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Large Uniform Copper 1,3,5-Benzenetricarboxylate Metal-Organic-Framework Particles from 
Slurry Crystallization and Their Outstanding CO2 Gas Adsorption Capacity 
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Large uniform HKUST-1 particle with outstanding CO2 capture capacity is firstly prepared 
in an eco-friendly slurry crystallization system. 
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ABSTRACT: To prepare more and better metal organic frameworks (MOFs) from less solvent 

for capturing greenhouse gas, a modified slurry crystallization (MSC) method has been first 

demonstrated for making MOF copper 1, 3, 5-benzenetricarboxylate from a solvent-deficient 

system. One outstanding advantage is its drastic reduction of solvent consumption and waste 

liquid in the whole synthesis. In a typical process, the mass ratio of ethanol to the solid reactants 

is ~ 0.52, which is only about 0.35% ~ 7.5% of that used in conventional processes. A high yield 

of ~ 98.0 % is easily achieved for the product with uniform size up to 160 µm. The obtained 

MOFs demonstrate the characteristic microporous network with a surface area of ~1851 m2 g−1 

and a pore volume of ~0.78 cm3 g−1, which benefit to adsorb high quantity of CO2 ~ 6.73 mol kg-

1 at ordinary pressure. X-ray diffraction studies indicate that the MOFs possess an outstanding 

diffraction intensity ratio of the crystal plane (2, 2, 2) to (2, 0, 0), I(222)/I(200) = 22.4. The MSC 

method provides a cost-effective approach for large-scale production of MOFs with more 

attractive properties than others. Most importantly, it can significantly cut down the waste liquid 

and production cost.  
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1. Introduction 

Metal-organic frameworks (MOFs) standing out from microporous materials are 

mainly due to their unique characteristics, such as high surface area, structural tunability 

and diverse functionality. Judicious assembly of metal cations and organic ligands as 

building blocks allows bespoke MOFs’ structure to be constructed to best suit the 

requirements for various applications, e.g. hydrogen storage, gas separation, CO2 capture 

and catalyst supporter.1-4 There are many key factors influencing their industrial 

implementation,2 one of which is their cost dominated by ligands and solvents. In addition 

to the ligands, a large amount of organic solvent used for mixing the initial reactants and 

facilitating the MOF crystallization.5, 6 Although the solvent plays the key roles in the 

crystallization process, i.e. regulating the formation of the different coordination 

environment; acting as structure directing agent to control the configuration of the 

structure and as a guest molecule to stabilize MOF structure, the mechanism of the 

solvent mediating specific MOF crystallization in fact still remains unclear. This 

inevitably results in the irrational consumption of solvents, high running cost and serious 

environmental concerns. 

Among the diverse MOFs, a typical MOF coded as HKUST-1 (also as 

Cu3(BTC)2(H2O)3�xH2O) has been widely studied.7 Compared with most of other MOFs, 

its starting materials are relatively cheaper. Particularly, the bezenetricarboxylic (BTC) 

acid only costs about $ 20.0 kg-1 or less.8 A wide range of copper sources including 

Cu(NO3)2, Cu(CH3COO)2, Cu(OH)2 and even metal Cu (by Galvanic corrosion) are 

available for making HKUST-1 in different solvents.9 HKUST-1 with different specific 

surface area can be synthesized in different yields by solvo/hydrothermal method at 348-
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393 K.10-13 For example, refluxing dimethylformamide (DMF) at 423 K produces 

HKSUT-1 in a 65% yield. Subsequently, high surface area can be achieved by a thorough 

solvent displacing operation.14 Other approaches including microwave-assisted 

synthesis,15 electrochemical route,4 and ultrasonic synthesis,16 were also investigated.17 It 

should be noted that a large amount of organic solvent, methanol (MeOH),4 ethanol 

(EtOH),7 DMF,14 or dimethyl sulfoxide (DMSO),18 are used in the above processes 

accompanying with plenty of waste liquid.19 Their mass ratios of organic solvent to solid 

reactants in preparation process are calculated at about 7 ~ 150. Most of the MOF crystals 

are centered at around 1.0 µm in diameter. Alternatively, solventless mechano-chemical 

synthesis has been developed for preparing HKUST-1. However, a large amount of EtOH 

is still required to purify and activate the products.17, 20-23 The mechanical impact process 

also encounter the risk of serious explosion. From a commercial and sustainable 

viewpoint, using cheap and recyclable solvent and maximally reducing waste liquid to 

save processing energy should be taken into consideration. Water is a perfect green 

solvent. However, when water is exclusively used in the synthesis system, the one-

dimensional zigzag chain structure Cu(BTC)(H2O)3 (catena-triaqua-µ-(1,3,5-

benzenetricarboxylate)-copper(II)) is formed only.5 Feasibly, a rationally small amount of 

organic solvent is required for the formation of the ideal HKUST-1 structure. Based on 

this, a cost-effective strategy to produce a high quality MOF using less solvent is desired. 

