction attracted the recent
attention to the technology of spatial-division multiplex-

ing (SDM) for future high-capacity optical communica-
tions (see, e.g. Refs. [18, 19] and references therein). A
solution based on the use of multiple systems over par-
allel fibres while always possible, is not attractive due to
linearly scaled (with growing capacity) transmission costs
and power consumption. Potentially, the SDM technol-
ogy might offer a cost-per-bit reduction and improved
energy efficiency. One of the considered possibilities for
implementing the SDM technology is the use of multi-
mode fibers (MMFs) for parallel communication chan-
nels. In MMFs optical pathways are defined by different
spatial modes, and spatial signal processing is required
to separate channels at a receiver. Due to highly impor-
tant SDM applications, MMFs attracted a flurry of re-
newed interest recently. The MMFs with large core can
potentially be used for rather different, albeit important
high-power applications. However, a similar challenge in
this case is to control the spatial coherence and resulting
beam size.

Recent studies of MMFs suggest that interesting dy-
namics can occur in the nonlinear regime [20–29]. In
this regime, the waveguide modes, which may number
from a few to up to thousands, strongly affect each other
through nonlinear processes [20, 25]. The output spatial
and temporal properties of light are defined by nonlinear
interactions of optical paths corresponding to different
spatial modes in MMFs. In general, these different paths
through the MMF medium interfere leading to a spatial
speckle pattern. The different time delays corresponding
to different spatial modes lead to spatial-mode disper-
sion and temporal distortion of pulses. However, non-
linear effects produce a spatiotemporal coherence in the
propagating light leading to new interesting possibilities.

In the graded-index MMFs an effective (transverse)
parabolic potential provides the stabilization mechanism
for spatiotemporal pulses. Up to now, the spatially lo-
calized structures in multidimensional trapping poten-
tials have been analyzed only in the application to the
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Bose-Einstein condensates. In particular, it was shown
that solitons can be stabilized by both three-dimensional
parabolic [30] and periodic [31] potentials. Wave collapse
and coexistence of collapsing and stable multidimensional
solutions in Bose-Einstein was discussed in Refs. [13, 32–
35].

In this Letter, we analyze stability of spatiotempo-
ral solitons in multimode optical fibers in graded-index
waveguides and demonstrate the existence of stable soli-
ton families, as well as stable dipole-mode spatiotempo-
ral solitons (both illustrated in Figs. 1(a-c)), in similarity
to higher-order localized modes in saturable media [36]
and recently observed fundamental modes of multimode
fibers [37].

FIG. 1: Schematic illustration of stable spatiotemporal soli-
tons propagating in a graded-index optical fiber. Two types
of spatial cross-section profiles are shown on the right, namely
fundamental and dipole-mode solitons, respectively.

Mathematical model. Pulse propagation in a multi-
mode graded-index optical fiber is described in the parax-
ial approximation by the standard nonlinear Schrödinger
equation (NLSE) derived for the slowly-varying pulse en-
velope (that includes all modes):
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where k0 = ω0n0/c, is the wavenumber at the central
frequency ω0, β2 [fs2/mm] is the group-velocity disper-
sion and γ [m /W] is the nonlinear coefficient, and ψ is
the slowly-varying envelope at the center frequency ω0

with time T in the reference frame moving at the group
velocity of the pulse. The effective potential U(x′, y′)
describes a variation of the refractive index that forms
a mode structure in the linear propagation regime. In
what follows, we consider U(x′, y′) = (k0∆/R2)(x′2+y′2),
where ∆ is the index difference between the center and
cladding of the fiber, and R is the fiber core radius. We
consider the guiding medium, which corresponds to the
case ∆ > 0.

Equation (1) has a Hamiltonian structure, and it can
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where σ = −sign(β2) = ±1 (corresponding to the anoma-
lous or normal dispersion, respectively) and the Hamil-
tonian H is given by the expression:

2H = (σIt + Ix + Iy + µI3 − I4) =∫
dxdydt

[
σ|At|2 + |Ax|2 + |Ay|2 + µ(x2 + y2)|A|2 − |A|4

]
.

