
 

 

Some pages of this thesis may have been removed for copyright restrictions. 

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches 
copyright, (either yours or that of a third party) or any other law, including but not limited to 
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, 
libel, then please read our Takedown policy and contact the service immediately 
(openaccess@aston.ac.uk) 

http://www.aston.ac.uk/library/additional-information-for/aston-authors/aston-research-explorer/takedown-policy/


1 
 

Biodegradable Thermoplastic 

Polyurethanes 

 

 

Amanda Goodby 

Doctor of Philosophy 

 

 

 

 

Aston University 

November 2014 

 

 

 

© Amanda Goodby, 2014 asserts her moral write to be identified as the author of this thesis 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation from the 

thesis and no information derived from it may be published without appropriate permission or 

acknowledgement. 



2 
 

ASTON UNIVERSITY 

BIODEGRADABLE THERMOPLASTIC POLYURETHANES  

AMANDA GOODBY 

DOCTOR OF PHILOSOPHY 

 

SUMMARY 

The overall aim of this work was to investigate the biodegradability of a number of 
polyurethane elastomers synthesised by different methods and targeted for a specific 
agricultural purpose in which the polyurethane was required to be degradable in soil after its 
useful life.  

Polyurethanes were synthesised commercially using two different methods; a ‘one-shot’ 
method where all of the reactants were added simultaneously, and a ‘pre-polymer’ method, 
in which the isocyanate and polyol were reacted together before addition of the chain 
extender. The effect of the method of synthesis on the rate of degradation and 
biodegradation was investigated using accelerated alkaline hydrolysis, enzymatic hydrolysis 
and soil burial, where it was found that the polyurethane synthesised by the ‘pre-polymer’ 
method hydrolysed faster under alkaline conditions (21 days) than that synthesised by the 
‘one-shot’ method (56 days). This was found to be due to differences in the polymer 
morphology, with an increase in microcrystalline domains occurring during the ‘one-shot’ 
process.  

The effect of the chemical constituents of the synthesised polyurethanes on the rate of 
degradation and biodegradation were also investigated. Comparison of polyurethanes 
synthesised with an aliphatic (H12MDI) and an aromatic isocyanate (MDI) resulted in an 
increase in the rate of alkaline hydrolysis with the use of H12MDI. This was found to be 
affected mainly by differences in the morphology, with an increase in microphase separation 
and a decrease in microcrystalline regions in the case of the use of H12MDI  

Polyurethanes were synthesised using different polyols; PEA, PCL, PEG and PCL/PEG 
(50:50) to investigate the effect of the polyol on the rate of biodegradation, where it was 
found that the polyurethane containing  a combination of the two polyols, PCL/PEG (50:50), 
degraded under both accelerated hydrolysis conditions and soil burial. This was thought to 
be due to the combination of both hydrophilic (PEG) and hydrophobic (PCL) charactyers of 
the polyols, which had contributed to increasing the diffusion of water into the polymer matrix 
(hydrophilic PEG), and also to inducing the microbial degradation by hydrophobic 
interactions (PCL). 

The incorporation of the additives; iron stearate, cellulose and Cloisite 30B were 
examined as a means of increasing the degradation and biodegradation of the polyurethane 
polymers. Addition of iron stearate was found to decrease the thermal stability of the 
polyurethane, which resulted in an increase in polyurethane degradation under alkaline 
conditions at 45oC, and biodegradation under soil burial conditions at 50oC. The 
incorporation of cellulose into the polyurethane increased the rate of alkaline hydrolysis and 
biodegradation in soil. This polyurethane (PU CE) was also susceptible towards enzymatic 
degradation by Aspergillus niger. The incorporation of the organically-modified nanoclay 
Cloisite 30B has decreased the microcrystalline domain structure contained within the 
polyurethane, and this was found to decrease the rate of alkaline hydrolysis dramatically 
(degraded within 7 days). 

Keywords: biodegradation, hydrolysis, crystallinity, soil, nanocomposite 
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1.1 Biodegradable Polymers 

 

The increased production of synthetic polymers, along with greater durability and stability of 

these materials, has resulted in an abundance of polymeric waste being deposited into the 

environment. With ecology concerns at the forefront of many industrial processes globally, 

the pursuit of these materials being environmentally friendly is an ever important area of 

research and development. The focus of many current areas of investigation to solve these 

problems is by modification of polymeric materials to include biodegradability, and ultimately 

to produce materials with controlled life spans.  

 

Biodegradation can be defined as a natural process by which organic chemicals in the 

environment are converted to simpler compounds, mineralized and redistributed through 

elemental cycles such as the carbon, nitrogen and sulfur cycles [1]. The biodegradation of 

polymeric materials is a complex process in which various factors may contribute, and can 

include; polymer characteristics, type of organism, and nature of pre-treatment. The polymer 

characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of 

functional groups and substituents present in its structure, and plasticizers or additives added 

to the polymer all play an important role in its degradation [2]. Considerable research has 

been done on biodegradation of natural polymers such as starch and cellulose, and 

commercially large -scale produced synthetic polymers, such as, PE and polyesters such as 

PLA and PCL [3-11]. However, less attention has been given to some commercially smaller 

scale polymers, one of which is polyurethane. 

 

1.2 Polyurethane Background 

  

Polyurethanes are a unique class of polymers which can be defined as such by the presence 

of a urethane group on the macromolecular chain. They are produced by the polyaddition 

reaction of a diisocyanate, a macromolecular diol and a short chain diol, and therefore can 

Chapter 1 

Introduction 
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involve an almost unlimited number of structures. This in turn can produce materials suitable 

for numerous functions. The vast array of polyurethane applications continues to grow as 

industries require deliverables with highly specific requirements such as life span, flexibility, 

hardness, strength and elasticity. These industrial needs can be met by this exceptional 

polymer, which can be tailor made by altering the three molecular constituents accordingly. 

Polyurethanes can be synthesised under many guises Fig. 1.1, and it is the class of 

polyurethanes known as elastomers which will be investigated in this research. 

Thermoplastic polyurethane elastomers (TPU) are flexible, elastic materials which can 

provide numerous physical property combinations and can be adapted to many applications 

such as construction, automotive and footwear, Fig 1.1 [12, 13]. 

 

Although PU is a specialised polymer, the market for this material is set to increase over the 

years. The global polyurethane market was estimated at 13.65 million tons in 2010 and 

revenue market estimated to be worth $33 million, Fig 1.1 [14]. These figures are expected 

to rise to 18 million tons, with a predicted revenue of $55.5 million by 2016 [14]. Similar to the 

case of other polymers such as LDPE (Low Density Polyethylene), bio-based raw materials 

and biodegradable materials present significant opportunities for the polyurethane industry, 

as they present an option of exploring new applications, especially in highly regulated 

markets such as the U.S. and Europe [14]. Therefore bio-based or ‘green’ polyurethanes are 

expected to be a critical part of the industry in the coming years, and the work presented in 

this thesis will focus on TPU for a very specific agricultural application which requires 

biodegradability after its useful lifespan. This aim was achieved by a two stage strategy. First 

by examining each constituent of TPU formulations to determine the effect each component 

has on the degradation and biodegradation of the polymer, and the second strategy was to 

increase the rate of degradation and biodegradation by the use of additives. In order to 

achieve this, each of the components in the TPU polymer was examined in detail and then 

the effect of each of the constituents on the properties of the TPU was determined, in order 

to design the required material. Therefore the subsequent sections in this introduction will 

give an insight into the molecules which make up TPU, and the effect of altering each 

constituent on the biodegradation of TPU. This will then be followed by an overview of the 

mechanisms involved in biodegradation, and the test methods used to monitor and measure 

both degradation and biodegradation, highlighting some of the criteria and limitations when 

selecting these test methods. 
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Polyurethane molecular Constituents 

 

 

 

 

 

 

 

 

  

 
 

 

 

  

 

 

 

Figure 1.1 Polyurethane Market and Applications 
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1.3 Polyurethane Elastomer Chemistry 

 

“The mere presence of others dramatically changes our behaviour”  (anonymous) 

Three essential components are required for the production of polyurethane elastomers, and 

the interactions between these components has a considerable effect on the properties of 

the final material, Fig 1.1. The choice of isocyanate, chain extender and polyol greatly 

influence the morphology and ultimately nature of the material. Therefore, each component 

will be discussed in relation to the hard and soft segment interactions, morphology and final 

material properties. 

1.3.1 Effect of Isocyanates on Polyurethane Properties 

Isocyanates are molecules which contain at least two isocyanate (NCO) groups, and are one 

of the components which make up what is known as the ‘hard segment’ in PUs, the other 

being the chain extender.  A wide variety of isocyanates are available commercially, the most 

important being toluene diisocyanate (TDI), and methylene diisocyanate (MDI), see Table 

1.1. Other commercially important isocyanates are; the aliphatic hexamethylene diisocyanate 

(HDI), isophrone diisocyanate (IPDI) and 4,4- dicyclohexyl diisocyanate (H12MDI), see Table 

1.1.  

These compounds affect inter-chain interactions by hydrogen bonding, and consequently 

affect the mechanical properties of TPUs, for example aromatic diisocyanates give rise to 

rigidity and steric hindrance thus, increasing the mechanical properties such as modulus, 

tear and tensile strengths, however, their oxidative and ultraviolet stability is lower than 

aliphatic isocyanates [12, 13, 15]. The symmetry of isocyanates can also affect the final PU 

properties with bulky aromatic isocyanates, such as MDI with a symmetrical molecular 

structure, yielding final products with higher modulus and hardness, due to the formation of 

highly organised structures, however, asymmetrical isocyanates such as TDI yield 

elastomers with low modulus and hardness.   

Some limited research has been performed on altering the isocyanate structure in TPU 

formulations in order to increase their biodegradability. An example of this was work 

undertaken by Hettrich and Becker [16], who synthesised isocyanates based on mono amino 

acids, these isocyanates contained ester linkages within the backbone, and were seen to 

hydrolytically degrade, however the degradation was slow, and the mechanical properties of 

synthesised PUs using these isocyanates were inferior to those containing MDI isocyanates 

[16]. However, in other work a PU was synthesised with an isocyanate based on L-lysine 

which was found to exhibit comparable mechanical properties to PUs synthesised with more 
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common isocyanates, and these PUs were considered to be biodegradable due to the 

combination of the PCL soft segment and the L-Lysine based isocyanate contained in the 

hard segment [17].  

1.3.2 Effect of Polyols on Polyurethane Properties 

The second component involved in TPU sysnthesis is the polyol or diol; a long chain 

molecule which can be bi-functional or of a greater functionality which contains either 

hydroxyl (OH) groups to produce urethane linkages or amine (NH2) groups to produce urea 

linkages. These polyols form what is known as the ‘soft segment’ component of TPU.  

Polyether and polyester diols are commonly employed in the synthesis of TPUs, and some of 

the most widespread are; poly(oxyethylene) diol poly(oxytetramethylene) diol, poly(ε-

caprolactone) diol (PCL), poly(ethylene adipate) diol (PEA) and poly(butylene adipate) [18], 

with molecular weights usually between 1000 to 3000 [12, 18]. Choice of diol can affect the 

final properties of the PU greatly, and previous studies have shown polyester diols to confer 

higher tensile strength and hardness to PUs than those synthesised with polyether diols, due 

to the increased polarity of the ester carbonyl group which leads to stronger hydrogen bonds 

between the hard and soft segments [18]. However, polyester polyols are susceptible 

towards hydrolysis, whereas polyether polyols have generally been shown to be resistant 

towards hydrolysis [19].  

It is not only the diols themselves which can affect the properties of PUs but also their 

molecular weight. A recent study in which PU was prepared using PCL and PEG polyols 

found that the molecular weight of the diols in the soft segment affected the water absorption 

properties of the PU; as the molecular weight of PEG increased, the water absorption of the 

polyurethane was enhanced dramatically [12]. Conversely, it was shown that an increase in 

molecular weight of PCL in the soft segment resulted in a decrease in water absorption 

ability [12]. Higher molecular weight polyols also result in PUs with increased elastic 

properties [20]. However, previous research has found that for some polyols, such as PEG 

and PEA an increase in molecular weight decreases hardness and tensile strength [20], 

therefore end use properties of the final product must be considered before choosing the 

type and molecular weight of a polyol to obtain the appropriate chemical, physical and 

mechanical properties, and designing a biodegradable PU is no different in this respect. 

Numerous reports in the literature have shown PU to be somewhat susceptible towards 

degradation by fungi [21-24], and fungal biodegradation has been shown to be dependent on 

the soft segment structure of PU, with polyester diols being more susceptible towards 

degradation by fungi than PUs synthesised with polyether diols [25]. However, polyether 
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diols are known to be biodegradable, dependant on the polymer chain length, with molecular 

weights less than 1000 proving to be biodegradable [26]. However, the mechanisms by 

which polyethers degrade are different to that of polyesters. Polyether degradation occurs 

mainly by oxidative-mediated processes [27, 28], although some fungi and bacteria have 

been shown to degrade ether linkages by enzymatic means [29].  Also, many of the diols 

used in PU synthesis, such as PCL and PLA, are deemed to be ‘biodegradable’, and as 

such, have previously been incorporated into PU in an attempt to increase biodegradability 

[3, 6, 30-32]. Hydrophilicity has been shown to influence biodegradability of PUs and the 

addition of hydrophilic polyols such as PEG has been shown to increase the rate of 

degradation [33]. Therefore the choice of polyol is of paramount importance with respect to 

biodegradation. 

 1.3.3 Effect of Chain Extenders on Polyurethane Properties 

The last of the three components used to synthesise TPU is the chain extender, and along 

with the diisocyanate forms the ‘hard segment’. The chain extender is usually a short chain 

molecule terminated with two hydroxyl groups (OH) known as a diol. The most common 

chain extender used commercially is butane-1,4- diol, although other diols such as hexane-

1,6- diol, ethylene glycol and ethylene amine can be used, Table 1.1.  

The structure and nature of the chain extender can result in alteration of the packing 

arrangement of the hard segment, which ultimately influences the crystallinity, thermal 

stability and mechanical properties of the polymer. For example, PUs with increased 

mechanical properties can be produced by the use of diamines due to the urea linkages 

formed which result in strong hydrogen bonding interactions [13, 34]. Specific mechanical 

properties can also be obtained by selection of the diol. For example, bulky diols produce 

elastomers with a high modulus. The number of methylene groups of the diol has also been 

shown to affect the modulus and tensile strength. Two to four methylene groups result in an 

increase in modulus and tensile strength, however, three and six methylene groups on the 

chain extender have been shown to decrease the modulus and tensile strength, Table 1.1 

[13, 34] 

Modification of the hard segment by altering the isocyanate and chain extender to increase 

biodegradation has not been explored to the same extent as that of modification of the soft 

segment polyols, although some notable research has focused on the incorporation of amino 

acid-based chain extenders, and chain extenders containing phosphate ester groups in order 

to increase degradation and biodegradation of PUs [35, 36]. This research showed that both 

the amino acid chain extender and the chain extender containing phosphate ester groups 

conferred increased biodegradability to the PUs. However, the alteration of the chain 
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extender has also been shown to decrease bacterial adhesion to PU, when 

glycerophosphorlcholine was incorporated as a chain extender [37], thereby reducing 

degradation, and thus results from previous research have shown that it is not only the 

chemical components themselves which are important to obtain the properties required of a 

TPU, but also the interactions between the chemical constituents which produce the unique 

morphology of TPUs. 

1.3.4 Polyurethane Morphology; Phase Separation and Hydrogen Bonding 

The distinctive properties associated with polyurethanes are due to the complex morphology 

of the material. Polyurethanes are microphase separated materials consisting of a ‘hard 

segment’ (isocyanate and chain extender) and a ‘soft segment’ (polyol), and it is the 

interactions between these segments which produce PUs with very different properties. The 

‘soft’ segment is said to confer elastomeric properties, while the ‘hard’ segment provides the 

physical strength and crosslinking, and therefore influences the tensile strength properties. 

Essentially, microphase separation occurs due to thermodynamic incompatibility between the 

polar high melting point hard segments, and the mainly non-polar low melting soft segments 

[12, 34]. The compatibility or incompatabiltiy between the hard and soft segments depends 

on many factors, and the extent of microphase separation is a parameter known as the 

degree of phase separation. A schematic representation of a phase separated and a phase 

mixed PU system is given in Fig. 1.2. 

 

Polyol chemical composition and molecular weight have been shown to influence the degree 

of phase separation. For example, polyetherurethanes have been shown generally to be 

more phase separated than polyesterurethanes, due to stronger interactions between the 

ester and urethane groups than between the ether and urethane groups [38], and higher 

molecular weight polyols have also been found to decrease the phase separation [39]. 

Previous studies have also shown the phase separation to be influenced by the chemical 

constituents of the hard segment, and work by Kang and Stoffer showed that PUs 

synthesised with aliphatic isocyanates exhibited a lower degree of phase separation than 

PUs synthesised with aromatic isocyanates [40]. However, in contrast to this, PUs 

synthesised with HDI and MDI were compared, and the aliphatic HDI resulted in increased 

phase separation [41].  

 

Another important factor which influences the degree of phase separation is that of hydrogen 

bonding. Hydrogen bonding in PUs occurs between the hydrogen atom on the N-H urethane 

group and the carbonyl oxygen of the C=O ester linkage (ester soft segment), or the alkyl 

ether oxygen atom (ether soft segment) or the carbonyl oxygen atom on the urethane group, 
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Fig. 1.3. FTIR has been used extensively to determine the degree and nature of hydrogen 

bonding in PUs [42-44]. The absorbance values for hydrogen bonds are denoted as ‘free’ 

(non-hydrogen bonded) and hydrogen bonded, the absorbances of which are given in Fig 

1.3. [41, 43] If hydrogen bonding occurs in the hard segment domains only, then the degree 

of phase separation was found to increase, whereas, if hydrogen bonding occurs between 

the hard and soft segments, then the interphase hydrogen bonding increases the extent of 

phase mixing [12]. The extent and type of hydrogen bonding itself is dependent on material 

structure, composition and temperature, and numerous studies have examined the effect of 

isocyanates, chain extenders, polyols and the effect of annealing on hydrogen bonding [45-

47]. For example, a study comparing the morphology and properties between two PUs each 

containing differenent isocyanates, found that the PU synthesised with the aliphatic HDI had 

more hydrogen bonding than the PU synthesied with MDI [46]. Another study compared PUs 

synthesised with a PEG soft segment and a polypropylene glycol soft segment (PPG), and 

concluded that the PPG soft segment reduced the amount of interphase hydrogen bonding 

due to the methyl side groups on the chain, in comparison to the PEG soft segment which 

enhanced interphase hydrogen bonding [47] 

 

Each PU system is individual, and it is not only the chemical components which can affect 

the degree of phase separation and hydrogen bonding. Previous research has found that the 

method of synthesis of PU can also affect the morphological properties of PU [48, 49].  

 

1.3.5  Method of Synthesis of Polyurethanes 

The synthesis of polyurethane elastomers usually involves one of two processes, the one 

shot method and the prepolymer method, and each method bestows different morphological 

profiles on PUs. 

 

The one-shot method is a one step process and involves the addition of all reactants (polyol, 

diisocyanate and chain extender) simultaneously in the presence of a catalyst, where the 

mixture is directly allowed to polymerise, Figure 1.4 [12, 38, 50]. The method of synthesis 

can alter the morphology of PUs, with the one shot method resulting in a PU with a higher 

degree of crystallinity than those synthesised by the pre-polymer method. Studies have 

shown that this is due to the chain build up during synthesis. During the one shot method a 

slightly favoured reaction between the chain extender and isocyanate results in the formation 

of crystalline ordered regions, which are obtained before extended polymer growth occurs 

with the addition of the polyol [12, 13]. However, as all of the reactants are added together, 

there is little control over the reaction, with the hard segment chain length being highly 



                                                                        

32 
 

disperse [48], which can result in PUs with inferior mechanical properties to those 

synthesised by the pre-polymer method. This has been attributed to a higher degree of 

mixing between the hard and soft segments arising from the greater molecular weight 

distribution of the hard segments [51] 

The prepolymer method is a two step process in which a ‘pre-polymer’ is first formed by 

reacting the diisocyanate and the polyol to form an intermediate polymer of molecular weight 

15,000 – 20,000. The pre-polymer is then converted into the final polyurethane by a further 

reaction with a diol or diamine chain extender Fig. 1.4 [12, 38]. The pre-polymer or multi-step 

method is more controlled than the one shot process and produces fewer side reactions Fig. 

1.5, and more regular block hard/soft sequence structures, thus imparting superior 

mechanical properties than those PUs synthesised by the one shot method [12, 52]. 

In order to design a biodegradable PU the method of synthesis and chemical constituents, 

and their effect on phase separation, hydrogen bonding and crystallinity needs to examined 

as all of these factors affect not only the rate of degradation and biodegradation in PU but 

also the degradation mechanisms. However, in order to select appropriate chemical 

constituents, the process of degradation and biodegradation needs to be examined.  
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Table 1.1  Common Reactants used in TPU Synthesis 

Isocyanates Chemical Structure PU properties bestowed 

MDI N

O

N

O

 

Increases mechanical properties such as 

modulus, tear and tensile strength 

Prone to light and UV oxidation 

TDI 

CH3

N

O

N

O

 

CH3

N

O

N

O

 

Lower modulus and hardness due to 

unsymmetrical nature of isocyanate 

Prone to light and UV Oxidation 

H12MDI 

N N

O O

 

Light and UV stable 

HDI N
N

O

O

 

Light and UV stable 

Polyols 
  

ADP 

 

Prone to hydrolysis due to ester linkage 

Less hydrophilic than polyethers 

Higher tensile strength and hardness than 

polyethers 

PCL 

 

Prone to hydrolysis due to ester linkage 

Less hydrophilic than polyethers 

PEG 

 

Not prone to hydrolysis  

More hydrophilic than polyesters 

Higher tensile strength and hardness than 

polyethers 

PLA 

 

Prone to hydrolysis due to ester linkage 

Less hydrophilic than polyethers 

Higher tensile strength and hardness than 

polyethers 

Chain Extenders   

1,4 Butane Diol 
 

Increase in modulus and tensile strength 

1,6 Hexane Diol 

 

Decrease in modulus and tensile strength 

Ethylene Glycol 
 

Increase in hydrophilicity 

Ethylene Amine 

 

Increased mechanical properties due to 

formation of urea linkages 
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Figure 1.2  Phase separation in Polyurethanes 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3  Hydrogen bonding interactions in PUs 
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Figure 1.4  Synthesis of Polyurethane 
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Figure 1.5  Side reactions which may occur during polyurethane synthesis 
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1.4 Degradation and Biodegradation Processes of Polyurethane 

 

Degradation and biodegradation of polyurethanes can be induced by numerous factors which 

include, photo, thermal and biological influences, all of which result in changes to the 

material. These changes can include but are not limited to, mechanical, optical and physical 

properties, such as surface erosion, discolouration, cracking, phase separation and 

crystallinity changes [2]. These modifications ultimately result in chemical transformations, 

bond scission and the formation of a variety of degradation products dependent upon the 

chemical constituents of the PU. There are numerous mechanisms by which all polymers, 

including PU, undergo during biodegradation, and some of these processes include; 

solubilisation, hydrolysis and enzyme-catalysed hydrolysis [53]. The influence of each of 

these factors on the biodegradation of PU will be discussed below. 

1.4.1 Solubilisation and Hydrolysis of Polyurethanes 

 

Solubilisation refers to the hydration properties of a polymeric material and ultimately 

depends on the hydrophilic nature of the polymer [29]. Hydrophilicity has been shown to 

influence biodegradability of polyurethane, and the addition of hydrophilic polyols such as 

PEG has been shown to improve the hydrophilicity and degradation rate of polyurethanes. 

[26, 33]. Hydration or solubilisation results in the disruption of secondary PU structures such 

as hydrogen bonding, and this can result in changes to phase separation, and PU 

morphology, which in turn can result in conformational changes that give rise to an increase 

in polymer chain hydrolysis reactions [46, 54]. Hydophilicity of PU is dependent on each of 

the three consituents used, and the choice of initial reactants can either bestow or decrease 

hydrophilicity. A previous study investigating the surface wettability properties of a variety of 

PU elastomers, found that small molecular weight aliphatic isocyanates increase PU 

hydrophilicity, as opposed to aromatic isocyanates [55]. Generally though, it is the soft 

segment polyols which have been found to bestow hydrophilicity to PUs, and previous 

studies have shown that an increase in the hard segment content resulted in a reduction of 

water absorption capacity, a decrease in amorphous regions and hydrophilicity [56], all of 

which decrease the rate of hydrolysis of the PU. 

 

Chemical hydrolysis in PU is essentially a scission of chemical bonds in the main polymer 

chains by a reaction with water, and is dependent on a variety of parameters such as, water 

activity, temperature, pH and time [57, 58].  In order for hydrolysis to take place, hydrolysable 

bonds must be present in the polymer, which in the case of PUs are usually the urethane 

groups in the hard segment and, the ester linkages contained in the soft segment (if the soft 
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segment contains a polyester backbone). Therefore, PUs containing ester diol soft segments 

are more prone to hydrolytic degradation than their polyether counterparts [25, 27]. A 

schematic representation of the hydrolysis of ester and urethane bonds under alkaline 

conditions is given in Fig. 1.6. The rate of hydrolytic degradation of PU has previously been 

shown to be dependent on many factors, however, one of the major influences on this has 

been shown to be that of PU crystallinity, with an increase in crystallinity resulting in a 

decrease in the rate of hydrolysis [25, 30, 59]. This is thought to be due to the limited 

diffusion of water molecules into the bulk, which results in inaccessibility of water molecules 

to the hydrolysable bonds. Chemical hydrolysis is not the only mechanism by which PUs 

undergo degradation. When exposed to microorgansims in the environment PUs can also be 

degraded enzymatically by fungal and some bacterial sources [19, 21, 22].  
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Figure 1.6  Mechanism of alkaline hydrolysis of ester and urethane bonds in PU 

 

1.4.2 Enzymatic Degradation of Polyurethane  

Fungi and bacteria degrade polymers and other substrates by enzymatic means. Enzymes 

are complex three-dimensional protein structures which serve as biological catalysts by 

lowering the activation energy of a reaction, thereby increasing the reaction rate in 

environments which would otherwise be unfavourable for chemical reactions [53]. The three-

dimensional structure creates an active site where the interaction between the enzyme and 
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the substrate takes place. Enzymatic degradation is known to occur typically on the surface 

of polymeric materials, particularly amorphous surface regions, as high molecular weight 

enzymes cannot easily penetrate the solid bulk. Consequently polymer surface chemistry 

plays an important role on the rate of enzymatic degradation. Studies have also shown that 

large amounts of hard segment and crystalline regions results in a reduction in enzymatic 

activity as of that for chemical hydrolysis [60]. Generally several enzymes working 

synergistically are involved in polymer degradation, and degradation of PU has been 

associated with protease and esterase activities from fungi and bacteria along with 

polyurethanase activity detected in Bacillus subtilis strains [61].  

The process of enzymatic degradation in PUs has been suggested by numerous authors, 

and it is generally accepted that degradation occurs in a two stage process by which a 

membrane-bound enzyme binds to the surface of the PU substrate, and then the 

urethane/ester bonds are cleaved enzymatically by hydrolysis. It is thought that ‘free’ 

enzymes are also released onto the medium, which although are not as efficient at binding to 

the surface, do contribute to degradation by abrading the surface of PU, thereby increasing 

contact surface area and roughness which in turn increases microbial adhesion. A 

mechanistic scheme providing an overview of this process has been given by Cregut et al. 

and is shown in Fig.1.7. [62] 

 

Figure 1.7 Process of enzymatic degradation of PUs   
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1.4.3 Biodegradation and Degradation of Polyurethane under Composting and Soil 

Burial Conditions 

Composting can be defined as an accelerated natural degradation process that results from 

placing organic matter into piles or heaps to conserve metabolic heat. It is a controlled 

complex reaction which involves the oxidation of organic substances to produce a stable, 

humidified product (equation 1), and involves optimizing conditions for effective microbial 

activity such as oxygen availability, moisture content and temperature [63].  

Organic matter    +    O2                Stabilised Product + CO2 + H2O     (1) 

The natural degradation process in compost takes place in soil and can be considered to be 

synonymous with soil degradation with the exception that degradation rates are higher under 

composting conditions due to the higher temperatures involved, and as such is a rapid 

effective method in which to examine the biodegradability of polymers in the natural 

environment [64]. 