Recently, slurry or suspension crystallization technique has been studied for co-crystallization 

of pharmaceuticals, aiming to modify drug property.24 We think this approach can be used for 

making MOFs and rationally reduce the consumption of solvent. Meanwhile, a high spacetime 

yield can be expected. In this work, taken the MOF HKUST-1 as a model, a modified slurry 
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crystallization (MSC) is demonstrated to synthesize it in a cost-effective style. The evolution of 

its morphology and property dependent on the method has been mainly investigated.  

2. Experimental 

2.1 Chemicals: 1, 3, 5-benzene tricarboxylic acid (H3BTC, >99%) was used as obtained from 

Maya Reagent Company. Copper(II) nitrate trihydrate (Cu(NO3)2·3H2O, >99%), ethanol (EtOH, 

>99.7%) were purchased from Tianjin Kemiou Chemical Reagent Co. All raw materials were 

used without further purification. 

2.2 Preparation of HKUST-1 using modified slurry crystallization (MSC) method: The 

stoichiometric molar ratio of Cu(NO3)2·3H2O to H3BTC is kept at 3:2 for all the experiments, 

also the volumetric ratio of EtOH/H2O at 1:1 (Table 1). The relative quantity of solvent to the 

solid reactants is varied from 0.13 to 2.07, allowing the effect of solvent amount on the product 

to be examined. H-1, H-0.5 and H-0.25 use a little amount of EtOH varying from 1.5 to 0.375 

mL. Briefly, Cu(NO3)2·3H2O (1.44 g, 6.0 mmol) is dissolved in the pre-mixed solution with 

deionized H2O (1.5 mL, 1.49 g, 83.09 mmol) and EtOH (1.5 mL, 1.18 g, 25.68 mmol) and stirred 

at room temperature for 30 min. Then H3BTC powder (0.84 g, 4.0 mmol) is added in the 

previous blue solution with further stirring for 60 min. The mass ratio of EtOH to the solid 

reactants (Cu(NO3)2·3H2O plus H3BTC) (E/S) is calculated at about 0.52. Finally the obtained 

slurry is sealed in 25 mL autoclave and heated at 383 K for 10 h. After the autoclave is cooled to 

room temperature, liquid droplets on the upper of autoclave inside are collected and removed. 

The blue crystal is directly dried at room temperature overnight as as-made sample H-1 without 

any washing. The space-time yield is calculated at 790.8 kg m−3 d−1. In case of preparation of H-

2 and H-4, obvious mother liquor is remained at the autoclave bottom and decanted for collecting 

samples. They are harvested in a yield of around 98%. 
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2.3 Characterizations: X-ray diffraction (XRD) patterns are recorded on a Rigaku D/Max-

3B type X-ray diffractometer with the Cu Kα radiation, (λ= 0.15406 nm, 40 kV, 40 mA) 

in a scan range of 5-50°. N2 adsorption-desorption isotherms are measured on JW-BK122 

W at 196 °C. Pore size distributions are calculated from Horvath-Kawazoe method. The 

sample is outgassed at 150 °C for 10 h before measurements. Thermogravimetry (TG) 

curves of samples are collected on a Netzsch STA 449 F5 TG/DTG instrument. About 5 

mg of samples are placed onto an alumina crucible and heated at a ramp of 10 °C·min−1 in 

the range of from 25 to 800 °C in N2 flow (100 mL·min−1) to analyze thermal stability. 

SEM images are collected on Field Emission Scanning Electron Microscope JSM-7100F 

operated at 10 kV. All the samples are coated a thin gold film. The optical light 

microscopy images are observed with a Leica MS5 binocular eyepiece with transmitted 

light and polarization filter. The images of isolated crystals are taken with a Nikon 

COOLPIX 4500 digital camera through a special ocular connection. 

2.4 CO2 adsorption investigation: The CO2 adsorption isotherms are measured on JW-

BK122W. The CO2 gas with high purity (99.999%) is regulated in a range of 0 – 1.0 bar. 

