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A Decision Support System to Ease Operator
Overload in Multibeam Passive Sonar

Iain Rice and David Lowe

Abstract—Creating human-informative signal processing sys-
tems for the underwater acoustic environment that do not generate
operator cognitive saturation and overload is a major challenge.
To alleviate cognitive operator overload, we present a visual ana-
lytics methodology in which multiple beam-formed sonar returns
are mapped to an optimized 2-D visual representation, which pre-
serves the relevant data structure. This representation alerts the
operator as to which beams are likely to contain anomalous infor-
mation by modeling a latent distribution of information for each
beam. Sonar operators therefore focus their attention only on the
surprising events. In addition to the principled visualization of
high-dimensional uncertain data, the system quantifies anomalous
information using a Fisher Information measure. Central to this
process is the novel use of both signal and noise observation mod-
eling to characterize the sensor information. A demonstration of
detecting exceptionally low signal-to-noise ratio targets embedded
in real-world 33-beam passive sonar data is presented.

Index Terms—Anomaly, fisher Information, neuroScale,
SONAR, visualization.

I. INTRODUCTION

THE diversity of signal and noise sources, which make
up the underwater acoustic environment, present a signifi-

cant challenge for data analysis. Traditionally, beamforming has
been one of the first steps in attempting to reduce the noise levels
in observations, allowing improved target detection. However,
some of these beamforming techniques suffer from reliability is-
sues [1]. More recently, adaptive beamforming techniques have
been shown to improve the output signal-to-noise ratio (SNR)
of passive sonar arrays (see, for example, [2] and the references
therein). Extensions of adaptive beamforming beyond the stan-
dard linear array structure have been implemented in [3]. Issues
of the complexity cost of implementing robust adaptive beam-
formers can be reduced from cubic to quadratic in the number of
parameters, as discussed in [2], and have been made manageable
in [4] through implementation using graphical processing units.

Also, recent developments in tracking systems such as the
Gaussian mixture model probability hypothesis density (GMM-
PHD) filter [5] have been developed to improve the extended
Kalman-filter approaches. These developments enhance the dig-
ital signal processing elements of the sonar data analysis. How-
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ever, none of these advances reduce the operator overload prob-
lem since the basic requirement to check each one of the many
beams for possible targets remains—It just improves the accu-
racy of target detection. Given that sonar arrays used to analyze
this environment can consist of hundreds of individual sensors,
data overload for operators is inevitable. The visual analysis
and the presentation of multibeam sonar is largely performed in
either narrowband or broadband forms. For instance, the LO-
FARgram (LOw Frequency Analysis Representation) comprises
a column of waterfall spectrograms, each of which corresponds
to the signal received in a beam. The spectrogram represents the
joint time–frequency distribution of a signal, where a frequency
distribution in a given time window is evaluated and displayed
in such a way that tonals may be detected, and in the case of the
LOFARgram, time is displayed vertically and frequency bins are
displayed horizontally. The operator needs to visually explore
each of these LOFARgrams for every one of hundreds of sonar
channels, or beams, plus listening to all the separate acoustic
signals to extract interesting tonal signatures. This is an obvious
information overload bottleneck for the human sonar operator.

In this paper, we regard beamforming and adaptive filters
as just another representation of the passive sonar data, and
instead of using LOFARgram representations of this data, we
will explore a complete alternative way to visualize and quantify
the anomalous or surprising information, vastly reducing the
number of important beams a sonar operator needs to check.

One prominent research direction for improving the presen-
tation of information to sonar operators has been creating 3-D
representations of active sonar returns (see for instance [6]–[8]).
Methods for improving sonar imagery have also been proposed
in [9]. However, this does not reduce the information overload
issues since no channel prioritization is automatically embed-
ded. A data fusion approach was developed in [10] to present
signals from different sources, but this did not highlight anoma-
lies or offer a reduced-signal representation to highlight sonar
beams of interest. Barngrover et al. [11] presented a novel inter-
face between sonar operator and sensor information, utilizing
the experience of the human in the analysis process. Despite
generating a summary of the information in a more visually
appealing method than standard sonar imagery, this approach
failed to generate an aesthetically intuitive visualization of the
observed information, which would reduce the information bur-
den on the human user.

In response to the requirement for operator decision support
aids to reduce cognitive information overload and so to better
represent, condense, and highlight surprise in high-dimensional
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structured data [12], this paper presents a novel visualization
model, an alternative way to analyze and view multibeam sonar
data with the eventual aim of providing simpler representations
for skilled operators.

To affect the reduction of high data dimensionality of sonar
arrays into a visualization space as well as deal with the noisy
and uncertain sonar signals, we will utilize a Probabilistic Neu-
roScale model [13].

The basic NeuroScale model stems from the Sammon map-
ping [14] where a configuration of points in a two-dimensional
visualization space is generated, which approximately preserves
the relative similarities between the original high-dimensional
data points. Specifically, a dissimilarity dij between pairs i, j of
original data patterns is defined, and a dissimilarity δij between
corresponding pairs i, j of configuration points on the visualiza-
tion space is defined. In the Sammon map, the configuration of
visualization points is found by iteratively adjusting the position
of each point to minimize the Sammon STRESS (Standardized
Residual Sum of Squares)

S =
1

∑
i

∑
j>i dij

∑

i

∑

j

(dij − δij )2

dij
. (1)

This is an effective approach to data dimensionality reduction,
especially for visualization purposes, since it attempts to pre-
serve the average interpoint distance relationships between data,
and hence tries to preserve topological structure in the visualized
projection space. This is valuable in the sonar space since human
operators intuitively use relative differences within images and
sound to perceive significant events. However, the Sammon map
does not provide a transformation between the two spaces. The
NeuroScale model [15] was introduced to provide an explicit
transformation for each data point using a nonlinear universal
function approximator (a radial basis function network [16]) and
a simplified STRESS function without the denominator terms
in 1. Within NeuroScale, each input data pattern X i ∈ Rn is
projected to a visualization point Y j ∈ R2 using a radial basis
function Yi = h(X i). The precise form used in this paper is
defined later in the Method section.

In its basic form, this is a deterministic transformation be-
tween vectors. If the input data is actually generated as samples
from an underlying noisy probability density function, then a
probabilistic version can be implemented where the dissimilarity
is taken to be any measure between distribution functions, such
as a Kullback–Leibler divergence for example. So the method
is not restricted to simply data vectors. Similarly, the projection
into the visualization space can be generalized with probabilistic
connotations, using the projected point as the mean of a distri-
bution whose variance and higher moments can be derived from
the variance and higher moments of the input data. A specific
example of this is provided later.