The degradation of PU under composting conditions and soil degradation are due primarily to 

enzymatic hydrolysis by microorganisms (section 1.4.2). The ester bonds contained within 

ester-based PU are susceptible to hydrolysis, and studies have shown that fungi have been 

reported as the main PU degraders, although some strains of bacteria have also been shown 

to degrade polyurethane, Table 1.2.  

 

Attachment of a microorganism to a solid substrate is the first step in a series of events that 

occur during colonisation of a surface (section 1.4.2), and it has generally been found that 

substrate hydrophobicity is a defining factor on the adhesion of microorganisms onto the 

substrate [65]. This has also been found to be the case for PUs, and previous studies have 

shown that in the initial stages of composting/soil burial, microorganisms were shown to yield 

greater adhesion to polyurethanes with high surface hydrophobicity [57, 64].  

 

The most favourable specifications for maximum degradation of PUs under composting 

conditions have been shown to be low hard segment content and low crystallinity [26, 64, 

66]. There are many factors which can also contribute to the degradability of PU under 

composting/soil burial conditions, such as compost/soil matter, presence of specific types of 

microorganisms, their ability to adhere to the surface of the polymer, and raw materials used 

to synthesis the PU, all of which makes the degradation of PU under composting conditions a 

very complex process, and therefore many methods have been examined in order to 

increase biodegradation of polymers, one of which is the incorporation of additives. 
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Table 1.2  Fungi known to degrade polyurethane 
 

Fungi PUR Ref Fungi PUR Ref 

Alternaria sp. PUS [22] Gliocladium roseum PS [19] 

Aspergillus niger PS,PE [19] Nectria sp. PUS [22] 

A. flavus PS,PE [19] Nectria gliocladioides PS [21] 

A. fumigatus PS [19] Neonectria ramulariae PUS [22] 

A. versicolor PS,PE [19] Penicillium citrimum PS [19] 

Aureobasidium 

pullulans 

PS,PE [19] Penicillium inflatum PUS [22] 

Chaetomium 

globosum 

PS [19] Penicillium 

ochrochloron 

PS [21] 

Cladosporium sp. PS,PE [19] Penicillium venetum PUS [22] 

Curvularia 

senegalenisis 

PS [19] Penicillium viridicatum PUS [22] 

Cylindrocladiella 

parva 

PUS [22] Plectosphaerella 

cucumerina 

PUS [22] 

Fusarium solani PS [19] P. funiculostam PS,PE [19] 

Geomyces 

pannorum 

PUS [22],[21] Trichoderma sp. PS,PE [19] 

 

PS- polyurethanes synthesised with polyesters, PE – polyurethanes synthesised with polyethers,  

PUS – no specifications of soft segment. 

 

1.5 The use of Additives to Increase Degradation and Biodegradation  

Polymer additives encompass a vast range of chemical compounds that are added, during or 

after polymerisation and/or during processing, and are added for numerous reasons, and are 

dependant on many factors including; polymer type, processing conditions, life expectancy of 

the polymer and conditions to which the polymer is exposed to during its lifetime [67, 68]. 

The array of different types of additives is vast and includes but is not limited to; antioxidants, 

plasticizers, flame retardants, colourants, lubricants and fillers [67, 69]. Generally, additives 

are added to a polymer system to either enhance or alter the physical or mechanical 

properties of a polymer or to help prevent polymer degradation [69, 70] however, additives 

have also been used to increase polymer degradation and biodegradation [5, 71-73].  
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For example, previous studies incorporated iron stearate and other iron complexes as well as  

calcium stearate into polyethylene and polypropylene films [9, 10, 74-76]. The additives were 

seen to act as pro-oxidants and increased the rate of oxidative degradation of the 

polyethylene films.  

Much research has also been undertaken where natural polymers have been used as 

additives in the hope of increasing biodegradation, and this approach includes many 

biopolymers such as chitin, cellulose and starch. Many of these biopolymers are large 

carbohydrate molecules known as polysaccharides, and are often one of the main structural 

elements of plants (cellulose) and animal exoskeletons (chitin), or play a major role in plant 

energy storage (starch). Previous research has examined the incorporation of biopolymers 

into polymer systems for a variety of reasons including improvement of mechanical and 

physical properties [77, 78]. However, the study reported in this thesis is concerned with the 

investigation of the use of different additives into PUs in order to potentially increase its 

degradation/biodegradability. Many of the biopolymers mentioned above have also been 

investigated as a means to increase biodegradation [4, 5]. For example, in a recent study 

starch was incorporated into a waterborne PU, were it was found that the addition of the 

starch had altered the morphology of the PU, increasing the amorphous domains within the 

PU and thereby increasing its degradation [79]. Chitin has also been previously examined for 

the purpose of increasing degradation of PUs, where it was incorporated into a PU backbone 

synthesised with PCL and MDI [78]. It was found that the addition of chitin not only increased 

the thermal stability of the PU, but also increased the rate of its degradation [78], however 

one of the more investigated polysaccharide biopolymers for use as an additive in polymers 

is cellulose [72, 80-82].  

Cellulose is a linear macromolecule which consists of D-glucose units linked by β(1-4) 

glycosidic bonds, Fig.1.8. Cellulose is seen as one of the most abundant organic substances 

in nature with it being the most abundant component of plant biomass [83]. Cellulose is 

crystalline in nature, forming intra and inter hydrogen bonding between the three hydroxyl 

groups situated on each glucose unit. Many microorgansims have been shown to degrade 

cellulose, utilizing a multitude of enzymes all working together synergistically [84], and 

numerous fungal and bacterial species have been shown to degrade cellulose and cellulosic 

material [84, 85]. In light of the biodegradability of this material, previous studies have shown 

that the addition of cellulose into polymer systems can increase the rate of degradation [81, 

82]. However, many factors can affect degradation, and an investigation into the addition of 

cellulose fibres into polyethylene films concluded that the addition of 5-15% cellulose had 

limited effect on the rate of biodegradation of the films, but when the concentration was 

increased to 30%, significant signs of degradation occurred under composting conditions 
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after just 14 days [82]. Modification of celluloses has also been examined with respect to 

increasing biodegradability and previous work on this resulted in an increased rate of 

biodegradation of PCL when cellulose acetate was incorporated as an additive, however it 

was found that cellulose acetate itself was not susceptible towards biodegradation [81]. 
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Figure 1.8 Chemical structure of cellulose 

In recent years the incorporation of layered silicates has attracted a great deal of attention in 

all chemical disciplines, and this includes the area of polymers. It has generally been found 

that the incorporation of organoclays such as montmorillonite and its derivatives have 

resulted in improved mechanical, thermal and barrier properties of polyesters such as PCL 

and PLA [72, 86]. Recent investigations have also shown that the addition of these 

organoclays can have a significant impact on the microphase morphological structure of 

block co-polymers, and hence much research has been undertaken concerning the addition 

of these fillers into PUs, in order to improve mechanical and thermal properties [87-90].  

Essentially organoclays are organically-modified phyllosilicates, and montmorillonite is a 

commonly used organoclay as a polymer additive. Montmorillonite is a phyllosillicate in which 

the trivalent Al-cation in the octahedral layer is partially substituted by a Mg-cation, Fig.1.9. A 

feature of this structure is that these ions do not fit into the tetrahedral layer therefore the 

layers are held together by relatively weak forces, which expand when water and other polar 

materials enter between the layers [91]. 

Although the incorporation of organclays into polymers has primarily been used to improve 

mechanical and physical properties, some research has examined these compounds in 

respect of increasing biodegradation. However, results from these studies have produced 

conflicting opinions. For example, Wu et al. found that the addition of unmodified 

montmorillonite delayed the biodegradation of PCL under compositing conditions [92], and 

similar findings were also obtained by Fukushima et al. where Cloisite 30B clays were 

incorporated into PCL and it was found that this decreased the rate of degradation, which 

was thought to be due to hindered access to the ester groups with the addition of the clay 

[73].  
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Opposite findings were obtained by Dutta et al. who found that the addition of bentonite 

accelerated the biodegradation of an epoxy-modified PU in a broth culture [93], and Singh et 

al. who added Closite 30B to PCL and found that the addition of this modified clay increased 

enzymatic, composting and fungal degradation [94]. Therefore, it can be noted that much 

conflicting evidence regarding increasing biodegradation by addition of modified clays has 

been published, and the rate of degradation is dependent on many factors such as; the 

polymer system, biodegradation conditions and type and concentration of the organoclay.  

Therefore each polymer system needs to be examined individually and the choice of the 

organoclay, its concentration and method used to test the process of degradation and 

biodegradation needs to be chosen carefully.  

 

 

Figure 1.9  Structure of a two layered silicate  
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1.6 Test Methods Measuring Degradation and Biodegradation 

The process of biodegradation of polymers is a highly complex process involving a multitude 

of degradative mechanisms, often working together synergistically [11, 57, 95]. Therefore, 

the test methods used to measure degradation and biodegradation of polymers can also be 

varied and complex. There are numerous standard accepted test methods to monitor 

degradation and biodegradation, and the most common are the ASTM (American Society for 

Testing and Materials) test methods [96, 97]. However, many of these methods are limited in 

their use with respect to polymer biodegradation, as many of these tests were not designed 

to measure biodegradation of polymers. Many factors need to be taken into account when 

choosing the appropriate test methods to monitor degradation and biodegradation, including; 

the type of polymer, properties of the polymer (solubility, molecular structure etc), 

environmental conditions to which the polymer is exposed to, and types of microorganisms 

which may come into contact with the polymer during its biodegradation and degradation [96, 

97]. In light of this many of the standard test methods typically need to be modified, taking 

into consideration all of the parameters mentioned above. A further problem which is 

frequently encountered in the testing of polymer biodegradability, is the time span in which 

these experiments can sometimes take. Many of the standard test methods are developed 

for a period of between 28-100 days, however, degradation and biodegradation experiments 

involving polymers can often take many months or even years [96, 98, 99].  

 

Polyurethane is a particularly difficult polymer in which to assign standard test methods 

regarding its degradation and biodegradation due, not only to the complex morphology of the 

polymer, but also to the wide variety of the constituents which can be used to synthesise this 

material. For example, one of the main degradation and biodegradation products of PU 

during degradation and biodegradation has been shown to be amines, therefore previous 

researches have used a ninhydrin assay test to determine the presence and quantification of 

amines as a means of determining the extent of PU biodegradation [100]. This assay is 

generally used in protein chemistry, in which the ninhydrin reacts with an alpha amino acid to 

form a coloured complex which is then measured spectophotometrically [101]. However, this 

test method cannot be used for all PUs, as ninhydrin does not react with tertiary or aromatic 

amines [101], therefore cannot be used with PUs synthesised with aromatic isocyanates, 

which give rise to aromatic amines during degradation. 

 

In general, testing can be grouped depending on the individual degradation/biodegradation 

mechanism being investigated. Test methods can generally include some form of chemical 

oxidative degradation or hydrolytic degradation; which is usually performed in a standard 
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buffer solution (this test method can also be altered to examine the effect of pH) [56], 

accelerated chemical hydrolysis; either alkaline (NaOH) [102] or acid (HCl) [79], enzymatic 

hydrolysis; in which specific enzymes are added to a buffer solution [64], microbial growth on 

PU [26], soil burial [21], and composting [64]. Generally a combination of some or all of these 

methods are used to give an indication of degradability/biodegradability of the PU, and Table 

1.3,lists some of the common test methods that have been previously used to test 

degradation and biodegradation of PUs.  

 

Determination of the extent of degradation/biodegradation during this testing, again has 

previously been shown to vary widely, dependant on the property of the PU which is to be 

investigated, and can involve properties such as changes in chemical structure, changes in 

morphology, thermal properties and visual degradation both macromolecular and 

micromolecular.  

 

One of the most common methods used to measure degradation and biodegradation of PUs 

is that of weight loss. This method is used extensively, due to the simplicity and ease with 

which to monitor the rate of degradation. Samples are removed from the relevant medium 

and dried at 50oC for 24h and then weighed. Weight loss is generally given as a % weight 

loss from the weight of the initial sample. This method has been shown to be effective at 

measuring the rate of degradation, however a major disadvantage of this method is that 

initial stages of minor degradation are difficult to monitor, as weight loss is generally not 

observed until substantial degradation has occurred. Therefore, many previous studies have 

relied upon monitoring changes in the molecular weight of PUs by means of gel permeation 

chromatography (GPC). This technique is seen to be more sensitive in measuring initial 

stages of degradation, with decreases in molecular weight being observed even with the 

absence of weight loss [103]. 

 

Visual images can also be used to examine degradation, and these can be at a macroscopic 

and/or microscopic level. The usual methods used to examine degradation visually are 

photographic images, optical microscopy and scanning electron microscopy. The majority of 

degradation and biodegradation investigations usually employ at least one of these methods, 

with the initial sample providing a visual reference control. These methods can show visually 

whether some physical degradation has occurred, and microscopic images can be used as a 

good indication of initial stages of degradation. However, a disadvantage of this method is 

that it is generally only of a qualitative nature (not quantitative), and is therefore normally 

used in conjunction with other analytical techniques.  
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Changes to chemical structure both during and after degradation/biodegradation is often 

used during degradation experiments in order to elucidate possible degradation mechanisms 

and also to quantify the extent of degradation/biodegradation, and an array of techniques are 

available to do this dependant on the properties of the PU (solubility, elasticity and the 

sometimes fragile nature of the films after degradation). One of the most common methods 

employed is that of fourier transform infrared analysis (FTIR). This technique is a relatively 

fast and easy method in which to detect changes to chemical groups in PUs. Urethane, ester 

and ether groups can all be monitored using this method, along with amine and alcohol 

degradation products of PUs. Morphological properties such as hydrogen bonding can also 

be quantified using FTIR, and many previous studies have used this method to determine the 

extent of hydrogen bonding in PUs [43, 46, 87, 104].  Quantification of chemical degradation 

can be obtained using FTIR by numerous methods, and previous research has quantified the 

extent of degradation by measuring peak height/area and then dividing this by a specified 

reference peak. For complex peak areas and the extent of hydrogen bonding, deconvolution 

methods have previously been successful [43, 87, 104].  

 

An advantage of this method is that the sample is not destroyed during analysis therefore 

time course studies can be performed on the same sample thereby obtaining a more 

accurate analysis. Also quantitative as well as qualitative information can be obtained. 

However, a disadvantage of this method is that changes to chemical structure are not 

specific, and exact structures of degradation products cannot be obtained without the use of 

other analytical techniques. Another problem encountered with this technique is accurate 

sample preparation in order to obtain spectral reproducibility, for example, film thickness will 

affect the absorbance values obtained, therefore in order to compare different samples, film 

thickness must be the same. Also, one of the major problems in using this technique is that 

sample films need to be very thin, in the range of 10µm, in order to obtain usable information. 

This is very difficult to achieve for many TPUs, due to the elastic nature of these polymers 

thin films make the polymer very difficult to handle, and the nature of 

degradation/biodegradation experiments can result in very fragile films quickly, which can 

make FTIR impossible for many PUs when performing degradation/biodegradation 

experiments. However, there are numerous methods to overcome this problem, and one 

method which has been used is the use of cryomicrotomy [105]. This has the advantage of 

being able to microtome sections of the polymer accurately at temperatures as low as -150oC 

to obtain films as thin as 10µm. FTIR can then be performed on these thin samples. This 

sectioning of the PU film would also provide information about chemical changes in the bulk 

of the sample. Another method used to overcome some of the problems with FTIR is by the 

use of attenuated total reflectance (ATR) [98, 106]. This method has the advantage of 



                                                                        

48 
 

minimal sample preparation, however, it should be noted that only the surface of the polymer 

can be measured to a depths of about 3µm, therefore changes in the bulk of the samples 

cannot be measured using this method.  

 

For PU, morphology is of paramount importance, and changes to morphology can indicate 

not only degradation but changes specifically relating to the individual hard and soft segment 

domains contained within the PU, thereby providing information on the rate of degradation of 

the hard and soft segments individually, and how each domain affects degradation. There 

are numerous methods used to elucidate morphological properties in PUs, and one of the 

most common is that of differential scanning calorimetry (DSC). This technique measures the 

energy required to produce a zero temperature difference between the sample and a 

reference sample. Much information can be obtained from this technique including glass 

transition, crystallinity and melting temperatures [107-109]. For PUs with complex 

morphological profiles, thermographs obtained by DSC usually contain numerous 

endotherms relating to the hard and soft segments dependant on the chemical constituents 

and extent of crystallinity, and previous studies have used this technique to examine 

changes to the hard and soft segment domains during degradation, crystallinity and phase 

separation, all of which have been shown to affect the rate of degradation in PUs [107-109].  
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Table 1.3   Test Methods previously used for Assessing Degradation and Biodegradation of 
Polyurethane 

Test Method Parameters Analysis of the Extent of 
Degradation 

Ref. 

Hydrolysis 
Alkaline 

 3% & 10% solution at 37
o
C 

Weight loss, SEM [102] 

 10% NaOH  at 37
o
C Weight loss [64] 

 3% NaOH at 37
o
C Weight loss, SEM [110] 

  0.1 M NaOH at 37
o
C FTIR, DSC, GPC, SEM [111] 

  0.1 M KOH at 37
o
C Weight loss, FTIR [79] 

Hydrolysis Acid  0.1 M HCl at 37
o
C Weight loss, FTIR [79] 

Hydrolysis PBS 
 pH 7.4 at 37

o
C 

Weight loss, ninhydrin assay, DSC, 
change in pH. 

[100] 

 pH 4.0, 6.8, 7.4 at 37
o
C GPC, DSC [56] 

 pH 7.4 at 37
o
C Weight loss [78] 

 pH 7.4 at 37
o
C Weight loss [112] 

 pH 7.0 at 37
o
C and 55

o
C Weight loss, GPC [103] 

 pH 6, 7, 7.4 at 52.5
o
C Weight loss, SEM, NMR, GPC [113] 

  PBS at 37
o
C FTIR, DSC, GPC, SEM [111] 

Hydrolysis 75% 
humidity 

 Saturated NaCl solution at 
70

o
C 

FTIR [114] 

Enzymatic 
Degradation 
phosphate 
buffer 

 pH 7.2,  R. delemar  lipase 
Weight loss, SEM, DSC [102] 

 Candida cylindracea lipase pH 
7.0 at 37

o
C 

Weight loss [64] 

Enzymatic 
degradation 
Chymotrypsin 

 pH 8 at 37
o
C 

SEM, GPC [36] 

Enzymatic 
degradation 
papain  

 pH 6.2 at 37
o
C 

Weight loss, FTIR-ATR, optical 
microscopy, AFM 

[106] 

Soil Burial  
 30

o
C humidity chamber, soil 

taken from garden 
Weight loss, SEM, DSC, FTIR [21] 

 John Innes compost 2 at 20
o
C SEM  

 Soil taken from natural 
environment, temp 25-32

o
C 

Weight loss, SEM, FTIR [26] 

Composting  
 Bioreactor, 58

o
C 4 days, 50

o
C 

until 27 days, 35
o
C until 45 

days 

Weight loss, CO2, SEM [64] 

 Natural weathering conditions 
24 months 

Weight loss, photographs, Optical 
microscopy, DSC 

[99] 

  Commercial composting site DSC, Tensile testing [115] 

Fungal 
Resistance 

 Agar, G. globosum at 28
o
C for 

130 days 
Weight loss, FTIR-ATR, SEM 

Weight loss, SEM 

[98] 

[116] 

Bacterial/Fungal  
Inoculation 

 Incubator at 37
o
C with 

Pseudomonas aeruginosa 
Weight loss [26] 
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1.7 Aims and Objectives of this Study 

 

This research involved working in conjunction with a polyurethane manufacturer (the sponsor 

company; Eurothane Ltd), with the main aim of developing TPU polymers that show 

increased biodegradation compared to the company’s current TPUs, for use in a specific end 

product application. The product requires a six month usage targeted for an agricultural 

application, followed by degradation of the polymer in the soil. 

  

From the literature review it was found that the morphology of TPUs has a profound effect on 

their properties, and this is in turn dependent on the chemical constituents and method of 

synthesis of the polymers. Therefore, three TPUs were synthesised at Eurothane Ltd, each 

with a different method of synthesis, one of which was the current TPU synthesied by the 

company and deemed as ‘non-biodegradable’. This sample was used as a control with which 

to compare all other newly synthesised samples with respect to their biodegradation. 

 

A further four samples were synthesised at Eurothane Ltd, each containing either a different 

polyol or diisocyanate, and were compared to the control sample, in order to examine the 

effect of the polyol and diisocyanate structures on degradation and biodegradation of the 

TPUs. Results from this work were then used to examine the effect of various additives on 

degradation and biodegradation of these TPU samples. 

 

The objectives of this research were: 

 

1. To examine known methods typically used to evaluate the degradation and 

biodegradation of polymers in order to develop and apply the appropriate test 

methods and analytical techniques, for monitoring the rate of degradation and 

biodegradation where the end use of the product required to be degradable in soil. 

 

2. To analyse the control TPU polymer synthesised at Eurothane Ltd, with respect to its 

morphology, biodegradation and degradability, and to use this information as a 

baseline to compare with all the other samples synthesised having varying 

formulations and prepared by different methods. 

 

3. To compare TPUs synthesised by the ‘one shot’ method and the ‘pre-polymer’ 

method in order to examine if the method of synthesis affects the rate of degradation 

and biodegradation of the prepared TPUs. 
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4. To examine the effect of altering the structures of the ‘soft segment’ polyol 

components and the diisocyanate of the ‘hard segment’, on degradation and 

biodegradation, by monitoring the changes in the chemical and physical properties of 

the TPUs before, during and after the degradation process. 

 

5. To possibly increase the rate of degradation and biodegradation by the incorporation 

of additives which have been shown in the literature to either increase biodegradation 

in other polymeric materials, or which may alter the morphological profiles of TPUs, 

and to investigate the effect of each additive on the rate of degradation and 

biodegradation of the TPUs. 
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2.1 Materials 

 

2.1.1 Polyurethanes 

Polyurethane (PU) samples, both as pellets and plaques (2mm thick), were provided by the 

sponsor company Eurothane Ltd. Fig. 2.1. PU ADP is the standard polyurethane that was 

synthesised by the company and used as a control sample throughout this work. The method 

of synthesis and the hard and soft segment composition of the polyurethanes, were varied to 

determine the effect of each component on the degradation of the polymer. The various 

polyurethane samples were grouped according to their structure and/or additives used; see 

Table 2.1a & b for the chemical compositions and acronyms of all PUs used. The samples 

received were prepared into films before further use. 

 

2.1.2 Preparation of PU Film Samples  

All characterisation and degradation experiments were performed on polyurethane films of a 

thickness between 100-120 µm. Films were prepared by melt pressing using a Turton and 

Bradley compression moulding machine which was preheated to the required temperature 

(between 180 oC and 220 oC depending on the composition of the sample) Table 2.1a & b. 

The pellets were placed between two heated platens each lined with a Teflon sheet and 

allowed to heat for a set amount of time under no pressure. A pressure of 1 MPa was then 

applied for the required time, see Table 2.2 and then cooled under the same pressure for 15-

20 mins until the temperature dropped down to 40-50 oC before removing from the press 

 

2.1.3 Additives and solvents 

All other chemicals used were of reagent grade and were used without further purification. 

Solvents employed were laboratory reagent grade supplied from Fisher chemicals, see 

Table 2.3. 

 

 

Chapter 2 

Experimental and Analytical Techniques 
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Figure 2.1 PU plaques and pellets samples provided by Eurothane Ltd.  
 

PU ADP (Control) 

PU ADP (Control)  

PU PGPC PU PEG PU PCL 

PU PR  PU 98 

PU CE   PU PCL   

PUI PUH ADP  
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Table 2.1a  Chemical composition of PU samples without additives used in this study 

PU Composition *HS-(Hard 

Segment), *SS (Soft Segment). 

Structure Mass 

(Kg) 

MM Ratio of 

reactants 

(Weight) 

Acronym- PU ADP, PU PR & PU 98* 

 

HS 4,4 – Methylene bisphenyl 

diisocyanate (MDI) 

N
C

O

N
C

O

 

5.6 

*5.5 

250 MDI:BD:PEA 

3:2:1 

HS 1,4 – Butane diol (BD) 
 

1.5 90 

SS Poly(ethylene adipate) (PEA) 
O

O

O

O
n

 

10 2000 

Acronym- PUH ADP 

 

HS Methylene dicyclohexyl 

diisocyanate (H12MDI) 

N
C

O

N
C

O

 

 262 
H12MDI:BD: 

PEA 

3:2:1 
HS 1,4 – Butane diol (BD) See PU ADP  90 

SS Poly(ethylene adipate) (PEA) See PU ADP  2000 

Acronym- PU PCL 

 
HS  (MDI) See PU ADP  250 

MDI:BD:PCL 

3:2:1 
HS  (BD) See PU ADP  90 

SS Polycaprolactone (PCL) 
O

O

n 

 2000 

Acronym- PU PEG 

 
HS  (MDI) See PU ADP  250 

MDI:BD:PEG 

3:2:1 
HS  (BD) See PU ADP  90 

SS Poly(ethylene glycol) (PEG) O

n 

 1000 

Acronym- PU PGPC 

n n

PEG PCL

N N O

O

O
O

O

O

HH

O
O

O

O

 
HS  (MDI) See PU ADP  250 

MDI:BD: 

PCL:PEG 

3:2:0.5:0.5 

HS  (BD) See PU ADP  90 

SS 50% (PCL) & 50% (PEG) See PU ADP   

 

 

 

 

NN

O

O
O

O

O
O

O

O

O

OH H

OH
OH

N N O

O

O
O

O

O

HH

O

O

O

O

O

O

O

O

N N O

O

O
O

O

O

HH
O

O

O

O

N N O

O

O
O

O

O

HH

O
O O
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Figure 2.1b Chemical composition of PU samples with additives used in this study 

PU Composition *HS- Hard 

Segment, *SS Soft Segment. 

Structure Mass 

(kg) 

MM Ratio of 
reactants/ 

additives(wt %) 

Acronym- PU CE,  PUI 

 
HS 4,4 – Methylene bisphenyl 

diisocyanate (MDI) 

N
C

O

N
C

O

 

5.6 

 

250 MDI:BD:PEA 

3:2:1 

HS 1,4 – Butane diol (BD)  1.5 90 

SS Poly(ethylene adipate) (PEA) O

O

O

O
n  

10 2000 

Additives 

 

  

0.5% 

Acronym- PU PR30 See PU PR (table 2.1a) 

HS  (MDI) See PU PR (table 2.1a)  250 MDI:BD: PEA 

3:2:1 HS 1,4 – Butane diol (BD) See PU PR (table 2.1a)  90 

SS Poly(ethylene adipate) (PEA) See PU PR (table 2.1a)  2000 

Additives 
 

N
+

CH2 CH2 OH

CH3

CH2 CH2 OH

T

 

12% 

Acronym- PU PCL30  See PU PCL (table 2.1a) 
HS  (MDI) See PU PCL (table 2.1a)  250 MDI:BD:PCL 

3:2:1 HS  (BD) See PU PCL (table 2.1a)  90 

SS Polycaprolactone (PCL) See PU PCL (table 2.1a)  2000 

Additives Cloisite 30B (see PU PR30)   12% 

Acronym- PU PEG30 See PU PEG (table 2.1a) 
HS  (MDI) See PU PEG (table 2.1a)  250 

MDI:BD:PEG 

3:2:1 
HS  (BD) See PU PEG (table 2.1a)  90 

SS Poly(ethylene glycol) (PEG) See PU PEG (table 2.1a)  1000 

Additives Cloisite 30B (see PU PR30)    12% 

Acronym- PU CE30 See PU CE 
HS  (MDI) See PU CE  250 MDI:BD: PEA 

3:2:1 HS  (BD) See PU CE  90 

SS Poly(ethylene adipate) (PEA) See PU CE  2000 

Additives Cloisite 30B (see PU PR30)   12% 

Acronym- PUI 30 See PUI 
HS  (MDI) See PUI  250 MDI:BD:PEA 

3:2:1 HS  (BD) See PUI  90 

SS Poly(ethylene adipate) (PEA) See PUI  2000 

Additives Cloisite 30B (see PU PR30)    12%  

 

NN

O

O
O

O

O
O

O

O

O

OH H

OH
OH

Fe

O

O OO

O

O

CH2

CH3

CH2

CH3

CH2

CH3

 16 

16 

T is Tallow (65%,C18; ~30%,C16; ~5%,C14) 

Nano Clay - Cloisite 30B 

Cellulose (Particle size 50µm) Iron Stearate 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=Wyr3gGImFSrapM&tbnid=5RfPugyV3gz5NM:&ved=0CAUQjRw&url=http://commons.wikimedia.org/wiki/File:Cellulose-2D-skeletal.png&ei=3MZKUZ6nE6ay0QWksIHgBA&bvm=bv.44158598,d.d2k&psig=AFQjCNEbpjgeOAvZ48ngLt0HttLMgRBr1g&ust=1363941237981259
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Table 2.2   Film Pressing Conditions for Polyurethane Samples 

PU Sample 
Code 

Temperature (oC) Pre heat (mins) Time under full pressure of 1 
MPa (mins) 

PU ADP 180 3 2 

PU PR 180 3 1.5 

PU 98 200 2 1.5 

PUH ADP 160 1.5 1.5 

PU PEG 160 1.5 1.5 

PU PGPC 160 2 1.5 

PU PCL 180 3 2 

PU CE 200 2 1.5 

PUI 200 1.5 1.5 

 

Table 2.3   Chemical Structure of Solvents  

Chemical Name Structure B.P.(oC) Purity Supplier 

Ethanol   CH3 OH 78.3 Laboratory Grade Fisher 
Scientific 

N,N-
dimethylformamide  

O

N
CH3

CH3

H

 

153 Laboratory Grade Fisher 
Scientific 

Tetrahydrofuran  
O  

66 Laboratory Grade Fisher 
Scientific 

Acetone  O

CH3CH3  

56.2 Laboratory Grade Fisher 
Scientific 

Acetonitrile CH3 N  82 Laboratory Grade Fisher 
Scientific 

Dimethylsulfoxide  

CH3

S

O

CH3 

189 Laboratory Grade Fisher 
Scientific 

n-Hexane CH3

CH3

 
68 Laboratory Grade Fisher 

Scientific 
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2.2 Characterisation of Polyurethane Samples 

The PU samples were characterized by different methods, an overview of which is given in, 

Scheme 2.1   

2.2.1 Solubility 

Solvent casting of the samples was required for some of the experimental work (synthesis of 

PU with nano clay), therefore the solubility of each PU sample was initially examined in 

different solvents (water, ethanol, acetone, acetonitrile, dimethyl sulfoxide, tetrahydrofuran, 

dimethylformamide and hexane) Table 2.4, to obtain the best solvent for casting the 

polymers. A cut film of each PU (1cm x 1cm of a thickness between 100-120 µm) was placed 

in a 50 ml conical flask containing 50 ml of the solvent and stirred on a hot plate stirrer (using 

a magnetic stirring bar) at RT for 24 hours to examine the solubility (in triplicate).  

