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Abstract  
Negotiations between buyers and sellers (or suppliers) of goods and services have become 
increasingly important due to the growing trend towards international purchasing, outsourcing and 
global supply networks together with the high uncertainty associated with them. This paper examines 
the effect of ambiguity aversion on price negotiations using multiple-priors-based real options with 
non-extreme outcomes. We study price negotiation between a buyer and seller in a dual contingent-
claims setting (call option holding buyer vs. put option holding seller) to derive optimal agreement 
conditions under ambiguity with and without social network effects. We find that while higher 
ambiguity aversion raises the threshold for commitment for the seller, it has equivocal effects on the 
buyer’s negotiation prospects in the absence of network control. Conversely when network position 
and relative bargaining power are accounted for, we find the buyer’s implicit price (or negotiation 
threshold) decreases (or increases) unequivocally with increasing aversion to ambiguity. Extending 
extant real options research on price negotiation to the case of ambiguity, this set of results provides 
new insights into the role of ambiguity aversion and network structures in buyer-seller relationships, 
including how they influence the range of negotiation agreement between buyers and sellers. The 
results also help assist managers in formulating robust buying/selling strategies for bargaining under 
uncertainty. By knowing their network positions and gathering background information or inferring 
the other party’s ambiguity tolerance beforehand, buyers and sellers can anticipate where the 
negotiation is heading in terms of price negotiation range and mutual agreement possibilities. 
  
Keywords: buyer-seller relationships; real options; supply networks; social networks; multiple-
priors; ambiguity  
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Ambiguity Aversion in Buyer-Seller Relationships:   

A Contingent-Claims and Social Network Explanation  
 

Abstract  
Negotiations between buyers and sellers (or suppliers) of goods and services have become increasingly important due 
to the growing trend towards international purchasing, outsourcing and global supply networks together with the high 
uncertainty associated with them. This paper examines the effect of ambiguity aversion on price negotiations using 
multiple-priors-based real options with non-extreme outcomes. We study price negotiation between a buyer and seller 
in a dual contingent-claims setting (call option holding buyer vs. put option holding seller) to derive optimal 
agreement conditions under ambiguity with and without social network effects. We find that while higher ambiguity 
aversion raises the threshold for commitment for the seller, it has equivocal effects on the buyer’s negotiation 
prospects in the absence of network control. Conversely when network position and relative bargaining power are 
accounted for, we find the buyer’s implicit price (or negotiation threshold) decreases (or increases) unequivocally with 
increasing aversion to ambiguity. Extending extant real options research on price negotiation to the case of ambiguity, 
this set of results provides new insights into the role of ambiguity aversion and network structures in buyer-seller 
relationships, including how they influence the range of negotiation agreement between buyers and sellers. The results 
also help assist managers in formulating robust buying/selling strategies for bargaining under uncertainty. By knowing 
their network positions and gathering background information or inferring the other party’s ambiguity tolerance 
beforehand, buyers and sellers can anticipate where the negotiation is heading in terms of price negotiation range and 
mutual agreement possibilities. 
  
Keywords: buyer-seller relationships; real options; supply networks; social networks; multiple-priors; ambiguity  
 

1. Introduction 

The relationships between buyers and sellers of goods and services have come under increasing scrutiny 

in the literature since the results and consequences of negotiations between them can be critical to the 

competitiveness and integrity of firms operating within international networks. Examples of relevant issues 

that have been investigated include trust (Schoenherr et al., 2015; Hemmert et al., 2016), transaction costs 

(Schneider et al., 2013; Abd Rahman et al., 2009), ethics and social responsibility (Goebel et al., 2012; 

Govindan et al., 2016). In this paper we examine the behavioural issue of ambiguity, which is a concern 

involving both sides during negotiations between buyers and sellers. As a type of uncertainty beyond 

probabilistic risk, ambiguity characterises commitment and transactional situations where future outcomes 

are not known with certainty or high confidence (Ellsberg, 1961; Ghosh and Ray, 1997). When faced with 

ambiguity buyers and sellers are unsure about their future prospects and are doubtful about the probabilities 

of future events and their subsequent realisations, displaying ambiguity aversion and pessimism (Hazen et 

al., 2012; Abdellaoui et al., 2015). This is more so in negotiation cases where commitment is irreversible and 

transactional arrangements are fraught with uncertainty on both sides. The ambiguity aversion bias of each 

party can distort pricing dynamics resulting in suboptimal relationships between buyers and sellers. Network 

positions and relative bargaining power are also key to these linkages. This paper studies the effect of 

ambiguity on price negotiations between buyers and sellers, with and without network control, using real 

options theory (Trigeorgis, 1996; Driouchi and Bennett, 2012; Charalambides and Koussis, 2017) and social 

network principles (Braun and Gautschi, 2006). In our research we use the term “seller” because it relates to 

commercial transactions where price is one of the main criteria used in negotiation. However, in the 
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literature the terms “supplier” and “seller” are often used interchangeably within the same context of buying 

products and services (Oosterhuis et al, 2013; Esmaeilia and Zeephongsekul, 2010) 

Several recent papers have been devoted to the study of the real option value of flexible decision 

making in buyer-seller relationships, optimal contracting and price negotiation (Li and Kouvelis, 1999; 

Kamrad and Siddique, 2004; Fotopoulos et al, 2008; Moon et al., 2011). Focusing on buyer-seller interaction 

and negotiation, Yao et al. (2010) and Jiang et al. (2008, 2010) show how each party’s real options determine 

contractual outsourcing arrangements under risk whereas Moon et al. (2011) examine the impact of risk-

neutral optionality on negotiation performance. Moon et al. (2011) in particular present a bilateral 

negotiation model under risk-neutrality with optimal selling (buying) rules. They propose the idea of an 

implicit zone of possible agreement (IZOPA) and obtain negotiation agreement probabilities using real 

options (i.e. contingent-claims). They find that the negotiation range and probability of agreement between 

buyers and sellers are narrower in the presence of optionality than in its absence. What is missing from this 

growing literature, however, is an explicit recognition of the role of individual behaviour or miscalibration 

and network position in negotiation decisions and, especially, how ambiguity affects option-based price 

negotiation and its investment outcomes. Given that negotiation exercises are often influenced by ambiguity, 

behavioural factors and social network effects, it is important to account for negotiators’ beliefs, relational 

characteristics, psychology and uncertainty preferences (e.g. pessimism) in the decision making process.1  

Our paper addresses this gap in research by investigating how negotiations between a buyer and seller 

are affected by their ambiguity and social network position (our ‘Extensions and additional results’ in 

Section 4 examines the case of multiple sellers). A search of the literature reveals that this is the first paper 

to integrate real options, ambiguity and social networks principles in bilateral negotiation and buyer-seller 

interaction. We contribute to extant literature on real options in buyer-seller relationships (e.g. Moon et al., 

2011; Zheng and Negenborn, 2015) by providing novel decision-making and production economics insights 

into how ambiguity aversion and social network effects alter the relationships among uncertainty, real 

options and price negotiation outcomes. We also add to buyer-seller literature concerned with behaviour, 

ambiguity and information asymmetry (e.g. Esmaeilia and Zeephongsekul, 2010; Hazen et al., 2012; 

Schoenherr et al., 2015; Hemmert et al., 2016) by developing new theoretical propositions for empirical 

research. We analyse the effects of negotiators’ ambiguity aversion on their real options prospects, with and 

without network control, using a multiple-priors expected utility (MEU) with non-extreme outcomes 

(hereafter called NMEU) in continuous-time. Adjusting for uncertainty aversion in probabilistic appraisal, 

this utility specification is related to the maxmin expected utility (MEU) covered in recent ambiguity-based 

real options research, such as Nishimura and Ozaki (2007), Trojanowska and Kort (2010), and Moreno 

(2014). The MEU satisfies the dynamic consistency constraint and can reflect both the present value and 

option value effects dominating the timing of commitment but its assumption of complete pessimism might 

                                                        
1 The research findings of Ghosh (1994) and Zwick and Lee (1999) go along these lines and suggest that to enhance the 
descriptive power of negotiation models, risk preferences, information incompleteness and tolerance for ambiguity need to be 
included in the analysis. 
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be considered too extreme in a number of cases. Our NMEU framework is also indirectly linked to the α -

maxmin expected utility (α -MEU) used to study infrastructure projects (Gao and Driouchi, 2013), corporate 

investments (Schröder, 2011) and supplier contracting (Gao, 2017). The α -MEU utility is useful in 

examining the impact of ambiguity attitudes on decision outcomes from the present value perspective but 

partly suffers from dynamic inconsistency and can result in timing thresholds for either extremely 

pessimistic or optimistic agents (= 0α or 1). This means that both the MEU and α -MEU models are 

concerned with extreme attitudes towards ambiguity but ignore situations, such as bargaining and price 

negotiation, where unsure decision makers might still have some confidence in their probability judgments 

(i.e. realization of their risk-based estimates) while caring about the worst case scenario (i.e. uncertainty 

aversion).  

Motivated by the above decision making issues, we rely on the NMEU heuristic to solve the optimal 

commitment and flexible timing problem for any level of ambiguity aversion while satisfying dynamic 

consistency. Our NMEU utility evaluates and combines the worst case in negotiators’ minds with the 

standard probabilistic case. Separating risk from uncertainty (Ellsberg, 1961; Abdellaoui et al., 2015; 

Agliardi et al., 2015), we present conditions for negotiation agreement under ambiguity and incorporate 

negotiators’ aversion to uncertainty and network position in the real options analysis to show how they affect 

investment outcomes and optimal agreement2. We deliberately do not investigate or discuss the role of risk 

aversion in the real options dynamics since these effects have been well documented in the literature (see e.g. 

Henderson and Hobson, 2002; Hugonnier and Morellec, 2007).  

We extend uncertainty-neutral findings from recent studies, in particular those of Nagarajan and Bassok 

(2008), Moon et al. (2011) and Zheng and Negenborn (2015), and the Nash bargaining model considering 

social network effects by Braun and Gautschi (2006) to the case of ambiguity aversion. We contribute to 

extant literature on buyer-seller interaction (e.g. Bichescu and Fry, 2009; Birkeland and Tungodden, 2014) 

by examining the link between ambiguity aversion and mutual agreement while considering negotiators’ 

flexibility and discretion regarding optimal investment choice and contract timing in the negotiation exercise. 

We find that in the absence of network effects, ambiguity and ambiguity aversion do not necessarily have 

symmetric effects on negotiation outcomes under the NMEU. This impact is reversed in the presence of 

network control. Thus, we add realism and generality to the analysis by explicitly allowing for 

miscalibration in the uncertain negotiation and accounting for the structural positions of buyers and sellers in 

the supply chain network, and show why standard risk-neutral or normative contingent-claims assessment 

might be incomplete for the appraisal of commitment situations where true uncertainty, cognition and 

vagueness determine outcomes and heterogeneous behaviour.  

In addition, many real options studies on incomplete information tend to assume that the partial 

                                                        
2
 In contrast to extant research on buyer-seller relationships, we do not use “risk” and “uncertainty” interchangeably in this paper. 

By ambiguity we refer to uncertainty, beyond probabilistic or measurable risk, as defined by Ellsberg (1961) and as discussed in 
Asano and Shibata (2011) and Nishimura and Ozaki (2007). Our paper is the first real option study to consider such dimension of 
uncertainty, and aversion towards it, in B2B buyer-seller interaction and price negotiation. 
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information about the uncertainty variables is generally symmetric (see also Grenadier, 2005; Nishihara and 

Shibata, 2008; Shibata and Nishihara, 2011; Feng et al., 2014; Grenadier et al., 2016). We consider this 

information to remain private in our setting and design incentives and signalling mechanisms for the buyer 

(seller) to elicit the true level of ambiguity aversion of his (or her) counterpart in the presence of information 

asymmetry. This is documented later in Section 4.3. 

The paper is organized as follows. Section 2 presents the real options negotiation problem. Section 2.1 

introduces notation, assumptions and our multiple-priors utility specification. Section 2.2 produces the 

policies for option exercise under ambiguity aversion. Section 2.3 identifies the negotiation’s implicit zone 

of achievable agreement (IZOAA) or negotiation range, studying its optimal conditions, and the effects of 

ambiguity aversion and probabilistic ambiguity on the threshold for negotiation. In Section 3, we derive the 

Nash bargaining solution under ambiguity aversion by considering real options, structural autonomy and 

network positions in the price negotiation in the context of a negatively connected network. Section 4 

extends our analysis to account for outside options (e.g. exiting or opting out from the negotiation), 

multilateral negotiation between one buyer (an assembler) and multiple sellers, and mechanism design and 

incentives under asymmetric information. The final section concludes with a summary of results and 

implications. Proofs and additional results are found in the Appendix and Supplementary Material. 