Note that the archetypical approaches to probabilistic vi-
sualization, the generative topographic mapping [17] and the
Gaussian process latent variable model [18], are unsuitable for
this sonar task. These approaches attempt to construct a visual-
ization that, under a set of Gaussian noise model assumptions,
generates the observations. These two popular algorithms are not
suitable for this application domain due to the constantly chang-

ing sonar environment where the observed noise distributions
are known to be non-Gaussian [19], as well as the fundamental
difference that they do not operate in dissimilarity space and
hence are not metric-structure preserving.

II. METHOD

Our alternative approach for the representation of sonar in-
formation for the operator, and the presentation of potential
anomalous activity, transforms all the multiple time series from
all the sonar beams into a small information-preserving low-
dimensional feature space in which anomalous behavior be-
comes apparent and is numerically quantified using information
theoretic measures. The framework is composed of four stages:
the creation of a signal model, the creation of a noise model,
a structure-preserving data projection, and finally an anomaly
detection process based on assigning a measure of “surprise” to
each projected observation.

A. Signal Model for Each Beam

Consider a set of sonar array data (note that the framework
in this paper can work with other sonar representations than the
beamformed data, but the example data we use to illustrate the
approach happens to be the beamformed data). Denote the time
series observed in a given beam at time t by {xt}. Typically
the time series for a single beam is separated into 1-s segment
vectors whose length is equal to the sampling frequency. As-
sume that the scalar value of the observed time series at time
t, xt is generated according to the following (unknown) noisy
dynamical system:

xt = ft(φt−1 ,Λt) + ηt (2)

where ft(φt−1 ,Λt) is the actual possibly time-dependent and
stochastic generating function, which drives the system dynam-
ics based on latent variables φt−1 , and where Λt , ηt are sample
realizations of a dynamical noise process and an observational
noise process, respectively.

These dynamical processes are intrinsically unknown and
hence need to be approximated. We make no further assumptions
on the true generating process.

The approximating system model to the true process used in
this paper is such that

xt = gt(X t−1 , {W}) + εt (3)

where εt is the set of residual noise samples from a distribution
to be determined, and {W} = {w,μX } is the set of model
parameters of the approximator function used to estimate the
dynamics. This paper uses

g(X) =
N∑

j=0

wjψ(||X − μX ||) (4)

a radial basis function [16], capable of universal function
approximation [20], with nonlinear basis functions ψ(z) =
z log(z) centered at positions μX and weighted by parame-
ters {wj ; j = 0, . . . , N}. For the experiments used later in this
paper, N = 30 basis functions were randomly sampled from
the observational beamformed vectors to span the signal space
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based on meeting accuracy, regularization, and efficiency cri-
teria. This choice of N is not generic and as such should be
specified for each data set based on these criteria or through
Cattell’s scree test [21] for example. The input to the ap-
proximator function is an embedding vector of delay samples
X t = {xt, xt−1 , . . . xt−L} following Takens’ theorem [22] for
manifold reconstruction via the Whitney embedding theorem
[23]. Methods for selecting the embedding size L are discussed
in [24] (also see [25] for an overview). In this paper, in the later
experiments, L = 14 was selected based on a minimum square
error criterion.

Once an approximate signal manifold has been estimated via
g(), the residuals εt are regarded as samples from an underlying
structured noise model that is central to the uncertainty modeling
in our framework.

B. Noise Model

From our dynamical signal model assumptions, the amplitude
of the residual sample errors are as follows:

|εt | ≡ |xt − g(X t−1 , {W})|
= |[ft(φt−1 ,Λt)− g(X t−1 , {W})] + ηt |. (5)

Estimating the residuals distribution, q() of |εt |, is an estimation
of the fluctuations between the approximate and the true state
model. Therefore, any structural changes in the data generat-
ing function (such as the appearance of unusual or unexpected
targets) as well as changes in the background noise processes
(perhaps due to weather variations) will therefore be reflected
in this compound residual distribution. The framework relies on
exploring the information dissimilarity space between the noise
process at one time and subsequent times, as is evident later.
Therefore, a good noise model is required.

The data likelihood of the residuals is approximated by a
fifth-order compound mixture model [26], i.e.,

q(|ε||Θ) =
D∏

d=1

5∑

i=1

πiPi(|ε| |θi) (6)

consisting of a weighted linear combination of the following
distributions Pi(|ε| |θi).

1) P1(|ε|; |(μ, b)): A Laplace distribution is used to model
extraneous signals. Any prominent signals not well de-
scribed by the signal approximator function should appear
in a small area of residual space and as such the sharply
peaked Laplace is an appropriate choice.

2) P2(|ε|; |σ) and P3(|ε|; |(αk , λk )): Rayleigh and K distri-
butions are used to model a clutter. It is well established in
the SONAR literature that K and Rayleigh distributions
are suitable for describing background clutter in active
SONAR such as biological and environmental effects in
the underwater environment [27]. Our approach of intro-
ducing a signal model with residuals has parallels with
the matched filter envelope described by the K-Rayleigh
mixture in [27]. As such, we retain these components in
our compound mixture model.

3) P4(|ε|; |(α, β)): A Gamma distribution is used to ap-
proximate rain. Typically, in the literature, the Poisson
distribution is used to describe rain [28]. However, the
other distributions in this mixture are continuous and
therefore the Gamma distribution, which behaves simi-
larly to the Poisson, is chosen.

4) P5(|ε|; |(m, s)): A normal distribution is used to model
the remnants. Any leftover residual elements are rep-
resented with a normal distribution, under the assump-
tion that {P1 , . . . , P4} will model the structured noise
processes and all the remaining noise sources are taken
as independent distributions modeled collectively by a
Gaussian distribution assuming that the Central Limit
Theorem applies.

This compound mixture model is optimized to the residual
sample data by modifying the parameters to maximize the pos-
terior distribution, given the data. Further details are provided
in the appendix. This noise model is motivated by the known
biological and physical characteristics of sea clutter sources,
which should therefore generalize to a wide range of sea con-
ditions. If an additional clutter source is expected in a region,
the additional noise model can be included as an addition to the
compound model.