First, 0.1 – 0.2 g sample was put into the sample tube and outgassed at 423 K overnight 

before the testing, then started to measure at room temperature of 295 K. The weight of 

samples was recorded after the measurement. 

3. Results and Discussion 

In the MSC process, a thick gel-like mixture of HKUST-1 precursor is initially formed, 

followed by its crystallization at 383 K for 10 h. Condensed acidic liquid droplets (HNO3, EtOH 

and H2O) aggregate on the upper section inside the autoclave. Semidry crystals in deep turquoise 

are formed at the bottom of the autoclave. They are collected in an almost calculated yield and 
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dried in the air without further washing treatment. XRD patterns of the samples are stacked in 

Figure 1. Their peak positions are consistent with the reported HKUST-1 except that detectable 

impurity appears in the sample H-0.25.10 However, the ratios of diffraction intensity I(222)/I(200) 

(2θ = 11.6, 9.5o) with respect to the crystal planes (222) and (200) are obviously varied along 

with the used solvent quantity (Table 1). In details, the sample H-1 prepared with the E/S ratio 

of 0.52 exhibits the strongest diffraction intensity (Figure 1A), implying the highest crystallinity 

of this sample compared to the other ones. The enhanced dominant peak at 2θ = 11.6o is 

observed for all the samples. The largest ratio of I(222)/I(200) is up to 22.438 for the sample H-1. 

Similar results have been observed for the oriented growth of HKUST-1 either on the –CH3 and 

–OH functionalized self-assembled monolayer10 or in a harsh environment.18 By means of 

atomic force microscopy and in-situ diffraction analysis,25-27 it clarifies that the crystal growth 

prefers to take along [111] orientation. The growth feature well coincides with the extreme 

supersaturation of the initial mixture and the crystallization conditions.28 Under the synthesis 

condition here, the simulation of isothermal vapor-liquid equilibrium has shown that much less 

molar number of H2O and EtOH, 6.89 mmol, are in liquid phase at 383 K in a volume of 25 mL 

with a molar fraction of EtOH 0.03 only, compared with a value of 102.1 mmol in vapor phase 

equivalent to ~2.5 mL at room temperature, where the molar fraction of EtOH is 0.25. 

Obviously, in this case, much less amount of liquid presents for the growth of HKUST-1 crystal, 

which may finally influence MOF particle size. With doubling the E/S ratio (1.03) in the sample 

H-2, the ratio of I(222)/I(200) decreases to 8.072; and further decreases to 3.225 for the sample H-4 

with an E/S values of 2.07 (Figure 1B, C and Table 1), which is close to common HKUST-1 

from hydrothermal method. From these results, we consider that it is possible to optimize the use 

of a solvent to control the growth and even the yield of HKUST-1 crystal. For the samples H-0.5 
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and H-0.25, the used solvents are not enough to provide a suitable environment for the 

crystallization. In details, the solvent is not enough to mix reactants homogeneously and to 

provide a proper mobility for the undissolved reactants, leading to the formation of the impurity 

and the incomplete reaction (Figure 1E, F).5 When the EtOH is only used as the solvent without 

any added H2O and the E/S ratio is still kept at 0.52, the obtained sample H-10 shows a very low 

crystallinity but no detectable impurity from XRD pattern (Figure 1D). Its I(222)/I(200) ratio is 

similar to that of H-4 (Table 1). This result implies that H2O plays a crucial role in the growth of 

large HKUST-1 crystals. Similar results have been observed for the HKUST-1 prepared from 

Cu(OH)2.
9 

Figure 2 shows SEM images of as-made samples H-4, H-2, H-1, H-10, H-0.5, and 

H-0.25. The sample H-4 (E/S = 2.07) is mainly composed of 13 µm uniform particles and 

small number of ones in 25-35 µm (Figure 2A, B). They are regular and smooth. Just as 

observed and calculated from its optical photograph (Figure 3a, b), about 62% particles 

center at 15 µm in size (Figure 3c). In the whole batch sample, it can be seen that a thick 

layer of small uniform particles gather at the bottom and only a thin layer of large ones 

stands on the top (Figure S2a). When the ratio E/S reduces to 1.03, the sample H-2 

particles tend to become bigger. It is mainly composed of 20-60 µm and 100-140 µm 

regular crystals, (Figure 2C, D). Their surfaces become rough compared to the sample H-

4. Its particle size distribution (Figure 3f) is also calculated at about 41.3% and 43.5% 

separately according to its optical images (Figure 3d, e). With the ratio E/S further 

decreasing to 0.52, the sample H-1 exhibits uniform large octahedral crystals (Figure 2E, 