 
2. The negotiation problem under ambiguity 

2.1. Problem description and assumptions 

We consider a (bilateral) price negotiation setting in which the decision to buy or sell goods within 

global supply networks has a long-term impact, incurs sunk costs and is at least partly irreversible. Due to 

uncertainty, there is a noticeable option value in delaying commitment and keeping options open (Trigeorgis, 

1996; Roemer, 2004; Driouchi et al., 2010). Our model is based upon the IZOPA3 under risk-neutrality of 

Moon et al. (2011) and Jiang et al. (2008). We extend these authors’ findings to the case of ambiguity using a 

multiple-priors expected utility with non-extreme outcomes (e.g. Chateauneuf et al., 2007). This ambiguity-

based utility specification is equivalent to a weighted average between a risk-neutral utility and the minimal 

outcome of a multiple-priors utility (i.e. worst case scenario) (see e.g. Chateauneuf et al., 2007; Fonseca and 

Rustem, 2012). This subjective utility should be more reflective of cognitive or behavioural biases affecting 

buyer-seller assessments than those of rational or uncertainty-neutral counterparts. In the bilateral price 

negotiation, the seller (called she) is uncertain about the costs of producing a certain good to be sold at a 

price X  to a buyer (called he) who is uncertain about the future revenues generated by investing in X. A 

typical representation/illustration of this situation would be the case of two supply chain actors negotiating 

over the price and potential distribution of a specific good or service. Revenues and costs are difficult to 

predict and follow lognormal diffusions with ambiguous drifts but unambiguous volatilities. Despite their 

                                                        
3 Their notion of the IZOPA is based on the concepts of negotiation range and contract zone in economics (e.g. Fundenberg and 
Tirole, 1983). 
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ambiguity, both agents have some confidence in their probability judgments. Although interacting, parties do 

not have private information about counterparties’ uncertain quantities. The case of slotting allowances/fees 

or new product introductions in retailing closely matches this price negotiation model. The buyer (e.g. 

retailer or wholesaler) holds a call option to exchange X for 2S  paying X in exchange for future revenues 2S . 

The seller (e.g. manufacturer) holds a put option to exchange operating costs 1S  for product/contract price X. 

The put (call) option is in the money when 1X S>  ( 2S X> ). Buyers and sellers negotiate based on their 

individual attitudes towards ambiguity and their sentiment (ambiguity aversion or pessimism) regarding the 

future fluctuations of their stochastic variables (i.e. revenues for the buyer and costs for the seller, 

respectively). Section 3 adds a social network dimension to this problem. For the remainder of the paper, a 

seller’s (buyer’s) ambiguity aversion will refer to situations where the seller (buyer) is pessimistic about 

their operating costs (revenues). 

Table 1. Variable definitions  
Notation Definition 

i  i = 1 and 2 denote the seller and buyer. 

X  Negotiation price that connects the buyer and seller.  

iX , nc

iX  
1X  ( 2X ) are the seller’s (buyer’s) implicit reservation prices. nc

iX  is the implicit reservation price 

with network control for each party.  

iS  1S  and 2S  are the seller’s costs
 
and buyer’s revenues.  

iµ  , iσ  
iµ  and iσ  are the growth rate and volatility of iS . 0iσ > . 

iκ  
iκ  is the probabilistic ambiguity surrounding the drift term of iS , 0iκ ≥ . When =0iκ , the 

corresponding geometric Brownian motion of ( )iS t  is denoted by ( )iS t% .  

iρ  
1ρ  and 2ρ  reflect the degrees of ambiguity aversion regarding seller’s expected costs

 1S  and buyer’s 

expected revenues 2S , respectively. [ ]0,1iρ ∈ . 

( )iW t  The NMEU of ( )iS t  under ambiguity. 

iλ  
iλ  is the NMEU-based ambiguity multiplier.  It connects iS  at time t  and the subjective expected 

value ( )iW t , where 1,2i = . 

r  r  is the discount rate. 

ε  The correlation coefficient between 1

1( )dB t q  and 2

2 ( )dB t q . 

ξlj  and γ lj  

ξlj  (γ lj ) is l ’s relative negotiation power with respect to j  in a negatively (positively) connected 

network. We use γ  to denote each seller’s relative negotiation power vis-à-vis the buyer in a positively 

connected network in Section 4.2. 

X , iX  and nc
iX are the decision variables. Other variables in the table are exogenous and assumed to be 
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constant. The following assumptions are adopted. 

Assumption 1. The buyer’s demand is assumed to be fixed and normalized to 1.  

Assumption 2.1. In line with standard real options literature (Nembhard et al., 2005; Wu and Liou, 

2011; De Waegenaere and Wielhouwer, 2011), costs and revenues follow two separate lognormal diffusions. 

Due to negotiators’ lack of confidence in their probability estimates we consider parametric uncertainty in 

the drifts of the Brownian motions. This type of vagueness or probabilistic ambiguity determines the level of 

ambiguity aversion of each negotiating party.  

Assumption 2.2. The seller’s costs ( 1S ) and buyer’s revenues (2S ) follow ambiguous Brownian 

motions 1( )B t  and 2( )B t , which are defined on a probability space ( ), ,TΩ F P . ( )0t t T≤ ≤
F  is a standard 

filtration for 1( )B t  and 2( )B t . Ambiguity in the seller’s costs (1S ) and buyer’s revenues (2S ) is modelled by 

the set of priors ( )={ ( ) }i
i i i i iQ tq q q= Î QP . i

iQ q  is derived from the reference probability measure 
i

Q  using 

the density generator iθ (see definitions in Chen and Epstein, 2002; Nishimura and Ozaki, 2007; Riedel, 

2009). i iθ∀ ∈ Θ  are restricted to the non-stochastic range [ , ]i i iK κ κ= − , where iκ ( 0iκ ≥ ) stands for the 

probabilistic ambiguity surrounding the drift terms of the geometric Brownian motions used to model the 

seller’s costs and buyer’s revenues.4 For any i iq Î Q  the Ito processes of 1S  and 2S  to the general sets 1P  and 

2P  yield under ambiguity:  

( )( ) ( ) ( ) ( ) ( ) 0, , 1,2i
i i i i i i i i i idS t S t dt S t dB t t iqm s q s q= - + " ³ " Î Q =  (1) 

where m s q-i i i  is the expected growth rate of iS  and iσ  its volatility. Parameters iµ  and iσ  are assumed to 

be constant. 0iσ > . The drift term is affected by the ambiguity parameter iq , 1,2i = . We assume the 

correlation coefficient between 1

1( )dB t q  and 2

2 ( )dB t q  to be ε . Let ( )iS τ%  denote the geometric Brownian 

motion under the benchmark probability measure iQ . The expectation of ( )iS t%  under risk-neutrality reflects 

the case of non-extreme outcomes for the uncertain decision maker.  

        Assumption 3. In their appraisal of economic prospects, the buyer and seller account for both the risk-

neutral reward and the minimal/pessimistic outcome of a multiple-priors utility (i.e. combination of risk-

neutral and worst case scenarios). Our NMEU specification combines the worst case in negotiators’ minds 

with the risk-neutral outcome, thus adjusting for uncertainty aversion in probabilistic appraisal. 

Assumption 3.1. For the seller, we use 1ρ  with 10 1ρ≤ ≤  to denote her degree of ambiguity aversion 

or worst case appraisal regarding future operating costs. In line with extant real options and optimal stopping 

research, time horizon T  is assumed to approach infinity. The NMEU value of 1( )S t  with respect to 1
1Q q

 can 

                                                        
4 In practical terms, this implies that the exact rates of return on buyers’ and sellers’ commitment to a certain price or contractual 
arrangement are unknown to each party. 
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be expressed as 5:  

[ ]

1
1

1 1 1

( ) ( )
1 1 1 1 1

,

1 1

( ) sup ( ) (1 ) ( )

= ( )

θ τ τ

θ κ κ
ρ τ τ ρ τ τ

λ

∞ ∞− − − −

∈ −

   = + −
      ∫ ∫ %Q r t r t

t t
t t

W t E S e d E S e d

S t

F F

 
(2) 

where 1 1
1

1 1 1 1

1

r r

ρ ρλ
µ σ κ µ

−= +
− − −

,
 

1 0κ ≥ , 1λ  is the NMEU-based ambiguity multiplier which connects 1S  at 

time t  and the subjective value 1( )W t , 1 Rλ ∈ . r  is the discount rate, 1 1 1 rµ κ σ+ < . 

( )
1( ) ττ τ

∞ − − 
  ∫ % r t

t
t

E S e d F  corresponds to the risk-neutral expectation of 1( )τS . When 1 1ρ = , the  NMEU 

value coincides with the maxmin heuristic of Gilboa and Schmeidler (1989) or the case of pure pessimism or 

extreme ambiguity aversion.  

Assumption 3.2. For the buyer, we use2ρ ( [ ]2 0,1ρ ∈ ) to denote his degree of ambiguity aversion about 

future revenues which reflects the weight attributed to the worst case for investment. Consequently under 

2k -ignorance, the NMEU value of 2( )S t  can be written as:  

 [ ]

2
2

2 2 2

( ) ( )
2 2 2 2 2

,

2 2

( ) inf ( ) (1 ) ( )

= ( )

θ τ τ

θ κ κ
ρ τ τ ρ τ τ

λ

∞ ∞− − − −

∈ −
   = + −
      ∫ ∫ %Q r t r t

t t
t t

W t E S e d E S e d

S t

F F

        (3) 

where 2λ  is the NMEU-based ambiguity multiplier of 2( )S t  incorporating buyer’s attitude towards 

ambiguity, 2 2
2

2 2 2 2

1

+r r

ρ ρλ
µ σ κ µ

−= +
− −

. In the absence of ambiguity (2 0ρ =  or 2 0κ = ), 2( )W t  simplifies to a 

risk-adjusted perpetuity.  

1ρ  and 2ρ  consider the trade-off in negotiators’ minds between the worst and risk-neutral scenarios and 

represent the degrees of ambiguity aversion of sellers and buyers towards price negotiation. Each parameter 

depends on individual ambiguity attitudes and is reflective of subjective beliefs about the accuracy of 

probability estimates.iρ  should help determine the direction of the negotiation process and its outcomes in 

terms of negotiation range and mutual agreement occurrence. 

 

2.2. Ambiguity and buyer-seller real options 

The seller’s or manufacturer’s problem is to determine the optimal selling conditions to maximize her 

opportunity value under NMEU ambiguity 
1
( )F t : 

( ) ( )

1

1
1

1

1 1 1
( ) ( )

1 1=( ) max sup (1 )( ) ( )
θ

θ

τ τρ ρτ τ τ τ
′≥ ∈Θ

∞ ∞− ′− − ′−− − − −
′ ′

       + −             
− −∫ ∫ %Q

t t
t t

r t t r t tr t r t

t t
F t E Ee X S e d e X S e dF F  (4) 

 

                                                        
5 The derivation of the supremum of these costs can be easily obtained based on Nishimura and Ozaki (2007). 
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Then her put opportunity value 1( )F t  can be expressed as: 

 { }1 1( )= max ( ), ( )
′≥

′−
t t

F t X W t J t    (5) 

where ( ){ }1 1+

1
1

1 1

( ) ( )

1 1
( )= max sup (1 )( ) ( )

θ

θ
τ τρ ρτ τ τ τ

′≥ ∈Θ

∞ ∞− −′ − − − −

′ ′

    ′ + −        
− ∫ ∫ %Q

t tt t dt

r t t r t r t

t t
J t E Ee X S e d S e dF F . 

The seller’s put option value under the NMEU ambiguity specification can be written as (see the 

recursive structure/properties of the option value and derivation of the solution in Appendix A): 

 
1 1 *

1 1 1 1 1
1 1 *

1 1 1 1

( ) if ( )
( ( ))

( ) if ( )

A S t S t S
F W t

X S t S t S

b bl

l

ìï >ï= íï - £ïî    

(6) 

where * 1
1

1 1( 1)
S X

b

b l
=

-
,

( ) 11*
1 1

1
1

S
A

β
λ

β

−

= − , 1 1
1

1 1 1 1

1

r r

ρ ρλ
µ σ κ µ

−= +
− − −

, 

2

1 1
1 2 2 2

1 1 1

1 1 2
0

2 2

rz z
b

s s s

æ ö÷ç ÷= - - - + <ç ÷ç ÷çè ø
,

 

1 1 1 1 1 1 1= ( + )+(1 )ζ ρ µ σ κ ρ µ− . 1A , 1λ  and 1b  are constants.  