C. Data Projection

The next part of the analysis combines both the previous sig-
nal and noise estimation models for each beam in a 1-s interval
and creates a low-dimensional mapping specifically optimized
to preserve the structural information in the data, based on min-
imally distorting the average relative dissimilarity (7) between
data points. It is well known that the human effort to perform
detailed analysis of multiple beams in very large arrays is a sig-
nificant challenge, which can easily lead to anomalous contacts
being missed. Our approach provides an alternative visualiza-
tion whereby the information from all beams can be represented
at once. Operators can then select the most significant beams
highlighted as containing anomalies by the system, which may
be spread far across the array, and investigate these signals with
traditional techniques if desired. The approach generalizes to
higher dimensions trivially. We restrict the implementations in
this paper to the creation of optimal two-dimensional data rep-
resentations. Optimality is defined by minimizing a specific dis-
tortion measure, the STRESS between the original data space
and the projected two-dimensional data representation space,
following the approach in [13] and developed in [26]. By con-
struction, this two-dimensional representation will be structure
preserving such that neighborhoods and the pairwise relative
dissimilarities between observations will be preserved.

Specifically, in the original data space, a dissimilarity measure
dX (i, j) between each pair of observations i, j translates to
a dissimilarity dY (i, j) under the mapping h : X → Y . The
STRESS optimality criterion constrains the mapping h(X) =
Y to try and preserve these pairwise relationships between the
two spaces containing {X} and {Y } by minimizing

E =
∑

ij

(dX (i, j)− dY (i, j))2

dX (i, j)
. (7)
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For input signal vectors,X i andXj with power spectra Si and
Sj , and corresponding estimated noise models qi , qj , we choose
a dissimilarity measure in data space using a scaled combination
of the signal and noise dissimilarities

dX (i, j) = αdsig (i, j) + (1− α)dnoise(i, j). (8)

Here

dsig (i, j) = ||Si − Sj ||2 (9)

is the Euclidean distance between the corresponding power
spectra following [29] and

dnoise(i, j) = − log
(√

qTi qj

)

(10)

is the Bhattacharyya distance denoting the overlap between
noise distributions qi and qj sampled from the estimated dis-
tributions qi and qj of beams i and j, respectively. The scaling
between signal and noise dissimilarities is used to simply give
equal weight to each contribution to the overall dissimilarity. As
such, for the experiments in Section III, we fix α = 0.5. This
parameter is application specific and driven by the significance
of the signal and noise components in the anomaly detection
task. For applications dominated by a single or low number of
contacts, the anomaly detection is better performed in the noise
subspace, favoring a lower α value. On the other hand, in appli-
cations with multiple signals with a low background noise level
anomaly detection will be better performed in the signal space,
favoring a higher α value. In the underwater environment, there
is a significant noise background coupled with the potential
for observing multiple contacts, motivating the weighting value
chosen for this paper. It should also be noted that in the super-
vised cases of classification or regression, this parameter could
be optimized or treated as a hyperprior in a Bayesian scheme.

Before the dissimilarity in the projected visualization space
is defined, we first introduce the specific mapping function
h(X). An interpolating radial basis function is used between
the input data vector X i and a set of L prototype data sam-
ples, {X l ; l = 1, . . . , L} used to evaluate the dissimilarities
{dX (i, l); l = 1, . . . , L}, allowing the evaluation of the pro-
jected data vectors

(Yi)k = h(X i)k =
∑

l

Ak,lψ(dX (i, l)). (11)

The spline function is ψ(z) = z log(z), and the set of weights
{(A)k,l = (al)k ; k = 1, 2; l = 1, 2, . . . L} determine the map-
ping function and are numerically determined using a gradient
method to minimize the previous STRESS measure in (7). The
basis functions ψ(dX (i, l)) are commonly expressed as vectors,
ψi , allowing the outputs to be expressed as Yi = Aψi .

This mapping induces a latent probability distribution in the
projected visualization space. Specifically, each input data vec-
tor is mapped to a point in visualization space, which is taken
to define a Gaussian distribution N (Yi , σ2

i I) in visualization
space, centered aroundYi = h(X i) = Aψi , and σ2 = var(qi).
This is a first-order approximation that will be explored in the
future work.

Thus, each input data vector is now mapped to a Gaussian
distribution in data visualization space, and hence a conve-

nient dissimilarity measure in the projected data space is the
Kullback–Leibler divergence between Gaussian distributions.
Explicitly

dY (i, j) = KL[N (Yi , σ2
i I)‖N (Yj , σ2

j I)]. (12)

Since the positions of the projected latent means Yi in the visu-
alization space have to be selected to minimize (7), the final part
of the process requires an optimization algorithm. Minimization
of (7) is an unsupervised task since the eventual positions are
unknown. However, an efficient gradient-based optimization al-
gorithm was developed specifically for the NeuroScale model,
known as shadow targets optimization. In brief, to minimize (7),
the local gradient with respect to the parameters of the radial
basis functions are needed. In turn, these depend on the gradi-
ents of the STRESS measure with respect to the latent means
times the gradient of the latent means with respect to the pa-
rameters. Now, if this was a conventional supervised problem
minimized by a standard linear least squares process, the cost
function would be E =

∑
i ||Yi − T i ||2 , the gradient of which

would yield

∂E

∂Yi
= Yi − T i . (13)

Therefore, in the unsupervised optimization of (7) if the true
target were known, it would satisfy the same equation as (13)
but with the cost function being the STRESS cost function.
Therefore, by comparing these two situations, we can identify
a “ghost” or “shadow” target T̄ i such that if only the STRESS
had been optimized, then the shadow target would satisfy

T̄ i ≡ Yi − ∂E

∂Yi
. (14)

This is the basic idea of a recursive algorithm where the full
unsupervised gradient descent problem is split into a sequence
of stages where each stage can be efficiently solved by efficient
linear least squares algorithms, continually refining the best es-
timates of the shadow targets. Further details of the full shadow
targets algorithm can be found in [30] and [13] for a probabilistic
version.

This completes the description of all of the components of the
STRESS measure (7), and its optimization to create a principled
transformation process, which preserves structural relationships
in the original data.

D. Anomaly Detection

The key to the anomaly detection, or “surprise” of the in-
formation contained in each beam, and the final stage of the
framework, is to quantify and represent the unexpected uncer-
tainty of the projected data in the context of the overall data
uncertainty in the projection space.