F). About 92 % of the crystals increase to 80-160 µm in size (Figure 3g, h, i). What’s 

more, their color turns thick because of the enhanced size, which can be observed from its 
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overall photograph (Figure S2c). All the results indicate that minute solvent benefits to 

get deep turquoise and large particle (Figure S2c). Combining with previous XRD 

results, they suggest a preferentially oriented growth of crystals in such a solvent-

deficient system. Similar crystal oriented growth and morphology evolution was observed 

by increasing the concentration of KNO3 in EtOH/H2O solution.29 Small size particles 

mainly contain the high-energy {100} facets, whereas the larger crystals have the 

developed low-energy {111} facets. To some extent, this might be similar to the 

reduction of the ratio E/S, i.e. increasing the concentration of Cu2+ and BTC. Adjusting 

the solution concentration will impact the interaction between Cu2+ and BTC and promote 

their assembling along one direction towards the low-energy facets. Similarly, small 

changes of crystal size and morphology dependent on the concentration also happened in 

microwave and hydrothermal synthesis of HKUST-1.15,30 In the absence of H2O, the 

small but uniform crystals (2-14 µm) are observed in the sample H-10 (Figure 2G, H and 

Figure 3j, k, l), indicating the importance of H2O in mediating crystals size. Interestingly, 

the very tiny particles take on bluish green color different from others (Figure S3d). For 

the sample H-0.5 prepared from E/S = 0.26, particles are aggregating into irregular shapes 

in around 100 µm (Figure 2I, J). They are HKUST-1 crystals but with low crystallinity. 

It can be seen that they are covered with some amorphous species (Figure 2J). From its 

optical image (Figure S1b and Figure S2e), it can be also observed that tiny white 

particles are mixed with HKUST-1 crystals. Combining the above results, we can deduce 

that the white particle as impurity is part of unreacted ligand. Particularly, in the case of 

the sample H-0.25 derived from the further reduced ratio E/S = 0.13, the sample displays 

irregular shape with different size (Figure 2K, L). Many white particles appear in the 
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product (Figure S1b, c and Figure S2f), implying the existence of impurity composed of 

unreacted ligand and unknown phase concluded from the XRD result.31 Their FTIR 

spectra also exhibit some difference between them (Figure 4). Two obvious bands 

ascribing to the stretching vibrations of C=O (1709 cm−1) and C-O (1232 cm−1) labeled 

by dashed lines are observed for samples H-0.5 and H-0.25 (Figure 4e, f), which are the 

characteristic bands of ligand H3BTC. Therefore, their presence in FTIR spectra indicates 

the unreacted ligand staying in the samples. The results coincide with the observations 

from photographical images above. Noticeably, the two vibration bands are drastically 

weakened even disappeared in the other HKUST-1 samples including H-1, H-2, H-4 and 

H-10 (Figure 4a-d), implying no ligand remaining in them. That means the obtained 

sample is highly pure and agrees with the conclusions from their XRD patterns and 

images.  

Although crystal size and morphology of samples depend on the preparation 

conditions, their thermal stability that is determined by the framework structure is not 

affected. This is reflected in the TG profiles in Figure 5. MOFs H-1, H-2 and H-4 show 

weight loss ~20.4 wt% at about 100 oC that can be ascribed to the removal of physically 

adsorbed EtOH and H2O (Figure 5a-c). A further weight loss 4.6 wt% occurring at ~150 

oC is related to the removal of the coordinated H2O (Figure 5a-c). When the temperature 

rises to ~ 355 oC, the frameworks become thermally unstable (Figure 5a-c).7, 32 H-0.5 

performs differently, because it is a mixture of HKUST-1 crystals and the unreacted 

ligand (Figure 5e). The results are consistent with the conclusion from above FT-IR 

results and images. H-10 was obtained from anhydrous EtOH. At ~100 oC, its weight loss 

is only 14.9 wt% (Figure 5d) contributed from the removal of adsorbed ethanol, which is 
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different from and less than that of other MOFs crystallized in ethanol-water solution. As 

a result, the sample H-10 reasonably shows the least total weight loss among all the as-

made samples. If we suppose that both sample H-10 and H-1 have the same pore volume, 

the ratio of weight loss below 100 oC is calculated at 0.73 and very close to the density 

ratio 0.79 of EtOH to H2O. Considering the relative polarity of ethanol to water, 0.654, 

this infers that the HKUST-1 has affinity to adsorb more polar water molecules.  