 

Different from the option value derived by Moon et al. (2011) under risk-neutrality, Eq. (6) accounts for 

the effect of ambiguity on decision making and shows how option exercising properties are affected by 

sellers’ subjective beliefs 1λ , probabilistic ambiguity 1κ  and ambiguity aversion 1ρ . Ignoring such 

behavioural effects can result in biased investment triggers (e.g. premature commitment or late real option 

exercise) and suboptimal negotiation decisions if the negotiation process is characterized by vagueness and 

information incompleteness. *1S  is the critical trigger value of selling the good under ambiguity. The seller 

exercises the put option only when costs *
1 1( )S t S£ .  

The buying opportunity value under ambiguity 
2
( )F t  is:  

      ( ) ( ){ }2 2

( ) ( )

2 2 2 2 2

2
2( )=max inf ( ) (1 ) ( )τ τ

θ

θ

ρ τ τ ρ τ τ
∞ ∞

′ ′− − − −− − − −

′ ∈Θ≥ ′ ′

      − + − −
         ∫ ∫ %Q r t t r t tr t r t

t tt t t t
F t E S e d e X E S e d e XF F   (7) 

Using the same logic as above, the buyer’s call option value under the NMEU specification can be 

written as: 

 
2 2 *

2 2 2 2 2
2 2 *

2 2 2 2

( ) if ( )
( ( ))

( ) if ( )

A S t S t S
F W t

S t X S t S

b bl

l

ìï <ï= íï - ³ïî  

(8)

 

where
 

* 2
2

2 2( 1)
S X

b

b l
=

-
,
 

2 2
2

2 2 2 2

1

+r r

ρ ρλ
µ σ κ µ

−= +
− −

,
21*

2 2
2

2

( )S
A

bl

b

-

= , 

2

2 2
2 2 2 2

2 2 2

1 1 2
1

2 2

rz z
b

s s s

æ ö÷ç ÷= - + - + >ç ÷ç ÷çè ø
, 

 

2 2 2 2 2 2 2= ( )+(1 )ζ ρ µ σ κ ρ µ− − . *
2S  is the critical trigger value of buying the good under ambiguity. 
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The buyer will exercise the call option only when revenues *
2 2( )S t S³ . Otherwise, he will delay 

commitment until *
2 2( )S t S³ . Here again, exercise conditions and option value are influenced by the buyer’s 

subjective beliefs 2λ  and ambiguity parameters 2ρ  and 2κ . Ignoring the interaction effects of these 

variables on option value can result in erroneous investment outcomes (e.g. premature exercise, late 

commitment or an impasse) if the negotiation is fraught with ambiguity. Option value and optimal exercise 

policies are affected by the buyer’s ambiguity aversion and probabilistic ambiguity through individual and 

subjective factors 2b  and 2λ . Considering these cognitive factors in the uncertain price negotiation allows 

us to know how the worst case in the negotiator’s mind affects her/his judgment about the timing of 

commitment and the likelihood of mutual agreement. 

Using the above results (eqs. (6) and (8)), we next identify the implicit zone of achievable agreement 

(IZOAA) under ambiguity and its existence conditions, and study the effect of ambiguity aversion on the 

price negotiation range and the thresholds for mutual agreement. The IZOAA corresponds to the range of 

negotiation where buyers and sellers are likely to reach agreement and avoid impasse. 

 

2.3. Ambiguity and the negotiation range  

From eqs. (6) and (8), the seller (buyer) will agree to sell (buy) when *
1 1

1 1

( )
(1 1 )

X
S t S

b l
£ =

-  

( *
2 2

2 2

( )
(1 1 )

X
S t S

b l
³ =

-
 ). We refer to 1X  and 2X  as implicit reservation prices for the negotiating seller 

and buyer. For given 1( )S t  and 2( )S t :  

                                                         
1 1 1 1(1 1 ) ( )X S t Xb l= - £

                                                         
(9) 

                                                        
2 2 2 2(1 1 ) ( )X S t Xb l= - ³                                                        (10) 

The optimal buying and selling strategies are to sell when 1X X£  and to buy when 2X X³ . Thus, the 

region 1 2[ , ]X X  stands for the IZOAA or negotiation range under ambiguity for buyers and sellers. It nests 

the risk-neutral IZOPA found in prior studies. Setting implicit reservation prices can help initiate a profitable 

relationship between parties and capture their expectations of costs and revenues under ambiguity aversion. 

This aids in establishing whether the negotiation is successful or not. Given 1X , a higher contract price X  

will generate higher benefits for the seller. For the buyer to make a profitable investment, 2X  should exceed 

the contract price X . Proposition 1 summarizes how these implicit reservation prices are affected by 

changes in ambiguity aversion iρ  and probabilistic ambiguity iκ , where 1,2i = . 
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Proposition 1. (The effect of ambiguity on implicit reservation prices) 

An increase in the seller’s ambiguity aversion 1r  (probabilistic ambiguity 1k ) increases her implicit 

reservation price 1X  when 1 0k >  ( 1 0r > ). The effect of the buyer’s ambiguity aversion 2r  

(probabilistic ambiguity 2k ) on his implicit reservation price 2X  is equivocal. If probabilistic 

ambiguity =0ik  (aversion =0ir ), changes in ir  ( ik ) will not affect the implicit reservation price iX , 

where 1,2i = . (See the proof in Appendix B). 

1
1

1

1
1

1

0 if 0

0 if =0

X

X

k
r

k
r

ì ¶ïï > >ïï ¶ïíï ¶ï =ïï ¶ïî

; 

1
1

1

1
1

1

0 if (0,1]

=0 if 0

X

X

r
k

r
k

ì ¶ïï > Îïï ¶ïíï ¶ï =ïï ¶ïî

. 

      2

2

0
X

r

¶ >=<¶
 and 2 2

2

( =0)
=0

X k

r

¶

¶
; 2

2

0
X

k

¶ >=<¶
 and 2 2

2

( =0)
=0

X r

k

¶

¶
. 

As shown in Figure 1, Proposition 1 implies that in the presence of ambiguity (1 0k > ) the seller will 

ask for a higher price (willingness-to-accept) for the good produced or to be delivered if she is more 

ambiguity averse about her future operating costs (1 1 0X r¶ ¶ > ). This result is logical and in accord with 

risk aversion and maxmin dynamics. Similarly, a positive relationship exists between the seller’s 

probabilistic ambiguity 1k  and her implicit reservation price 1X  under increasing uncertainty aversion 

( 1 0r > ). This suggests that despite the presence of optionality, the IZOAA can become wider or narrower 

under ambiguity with changing aversion and that the risk-neutral IZOPA is likely to overstate mutual 

agreement prospects if the seller is increasingly pessimistic about her costs. While individual behaviour is 

key to negotiation outcomes, risk-neutral analysis ignores its effects on optionality and neglects the 

multiplicity of the IZOAA under ambiguity.  
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Proposition 1 states, on the other hand, that the buyer’s ambiguity aversion 2r  has an equivocal and 

non-monotonic effect on the implicit reservation price 2X  under probabilistic ambiguity 2k , as illustrated in 

Figure 2. This can be explained by the specific properties of 2b  in Eq. (8) and the potential interaction 

effects of r , 2µ  and 2σ  on optimal timing dynamics. Such effects should be more pronounced under 

ambiguity. The resulting nonlinear association highlights the role of uncertainty (beyond just risk) on price 

negotiation outcomes and shows that the buyer’s implicit price does not have to decrease with higher 

ambiguity aversion in the NMEU ambiguity specification. 2k  also has an equivocal effect on the buyer’s 

implicit reservation price 2X  under ambiguity aversion (i.e. when 2r  is greater than zero). In other words, 

an optimistic buyer can potentially decrease his implicit reservation price and delay commitment in the 

presence of ambiguity later than a more pessimistic buyer. This implies that the IZOAA will not necessarily 

be narrower with higher ambiguity aversion from the buyer. This underlines the asymmetric effect of 

NMEU-based ambiguity on the negotiation’s prospects. Under the standard MEU specification, buyer’s 

willingness-to-pay (WTP) would be negatively related to ambiguity aversion as predicted by Hazen et al. 

(2012) in the context of remanufacturing. Changes in ambiguity aversion ir  (probabilistic ambiguity ik ) do 

not affect the implicit reservation prices iX  under risk-neutrality 0ik =  ( 0ir = ), where 1,2i = . The 

IZOPA is unique only in the absence of ambiguity. 

We now turn to the effects of ambiguity aversion and ambiguity on the threshold for negotiation (i.e. 

joint options’ exercise policy). Two parties involved in negotiation can reach agreement under ambiguity 

when the following condition is satisfied:  

 
2 1( ) ( ) KKS t S t d³

 
(11) 

Fig. 2 Effects of buyer’s ambiguity on his implicit 

reservation price. 

         Here (r ,
2

µ , 
2

σ ,
2

S ) = (0.08, 0.04, 0.15, 25) 

Fig. 1 Effects of seller’s ambiguity on her implicit 

reservation price. 

        Here (r , 1µ , 1σ , 1S ) = (0.08, 0.03, 0.15, 9) 
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where 1 1

2 2

(1 1 )

(1 1 )KK

b l
d

b l

-
=

-
,
 

KKd  denotes the ambiguity-based negotiation threshold of the ratio6 of the buyer’s 

revenues ( 2( )S t ) to the seller’s costs (1( )S t ) when call and put options are exercised. The threshold KKd  

represents the minimum profit space for the negotiation to succeed and agreement to occur.  Proposition 2 

summarizes how this threshold is affected by changes in ambiguity aversion iρ  and probabilistic ambiguity 

iκ . 

 

Proposition 2. (The effect of ambiguity on the negotiation threshold) 

An increase in the seller’s ambiguity aversion 1r  (probabilistic ambiguity 1k ) increases the 

negotiation threshold KKd  if 1 0k >  ( 1 0r > ). The effect of the buyer’s ambiguity aversion 2r  

(probabilistic ambiguity 2k ) on the negotiation threshold KKd  is equivocal. When =0ik  ( =0ir ), 

changes in ir  ( ik ) do not affect the negotiation threshold KKd , where 1,2i = . (See the proof in 

Appendix B). 

1
1

1
1

0 if 0

0 if =0

KK

KK

d
k

r

d
k

r

ì ¶ïï > >ïï ¶ïíï ¶ï =ïï ¶ïî

 ; 
1

1

1
1

0 if (0,1]

=0 if 0

KK

KK

d
r

k

d
r

k

ì ¶ïï > Îïï ¶ïíï ¶ï =ïï ¶ïî

. 

        
2

0KKd

r

¶ >=<¶
 and 2

2

( 0)
0KKd k

r

¶ =
=

¶
; 

2

0KKd

k

¶ >=<¶
 and 2

2

( 0)
0KKd r

k

¶ =
=

¶
. 

Proposition 2 implies that under probabilistic ambiguity ( 1 0k > ), the threshold for joint options’ 

exercise will be higher the higher the seller’s ambiguity aversion ( 1 0KKd r¶ ¶ > ). Figure 3 illustrates this 

monotonic effect. The positive association also holds between the seller’s probabilistic ambiguity 1k  and the 

negotiation threshold KKd  with higher uncertainty aversion. The negotiation process becomes more difficult 

if the seller is more pessimistic about her costs. On the other hand, and in line with the nonlinear effects 

highlighted in Proposition 1, higher ambiguity aversion from the buyer will not necessarily increase the 

negotiation threshold or likelihood of an impasse. This result differs from the one obtained by standard or 

uncertainty-neutral contingent-claims analysis and can be attributed to the asymmetric properties of the 

NMEU framework.  

When 1=0κ  and 2=0κ , KKd  reduces to the risk-neutral negotiation threshold 1 2

2 1

(1 1 )( )

(1 1 )( )

β µδ
β µ

− −=
− −

R
RR

R

r

r
, 

                                                        
6 See Golan (2009) for an illustration of the negotiation threshold in employment contracts. 
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where 

2

1 1
1 2 2 2

1 1 1

1 1 2
0

2 2R

rm m
b

s s s

æ ö÷ç ÷= - - - + <ç ÷ç ÷çè ø
, 

2

2 2
2 2 2 2

2 2 2

1 1 2
1

2 2R

rm m
b

s s s

æ ö÷ç ÷= - + - + >ç ÷ç ÷çè ø
.  