For context, theN total observed training data samples across
all sonar beams, when projected into the visualization data
space, maps to a set of N induced Gaussian distributions by the
process described in the previous section. Thus, the training data
defines an uncertainty surface approximated by a uniformly-
weighted Gaussian mixture model, thus giving an estimate of
the unconditional probability density at an arbitrary point Y in
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the projected space as

U(Y ) =
1
N

N∑

i=1

N (Y |Yi , σ2
i I). (15)

Therefore, if a new data point is projected into a region of
low probability density relative to this distribution, it indicates
that it is a candidate anomaly with respect to the training data
set. Note that this uncertainty surface is primarily to provide
context to aid the operator in observing likely anomalous events.
However, this observational uncertainty surface is only part of
the uncertainty, since it ignores the distortions induced by the
nonlinear projection mapping.

A more precise measure of anomalous or unusual data pro-
jections is obtained from the Cramer–Rao bound [31]. The co-
variance matrix of an unbiased estimator is given by the inverse
of the Fisher information matrix (FIM), I(γ)−1 . Generically,
for an unbiased estimator Tγ (X) of a parameter γ based on data
X , we have that

covγ (Tγ (X)) ≥ I(γ)−1 . (16)

Thus, the FIM provides a lower bound on the uncertainty
provided by the data mapping. The FIM for the multivariate
Gaussian distribution N (Y , σ2) with fixed covariance σ2 is
known to be

(I(γ))mn =
∂Y T

∂γm
σ−2 ∂Y

∂γn
. (17)

Since in our framework the projected data mean is parameter-
ically determined by Yi = Aψi, for beam i, the FIM corre-
sponding to beam i with respect to the mapping parameters A
is the block diagonal matrix

I(γ)i =

[
σ−2
i ψψψTi ψψψi 0

0 σ−2
i ψψψTi ψψψi

]

(18)

where 0 is an L× L matrix with all entries 0.
Therefore, the trace of this inverse FIM is a summary measure

that provides an A-optimality lower bound of (16) [32]

FIi = Tr
(
I(γ)−1

i

)
. (19)

Large values of FIi indicate potential new contacts or unusual
activity in the beam signatures relative to the training data used
to construct the topographic mapping.

In the following section, we illustrate the use of the framework
and demonstrate FIi in tandem with the uncertainty surface, to
convey anomalous events in multibeam sonar data.

III. RESULTS

The sonar data set used in this paper was supplied by the De-
fence Science and Technology Laboratory (DSTL). The record-
ing was collected from a 32 hydrophone line array in the Portland
Bay, U.K., beamformed into 33 beams. The sensors operated at
a 394-Hz sampling rate with fine weather conditions and only
wave backscatter and some surface ships present. During the ex-
ercise, a speedboat traveled parallel to the array repeatedly with
another ship intermittently present. In this paper, we perform
three experiments based on this data set, one with the original

Fig. 1. Broadband energy for SONAR data set. Red indicates high levels of
energy and dark blue indicates low energy. The two contacts in beams 1–5 and
21–26 are clearly identifiable in the 100-s recording.

data and the subsequent two involving the introduction of syn-
thetic targets at low SNR. In each case, the training data used to
generate the probabilistic NeuroScale mapping consisted of the
first 5 s of original data. Note that axes are omitted in each of
the visualizations since the NeuroScale transformation is invari-
ant to arbitrary rotations and constant scaling. Therefore, it is
only the relative position between points that is important, and
therefore the axes are arbitrary and hence not displayed.

A. Experiment I: Normal Data

The signal (broadband) energy in each beam over time,
given by

Energy(xi) =
T∑

t=1

(xit)
2 (20)

where xit represents the observed time series in beam i at time
t, is shown in Fig. 1. From this plot, it is clear that there are two
contacts centered in beams 3 (unknown ship) and 21 (DSTL ex-
ercise ship). These two contacts have similar observed energies
whereas their signal characteristics differ slightly.

A signal model for each beam using the embedding size L =
14 is constructed, following which the parameters of the com-
pound mixture model describing the residuals εt are learned by
minimization of the negative log likelihood in (38), as outlined
in the appendix. This compound noise model is then used as an
approximation of the residual distribution q for each beam.

The two-dimensional representation for this experiment, con-
structed through the process of Section II-C, is presented in
Fig. 2. The signal present in beam 25 is clearly highlighted by
the dark gray point, Y 25 given by (11), through its location in
the low-probability cyan region. The linear structure implies a
linear latent relationship in the data, which is expected as the
array used for this recording was a uniformly spaced line array
with standard beamforming, resulting in a single latent param-
eter here, namely the proximity to the speedboat contact. The
uncertainty surface is notably unimodal in this example. This
is because for this data set, the training data is dominated by
similar uniform noise signals, which when combined with a cen-
tral limit theorem leads to a skewed unimodal distribution. It is
skewed toward the speedboat contact as expected. To show the
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Fig. 2. Visualization of the data set at 1 s into the recording. The mean of each
latent distribution yi corresponding to the signal and noise models for beam i.
The points are colored from white corresponding to beam 1 through gray to black
at beam 33. The uncertainty surface upon which these points sit is colored from
magenta for high-probability regions to cyan for low-probability observations.
Beam 25 and neighboring beams that observe the only present contact are clearly
separated from the noise cluster in the high-probability region (magenta) and as
an anomaly the beams observing the contact are placed in the low-probability
region (cyan).

Fig. 3. Visualization of the data set at 20 s into the recording. The contact
centered in beam 25 of Fig. 2 has migrated to beams 21 and 22 (sat atop
one-another), which are now located in the low-probability (cyan) region. The
second contact centered in beam 3 is also highlighted anomalous with similar
signal and noise characteristics to the speedboat contact.

Fig. 4. Mapping Fisher information for the normal data set. Red and blue
regions indicate higher and lower levels of FIi , respectively, indicating abnormal
behavior. This resembles the broadband plot for the data set in Fig. 1, but with
narrower concentration of contacts within beams. This highlights the two present
contacts as anomalous compared to the prototypes, as would be expected.

evolution of this data representation over time, Fig. 3 presents
the visualization 20 s into the scenario. The contact from beam
25 at the beginning of the exercise has migrated to beam 21.
This is the same contact with similar noise profile as it is lo-
cated in the same region of the uncertainty surface. Furthermore,
the second contact now appears as the anomalous projection of
beam 3.