N2 adsorption isotherms of samples H-1, H-2, H-4 and H-10 are of type I curves 

corresponding to microporous materials but exhibit different adsorption volumes (Figure 

6 (A)a-d). All the samples display fairly narrow pore size distributions centered at about 

0.62 nm (Figure 6 (B)a-d), coinciding with their micropore structure. Amazingly, the 

sample H-1 achieves a high BET surface area up to 1851 m2 g−1 and pore volume of 0.78 

cm3 g−1 (Figure 6 (A)a), which is in the scope of high surface area materials (Table 2). 

For samples H-2 and H-4, their surface areas are 1539 and 1258 m2 g−1, pore volumes 

0.63 and 0.48 cm3 g−1, respectively. In case of sample H-10 with rather small size, it 

displays the smallest surface area (932 m2 g−1) and pore volume (0.43 cm3 g−1) among 

them. According to the above XRD results (Figure 1a-d), no detectable peak at 2θ = 

36.4o can be observed for possible impurity Cu2O present in the products. Therefore, the 

difference between their surface areas is directly in relation to their particle sizes. 

Predictably, the large H-1 particles will perform better gas adsorption than others. 

Figure 7 shows the results of CO2 gas adsorption over the samples H-1, H-2, and H-4. 

The highest adsorption capacity of 6.73 mol kg-1 (Figure 7a), has been achieved by the 

sample H-1 composed of the biggest and most uniform crystals among all the samples 

(Figure 2E, F). As far as we know, this capacity is higher than the published results at the 
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same adsorption conditions.33 Samples H-2 and H-4 with small particle size adsorb CO2 

of 5.06 and 3.92 mol kg-1 (Figure 7b, c), respectively. The results clearly line out the 

effect of particle size on CO2 gas adsorption capacity of samples HKUST-1. Compared 

with the previously reported CO2 adsorption capacity of 1.0 – 4.5 mol kg-1 over small size 

HKUST-1,34-39 we tentatively believe that the particle H-1 with large size can provide 

longer porous channels and hence accommodate more CO2 molecules than others. 

Basing on the above observation, we propose the difference between the 

solvo/hydrothermal method and the MSC adopted in this study as shown in Figure 8. 

Usually, MOFs are solvo/hydrothermally prepared in systems involving a large amount of 

solvents (Figure 8a), which mainly follow solution-mediated transport mechanism for 

crystal growth. The mechanism generally involves the complete dissolution of precursors 

and necessary mobility of the dissolved species by solution-mediated transport to nucleate 

for crystal formation.40 Herein, Cu(NO3)2·3H2O and H3BTC can be easily dissolved in a 

huge amount of solvent. A gas-liquid phase equilibrium is established between the mixed 

vapor (H2O, EtOH and HNO3) and the mother liquor during the crystallization process. In 

the whole preparation process, the liquor always stays and establishes a dynamic 

equilibrium between dissolution and crystallization of HKUST-1 crystals. The liquor 

containing part of reactants is finally drained away as waste liquid. As a result, this leads 

to a low yield and environmental pollution. The polydispersity in the conventional 

synthesis has been explained by simultaneous nucleation and growth.41 

In the MSC process (Figure 8b), the reaction slurry is supersaturated by significantly 

reducing solvent amount, which is about 10% or less than that of hydrothermal method. 

Undoubtedly, the usage of small quantity solvent diminishes the formation of large 
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amount of mother liquor from the first place. Moreover, most of the mother liquor during 

the crystallization process presents as the vapor phase in the upper section of the reactor, 

which is apparently separated from the formed crystals at the bottom of reactor. Thus, the 

absence of liquid phase containing high concentration of MOF crystals can not facilities 

new nucleation favourably.42,43 Once nucleation completes during the slurry making, 

crystals will equally grow from the existing nuclei made from the building blocks, which 

allow the uniform crystals to be formed along a low energy favor orientation. For 

example, the sample H-1 has fairly uniform size distribution (Figure 2i) than the sample 

H-2 and H-4, its particle is also much bigger than that of conventional synthesis. Finally, 

the large size of the uniform particles may lead to a high diffraction ratio of crystal plane 

(222) to (200) (Figure 1a). Here, such a MSC process is similar to the confined 

evaporation of a clear precursor solution for patterning HKUST-1.18 Since no obvious 

liquor is left, the large product particles can be easily harvested in an almost calculated 

yield. 