Let KRd  denote the negotiation threshold with 1 0κ ≥  and 2=0κ  and RKd  denote the negotiation 

threshold with 1=0κ  and 2 0κ ≥ . The joint effects of ambiguity aversion iρ  and ambiguity iκ  on these 

thresholds are illustrated in Figures 3-4. Higher ambiguity aversion 1r  (greater probabilistic ambiguity 1k ) 

from the seller results in a higher threshold KRd  when 1 0κ >  ( 1 0r > ) as shown in Figure 3. On the other 

hand, increasing aversion to uncertainty (greater probabilistic ambiguity) from the buyer does not induce a 

higher threshold RKd . Figure 4 illustrates these equivocal effects. The role played by r , µ  and σ , and their 

interactions, in optimal timing dynamics are more important for call prospects than for puts under NMEU 

ambiguity. When 1=0κ  or 1=0ρ ( 2=0κ  or 2=0ρ ), KRd  ( RKd ) is not affected by individual behaviour as 

shown in Figures 3-4. Ignoring the interaction effects of ambiguity aversion and probabilistic ambiguity on 

real options dynamics in incomplete information settings, such as those of price negotiation, misses out the 

behavioural and subjective elements of buyer-seller interaction.   

   

2

0.15

2.5

3

1

3.5

0.1

4

4.5

0.50.05

0 0

       

2.45

2.5

2.55

2.6

0

2.65

2.7

0.05 0
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The relationship between the threshold under ambiguity KKd  and its risk-neutral counterpart RRd  can 

be expressed as follows:  

 

1 1 1 2

2 2 2 1

1 1 1 2

2 2 2 1

(1 1 ) (1 1 )( )
if

(1 1 ) (1 1 )( )

(1 1 ) (1 1 )( )
if

(1 1 ) (1 1 )( )

R
KK RR

R

R
KK RR

R

r

r

r

r

b l b m
d d

b l b m

b l b m
d d

b l b m

ì - - -ïï ³ ³ïï - - -ïíï - - -ï < <ïï - - -ïî
 

(12) 

 

Fig. 3 Effects of seller’s ambiguity on the negotiation 

threshold KRd . 
Here 1 1 2 2( , , , , ) (0.08,0.03,0.15,0.04,0.15)r µ σ µ σ =  

Fig. 4 Effects of buyer’s ambiguity on the negotiation 

threshold RKd .  

    Here 1 1 2 2( , , , , ) (0.08,0.03,0.15,0.04,0.15)r µ σ µ σ =  
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Eq. (12) highlights the role of subjective beliefs, in the form of the NMEU-based ambiguity multiplier, 

and ambiguity aversion in shaping mutual agreement. For agreement to be reached under ambiguity, the 

threshold will generally differ from RRd  confirming that rational option pricing assumptions can lead to 

inflexible and suboptimal outcomes if individual behaviour, miscalibration and subjective beliefs are not 

accounted for in the uncertain negotiation. The above dynamics and propositions are based on the realistic 

setup that neither the buyer nor the seller is knowledgeable about other party’s cost and revenue patterns or 

ambiguity parameters. We address this issue of asymmetric information in the presence of ambiguity 

aversion and its decision making implications in Section 4.3. Appendix C covers how the subjective 

probability of agreement is affected by ambiguity. 

Overall the above results demonstrate that although optionality is a key element of negotiation when 

making purchases within supply networks, the effects of ambiguity aversion and ambiguity on investment 

outcomes are equally important. Normative/rational predictions on the effects of uncertainty on implicit 

prices are indeed challenged when ambiguity, and aversion towards it, is part of the negotiation process. This 

is not surprising since psychology and the heterogeneity of individual attitudes towards uncertainty are 

known to significantly shape the direction of buyer-seller interaction (Ghosh, 1994; Moran and Ritov, 2002). 

Standard contingent-claims research on buyer-seller relationships and capital investment (e.g. Jiang et al., 

2008; Driouchi et al., 2009 and Moon et al., 2011) neglects these so-called biases and frictional effects. We 

add realism to this literature by highlighting the moderating effects of ambiguity aversion and probabilistic 

ambiguity on real options dynamics and buyer-seller interaction. We find that under the NMEU ambiguity 

specification, uncertainty can have an asymmetric association with price negotiation outcomes. We also 

show that ambiguity aversion consistently influences negotiation performance when interacting parties, 

conscious of their options to delay commitment and negotiation agreement, are faced with ambiguity and 

information incompleteness.  

While linear structures are useful for the analysis of bilateral negotiation and buyer-seller relationships, 

extant real options models omit to account for the relative positions and level of structural embeddedness of 

buyers and sellers in the supply chain network. As they influence both behaviour and strategy (Borgatti and 

Li, 2009; Kim et al., 2011), these factors should also play a role in negotiation dynamics. The next section 

adds a social network dimension to our negotiation problem under ambiguity.  

 

3. The negotiation problem with network control and ambiguity 

Building on the work of Braun and Gautschi (2006) on Nash bargaining solutions in social networks, we 

account for the bargaining power of each party, based on their network position and relational features, in 

the uncertain negotiation. Consider an exogenous network, with the set of nodes { }1, 2, ,n=¥ L  and m  

mutual ties in which the seller and buyer are embedded in. In this network, bargaining and exchange 

relations always coincide and negotiators have their own “network control”. In line with Braun and Gautschi 
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(2006), we adopt the following assumption. 

Assumption 4. The seller’s (or buyer’s) relative negotiation power results from her (or his) network 

position in the network.7  

The connectedness representation of the network is given by its N N´  adjacency matrix A . The main 

diagonal elements of this matrix are equal to zero, i.e., 0lla = , l Î ¥ . The relationship between members l  

and j  is defined as follows: 
1 if there is a mutual tie between member and

0 otherwiselj jl

l j
a a

ìïï= = í
ïïî

, where l j¹  

and ,l j Î ¥ . The binary variable lja  reflects whether l  is connected with j . The normalized adjacency 

matrix A  is denoted by the relational matrix R  with main diagonal elements 0α =ll  for all l Î ¥ . Its off-

diagonal element α lj  is derived as follows: 
1

α
=

= ∑
n

lj lj kj
k

a a  for , ,l j k Î ¥ , where α lj  denotes l ’s level of 

“control” over j  in the network and 0 1ljα≤ ≤ . The thl  row of the matrix R  reflects l ’s control over 

others. 1( 0)α α= =lj lj  means l  has full (no) control over j . 

To reflect how much power l  has over other network members, the mean of l ’s control (i.e., l ’s 

network control level) over other parties in the network is defined as: 

 
1

1 n

l lk
kl

c
n

α
=

= ∑  (13) 

where ln  denotes l ’s number of bargaining partners, lc  is l ’s network control level. 0 1< ≤lc . 

We examine a network with negative connections in this section. The case with positive connections is 

covered in Section 4.2.8 The connection between the seller and buyer is negative (positive) if the buyer’s 

exchange of resources with the seller precludes (promotes) transfers from (with) others (Yamaguchi, 1996). 

According to Binmore (1985) and Braun and Gautschi (2006), l ’s individual negotiation power (or market 

concentration) ϖ l  can be defined as: 

 
( )

( )
1 ln if faces a

=
1 ln 1 if

 negatively connected relation

a positively connected relatifaces on

ν
ϖ

ν
−

− −

l
l

l

c l

c l
 (14) 

Then l ’s relative bargaining power vis-à-vis j  in the network can be calculated by 
+

ϖ
ϖ ϖ

l

l j

.  

 

                                                        
7
 For tractability, we study relative bargaining power effects based on network position and using social network dynamics. 

It should be noted that horizontal competition and cooperation can also affect bargaining power (Sheu and Gao, 2014; 
Leider and Lovejoy, 2016). For example, when sellers make substitute (complementary) products, they might end up having 
a lower/higher bargaining power over the buyer. Buyers might also benefit from collective bargaining because of individual 
purchasing, sourcing or competition (Li, 2012; Heese, 2015). We thank an anonymous referee for this suggestion. 
8 Similar to Braun and Gautschi (2006), we examine networks with either negative or positive relations. Negative (positive) 
connections are viewed as substitutable (complementary) (see e.g. Yamaguchi (2000) for mixed exchange networks with 
negative and positive connections).  
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From Eq. (14), l ’s relative bargaining power  can be expressed as: 

   

ln( )
= if

ln( ) ln( )

ln(1 )
= if

ln(1

and negotiate in a negatively connected network

and negotiate in a positively connected netwo
) l (1 )

rk
n

ν
ξ

ν ν
ν

γ
ν ν


 +
 −
 − + −

j
lj

l j

j
lj

l j

c

c c

c

c
l j

c

l j

for ≠l j    (15) 

where =
1

m n

m n
ν +

+ +
, ν  reflects the network-specific weight based on existing nodes and mutual ties.  

Equation (15) shows that equal network control levels result in similar negotiation power in each 

network. Also note that 0
ξ∂

>
∂

lj

lc
 and 0

γ∂
<

∂
lj

lc
. This indicates that l ’s relative bargaining power vis-à-vis j  

increases (decreases) with l ’s network control in negatively (positively) connected networks if ν  is 

unchanged . 

Following Section 2, let i  = 1 and 2 denote our seller and buyer. The seller’s relative negotiation power 

12ξ  is defined based on her relational features and structural position in the network. Figure 5 illustrates 

examples of typical structures in which the seller and buyer might be embedded in (see Braun and Gautschi, 

2006). For instance, the seller’s network control level is 1 (1/3) in a 3-branch (stem)  network indicating that 

she has complete (less) control over the buyer in this type of structure.  

 

1 20.3333, 0.6667.c c= =

4n ，= 4.m =
Stem
12 0.30ξ =

1 20.375, 0.5.c c= =

5, 6.n m= =
Kite

12 0.42ξ =

1 21, 0.3333.c c= =

4, 3.n m= =
3 Branch
12 0.90ξ − =

 

Fig. 5 Illustration of network control levels and relative negotiation powers in negatively connected networks 

 

As shown by Braun and Gautschi (2006), the bargaining problem with network control between the 

seller and buyer can be written as: 12 121
2 2 1 1( )= max( ( ) ) ( ( ))

X
I t S t X X S tx xl l-- - . Taking the first order of log 

( )I t  with respect to X , the contract price is determined as follows: 

 

12 1 1 12 2 2(1 ) ( ) ( )ξ λ ξ λ= − +X S t S t

  

(16) 

Equation (16) shows that the contract price with network control is equal to the weighted sum of the 

subjective values of 1( )S t  and 2( )S t  in the non-extreme maxmin expected utility (NMEU) framework.  

For a given negotiation power, the buyer’s option value is a function of his network control level and 

ambiguity. The buyer’s timing option can be rewritten as: 
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 ( ) ( ){ }( )
1 2 12 2 2 1 1( ( ), ( ))= 1 max S ( ) ( ) ,0ξ λ λ′− −

′≥
′ ′− −r t t

t t
U S t S t e t S t   (17) 

For tractability, let 2 1( ) ( )z S t S t= . z  is the ratio of buyer’s revenues 2( )S t  to seller’s costs 1( )S t  when 

put and call options are exercised under ambiguity. The buyer’s call option value with social network effects 

and the corresponding optimal time to purchase can be derived as (see the proof in Supplementary Appendix 

E): 

 
( )( )

( ) ( )

*
12 2 2 1 1 2 1

1 2 1 *
2 2 1 2 1

1 ( ) ( ) if ( ) ( )
( ( ), ( ))

( ) ( ) if ( ) ( )

ξ λ λ
−

 − − ≥= 
<

b b

S t S t S t S t z
U S t S t

d S t S t S t S t z  

(18) 

where 
( ) ( )

* 2 1

1 2

=
1 1

δ λ
δ λ

=
− −
b b

z
b b

, 1 11δ λ= , 2 21δ λ= , 1 1
1

1 1 1 1

1

r r

ρ ρλ
µ σ κ µ

−= +
− − −

, 2 2
2

2 2 2 2

1

+r r

ρ ρλ
µ σ κ µ

−= +
− −

, 

1δ  and 2δ  are the convenience yields of the seller and buyer, 

( )( )1*
12

2
2

1
b

z
d

b

ξ
δ

−
−

= , 1 2
2 2
2 1 2 1

1
1

2 2
b

δ δ χ
σ εσ σ σ

−= − + >
− +

, 
2

1 2 1
2 2 2 2
2 1 2 1 2 1 2 1

21

2 2 2

δ δ δχ
σ εσ σ σ σ εσ σ σ

 −= − + − + − + 
. 

The corresponding put option value with social network effects for the seller is: 

 

*
12 2 2 1 1 2 1 1

1 2 1 *
1 2 1 2 1 1

( ( ) ( )) if ( ) ( )
( ( ), ( ))

( ( )) ( ( )) if ( ) ( )b b

S t S t S t S t z
R S t S t

d S t S t S t S t z

x l l
-

ìï - ³ï= í
ï <ïî  

(19) 

where * * 2
1

1( 1)

b

b
z z

d

d
= =

-
,

( )1*
12

1
2

b
z

d
b

ξ
δ

−

= . 