 

Table 2.4 Solubility of PU Samples at RT 

Sample 
Code # 

Solubility of PU Samples at RT 

Water Ethanol Acetone Acetonitrile DMSO THF DMF Hexane 

PU ADP N N N N Partial Y Y N 

PU PR N N N N Partial Y Y N 

PU 98 N N N N Partial Y Y N 

PU PCL N N N N Partial Y Y N 

PU PEG N N N N Partial Y Y N 

PU PGPC N N N N Partial Y Y N 

PUH ADP N N N N Partial Y Y N 

PUQ N N N N Partial Y Y N 

Y = Soluble,  N = Insoluble 

 

# see Table 2.1a for polyurethane structures 
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Scheme 2.1   Experimental Methods used for the Characterisation and Degradation of PU 

Samples 

 

 

 

 

 

 

 

 

 

 

 

Enzymatic Hydrolysis Soil Burial  
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Degradation Methods Characterisation 

FTIR-ATR TGA 
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RT 

 

Determination of Extent of Degradation  

Alkaline Hydrolysis 

Chemical Structural 

Changes 
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Morphology 
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Weight loss FTIR - ATR DSC Photographs Optical Microscopy TGA 

PU Samples obtained from Eurothane Ltd 
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2.2.2 Water Absorption  

Bulk hydrophilicity is an important factor influencing the rate of hydrolytic degradation of PU, 

therefore, the hydrophilicity of each sample was quantified using the water absorption 

method. This was carried out by measuring the amount of water absorbed at room 

temperature. Each film (1 cm x 1 cm x 100-120 µm) was weighed and then placed in a 50 ml 

flask containing 50 ml of distilled water, and maintained at room temperature (in triplicate). 

Samples were removed at regular intervals, wiped with filter paper to remove excess water 

and reweighed. This process continued until the weight of the PU sample reached 

equilibrium. The water absorption was measured by the weight change of the sample, and 

was calculated using equation 1. 

.  

 

 

 

 

2.2.3 Characterisation of PU Chemical Structure by Attenuated Total Reflection 

Spectroscopy (FTIR-ATR) 

Polyurethane samples were characterised by attenuated total reflection spectroscopy using a 

Perkin Elmer Spectrum one FT-IR Spectrometer, fitted with a Specac Golden Gate single 

reflection monolithic diamond ATR accessory. Samples were analysed as 100-120 µm thick 

films over the range 4000 cm-1 to 500 cm-1 for 16 scans, and the infrared assignments for 

each PU sample are given in Table 2.5.   

 

2.2.4 Chemical Structure of Isocyanates, Polyols, Chain Extenders and Additives used 

in the Synthesis of PU Samples by FTIR 

Reactants and additives used during PU synthesis were characterised by Fourier transform 

infrared spectroscopy on a Perkin Elmer Spectrum one FT-IR Spectrometer using NaCl 

plates (reactants) and KBr discs (additives). Reactants and additives were analysed over the 

range 4000 cm-1 to 500 cm-1 for 16 scans, and the infrared spectra are given in Figs. 2.2 – 

2.4. 

 

2.2.5 Thermal Stability of PU Samples by Thermogravimetric Analysis (TGA)  

Thermal stability of each polyurethane sample was assessed prior to degradation 

experiments using a Perkin Elmer Pyris 1 thermogravimetric analyser (TGA) in order to 

determine thermal property changes after hydrolysis and soil burial. TGA analysis was 

performed on 0.5-1 mg samples under a nitrogen purge and a flow rate of 60 cm3/min. The 

 

Water Absorption (%) = mw – md  /  md  x 100   

mw and md are the weights of the wet and dry samples, respectively 

Equation 1 



                                                                        

60 
 

samples were heated to 650 oC at a rate of 10 oC min. Thermal stability was quantified by 

differential weight loss curve (DTGA);an example is given in Fig. 2.5. 

 

2.2.6 Crystallinity measurements by Differential Scanning Calorimetry (DSC)  

Characterisation of PU morphology for each sample was obtained prior to experiments by 

using differential scanning calorimetry (DSC). DSC measurements were performed on 5-8 

mg circular samples under a helium purge at 40cm3/min using a Perkin Elmer Diamond DSC 

at a rate of 100oC a minute. All thermograms were baseline corrected and calibrated using 

indium.  The samples were first heated to 200oC and held at this temperature for 3 min to 

remove thermal history, then cooled to -80oC, held for 3 min before heating to 220oC.  

Samples were heated at a high heating rate of 100oC/min to obtain greater sensitivity Fig. 

2.6. Determination of the hard and soft segment transitions were ascertained as the midpoint 

temperature of each endotherm, using the peak find tool in the Pyris software program, Fig. 

2.7. The glass transition for each sample was located by using the midpoint temperature 

between extrapolation of the onset temperature To, and extrapolation of the endset 

temperature Te, Fig. 2.7.  Quantification of morphological changes during degradation was 

required; therefore the crystallinity was obtained by measuring the area under each 

endotherm of the initial sample, (H value) Fig. 2.8. . This, was assumed to be theoretically 

100%, and degraded samples were compared reltive to this. 
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Table 2.5   Characterisation of PU chemical structure by FTIR-ATR 

Assigned Group Expected 
Region cm

-1
 

Observed IR Frequency cm
-1

 

PU 
ADP 

PU PR PU 98 PUH 
ADP 

PU 
PGPC 

PU 
PEG 

PU 
PCL 

NH stretch - free 3440 3329 3329   3315 - 3342 

NH  Stretch – 
Hydrogen Bonded 

3520-3400 3297 3302 3302 3332 3298 3301 3302 

CH2 – 
Asymmetrical 

Stretch 

3000-2840 2955 2955 2955 - 2952 2952 2953 

CH2 – Symmetrical 
Stretch 

3000-2840 2920 2918  2926 2918 2910 2919 

CH2 stretch 3000-2840 2875 2874 2874  2869 2870 2870 

  2851 2852 2850 2855   2852 

C=O stretch  free 
(amide I) 

1700-1750 1728 1727 1728 1730 1725 1723 1727 

C=O stretch 
(amide I  (H 

bonded) 

1650 - 1700 1702 1703 1702 1706 1702 1702 1702 

C=C aromatic 1400-1600 1597 1597 1597 - 1598 1598 1597 

C-N Stretch + NH- 
Bend(amide II) 

1650-1515 1529 1528 1529 1524 1530 1531 1528 

CH2 Deformation ~1460 1472 
1459 

1477 
1457 

 
1457 

1462 
1450 

1472 1468 1466 

 ~1400 1414 1414 1413 1414 1413 1413 1413 

Aliphatic CH2 
Wagging 

 1380 1380 1382 1380 1351 1350 1361 

 1310 1309 1310 1310 1318    

Amide V (C-N 
stretch + N-H 

bend) 

1220-1230 1220 1219 1220 1227 1220 1222 1220 

(C=O)-OC ester 
soft segment 

1210-1160 1159, 
1136 

1159, 
1138 

1159, 
1138 

1159, 
1137 

1145 - 1161 

-C-O-C-  
antisymetrical 
stretch ether 

1300-1000 1074 1066 1077 1082 1069 1069 1064 

In plane C-H bend 
(phenyl ring) 

Ref. [11] 1018 1018 1019 - 1018 1018 1018 

Out of plane C-H 
bend (phenyl ring) 

810-840 815 

 

816 816 

 

- 816 817 815 

Out of plane             
–(C=O)-O bend 

Ref. [11] 769 769 769 779 770 769 770 
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Figure 2.2    FTIR spectra of reactants used in PU synthesis (A) butane diol NaCl plate,  (B) 
4,4, - Methylene diisocyanate CCl4 (C) H12MDI 

A

B

C

 OH
OH

Butane Diol 

 

N

O

N

O

4,4 – Methylene diisocyanate 

 

N

O

N

O

Methylene dicyclohexyl diisocyanate 
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Figure 2.3    FTIR spectra of Polyols for PU ADP and PU PCL (A) Polyethylene adipate      
(B) Polycaprolactone 
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Figure 2.4    FTIR spectra of additives used in PU synthesis (A) Iron stearate                                 
(B) Cellulose powder (C) Cloisite 30B  

A

B
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Fe

O

O OO

O

O
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CH3

 16 
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992 Si
 
Stretch 
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N
+

CH2 CH2 OH

CH3

CH2 CH2 OH

T

 
 

T 
T 
 

T is Tallow (65%,C18; ~30%,C16; ~5%,C14) 

Surfactant used in Cloiste 30B nanoclay 

Cloisite 30B Si-O Stretch 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=Wyr3gGImFSrapM&tbnid=5RfPugyV3gz5NM:&ved=0CAUQjRw&url=http://commons.wikimedia.org/wiki/File:Cellulose-2D-skeletal.png&ei=3MZKUZ6nE6ay0QWksIHgBA&bvm=bv.44158598,d.d2k&psig=AFQjCNEbpjgeOAvZ48ngLt0HttLMgRBr1g&ust=1363941237981259
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Figure 2.5 Quantification of thermal stability of PU samples using DTGA curve 

 

 

Figure 2.6 Thermograms of PU samples at heating rates of 20oC/min and 100oC/min 

1
st

 stage decomposition 

(Hard Segment) 
2

st
 stage decomposition 

(Soft Segment) 

TGA Curve PU Sample 

Derivatised TGA Curve 

PU Sample (DTGA) 

PU DSC thermogram at heating rate of 20oC/min 

PU DSC thermogram at heating rate of 100oC/ min 
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Figure 2.7  Determination of hard segment and soft segment transitions in PU samples from 
a DSC curve           

 

 

Figure 2.8    Determination of H for hard segment and soft segment transitions in PU 
samples from a DSC curve            

 

PU Hard Segment Transitions 

PU Soft Segment 

Transition 

Onset temperature To 

Endset temperature Te 

Glass Transition (Tg)  PU Soft Segment 
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2.3 Testing Methods for Degradation and Biodegradation of PU 

The susceptibility of degradation and biodegradation of PU samples were measured using 

different methods, see Scheme 2.1   

2.3.1 Accelerated Degradation of PU by Alkaline Hydrolysis    

Hydrolysis of the PU samples was performed on films (1 cm x 1 cm x ≈120 µm) prepared 

from pellet and plaque samples Fig. 2.1. The films were dried under vacuum at 50 oC prior to 

hydrolysis. Each film was weighed and submersed in a 15 ml aqueous solution of 10% 

NaOH, which was placed in a water bath at a temperature of 45 oC. The weight of each film 

was taken at regular intervals to determine % weight loss (equation 2). Before each 

measurement the films were washed with ethanol and distilled water, and dried under 

vacuum at 50 oC until constant weight.   

The percentage weight loss of the hydrolyzed films was calculated from the weights of the 

dried film samples before and after hydrolysis using equation 2. 

 

 

 

 

 

2.3.2 Degradation of PU by Enzymatic Hydrolysis  

Enzymatic hydrolysis of PU was performed on film samples  (1cm x 1 cm x ≈120 µm) 

prepared from pellet and plaque PU provided by Eurothane Ltd, Fig. 2.1. The films were 

dried under vacuum at 50oC prior to hydrolysis. Each film was weighed and submersed in a 

15 ml buffer solution, pH 5.8 and pH 2.8 dependent on the enzyme used (0.3 mg/ml), Table 

2.6.  The solutions were then placed in a water bath at a temperature of 37oC. The enzyme 

activity was maintained by the addition of 2 ml enzyme/buffer solution (3mg/ml every 2 

hours) The weight of each film was taken at regular intervals to determine % weight loss 

(equation 3). Before each measurement the films were washed with ethanol then distilled 

water and dried under vacuum at 50oC until constant weight.   

The percentage weight loss of the hydrolyzed films was calculated from the weights of the 

dried film samples before and after hydrolysis (see equation 2). 

 

 

Wloss (%) = (Wbefore – Wafter) x 100 

Wbefore    

Wloss(%) is the percentage weight loss of hydrolyzed film, Wbefore is the dried 

weight of the film before hydrolysis, Wafter is the weight of the dried weight of the 

film after hydrolysis. 

Equation 2 
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Table 2.6  Buffer solution compositions for enzymatic hydrolysis  

Enzyme Activity Buffer Solution Composition pH 

Lipase Aspergillus niger 200 U/g K2HPO4 – KH2PO4  5.8 

Lipase Rhizopus sp. 150 U/g K2HPO4 – KH2PO4  5.8 

Protease Aspergillus saitoi 60 U/g Glycine – HCl   2.8-3.0 

Protease Rhizopus sp. 20 U/g Glycine – HCl   2.8-3.0 

 

2.3.3 Biodegradation of PU under Soil Burial Conditions at RT 

Polyurethane samples were buried in two different types of soil in order to ascertain 

susceptibility to microbial biodegradation in soil. Samples were washed with distilled water 

and ethanol, and then dried at 50oC prior to burial. The first soil used, named as soil type no. 

1, Fig. 2.9a was from the Rothamsted Research Institute in Hertfordshire. The second soil 

used, soil type no. 2 was from was from a garden in Castle Bromwich, Birmingham Fig. 2.9b. 

The pH, water holding capacity and total solids were determined prior to the experiment, 

Section 2.4. Three (1 cm x 1 cm x ≈120 µm) PU film samples were placed in a glass beaker 

(800 ml) containing 300 g of soil, Fig. 2.10A. An appropriate amount of distilled water was 

then added to each beaker dependent on the water holding capacity. The beakers were then 

covered with a clear polyethylene bag pierced with 4 holes, and secured at the top with an 

elastic band. The beakers were then placed in a dark cool cupboard. Samples were removed 

at regular intervals washed with distilled water and ethanol and then dried at 50 oC under 

vacuum until constant weight.  

The percentage weight loss of the films was calculated from the weights of the dried film 

samples before and after soil burial as of that for alkaline hydrolysis (see equation 2).  
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Figure 2.9 Photographic Images of soil type 1 Rothamsted Institute (A) and soil type 2  
Castle Bromwich (B) 
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2.3.4 Soil Burial PU Biodegradation at 50oC 

Due to the lengthy process of soil burial experiments at RT, a soil burial experiment was also 

performed at 50oC. Small air tight containers were used during this experiment in order to 

retain moisture at the higher temperature, Fig 2.10B. Samples were washed with distilled 

water and ethanol and then dried at 50oC prior to burial. Each (1 cm x 1 cm x ≈120 µm) PU 

film sample was placed in a separate container comprising 100g of soil type no.1 

(Rothamsted Research Institute). An appropriate amount of distilled water was then added to 

each container dependent on the water holding capacity. The containers were then placed in 

an oven at 50 oC. Samples were removed at regular intervals washed with distilled water and 

ethanol and then dried at 50 oC under vacuum until constant weight. 

The percentage weight loss of the films was calculated from the weights of the dried film 

samples before and after soil burial as of that for alkaline hydrolysis (see equation 2) 

 

 

 

                          Figure 2.10  Soil burial experiment at RT (A) and 50oC (B) 
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2.4 Characterisation of Soil from Rothamsted Institute and Castle Bromwich  

Prior to biodegradation of PU during soil burial, characterisation of the two types of soil used 

was undertaken. 

2.4.1 Measurement of Soil Acidity 

Soil acidity of each soil type was determined by measuring the pH of the soil.  Each air dried 

soil sample (10g) was placed in a 50 ml glass beaker and 25 ml of distilled water added. The 

solution was then stirred continuously for 10 mins. The soil suspension was then left to stand 

for 1 hour to allow particulates to settle. The pH of the soil suspension was measured using a 

Fisher 300 pH meter with glass electrode. Prior to pH measurements of the soil samples, the 

pH meter was calibrated using standard buffer solutions of pH 7 and pH 4 at room 

temperature. pH measurements were then taken by inserting the electrode into the 

supernatant. The pH was recorded when the pH meter had a stabilized reading. Each 

experiment was performed in triplicate, and the pH for each soil sample was given as a mean 

of the three pH values obtained.  

 

2.4.2  Soil Dry Matter Content (DM) 

In order to obtain the water holding capacity of each soil type, the soil dry matter content 

needed to be ascertained. For each soil type three crucibles were weighed, and to each 

crucible was added 10 g of sieved soil (2 mm sieve). Each crucible was then re-weighed and 

placed in a preheated oven at 105 oC for 24 h. Crucibles were removed from the oven and 

placed in a desiccator containing silica gel until cool. The weight of the crucible with soil 

sample was recorded.  The dry matter content (DM) was calculated from equation 3. 

 

 

 

 

 

 

 

 

DM% = ( Dry weight of soil / Fresh weight of soil) x 100 

Fresh weight of soil = (weight of crucible + weight of fresh soil) – weight of crucible 

Dry weight of soil = (weight of crucible + weight of dry soil) – weight of crucible 

 

 

Equation 3 
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2.4.3 Soil Water Holding Capacity (WHC) 

The soil water holding capacity of each soil type was determined volumetrically.  Five 100 ml 

glass funnels containing ~0.3 g of glass wool inserted in the top of each funnel stem were 

placed onto a clamp stand. A short length of rubber tubing (8 cm) was attached to the mouth 

of each stem, and the end of the tubing was clamped with a clip. A 50 g moist soil sample 

was added into each of the three funnels. A 50 ml measuring cylinder was then placed under 

each of the five funnels (three sample funnels and two blank funnels). The two blank funnels 

contained glass wool only. 50 ml of distilled water was then added to each of the five funnels 

and left to saturate the soil (glass wool for blank) for 30 mins. After 30 mins the clips at the 

base of the rubber tubing were opened and the water that drained from each funnel was 

collected for 30 mins. The final volume of water collected after the 30 mins was then noted. 

The water retained by the soil was calculated using equation 4. The water holding capacity 

(WHC) was calculated according to equation 5. 

 

 

 

 

 

 

 

 

 

 

 

2.5 Assessment of Degradation and Biodegradation of PU 

The rate of degradation and biodegradation of PU samples was quantified using different 

methods, see Scheme 2.1   

 

 

 

 

A (ml) = 50 - (volume of water retained by glass wool + volume of water collected) 

Volume of water retained by glass wool = 50ml – volume of water collected from blanks 

Volume of water collected from blanks = Blank 1 + Blank 2 / 2 

 

 Soil Water Holding Capacity (WHC) 

 (ml water held at 100% WHC per 100g oven dried soil) 

2A + MC% = WHC (ml 100g-1 fresh soil) 

 MC% (Moisture Content) = 100 – DM (equation 3) 

Equation 4 

Equation 5 
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2.5.1 Assessment of Degradation and Biodegradation by Spectroscopy 

FTIR-ATR analysis of the PU samples was performed at regular intervals during accelerated 

alkaline hydrolysis, enzymatic hydrolysis and soil burial. FTIR-ATR was used to determine 

changes in the chemical structure and hence the extent of degradation. This was achieved 

by measuring the difference in absorbance peak heights before, during, and after hydrolysis, 

Fig. 2.11. Although the area under the peak provides a more accurate quantification method, 

this could not be used for PU, as peak overlap occurs for many group absorbance values. 

Before each measurement, the films were washed with distilled water and dried under 

vacuum at 50 oC until constant weight. Spectral analysis was undertaken on a Perkin Elmer 

Spectrum one FT-IR Spectrometer fitted with a Specac Golden Gate single reflection 

monolithic diamond ATR accessory. Samples were analysed as 100-120 µm thick films over 

the range over 4000 cm-1 to 500 cm-1 for 16 scans. Normalisation of peak heights with 

degradation time were measured using a standard reference peak at 1600cm-1 (aromatic 

isocyanate PU) and 1318cm-1 (aliphatic isocyanate PU) [105, 117]. equation 6.  

Changes in molecular structure during degradation were calculated by peak height % 

change. This was achieved by assuming the initial peak height (obtained from the PU 

characterization FTIR ATR, spectra Section 2.2.3) was 100%, and peak height changes 

during degradation were calculated as a % increase or decrease of this initial value 

according to equation 7. A worked example is given in Fig. 2.12.  

 

Figure 2.11 Calculation of peak heights during degradation by FTIR-ATR 
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Figure 2.12 Worked example of peak height changes during degradation by FTIR-ATR 

2.5.2 Assessment of Morphology Changes to PU during Degradation and 

Biodegradation by Differential Scanning Calorimetry  

Changes in morphology/crystallinity of PU during accelerated alkaline hydrolysis, soil burial 

and enzymatic hydrolysis were monitored by DSC. Measurements were performed on 5-8 

mg circular samples under a helium purge at 40 ml/min using a Perkin Elmer Diamond DSC 

at a rate of 100oC/min. All thermograms were baseline corrected and calibrated using indium.  

The samples were first heated to 200oC and held for 3 min to remove thermal history, then 

cooled to -80oC, held for 3 min before heating to 220oC.  Samples were heated at a high 

heating rate of 100oC min to obtain greater sensitivity, Fig. 2.6. Determination of the hard 

and soft segment transitions were ascertained as the midpoint temperature of each 

endotherm using the peak find tool in the Pyris software program, Fig. 2.7. The glass 

Aromatic Isocyanate = (Height of abs. peak / Height of ref. peak at 1600cm-1) x 100    

Aliphatic Isocyanate = (Height of abs. peak / Height of ref. peak at 1318cm-1) x 100 

  (Hip/Hir) - (Hdp/Hdr)  

           (Hip/Hir) 

 

 

X 100 

Hdp peak height after degradation,  
Hdr reference peak height after degradation 
Hip initial peak height before degradation 

Hir intial reference peak height before degradation 

Equation 6 

Equation 7 

Calculation of Peak Height % 

Change After Degradation 

Peak Height Initial 1728cm
-1
 = 0.5264 

Peak Height Initial 1596cm
-1
(Ref) = 0.1162 

Height 56 days degradation 1728cm
-1 

        
= 0.2088 

Height 56 days degradation 1596cm
-1 

(Ref) = 0.1596 

Calculation 

Initial (0.5264/0.1162) = 4.53 

56  days (0.2088/0.1596) = 1.308 

 

       (4.53 – 1.308)     x 100 = 71% 

              4.53 

After 56 days degradation C=O peak 
1728cm-1 decreased by 71% 

Initial – Black 
56 days hydrolysis - Red 
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transition for each sample was located by using the midpoint temperature between the 

extrapolation onset temperature To, and the extrapolation endset temperature Te, Fig. 2.7   

Quantification of changes in crystallinity during degradation was obtained by relative changes 

from the initial PU sample section 2.2.6 according to equation 8.   

 

 

 

 

 

2.5.3 Changes to thermal stability of PU samples by thermogravimetric analysis     

(TGA) after degradation and biodegradation. 

 

Changes in the thermal stability of each sample during alkaline hydrolysis, soil burial and 

enzymatic hydrolysis were quantified by TGA using a Perkin Elmer Pyris 1 thermogravimetric 

analyser. TGA analysis was performed on 0.5-1 mg samples under a nitrogen purge of a flow 

rate 60 ml/min. The samples were heated to 650oC at a rate of 10oC/min. Thermal stability 

was quantified by differential weight loss curve (DTGA) obtained by differentiation of the 

thermogram of each sample; an example is given in Fig. 2.5. 

 

2.5.4 Visual changes during degradation and biodegradation to PU samples assessed 

by microscopy and photography  

Visual changes during alkaline hydrolysis, enzymatic hydrolysis and soil burial were 

monitored by transmission optical microscopy at a magnification of 20 x 0.4 µm. Each film 

was removed at regular intervals washed with distilled water and dried at 50 oC under 

vacuum. Each sample was then placed under the microscope and examined for signs of 

cracking and deformation of the PU sample. Photographs of each PU sample were also 

taken at regular intervals in order to record visual signs of degradation to the PU films.. The 

samples were then given a numbered rating dependent on the extent of visible degradation 

from the photographs taken, Table 2.8 

 

 

 

  (H endotherm initial sample - H endotherm degraded sample)  

.                              H endotherm initial sample  

 

 

 

X 100 

Equation 8 
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Table 2.8  Arbitrary assessment of visible degradation during testing  

No. Arbitrary Scale of Degradation Stage 

0 no signs of cracking deformation 

1 slight signs of limited surface degradation 

2 deformation of sample (curling) and discolouration 

3 visible cracks showing 

4 Small pieces of samples broken away from film 

5 complete breaking of sample small pieces 
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3.1 Objectives and methodology 

Polyurethanes are an important versatile class of polymers that have found a niche in an 

array of applications, including, medical, automotive, coatings, construction materials and 

furniture. Generally polyurethanes are chosen for their resistance towards degradation and 

hydrolysis, however with the increase in public awareness towards pollution and the 

environment, there has been an increased interest in degradable polyurethanes. It is well 

documented that the physical and chemical properties of polyurethanes are dependent on 

the chemical constituents of the polymer [38, 118, 119]. Thermoplastic polyurethanes consist 

of three components; a diisocyanate, a polyol and a chain extender, and it is the interactions 

between these constituents; such as hydrogen bonding and microphase separation, that 

bestow specific properties on the polyurethane (Chapter 1, Section 1.3.4). Thermoplastic 

polyurethanes can be synthesised in numerous ways [38], and the most common methods 

used are; the one shot method (in which all of the reactants are added at the same time), 

and the pre-polymer method (in which the isocyanate and polyol are mixed to form a pre-

polymer then the chain extender is added to form the final polyurethane), see Chapter 1, 

Fig.1.3 and Scheme 3.1. The work described in this chapter was to determine the effect of 

the method of synthesis on the physical and chemical properties of the polymer. These 

results will give an indication of the susceptibility of each different polyurethane sample 

towards degradation and biodegradation. Three polyurethane samples (synthesised for this 

work by the sponsor company Eurothane Ltd.) having the same chemical composition but 

synthesised differently, were tested and reported here to determine the effect of the method 

of synthesis on the degradation and biodegradation of the samples. These polyurethane 

samples, which for the purpose of this study were labelled as Group 1 PUs, consist of; PU 

ADP (control sample synthesised by the one shot method, with excess isocyanate), PU PR 

(synthesised by the pre-polymer method, with excess isocyanate) and PU 98 (no excess 

isocyanate was added, one shot method, Table 3.1. 

 

Chapter 3 

Effect of Polyurethane Method of Synthesis 

on Degradation and Biodegradation  
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Different factors can contribute to the overall rate of abiotic degradation such as weathering, 

UV light and burying conditions [25, 27, 120]. During this process, the polyurethane materials 

can undergo transformations which provoke degradation, and one of the most important 

parameters involved is that of chemical degradation and biodegradation by hydrolysis [57]. 