4. Conclusions 

In summary, we have demonstrated the MSC method for the first time for the complete 

conversion of a solvent-deficient slurry into a pure MOF material. This method can 

produce MOF HKUST-1 with uniform size up to 160 µm with less solvent in a high yield. 

The large HKUST-1 particles exhibit high surface area of 1851 m2 g-1 and an excellent 

CO2 adsorption capacity of 6.73 mol kg-1 at normal pressure. The MSC method is of 

significant interest for producing MOFs in a cost-effective manner and avoiding to handle 

large amount of solvent and waste liquid. Most importantly, the MOF derived from the 
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MSC method displays more attractive property and application performance than others. 

Its feasibility for synthesizing other types of MOFs is being under investigation. 
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Figure captions: 

Figure 1. XRD patterns of as-made samples: (A) H-1; (B) H-2; (C) H-4; (D) H-10; (E) H-

0.5; and (F) H-0.25 synthesized with different amount of solvent at 383 K for 10 h 

Figure 2. SEM images of as-made samples: (A, B) H-4; (C, D) H-2; (E, F) H-1; (G, H) 

H-10; (I, J) H-0.5; and (K, L) H-0.25 

Figure 3. Light microscopy images and particle size distributions of as-made samples: (a, 

b, c) H-4; (d, e, f) H-2; (g, h, i) H-1; and (j, k, l) H-10 

Figure 4. FT-IR spectra of as-made HKUST-1 samples: (a) H-1; (b) H-2; (c) H-4; (d) H-

10; (e) H-0.5; and (f) H-0.25 synthesized with different amount of solvent at 383 K 

Figure 5. TG curves of as-made HKUST-1 samples in N2: (a) H-1; (b) H-2; (c) H-4; (d) 

H-10; and (e) H-0.5 

Figure 6. N2 adsorption-desorption isotherms (A) and pore size distributions (B) of samples: (a) 

H-1; (b) H-2; (c) H-4; and (d) H-10 

Figure 7. CO2 gas adsorption isotherms at 295 K and pressure 0 – 1.0 bar on samples 

HKUST-1: (a) H-1; (b) H-2; and (c) H-4 

Figure 8. Schematic diagram of the crystallization methods for synthesizing HKUST-1: (a) 

solvo/hydrothermal process and (b) modified slurry crystallization process 
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Table 1. Synthetic conditions used in MSC method and properties of samples 

HKUST-1 

Code EtOH (ml) H2O (mL) E/Sa) I(222)/I(200) 

H-1 1.5  1.5 0.52 22.438 

H-2 3.0 3.0 1.03 8.072 

H-4 6.0 6.0 2.07 3.225 

H-10 1.5 0.0 0.52 3.257 

H-0.5 0.75 0.75 0.26 3.071 b) 

H-0.25 0.375  0.375 0.13 4.076 c) 

a) Mass ratio of EtOH to the solid materials; b) Containing tiny impurity; c) 

Containing unknown phase. 
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Table 2. Textural characteristics of samples herein and reported ones 

Sample SBET [m
2·g-1]  a) VT [cm3·g-1]  b) Reference 

H-1 1851 0.78 This work 

H-2 1539 0.63 This work  

H-4 1258 0.48 This work 

H-10 932 0.43 This work 

HKUST-1c) 692 0.33 7 

HKUST-1c) 1067 0.52 6 

HKUST-1d) 1075 0.66 16 

HKUST-1e) 1215 0.60 23 

HKUST-1c) 1333 0.658 33 

HKUST-1e) 1364 N/A 20 

HKUST-1f) 1392 0.56 15 

HKUST-1c) 1503 N/A 9 

HKUST-1c) 1507 N/A 37 

HKUST-1e) 1713 N/A  21 

HKUST-1c) 1716 N/A 22 

HKUST-1g) 1820 N/A  4 

a) SBET: Surface area calculated from multi points according to BET method; b) 

VT: Total pore volume; c) hydrothermal method; d) ultrasonic synthesis; e) 

mechanochemical method; f) microwave synthesis; g) electrochemical method. 
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Highlights 

1. Slurry crystallization is first modified to prepare uniform 160 µm HKUST-1 crystal. 

2. Mass ratio of used ethanol to solid reactants is low as 0.52 but yield high as 98%.  

3. Obvious growth orientation is concluded from XRD intensity ratio of crystal planes. 

4. Its long channels contribute to high surface area and more CO2 adsorption capacity. 

5. This cost-effective method is promising in producing MOFs in an eco-friendly style. 