The ratio of buyer revenues 2( )S t  to seller costs 1( )S t , *
1z  (that is equal to *z ) denotes the profit space 

threshold with network control. Though affected by ambiguity aversion, this behavioural threshold does not 

seem to account for social network effects. When z  is less than *z , the total option value is too low for 

cooperation or mutual agreement to occur. When z  is larger than the threshold *z , it is worth cooperating. 

Propositions 3a-b consider the joint effects of ambiguity aversion and relative bargaining power, in 

terms of relationship characteristics and network position, on implicit reserve prices1 ( )ncX t  and 2 ( )ncX t . 

These variables are more likely to be influenced by social network effects than the threshold.  

 

Proposition 3a. (Implicit reservation prices with network control in negatively connected networks) 

When the seller and buyer determine the negotiated share of cooperative profits under ambiguity, 

their reservation prices with social network effects are: 

2 1 1
1

1 2

ln( ) ( )
( ) 1+

ln( ) ln( ) 1
nc c S t

X t b
c c b

n l

n n

é ù
ê ú= -ê ú+ -ë û

 and 2 2 2
2

1 2

ln( ) ( )
( ) 1+

ln( ) ln( )
nc c S t

X t b
c c b

n l

n n

æ ö÷ç ÷= -ç ÷ç ÷ç +è ø
. 
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Proposition 3a indicates that ambiguity aversion ir  and probabilistic ambiguity ik  still affect the 

buyer’s and seller’s implicit reservation prices ( )nc
iX t  in the presence of social network effects. This is 

achieved through the option value parameter b  and ambiguity multiplier il . We also find that network 

control level ic  and network scale m  and n  influence price negotiation outcomes under ambiguity. This is 

in accord with social network theory predictions and leads to Proposition 3b. 

 

Proposition 3b. (The effect of ambiguity on implicit reservation prices in negatively connected networks) 

The seller’s implicit reservation price considering network control 1
ncX  is increasing in her ambiguity 

aversion 1r  (probabilistic ambiguity 1k ). The buyer’s implicit reservation price considering network 

control 2
ncX  is decreasing in his ambiguity aversion 2r  (probabilistic ambiguity 2k ). (See the proof in 

Supplementary Appendix F). 

1

1

( )
0

ncX t

ρ
∂ ≥

∂
, 

1

1 ( )
0

ncX t

κ
∂ ≥

∂
, 2

2

( )
0

ncX t

ρ
∂ ≤

∂
, 2

2

( )
0

ncX t

κ
∂ ≤

∂
. 

Recall: 1 1
1 12

( )
( ) ( 1+ )

1
nc S t

X t b
b

l
x= -

-
and 2 2

2 12

( )
( ) ( 1+ )nc S t

X t b
b

l
x= - .  

 

Proposition 3b confirms that while ambiguity aversion ir  and probabilistic ambiguity ik  still affect the 

buyer’s and seller’s implicit reservation prices ( )nc
iX t  in the presence of social network effects, network 

control level ic  and network scale m  and n  moderate the effects of ambiguity (aversion) on implicit 

negotiation prices, making the relationships between them unequivocally monotonic for both buyers and 

sellers. Ambiguity aversion is, hence, negatively (or positively) related to buyer implicit prices for 

willingness-to-pay (or willingness-to-accept) outcomes when network positions are known (the WTP finding 

is in line with Hazen et al. (2012) and their Hypothesis 1). This is different from the asymmetric finding 

without network control of Proposition 2. 

For illustration, let us assume that the seller and buyer are in the 3-Branch, Kite and Stem network 

structures introduced above. Their specific positions are shown in Figure 5. Figures 6-7 highlight the effects 

of ambiguity aversion, probabilistic ambiguity and social network positions on price negotiation. Figure 6 

shows that the seller’s implicit reservation price with network control 1 ( )ncX t  increases as her ambiguity 

aversion 1ρ  or probabilistic ambiguity 1κ  rises. This positive relationship holds in all three network 

structures. This is consistent with our findings without social network effects (i.e. Proposition 1). We 

additionally observe that higher relative bargaining power for the seller is associated with even higher 

reservation prices in all three network structures.  
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On the other hand, a buyer with higher ambiguity aversion or higher probabilistic ambiguity would 

unequivocally decrease his implicit reservation price in the presence of bargaining power and network 

control as shown in Figure 7.  This is different from the equivocal and nonlinear effects observed in Section 

2 for the buyer. This implies that familiarity with the social network structure and understanding of relative 

bargaining powers provide information advantages to the buyer. The latter can use this information to decide 

his implicit reservation price unequivocally. The effect of ambiguity aversion becomes akin to that of risk 

aversion and maxmin MEU ambiguity when social network dynamics are accounted for. In other words, the 

asymmetric effect of NMEU ambiguity on the buyer’s implicit price disappears in the presence of network 

control. This is explained by the profit sharing-based properties of eqs. (18-19), and by the dominant-

negative effect of negotiation power on implicit prices. We indeed observe that higher relative bargaining 

power for the buyer is associated with lower reservation prices in all three network structures. This means 

that the narrowness of the IZOAA also depends on network structures. 
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Fig. 6 Effects of seller’s ambiguity on her implicit reservation price with network control. 

   Here 1( )S t = 9, r  = 0.08, 1m = 0.03, 2m = 0.04, 0.1ε = , 1 2s s= = 0.15, 2 0.5r = , 2 0.2k = .  

In Fig.6.a, 1 0.2k = . In Fig.6.b, 1 0.5r = .  

Fig. 7 Effects of buyer’s ambiguity on his implicit reservation price with network control. 

   Here 2( )S t = 25, 1 0.5r = , 1 0.2k = .   In Fig.7a, 2 0.2k = . In Fig.7b, 2 0.5r = . Other parameter values are the 

same as in Fig. 6. 
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Adding new links or nodes to the network structure usually changes the network control levels and the 

network-specific weights. This increases the difficulty of studying their comparative statics analytically. We 

observed that higher network control levels tend to increase relative negotiation powers and can create 

pricing advantages in negatively connected networks (see Figures 5-7). Consider a supply chain network 

with 4n ≥  tiers (e.g. Waters, 2009). Suppose the tier number only affects the seller and buyer through their 

relative negotiation powers. If the seller and buyer are two of the most upstream entities in the network (see 

Figure 8a), their network control levels stay unchanged at 1=0.5c  and 2=0.75c . Thus, 1 0
ncX

n

¶
<

¶
, 2 0

ncX

n

¶
<

¶
. 

In this most upstream case, the wholesaler’s relative bargaining power increases because of the addition of 

an intermediary (branch) in the network. Consequently, both the wholesaler (buyer) and the manufacturer 

(seller) decrease their implicit reservation prices. This is as if, due to a loss in relative bargaining power, the 

manufacturer is less ambiguity averse in this new structure.  

1 20.5, 0.75.c c= =

1 20.75, 0.5.c c= =

   

Fig. 8 Example of a narrow supply chain  

Using the same logic as above, 1 0
ncX

n

¶
>

¶
, 2 0

ncX

n

¶
>

¶
 when the seller and buyer are two of the most 

downstream entities (see Figure 8b). Adding an intermediary in the network will lead to a higher (lower) 

relative bargaining power for the retailer (customer). Consequently, both the seller (manufacturing retailer) 

and buyer (customer) will increase their implicit reservation prices. This is as if the customer is relatively 

more ambiguity-seeking in this new structure. In the two cases, increasing network nodes and mutual ties 

strengthens the relative advantages of entities with higher network control levels despite the presence of 

ambiguity. Social network information might thus help to resolve some of the unknown uncertainty 

characterising the negotiation process. 
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4. Extensions and additional results  

This section extends our previous modelling insights by considering outside options in the negotiation 

process (Section 4.1), sequential negotiation between one buyer and multiple sellers (Section 4.2), and 

mechanism and incentives design in the presence of asymmetric information (Section 4.3). 

4.1. Ambiguity and the outside option 

In Sections 2-3, we assumed that both the seller and buyer accept the price negotiation outcomes and 

commit to the contract if the optimal timing threshold is attained. However, the seller/buyer can also decide 

to exercise their outside options and exit the negotiation altogether. Here the outside option is viewed as the 

best alternative that a negotiator can go for if he or she withdraws unilaterally from the negotiation process 

(Binmore et al., 1986). The existence of outside options introduces new constraints to the problem as 

ambiguity also affects outside values (see e.g. Miao and Wang, 2011).  

We adopt the outside option valuation model of Schröder (2011) and consider outside options for both 

sellers and buyers. Let the seller’s (buyer’s) outside option value 1V ( 2V ) be random and follow a normal 

distribution 1 1ˆ( , )u sN ( 2 2ˆ( , )u sN ). The set of likelihood distributions 

{ }ˆ ˆ( , ) ( , )σ σ  ∈ = ∈ − + i ii i i i i i i i ip u u u u y ,u yR N  is defined to capture ambiguity in i ’s outside option 

value. For simplicity, we assume these to be independent of the seller’s costs and buyer’s revenues iS , 

where 0>iy , 1, 2i = . We consider ambiguity in the mean of  iu  rather than the variance ˆis . The scope of 

the mean [ ]∈ − +i ii i iu u y ,u y  is defined based on κ-ignorance in continuous-time and ε-contamination (e.g. 

Nishimura and Ozaki, 2006; Kopylov, 2016), where the ambiguity level iy  reflects how confident i  is in 

his/her probabilistic measure. Suppose the seller’s (buyer’s) ambiguity aversion 1ρ  ( 2ρ ) is a trait that 

influences investment execution and outside option exercise. Then, the NMEU value of iV  can be written as:  

[ ]( ) inf [ ] (1 ) =ρ ρ ρ
∈

= + − −i

i i

p
ii i i i i i i

p
NMEU V E V E V u y

R
, where 1,2=i . 

The NMEU version of outside option value iV  differs from the outside option value in Schröder (2011) 

by considering the mean iu  , thus reflecting the influence of non-extreme prospects. ( )iNMEU V  decreases 

with ambiguity aversion ρi  and ambiguity level iy . When the ratio of buyer’s revenues (2 ( )S t ) to seller’s 

costs ( 1( )S t ) reaches *z , the seller and buyer maximize their utilities as follows:  

( ){ }1 2 12 2 2 1 1 1
ˆ ( ( ), ( ))=max ( ) ( ) , ( )ξ λ λ−R S t S t S t S t NMEU V  (20) 

        ( ) ( ){ }1 2 12 2 2 1 1 2
ˆ ( ( ), ( ))=max 1 ( ) ( ) , ( )ξ λ λ− −U S t S t S t S t NMEU V           (21) 

Eqs. (20) and (21) indicate that negotiation agreement is reached if 1212 12ξ ξ ξ≤ ≤ , where 
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1
12

2 2 1 1

( )

( ) ( )
ξ

λ λ
=

−
NMEU V

S t S t
, 2

12
2 2 1 1

( )
1

( ) ( )
ξ

λ λ
= −

−
NMEU V

S t S t
. This means the seller (buyer) will commit to the contract 

only if her (or his) negotiation power is not too low and the profit allocation policy is acceptable. Otherwise, 

the seller (or buyer) will opt out and exit the negotiation. To ensure 12 12ξ ξ> , the profit space 

2 2 1 1( ) ( )λ λ−S t S t  should be strictly greater than the sum of outside option values 1 2( ) ( )+NMEU V NMEU V . 

Although relative bargaining power 12ξ  does not directly affect optimal investment timing, it does determine 

whether both parties should proceed with the contract when considering their outside options.  

 

4.2. Sequential negotiation between one buyer and several suppliers  

We next extend our bilateral negotiation problem to sequential multilateral negotiation situations 

involving one buyer and complementary sellers. Several papers have examined cases of suppliers or a group 

of sellers supplying complementary components to a downstream firm (e.g. Nagarajan and Bassok, 2008; 

Nagarajan and Soši´c, 2008; Granot and Yin, 2008; He and Yin, 2015). Herein, we incorporate ambiguity 

and social network dynamics in the negotiation framework of Nagarajan and Bassok (2008) and relax the 

fixed channel profit assumption characterising their sequential negotiation. As before, we account for 

ambiguity in the sellers’ costs and buyer’s revenues and their respective network position features. This 

enables us to examine the effect(s) of ambiguity aversion (and number of sellers) on profit allocation.  