To obtain a broad indication of susceptibility of polyurethane to degradation, each sample 

was subjected to accelerated alkaline hydrolysis, enzymatic hydrolysis and biodegradation 

by soil burial. The rate of degradation was determined by weight loss, and structural changes 

monitored by FTIR-ATR, before, during and after degradation. Changes in morphology were 

determined by TGA and DSC, before and after degradation.  

 

3.2 Results 

3.2.1  Characterisation of Synthesised Polyurethanes PU ADP, PU PR and PU 98 - 

Group 1 (Method of Synthesis) 

In order to examine and fully understand the chemical, physical and morphological changes 

in the polyurethane samples used in this study during degradation, full characterisation of 

each sample was undertaken prior to all experiments. This was achieved using a variety of 

analytical techniques including; FTIR-ATR (chemical structure), TGA (thermal stability) and 

DSC (morphology)  

 

Samples were provided by Eurothane Ltd in plaque and pellet forms, therefore, prior to 

characterisation, samples were pressed into films of thickness of between 100-120µm, see 

Table 2.3.   

 

The solubility of all samples in this group (PU ADP, PU PR, PU 98) were found to be very 

low (insoluble) in acetone, acetonitrile, ethanol, water and hexane, see Table 2.4. The 

samples were partially soluble in dimethyl sulfoxide and fully soluble in tetrahydrofuran and 

dimethylformamide, although to fully dissolve a sample constant agitation was required for 

24h, see section 2.2.1. Hydrophilicity has been shown to influence the biodegradability of 

polyurethane, and the addition of hydrophilic polyols such as PEG has been proven to 

improve the hydrophilicity and degradation rate of polyurethanes [33, 56, 121]. Therefore the 

hydrophilicity of each sample was measured by water absorption prior to the experimental 

work, see section 2.2.2. From the results shown in Fig.3.1, it can be noted that there was 

very little difference in the extent of water absorption between the different samples in this 

group (PU ADP 4.5%, PU 98 4.5%, PU PR 3.6%). Therefore it can be concluded that the 

method of synthesis did not significantly affect the bulk hydrophilicity.  
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Chemical structure was determined by FTIR-ATR, Fig 3.2. As polyurethanes are essentially 

microphase separated systems (see section 1.3), and consist of a hard segment (isocyanate 

and chain extender), and a soft segment (polyol), the FTIR-ATR spectra of each sample was 

examined with respect to specific absorptions for each of these segments. All of the samples 

in this group had similar spectra and therefore will be discussed together. The hard segment 

structure can be characterised by  typical bands at 3329cm-1 (PU ADP) and around 3300cm-1 

(PU PR and PU 98) corresponding to the stretching vibration of the N-H group [105, 114, 

122] Fig.3.2. This can be coupled with the absorbances at around 1529cm-1 and  1220cm-1 

relating to the N-H bending vibration with C-N stretching vibration (amide II band) [114, 122, 

123] Fig.3.2. The absorbance at 1597cm-1 was used as the reference peak to normalise all 

spectra, and denotes the C=C vibration of the aromatic ring [123, 124]  This can be coupled 

with the absorbance at 815cm-1 characteristic to the C-H out of plane bending vibration of a 

1,4-disubstituted aromatic ring [123, 124]. Numerous peaks in the spectra are representative 

of both the hard and soft segment structures and therefore cannot be defined as groups 

specific to either the hard or soft segment. The hard/soft segment structure can be 

characterised by the absorbance at about 1728cm-1 and 1701cm-1 corresponding to the 

urethane and ester stretching vibrations of the free and hydrogen bonded C=O groups, 

respectively [59, 105, 114] Fig.3.2. The absorbances at 1074cm-1 and 1060cm-1 show a 

typical C-O-C stretching vibration relating to the urethane bond in the hard segment and the 

O-C-C stretch of the ester bond in the soft segment [105, 125] Fig.3.2. Only the absorbance 

peaks at 1137cm-1 and 1158cm-1 are characteristic of the soft segment exclusively and relate 

to the C-(C=O)-O ester groups, Fig.3.2 [124, 125]. 

The thermal stability of each sample was evaluated by TGA prior to degradation experiments 

in order to observe any effect of the method of synthesis on the thermal properties of the 

samples. Samples were heated at a constant rate under a nitrogen atmosphere. The onset 

decomposition temperature of the hard and soft segments were evaluated by derivative 

weight loss curve, see section 2.3.4. The thermal degradation of polyurethane under a 

nitrogen atmosphere occurs in a two stage process, and it is well documented that thermal 

decomposition of the polyurethane hard segment occurs prior to that of the soft segment [34, 

102, 126, 127]. The reason for this is that thermal stability has been shown to be dependent 

on the weakest linkage in the structure, which in the case of polyurethanes has been shown 

to be the urethane bond (C-NH 98kJ/mol) [34, 102]. The thermographs for each sample are 

given in Fig.3.3. It can be observed that decomposition of the hard segment occurs in the 

descending order of PU ADP (333oC)>PU 98 (325oB) PU PR (318oC). These results show 

that the hard segment thermal decomposition under an inert atmosphere occurs at a lower 
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temperature for the polyurethane sample synthesised by the pre polymer method (PU PR) 

than that of the one shot method (PU ADP).  

 

DSC studies were undertaken to characterise the initial morphology before degradation. 

Samples were subjected to a heating temperature of 100oC per min under a helium 

atmosphere to 180oC to remove previous thermal history, then the temperature reduced to -

100oC and heated again to 220oC. An indication of phase separation between the hard and 

soft segments in polyurethane can be obtained by the Tg value of the soft segment, and it 

has been shown previously that increased phase separation between the hard and soft 

segments decreases the Tg value [107, 109]. The DSC thermograms of group 1 PU samples 

PU ADP, PU PR and PU 98 are shown in Fig.3.4. The Tg was found to be similar for PU 

ADP (-18oC) and PU PR (-16oC). This indicates that altering the method of synthesis did not 

affect the dispersal of the hard segment within the soft segment, and therefore does not 

provide an explanation for the increased thermal stability of PU ADP Fig.3.3. However, there 

were notable differences between the endotherms relating to the hard segments of the PU 

samples. It is generally accepted that segmented elastomers can display up to three 

endotherms, relating to the hard segment domain [107, 109, 128]. For PU ADP all three 

endotherms relating to the hard segment were observed Fig.3.4a. The endotherm at 109oC 

relates to the short range ordering of non-crystalline hard segment domains Fig.3.4 & 3.5 

[22-24]. The endotherm at 147oC relates to long range ordering of non-crystalline hard 

segment domains Fig.3.4 & 3.5 [22-24], and the third endotherm relating to the 

microcrystalline regions within the hard segment was observed at 195oC Figures 3.4 & 3.5 

[22-24]. The H values for each endotherm were calculated and are given in Table 3.2. From 

these results it can be seen that PU ADP exhibited the greatest microcrystalline region at 

195oC, H (6.08 J/g) indicating that the hard segment domains in PU ADP were principally 

highly ordered microcrystalline regions. This is in contrast to PU PR in which the 

microcrystalline region was shown to be significantly lower at H (1.08 J/g), Fig. 3.4b & 

Table 3.2. These morphological differences induced by the method of synthesis may have 

an effect on the degradation and biodegradation of TPU and will be assessed in section 

3.2.2. 

 

3.2.2  Effect of Method of Synthesis (PU ADP, PU PR and PU 98) on the Rate of 

Alkaline Hydrolysis 

The three polyurethane samples with the same composition but synthesised differently 

(Group 1: PU ADP, PU PR, PU 98), Table 3.1, were immersed in 10% NaOH solution and 
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removed at weekly intervals to monitor their degradation, see Section 2.3.1. The chemical 

compositions of PU ADP (one shot method) and PU PR (pre-polymer method) were kept 

constant in order to evaluate any difference in the method of synthesis, Table 3.1a. There 

were significant differences both by weight loss, Fig.3.6a and visually, Fig.3.6a & Figs.3.7 & 

3.8. After 21 days, PU PR exhibited the greatest weight loss, and had completely degraded 

after the 28 day period, Fig.3.6a and Figs.3.7 & 3.8. These differences may be due to 

morphology changes caused by the method of synthesis.  

3.2.2.1 Structural changes in PU ADP, PU PR and PU 98 monitored by FTIR-ATR 

During alkaline hydrolysis, FTIR-ATR was performed on the PU samples in order to 

determine structural changes during degradation. An initial spectrum of each sample was 

taken before hydrolysis, and group absorbances were assigned accordingly, Section 3.2.1.1 

& Fig.3.2.  Analysis of the spectra during hydrolysis was quantified by changes in peak 

height, and then relative peak height changes were calculated in comparison to the virgin 

polymer films prior to hydrolysis see Section 2.5.1, Fig 2.11. These calculations were then 

used to show changes in both the hard and soft segments during hydrolysis. Peak height % 

was used due to peak overlap within the spectra.  

i) Spectral changes Hard Segment structure PU ADP, PU PR and PU 98 

The hard segment structure was previously characterised by FTIR-ATR (see section 3.2.1.). 

The N-H bond of the urethane linkage in the hard segment showed dramatic changes during 

alkaline hydrolysis. Fig.3.9a shows that the peak at 3329cm-1 (PU ADP) increased during the 

42 days (+17%) with the peak shifting to 3301cm-1 after 14 days. The same was also 

observed for PU PR with an increase in the peak at 3301 cm-1 (2%) after 21 days (Fig.3.9c) 

and in the case of PU 98, a decrease in this peak was observed after 42 days (Fig.3.9e). A 

decrease in the peak at 1529cm-1 (-14% PU ADP, -16% PU PR after 21 days, -20% PU 98) 

was observed, relating to the N-H bending vibration with C-N stretching vibration (amide II 

band), Fig.3.9 b, d & f. This peak also shifted to around 1518cm-1 after hydrolysis. These 

results indicate partial degradation of the hard segment; the increase in the N-H peak is 

characteristic of the formation of primary amine groups during hydrolysis. This suggestion 

can be further supported by the appearance of a shoulder at 3398cm-1, Fig 3.9 a & d which 

is characteristic of the bending vibration of the N-H peak of aromatic amines [6,9,10].  
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ii) Spectral changes Hard/Soft Segment Structure PU ADP, PU PR and PU 98 

Due to the structure of polyurethane, many peaks observed in the FTIR-ATR spectra cannot 

be assigned to solely the hard or soft segment structure, but may relate to specific groups in 

both segments, and these peak assignments will be discussed in this section.  

Changes relating to the CH2 moiety in the soft/hard segment structure were observed from 

the peak at 1477cm-1, which increased during alkaline hydrolysis for all samples, and a 

decrease in the peak at 1459cm-1 relating to the urethane C-N linkage, Fig.3.9 b, d, f,. This 

may be due to an increase of the hard segment on the surface of the polyurethane film as 

the soft segment degrades. The peak at 1381cm-1 relating to the α-CH2 group was also seen 

to decrease and eventually disappeared after 21 days (PU PR), and 42 days (PU ADP,PU 

98) Fig.3.9. A significant change was noted in relation to hard/soft segment groups, with the 

free C=O peak at 1727cm-1 decreasing by 81% after 42 days of hydrolysis (PU ADP), Figure 

3.10a, 87% after 21 days (PU PR) and 82% after 42 days (PU 98) Figure 3.10 c & e. The 

hydrogen bonded C=O peak at 1701cm-1 also decreased by 35% (PU ADP), 33% (PU PR) 

and 36% (PU 98) which also shifted to 1695cm-1 after hydrolysis, Figure 3.10 a, c & e. A 

decrease in the peak at 1074cm-1 (-40% PU ADP, -35% PU PR, -38% PU 98) and 1060cm-1 

(-16% PU ADP, -19% PU PR, -14% PU 98) denoting the C-O-C urethane bond and O-C-C 

ester bond was also observed, Figure 3.10 b, d & f.  

iii) Spectral changes PU ADP Soft Segment structure 

The soft segment structure of the polyurethane samples were characterised by the peaks at 

1137cm-1 and 1159cm-1 denoting the (C-(C=O)-O ester) group, and Figs.3.10b, d & f display 

spectral changes during alkaline hydrolysis of these peaks, which decreased dramatically for 

all samples, and had completely disappeared after 42 days (PU ADP, PU 98). For PU PR, 

these peaks disappeared after 21 days, indicating that the ester linkages in the polyethylene 

adipate soft segment hydrolysed at a faster rate for the polyurethane synthesised by the 

prepolymer method. 

 

3.2.2.2 Effect of Method of Synthesis on Crystallinity and Thermal Stability during 

Alkaline Hydrolysis (PU ADP, PU PR and PU 98) 

DSC was performed on each of the PU samples in group 1 (method of synthesis) at regular 

intervals during alkaline hydrolysis in order to elucidate morphological changes to the hard 

and soft segment structure. From the results shown in Fig 3.11a & b, it can be seen that PU 

ADP (one shot method) and PU PR (pre-polymer method) exhibited different transitions 

during degradation. Prior to hydrolysis, PU ADP synthesised by the one shot method, 
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showed three endotherms relating to the MDI/BD hard segment and one endotherm relating 

to the polyethylene adipate soft segment, Fig.3.11a. It can be seen that, during alkaline 

hydrolysis, all of these peaks were seen to reduce and eventually disappear after 28 days. In 

contrast to this, Fig.11b, PU PR synthesised by the pre-polymer method, exhibited two 

endotherms at 148oC and 195oC relating the MDI/BD hard segment, which were seen to 

increase during hydrolysis, with the endotherm at 195oC denoting melting of the 

microcrystalline region increasing dramatically, Fig. 11b.  

TGA was performed on each of these samples prior to hydrolysis, (see section 3.2.1.1), and 

after 21 days of alkaline hydrolysis (PU PR completely degraded after this time), in order to 

determine changes to the hard and soft segments. These results produced interesting 

findings. From Fig. 3.12. it can be seen that PU ADP (one shot) displayed two DTGA peaks 

at 309oC and 432oC after 21 days of hydrolysis relating to the hard and soft segments 

respectively [18-21]. The mass loss curves indicated that a large proportion of the soft 

segment had degraded (initial value 67%, after hydrolysis 25%), however most of the hard 

segment still remained, Fig. 3.12. These observations are in accordance with FTIR-ATR 

results (see section 3.2.2.2). The TGA results for PU PR (pre-polymer) after 21 days of 

hydrolysis exhibited a completely different thermogram to that of PU ADP, Fig. 3.12 in that 

DTGA peaks were observed at 204oC, 260oC, 302oC and 406oC. The peaks at 302oC and 

406oC related to the hard and soft segment thermal decomposition temperatures respectively 

[18-21]. However, the two peaks at 204oC and 260oC, which possibly relate to degradation 

products during hydrolysis of the soft segment, as these peaks were not observed in the 

intital thermogram of the sample, Fig. 3.12. 
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3.2.3. Susceptibility to soil degradation of Polyurethane Samples PU ADP, PU 

PR and PU 98 (Effect of Method of Synthesis). 

PU samples were subjected to two different types of soil burial in order to assess their 

susceptibility towards microbial degradation in soil. The first type of soil burial involved 

placement of samples in 800ml glass beakers containing 300g of soil. The beakers were 

then covered and stored in a dark cupboard at room temperature (RT) (see Section 2.3.3 & 

Figs.2.9 & 2.10). The samples were removed at regular intervals to assess degradation. In 

the second soil burial experiment, samples were placed into small containers containing 

100g soil and placed in an oven at 50oC in order to simulate a composting environment and 

removed at regular intervals to assess degradation (see section 2.3.4 & Figs. 2.9 & 2.10). 

Both experiments can be considered synonymous with each other, with the exception of 

faster degradation rates from the composting simulation experiment due to the higher 

temperature involved (~50oC), and as such is a rapid effective method in which to examine 

the biodegradability of PU in the natural environment [64].  

 

After 20 months of soil burial at RT there was little weight loss observed for PU samples in 

either soil types, with the greatest weight loss occurring for PU 98 at 7% soil type 1, 9% soil 

type 2, Fig.3.13b & c. The PU film samples in this group (PU ADP, PU PR, PU 98) were still 

intact and did not show any visible signs of cracking, Fig. 3.14. However, some visible signs 

of degradation were observed microscopically for PU ADP (soil 1) and PU PR (soil 2) 

implying that some biodegradation of these films had occurred Fig.3.15.  

 

PU samples subjected to soil burial at 50oC for 5 months displayed a greater weight loss than 

those at RT Fig.3.13a, with the greatest weight loss of 68% for PU 98, although weight 

losses were also noted for PU PR at 32% and PU ADP, 21%. From Fig 3.14 it can be noted 

that the samples were not intact after 5 months. The films were broken and fragile when 

removed from the soil. In order to ascertain any structural changes taking place during soil 

burial FTIR-ATR was performed on each sample at regular intervals during the experiment. 

 

3.2.3.1 Structural changes during soil burial at 50oC in PU ADP, PU PR and PU 98 

monitored by FTIR-ATR. 

The main spectral changes during soil burial involved the ester/urethane linkages in the 

samples, therefore these will be examined in detail. Fig. 3.16 a, c & e displays peaks relating 

to the free urethane/ester carbonyl group at 1727cm-1, which decreased for all groups during 

soil burial, even after 3 months. However, there still remained a significant peak after 5 
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months despite the fact that the films had completely broken up Fig. 3.14. This suggests that 

not all of the adipate ester contained in the samples had degraded. This can be further 

supported, by the FTIR-ATR peaks at 1158cm-1 and 1137cm-1 denoting the O-C-C ester 

bond Figs.3.16 b, d & f, which again although decreased somewhat, still remained after 5 

months.  

A new peak at 1038cm-1 was observed for all samples after 3 and 5 months which may 

suggest the formation of alcohol/amine degradation products Fig.3.16 b, d & f. This can 

further be verified by Fig. 3.16 a,c & e which clearly displays the appearance of a significant 

peak at 1659cm-1, and also by the increase in the N-H peak at 3330cm-1 denoting the 

formation of amine groups Fig. 3.17a-c. 

 

 

3.2.3.2 Structural changes during soil burial at RT after 20 months in PU ADP, PU PR 

and PU 98 monitored by FTIR-ATR 

 

Spectral changes during soil burial at RT after 20 months were similar to those as at 50oC 

(see above). The peaks at 1727cm-1 and 1701cm-1 relating to the free and hydrogen bonded 

urethane/ester carbonyl group respectively were seen to decrease after 20 months soil 

burial. A slight decrease in this peak was observed for PU ADP for both soil samples Fig. 

3.18a, however the opposite was true of PU PR, with this PU being more susceptible to 

degradation in the garden soil type 2 Fig. 3.18c. The carbonyl peaks at 1727cm-1 and 

1701cm-1 for PU 98 was seen to decrease for both soil types Fig. 3.18e. These findings 

suggests that, although some degradation of each sample had occurred it was not 

substantial, and this observation can be supported by the peaks at 1158cm-1 and 1137cm-1 

as shown in Fig. 3.18b,d & f, denoting the O-C-C ester bond which again, although 

decreased slightly, still remained after 20 months. The rate of biodegradation under soil 

burial conditions was deemed to be PU98 > PU PR > PU ADP for both soil types, however 

none of these samples were observed to be particularly degradable in soil at RT, as all 

samples remained intact throughout the experiment.  

 

3.2.2.3 Effect of Method of Synthesis on Crystallinity after 20 months soil burial       

(PU ADP, PU PR and PU 98) 

PU samples subjected to soil burial at RT were removed from the soil, and morphological 

changes during biodegradation were ascertained by DSC (morphological changes in 

samples buried in soil at 50oC could not be performed due to the fragile nature of the films). 
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From the results shown in Fig. 3.19a, it can be seen that after soil burial of PU ADP (one 

shot method), minor changes were observed in the DSC thermograms, with the most 

significant finding being, the disappearance of the peak at 109oC relating to the short range 

ordered MDI/BD hard segment. However, the endotherms at 147oC and 195oC relating the 

long range ordered and microcrystalline MDI/BD regions remained relatively unchanged. 

This indicates that although some minor degradation had occurred it was not significant. 

More noticeable changes were observed in the DSC thermograms after soil burial for 20 

months for PU PR (prepolymer method), Fig. 3.19b with an increase in the endotherm at 

195oC denoting the microcrystalline MDI/BD region. As of that for PU ADP, a slight difference 

in degradation of PU PR was noted in relation to soil type, with a greater increase in the 

endotherm at 195oC for soil type 2 (ΔH 8.5J/g). These findings can be supported by similar 

results for FTIR-ATR which indicated greater biodegradation in soil type 2 for PU PR section 

3.2.3.2. 
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3.2.4. Susceptibility of Polyurethane Samples PU ADP, PU PR and PU 98 (Effect 

of Method of Synthesis) towards enzymatic degradation. 

In order to ascertain susceptibility of the PU samples towards biodegradation and 

degradation, samples were placed in buffer solutions (37oC), each solution containing a 

fungal enzyme. Previously, studies have shown that PU is susceptible towards enzymatic 

degradation by esterases/lipases and proteases [21, 23, 24, 129]. As this PU was for 

agricultural purposes to degrade in soil after end use, fungal esterases/lipases and proteases 

were used.  Two different lipases and two different proteases were used to examine the 

susceptibility of the PU samples to enzymatic degradation. Degradation was monitored by 

weight loss, visual changes using optical microscopy and chemical structural changes by 

FTIR-ATR.  

 

Fungal lipases from Rhizopus sp. and Aspergillus niger and proteases from Aspergillus saitoi 

and Rhizopus sp. were used for enzymatic degradation of the PU samples. Rhizopus sp., is 

a common fungi associated with plants and vegetables and commonly found in soil [130-

132], and many species of Aspergillus are also abundant in soils [23, 133-136], Aspergillus 

niger has also been previously shown to degrade some types of PU [24].  

 

Samples were removed from enzyme/buffer solutions every 12 days for a period of 24 days 

(see section 2.3.2). For the protease degradation, the pH of the buffer was 2.8 therefore, 

samples were also placed the buffer solution only to determine whether any degradation 

occurred due to enzyme activity or the acidic buffer solution.  

 

3.2.4.1 Structural changes during enzymatic degradation using lipases in PU ADP, PU 

PR and PU 98 monitored by FTIR-ATR. 

There was little weight loss (not shown) observed after 24 days for all of the PU samples in 

this group for both lipases Rhizopus sp. and Aspergillus niger, which was both unexpected 

and disappointing. However, optical images did display some signs of surface degradation 

for Aspergillus niger after 24 days Fig.3.20, and therefore FTIR-ATR was performed to 

determine the extent of degradation. 

 

Spectral changes after 24 days of enzymatic degradation of PU samples for both Rhizopus 

sp. and Aspergillus niger are given in Fig.3.21. It can be noted that there was relatively little 

change in the spectra for PU ADP for Rhizopus sp.,Fig 3.21a & b. However, samples 

immersed in the buffer solution containing Aspergillus niger, did display a small decrease in 
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the peaks at 1725cm-1 and 1701cm-1 denoting the ester/urethane linkage, and at 1158cm-1 

and 1137cm-1 which corresponds to the ester bond in the PEA soft segment. Fig. 3.21b, also 

displays a small decrease at 1073cm-1 which corresponds to the ester/urethane C-O-C bond. 

For PU PR, a small decrease in the peaks at 1725cm-1 and 1701cm-1 was observed after 24 

days in enzymatic solution for both lipases Fig.3.21c & d.  The same was observed for the 

peaks at 1158cm-1, 1137cm-1 and 1073cm-1. From these results it was noted that the method 

of synthesis did not significantly alter the rate of enzymatic degradation by the two lipases 

used for this experiment.  

 

3.2.4.2 Structural changes during enzymatic degradation using proteases in PU ADP, 

PU PR and PU 98 monitored by FTIR-ATR. 

Degradation by proteases was also disappointing in that little weight loss (not shown) was 

observed for Aspergillus saitoi and Rhizopus sp. However, fungal growth and visible cracking 

from microscope images of the PU samples were observed with Rhizopus sp. Fig. 3.22. 

  

The FTIR-ATR spectra of the PU samples did highlight small differences regarding 

degradation of the urethane linkages contained within the hard segment and hard/soft 

segment interfaces. PU ADP displayed a reduction in the ester/urethane peaks at 1727cm-1 

and 1701cm-1, and also the N-H & C-N peak at 1527cm-1 relating to the hard segment, Fig. 

3.23. this is in accordance with the microscopic images, which clearly displays cracks in the 

PU ADP film, Fig.3.22. A decrease was also observed at 1077cm-1 denoting the C-O-C 

urethane stretch, Fig.3.23. However, for PU PR and PU 98, an increase in the peak at 

1727cm-1 was observed, denoting the ester/urethane linkage. This is more than likely due to 

fungal growth on the surface of the PU samples which can be seen for PU 98, Fig. 3.22. 

Although some signs of initial degradation were observed, there was no significant difference 

between the samples to support the supposition that the method of synthesis affected the 

rate of enzymatic degradation for the lipases/proteases used in this experiment. 
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3.3 Discussion 

 

3.3.1 Effect of Method of Synthesis (PU ADP, PU PR and PU 98) on the Rate of 

Alkaline Hydrolysis 

 

Hydrolysis is essentially a chemical reaction by which chemical bonds are broken in the main 

chain by a reaction with water, and is dependent on a variety of parameters such as, 

temperature, pH and time.  Hydrolysis is also dependent on the structural characteristics of 

the polymer, the degree of its crystallinity, molecular weight and molecular weight distribution 

[57]. For example, structured molecular frameworks (crystalline domains) prevent the 

diffusion of H2O, thereby reducing hydrolytic degradation of the polymer, and conversely a 

more disorganised molecular structure (amorphous regions) results in the polymer having a 

greater susceptibility to hydrolytic degradation [7]. For PU, hydrolysis can result in numerous 

degradation products such as carboxylic acids and amines, Fig.3.24, as both ester and 

urethane linkages contained within the PU structure are susceptible to hydrolysis. In order to 

design materials with a controlled life span, optimization of hydrophilic characteristics are 

essential. Therefore polyurethane samples were subjected to alkaline hydrolysis in order to 

monitor rate of degradation and the effect of the method of synthesis on degradation. 

Prior to hydrolysis, PU films were characterised in order to ascertain changes during 

hydrolytic/biodegradation. Thermal stability of each PU sample was assessed by TGA. The 

results from the initial thermograms highlighted a difference in the thermal stability between 

PU ADP synthesised by the one shot method and PU PR synthesised by the prepolymer 

method, in that PU ADP was observed to be more thermally stable than that of PU PR 

Fig.3.3. As thermal decomposition in polyurethane commences with the hard segment [18-

21], the distribution of the hard segment within the polymer matrix plays an important role in 

the thermal stability of the polyurethane, and aggregation of the hard segment could be a 

factor which influences the difference in the thermal stability between these samples. It has 

been shown in previous studies that dispersal of amorphous regions inside the hard segment 

weakens the structure [107-109]. Therefore greater phase separation between the hard and 

soft segments may confer higher thermal stability on the polyurethane. For this reason DSC 

characterisation was performed on each of these samples in order to ascertain 

morphological information of the polyurethanes.  

 

DSC analysis was performed on each sample prior to hydrolysis and produced interesting 

findings. It was speculated that there may have been a difference in microphase separation, 
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dependent on the method of synthesis due to the increased thermal stability of PU ADP (see 

above). However, the Tg values were similar for PU ADP (-18oC) and PU PR (-17oC) were 

observed indicating little difference in phase separation between the samples. Nevertheless, 

a dramatic difference in crystallinity was observed from the thermograms of PU ADP and PU 

PR, as the microcrystalline region for PU PR was shown to be significantly less H (1.8 J/g), 

Fig. 3.25. Interestingly PU 98 synthesised by the one shot process with no excess 

isocyanate, also contained a greater proportion of microcrystalline hard segment regions H 

(2.2 J/g) than PU PR, but it was not as crystalline as the control sample PU ADP. The 2% 

excess of isocyanate added to PU ADP produces extra crosslinking by the formation of 

allophante and buiret groups, therefore, the exclusion of this excess for PU 98, would result 

in less crosslinking and hence would be expected to increase the rate of degradation. 