Anomalies over time are highlighted in Fig. 4 by plotting
the mapping uncertainty in each beam FIi at each instant,

analogous to the broadband representation in Fig. 1. It is clear
that the contact centered in beam 25 of Fig. 2 is anomalous
from its location on the uncertainty surface, however the
mapping uncertainty, and therefore the size of the points,
appears relatively flat across the array. This is to be expected
because the beams containing the signal and noise were used
in the training; so, it is not surprising. They are, however,
dissimilar from the noise-only beams; so, they are correctly
placed in different regions of the uncertainty surface.

Our framework allows for anomalies to be quickly identified
as in Fig. 4 as opposed to merely identifying beams with high
signal energy in the broadband plot. Further to this, the relative
similarities between beams can be interpreted in Fig. 2. Since
U(Y ) displays all beams simultaneously and it is only those
points representing beams in extreme locations or extreme sizes
that the operator needs to consider, its workload is significantly
reduced by focusing only on those beams automatically high-
lighted as possibly anomalous. For the visualization of Fig. 2,
only the five beams contained within the low-probability re-
gion (cyan) need investigating as opposed to the entire 33 actual
beams observed. This highlights an important benefit of our ap-
proach: the avoidance of data overload that is endemic to sonar
data analysis.

The classification of whether an observation should generate
an alarm is at the discretion of the operator, avoiding high false
alarm rates inherent to automatic detection systems. High values
of FIi indicate that signal and noise sources have been observed,
which were unseen in the training data and therefore should be
investigated based on the level at which they exceed the baseline
level. However, when the location of an observation is in a
known region of the uncertainty surface the investigation of a
contact with high FIi is not a priority. An example of this could
be the observation of a speedboat in different sea conditions than
that of the training data that could make the contact appear more
surprising, having a higher value of FIi than that in Fig. 2, but it
would still be located in the same region in U(Y ). The operator
could then assume that this is still a speedboat and investigate
only if there are no observations in other beams requiring their
attention.

B. Experiment II: Single Injected Signal

The standard data set is modified by inserting a contact x̃t
with two noisy sine waves at 151 and 163 Hz with relative SNR
of −13 dB. This signal is injected into the array, moving from
beam 1 to beam 33 uniformly over the 100-s experiment. The
signal energy is renormalized in each beam following the signal
injection:

xit ← (xit + x̃t)

√
Energy(xi)

Energy(xi + x̃)
(21)

ensuring that the contact cannot be identified by simple fluc-
tuations in the broadband energy. The broadband plot for this
experiment is therefore identical to Fig. 1.

Fig. 5 shows the 2-D visualization of the first second of
the data set with the injected signal located in beam 1. This
visualization was trained with a set of prototypes randomly
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Fig. 5. Experiment II: Visualization of the data set at 1 s into the recording
with the injected signal located in beam 1. This beam appears as a large circle
and therefore is clearly anomalous despite the low SNR of the injected signal.
Beam 25 sits on the edge of the normal (magenta) region as this is more similar
to a prototype than the signals in the previous case and therefore less anomalous.

Fig. 6. Experiment II: Plot of FIi over time for the data set with a single
quiet injected signal moving uniformly across the array. This highlights the
anomalous injected signal moving across the array while showing the relatively
higher levels of mapping uncertainty for the beams containing the two contacts,
as shown in Fig. 4 for the normal data set.

drawn from the exercise, which may have contained the injected
signal and as such the distribution of noise-only beams is
different from that of Fig. 2 for the normal data set. The size of
the plotted points, whose locations are given by the latent means
Yi , varies dependent upon the level of mapping uncertainty for
that beam FIi plotted over time in Fig. 6. As in the previous
experiment, the signal characteristics of the speedboat contact
was already observed in the training stage and as such it is not
as surprising as the injected signal leading to a lower value
of FIi .

Extended points in the 2-D visual representation indicate
more uncertain observations, which should therefore be inves-
tigated by an operator.

This example serves to illustrate the significant benefit of our
approach over typical broadband display approaches as it clearly
indicates normal contacts, separating from noise-only beams
more naturally than in Fig. 4, while simultaneously identifying
a very quiet contact moving across beams, which can present
a challenge for tracking systems. This contact is interesting
as it can be thought of as attempting to mask its own signal
characteristics with another signal in a narrower beamwidth.
This visualization allows anomalies to be identified while not
highlighting already known contacts included in the training
data to the same level, reducing the operator overload burden.

To further show the ability of this method for highlighting
quiet anomalous signals, the conventional LOFARgram visual-
ization using global normalization is shown in Fig. 7 for the end

Fig. 7. Conventional LOFARgram showing 10 s worth of data for beams 31–
33. The injected signal, with tonals at 151 and 163 Hz, is in beam 31 for 3 s
following which it is in beam 32 then 33 at the end of the LOFARgram. Due
to the extremely quiet −13-dB SNR level, the injected signal is not visually
identifiable.

Fig. 8. Experiment III: Visualization of data set with four injected signals in
beams 1, 15, 24, and 30. These beams are clearly identified as having a higher
FIi than the other beams in the array. beams 4–6 contain the speedboat contact
and are therefore located in the low-probability region.

of the experiment in beams 31–33. These beams are chosen as
they contain the lowest level of signal characteristics from the
two contacts present in the normal data set. The injected signal is
not visible in any of the three beams despite being clear in Fig. 6.

C. Experiment III: Multiple Injected Signals

Typically, in the underwater environment, we are interested
not in a single contact but in the observation of multiple signals.
When these signals have a low SNR and are narrowband by
nature, the archetypical tool for the interrogation of these targets
would be the waterfall plot. For large arrays, this places a burden
on the operator in terms of both time and data overload. We
inject four quiet contacts in beams 1, 15, 24, and 30 at −13,
−16, −7, and −13 dB, respectively. The contact in beam 15 is
present throughout the modified data set, however the other three
contacts are only intermittently present every 10 s to test the
ability of the algorithm to highlight sudden signal and residual
changes rapidly. The injected signals in beams 1 and 24 contain
noisy tonals at 151 and 163 Hz, whereas the injected tonals in
beam 15 are sine waves at 151 and 163 Hz. The tonal introduced
into beam 30 is fixed at 131 Hz. The beams containing these
synthetic signals are normalized as in experiment II to avoid
identification in the broadband plot.