The buyer can be viewed as an assembler who buys one unit of complementary component from each 

seller and manufactures the final product. They are in a positively connected network in the sense that a deal 

between the buyer and one seller encourages the former to trade with other sellers. We consider a supply 

chain network with n  nodes consisting of a buyer and 1−n  sellers, where 2≥n . The buyer negotiates with 

the h th seller at stage h  using Nash bargaining solutions, where 1, 1= −Lh n . From Eq. (15), 12γ γ=  

denotes each seller’s relative bargaining power in a positively connected network.9 The buyer’s relative 

bargaining power is 1η γ= − . 

The negotiation sequence is determined by the buyer. Each seller has her own subjective costs’ 

expectations. The h th seller’s NMEU-based ambiguity multiplier is 1 1
1

1 1 1 1

1
0

ρ ρλ
µ σ κ µ

−= + >
− − −

h h
h

h h h hr r
. We 

add the superscript h  to denote the h th seller.  

The total expected profit ( )Π t  based on the NMEU specification can be written as: 

1

2 2 1 1
1

( ) ( ) ( )λ λ
−

=

Π = −∑
n

h h

h

t S t S t , where ( ) 0Π >t . To simplify notation, we omit timing t  from ( )Π t . Let Πh  

denote the total expected profit to be shared between the buyer and sellers , 1 1+ −Lh h n , where 1Π = Π . 

                                                        
9 An alternative to this would be to calculate relative bargaining power by considering revoking commitment at a certain 
cost (see e.g. Muthoo, 1996; Nagarajan and Bassok, 2008) so that the assumption of zero disagreement values becomes less 
restrictive.  
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After 1−n  stages of negotiation, the buyer achieves his expected profit π = ΠB n . Let Ψh  denote the set of 

feasible alternatives when the buyer negotiates with the h th seller at stage h . We use π h  to represent the 

level of profit that the h th seller achieves. In the first stage, the feasible set is defined by 

{ }1 2 1 2 1( , ) :π πΨ = Π Π + = Π . At stage h , { }1 1( , ) :π π+ +Ψ = Π Π + = Πh h h h h h . Then, the profit allocation rule 

between the buyer and the h th seller is determined through the generalized Nash bargaining solution: 

1

1
( , ) 1max ( ) ( )γ γ

π π
+

−
Π ∈Ψ +Π

h h h h h . In line with Section 3, disagreement values of the buyer and sellers are 

assumed to be zero. The total surplus is split as follows: π γ= Πh h , 1 (1 )γ+Π = − Πh h . The profit distribution 

between the buyer and sellers is, thus, obtained via backward induction. The buyer’s expected profit π B  and 

the h th seller’s expected profit π h  can be written as: 

 
1

1
2 2 1 1

1

(1 ) ( ) ( )π γ λ λ
−

−

=

 = − − 
 

∑
n

n h h
B

h

S t S t  (22) 

 
1

1
2 2 1 1

1

(1 ) ( ) ( )π γ γ λ λ
−

−

=

 = − − 
 

∑
n

h h h
h

h

S t S t  (23) 

Eqs. (22) and (23) illustrate the distribution of profits based on the supply chain member number, 

network position and ambiguity in sellers’ costs and buyer’s revenues. Compared with the optimal profit 

allocation in Nagarajan and Bassok (2008), our solutions consider the role of probabilistic ambiguity and 

ambiguity aversion in the negotiation. These solutions also add to recent real options literature on price 

negotiation (e.g. Moon et al., 2011; Zheng and Negenborn, 2015). It is intuitive to see that both the buyer’s 

and sellers’ profits decrease with revenues- and costs-related ambiguity aversion.  

From Eqs. (22) and (23), the “procurement” price for the h th seller % hX  and the total price paid by the 

buyer % BX  can be, respectively, expressed as: 1
1 1 ( ) (1 ) ( )λ γ γ −= + − Π% h h h

hX S t t , 1
2 2( ) (1 ) ( )λ γ −= − − Π% n

BX S t t . 

The buyer will commit to higher prices if his ambiguity aversion is lower. The seller would ask for a higher 

price if her ambiguity aversion is higher. 

Regarding the effects of multiple sellers, we follow Nagarajan and Bassok (2008) and discuss fixed 

versus adjustable negotiation sequences. In the fixed case, the buyer prefers fewer sellers as proved by 

Nagarajan and Bassok (2008) in their Theorem 4.1. We confirm this finding when considering network 

features. Note the buyer’s expected profit π B  is determined by ( )Π t  and 1(1 )γ −− n . A smaller number of 

sellers increases the total expected profit ( )Π t  and the value of 1(1 )γ −− n . For example, the term 1(1 )γ −− n  

equals 0.25 in a Triangle network, while it amounts to 0.125 in a Full-4 network in Figure 9. Consequently, 

the buyer benefits from a smaller number of sellers if the negotiation sequence is fixed. In the presence of a 

predefined negotiation sequence, the seller’s expected profit decreases with her sequence h . For example, 

the first and second sellers’ expected profits are, respectively, 0.5 ( )Π t  and 0.25 ( )Π t  in the Triangular 

network.  
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Triangle

The buyer
The first
seller

The second
seller

The buyer
The first
seller

The second
seller

The third
seller

Full4

1 2
2 1 1 0.5.= = =c c c 1 2 3

2 1 1 1 0.333.= = = =c c c c

3, 3.= =n m 4, 6.= =n m0.5.γ = 0.5.γ =  

Fig. 9 Examples of supply chains with a single buyer (assembler) and multiple suppliers (sellers)  

If the negotiation sequence is adjustable, the buyer might encourage the sellers to pay for network 

positions in order to gain more profit share. Nagarajan and Bassok (2008) prove, in their Theorem 4.2, that 

when the sellers simultaneously compete for negotiation sequence and pay for their network positions10, at 

every Nash equilibrium, the expected profit of each seller equals 1π −n  while the buyer’s expected profit is 

( )21 (1 ) ( 1) ( )γ γ −− − − Πn n t . In such a setting, the buyer prefers to have more sellers (see Theorem 4.2 in 

Nagarajan and Bassok (2008)). We find that due to social network effects, the buyer does not necessarily 

benefit from a higher number of sellers. This is because a greater number of sellers decreases the total 

expected profit ( )Π t  but might at the same time increase the 21 (1 ) ( 1)γ γ −− − −n n term. For example, 

21 (1 ) ( 1)γ γ −− − −n n  equals 0.5 in the Triangle network, while it is 0.625 in the Full-4 network in Fig. 9. As 

we study negotiation power from a social network perspective, the relationship between the number of 

sellers and the buyer’s expected profits becomes equivocal if sellers compete and pay for negotiation 

position.  

 

4.3. Asymmetric information and price negotiation under ambiguity 

In the previous sections, we analysed investment timing and pricing decisions under ambiguity 

assuming that information was symmetric. However, information asymmetry is also known to influence 

buyer-seller interactions and their related transactional arrangements. There has been increasing interest 

surrounding issues of ambiguity aversion, asymmetric information and mechanism design in recent years 

(see Bodoh-Creed, 2012; Bose and Renou, 2014; Vierø, 2014; Wolitzky, 2016; Giraud and Thomas, 2017). 

We borrow from this literature to examine how asymmetric information affects our optimal timing and price 

negotiation outcomes under ambiguity. Our modelling builds on a rich and still growing stream of research 

on real options under incomplete information (e.g. Nishihara and Shibata, 2008; Shibata and Nishihara, 2011; 

Feng et al., 2014; Grenadier et al., 2016). We add to these studies by accounting for ambiguity and each 

party’s private information about their own ambiguity aversion parameter iρ (and option value parameter b ) 

in the negotiation.  

                                                        
10 Suppliers’ coalitions and their stability are also discussed in Nagarajan and Bassok (2008). 
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Consider the buyer (principal) delegates the investment timing decision to the seller (agent) and 

determines the price contingent on the observable timing threshold. There are two types of sellers in the 

market in terms of their knowledge of their ambiguity aversion parameteriρ . We call the seller a high (in 

contrast to a low) type if her ambiguity aversion is 1ρ H ( 1ρ L ) with 1 1ρ ρ<H L . This means 1 1λ λ<H L . The 

probability of any seller belonging to the high type category is 1q .  

Let 1λ w  and wb  denote w ’s NMEU-based ambiguity multiplier and option value parameter, where : 

2

1 2 1 2 1
2 2 2 2 2 2
2 1 2 1 2 1 2 1 2 1 2 1

21 1

2 2 2 2 2

δ δ δ δ δ
σ εσ σ σ σ εσ σ σ σ εσ σ σ

 − −= − + − + − + − + − + 

w w w
wb , 1 11δ λ=w w , 

1 1
1

1 1 1 1

1ρ ρλ
µ σ κ µ

−= +
− − −

w w
w

r r
, or=w H L  denotes the high or low type, 2 21δ λ= , 

2 2
2

2 2 2 2

1

+r r

ρ ρλ
µ σ κ µ

−= +
− −

.   

Thus, the high (low) type seller has her own private information about the NMEU-based ambiguity 

multiplier and option value parameter. In line with Section 3, let Hz ( Lz ) represent the ratio of buyer’s 

revenues 2( )S t  to seller’s costs 1( )S t  when the high (or low) type seller undertakes the contract. Note 

( )( ) wb
wz t z  is akin to a discount function (Grenadier, 2005; Feng et al., 2014). Assume ( ) < wz t z  indicates 

that the contract is not implemented immediately. Since 1λ w  and wb  are the seller’s private information, the 

buyer’s objective is to maximize his option value by observing investment timing wz  and buying the product 

or service at price wX : 

        ( ) ( ) ( )2 1 2 1
, , ,

( ) ( )
max ( ) 1 ( )λ λ   − + − −   

   

H L

H L H L

b b

H H H H L L
X

H L
z z X

z t z t
q z S t X q z S t X

z z
   (24) 

subject to: 

          ( ) ( )1 1 1 1
( ) ( )

( ) ( )λ λ   − ≥ −   
   

H Hb b

H H L H
H L

z t z t
X S t X S t

z z
                                (25) 

                ( ) ( )1 1 1 1
( ) ( )

( ) ( )λ λ   − ≥ −   
   

L Lb b

L L H L
L H

z t z t
X S t X S t

z z
                                   (26)      

   ( )1 1
( )

( ) 0λ  − ≥ 
 

Hb

H H
H

z t
X S t

z
              (27) 

                                  ( )1 1
( )

( ) 0λ  − ≥ 
 

Lb

L L
L

z t
X S t

z
                                                         (28) 

The terms 2 1( )λ Hz S t  and 2 1( )λ Lz S t  are the buyer’s expected revenues if the seller belongs to the high 

type and low type categories, respectively. Constraints (25) and (26) mean that the high type seller is 

encouraged to undertake the contract at timing Hz  and the low type seller is induced to undertake the 
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contract at timing Lz . Constraints (27) and (28) are the participation constraints.  

Solving this principal–agent problem and assuming ( )
1*

21

λ
λ

>
−
L L

L
L

b
z

b
 (see proofs in Appendix D), we find 

that when information about the seller’s pessimism and ambiguity aversion is asymmetric, the buyer’s 

optimal policy is as follows: 

( ) ( ) ( )
*

1* * * * *
1 1 1 1 1 1*

2

, , , , ( ), , ( )
1

λ λ λ λ λ
λ

   
 = + −   −     

Hb

H H H
H H L L H L H L L

H L

b z
z X z X S t z S t

b z
, where *

Lz  is a solution to 

( ) ( )( ) ( )1 2 1 11 1 ( ) 0H L H Lb b b b
H L L L L L H H L Hq z b b z q b z tλ λ λ λ− −− + − + − = . 

This shows there is a similar functional form between the timing trigger of the high type *
Hz  and the 

timing trigger under symmetric information *z  in Eq. (18). Extant real options research (e.g. Nishihara and 

Shibata, 2008; Feng et al., 2014) documents that investment will usually be deferred if managers belong to 

the low type category. We confirm this, in our buyer-seller and price negotiation setting, in the presence of 

asymmetric information concerning option value parameters and the degree of ambiguity. This is further 

illustrated in Figure 10.a where timing threshold *
Hz  is smaller than *

Lz . We find an optimal incentives 

policy exists only if ( )
1*

21

λ
λ

>
−
L L

L
L

b
z

b
. This implies that under ambiguity, the buyer can implement the 

incentive contract only if the low type seller’s timing threshold is relatively high. When probabilistic 

ambiguity is nil, ambiguity aversion does not affect the seller’s costs and there is a unique timing threshold 

(implicit price) as shown in Fig. 10.a (Fig. 10.b). Let 1HC  denote the high type seller’s expected costs where 

1 1 1( )λ=H HC S t . Her expected profits are shown in the grey area of Figure 10.b. These profits are determined 

by the costs difference between the high and low type sellers ( )1 1 1( )λ λ−L H S t  and the portion 
*

*
1

 
< 

 

Hb

H

L

z

z
. 