 

The morphological differences between PU ADP and PU PR can be explained by the 

method of synthesis. During the one shot process (PU ADP), all of the reactants are added 

at the same time with a lightly favoured reaction between BD and MDI [12, 137], Fig.3.25. It 

has been demonstrated that this method of synthesis results in highly crystalline mobile 

chain structures acting as crosslinks [38, 137]. Conversely, PU PR synthesised by the pre 

polymer method is more controlled and involves the rapid build-up of the molecular weight of 

the prepolymer by the chain extender (BD). It has been suggested that this then alters the 

morphology as the molecules become entangled and immobilized before order can be 

established, and therefore produces elastomeric polyurethanes with less crystalline regions 

[12]. This was indeed found to be the case for these particular PU samples with PU ADP 

(one shot) containing a greater proportion of microcrystalline regions than that of PU PR 

(pre-polymer), and thus can also explain the increased thermal stability of PU ADP under an 

inert atmosphere. It was surmised that these morphological differences induced by the 

method of synthesis would affect the rate of degradation and biodegradation of TPU, and 

FTIR-ATR, TGA and DSC were performed during hydrolysis to determine whether this was 

the case. 

 

Weight loss results during alkaline hydrolysis indicated that the highest rate of hydrolytic 

degradation occurred for PU PR; synthesised by the pre-polymer method, with the film 

becoming fragile and eventually breaking up after 21 days. Conversely, the film synthesised 

by the one shot process; PU ADP, remained intact after 42 days, Fig. 3.8.  These findings 

were supported by FTIR-ATR analysis during hydrolysis experiments. Changes in relative % 

peak heights revealed a substantial decrease of the peak at 1159cm-1, Fig 3.26, denoting the 
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soft segment PU component; polyethylene adipate, for all samples in this group, even after 7 

days Fig.3.26a. However a more substantial decrease was observed for PU PR after 7 days 

(70%) indicating that the PEA soft segment had hydrolysed at a faster rate.  With only a 

relatively small amount of PEA remaining within the film after just 7 days it would be 

expected to observe a substantial amount of visual degradation, however this was not found 

to be the case Fig.3.26a. Therefore it can be surmised that the hard segment of the PU plays 

a major role in the rate of degradation. This hypothesis can be supported by FTIR-ATR, and 

from Fig.3.26b it can be noted that only a small decrease in the peak at 1520cm-1 denoting 

the NH coupled with the CN urethane linkage was observed. However, also noteworthy was 

the increase of the NH stretch at 3330cm-1 for PU ADP and PU PR as hydrolysis progressed, 

which could be due to the formation of aromatic amines, a degradation product during PU 

hydrolysis Fig.3.26c. However, the increase at 3330cm-1 could also be due to a 

conformational change on the surface of the PU, as the soft segment degrades, the surface 

of the PU is more likely to contain hard segment domains which would explain the increase 

of this peak.  

 

From the results obtained by FTIR-ATR it can be concluded that the ADP soft segments on 

the surface of the PU films in all of the samples in this group of TPU’s were hydrolysed after 

28 days. However, the rate of hydrolytic degradation of the soft segments was in the order of 

PU PR >PU 98 >PU ADP, which indicates that degradation of the soft segment during 

hydrolysis is not only dependent on the constituents of PU but also on the method of its 

synthesis. However, hydrolysis of the soft segment alone did not result in the breakup of the 

PU films. Hydrolysis of the hard segments of all the TPU samples examined in this group 

occurred to a somewhat lesser extent, with the possible formation of degradation products 

such as primary aromatic amines. Therefore it can be surmised that the hard segment may 

be the limiting factor on the rate of hydrolytic degradation of PU, and hence the method of 

synthesis would be influential on the  rate of hydrolytic degradation. In order to examine this 

theory more closely, thermal and morphological properties were examined.  

DSC thermograms of the PU samples during alkaline hydrolysis showed that the hard 

segment of PU PR synthesised by the pre-polymer method showed highly ordered crystalline 

regions during alkaline hydrolysis, which increased with hydrolysis time, Fig.3.27b. This was 

deemed to be due to degradation of the soft segment during hydrolysis, which resulted in the 

highly crystalline hard segment blocks remaining. This is in accordance with results from 

FTIR-ATR which showed complete degradation of the soft segment, Fig. 3.27c Conversely, 

the thermogram for PU ADP synthesised by the one shot method, revealed that the hard 

segment microcrystalline endotherm at 195oC disappeared after 21 days Fig.3.27a. The 



                                                                        

92 
 

explanation for this could be due to two reasons; the first reason is that complete   

degradation of the hard segment had occurred, therefore no endotherms would be observed, 

or secondly, the ordered structure of the hard segment was lost to produce less ordered 

amorphous domains. The second explanation seems more likely due to the fact that the film 

still remained intact after 28 days of hydrolysis. This can be substantiated by results from 

FTIR-ATR which indicated that the soft segment had degraded by 95%, (C-C=O-O-C ester 

peak 1159cm-1) Fig. 3.27 a & b, whereas a large proportion of the hard segment still 

remained. 

Results from TGA, showed 4 mass loss peaks for PU PR after hydrolysis ( 204oC,260oC, 

302oC,406oC) as opposed to 2 peaks initially (318oC,390oC), Fig. 3.27. and it was speculated 

that the thermogram mass losses at 204oC, 260oC and 406oC may not relate to the original 

adipate soft segment, but may relate to a degradation product of the PU. This seems likely to 

be the case, as the DSC thermogram for PU PR displayed a substantial decrease in the ΔCp 

at Tg relating to the soft segment, with hydrolysis time Fig 3.27f. This decrease in ΔCp 

indicates a decrease in amorphous regions within the polymer structure and hence a 

substantial degradation of the ADP soft segment. 

From the DSC and TGA results, it can be concluded that after alkaline degradation, the hard 

segment morphology of PU ADP (one shot method) had changed, from a large proportion of 

highly ordered crystalline regions into a completely amorphous domain. However, the hard 

segment domain, although amorphous, still kept the film intact, as the results from FTIR-

ATR, and TGA showed substantial degradation of the soft segment, Fig. 3.27c. The PU 

sample synthesised by the pre-polymer method; PU PR highlighted a completely different 

morphological profile during hydrolytic degradation, in that the polyester adipate soft segment 

at the surface of the sample had completely degraded after 21 days, Fig.3.10d. The hard 

segment morphology changed with an increase in crystallinity indicating a highly crystalline 

structure. The increased rate of degradation of PU PR can be explained by the method of 

synthesis, in which MDI is linked to the ester soft segment by forming a pre-polymer, then 

extended with the BD chain extender, thereby resulting in a final PU with less crystalline 

domains within the hard segment than PU ADP (one shot).  
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3.3.2. Susceptibility to soil degradation of Polyurethane Samples PU ADP, PU 

PR and PU 98 (Effect of Method of Synthesis). 

There was very little difference between the samples in this group with respect to the soil 

burial experiments both at RT and at 50oC. The increase in temperature did increase the rate 

of biodegradation in comparison to soil burial at RT. Although the soil burial at 50oC was to 

be considered synonymous to composting conditions [64], it would be more difficult to 

attribute the degradation specifically to either thermal degradation, biodegradation by 

microorganisms or a combination of both.  However, results from TGA, see Fig.3.28. showed 

that the PU samples in this group were thermally stable at 50oC so it is unlikely that thermal 

degradation played a major role in soil degradation at this temperature. Results from soil 

burial at RT were very disappointing in that none of the PU films in this group exhibited any 

major visual signs of degradation for either soil type1 or soil type 2, when in comparison to 

PLA, a polymer known to be biodegradable [1, 6, 57, 138], Fig.3.28. There were some 

relatively minor changes observed from the FTIR-ATR spectra for all samples, Fig.3.18. DSC 

also showed similar results in that some morphological changes had occurred to the short 

and long range crystalline regions, but only to a small extent Fig 3.28. PU PR did exhibit a 

similar DSC thermograph after degradation in soil 1 for 20 months, similar to the alkaline 

hydrolysis thermograph after degradation, in that an increase in crystallinity was observed, 

Fig 3.28. This indicates that some limited degradation had occurred. However, in general 

these results were disappointing and unexpected, as a major difference was noted between 

PU ADP and PU PR during alkaline hydrolysis, and similar findings were predicted in respect 

of soil burial. However, biodegradation in soil is a complex process and is dependent on 

many factors such as water holding capacity, humidity, microorganisms etc. [21, 102, 115], 

and therefore one can only conclude that the chemical constituents of these samples were 

not conducive towards microbial degradation in these soil types at RT, therefore the method 

of synthesis did not significantly alter the rate of biodegradation. 

 

3.3.3. Susceptibility of Polyurethane Samples PU ADP, PU PR and PU 98 

towards Enzymatic Degradation (Effect of Method of Synthesis). 

PU samples in group 1 (method of synthesis) subjected to enzymatic degradation with two 

different lipases; Aspergillus niger and Rhizopus sp. did display some limited degradation 

visually, and some minor differences were also noted in the FTIR-ATR spectra taken during 

the experiment.  

Enzymes are essentially biological catalysts. By lowering the activation energy of a reaction 

they can induce an increase in reaction rate in an environment otherwise unfavourable for 



                                                                        

94 
 

chemical reactions. A generalised mechanistic scheme for enzymatic degradation of ester 

and amide linkages is given in Fig.3.29, The enzyme binds to the polymer substrate then 

subsequently catalyzes a hydrolytic cleavage. The reaction mechanism is common to 

hydrolases and generally involves three amino acid residues: aspartate, histidine and serine.  

This reaction leads to the formation of an alcohol end group and an acyl-enzyme complex 

which then reacts with water to produce a carboxyl end group and the free enzyme [57]. 

During enzymatic degradation with lipases a decrease in ester groups would be expected 

[129], and this was observed in the FTIR-ATR spectra for PU ADP and PU PR when 

subjected to degradation by Aspergillus niger. The spectra given in Fig. 3.30, displays a 

small decrease in the peaks at 1727cm-1 and 1701cm-1 relating to the ester/urethane bond 

for both PU ADP and PU PR. A small decrease was also observed for the peaks at 1137cm-1 

and 1073cm-1 relating to the ester and C-O-C linkages in the PU, respectively. Although this 

decrease was noted, it was only found to be minimal and indicates that only a limited amount 

of degradation of the ester linkages had occurred after 24 days. Enzymatic degradation is 

known to proceed typically on the surface of polymeric materials, particularly the amorphous 

surface regions, as high molecular weight enzymes cannot easily penetrate the solid bulk, 

and studies have shown that large amounts of hard segment and crystalline regions results 

in a reduction in enzymatic activity [120, 129], therefore it would be expected that the method 

of synthesis would affect the rate of enzymatic degradation and therefore PU PR would be 

more susceptible than that of PU ADP,  due to the highly crystalline profile of PU ADP, Fig 

3.30. However, this was not deemed to be the case, with minimal degradation occurring in 

both PU ADP and PU PR, and therefore one can surmise that the chemical constituents of 

the PU were either not conducive towards enzymatic degradation by lipases or else the 

enzymes could not penetrate the polymer matrix in order to hydrolyise the components.  

 

The PU samples were also subjected to enzymatic degradation by proteases from 

Aspergillus saitoi (not shown) and Rhizopus sp. However, only degradation with Rhizopus 

sp. displayed any changes in the PU samples. The FTIR-ATR spectra of the PU samples 

showed some small differences relating to degradation of the urethane linkages contained 

within the hard segment and hard/soft segment interfaces. PU ADP displayed a reduction in 

the ester/urethane peaks at 1727cm-1 and 1701cm-1, and also the N-H & C-N peak at 

1527cm-1 relating to the hard segment, Fig. 3.30. A decrease was also observed at 1077cm-1 

denoting the C-O-C urethane stretch, Fig.3.30. The FTIR-ATR spectra for PU PR and PU 98  

displayed an increase in the peak at 1727cm-1 denoting the ester/urethane linkage was 

observed. This is more than likely due to fungal growth on the surface of the PU samples 

which can clearly be seen for PU 98, Fig. 3.30. Fungal growth on the sample may suggest 

that this PU would be degradable by this enzyme, however, only a limited degradation was 
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observed after the 24 days. Over a longer period substantial degradation may have occurred, 

but unfortunately, this was not possible due to the pH of the buffer of 2.8, which would have 

degraded the PU sample after long periods, and therefore it would have been difficult to 

determine whether degradation occurred as a result of the enzyme or the buffer solution. 

Overall, a slight difference was noted between the one shot method (PU ADP) and the 

prepolymer method (PU PR) regarding degradation by protease from Rhizopus sp. and more 

specifically the hard segment of these samples, in that a greater proportion of the amide 

bonds in PU ADP had degraded Fig. 3.30. However, this degradation was still deemed as 

minimal with all of the films remaining intact after the 24 days, and can conclude that the 

chemical constituents, and the interactions between these components contained in the PUs 

in this group; namely ADP, MDI and BD were not conducive towards enzymatic degradation 

by the enzymes used in this experiment.  

 

3.3.4 Overall Summary of the effect of the Method of Synthesis on Polyurethane 

Degradation and Biodegradation. 

 

The work described in this chapter focused on the effect of the method of synthesis on the 

rate of degradation and biodegradation of PU. Degradation and biodegradation of PU is a 

complex process, and can be influenced by numerous factors, therefore alkaline hydrolysis, 

enzymatic hydrolysis and soil burial experiments were performed to provide a wide range of 

chemical/biological degradation processes which may occur during real time 

degradation/biodegradation of PUs. Changes during degradation were monitored by FTIR-

ATR, DSC, TGA and microscopy to provide information regarding structural, morphological, 

thermal and visual changes to the samples respectively. From the results obtained it was 

found that the method of synthesis affected PU morphology, with the PU synthesised by the 

one shot method (PU ADP) being more crystalline and less susceptible to hydrolysis 

compared to PU PR (synthesised by the pre-polymer method).  

 

The PU samples were not found to be particularly conducive towards enzymatic degradation 

by the fungal enzymes Aspergillus niger, Aspergillus satoi and Rhizopus sp. even though 

previous studies have shown some PUs to be susceptible to degradation by Aspergillus niger 

[19, 24]. Limited degradation occurred which was not considered to be significant. Altering 

the method of synthesis did not increase the rate of degradation by these enzymes, and this 

was an unexpected finding. The first step in enzymatic degradation/biodegradation is 

adherence of the enzyme to the surface of the substrate. Therefore, altering the method of 

synthesis would affect the morphology of the PU, and hence should affect the surface 

binding sites available for the enzyme. Indeed, results from DSC did highlight a change in the  
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morphology of the PU samples with PU ADP, (synthesised by the one shot method) 

exhibiting a more crystalline structure than PU PR (synthesised by the pre-polymer method), 

Fig.3.4. Therefore, it can only be concluded that with respect to enzymatic degradation in 

this group (group 1), the chemical components contained within the PU, have a greater 

influence than the method of synthesis, and the chemical components (ADP, MDI and BD), 

and the interactions between these components were not favourable substrates for the 

enzymes used in this study. This can also be supported by the soil burial results which 

displayed little difference between the PU samples synthesised by the one shot method; PU 

ADP and PU PR synthesised by the pre-polymer method, Figs. 3.14 & 3.15. 

 

In summary, the method of synthesis did not affect the rate of enzymatic degradation and 

biodegradation by soil burial, however, degradation by chemical/alkaline hydrolysis did 

highlight a major difference between the PU sample synthesised by the one shot method (PU 

ADP), and the pre-polymer method (PU PR), Fig 3.25, and is more than likely due to the 

highly crystalline nature of the PU ADP. The PU synthesised by the pre-polymer method was 

found to be less thermally stable, less crystalline, and more susceptible to hydrolysis than the 

PU synthesised by the one shot method, Figs. 3.25 & 3.6. Therefore, in order to obtain PU’s 

with limited shorter lifespans the pre-polymer method should be used, with a further 

possibility of increased biodegradation using alternative chemical constituents, and the effect 

of altering these constituents and their effect on degradation and biodegradation will be 

explored in chapter 4. 
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Scheme 3.1  Method of synthesis of PU one shot method and pre polymer method                
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Table 3.1  Effect of Method of synthesis on PU Degradation – Group 1 

PU Code                                                             Method of Synthesis 

Synthesis Code                                          Description 

PU-ADP OS-102 One shot process with 2% excess MDI (102%) ; all reactants added simultaneously 

(MDI,PEA,BD),  Injection Moulded 

PU-PR PR-102 Pre polymer process with 2% excess MDI (102%) ; MDI and PEA added 

simultaneously allowed to react for 30mins, then BD added,  Injection Moulded 

PU-98 OS-98 One shot process with no excess MDI (98%); all reactants added simultaneously,  

(MDI,PEA,BD), Injection Moulded 

PU Code                                                            Chemical Structure 

 

PU-ADP 

PU-PR 

PU-98 
 

 

Table 3.2  Effect of method of synthesis on morphology of PU characterised by DSC 

 

Sample 
Code 

 

Method of 
synthesis 

Soft Segment Hard Segment 

Tg 
(oC) 

Tm 
(oC) 

H 
(J/g) 

Tm(
o
C) 

(I) 
H(J/g) 

(I) 

Tm(oC) 
(II) 

H(J/g) 
(II) 

Tm(oC)  
(III) 

H(J/g)    
(III) 

PU ADP OS-102 -18 71 0.1 109 0.5 147 0.8 195 6.1 

PU PR PR-102 -16 71 0.1 - - 148 0.3 173, 
195 

0.87, 
1.8 

PU 98 OS-98 -12 72 0.1 - - 150 0.2 197 2.2 

 

 

 

 

 

 

 

 

 

Hard Segment Soft Segment 

Chain Extender; BD 

Isocyanate; MDI 

Polyol; PEA 

M.w.t. Ratio: PEA:MDI:BD - 1:3:2 
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Table 3.3  Effect of chemical hydrolysis on morphology of PU characterised by DSC 

 

Sample 
Code 

Hydrolysis 
time 

Soft Segment Hard Segment 

Tg 
(oC) 

Tm 
(oC) 

H 
(J/g) 

Tm 
(
o
C) (I) 

H(J/g) 
(I) 

Tm(oC) 
(II) 

H(J/g) 
(II) 

Tm(oC)  
(III) 

H(J/g)    
(III) 

PU ADP  time 0 -18 71 0.1 109 0.5 147 0.8 195 6.1 

PU PR time 0 -16 71 0.1 - - 148 0.3 173, 
195 

0.87, 
1.8 

PU 98 time 0 -12 72 0.1 - - 150 0.2 197 2.2 

PU ADP 14 days -18 - - 109 0.47 148 0.74 198 5.11 

PU PR 14 days -16 - - 121 0.11 148 2.05 194, 
210      

0.84 
0.24 

PU 98 14days -14 - - - - 148 0.47 175 

199 

0.79 

1.89 

PU ADP 21 days -30 - - - - - - - - 

PU PR 21 days -20 72 0.1 - 

 

- 148 0.96 205 26.9 

PU 98 21 days -15 - - - - 148 0.56 209 10.96 

PU ADP 28 days -31 - - - - - - - - 

PU 98 28 days -15 - - - - 148 0.51 209 11.16 

Table 3.4  Effect of soil burial on morphology of PU characterised by DSC 

 

Sample 
Code 

 

Soil burial 
20 months 

RT 

Soft Segment Hard Segment 

Tg 
(oC) 

Tm 
(oC) 

H 
(J/g) 

Tm 
(
o
C) (I) 

H(J/g) 
(I) 

Tm(oC) 
(II) 

H(J/g) 
(II) 

Tm(oC)  
(III) 

H(J/g)    
(III) 

PU ADP  time 0 -18 71 0.1 109 0.5 147 0.8 195 6.1 

PU ADP Soil 1 -15 - -  0 147 0.1 200 4.9 

PU ADP Soil 2 -17 - - - - 147 0.34 199 5.26 

PU PR time 0 -16 71 0.1 - - 148 0.3 173, 
195 

0.87, 
1.8 

PU PR Soil 1 -16 - - - - 148 0.2 199 8.5 

PU PR Soil 2 -16 - - - - 148 0.1 197  2.0 

PU 98 time 0 -12 72 0.1 - - 150 1.2 197 2.9 

PU 98 Soil 1 -20     148 1.3 192 0.7 

PU 98 Soil 2 -21     148  0.9  192  0.5  
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Figure 3.1  Hydrolphilicity of PU samples determined by weight percentage increase of water 

uptake  
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 PU ADP, PU PR, PU 98 – Hard Segment MDI/BD: Soft Segment PEA 

 

 

 

 

Figure 3.2   Chemical structure characterisation of PU samples PU ADP (A), PU PR (B),    

PU 98 (C) by FTIR-ATR  
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Figure 3.3  TGA thermal analysis characterisation of PU, PU ADP (A), PU PR (B), PU 98 (C)    
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Figure 3.4 Morphological characterisation of PU ADP (A), PU PR (B), PU 98 (C) showing Tg 
and endotherms relating to hard and soft segments   

Tg  -12
o
C 

Tg  -16
o
C 

Tg  -18
o
C 

Tm I 109
o
C 

Tm II 147
o
C 

Tm III 
195

o
C 

Tm  71
o
C 

Tm II 148
o
C 

Tm II 150
o
C 

Tm III 195
o
C 

Tm III 197
o
C 

Tm III 174
o
C 

PU 98 Initial 

PU PR Initial 

PU ADP Initial A

B

C

Tm III 174
o
C 



                                                                        

104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Schematic representation of hard and soft segment domains in TPU  
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Sample 

Code 
Method of Synthesis 

Weight Remaining % 

0 days 7 days 14 days 21 days 28 days 42 days 

PU ADP One Shot/102% Isocyanate 100 96 89 81 71 56 

PU PR Prepolymer/102% Isocyanate 100 83 46 7 0 0 

PU 98 One Shot/98% Isocyanate 100 94 87 76 62 42 
 

 

 

 
Figure 3.6 Effect of Method of Synthesis on the rate of hydrolytic degradation with 10% 

NaOH (aq) (A) (see table 2.1 & 2.2 pg. for acronyms). Visual surface cracking (B) 

A

B

Arbitrary scale of degradation stage 

min  0   no signs of cracking deformation 

        1   slight signs of limited surface degradation 

        2   deformation of sample (curling) & discolouration 

        3   visible cracks showing 

        4   Small pieces of sample broken away from film 

max 5   complete breaking of sample small pieces 
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Figure 3.7 Optical microscopic images of PU ADP, PU PR & PU 98 during alkaline    

hydrolysis 
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Figure 3.8 Photographic Images of PU ADP, PU PR & PU98 during hydrolytic degradation            
with 10% NaOH (aq)  
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Figure 3.9 Structural changes of NH and CH2 bonds during alkaline hydrolysis of PU ADP, 

PU PR & PU 98 by FTIR/ATR 
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Figure 3.10 Structural changes of C=O and C-O-C urethane and ester linkages during  
alkaline hydrolysis of PU ADP, PU PR & PU 98 by FTIR/ATR  
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Figure 3.11  Changes in crystallinity during alkaline hydrolysis of Group 1 PU samples 
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Figure 3.12  Changes in thermal stability after alkaline hydrolysis of Group 1 PU samples 
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Figure 3.13 Effect of Method of Synthesis on the rate of biodegradation under soil burial 
conditions, soil 1 50oC (A), soil 1 RT (B), soil 2 RT (C)  
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Figure 3.14  Photographic images of PU ADP, PU PR & PU 98 during soil burial 
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Figure 3.15 Optical microscopic images of PU ADP, PU PR & PU 98 during soil burial 
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Figure 3.16  Effect of method of synthesis on C=O and C-O-C ester/urethane linkages during 
soil burial at 50oC of PU ADP, PU PR & PU 98 by FTIR/ATR 
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Figure 3.17  Effect of method of synthesis on N-H and CH groups in PU during soil burial at 
50oC of PU ADP, PU PR & PU 98 by FTIR/ATR 

 

PU ADP 3600cm
-1 

- 2600cm
-1

 

PU PR 3500cm
-1 

- 2730cm
-1

 

PU 98 3500cm
-1 

- 2800cm
-1

 

A 

B 

C t=0  
t= 3 months soil 50

o
C 

t=5 months soil 50
o
C 

t=0  
t= 3 months soil 50

o
C 

t=5 months soil 50
o
C 

t=0  
t= 3 months soil 50

o
C 

t=5 months soil 50
o
C 



                                                                        

117 
 

 

 

 

 

 

 

Figure 3.18  Effect of method of synthesis  on C=O, C-O-C ester/urethane linkages and NH 
and CH2 groups after 20 months soil burial at RT of PU ADP, PU PR & PU 98 by FTIR/ATR 
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Figure 3.19  Effect of method of synthesis on morphology changes during biodegradation in 
soil at RT and 50oC of PU ADP, PU PR & PU 98.  
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Figure 3.20 Effect of method of synthesis on enzymatic degradation by Lipase Aspergillus 

Niger PU ADP, PU PR & PU 98 by optical microscope images 
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Figure 3.21 Effect of method of synthesis on structural changes during enzymatic 

degradation by Lipase Aspergillus niger and Rhizopus sp. on PU ADP, PU PR & PU 98 

determined by FTIR-ATR 
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Figure 3.22 Effect of method of synthesis on enzymatic degradation by Protease Rhizopus 

sp. of PU ADP, PU PR & PU 98 by optical microscope images 
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Figure 3.23 Effect of method of synthesis on structural changes during enzymatic 

degradation by protease Rhizopus sp. on PU ADP, PU PR & PU 98 determined by FTIR-

ATR 
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Figure 3.24 Mechanism of hydrolytic degradation of ester bonds and amide bonds contained 

in PU structure 
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Figure 3.25  Showing the effect of the method of synthesis on PU crystallinity  

PU-ADP PU-PR 

Method of synthesis 

      Polyethylene Adipate        4,4 Methylene 

diisocyanate  
NN

O OO
OO

O

O

n
+

 

 

OH
OH

O
OO

O

O

O

N

H

N

On

+  

OH
OH

NN

O O

O
OO

O

O

n

 

O

N

H

N O
O

O

O
O

H

 

 
Produces highly crystalline structures with 

greater tensile strength but less susceptible to 

degradation  

 

Produces structures with less crystalline 

regions due to rapid chain growth in 

which long chains become entangled 

before order can be established. 

 

 

 

 

Microcrystalline 

ΔH 6.1(J/g) 

Microcrystalline 

ΔH 1.8(J/g) 

4,4 Methylene diisocyanate 

Polyethylene Adipate 

Butane diol 

Prepolymer 

Slightly Favoured Reaction 

Polyurethane 

NH O

O

 

NH O

O

 
O

O  

O

O  

degradation 
urethane linkage 

Hard Segment 
Hard Segment 

Soft Segment 

degradation 
urethane 
linkage 

degradation 
ester linkage degradation 

ester linkage 

Soft Segment 

DSC DSC 

TGA TGA 



                                                                        

125 
 

 

 

 

 

 

 
 
 

 
Figure 3.26  Effect of hydrolytic degradation on the hard and soft PU segments quantified by 

FTIR-ATR 
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Figure 3.27  Changes in the hard and soft segment of PU during hydrolysis dependant on 

the method of synthesis.(A) changes in the hard segment crystallintiy, (B) thermal stability 

from TGA, (C) changes in the Tg and ester peak at 1159cm-1of the soft segment from DSC.  
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Figure 3.28  Showing changes to the PU samples during soil burial. (A) thermal stability of 
PU at 50oC, (B) visible comparison of PU with PLA (a polymer known to be biodegradable), 
(C) changes in crystallintiy of PU samples during soil burial at RT.  
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Figure 3.29  Hydrolysis of ester and amide bonds during enzymatic degradation 
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Figure 3.30 Showing changes to PU group 1 samples during enzymatic degradation (A) 

lipase Rhizopus sp. and Aspergillus niger (B) protease Rhizopus sp.   
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4.1 Objectives and methodology  

PU films containing an ADP soft segment and a BD/MDI hard segment, see Table 4.1, were 

synthesised by the two major synthesis methods for PU, that being; the one shot method and 

the pre-polymer method. In chapter 3, the hypothesis that the method of synthesis can affect 

the rate of degradation of PU was tested. For alkaline hydrolysis this was shown to be the 

case, where the PU PR sample (pre-polymer method) was found to be more susceptible to 

hydrolysis. However, soil burial and enzymatic degradation experiments did not induce any 

major degradation to any of the PU samples in this group, implying that the chemical 

constituents of the PUs were not conducive towards degradation by biological media. 

Therefore, the work described in this chapter examines the effect of altering the starting 

materials on the chemical and morphological profiles of the PUs, and ultimately how altering 

each component may influence the rate of degradation and biodegradation of the PU 

samples.  

 

PUs are complex microphase separated polymers, the soft segment consists of a long chain 

polyol, and the hard segment consists of a short chain molecule functioning as a chain 

extender, and a bi-functional molecule called an isocyanate. Altering the isocyanate can 

affect many properties of the PU. Various studies have shown that altering the isocyanate 

from aromatic to aliphatic increases the stability towards UV- induced degradation [139, 140]. 