Fig. 8 contains the generated visualization at 10 s into
the data set, when a random set of mapping prototypes are
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Fig. 9. Experiment III: Plot of relative surprise over time for each of the beams
in the array. The beams with injected signals, beams 1, 15, 24, and 30, all have
a raised level of surprise at the correct times in the experiment. The four beams
with injected signals contain a raised level of Fisher Information compared to
the beams with normal observations only, despite the low SNR of the injected
signals.

chosen from the normal data set. The four inserted targets are
clearly identified through higher levels of mapping uncertainty,
in addition to the fact that beam 15 is located on the cusp of
the low-probability region. As with the previous two experi-
ments, Fig. 9 shows the change in mapping uncertainty over
time.

This final example demonstrates the ability of the visual-
ization and anomaly detection framework to signify multiple
anomalous beams over a background of noise and uninteresting
signals. This will allow an operator to select a subset of beams
to be investigated based on both the location on the uncertainty
surface of Fig. 8, for instance beam 5, and the beams with high
levels of surprise, such as the four beams containing injected
signals.

IV. CONCLUSION

This paper has presented a novel visual informatics for
anomaly detection in passive multibeam sonar. The approach
incorporates recent developments in probabilistic visualization
with the signal processing approach called residual modeling.
We focused not on merely the signal components, but also on
characterizing the distributions over the residuals in each beam.
This allows for the identification of anomalies in observations
at very low SNR, as shown in the experimental results. The
visualization of beam information allows for sonar operators to
identify signals with interesting contacts such that they can focus
on these beams and neglect the unsurprising beams, preventing
data overload.

Further research will test this method on more diverse real-
world data sets. In addition to this, we will investigate the set
of prototype signal and noise models that allow for identifica-
tion of anomalous contacts, such as submarines in the visual
representation and mapping uncertainty plot without highlight-
ing contacts known to be insignificant, such as merchant ships.
We will also look to implement this framework on data sets
containing marine animals to test whether the results with the
man-made vessels translate to this biological task.

APPENDIX

COMPOUND NOISE MODEL OPTIMIZATION

The compound mixture model characterizing the residuals εt
in each beam requires optimization of the K-distribution param-
eters before fitting the remaining parameters and hyperparam-
eters. This is essential since optimizing the parameters of the
K-distribution using gradient descent in a maximum-likelihood
(ML) fashion often leads to unrealistic parameters [33]. To rem-
edy this, the parameters of the K-distribution are fit to the resid-
uals in a Bayesian method-of-moments scheme introduced in
[19], following which the parameters and hyperparameters of
the rest of the compound mixture model are fit using gradient
descent over the negative log likelihood.

The priors specified for each distribution were initially set
as the conjugate priors, however some of these were found to
be a poor fit for the optimized parameters on real data sets. As
such, the distributions were chosen to be as representative of the
real-world data described in Section III. It should be noted that
there are no priors specified over the mixture weights as this has
only been found to slow convergence of the gradient learning
procedure.

First, the individual distributions and their relevant priors are
defined, following which the gradient learning procedure will
be described.

A. Model

1) Laplace Distribution: The PDF of the Laplace distribution
is

P (ε|μ, b) =
1
2b

exp
[

−|ε− μ|
b

]

. (22)

The priors over μ and b are Laplace and Gamma distributions,
respectively, i.e.,

P (ε|μ, b) = Laplace(ε|μ, b) (23)

P (μ|μ0 , b) = Laplace(μ|μ0 , b) (24)

P (b|αb, βb) = Gamma(b|αb, βb). (25)

2) Rayliegh Distribution: The PDF of the Rayleigh distribu-
tion is

P (ε|σ) =
ε

σ2 exp
[

− ε2

2σ2

]

. (26)

The prior over σ is a Gamma distribution

P (ε|σ) = Rayleigh(ε|σ) (27)

P (σ|aσ , bσ ) = Gamma(σ|aσ , bσ ). (28)

3) K-Distribution: The K-distribution is optimized using the
procedure from [19].

4) Gamma Distribution: The PDF of the Gamma distribu-
tion used in the SONAR noise model is

P (ε|α, β) =
1

Γ(α)
β−αε(α−1) exp

(

− ε
β

)

. (29)

The prior over β is again a Gamma distribution
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P (ε|α, β) = Gamma(ε|α, β) (30)

P (β|aβ , bβ ) = Gamma(β|aβ , bβ ). (31)

There is no closed-form conjugate prior for α and the distribu-
tion over α appears to change on each fit. As such, there is no
prior over α.

5) Normal Distribution: The probability density function of
the normal distribution is given by

P (ε|m, s) =
1√

2πs2
exp

[

− (ε−m)2

2s2

]

. (32)

The priors over m and s are Normal and Gamma distributions,
respectively

P (ε|m, s) = N (ε|m, s2) (33)

P (m|m0 , s) = N (m|m0 , s
2) (34)

P (s2 |as, bs) = Gamma(s2 |as, bs). (35)

6) Likelihood: The probabilistic model can now be written
as the maximization of

P (ε|θp)P (θp |θh) (36)

where P (ε|θp) is the data likelihood of ε given the parameters
θp , and P (θp |θh) is the prior distribution of the parameters θp ,
given the hyperparameters, θh . The data log likelihood is given
as

P (ε|θp) =
∑

i

⎡

⎣log

⎛

⎝π1Laplace(εi |μ, b) + π2Rayleigh(εi |σ)

+ π3K + π4Gamma(εi |α, β)

+π5N (εi |m, s2) +N

⎛

⎝
∑

j

πj − 1

⎞

⎠

⎞

⎠

⎤

⎦

(37)

where πj are the mixture weights and N(
∑

j πj − 1) relates to
the Lagrange multiplier used to ensure that the π′j s sum to unity.

Optimization in the maximum a posteriori (MAP) context in-
volves maximizing the posterior distribution, typically ignoring
the effects of the unknown distributionP (ε), known as the model
evidence. In reality, it is often the case that the negative log like-
lihood and negative log-prior distributions are analyzed. Denot-
ing the set of parameters and hyperparameters θ = {θp , θh}, the
optimization involves evaluating the gradients for each θi

−∂ logP (ε|θp)
∂θi

+
−∂ logP (θp |θh)

∂θi
(38)

to find a minimum. This is often performed using a nonlinear
gradient optimizer, such as scaled conjugate gradients (SCGs).
It should be noted that many of the above distributions require
the parameters to be greater than zero and as such the computa-
tional implementation of the derivative was taken with respect
to the square root of the parameter, following which it was then
squared. This notation is omitted here to keep the expressions
as simple as possible.