This means the buyer covers part of the costs difference to encourage the high type seller to tell the truth. 

The incentives portion is, hence, affected by the ambiguity aversion of the buyer and that of each type of 

seller. 
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The seller can also act as a principal to induce the buyer to report his true type (good vs. bad). The good 

buyer has lower ambiguity aversion about his revenues than the bad buyer (see Appendix D). We, once again, 

find the functional form of the timing trigger for the good buyer *Gz   to be similar to the symmetric *z . *
Gz  is 

also smaller than *Bz . The good buyer’s expected profits are determined by revenues difference between the 

two types of buyers and the portion 
*

*
1

 
< 

 

Gb

G

B

z

z
, where Gb  is the good buyer’s option value parameter.  

In the two above principal-agent cases, the timing trigger for the high (good) type agent increases with 

her (his) ambiguity aversion about costs (revenues) and the principal’s ambiguity aversion about revenues 

(costs). The timing trigger for the low type (bad) agent and implicit price of the high type (good) agent are 

nonlinear functions of the ambiguity aversion of the principal and that of each type of agent. The implicit 

price *
LX  of the low type seller increases with her pessimism about costs1ρ L . On the other hand, the implicit 

price *
BX  of the bad buyer is a nonlinear function of his optimism about revenues 2ρ B  since 2ρ B  affects *

BX  

through the NMEU-based ambiguity multiplier 2λ B  and timing threshold *Bz . The principal offers zero profit 

to the low (bad) type agent and positive profits to the high (good) type agent. These positive profits are 

contingent on the ambiguity aversion of the principal and that of each type of agent. 

  

5. Conclusions 

Contributing to behavioural operations and production management research on buyer-seller 

relationships (e.g. Esmaeilia and Zeephongsekul, 2010; Hazen et al., 2012; Hemmert et al., 2016), this paper 

examines the real options and social network dynamics of bilateral (and multilateral) negotiation under 

ambiguity by relying on a multiple-priors expected utility with non-extreme outcomes. Adjusting for 

uncertainty aversion in probabilistic appraisal, this utility combines the worst case in negotiators’ minds with 

Fig. 10 Timing thresholds and prices under ambiguity and asymmetric information 
  1.3( )z t = , 0.5=Hq , 1 0.2Hρ = , 1 0.9Lρ = . The other parameter values are the same as in Fig.6. 
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the risk-neutral case and provides flexible commitment thresholds for investment under ambiguity aversion. 

Besides extending risk-neutral insights from recent contingent-claims research, our results underline the 

moderating effects of individual behaviour and miscalibration on the process of price negotiation and its 

performance. We find that ambiguity aversion and ambiguity do not necessarily have symmetric effects on 

pricing outcomes. Specifically, an increase in seller’s ambiguity aversion increases her implicit reservation 

price and negotiation threshold with and without network control. On the other hand, the buyer’s ambiguity 

aversion affects his implicit reservation price and the threshold for negotiation (un)equivocally in the 

absence (presence) of social network effects. The seller’s (buyer’s) probabilistic ambiguity affects her (his) 

implicit reservation price and negotiation threshold in a similar direction as her (or his) ambiguity aversion. 

This is because ambiguity aversion and probabilistic ambiguity dominate the influence of the worst case 

heuristic on decision making in the same direction. We confirm that standard option analysis with a single 

prior can lead to restrictive pricing outcomes and might overstate mutual agreement prospects and the range 

for negotiation. We, additionally, show that knowledge of network positions and other social network effects 

still play an important role in negotiation performance in the presence of ambiguity. We also explore the case 

of one buyer and multiple sellers, examine the role of outside options, and consider the effect of information 

asymmetry in the various dynamics. 

In terms of operations and production economics implications, our proposed real options frameworks 

provide quantitative insights into how ambiguity aversion and social network effects influence the range of 

negotiation agreement between buyers and sellers, and help formalise - using real options theory - recent 

predictions by Hazen et al. (2012) on the role of ambiguity tolerance (and perceived quality) in the decision 

to purchase remanufactured products. We add to this literature by examining willingness-to-pay (WTP) and 

willingness-to-accept (WTA) decisions jointly and highlight the effect of social networks on the relationship 

between ambiguity aversion and price negotiation outcomes in the context of B2B situations.  

Our results also help inform how probabilistic ambiguity and pessimism (or other attitudes towards 

uncertainty) generally affect negotiators’ behaviour, real options payoffs and investment outcomes in buyer-

seller relationships, social network structures and other practical decision making situations. By knowing 

their network positions and gathering background information or inferring the other party’s ambiguity 

tolerance beforehand via cheap talk, buyers and sellers can anticipate where the negotiation is heading in 

terms of price negotiation range and mutual agreement possibilities despite the presence of ambiguity. This 

is especially useful for international operations and price negotiation situations that involve buyers and 

sellers from different countries. Knowing the cultural characteristics of a country, including its degree of 

uncertainty avoidance (e.g. Hofstede, 2001), can help international managers identify suppliers and 

customers who might be more uncertainty-seeking (averse) in the international network or else plan, in a 

contingent-manner and considering relative bargaining powers, for potentially lengthy and difficult 

negotiations. Extensions of this work could consider further game-theoretic interactions, quantity/quality 

dynamics and account for the effects of second moment ‘uncertainty’, learning, horizontal competition and 
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cooperation on price negotiation outcomes and mutual agreement. Validating our frameworks using 

experimental principles can also provide interesting evidence on the emotional and perhaps irrational traits 

of price negotiation and highlight extra factors which could influence buyer-seller decision making in the 

presence of ambiguity and social network effects. 

 
 

Appendix A. Derivation of the seller’s put option value under the NMEU 

The selling opportunity value 1( )+F t dt  under ambiguity can be expressed as: 
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Considering the time-consistency (or rectangularity) of the set of priors, we have 
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Eq. (A.3) implies that once the decision maker commits to wait at time t , he(she) does not change his (her) plan 

when time elapses.  
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Recall the NMEU-based ambiguity multiplier 
1

λ  is a constant in the infinite time horizon. According to Eq. (1), 

1
1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )dW t W t dt W t dB t qm s q s= - + . Since the seller’s put opportunity value 1( )F t

 depends on 
1
( )W t , we 

write ( )1 1
( )F W t  for 1( )F t . According to Equations (A.3) and (5), the seller’s put opportunity value can be defined as:   
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where we approximate − rdte  using ( )1− rdt and rely on ( ) ( )( )1 1 1 1
( ) ( )+

t
F W t NMEU dF W t F  to estimate 

( )1
( )+

t
NMEU F t dt F  (see Nishimura and Ozaki, 2007; Trojanowska and Kort, 2010).  

The NMEU satisfies dynamic consistency as the seller’s option value is defined recursively in Eq. (A.4).  

In the waiting region, we have ( )( ) ( )1 1 1 1
( ) ( )

t
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expressed as follows: 
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This results in the following second-order ordinary differential equation:
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The seller’s trigger is subject to the value-matching, smooth-pasting, and boundary 

conditions: * *
1 1 1( )F W X W= - , 

*
1 1( ) 1F W¢ = - , 1

1 1
( )
lim ( ) 0

W t
F W

® ¥
= . Thus, we obtain the seller’s costs threshold and 

option value as expressed in Eq. (6).  

 

Appendix B – Proofs of Propositions 1-2 
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The derivatives of 1b  with respect to 1r  and 2b  with respect to 2r  are: 
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 (B.2) 

Considering 1
1 1 1

1

r
λ

µ σ κ
≤

− −
, we obtain the derivative of the seller’s implicit reservation price ( 1X ) with 

respect to 1r : 
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Using the same logic as above, the derivative of 2X  with respect to 2r  is:  
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Eq. (B.4) also shows that when 2 0k = , the derivative of 2 2( 0)X k =  with respect to 2r  is equal to zero. 

Examining the effect of probabilistic ambiguity ik  on the implicit reservation price iX : 
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        The derivatives of 1b  with respect to 1k  and 2b  with respect to 2k  are: 
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The derivative of the ambiguity multiplier il  with respect to ik  can be expressed as: 
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Substituting 1

1

b

k

¶

¶
 and 1

1

l
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¶

¶
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¶

¶

X
, we obtain the partial derivative of 1X  with respect to probabilistic 

ambiguity 1k : 
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Considering 2
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From Eqs. (B.6) and (B.7), we get:  
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Eq. (B.9) shows that the effect of the buyer’s probabilistic ambiguity 2k  on his implicit reservation price 2X  is 

equivocal. When 2=0r , the derivative of 2 2( =0)X r  with respect to 2k  is equal to zero. This proves Proposition 1. 

Next, we examine the effect of ambiguity aversion on the negotiation threshold.  

As 1 2
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The effects of 2r  and 2k  on KKd  are equivocal:   
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. This proves Proposition 2. 

 

Appendix C- The subjective probability of negotiation agreement under ambiguity 

Since the seller is concerned about her costs and the buyer cares about his revenues, the negotiation 

agreement probability should be determined by their expectations of these quantities. Extending the single 

prior analysis of Moon et al. (2011) to the case of uncertainty and NMEU ambiguity, we examine how 

changes in ambiguity aversion and probabilistic ambiguity affect negotiators’ subjective likelihood of 

agreementKKP .  As defined in Eq. (1), 1( )S t  and 2( )S t  follow lognormal diffusions with ambiguous drifts 

and the two-dimension probability density function under our subjective probability measures is (assuming a 

possible correlation between costs and revenues):  
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where iNm is the ambiguity-adjusted drift rate and iNs is the standard deviation of log iS  under the 

NMEU. 2
1 1 1

1
( )

2N tm z s= - , 1 1 1 1 1 1 1= ( + )+(1 )z r m s k r m- , 2
2 2 2

1
( )

2N tm z s= - , 2 2 2 2 2 2 2( )+(1 )z r m s k r m= - - , 

iN i ts s= , for 1,2i = , 0t∀ ≥ , i iθ∀ ∈ Θ . We write 1S  and 2S  for 1( )S t  and 2( )S t . The subscript N  

implies log iS  follows the normal distribution. ϑ  is the correlation between 1S  and 2S . Ambiguity appears 

in Eq. (C1) both through the numerator and denominator. 

We identify the process followed by 1 2S S  (e.g., Dixit and Pindyck, 1994): 

            
1 2

1 2 1 1 1 2 2 2 1 2 1 2 1 1 2 2 1 2( ) ( ) ( ( ) ( ) )θ θµ σ θ µ σ θ εσ σ σ σ= − + − + + +d S S S S dt dB t dB t S S                          (C.2) 

where ε  is defined by 1 2
1 2[ ( ) ( ) ]θ θ ε=E dB t dB t dt . 

Since the NMEU value and standard deviation of iS  under ambiguity are given by 

( )( ) (0) expi i iNMEU S S tζ= , 2( ) (0) exp (2 ) exp( ) 1i i i istd S S t tz sé ù= -ê úë û, we can write: 

 [ ]1 2 1 2 1 2 1 2( ) (0) (0)exp ( )NMEU S S S S tζ ζ εσ σ= + +
                                                   (C.3) 

In line with Moon et al. (2011) but considering ambiguity in seller’s costs and buyer’s revenues, the 

correlation coefficient ϑ  between 1S  and 2S can be expressed as: 

                               

[ ][ ]
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t t

            (C.4) 

Thus, the subjective probability of negotiation agreement under ambiguity KKP  is obtained as follows: 
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The above (Eq. (C.5)) indicates that the subjective probability of negotiation success is not unique when 

considering parties’ real options, ambiguity aversion and ambiguity, it once again depends on the value of iS  

at time 0, the ambiguity multiplier or subjective beliefs iλ , the discount rate r  and the parameters of the 

Geometric Brownian motion(s) followed by iS  as defined in Eq. (1). When probabilistic ambiguity ( iκ ) is 

greater than zero, there is a negative relationship between ambiguity aversion (ir ) and the subjective 

negotiation agreement probability, where 1,2i = . In the case of ambiguity averse negotiators ((0,1]ir Î ), 

the subjective probability of negotiation success decreases with increasing ambiguity (, 1,2i iκ = ), reflecting 

a conservative approach towards negotiation. 
 