Equations (2)-(3) possess several integrals of motion, in-
cluding Hamiltonian H and power (or the number of par-
ticles) P =

∫
dtdxdy|A|2.

Multidimensional solitons. We look for steady-state
solutions of Eqs. (2)-(3) having the form of spatiotem-
poral localized modes propagating in the z-direction,
A(x, y, z, t) = exp(iλz)U(x, y, t). The waveform of such
multidimensional solitons is described by the following
equation,
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2
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This means, in particular, that such solutions should cor-
respond to stationary points of Hamiltonian H for a fixed
power P .

The resulting steady-state solutions (for σ = 1) are the
functions of the coordinates (x, y) and time t as well as
parameters µ and λ. Families of such multidimensional
solutions are shown in Fig. 2 to Fig. 5.

FIG. 2: Families of multidimensional solitons presented
through the key dependencies: (a) Hamiltonian H vs. power
P , and (b) power P vs. propagation constant λ. Red bars in
(b) show the analytical estimate of the critical power. Grey
curves in (a) depict analytical solutions for the fundamental
solitons for both stable and unstable branches.

In Fig. 2(a), we observe how an addition of an external
potential creates the second branch of the stable solu-
tions, with a change of the sign of the derivative dH/dP
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that is typical signature of the transition from unstable
to stable solitons. The same behaviour can be traced in
Fig. 2(b) where a sign of the derivative dP/dλ changes
from negative to positive, in accord with the Kolokolov-
Vakhitov stability criterion [38]. An approximate ana-
lytical stable soliton can be obtained by employing the
variational approximation with the Gauss-Hermite trial

function provided E < Ecr = 4π
√
|β2|R/

(
γk0

4
√

6∆
)

(or, in dimensionless units, if P < Pcr(µ) = 4π/ 4
√

3µ ).
Ecr = 50nJ for a GRIN fiber. The analytical estimation
of the critical power for different values of µ is marked in
Fig. 2(b) by the red bars. Then, the beam width w0 and
pulse duration τ are found as,
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4π|β2|w2
0
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,

where φ = cos−1
(
E2/E2

cr

)
/3. These theoretical estima-

tions for w0 and τ are valid for the soliton power E below
critical. In fig 2(a) it shown comparison of the analytical
approximation (grey curves) and numerically computed
Hamiltonian H vs. power P .

FIG. 3: Examples of three-dimensional solitons, shown for
(a.1-3) power |A|2(x, y, t) in the plane (x, y) for different µ
and λ = −0.25

√
µ, and power profiles as cross-sections in t

and x.

In addition to the fundamental solitons, we have found
solutions with the dipole structure, as shown in Fig. 4 and
Fig. 5. Again, there are two branches of such solutions
with stable and unstable localized modes.

!!! Stability and variational analysis. Existence of soli-
ton solutions itself is not sufficient to demonstrate their
role in the dynamics of nonlinear systems. The critical
issue is stability of these steady-state solutions against
perturbations. There are two major approaches to anal-
yse stability of soliton solutions. The first approach is to

FIG. 4: Families of the dipole-mode spatiotemporal solitons,
shown for (a) Hamiltonina H vs. propagation constant λ, (b)
power P vs. propagation constant λ.

FIG. 5: Power plots and spatial profiles (top) of the dipole-
mode multidimensional solitons for different parameters µ and
λ.