B. Gradients

1) Laplace Parameters and Hyperparameters: The param-
eters and hyperparameters relevant to the Laplace distribution
are {μ, b, μ0 , αb , βb} with the following derivatives:

∂

∂μ
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1
P (ε|θp )

(
1

2b2 exp
[
|ε−μ |
b

])
π1 if ε ≥ μ

−(−1)h 1
b ,

1
P (ε|θp )

(
1

2b2 exp
[
|ε−μ |
b

])
π1 if ε < μ

−(−1)h 1
b ,

(39)

∂

∂b
=

1
P (ε|θp)

(

− 1
2b2

+
|ε− μ|

2b3

)

exp
(−|ε− μ|

b

)

π1

−
[
1
b
− |μ− μ0 |

b2
+

1
2β2

b

(2b− 2αb)
]

(40)

∂

∂μ0
= −1

b
(41)

∂

∂αb
=

1
2β2

b

(−2b+ 2αb). (42)

where h is the Heaviside function, h = 1 if μ < μ0 and h = 0
if μ ≥ μ0 .

2) Rayleigh Parameters and Hyperparameters: The param-
eters and hyperparameters relevant to the Rayleigh distribution
are {σ, aσ , bσ} with the following derivatives:

∂

∂σ
=

1
P (ε|θp)

(
ε3

σ5 −
2ε
σ3

)

exp
[−ε2

2σ2

]

π2−
[
bσ
σ2 +

aσ
σ

+
1
σ

]

(43)

∂

∂aσ
= − log

(
bσ
σ

)

+ Ψ(aσ ) (44)

∂

∂bσ
=

1
σ
− aσ
bσ
. (45)

3) Gamma Parameters and Hyperparameters: The parame-
ters and hyperparameters relevant to the Gamma distribution are
{α, β, aβ , bβ} with the following derivatives:

∂

∂α
=

1
P (ε|θp) (log(ε)− log(β)−Ψ(α))

×
(

1
Γ(α)

ε(α−1)β−α exp
[−ε
β

])

π4 (46)

∂

∂β
=

1
P (ε|θp)

(
1

Γ(α)
exp

[−ε
β

]

×
(
εαβ(−2−α) − ε−1+ααβ−1−α

)
)

π4

+
[

− (aβ − 1)
β

+ bβ

]

(47)

∂

∂aβ
= − log(β)− log(bβ ) + Ψ(aβ ) (48)

∂

∂bβ
= β − aβ

bβ
. (49)
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4) Normal Parameters and Hyperparameters: The parame-
ters and hyperparameters relevant to the normal distribution are
{m, s,m0 , as , bs} with the following derivatives:

∂

∂m
=

1
P (ε|θp)

(
(ε−m)√

2πs3
exp

[−(ε−m)2

2s2

])

π5

− (m−m0)
s2 (50)

∂

∂s2 =
1

P (ε|θp)
( −1√

2πs2
+

(ε−m)2

s4

)

exp
[−(ε−m)2

2s2

]

π5

+
[

1
2s2 −

(m−m0)2

2s4 − bs
s4 +

as
s2 +

1
s2

]

(51)

∂

∂m0
=

(m0 −m)
s2 (52)

∂

∂as
= − log

(
bs
s2

)

+ Ψ(as) (53)

∂

∂bs
=

1
s2 −

as
bs
. (54)

5) Mixture Coefficients: The derivatives with respect to the
mixture coefficients {πj , j = 1 : 5} are given by

∂

∂π1
=

Laplace
P (ε|θp) −N (55)

∂

∂π2
=

Rayleigh
P (ε|θp) −N (56)

∂

∂π3
=

K
P (ε|θp) −N (57)

∂

∂π4
=

Gamma
P (ε|θp) −N (58)

∂

∂π5
=

N
P (ε|θp) −N (59)

where the left term in each derivative is the relative responsibility
of the mixture weight, and the N (number of datapoints) term
is given by the Lagrange multiplier constraint.

These terms for the parameters and hyperparameters can be
used by any standard nonlinear optimization algorithm to fit the
noise distribution. For the experiments of Section III, SCG was
used to optimize the parameters of the MAP compound noise
mixture. An example of the residuals’ histogram for beam 21
of the normal experiment detailed in Section III-A is shown in
Fig. 10.

The mixture model is a good fit to the residuals, smoothing
out the effects of the outliers. Fig. 11 shows a comparison be-
tween the negative log likelihood of a Gaussian mixture model
approximation in addition to ML and MAP fits of the compound
mixture model detailed in Section II-B.

The ML and MAP mixtures fit the residuals better than the
GMM. The MAP fit is smoother and more reliable than the ML
approach. All parameters here are fit with SCG and as such
can achieve a local minima. The local minima in the optimiza-
tion can force the distributions to swap mixture weights without

Fig. 10. Histogram of the residuals εt of beam 21 for 1 s of data. The fit of
the noise distribution is shown in red.

Fig. 11. Negative log likelihoods for the mixture model fit to 1 s of SONAR
data. The MAP fit is on average better than that of the ML and GMM.

necessarily changing the overall shape of the distribution, typi-
cally for the Gamma and K distributions.

ACKNOWLEDGMENT

The authors would like to thank DSTL for supplying the data
set used for the experiments in this paper. They would also like
to thank L. Hart, R. Taylor, and G. Williams from Thales U.K.,
as well as D. Allwright from Smiths Industries, for discussions
leading to the development of this framework.

REFERENCES

[1] S. D. Somasundaram and A. Jakobsson, “Degradation of covariance
reconstruction-based robust adaptive beamformers,” in Proc. Sensor Sig-
nal Process. Defence, Sep. 2014, pp. 1–5.

[2] S. D. Somasundaram, N. R. Butt, A. Jakobsson, and L. Hart, “Low-
complexity uncertainty-set-based robust adaptive beamforming for pas-
sive sonar,” IEEE J. Ocean. Eng., vol. 99, pp. 1–17, Nov. 2015.

[3] A. E. A. Blomberg, A. Austeng, and R. E. Hansen, “Adaptive beam-
forming applied to a cylindrical sonar array using an interpolated array
transformation,” IEEE J. Ocean. Eng., vol. 37, no. 1, pp. 25–34, Jan. 2012.