When revenues and costs functions are independent, the subjective probability of negotiation agreement 

simplifies to the following closed-form solution under ambiguity KKIP  (confirming the interaction effects of 

uncertainty aversion and ambiguity on negotiation performance):
 

* 2 * 2
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(C.6) 

where
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Appendix D- Asymmetric information and price negotiation 

We formulate the Lagrangian by considering the incentive compatibility constraint of the high type 

agent and the participant constraint of the low type agent as the follows (Grenadier and Wang, 2005; Shibata, 

2009):  

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1

1 1 1 1 1 2 1 1

( ) ( )
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z z z

 

The first order condition of 1K  with respect to HX  and LX  indicates that 1 = He q  and 

2 1
( )

−
 

= − +  
 

L Hb b

L
H H

z
e q q

z t
. Recall ( )>Lz z t   and >L Hb b  based on 

1

0
ρ

∂ ≥
∂

b
 in Supplementary Appendix F. 

Then we know that 2 1>e . From the Kuhn-Tucker condition, constraints (25) and (28) are binding. We 

obtain the solution ( )
*

*
1 1 1 1*

( )λ λ λ
  

= + −  
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z
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1 1( )λ=L LX S t .  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

35 

 

This implies  *
1 1( )H HX S tλ>  and constraint (27) does not bind. The first order conditions of 1K  with 

respect to Hz  and Lz  mean ( )
1*

21

λ
λ

=
−

H H
H

H

b
z

b
 and *

Lz  is the solution to 

( ) ( ) ( ) ( )1
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. Note 1 1λ λ>L H  and 1>Lb . To 

ensure the existence of solution, we assume that ( )
1*

21

λ
λ

>
−
L L

L
L

b
z

b
. To satisfy constraint (26), HX  should be 

smaller than 1 1( )LS tλ . Recall 
*

1

0
ρ
∂ ≥z

 from Supplementary Appendix F. As 1 1ρ ρ<H L , we know that * *
H Lz z<  
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. Then constraint (26) is satisfied.   

Consider the seller (principal) delegates the investment timing decision to the buyer (agent). There are 

two types of buyers. The probability of any buyer belonging to the good type category is 2q . We call the 

buyer good (bad) if his ambiguity aversion about revenues is 2ρ G ( 2ρ B ) with 2 2ρ ρ<G B . This indicates that 

2 2λ λ>G B . Let 2λ s  and sb  denote the NMEU-based ambiguity multiplier and option value parameter of type 

s agent, where 
2

1 2 1 2 1
2 2 2 2 2 2
2 1 2 1 2 1 2 1 2 1 2 1
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r r
, or=s G B . Assume that ( ) < sz t z . As sb  and 2λ s  are the buyer’s private 

information, the seller asks for price sX  based on the observable contract timing sz  as follows:  
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Using the same logic as above and when ( )
1*

21

λ
λ

>
−

B
B

B B

b
z

b
, the incentive policy under asymmetric 

information concerning the buyer’s type can be defined by 
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Supplementary Appendix F, we have 
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SUPPLEMENTARY APPENDIX E – Proofs of eqs. (18)-(19)  

The seller’s and buyer’s convenience yields are defined as 1 11δ λ= and 2 21δ λ= . They generalize the convenience 

yields under risk of Dixit and Pindyck (1994) and under maxmin ambiguity by Trojanowska and Kort (2010). The value of 

the option to invest depends on both 1( )S t  and 2( )S t . We write  U  for the buyer’s option value 1 2( , )U S S . Consider a 

portfolio consisting of one unit of the option, 1q  units short in the output and 2q  units short in capital. Using Ito’s lemma: 

 2 2 2 2
2 2 1 1 2 2 2 1 1 1 22 2 2 21 1 2 2 1 11 1 1

1
( ) ( ) ( ) ( 2 )

2
d U q S q S U q dS U q dS U S U S S U S dtσ εσ σ σ′ ′ ′′ ′′ ′′− − = − + − + + +       (E.1) 

where 
2

22 2
2

U
U

S

∂′′ =
∂

， 21
2 1

U U
U

S S

∂ ∂′′ =
∂ ∂

，

2

11 2
1

U
U

S

∂′′ =
∂

. 

Let 2 2=q U ′  and 1 1=q U ′ . Then, the capital gain from the portfolio can be written as:  

 

2 2 2 2
22 2 2 21 1 2 2 1 11 1 1

1
( 2 )

2
U S U S S U S dtσ σ σ σ′′ ′′ ′′+ +

     

(E.2)

  
Considering the convenience yields on output and capital ( )2 2 2 1 1 1q S q S dtδ δ+  and equating the sum of Eq. (E.2) and 

this component to the risk-free return ( )2 2 1 1r U q S q S dt− − , we get: 

( ) ( )2 2 2 2
22 2 2 21 1 2 1 2 11 1 1 2 2 2 1 1 1

1
( 2 )

2
U S U S S U S r U S r U S rUσ εσ σ σ δ δ′′ ′′ ′′ ′ ′+ + + − + − =

    
(E.3)

 

As 2 1( ) ( )z S t S t= , 1
1 1 2 2= ( )= b bU S f z S d S−  where 2( ) bf z d z= . From Eq. (E.1), we obtain: 

 ( )2 2
2 1 2 1 1 2 1

1
( 1)( 2 ) 0

2
b b bσ εσ σ σ δ δ δ− − + + − − =

      

(E.4) 

We get Eqs. (18)-(19) as solutions subject to the following boundary, value-matching and smooth-pasting conditions:  

 (0) 0f =       (E.5)

 

 

*
*

12
2 1

1
( )=(1 )

z
f z ξ

δ δ
 

− − 
 

      
(E.6) 

                                                                               

* 12

2

1
( )=f z

x

d

-¢
                                                             

(E.7) 

SUPPLEMENTARY APPENDIX F – Proof of Proposition 3b  

Taking the first order derivative of b  with respect to 1ρ : 

 1
2 2 2

1 1 1 2 1 2 1

1 1 1
0

2

b bλ
ρ λ ρ σ εσ σ σ χ

  ∂∂ −= ≥  ∂ ∂ − +   
    (F.1) 

Taking the derivative of 1 ( )ncX t  with respect to 1ρ : 

 
( )

( )

12 12 1
1 1 12

1 1 1

12 1
12 2

11 2 1 2 1

1 ( ) 1+ ( )
11

1
= 1+ 1 ( )

1

(

2

)nc b
S t S

S t
b

t
t

bb

X ξ ξ λλ
ρ ρ ρ

ξ λ
ρχλ σ εσ σ σ

∂ − ∂∂  = +  ∂ ∂ − ∂ −

   ∂
  −

 − ∂− +   

    (F.2) 
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Let ( )2 2
2 1 2 1 1= 2σ εσ σ σ χλ− +l . If 1<l , as ( )12 0,1ξ ∈ ,  then:  

                                      
( ) ( )

1 1
1 1

1

1

1 1

1 1 1
1+ 1 ( ) ( )

1

( )

1

λ λ
ρ ρ ρ

 ∂ ∂ ∂− > − =  ∂ − ∂ − ∂  

l

l l

nc b
S t S t

b

t

b

X
                                 (F.3) 

Let χφ= +b , where 1 2
2 2
2 1 2 1

1

2 2
φ δ δ

σ εσ σ σ
−−

− +
= ，

2 1
2 2
2 1 2 1

2

2

δχ φ
σ εσ σ σ

= +
− +

.  From 1 11δ λ= , the term 

1−lb   can be written as: 

( )

( )

2 2
2 1 2 1 1

2 2 2 21 1
1 2 1 2 12 2 2 2

2 1 2 1 2 1 2 1

2 1

2 2
2 1

2 2

χ σ εσ σ σ λ

δ δ λ σ εσ σ σ
σ εσ σ σ σ

φ φ
σ σ σ

φ
ε

− + −

 
= + + + − + −  − + − + 

b

                    (F.4) 

Recall 1

1

0
λ
ρ

∂ ≥
∂

, 0>l  and 1b > . From Eqs. (F.3) and (F.4), if 0φ ≥  then the term 1 0− >lb  and 1

1

( )
0

ncX t

ρ
∂ >

∂
.  

Since ( )

2

2 2 2 1
2 22 2
2 1 2 12 1

1

2 1

2
0

22

δ δφ φ φ
σ εσ σ σσ εσ σ σ

   
 + − + > 
  − +− +   

, the term 1 0− >lb  and 1

1

( )
0

ncX t

ρ
∂ >

∂
 if 

0φ < . This means 1

1

( )
0

ncX t

ρ
∂ >

∂
 when 1<l . From Eq. (F.2), when 1≥l , 

1

1 ( )
0

ncX t

ρ
∂ ≥

∂
. Therefore: 1

1

( )
0

ncX t

ρ
∂ ≥

∂
. 

Since 
( )

( )
1

2 2 2
1 11 2 1 2 1

1

2

bb λ
κ κλ σ εσ σ σ χ

− ∂∂ =
∂ ∂− +

 and 1

1

0
λ
κ

∂ ≥
∂

, using the same logic, the derivative of 1 ( )ncX t  with 

respect to 1k  is ( )
12 1

12 2
1 12 1 2 1

1

1

1
1 1 ( ) 0

1 2

( )nc

S t
b

X t ξ λ
κ κσ εσ σ σ λ χ

  ∂ ∂ 
 = + − ≥ ∂ − ∂− +    

. 

The derivative of b  with respect to 2ρ  is: 

 2
2 2 2

2 2 1 2 1 2 2

1
= 0

2

λ
ρ σ εσ σ σ ρ λ χ

  ∂∂ − ≥  ∂ − + ∂  

b b
                             (F.5) 

Recall 12
2 2 2

1
( ) 1 ( )ncX t S t

b

x
l

æ ö- ÷ç= - ÷ç ÷çè ø
. The derivative of 2 ( )ncX t  with respect to 2r  is as follows: 

2 12 12 2 2 2
2 2 22

2 2 2 2

( ) (1 ) (1 ) ( )
( ) 1 ( )=

ncX t S tb
S t S t

b b b

ξ ξ λ λλ
ρ ρ ρ ρ

∂ − − ∂ ∂∂  = + −  ∂
Ω

∂ ∂ ∂ 
                                (F.6) 

where ( )12 2 2
2 2 1 2 1

1
(1 ) 1+

2
=b ξ

λ χ σ εσ σ σ

 
 − −
 − + 

Ω .  

Since ( )12 0,1ξ ∈ , ( )2 2
2 2 1 2 1

1
1+

2
b

λ χ σ εσ σ σ
Ω >

 
 −
 − + 

Ω = .  Then Ω  can be expressed as:  

( ) ( )2 1 2
2 2 2 2
2 1 2 1 2 2 1 2 1

1 1
=

2 2 2

1 1
a b

δ δχ χ
χ σ εσ σ σ χλ σ εσ σ σ

  −
 + −  − + − +

Ω = − Ω
  

− Ω


                                    (F.7) 

where  1 2
2 2
2 1 2 1

2

1
2 2
2 1 2 12

1

4 2a

δ
σ εσ

δ δ
σ εσ σ σσ σ
 

Ω + +  − + 

−=
− +

, 1 2
2 2
2 1 2 1

1

2 2b

δ δ χ
σ εσ σ σ

 −Ω + − + 
= .  
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Recall 0χ > . If 1 2
2 2
2 1 2 1

1
0

2 2

δ δ
σ εσ σ σ

−+ <
− +

， then 0bΩ <  and 0Ω > . If 1 2
2 2
2 1 2 1

1
0

2 2

δ δ
σ εσ σ σ

−+ >
− +

, then 

0bΩ > . Let 

2

1 2
2 2
2 1 2 1

1
=

4 2

δ δ
σ εσ σ σ
 −Η +  − + 

.   

We get: 

( )

2

1 1 2 1 2
2 2 2 2 2 2
2 1 2 1 2 1 2 1 2 1 2 1

2
2

22 2
2

2

1 2 1

2= +
2 2 2

= 0

+

2

a b

δ δ δ δ δ
σ εσ σ σ σ εσ σ σ σ εσ σ σ

δ
σ εσ σ σ

    −Η − Η Η    − + − + − +   

+Ω − Ω +
 

>
− +

                             (F.8) 

Thus, baΩ > Ω . Consequently, 0Ω >  and 0Ω > .  

Since 2

2 2 2 2 2

1 1
= 0

+r r

λ
ρ µ σ κ µ

∂ − ≤
∂ − −

, 2 1b >  and 0χ > , 2

2

( )
0

ncX t

ρ
∂ ≤

∂
.  

Similarly, as 2

2

0
λ
κ

∂ ≤
∂

, 2 2 2

2 2

( ) ( )
0

ncX t S t

b

λ
κ κ

∂ ∂= Ω ≤
∂ ∂

. 

 