Previous research has also suggested that PUs synthesised with aliphatic isocyanates 

bestow increased resistance towards hydrolysis and thermal degradation [34, 46]. However, 

many factors can affect the rate of degradation, and the rate of hydrolysis of PUs. Ultimately 

degradation can be affected by microphase separation, the extent of hydrogen bonding and 

Chapter 4 

Effect of Polyurethane Structural 

Composition on Degradation and 

Biodegradation; Effect of Isocyanate 
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crystallinity of PU, and all of which could in turn be affected by altering the isocyanate [44, 

46, 126]. 

 

In consideration of this, this chapter examines two PUs (Group 2) with different isocyanates; 

PU ADP containing an aromatic isocyanate (MDI), and PUH ADP containing an aliphatic 

isocyanate (H12MDI), Table 4.1. These samples were synthesised by Eurothane Ltd using 

their specific one shot method of synthesis, see Scheme 3.1. The same experimental 

procedures were employed for the PUs in this group with the PUs described in chapter 3, 

examining the susceptibility of each of the samples towards alkaline hydrolysis, enzymatic 

hydrolysis and soil burial. The results from these experiments will give an indication of the 

effect of the isocyanate on PU degradation and the influence of the isocyanate on phase 

separation, hydrogen bonding and morphology, and how each of these factors affect the 

polymer degradation and biodegradation. 

 

4.2 Results  

4.2.1 Characterisation of PUH ADP - Group 2 (Effect of Isocyanate) 

Characterisation of each sample was undertaken prior to the hydrolysis experiments. This 

group consisted of PU ADP and PUH ADP, see Table 4.1. Characterisation of PU ADP was 

previously discussed in Section 3.2.1. therefore characterisation of PUH ADP only, will be 

discussed in this section.  PUH ADP was found to be soluble in (THF) and (DMFA), therefore 

alteration of the isocyanate did not affect the solubility of the sample. Results obtained from 

water absorption experiments revealed that altering the isocyanate from aromatic to aliphatic 

decreased the water absorption of the PU film (PU ADP 4.5%, PUH ADP 2%) Fig. 4.1.  

The chemical structure of PUH ADP was determined using FTIR-ATR, and examination of 

the initial spectrum revealed many similarities with the spectrum of PU ADP (Section 3.2.1). 

However, several notable differences were also observed, as would be expected due to the 

aliphatic isocyanate contained within the hard segment. As the hard segment of PUH ADP 

was not aromatic in nature, no peak was observed at 1597cm-1 as of that for PU ADP, Fig. 

4.2a & 4.3a. Two peaks were also observed that were not present in PU ADP; at 1378cm-1 

and 779cm-1, which relate to the CH bend of the cyclohexane ring contained within the hard 

segment, Fig. 4.3a. The hard/soft segment structure of PU ADP (containing the aromatic 

isocyanate) was characterised by the absorbances at about 1728cm-1 and 1701cm-1 

corresponding to the urethane and ester stretching vibrations of the free and hydrogen 

bonded C=O groups respectively [6,7,8]. However, three peaks in this region were observed 

for PUH ADP at 1730cm-1, 1713cm-1 and 1691cm-1,Fig. 4.3a. These peaks were designated 
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as C=O non-hydrogen bonded urethane/ester, C=O ester hydrogen bonded and C=O 

urethane hydrogen bonded, respectively [125, 140]  

The thermal stability of each sample was determined using TGA under a nitrogen 

atmosphere similar to samples in group 1. The thermographs given in Figs. 4.2b & 4.3b 

highlight distinct differences between PU ADP (aromatic MDI) and PUH ADP (aliphatic 

H12MDI). Degradation of the hard segment for PU ADP was found to occur at 336oC, 

whereas for PUH ADP this occurred at the lower temperature of 321oC. The thermal 

degradation of the soft segment was also varied depending on the choice of isocyanate, with 

the soft segment degrading at 436oC for PU ADP (aromatic isocyanate), and again at a lower 

temperature for PUH ADP was observed at 402oC. The difference in the thermal stability 

between these two samples was thought to arise from a change in morphology with 

isocyanate selection. Previous studies have shown that aromatic isocyanates are more 

reactive than their aliphatic counterparts [12, 34], and therefore this would affect the chain 

build up and ultimately morphology of the sample which in turn could affect the thermal 

stability of the PU sample. In order to assess this suggestion, DSC analysis was performed 

on each sample to ascertain the morphological profiles.  

 

DSC analysis was performed on the virgin samples prior to degradation experiments. 

Samples were subjected to a heating temperature of 100 oC per min under a helium 

atmosphere to 180oC to remove previous thermal history, then, the temperature was reduced 

to  -100oC and heated again to 220oC. From the results obtained, it can be seen in Figs. 4.2c 

& 4.3c & Table 4.2 that a discernible difference was observed between PU ADP (aromatic 

isocyanate) and PUH ADP (aliphatic isocyanate), with a large endotherm observed at 195oC 

(ΔH 6.08) for PU ADP indicating that a significant proportion of the hard segment contained 

within the PU was of a microcrystalline nature. The same was not observed for PUH ADP, 

with no endotherm visible at this temperature, however, a small peak was observed at 120oC 

(ΔH 0.12) denoting short range non-crystalline regions within the hard segment [107]. These 

results indicate that the morphology of PUH ADP was predominately of an amorphous 

nature. A dramatic difference was also observed with respect to the Tg value of PU ADP and 

PUH ADP, with the Tg value for PUH ADP being 10oC lower than that of PU ADP (PUH ADP 

-28oC, PU ADP -18oC). An indication of phase separation between the hard and soft 

segments in polyurethane can be obtained by the Tg value of the soft segment, and it has 

been previously shown that increased phase separation between the hard and soft segments 

decreases the Tg value [107, 109]. Therefore it can be surmised that greater phase 
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separation occurred using the aliphatic isocyanate (PUH ADP). It was reasoned that these 

major differences in the morphology of the PU samples could affect the rate of degradation. 

 

4.2.2 Effect of Isocyanate (PU ADP and PUH ADP) on the Rate of Alkaline 

Hydrolysis 

PU ADP and PUH ADP were subjected to alkaline hydrolysis in order to determine the effect 

of the isocyanate on the rate of degradation. The samples were immersed in 10% NaOH 

solution and removed at weekly intervals to monitor their degradation. Both samples lost 

weight steadily during hydrolysis for the first 21 days, Fig. 4.4a. PUH ADP then exhibited a 

greater weight loss than PU ADP during the final 3 weeks (PU ADP 56% weight remaining 

and PUH ADP 35% weight remaining). Both samples showed similar visible signs of 

degradation after 28 days, Fig. 4.4b & Fig. 4.5, however, after 42 days PUH ADP had 

completely broken up, whereas, PU ADP still remained intact. These results indicate that PU 

synthesised with aliphatic isocyanates increases the rate of hydrolysis. In order to determine 

the structural changes taking place during degradation both samples were subjected to 

FTIR-ATR during alkaline hydrolysis. 

 

4.2.1.1 Structural changes of PU ADP and PUH ADP during alkaline hydrolysis 

monitored by FTIR-ATR 

An initial spectrum of each sample was taken before hydrolysis, and group absorbances 

were assigned accordingly Figs 4.2a & 4.3a.  Analysis of the spectra during hydrolysis 

displayed distinct changes in both the hard and soft segments.  

i) Spectral changes Hard Segment structure PU ADP and PUH ADP 

The hard segment structure was previously characterised by FTIR-ATR. The N-H bond of the 

urethane linkage in the hard segment showed notable changes during alkaline hydrolysis. 

The peak at 3329cm-1 (PU ADP) and 3322 cm-1 (PUH ADP) increased during the 42 days 

(+17% PU ADP, +48% PUH ADP), Fig. 4.6a & c. The peak at 1529cm-1 relating to the N-H 

bending vibration with C-N stretching vibration (amide II band) was seen to decrease for PU 

ADP (-14%) which shifted to 1518cm-1 during the hydrolysis experiment Fig.4.6b, however 

for PUH ADP this peak increased during alkaline hydrolysis Fig.4.6c, which suggests partial 

degradation of the hard segment.  

ii) Spectral changes Hard/Soft Segment Structure PU ADP and PUH ADP 

The hard/soft segment groups for both samples showed significant changes during alkaline 

hydrolysis. Characterisation of the PEA soft segment carbonyl group and urethane linkages 
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was performed using FTIR-ATR, by examining the peaks between 1650cm-1 and 1750cm-1. 

The spectrum of each sample was examined, and revealed differences between the two 

samples. PU ADP exhibited two peaks in this region Fig. 4.7a; at 1728cm-1 and  1701cm-1 

(C=O urethane/ester free and hydrogen bonded, respectively), both decreasing during 

hydrolysis (see section 3.1.1). Conversely PUH ADP displayed 3 peaks in this region Fig. 

4.7c. The C=O peak at 1730cm-1 denoting the free C=O ester and urethane moieties 

significantly decreased by 81% after 42 days of hydrolysis. The peak at 1713cm-1 signifying 

the hydrogen bonded ester C=O group also decreased but to a lesser extent (50%) Fig. 

4.7c. This figure also shows the hydrogen bonded urethane C=O peak at 1691cm-1 which 

decreased after 42 days of hydrolysis (10%). A small peak was also observed at 1660cm-1 

which may be due to a urea linkage obtained as a side reaction during polymerisation [52]. 

This peak increased significantly after 42 days which could indicate the formation of amine 

groups as a hard segment degradation product during hydrolysis [105].  A decrease was 

observed for the peak at 1074cm-1  (-40% PU ADP) and 1082cm-1 (-40% PUH ADP) denoting 

C-O-C aliphatic and urethane bond, Fig. 4.7b & d, also indicating degradation of the hard 

segment. Changes relating to the CH2 moiety in the soft/hard segment structure were also 

noted by the peak at 1381cm-1 relating to the α-CH2 group Fig. 4.6b & d, which decreased 

with hydrolysis time and almost completely disappeared after 42 days. 

iii) Spectral changes PU ADP Soft Segment structure 

During alkaline hydrolysis the peaks at 1137cm-1 and 1158cm-1 (C-(C=O)-O ester) decreased 

dramatically for both samples Fig. 4.7b & d. This peak had completely disappeared after 42 

days for PU ADP, indicating that the ester linkages in the polyethylene adipate soft segment 

had been hydrolysed. However, a small peak still remained after 42 days for PUH ADP 

although the sample had completely broken up which may suggest that a small proportion of 

the soft segment still remained.  

 

4.2.1.2 Effect of isocyanate on crystallinity and thermal stability during alkaline 

hydrolysis (PU ADP and PUH ADP). 

Changes in crystallinity and thermal stability of the PU samples during alkaline hydrolysis 

were monitored by DSC and TGA. From the results obtained Figs 4.8 & 4.9. it can be seen 

that the two samples show a dramatic difference after hydrolysis. The thermograph for PU 

ADP synthesised with an aromatic isocyanate (MDI) Table 4.2 displayed three endotherms 

relating to the MDI/BD hard segment. During hydrolysis, all of these peaks were seen to 

reduce and eventually disappear after 28 days Fig. 4.8a & Table 4.3. In contrast to this, the 

thermograph for PUH ADP synthesised with an aliphatic isocyanate (H12MDI) exhibited only 
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one endotherm at 120oC denoting short range ordering of the MDI/BD hard segment, Table 

4.2. After 28 days this peak remained relatively unchanged with the ΔH value increasing 

slightly from 0.1 J/g to 0.25 J/g Fig. 4.8b & Table 4.3.   

TGA thermograms for both PU samples in this group displayed substantial degradation of the 

soft segment, Fig. 4.9.  However, two endotherms were observed relating to the soft 

segment for PUH ADP after 28 days of alkaline hydrolysis, as opposed to PU ADP, which 

displayed only one peak. Both samples also displayed a large DTGA peak at around 302oC 

indicating that a large proportion of the hard segment still remained. 

4.2.3 Susceptibility to soil degradation of Polyurethane Samples – Effect of 

Isocyanate PU ADP and PUH ADP  

In order to ascertain the effect of the isocyanate on the rate of biodegradation of PU, the 

samples were subjected to two different types of soil burial (see Chapter 3, Section 3.2.3).  

 

After 20 months of soil burial at RT there was little weight loss observed for PU samples in 

either soil types, with only 3% weight loss occurring for PU ADP and PUH ADP, Fig. 4.10b & 

c. The film samples were still intact and did not show any visible signs of cracking, Fig. 4.11. 

However, some visible signs of degradation were observed microscopically for both samples 

with small cracks visible, implying that some limited biodegradation of these films had 

occurred Fig. 4.11.  

 

PU samples subjected to soil burial at 50oC for 5 months displayed a greater weight loss than 

those at RT Fig. 4.10a, with the greatest weight loss of 32% for PUH ADP.  A weight loss 

was also noted for PU ADP, 21%. From Fig 4.11 it can be observed that the samples were 

not intact after 5 months. The films were broken up when removed from the soil, however 

little difference was discerned between the two samples in the extent of degradation.  

 

In order to ascertain any structural changes taking place during soil burial both at RT and at 

50oC, FTIR-ATR was performed on each sample at regular intervals during the experiment. 

 

4.2.3.1 Structural changes during soil burial at 50oC in PU ADP and PUH ADP 

monitored by FTIR-ATR. 

The main spectral changes during soil burial involved the ester/urethane linkages in the 

samples, therefore these will be examined in detail. Fig. 4.12 a & b display peaks relating to 

the free urethane/ester carbonyl group at 1727cm-1, which decreased for both samples 
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during soil burial, even after 3 months. However, there still remained a significant peak after 

5 months despite the fact that the films had broken up in the soil. This suggests that not all of 

the adipate ester contained in the samples had degraded. This can be further supported, by 

the peaks at 1158cm-1 and 1137cm-1 denoting the O-C-C ester bond Fig. 4.12 c & d, which 

again although decreased somewhat, still remained after 5 months for both samples. The 

appearance of a significant peak at 1659cm-1 was noted for both PUH ADP and PU ADP. 

This peak was also observed after 3 months for PUH ADP and may relate to the formation of 

amine groups as a result of hydrolytic degradation. 

 

4.2.3.2 Structural changes during soil burial at RT after 20 months in PU ADP and  

PUH ADP monitored by FTIR-ATR 

 

Some minor spectral changes were noted during soil burial at RT after 20 months. The peaks 

at 1727cm-1 and 1701cm-1 relating to the free and hydrogen bonded urethane/ester carbonyl 

group respectively were seen to decrease after 20 months soil burial Fig. 4.12 e & f. Little 

difference was noted with respect to soil type. A decrease in the peaks at 1158cm-1 and 

1137cm-1 was also perceived, see Fig. 3.12 g & h, denoting the O-C-C ester bond, it was 

found that these peaks had decreased to a greater extent for PU ADP than PUH ADP, 

implying that a greater proportion of the soft segment had degraded, however, also 

noteworthy was a significant increase in the peak at 1045cm-1 for PUH ADP. This peak 

denotes the urethane/aliphatic ester peak, and the increase in this peak may be due to a 

conformational change at the surface, with more of the hard segment being exposed as the 

soft segment degrades.  

 

4.2.2.3 Effect of Isocyanate on PU ADP and PUH ADP morphology after 20 months soil 

burial        

PU samples subjected to soil burial at RT were removed from the soil, and morphological 

changes during biodegradation were ascertained by DSC. From the results shown in Table 

4.4, it can be seen that after soil burial of PU ADP (aromatic), minor changes were observed 

in the DSC thermograms (not shown), with the most significant finding being, the 

disappearance of the peak at 109oC relating to the short range ordered MDI/BD hard 

segment. However, the endotherms at 147oC and 195oC relating the long range ordered and 

microcrystalline MDI/BD regions remained relatively unchanged. This indicates that although 

some minor degradation had occurred it was not significant. Altering the isocyanate did not 

increase the rate of biodegradation in soil with PUH ADP displaying no significant changes in 

the DSC thermograms (Table 4.4). No change was observed in either the Tg value at -28oC 
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or the short range ordered hard segment regions at 120oC. These findings imply that for PUH 

ADP, the hard segment remained the same even after soil burial, and altering the isocyanate 

from an aromatic to aliphatic did not affect the rate of biodegradation in soil at RT. 

 

4.2.4. Susceptibility of Polyurethane Samples PU ADP and PUH ADP (Effect of 

Isocyanate) towards enzymatic degradation. 

In order to ascertain susceptibility of the PU samples towards biodegradation and 

degradation, samples were placed in buffer solutions (37oC), each solution containing a 

fungal enzyme as of that for PU samples in group 1 (see Chapter 3, Section 3.2.4). 

 

Samples were removed from enzyme/buffer solutions every 12 days for a period of 24 days 

(see section 2.3.2). For the protease degradation, the pH of the buffer was 2.8 therefore, 

samples were also placed in the buffer solution only to determine whether any degradation 

occurred due to enzyme activity or simply the acidic buffer solution.  

 

4.2.4.1 Structural changes during enzymatic degradation using lipases in PU ADP and  

PUH ADP monitored by FTIR-ATR. 

There was little weight loss (not shown) observed after 24 days for all of the PU samples in 

this group for both lipases Rhizopus sp. and Aspergillus niger,. However, optical images did 

display distinct differences between the samples dependant on the isocyanate used Fig. 

4.13. Some signs of surface degradation were observed for PU ADP when immersed in the 

buffer solution containing Aspergillus niger after 24 days, however the same was not 

observed for PUH ADP, and therefore FTIR-ATR was performed to determine any structural 

changes between the two samples. 

 

Spectral changes after 24 days of enzymatic degradation of PU samples for both Rhizopus 

sp. and Aspergillus niger are given in Fig. 4.14. It can be noted that there was relatively little 

change in the spectra for PU ADP for Rhizopus sp.,Fig. 4.14a & b. However, samples 

immersed in the buffer solution containing Aspergillus niger, did display a small decrease in 

the peaks at 1701cm-1 denoting the hydrogen bonded ester/urethane linkages, and at 

1158cm-1 and 1137cm-1 which corresponds to the ester bond in the PEA soft segment. Fig. 

4.14 b, also displays a small decrease at 1073cm-1 which corresponds to the ester/urethane 

C-O-C bond. For PUH ADP, the peaks at 1725cm-1 and 1701cm-1 were found to increase 

after 24 days in enzymatic solution for Aspergillus niger, however, relatively little change was 

observed in the peaks for Rhizopus sp. Fig. 4.14 c & d.  The same was observed for the 
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peaks at 1158cm-1, 1137cm-1 and 1073cm-1. From these results it was noted that although 

altering the isocyanate from aromatic to aliphatic did induce some minor changes to the PU 

sample, it did not significantly increase susceptibility towards enzymatic degradation. 

 

4.2.4.2 Structural changes during enzymatic degradation using proteases in PU ADP, 

and PUH ADP monitored by FTIR-ATR. 

Degradation by proteases was also disappointing in that little weight loss (not shown) was 

observed for Aspergillus saitoi and Rhizopus sp. However, visible cracking from microscope 

images of the PU samples were observed with Rhizopus sp. Fig. 4.15. 

  

The FTIR-ATR spectra of the PU samples did highlight small differences regarding 

degradation of the urethane linkages contained within the hard segment and hard/soft 

segment interfaces. PU ADP displayed a reduction in the ester/urethane peaks at 1727cm-1 

and 1701cm-1, and also the N-H & C-N peak at 1527cm-1 relating to the hard segment, Fig. 

4.16 a. This is in accordance with the microscopic images, which clearly displays cracks in 

the PU ADP film. A decrease was also observed at 1077cm-1 denoting the C-O-C urethane 

stretch, Fig. 4.16 b. However, Fig. 4.16c displays changes in the PUH ADP film, in which an 

increase in the peaks at 1730cm-1, 1712cm-1 and 1690cm-1 was observed, denoting the free 

ester/urethane, hydrogen bonded ester and hydrogen bonded urethane linkages 

respectively. Although no weight losses were observed for either PU ADP or PUH ADP 

during enzymatic degradation, a distinct difference was noted both in the microscopic images 

and FTIR-ATR spectra, with PU ADP containing the aromatic isocyanate being more 

susceptible towards enzymatic degradation by Rhizopus sp.  
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4.3 Discussion 

 

Polyurethane elastomers have been shown to exhibit a two-phase morphology consisting of 

a soft segment which generally consists of either a polyether and/or a polyester chain, and a 

hard segment which consists of the interaction of the isocyanate and the chain extender. 

Previous studies have shown that the rate of degradation and biodegradation of PU is 

dependent on the morphology of the PU, with the crystalline nature of the hard segment 

influencing this greatly [60, 141, 142]. PUs containing a highly crystalline structure have been 

shown to reduce the rate of hydrolysis and biodegradation [25, 120]. Many factors can 

contribute to the overall rate of degradation and biodegradation of PU, and altering the 

chemical components of the PU can either increase or decrease the rate of degradation. The 

molecular make up of these constituents can alter a variety of PU properties such as; surface 

chemistry in respect of availability of enzyme binding sites, hydrophilicity of the PU, 

intermolecular hydrogen bonding, phase separation between the hard and soft segments and 

crystallinity [12, 38, 137]. The focus of this chapter is to examine the effect of the isocyanate 

on some of these properties, when exposed to experiments simulating degradation by 

chemical hydrolysis and biodegradability studies. These investigations produced some 

interesting findings. 

 

4.3.1 Effect of Isocyanate (PU ADP and PUH ADP) on the Rate of Alkaline 

Hydrolysis 

 

When subjected to alkaline hydrolysis PUH ADP was found to degrade faster than PU ADP. 

Results from FTIR-ATR were similar for both samples, with the exception of the increase in 

the peak at 1660cm-1 and an increase in the peak at 1524cm-1 for PUH ADP, Fig. 4.7. The 

increase in these two peaks is more than likely to be due to some degradation of the hard 

segment resulting in amine degradation products [105], see peak at 3322cm-1 in, Fig. 4.6. 

Peaks pertaining to the soft segment for these samples were similar in that a decrease in the 

C=O non-bonded peak at ~1728cm-1 (Fig. 4.7), and also a decrease in the peak at around 

1380cm-1 which relates to the CH2 α-carbon, Fig. 4.6b & d. This would be expected as 

during hydrolysis the number of CH2 α-carbon atoms would decrease, and Fig. 4.17b shows 

the possible degradation mechanism of the hard and soft segments, again indicating 

degradation of the soft segment and possibly some degradation of the hard segment.  

 

Previous studies have stated that microphase morphology and intermolecular hydrogen 

bonding in polyurethane elastomers are two major factors which can influence the rate of 
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degradation [59, 60, 141]. FTIR analysis has been widely used in previous studies to 

determine the extent of hydrogen bonding in polyurethanes [46, 143]. Therefore, 

deconvolution of the FTIR-ATR peaks in the region of 3200 cm-1- 3400cm-1 was undertaken 

Fig. 4.17a. These peaks relate specifically to the N-H groups contained within the PU and 

provides a good indication of hydrogen bonding between the N-H and C=O groups [43]. 

Peaks were deconvoluted using the Lorenzian distribution, and Fig. 4.17a clearly displays a 

distinct difference between PU ADP (aromatic isocyanate) and PUH ADP (aliphatic 

isocyanate). For PU ADP, the amount of free N-H groups and hydrogen bonded groups were 

almost identical whereas, PUH ADP contained considerably more hydrogen bonded N-H 

groups than free N-H groups, Fig. 4.17a. The rate of hydrolysis for PUH ADP was greater 

than PU ADP, Fig. 4.4a, and this was unexpected, as previous studies have stated that 

hydrolysis of PU chemical constituents are dependent on hydrogen bonding as follows; non 

bonded ester > non bonded urethane > hydrogen bonded ester > hydrogen bonded urethane 

[46]. Therefore, DSC analysis was performed to elucidate any differences in their microphase 

morphology. 

 

PU ADP synthesised with an aromatic isocyanate (MDI) showed three endotherms relating 

to the MDI/BD hard segment with a large endotherm at 195oC, Fig. 4.2, relating to the 

microcrystalline regions within the hard segment indicating that the hard segment domains in 

PU ADP were principally highly ordered. Conversely, PUH ADP synthesised with an aliphatic 

isocyanate (H12MDI) exhibited only one endotherm at 120oC, Fig 4.3, denoting short range 

ordering of the MDI/BD hard segment. These thermograms clearly show that the morphology 

of PU ADP was more crystalline than PUH ADP, and this must be a major factor that would 

influence the rate of its degradation. 

 

In order to elucidate the phase separation of the samples, the Tg of each sample was 

examined, and was found to be distinctly different too, (dependent on the isocyanate used), 

and this is also a key factor in explaining the increased rate of hydrolysis of PUH ADP 

(aliphatic isocyanate). The Tg of PU ADP (aromatic) was found to be -18oC prior to 

hydrolysis, Fig. 4.2c). This value decreased with hydrolysis time to -31oC with a decrease in 

the ΔH value as the soft segment degraded Fig. 4.8a. Conversely, the Tg for PUH ADP prior 

to hydrolysis was -28oC and remained the same throughout the hydrolysis experiment, Fig. 

4.8b, however a decrease in the ΔH value was also observed with the decrease of the soft 

segment Fig. 4.8a. These results indicate that PU ADP (aromatic) exhibited greater phase 

mixing than that of PUH ADP (aliphatic). An increase in phase mixing increases the 

formation of more ordered microcrystalline structures within the hard segment [107, 108], 

and this was clearly evident from the DSC thermograms for PU ADP and PUH ADP (Figs. 
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4.2c & 4.3c). This difference in phase separation can also explain the increased hydrogen 

bonding in the PUH ADP, Fig 4.17a. This is supported by literature in which studies have 

shown that an increase in phase separation increases the amount of hydrogen bonding in 

PU [121]. Carbonyls groups hydrogen bonded to N-H groups are generally located within the 

hard segment [121]. Free carbonyl groups occur when the hard segment is dispersed within 

the soft segment (ie greater phase mixing), therefore, greater phase separation results in 

less mixing between these domains, less dispersal of the hard segment within the soft 

segment, and hence a greater proportion of carbonyl groups are hydrogen bonded [121], 

which was found to be the case for PUH ADP.  

 

TGA thermographs for both PU samples in this group indicated substantial degradation of 

the soft segment after 28 days of alkaline hydrolysis, Fig. 4.9. A slight difference between the 

two samples was noted, as two weight loss peaks were observed relating to the soft segment 

for PUH ADP which was not present in PU ADP, Fig. 4.9 a & b. This may be due to scission 

of the ester linkages resulting in lower molecular weight degradation products from the soft 

segment in the case of PUH ADP [59]. A large proportion of the hard segment still remained 

in both samples (TGA peaks @ 321oC & 333oC), Fig. 4.9, therefore substitution of the 

aromatic isocyanate (MDI) for the aliphatic isocyanate (H12MDI) had minimal effect on 

degradation of the hard segment itself. 

 

The results from both DSC and FTIR-ATR analysis suggest that although the extent of 

hydrogen bonding and crystallinity of PU have been previously shown to affect the rate of 

hydrolysis, the effect of highly ordered crystalline domains in PU ADP, and the synergistic 

effect of greater phase separation and higher degree of amorphous regions in PUH ADP 

resulted in an increase in the rate of hydrolysis for PUH ADP. The greater extent of 

hydrolysis of PUH ADP is therefore most likely due to a greater ability of water molecules to 

diffuse into the amorphous regions of PUH ADP. This supports the findings above that 

altering the isocyanate from aromatic to aliphatic did not significantly increase the rate of 

degradation of the hard segment specifically, but did alter the morphology of the PU, and 

subsequently this is likely to be the reason for the increased rate of hydrolytic degradation of 

PUH ADP. 
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4.3.2. Susceptibility to soil degradation of Polyurethane Samples PU ADP and 

PUH ADP (Effect of Isocyanate). 

Previous studies have indicated that PUs synthesised with aromatic isocyanates produce 

toxic amine products as a result of biodegradation [46, 121]. Therefore it was considered 

beneficial to examine a PU containing an aliphatic isocyanate with respect to its 

biodegradation by soil burial. Results from alkaline hydrolysis experiments revealed that 

altering the isocyanate from aromatic to aliphatic increased the rate of hydrolytic degradation, 

and it was surmised that a difference would be observed in relation to soil burial experiments. 

However, this was not found to be the case, with similar findings observed for both PU ADP 

(aromatic) and PUH ADP (aliphatic). FTIR-ATR spectra for soil burial at 50oC was found to 

be comparable for both samples, with a substantial decrease of the C=O free urethane/ester 

peak (PU ADP 1725cm-1, PUH ADP 1730cm-1) and decrease in the C-(C=O)-O-C ester peak 

at 1137cm-1, Fig. 4.18a & b. After 5 months a peak was also observed at ~1659cm-1 for both 

samples, and this is more than likely associated with aromatic amine groups which are 

degradation products of the hard segment [105].  