study the spectrum of linearised operators that describes
the evolution of small perturbations of the soliton solu-
tion, the stability at the infinitesimal level. The second
approach is based on the Lyapunov method, which is a
generic technique to analyse stability against perturba-
tions including those that are not necessarily small [3]. In
the Hamiltonian systems such as that considered here, ac-
cording to the Lyapunov theorem (see details in Ref. [3]),
a soliton solution is stable provided it corresponds to a
minima of the Hamiltonian. It is well known that in two-
and three–dimensional NLSE solitons are unstable and
any initial distribution with high enough power N col-
lapses to a singularity [3, 4]. In the Hamiltonian systems
the classification of dynamical scenario of wave is espe-
cially transparent. When a Hamiltonian in the consid-
ered model is bounded and a solution corresponds to its
minimum (or maximum) a corresponding soliton shows
up as an attractor. When a Hamiltonian is unbounded,
this indicates that soliton solutions correspond to sad-
dle points of the Hamiltonian and are unstable, as for
instance in three-dimensional NLSE. In this case, there
are no steady state asymptotic behavior and initial wave
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packet either spread out by dispersion (or diffraction, de-
pending of the specific model), effectively demonstrat-
ing linear dynamics, or the initial field distribution col-
lapses, that mathematically corresponds to formation of
a field singularity. Note that for the considered three-
dimensional Hamiltonian system, qualitatively, it is clear
that at small (x2 + y2) the potential cannot stop collaps-
ing dynamics. There is then an intriguing question, how
recently observed stable solitons in multi-mode fiber co-
incide with the wave collapse dynamics in such systems.
To study this problem, we apply the well-developed vari-
ational approach that is especially effective for the Hamil-
tonian systems.

Applying the standard variational approach [3, 4] and
following an earlier study [39], we analyse the problem
of coexistence of stable solitons and wave collapse. The
variational approach allows us to obtain a qualitative
physical insight, and it is based on the presenting Eq. (2)
as the variational problem:

δS = δ

∫
dzdtdxdy

[
i

2
(A∗Az −AA∗x)−H

]
= 0

and approximating true solution A(z, t, x, y) by some
trial function that mimics most important properties of
the localized mode. We refer for details of the well-known
variational approach [3, 4, 39] and skip mathematical de-
tails focusing on new results. We consider a trail func-
tion (or the scale transformation) that preserves the total
power P ,
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.

Following the standard procedure, we substitute the trial
function into the action S[A,A∗] (for details see Refs. [1,
3, 4, 39]) and replace the complex dynamics of waves
governed by Eq. (2) by a set of two ordinary differential
equations approximating the global dynamics,
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Here the effective Hamiltonian becomes a function of
the scaling parameters a and b:
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Stable solitons (at σ = 1) correspond to minima of the
Hamiltonian H(a, b). Straightforward analysis of the ex-
trema points of H leads to the following condition for the
existence of a local minima of H,(

P0

4

)4
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1

27µ
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4
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π6

27µ
.

FIG. 6: Two-dimensional Hamiltonian H(a, b) for different
values of the parameter µ: µ = 1 (left) and µ = 0 (right). Here
σ = 1 and P0 = 1. The areas bounded by purple curves cor-
respond to collapse. Blue curves correspond to the dynamics
of an input Gaussian pulse corresponding to the fundamental
soliton.

FIG. 7: Results of the direct numerical 3d modelling:
|A|2(x, 0, t, z) iso-surfaces present (a) the light bullet regime
with soliton-like dynamics, and (b) the spatio-temporal com-
pression.

Figure 6 (left) shows the appearance of a local min-
ima when the existence criterion is satisfied, whereas the
right plot represents an unstable case for µ = 0. In par-
ticular, Fig. 6(left) shows that, for a signal from the area
of minimal H with the power E = Pnormr

2
0T0π

√
πP0 ≈

29nJ and nanosecond width, the temporal compression
in a GRIN fiber occurs to the width τ ≈ 3.45fs. Fig-
ure 7(b) shows typical corresponding 3d dynamics both
in light bullets regime (a) and spatio-temporal compres-
sion regimes.

Conclusions. We have analyzed systematically both
existence and stability of spatiotemporal solitons in mul-
timode optical fibers, in the framework of the graded-
index model. We have revealed that the effective two-
dimensional potential formed by the graded refractive in-
dex prevents three-dimensional collapse into singularity
as is known to occur in uniform three-dimensional media.
We have demonstrated the existence of families of stable
spatiotemporal solitons and discussed the coexistence of
wave collapse and locally stable multidimensional soli-
tons stabilized by the effective low-dimensional parabolic
potential in the grade-index multimode fiber, and also
found novel stable dipole-mode spatiotemporal solitons.
As a fundamental feature of nonlinear light propagation,
these multi-dimensional solitons might find applications
in diverse areas of physics providing new possibilities for
control and manipulation of both spatial and temporal
properties of light.
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