[4] J. I. Buskenes, J. P. Asen, C. I. C. Nilsen, and A. Austeng, “An opti-
mized GPU implementation of the MVDR beamformer for active sonar
imaging,” IEEE J. Ocean. Eng., vol. 40, no. 2, pp. 441–451, Apr. 2015.

[5] T. Wood, D. Allwright, P. Bond, S. Long, and I. Moroz, “A new method for
processing passive sonar data,” in Proc. 13th Conf. Inf. Fusion., Jul. 2010,
pp. 1–7.

[6] I. C. Rivera-Collazo, “Looking at the ‘Continent divided by water’: Coastal
and human dynamics, and the potential for submerged landscapes in the
Caribbean,” in Proc. IEEE/OES Acoust. Underwater Geosci. Symp. (RIO
Acoust.), Jul. 2015, pp. 1–10.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RICE AND LOWE: DECISION SUPPORT SYSTEM TO EASE OPERATOR OVERLOAD IN MULTIBEAM PASSIVE SONAR 11

[7] D. Shea, D. Dawe, J. Dillon, and S. Chapman, “Real-time SAS processing
for high-arctic AUV surveys,” in Proc. IEEE/OES Auton. Underwater
Vehicles, Oct. 2014, pp. 1–5.

[8] D. Lu, H. Li, Y. Wei, and T. Shen, “An improved merging algorithm for
Delaunay meshing on 3D visualization multibeam bathymetric data,” in
Proc. IEEE Int. Conf. Inf. Autom., Jun. 2010, pp. 1171–1176.

[9] C. G. Capus, A. C. Banks, E. Coiras, I. T. Ruiz, C. J. Smith, and Y. R.
Petillot, “Data correction for visualisation and classification of sidescan
SONAR imagery,” IET Radar, Sonar Navig., vol. 2, no. 3, pp. 155–169,
Jun. 2008.

[10] P. A. M. de Theije, “STARE, a sonar data post-processing and visualisation
software package,” in Proc. Eur. Oceans, Jun. 2005, vol. 1, pp. 481–488.

[11] C. Barngrover, A. Althoff, P. DeGuzman, and R. Kastner, “A brain–
computer interface (BCI) for the detection of mine-like objects in sides-
can sonar imagery,” IEEE J. Ocean. Eng., vol. 41, no. 1, pp. 123–138,
Jan. 2016.

[12] DSTL, “Call: Data and information assimilation,” 2015. [Online]. Avail-
able: http://www.science.mod.uk/events/event_detail.aspx?eventid=105

[13] M. Sivaraksa and D. Lowe, “Probabilistic NeuroScale for uncertainty
visualisation,” in Proc. 13th Int. Conf. Inf. Vis., Barcelona, Spain, Jul.
15–17, 2009, pp. 74–79.

[14] J. W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE
Trans. Comput., vol. 18, no. 5, pp. 401–409, May 1969.

[15] D. Lowe and M. Tipping, “NeuroScale: Novel topographic feature extrac-
tion using RBF networks,” in Advances in Neural Information Processing
Systems 9, M. Mozer, M. Jordan, and T. Petsche, Eds. Cambridge, MA,
USA: MIT Press, 1997, pp. 543–549.

[16] D. Broomhead and D. Lowe, “Multivariable functional interpolation and
adaptive networks,” Complex Syst., vol. 2, pp. 321–355, 1988.

[17] C. M. Bishop, M. Svensen, and C. K. I. Williams, “GTM: The generative
topographic mapping,” Neural Comput., vol. 10, no. 1, pp. 215–234, 1998.

[18] N. Lawrence, “Gaussian process latent variable models for visualisation
of high dimensional data,” in Advances in Neural Information Processing
Systems 16. Cambridge, MA, USA: MIT Press, Dec. 2003, pp. 329–336.

[19] D. Abraham and A. Lyons, “Reliable methods for estimating the K-
distribution shape parameter,” IEEE J. Ocean. Eng., vol. 35, no. 2, pp. 288–
302, Apr. 2010.

[20] M. D. Buhmann and M. D. Buhmann, Radial Basis Functions. New York,
NY, USA: Cambridge Univ. Press, 2003.

[21] R. B. Cattell, “The scree test for the number of factors.” Multivariate
Behav. Res., vol. 1, pp. 245–276, 1966.

[22] F. Takens, Detecting Strange Attractors in Turbulence (Series Dynamical
Systems and Turbulence, Lecture Notes in Mathematics), vol. 898. Berlin,
Germany: Springer-Verlag, 1981, pp. 366–381.

[23] H. Whitney, “The self-intersections of a smooth n-manifold in 2n-space,”
Ann. Math., vol. 45, no. 2, pp. 220–246, Apr. 1944.

[24] F. Camastra and M. Filippone, “A comparative evaluation of nonlinear
dynamics methods for time series prediction,” Neural Comput. Appl.,
vol. 18, no. 8, pp. 1021–1029, 2009.

[25] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[26] I. Rice and D. Lowe, “Topographic visual analytics of multibeam dy-
namic SONAR data,” in Proc. Sensor Signal Process. Defence, Sep. 2014,
pp. 1–5.

[27] D. Abraham, J. Gelb, and A. Oldag, “K-Rayleigh mixture model for sparse
active SONAR clutter,” in Proc. IEEE OCEANS, Sydney, NSW, Australia,
May 2010, pp. 1–6.

[28] S. Haykin and S. Puthusserypady, Chaotic Dynamics of Sea Clutter (Series
Adaptive and Learning Systems for Signal Processing, Communications
and Control). S. Haykin, Ed. Hoboken, NJ, USA: Wiley, 1999.

[29] I. Rice, R. Benton, L. Hart, and D. Lowe, “Analysis of multibeam SONAR
data using dissimilarity representations,” in Proc. 3rd IMA Math. Defence,
Oct. 2013, pp. 1–6.

[30] M. Tipping and D. Lowe, “Shadow Targets: A novel algorithm for topo-
graphic projections by radial basis functions,” NeuroComputing, vol. 19,
pp. 211–222, 1997.

[31] C. R. Rao, “Information and the accuracy attainable in the estimation
of statistical parameters,” Bull. Calcutta Math. Soc., vol. 37, pp. 81–89,
1945.

[32] A. C. Atkinson and A. N. Donev, Optimum Experimental Designs.
London, U.K.: Oxford Univ. Press, 1992.
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