 

Soil burial at RT did produce a slight difference between PU ADP and PUH ADP, with some 

minimal degradation observed microscopically for both samples, Fig. 4.11. Results from 

FTIR-ATR spectra also supported this. Fig. 4.18c & d. display relative peak changes during 

soil burial at RT, and it can clearly be seen that although the C(C=O)-O-C ester bond 

(1137cm-1) in the PU soft segment decreased, this was minimal, with a % peak reduction at 

18% for PU ADP and 7% PUH ADP in soil 1, and 19% for PU ADP and 9% for PUH ADP for 

soil 2, Fig. 4.18d, indicating that more of the soft segment of PU ADP had been hydrolysed. 

Interestingly though, the C-O peak at 1045cm-1 for PUH ADP was seen to increase 

dramatically after 20 months soil burial, Fig. 4.18 f. This peak increase may be due to the 

formation of alcohol degradation products [105] or a conformational change on the surface of 

the PU, exposing more of the hard segment structure during degradation of the soft segment 

[ref]. Results from DSC analysis supported this finding in that there was little change to the 

thermographs after 20 months soil burial (not shown). PUH ADP displayed an endotherm at 

120oC denoting short range ordering of the MDI/BD hard segment, indicating that little 

change to this domain had occurred after soil burial.  

 

It can be concluded from these results that although some degradation of the soft segment 

had occurred, altering the isocyanate from aromatic to aliphatic did not increase the rate of 

biodegradation significantly. 
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4.3.3 Susceptibility of Polyurethane Samples PU ADP and PUH ADP towards 

Enzymatic Degradation (Effect of Isocyanate). 

PU samples in group 2 (effect of isocyanate) were subjected to enzymatic degradation with 

two different lipases; Aspergillus niger and Rhizopus sp. and the samples were shown to 

display some limited degradation visually, and some minor differences were also noted in the 

FTIR-ATR spectra taken during the experiment, Fig. 4.19.  

 

During enzymatic degradation with lipases a decrease in ester groups would be expected 

[129], and this was observed in the FTIR-ATR spectra for PU ADP when subjected to 

degradation by Aspergillus niger. The spectra given in Fig. 4.19a, displays a small decrease 

in the peaks at 1727cm-1 and 1701cm-1 relating to the ester/urethane bond for PU ADP. A 

small decrease was also observed for the peaks at 1137cm-1 and 1081cm-1 relating to the 

ester and C-O-C linkages in the PU, respectively, Fig. 4.19b. Although this decrease was 

noted, it was only found to be minimal and indicates that only a limited amount of 

degradation of the ester linkages had occurred. In contrast to this, PUH ADP displayed an 

increase in the peaks at 1730cm-1 relating to the ester/urethane bond and 1137cm-1 denoting 

the C=O bond in the ester soft segment, Fig. 4.19a & b. This may have been due to 

adherence of the enzyme to the surface of the PU sample. Enzymatic degradation occurs in 

a two-step process in that, first the enzyme binds to the polymer substrate through a 

hydrophobic domain, and then the enzyme catalyses hydrolysis of the ester bonds [2, 62]. 

Due to the increase in these peaks it was difficult to determine whether PUH ADP had 

degraded more than PU ADP. However, examination of the microscopic images did not 

detect any noticeable changes between the two samples, Fig. 4.19 e & f, and therefore can 

surmise that altering the isocyanate from aromatic to aliphatic may have altered the surface 

of PUH ADP, to favour enzymatic adherence to the PU, but hydrolysis of the PU components 

was limited during the time period of the experiment of 24 days. 

 

The PU samples were also subjected to enzymatic degradation by proteases from 

Aspergillus saitoi (not shown) and Rhizopus sp. However, only degradation with Rhizopus 

sp. displayed any changes in the PU samples. PU ADP displayed a reduction in the 

ester/urethane peaks at 1727cm-1 and 1701cm-1, Fig. 4.19c, and also the N-H & C-N peak at 

1527cm-1 relating to the hard segment. A decrease was also observed at 1077cm-1 denoting 

the C-O-C urethane stretch, Fig. 4.19d. The FTIR-ATR spectra for PUH ADP displayed an 

increase in the peak at 1730cm-1 denoting the ester/urethane linkage. This is more than likely 

due to adherence on the surface of the PU as of that for lipase Aspergillus niger (see above). 

However, microscopic images did reveal a slight difference between these samples in that 



                                                                        

144 
 

substantial cracking was observed for PU ADP Fig 4.19e. However, this degradation was 

still deemed to be only minimal, as little weight loss was observed for either sample (not 

shown). Both films did display some visible signs of deformation but still remained intact after 

the 24 days, Fig. 4.19e & f, and so it can be concluded that altering the isocyanate did not 

significantly increase the rate of enzymatic degradation by the enzymes used in these 

experiments.  

 

4.3.4 Overall Summary of the effect of the Isocyanate on Polyurethane 

Degradation and Biodegradation. 

 

The work described in this chapter focused on the effect of the isocyanate structure on the 

rate of degradation and biodegradation of PU. Altering the isocyanate was shown to have a 

profound effect on the phase separation, crystallinity and hydrogen bonding within the PU 

samples, with the aliphatic isocyanate resulting in a PU with increased phase separation 

(from DSC Figs. 4.2 & 4.3), and increased hydrogen bonding (Fig. 4.17a), but was found to 

decrease the amount of highly ordered crystalline structured regions. This change in 

morphology was shown to have a significant effect on degradation of the PU during alkaline 

hydrolysis, with the increased phase separation, and the reduction of crystalline regions in 

PUH ADP resulting in a faster rate of degradation. Although previous studies have shown 

that the amount of hydrogen bonding in PU can reduce the rate of degradation [46], this was 

not found to be the case for the samples examined in this study, and one can conclude that 

although this would invariably affect the rate of degradation, the presence of the highly 

crystalline regions in PU ADP hindered the rate of degradation to a greater extent.  

 

The PU samples were not observed to be particularly susceptible towards enzymatic 

degradation by the fungal enzymes Aspergillus niger, Aspergillus satoi and Rhizopus sp. or 

soil burial experiments at RT, although PUH ADP, containing the aliphatic isocyanate did 

seem to confer a higher degree of enzymatic binding to the surface of the PU, Fig. 4.18, 

which may have resulted in degradation after a greater length of time. Soil burial at 50oC did 

not reveal any significant differences between the two samples, and both samples had 

degraded substantially after 5 months, Fig. 4.11, and these results indicate that these 

samples may degrade under composing conditions. Altering the isocyanate did not influence 

the rate of biodegradation significantly, but due to the possible toxic 

degradation/biodegradation products produced from PUs synthesised with an aromatic 

isocyanates [46, 121], it may be more environmentally friendly to use PUs with aliphatic 

isocyanates for biodegradable PUs.  
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In summary, altering the isocyanate did not affect the rate of enzymatic degradation and 

biodegradation by soil burial significantly, however, degradation by chemical/alkaline 

hydrolysis did highlight a major difference between the PU sample synthesised with the 

aromatic isocyanate (PU ADP), and the aliphatic isocyanate (PUH ADP), and is more than 

likely due to the highly crystalline nature of the PU ADP. The PU synthesised with the 

aliphatic isocyanate (PUH ADP) was found to be less crystalline and more phase separated, 

and consequently more susceptible to hydrolysis than the PU synthesised with the aromatic 

isocyanate (PU ADP). Therefore, in order to obtain environmentally friendly PU’s with limited 

shorter lifespans, an aliphatic isocyanate should be used, with a further possibility of 

increased biodegradation using alternative soft segment chemical constituents, and the 

effect of altering these constituents and their effect on degradation and biodegradation will be 

explored further in chapter 5. 
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Table 4.1   Effect of Isocyanate on PU Degradation 

PU Code Composition M.w.t Ratio 
polyol: 

isocyanate: 
chain 

extender 

Method of 
synthesis  
(Table 3.1) Soft segment- 

polyol 

Hard segment 

Isocyanate Chain Extender 

PU-ADP Polyethylene 
adipate (PEA) 

Methylene diisocyanate 
(MDI) 

Butane diol (BD) 1:3:2 OS-102 

PUH-ADP Polyethylene 
adipate (PEA) 

Methylenedicyclohexyl 
diisocyanate (H12MDI) 

Butane diol (BD) 1:3:2 OS-102 

PU Code                                                          Chemical Structure 

PU-ADP 

 

PUH-ADP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hard Segment Soft Segment 

Hard Segment 

Soft Segment 

Isocyanate; H12MDI 

Isocyanate; MDI 
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Table 4.2  Effect of isocyanate on morphology of PU characterised by DSC 

Sample 
Code 

 

 

Isocyanate 

Soft Segment Hard Segment 

Tg 
(
o
C) 

Tm 
(
o
C) 

H 
(J/g) 

Tm(
o
C) 

(I) 
H(J/g) 

(I) 

Tm(
o
C) 

(II) 
H(J/g) 

(II) 

Tm(
o
C)  

(III) 
H(J/g)    

(III) 

PU 
ADP 

Aromatic 

(MDI) 

-18 71 0.1 109 0.5 147 0.8 195 6.1 

PUH 
ADP 

Aliphatic 

(H12MDI) 

-28 - - 120 0.12 - - - - 

Table 4.3  Effect of chemical hydrolysis on morphology of PU characterised by DSC 

Sample 
Code 

Hydrolysis 
time 

Soft Segment Hard Segment 

Tg 
(
o
C) 

Tm 
(
o
C) 

H 
(J/g) 

Tm 
(
o
C) (I) 

H(J/g) 
(I) 

Tm(
o
C) 

(II) 
H(J/g) 

(II) 

Tm(
o
C)  

(III) 
H(J/g)    

(III) 

PU ADP  time 0 -18 71 0.1 109 0.5 147 0.8 195 6.1 

PUH ADP time 0 -28 - - 120 0.12 - - - - 

PU ADP 14 days -18 - - 109 0.47 148 0.74 198 5.11 

PUH ADP 14 days -29 - - 120 0.2 - - - - 

PU ADP 28 days -31 - - - - - - - - 

PUH ADP 28 days -30 - - 120 0.25 - - - - 

Table 4.4  Effect of soil burial on morphology of PU characterised by DSC 

Sample 
Code 

 

Soil burial 
20 months 

RT 

Soft Segment Hard Segment 

Tg 
(
o
C) 

Tm 
(
o
C) 

H 
(J/g) 

Tm 
(
o
C) (I) 

H(J/g) 
(I) 

Tm(
o
C) 

(II) 
H(J/g) 

(II) 

Tm(
o
C)  

(III) 
H(J/g)    

(III) 

PU ADP  time 0 -18 71 0.1 109 0.5 147 0.8 195 6.1 

PU ADP Soil 1 -15 - - - - 147 0.1 200 4.9 

PU ADP Soil 2 -17 - - - - 147 0.34 199 5.26 

PUH ADP time 0 -28 - - 120 0.12 - - - - 

PUH ADP Soil 1 -27 - - 118 0.1 - - - - 

PUH ADP Soil 2 -27 - - 119 0.1 - - - - 
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Figure 4.1  Hydrophilicity of PU samples determined by weight percentage increase of water 

uptake  
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 PU ADP – Hard Segment MDI/BD: Soft Segment PEA 

 

 

 

 

Figure 4.2   Characterisation of PU samples PU ADP, chemical structure by FTIR-ATR (A), 
thermal stability by TGA (B),  morphology by DSC (C)  
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       PUH ADP – Hard Segment H12MDI/BD: Soft Segment PEA 
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Figure 4.3   Characterisation of PUH ADP, chemical structure by FTIR-ATR (A), thermal 
stability by TGA (B), morphology DSC (C).    
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Sample 

Code 
Isocyanate 

Weight Remaining % 

0  

days 

7 

 days 

14 

days 

21 

days 

28 

days 

42  

days 

56 

days 

PU ADP 4 4 Methylene diisocyanate 100 96 89 81 71 56 33 

PUH ADP Hexamethylene Isocyanate 100 94 88 80 62 35 0 
 

 

 
Figure 4.4  Effect of isocyanate on the rate of hydrolytic degradation (A) with 10% NaOH (aq) 

(see table 2.1 & 2.2 pg. for acronyms). Visual surface cracking (B) 
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Figure 4.5  Effect of isocyanate on Visual changes of PU during hydrolytic degradation with 

10% NaOH (aq), determined by optical microscope and photographs 
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Figure 4.6  Effect of isocyanate on structural changes of NH and CH2 bonds during alkaline 

hydrolysis of PU ADP and PUH ADP by FTIR/ATR  
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Figure 4.7 Effect of isocyanate on structural changes of C=O and C-O-C ester/urethane  

linkages during alkaline hydrolysis of PU ADP and PUH ADP by FTIR/ATR 
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Figure 4.8  Changes in crystallinity during alkaline hydrolysis of Group 2 PU samples 
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Figure 4.9  Changes in thermal stability after alkaline hydrolysis of Group 2 PU samples 
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Figure 4.10 Effect of Isocyanate on the rate of biodegradation under soil burial conditions, 
soil 1 50oC (A), soil 1 RT (B), soil 2 RT (C)  

PU ADP (aromatic) 

PUH ADP (aliphatic) 

Effect of Isocyanate - Soil Burial (soil 1) 50oC 

PU ADP PUH ADP 

Effect of Isocyanate - Soil Burial (soil 1) RT 

PU ADP & PUH ADP 

Effect of Isocyanate Soil Burial (soil 2) RT 

A 

B 

C 



                                                                        

158 
 

 PU ADP PUH ADP PU ADP PUH ADP 

Initial 

  

  

5 Months 

Soil 1 
50oC 

 
 

 
 

  

20 Months 

Soil 1 
RT 

  

  

Soil 2 
RT 

  

  

 

Figure 4.11  Photographic and microscopic images of PU ADP & PUH ADP during soil burial 
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Figure 4.12 Effect of isocyanate on C=O and C-O-C ester/urethane linkages during soil 
burial of PU ADP & PUH ADP by FTIR/ATR, (A-D 50oC) (E-H RT)   
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Figure 4.13 Effect of isocyanate on enzymatic degradation by Lipase Aspergillus niger and 

Rhizopus sp. PU ADP & PUH ADP by optical microscope images 
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Figure 4.14 Effect of isocyanate on structural changes during enzymatic degradation by 

Lipase Aspergillus niger and Rhizopus sp. on PU ADP & PUH ADP determined 

by FTIR-ATR 
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Figure 4.15  Effect of isocyanate on enzymatic degradation by Protease Rhizopus sp. of    

PU ADP & PUH ADP by optical microscope images 
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Figure 4.16  Effect of isocyanate on structural changes during enzymatic degradation by 

protease Rhizopus sp. on PU ADP & PUH ADP determined by FTIR-ATR 
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Figure  4.17   Showing the effect of the isocyanate on hydrogen bonding (A), hydrolysis (B), 
and soft segment degradation in PU ADP and PUH ADP (C)  
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Figure  4.18   Showing the effect of the isocyanate on the rate of biodegradation during soil 
burial at 50oC and RT, monitored by FTIR-ATR 
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Figure 4.19 showing the effect of the isocyanate on the enzymatic degradation of PU. 
Enzymatic degradation with lipase from Aspergillus niger (A-B), enzymatic degradtion with 
protease Rhizopus sp. (C-D). Visible degradation after 24 days immersed in buffer solution 
containing protease Rhizopus sp. (E-F) 
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5.1 Objectives and methodology 

Polyurethanes are complex polymers, and altering the initial reactants can have a dramatic 

effect on the final physical and chemical properties of the polymer. The effect of altering the 

isocyanate was examined in Chapter 4, and although differences in phase separation, 

hydrogen bonding and crystallinity were found, which in turn were dependant on the 

isocyanate used, soil burial experiments revealed that altering the isocyanate had minimal 

effect on biodegradability. Polyols or macrodiols as they are sometimes known are long 

chain diols, usually polyesters or polyethers with a molecular weight between 500 and 5,000, 

however, molecular weights of 1,000 and 2,000 are typically used in PU synthesis [12, 20, 

69]. These long chains form the ‘soft segment’ in PUs, and previous studies, have shown 

that the composition of the soft segment can have an influence on both the physical and 

chemical properties on the final material [47, 144, 145].  Hence, in this chapter the effect of 

altering the polyol in PU with respect to degradation and biodegradation will be examined, 

using a variety of PUs with different polyols synthesised by the sponsor company, Eurothane 

Ltd. Degradability and biodegradation were determined using alkaline hydrolysis with 10% 

NaOH solution at 45oC, enzymatic degradation by fungal lipases and proteases, and soil 

burial as was used for the PUs described in the previous chapters. Chemical compositional 

changes during degradation and biodegradation were monitored by FTIR-ATR, and in order 

to elucidate morphological properties such as phase separation and crystallinity, DSC 

analysis was performed. Four samples were analysed in this group; two PUs containing a 

polyester soft segment (polycaprolactone, [PU PCL] and poly(ethylene adipate) [PU ADP 

control sample]) Table 5.1, and one PU contained a polyether soft segment poly(ethylene 

glycol) (PEG), (PU PEG), Table 5.1. The last PU sample in this group contained a soft 

Chapter 5 

Effect of Polyurethane Structural 

Composition on Degradation and 

Biodegradation; effect of polyol  
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segment which consisted of a 50:50 polyester and polyether blend, (PU PGPC 

polycaprolactone and polyethylene glycol).  

5.2 Results  

5.2.1 Characterisation of PU PCL, PU PEG and PU PGPC (Effect of Polyol) 

Characterisation of each sample, PU ADP, PU PCL, PU PEG and PU PGPC was 

undertaken prior to hydrolysis experiments. Characterisation of PU ADP has previously been 

discussed in Section 3.2.1. and therefore will not be discussed here. Solubility was 

investigated, and all PU samples were found to be soluble in THF and DMF, therefore 

alteration of the polyol did not affect the solubility of the sample. Results obtained from water 

absorption experiments revealed that altering the polyol did affect the water uptake and was 

dependant on the polyol used. Fig. 5.1, shows the variation in water uptake, and it can be 

seen that the two PUs containing an polyester polyol (PU ADP & PU PCL) were relatively 

hydrophobic with minimal water uptake (PU ADP 4.5%, PU PCL 2%) compared to that of PU 

PEG (56%), which contained a polyether polyol. PU PGPC contained a 50:50 mixture of 

polyethylene glycol and polycaprolactone, and the water uptake for this sample reflected this, 

with a 30% increase in weight after immersion in water for 10 days.   

The chemical structure of PU PCL containing a PCL ester polyol, was determined using 

FTIR-ATR, and examination of the initial spectrum revealed many similarities with the 

spectrum of PU ADP, Section 3.2.1. The  structure of the hard segment for PU PCL was 

characterised by the absorbances at  3302cm-1 and 1528cm-1 denoting the N-H stretch, and 

the combination of the C-N stretch and N-H bend respectively, Fig. 5.2a [124]. The hard/soft 

segment structure of PU PCL was similar to PU ADP (containing PEA polyol) and was 

characterised by the absorbances at 1728cm-1 and 1701cm-1 corresponding to the urethane 

and ester stretching vibrations of the free and hydrogen bonded C=O groups, respectively 

[6,7,8], and the peak at 1064cm-1 relating to the C-O-C group. However, a slight shift was 

noted in relation to the soft segment, as the C-O-C=O ester peak for PU PCL was observed 

at 1161cm-1, Fig. 5.2a [146], whereas, for PU ADP the C-O-C=O ester peak was noted at  

1137cm-1.  

PU PEG, which contained a PEG polyether soft segment, displayed similar peaks in relation 

to the hard segment structure as of that for PU PCL and PU ADP, with the peak at 3301cm-1 

denoting the N-H stretch and the peak at 1531cm-1 corresponding to the combination of the 

N-H bend and C-N stretch, Fig. 5.2b [26, 147, 148]. However, due to the absence of ester 

groups contained within PU PEG, the hard segment can also be characterised by the peaks 

at 1722cm-1 and 1703cm-1 denoting the free and hydrogen bonded C=O urethane groups of 
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the hard segment respectively, Fig. 5.2b [26, 147, 148]. The C-O-C group pertaining to both 

the hard and soft segment is denoted by the peak at 1069cm-1. Characterisation of the soft 

segment only could not be obtained using FTIR-ATR for PU PEG as the ether soft segment 

group C-O-C is also present in the hard segment at the hard/soft segment interface, Table 

5.1 & Fig. 5.2b. 

The final PU sample examined in this chapter; PU PGPC contained both PEG and PCL 

polyols (50:50 ratio), and the FTIR-ATR spectra regarding the chemical structure of PU 

PGPC confirmed this. The hard segment was characterised by the N-H stretch at 3315cm-1 

and the C-N stretch/N-H bend at 1530cm-1, Fig. 5.2c [105]. The hard/soft segment structure 

was similar to that of PU ADP and PU PCL, with peaks at 1725cm-1 and 1702cm-1 

corresponding to the urethane and ester stretching vibrations of the free and hydrogen 

bonded C=O groups ,respectively. The peak at 1069cm-1 related to the C-O-C stretching 

vibration of the ether soft segment and the urethane hard segment. The PCL soft segment 

contained in PU PGPC was denoted by the peak at 1145cm-1, Fig 5.2 c [105].  

The thermal stability of each sample was examined using TGA under a nitrogen atmosphere 

as of that for samples in group 1. It was found that altering the polyol soft segment did not 

affect the thermal stability of the hard segment of the PU samples in this group. Greatest 

mass loss of the hard segment for PU ADP was found to occur at 336oC, and the 

thermographs for the other samples in this group are given in Fig. 5.3, and display similar 

temperatures, (PU PCL 332oC, PU PEG 327oC, PU PGPC 330oC). The thermal degradation 

of the soft segment was seen to alter depending on the choice of polyol. The greatest mass 

loss of the soft segment of PU ADP (PEA polyol) was found to be 436oC. All of the remaining 

PU samples in this group displayed lower soft segment thermal stability, (greatest mass loss 

temperatures; PU PCL 396oC, PU PEG 384oC, PU PGPC 390oC), Fig. 5.3.    

DSC analysis was performed on the virgin samples prior to degradation experiments. 

Samples were subjected to a heating temperature of 100oC per min under a helium 

atmosphere to 180oC to remove previous thermal history, then, the temperature was reduced 

to -100oC and heated again to 220oC. From the results obtained it was found that each PU 

sample had its own unique morphological profile, and altering the polyol had a dramatic 

influence on the morphology of the PU, Fig 5.4. The thermogram for PU ADP (given in 

chapter 3 & Table 5.2) displayed a large endotherm observed at 195oC (ΔH 6.08) indicating 

that a significant proportion of the hard segment contained within the PU was of a 

microcrystalline nature [107, 108]. The same was also observed for PU PCL (PCL polyol), 

with an endotherm at 197oC (ΔH 4.2) indicating that PU PCL also consisted predominately of 

microcrystalline regions, Table 5.2 & Fig. 5.4a. In contrast to this, PU PEG (PEG polyol) did 
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not display any endotherms relating to the hard segment, and this suggests that this sample 

was completely amorphous [149], Fig. 5.4b. PU PGPC did exhibit one endotherm relating to 

the hard segment at 160oC (ΔH 4.9), Table 5.2 & Fig. 5.4c, and this indicates that a 

proportion of the hard segment was of an ordered nature [107, 108].  

A dramatic difference was also observed with respect to the Tg value of the PUs in this group. 

The Tg value is an important parameter for PUs, as the Tg value has been shown to be a 

marker denoting the extent of phase separation [107]. Increased phase separation between 

the hard and soft segments decreases the Tg value [107, 109] and PU ADP and PU PCL 

exhibited Tg values which were very different, with PU PCL (Tg -28oC) demonstrating greater 

phase separation than PU ADP, (Tg -18oC) Table 5.2.  Analysis of PU PEG revealed a Tg at -

1oC, and this implies that the hard and soft segments were well dispersed within each other. 

Most noteworthy however, was the behaviour of PU PGPC with, Fig. 5.4c & Table 5.2. 

showing two Tg values at -48oC and -10oC and was thought to relate to the PCL and PEG 

soft segment chains respectively [66, 150]. It is interesting to note that the blend of PCL and 

PEG resulted in greater phase separation between the PCL and PEG soft segment chains 

and the hard segment, than in the case of the unblended soft segment, as in the individual 

PUs (PU PCL and PU PEG). Morphological analysis from PUs given in Chapters 3 and 4 

highlighted that differences in morphology of PU is one of the major factors that affect the 

rate of their degradation.  

 

5.2.2 Effect of Polyol (PU ADP, PU PCL, PU PEG and PU PGPC) on the Rate of 

Alkaline Hydrolytic Degradation.  

5.2.2.1 Comparison of Polyurethanes with different ester soft segments, PU ADP 

containing polyethylene adipate polyol, and PU PCL containing a polycaprolactone 

polyol. 

Changes during hydrolysis were initially noted visually using photographic and microscopic 

images, and by weight loss, Figs. 5.5 - 5.7.  A dramatic difference was observed between 

the PU samples in this group. The two PU samples containing polyester soft segments (PU 

ADP control with PEA and PU PCL with PCL) exhibited quite different weight loss and 

visual profiles during hydrolysis. Microscopic and photographic images of the PU ADP 

(control sample) film during hydrolysis displayed discolouration and cracking of the sample. 

Conversely, PU PCL did not display any visual signs of degradation, Figs. 5.5 – 5.7. These 

findings can be supported by weight loss measurements taken during hydrolysis. After 42 

days, PU ADP had a weight loss of 44%, (measured 56% weight remaining), however, PU 
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PCL did not lose weight during the 42 days (measured 100% weight remaining), Fig. 5.5A. 

This was unexpected as both PU samples contained polyester soft segments, and therefore 

should both be susceptible towards hydrolysis [103, 151-154]. This singularity was examined 

in detail and is discussed later in section 5.3.1 

 

5.2.2.2 Comparison of Polyurethane PU ADP (ester polyol) and PU PEG (ether polyol)  

The control sample PU ADP (polyester soft segment; PEA) was then compared to the PU 

sample PU PEG (polyether soft segment; PEG). Weight losses and visual degradation was 

observed for both of these samples; PU PEG weight remaining 68% Fig. 5.5a, PU ADP 

weight remaining 56%. Although the weight loss measurements implied that degradation had 

progressed further for PU ADP, photographs of each sample taken during hydrolysis did not 

confirm this. The PU PEG film had completely broken up after 42 days, whereas the PU ADP 

film, although discoloured, still remained intact Fig. 5.7. These conflicting results are 

probably due to the hydrophilic nature of PU PEG. Prior to hydrolysis, water uptake of each 

sample was measured, by immersing each film in a specific volume of water, and then 

measuring the % weight increase of the sample after 10 days, see Section 2.2.2. The water 

uptake for PU ADP was found to be 4.5%, whereas PU PEG was 56% Fig 5.1. Although 

each sample was dried under vacuum before each weighing, it is likely that some residual 

moisture still remained in the film bulk, therefore accounting for the weight loss and visual 

discrepancy of PU PEG.  

 

5.2.2.3 Comparison of PU PGPC (containing a soft segment blend of PCL and PEG) to 

PU PCL and PU PEG 

The final PU sample in this group PU PGPC, contained a 50:50 soft segment blend 

(PCL:PEG), and this sample was compared to all other samples in the group. PU PGPC 

exhibited a 25% weight loss after 42 days of alkaline hydrolysis (measured 75% weight 

remaining), Fig. 5.5a. Photographic images of the film sample did reveal signs of 

degradation after this time, Figs. 5.6 & 5.7, and it can be concluded that, PU PGPC 

(containing a blend of polyester/polyether soft segments) was not as susceptible to alkaline 

hydrolysis compared to PU ADP (PEA soft segment) or PU PEG (PEG soft segment), but 

was more susceptible than PU PCL, containing a PCL soft segment only. However, it is 

difficult to determine the extent of degradation merely from weight loss, and chemical 
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changes to all of the film samples during hydrolysis were ascertained by FTIR-ATR, and will 

be discussed in the next section. 

 

5.2.2.4  Structural changes of PU ADP and PU PCL during alkaline hydrolysis  

An initial spectrum of each sample was taken before hydrolysis, and group absorbances 

were assigned accordingly, Fig. 5.2.  Analysis of the spectra during hydrolysis highlighted 

changes in both the hard and soft segments.  

The hard segment structure of PU ADP and PU PCL were characterised, and similar peaks 

observed for both samples, Chapter 3 Fig 3.2a (PU ADP) & Fig 5.2a (PU PCL). During 

hydrolysis similar changes were identified for both of these samples. The N-H peak at 

3301cm-1 (N-H stretch) relating to the hard segment, increased with hydrolysis time, Fig 5.8a 

(PU PCL) & Fig 3.9a (PU ADP), while the peak at 1219cm-1 (C-N + N-H) (1220cm-1 PU ADP) 

decreased with time, Fig 5.9b (PU PCL) & Fig. 3.10b (PU ADP) indicating partial 

degradation of the urethane linkages. The increased N-H peak at 3301cm-1 suggests the 

formation of amines; a degradation product of the urethane linkages in the hard segment [46, 

105].  However, it should be noted, that these peak changes were relatively minimal for both 

PU ADP and PU PCL, therefore although some degradation had occurred, the majority of 

the hard segment still remained intact.  

PU ADP and PU PCL, both containing ester soft segments, are more difficult to analyse in 

relation to the hard segment than PUs synthesised with polyether soft segments (see PU 

PEG above), as the groups at around 1728cm-1 and 1701cm-1 denoting the free and 

hydrogen bonded C=O urethane/ester groups indicate structural changes relating to both the 

hard and soft segments, and therefore must be interpreted collectively [114, 123]. There was 

a dramatic difference in these peaks during hydrolysis. For PU ADP, the peak at 1728cm-1 

decreased by 78% after 42 days Chapter 3, Fig 3.10a. However, for PU PCL, this peak 

(1726cm-1) increased during the first 21 days (+15%), and then decreased after 42 days (-

10%), Fig 5.9a. Similar findings were also observed for the hydrogen bonded peak at 

1701cm-1 Fig. 5.9a.  There was also a notable difference between PU ADP and PU PCL in 

relation to the peak at around 1060cm-1 denoting C-O-C urethane/ester stretch Figs 3.10b & 

5.9b. This peak deceased dramatically for PU ADP, and after 42 days had decreased by 

40%. The opposite was observed for PU PCL with this peak increasing by 10%, which may 

be indicative of the formation of degradation products such as alcohols. Changes relating to 

the CH2 moiety in the soft/hard segment structure were also observed for PU ADP by the 

peak at 1479cm-1, which increased with hydrolysis time, Fig. 3.9, and the peak at 1458cm-1 
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which decreased dramatically, Fig. 3.9b. The peak at 1382cm-1 relating to the α-CH2 group 

decreased and eventually disappeared after 42 days, Fig. 3.9b. However, these changes 

were not observed for PU PCL, with only a minor decrease of the CH2 peaks occurring 

during hydrolysis. Fig. 5.8b. 

The peaks at 1137cm-1 (PU ADP) and 1161cm-1 (PU PCL), relate to the soft segment 

polyester moiety with the peak at 1137cm-1 decreasing significantly for PU ADP. However, 

this was not the case for PU PCL, with the peak at 1161cm-1 exhibiting only a minimal 

decrease in comparison to that of PU ADP, Figs 3.10b & 5.9b. This indicates greater 

degradation of the PEA soft segment for PU ADP than the PCL soft segment in PU PCL. 

 

5.2.2.5  Structural changes of PU ADP and PU PEG during alkaline hydrolysis  

The hard segment structure of PU ADP (control, ester S.S.) and PU PEG (ether S.S.) were 

compared. As of that for PU PCL (see above) the peaks at 3301cm-1 and 1220cm-1 relating 

to the hard segment were similar for both PU ADP (see above) and PU PEG, Figs. 5.8e & 

5.9 f. There were significant spectral differences observed between PU ADP and PU PEG 

during hydrolysis. The peaks relating to the hard segment for PU ADP indicated some 

degradation of the hard segment (see above). Conversely, only negligible changes in the 

peaks at 3301cm-1 (N-H stretch), 1221cm-1 (C-N stretch) and 1069cm-1 (C-O-C urethane 

stretch) were observed for PU PEG. This was unexpected, due to the weight loss exhibited 

during hydrolysis Section 5.2.2.2., therefore the peaks relating to the C=O urethane linkages 

were examined. Although there were no significant decreases in the C=O peaks at 1722cm-1 

and 1703cm-1 collectively, a minimal decrease was observed for the free C=O peak at 

1722cm-1 (-15%), Fig. 5.9e. This indicates that some of the C=O groups pertaining to the free 

urethane groups had been hydrolysed, but the hydrogen bonded urethane groups remained 

intact. Overall, results from FTIR-ATR indicated that minimal degradation of the hard 

segment had occurred for PU PEG, with degradation progressing further for PU ADP. 

Analysis of spectra regarding both the hard and soft segment domains for PU PEG, involved 

the CH2 group absorbance peaks at 2869cm-1, 2905cm-1, 1458cm-1 and 1348cm-1. A small 

decrease in the peak at 2869cm-1 was noted, however very little change was observed 

regarding the remaining CH2 peaks, Figs. 5.8e & f which suggests that minimal degradation 

had occurred. This does not support findings from weight loss results or visual observations.  
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The peak relating to the soft segment for PU PEG, at 1100cm-1 denoting C-O-C ether 

linkages, was examined Fig. 5.9f. However, this group also pertains to the C-O-C groups at 

the hard/soft segment interfaces; therefore it was difficult to determine the extent of 

degradation of the soft segment by FTIR-ATR. A minimal decrease was perceived after 42 

days, indicating that little degradation had occurred. These findings were not supported by 

previous weight loss or visual results.  

 

5.2.2.6  Structural changes of PU ADP and PU PGPC during alkaline hydrolysis 

Characterisation of the hard segment for PU PGPC was performed prior to hydrolysis, and 

analysis of the spectra highlighted similar peaks to that of PU ADP (see above) and section 

5.2.1. The spectra for PU PGPC displayed numerous changes during degradation. The peak 

at 3315cm-1 (N-H stretch) increased slightly, Fig.5.8c, and this coupled with the decrease at 

1221cm-1 (C-N & N-H), Fig. 5.9d, suggest degradation of the urethane linkages within the 

hard segment to form amines; a degradation product of the hard segment, as of that for PU 

ADP (see above). The increase at 3298cm-1 was not as pronounced for PU PGPC as that for 

PU ADP. 

The peaks at 1725cm-1 and 1702cm-1 denoting the free and hydrogen bonded C=O 

urethane/ester groups indicated structural changes relating to both the hard and soft 

segments during hydrolysis, with a significant decrease in the peak at 1725cm-1, and a slight 

decrease at 1702cm-1, Fig. 5.9c. A slight decrease was also observed at 1068cm-1 denoting 

urethane/ester linkages, Fig 5.9d. The absorbance peaks at 2868cm-1, 2917cm-1, 1478cm-1 

and 1350cm-1 denoting the CH2 linkages all decreased during the 42 days. Figs. 5.8c & d.  

PU PGPC contained two peaks relating to the soft segment which pertained to the PCL and 

PEG chains contained within the soft segment. The peak at 1161cm-1 relating to the            

C-(C=O)-O ester (PCL) soft segment displayed a significant reduction during hydrolysis, 

which indicated that hydrolysis of the ester groups (PCL) had occurred, Fig. 5.9d. A 

decrease was also observed for the peak at 1102cm-1 pertaining to the PEG, C-O-C stretch 

in the soft segment.  
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5.2.2.7 Effect of polyol on crystallinity and thermal stability during alkaline hydrolysis 

(PU ADP, PU PCL, PU PEG and PU PGPC). 

Initial characterisation by DSC was performed on all samples in this group (group 3), and 

discussion of these thermograms are given in Section 5.2.1. During hydrolysis there was a 

noted difference between all of the PU samples.  

Prior to hydrolysis both PU PCL and PU ADP exhibited similar hard segment endotherms, 

which indicated that both PU samples contained a large proportion of highly crystalline 

structured regions, see Section 5.2.1. During alkaline hydrolysis, PU PCL did not display 

any significant changes in crystallinity, with both the microcrystalline endotherm at 197oC, 

and the ordered endotherm at 128oC remaining unchanged even after 56 days, Fig. 5.10a. 

However, changes in crystallinity were observed for PU ADP, with the endotherm at 197oC 

denoting melting of microcrystalline hard segment domains, disappearing after 14 days, 

Chapter 3, Fig. 3.11A.  

PU PEG did not exhibit any endotherms relating to either the hard or soft segment prior to 

alkaline hydrolysis, indicating that the material was amorphous in character Section 5.2.1. 

However, after 28 days of hydrolysis, an endotherm was observed for this PU sample at 

152oC denoting structured regions within the hard segment. After 56 days of alkaline 

hydrolysis this endotherm disappeared, and an endotherm appeared at 167oC signifying 

highly crystalline regions, Fig. 5.10b [107]. 

Prior to hydrolysis, the DSC thermogram for PU PGPC (containing a blend of PEG and PCL 

soft segments), revealed an ordered hard segment arrangement, with an endotherm 

observed at 160oC, Section 5.2.1. During hydrolysis, a change in crystallinity was noted, with 

the appearance of two endotherms at 172oC and 128oC, resulting from highly ordered and 

ordered domains within the hard segment respectively, Fig. 5.10c [107, 109]. After 56 days, 

an increase in the ordered domains was observed with an endotherm noted at 137oC. This 

increase in the ordered domains was in conjunction with the disappearance of the crystalline 

regions denoted by the endotherm at 172oC. 

The Tg value of each PU was also examined, as a change in Tg value can indicate phase 

separation, and a decrease in the Tg Δ Cp value relating to the soft segment, indicates 

degradation of the soft segment [59].  The Tg value of PU PCL (polycaprolactone S.S) 

remained unchanged, Table 5.3, and implied that limited degradation had occurred after 56 

days. Conversely, PU ADP (polyethylene adipate S.S.) displayed a dramatic change in Tg 

with hydrolysis time, from -18oC to -31oC, Table 5.3. PU PEG also exhibited a change in Tg 

value during hydrolysis, decreasing from -1oC to -10oC after 56 days Table 5.3. A distinct 
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difference in Tg was also noted for PU PGPC. Initially, two Tg slopes were clearly visible at     

-48oC and -10oC, Fig. 5.4. After 56 days of alkaline hydrolysis, the Tg at -10oC remained the 

same. The Tg at -48oC was seen to increase with hydrolysis time to -38oC after 14 days,    

Fig. 5.10. However, the initial Δ Cp value (Tg at -48oC) of 0.07 J/g also decreased with 

hydrolysis time, and after 56 days this Tg had disappeared Table 5.3. This suggests that the 

PCL soft segment contained within the polymer had degraded, but that the PEG segment still 

remained.  

Results from alkaline hydrolysis highlighted significant changes associated with altering the 

polyol, and it was surmised that the same would apply when samples were subjected to soil 

burial. The results of this investigation are given in the next section. 

 

5.2.3 Susceptibility to soil degradation of Polyurethane Samples in group 3 – 

Effect of Polyol, PU ADP, PU PCL, PU PEG & PU PGPC  

In order to assess the effect of the polyol on the rate of biodegradation, the PU samples in 

this group were subjected to two different types of soil burial as of that in chapters 3 & 4  

Soil burial at 50oC, produced unexpected findings in that PU ADP was found to degrade 

faster than all of the other PU samples in this group. The PU ADP film had broken up after 5 

months, whereas PU PCL, PU PEG and PU PGPC were still intact and did not show any 

signs of biodegradation after 5 months, but all were found to degrade after 10 months       

Fig. 5.11a & Fig 5.12. The weight losses for each film also supported these findings; 

however, substantial weight still remained for PU ADP (79%) even after the film had broken 

up.  

After 20 months of soil burial at RT there was little weight loss observed for PU ADP, PU 

PCL and PU PEG for both soil types, Figs. 5.11 b & c. However, PU PGPC did exhibit 

weight losses when buried in both soil 1 and soil 2, with a weight loss of 27% (soil 1) and 

13% (soil 2) Figs. 5.11 b & c. After examination of the PU films, it was clearly seen both by 

eye and by microscopic images that substantial degradation had occurred for PU PGPC and 

PU PCL, with cracks and discolouration of the two films appearing, Figs. 5.12 & 5.13. PU 

PEG also exhibited some visible signs of degradation with small cracks observed on the film, 

Fig. 5.12. These results imply that altering the polyol has a great influence on the rate of 

biodegradation in soil. To examine the extent of biodegradation further, structural changes 

were monitored by FTIR-ATR. 
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5.2.3.1 Structural changes during soil burial at 50oC in PU ADP, PU PCL and PU PEG 

and PU PGPC monitored by FTIR-ATR. 

The main spectral changes during soil burial involved the ester/urethane linkages in the 

samples therefore these will be examined in detail [102]. The peaks at 1726cm-1 and 

1703cm-1 relating to the free and hydrogen bonded urethane/ester group respectively, 

decreased for PU PCL during soil burial Fig. 5.14a. The peak at 1161cm-1 denoting the C-O-

C=O ester peak was also seen to decrease during soil burial. A significant peak at 1036cm-1 

was observed after 11 months soil burial, and could be associated to the C-O linkage of 

alcohol degradation products, Fig. 5.14b [105]. After 5 months, a peak was also observed at 

1661cm-1 which disappeared after 9 months indicating the formation of amine groups, a 

degradation product of the hard segment 

PU PEG also displayed some notable changes during soil burial, with a significant decrease 

in the peaks at 1722cm-1 and 1702cm-1 denoting the C=O free and hydrogen bonded 

urethane linkages in the hard segment respectively, Fig 5.14c. Also noteworthy was a 

substantial decrease in the peak at 1221cm-1 corresponding to the C-N group. A decrease in 

the peak at 1069cm-1 (C-O-C) along with an increase in the peak at 1035cm-1 (C-O) signifies 

degradation of the hard/soft segments, and the subsequent formation of alcohol degradation 

products. As of that for PU PCL (see above), a new peak was observed at 1654cm-1 after 5 

months which then shifted to 1642cm-1 after 11 months, and is more than likely indicative of 

amine groups, a degradation product of the hard segment, Fig 5.14c.  

The FTIR-ATR spectra for PU PGPC given in Fig. 5.14d & e, did not seem to display 

changes in peak absorbances denoting extensive degradation as of that for PU PCL and PU 

PEG. Although a decrease at 1725cm-1 and 1702cm-1 was observed for PU PGPC, Fig 5.14e 

as of that for PU PCL and PU PEG, Fig. 5.14a & c, the decrease was not as substantial. A 

decrease in the peak at 1162cm-1 indicated that the PCL soft segment chain in PU PGPC 

had degraded, Fig. 5.14f, however, little change in the peak at 1068cm-1 was observed, and 

this implies that a large proportion of the PEG segment still remained, even after 11 months. 

A new peak was observed at 1658cm-1 as of that for PU PCL and PU PEG which suggests 

hard segment amine degradation products [105, 155]. 
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5.2.3.2 Structural changes during soil burial at RT after 20 months in PU ADP, PU PCL, 

PU PEG and PU PGPC monitored by FTIR-ATR 

Changes in PU ADP structure during soil burial at RT have previously been discussed, see 

section 3.2.3.2. There were some small changes to the FTIR-ATR spectra for PU PCL after 

soil burial, however these were minimal, and this was surprising as the PU PCL films 

displayed distinct cracking after removal from the soil, Fig 5.12. Small decreases were 

observed at 3301cm-1 and 1528cm-1 denoting the N-H and C-N urethane linkages, Fig. 5.15a 

& b. Small changes were also noted for the peaks at 1726cm-1 and 1702cm-1 denoting the 

free and hydrogen bonded ester and urethane C=O linkages respectively, Fig. 5.16a. A small 

decrease was also observed for the peak at 1161cm-1 denoting the ester linkages of the PCL 

soft segment, Fig. 5.16b. 

Minor changes were also observed for PU PEG as of that for PU PCL, with small decreases 

noted for the peaks relating to the N-H and C-N urethane linkages at 3301cm-1 and    

1531cm-1, Fig. 5.15c &d. Other small changes relating to the hard segment were also noted 

by the peaks at 1722cm-1 and 1702cm-1 denoting the free and hydrogen bonded C=O 

urethane linkages respectively, Fig 5.16c. Small decreases were also observed at 1099cm-1 

and 1069cm-1 which suggests some minor degradation to the C-O-C linkages in the PU. 

The most noticeable changes in the FTIR-ATR spectra after soil burial was of that for PU 

PGPC, with a substantial decrease in the peak at 1725cm-1 for soil type 1 denoting the free 

C=O ester/urethane bonds, Fig 5.16e. The same was also observed for soil type 2 but to a 

lesser degree. Decreases were also noted at 3315cm-1 and 1530cm-1 denoting the N-H and 

C-H urethane linkages. Also observed was a small decrease in the peaks at 1350cm-1 and 

1466cm-1 relating to the CH2 groups in the PU, Fig. 5.15f. This was not seen for any of the 

other PU samples in this group. The peak at 1163cm-1 denoting the C-O stretching of the 

ester linkage was also seen to decrease after soil burial in both soil type 1 and 2, Fig. 5.16f. 

 

5.2.3.3 Effect of polyol on morphology after 20 months soil burial (PU ADP, PU PCL, 

PU PEG and PU PGPC) 

PU samples subjected to soil burial at RT were removed from the soil, and morphological 

changes during biodegradation were ascertained by DSC. Fig. 5.17 displays the 

thermograms for PU PCL, PU PEG and PU PGPC both before soil burial and after 20 

months of soil burial. PU ADP has previously been discussed, see section 3.2.2.3. For PU 

PCL some changes were observed relating to the hard segment, with the reduction of the 
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endotherm at 197oC (ΔH 4.2 before soil burial, ΔH 2.5 soil 1, ΔH 2.4 soil 2) relating to the 

highly ordered microcrystalline domains. The endotherms at 126oC relating the short range 

ordered hard segment were seen to increase after soil burial for both soil type 1 and 2, Fig 

5.17a & Table 5.4. Phase separation between the hard and soft segments can be 

characterised by the Tg value, and for PU PCL the degree of phase separation was seen to 

decrease after soil burial, Fig 5.17a & Table 5.4, (initial Tg value at -28oC, soil type 1 Tg 

value  -24oC , soil type 2 Tg value -23oC).  

No changes were observed to the hard segment morphology of PU PEG with the absence of 

any endotherms either before or after soil burial. This implies that the hard segment was 

completely amorphous and remained so even after soil burial. Phase separation between the 

hard and soft segments were seen to decrease after soil burial, with the Tg value decreasing 

from -1 initially to -5 for soil type 1 and -6 for soil type 2 , Fig 5.17b & Table 5.4. 

Prior to soil burial an endotherm at 160oC was observed for PU PGPC, which relates to long 

range ordered domains. This endotherm disappeared after 20 months of soil burial for both 

soil types, suggesting an amorphous hard segment, Fig 5.17c. There was also a noticeable 

difference in the Tg values for PU PGPC. Prior to soil burial two Tgs were observed at -48oC 

and -10oC and related to the soft segment chains PCL and PEG respectively. After soil burial 

the Tg at -10oC was seen to decrease slightly, Fig 5.17c & Table 5.4, (Tg value soil 1 -14oC, 

Tg value for soil 2 -11oC), thereby indicating an increase in phase separation. The Tg value at   

-48oC was seen to disappear after soil burial for both soil types, Fig 5.17c, and this indicates 

that the PCL chain in the soft segment had degraded.  

 

5.2.4. Effect of polyol (PU ADP, PU PCL, PU PEG & PU PGPC) on enzymatic 

degradation by lipases Rhizopus sp. and Aspergillus niger. 

Little weight loss (not shown) was observed after 24 days for all of the PU samples in this 

group for both lipases Rhizopus sp. and Aspergillus niger,. However, optical images did 

highlight changes in the PU film during enzymatic degradation, Figs. 5.18 & 5.19. Both PU 

PEG and PU PGPC displayed visible cracking when examined microscopically after 

exposure to Rhizopus sp. lipase, Fig. 5.18. However, PU ADP and PU PCL did not exhibit 

any signs of degradation. Some indications of surface degradation for all samples were 

observed when immersed in the buffer solution containing Aspergillus niger after 24 days, 

Fig. 5.19.  PU PEG seemed to be more susceptible towards lipase degradation by 

Aspergillus niger than the other PU films in this group, with pronounced cracking observed 
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microscopically. FTIR-ATR was performed to determine any structural changes in the 

samples. 

Spectral changes after 24 days of enzymatic degradation of PU samples for both Rhizopus 

sp. and Aspergillus niger are given in Fig. 5.20, PU ADP has previously been discussed, see 

section 3.2.4.1. Surprisingly, it was noted that although there were some changes in the 

spectral peaks during enzymatic degradation, they were relatively minor, Fig 5.20. For PU 

PCL, the peaks at 1726cm-1 and 1702cm-1 decreased after exposure to Aspergillus niger, 

however, after contact with Rhizopus sp. these peaks were seen to increase. The peak at 

1161cm-1 also decreased after 24 days after immersion of the PU PCL film in the Aspergillus 

niger buffer solution. These findings indicate that although some minor degradation had 

occurred when PU PCL was exposed to Aspergillus niger, the lipase, Rhizopus sp. had not 

degraded PU PCL. 

After exposure to Aspergillus niger, microscopic images of PU PEG revealed that some 

degradation had occurred, however results from the FTIR-ATR spectrum did not correspond 

to these findings with only minor changes in the peaks at 1722cm-1 and 1702cm-1 occurring, 

Fig. 5.20c. In fact the peak at 1722cm-1 was seen to increase.  

PU PGPC displayed some minor changes in the FTIR-ATR spectra, after exposure to the 

lipase from Aspergillus niger, however, very little change had occurred in relation to the 

lipase from Rhizopus sp. Figs. 5.20e & f. Images obtained using optical microscopy showed 

some cracks in the film after being exposed to Rhizopus sp, so to see such small changes in 

the spectra was surprising.   

 

5.2.4.1 Structural changes during enzymatic degradation using proteases in PU PCL, 

PU PEG and PU PGPC monitored by FTIR-ATR. 

Degradation by proteases was also disappointing in that little weight loss (not shown) was 

observed for Rhizopus sp. However, visible cracking from microscope images of the PU 

samples were observed, with PU PCL and PU PGPC showing the greatest signs of 

degradation Fig. 5.21.  

The FTIR-ATR spectra of the PU samples given in Fig. 5.22 did highlight some spectral peak 

changes after enzymatic degradation. The PU PCL spectra displayed an increase in the 

ester/urethane peaks at 1726cm-1 and 1703cm-1, which was surprising, Fig 5.22a. These 

peaks were also seen to increase in the 2.8 pH buffer only, indicating that degradation of this 

sample had occurred due to the acidic buffer and not due to the activity of the enzyme.     
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Fig. 5.22b displays the peak at 1161cm-1 denoting the C-(C=O)-O-C ester linkages contained 

within the PCL soft segment and it can be noted that this peak had not decreased suggesting 

that little degradation of the soft segment had occurred. For PU PEG, the peaks at 1722cm-1 

and 1702cm-1 were seen to decrease, and thereby indicated degradation of the C=O groups 

contained within the urethane linkages Fig. 5.22c. FTIR-ATR spectra for PU PGPC 

highlighted that the peaks at 1726cm-1 and 1703cm-1 had decreased. However, also noted 

was the decrease in the peak at 1161cm-1, which was observed in the buffer solution without 

the enzyme, Fig. 5.22e & f.  Therefore, the degradation observed in the PU PGPC film was 

most likely due to hydrolysis induced by the acidic buffer solution and not due to enzymatic 

degradation. 

 

5.3 Discussion 

Extensive studies into the influence of PU structure on functionality have shown that a wide 

variety of PUs can be tailor-made for specific purposes by altering the initial reactants, and 

increasing biodegradability of PU is no different in this respect. The importance of the polyol 

with regards to increasing biodegradability cannot be understated, and each polyol brings its 

own advantages and disadvantages in respect of biodegradability. For example, many 

studies have shown that polyesters tend to be more easily hydrolysable than polyethers, due 

to the C-O-C=O ester group contained with the chain [3, 4, 80, 96]. However, some 

polyesters can also be of a hydrophobic nature which may affect the rate of hydrolysis of 

these chains [71, 156, 157]. Polyethers on the other hand are generally more hydrophilic 

than polyesters, and polyethers like PEG can enhance water permeability, which has been 

shown to be a factor on the degradation rate of PU [33, 98]. However, one of the 

disadvantages of using polyethers like PEG in respect of hydrolytic degradation is that 

polyether chains do not contain a hydrolysable bond, and therefore are less prone to 

hydrolysis than their polyester counterparts [19].  

Altering the polyol soft segment can also affect the PU morphology, and results from 

chapters 3 and 4 have highlighted PU morphology to be a major factor on the rate of 

degradation of PU. Therefore, three PUs with different polyols (PCL, PEG and a PCL/PEG 

blend) containing the same hard segment (MDI/BD) and synthesised by the one shot method 

were compared to PU ADP (hard segment MDI/BD, one shot synthesis), the current PU 

synthesised by Eurothane Ltd. PU ADP was denoted as the control sample, and the effect of 

each polyol on PU morphology, thermal stability, water permeability, rate of alkaline 
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hydrolysis and biodegradability were compared to the control sample (PU ADP) and 

produced interesting findings. 

5.3.1 Effect of an ester soft segment on degradation and biodegradation of 

polyurethanes, PU ADP and PU PCL.  

PU PCL which contained a PCL soft segment was compared to the control sample PU ADP 

which contained an ADP soft segment, in order to determine the effect of using different 

polyesters in PUs on the rate of hydrolytic degradation. It was found that although both of the 

soft segments of the PUs were esters, the rate of degradation and biodegradation differed. 

During accelerated alkaline hydrolysis degradation monitored by weight loss for the four PU 

samples in this group were found to be in the order of PU ADP > PU PEG > PU PGPC > PU 

PCL, with PU PCL not exhibiting any weight loss at all during the 56 days, Fig. 5.5a which 

implied that this PU had not been hydrolysed. Conversely, PU ADP was seen to degrade by 

this method after 56 days with a weight loss of 44% after 42 days. Fig. 5.5a.             

These findings were also supported by microscopic images which clearly displayed extensive 

cracks in the PU ADP film after 42 days with none visible for PU PCL, Fig. 5.23a & b.  This 

discovery was unexpected in that the PCL ester soft segment contained in PU PCL has 

previously been reported to be degradable in soil and compost [152, 156], and hence it 

would be expected that this soft segment chain would hydrolyse under accelerated alkaline 

conditions. In light of this, changes in chemical structure and morphology were examined 

using FTIR-ATR and DSC.  

Similar peaks relating to the hard segment structure of PU ADP and PU PCL were observed, 

Fig. 5.2a & Fig. 3.2a (Chapter 3) which would be expected, as both contained the same 

hard segment composition (MDI/BD). The same was also observed with respect to the soft 

segment structure, which was characterised by only one peak at 1137cm-1 (PU ADP) and 

1161cm-1 (PU PCL), relating specifically to the ester soft segment, Table 2.5 (Chapter 2). All 

other peaks in the spectra of the PUs related to both the hard and soft segment structure and 

therefore could not be assigned as specifically relating to either domain. The main structural 

changes during degradation were noted for the peaks at around 1728cm-1 and 1701cm-1 

denoting the free and hydrogen bonded C=O urethane/ester groups for PU ADP, with a 

decrease in the peak at 1728cm-1 by 78% after 42 days, Fig. 5.23c.  However, for PU PCL, 

this peak (1726cm-1) increased during the first 21 days (+15%), and then decreased after 42 

days (-10%), Fig. 5.23c. Most noteworthy was the decrease of the peak at 1137cm-1 for PU 

ADP, denoting degradation of the ester linkages in the soft segment, Fig. 3.10a (Chapter 3). 

This was not observed for PU PCL, with the peak at 1161cm-1 exhibiting only a minimal 

decrease in comparison to that of PU ADP, Fig. 5.23d, supporting the weight loss findings 
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that PU PCL had not degraded substantially. Although results from FTIR-ATR supported 

both weight loss, Fig. 5.5a and visual findings, Fig. 5.7, it did not elucidate an explanation 

into why the rate of degradation of PU ADP and PU PCL differed to such an extent, therefore 

morphology of the PU samples were examined by DSC during accelerated hydrolysis.  

As the rate of degradation of PU has been previously shown to be influenced by the extent of 

crystallinity it was thought that this may have been the reason for the difference in the rate of 

degradation between PU ADP and PU PCL, however, this was not found to be the case. 

Prior to hydrolysis, DSC analysis revealed that both PU PCL and PU ADP exhibited similar 

hard segment endotherms, which indicated that both PU samples contained a large 

proportion of highly crystalline structured regions, Fig. 5.23 e & f.  During alkaline hydrolysis, 

PU PCL did not display any significant changes in crystallinity, with both the microcrystalline 

endotherm at 197oC, and the ordered endotherm at 128oC remaining relatively unchanged 

even after 56 days, Fig. 5.10a. However, changes in crystallinity were observed for PU ADP, 

with the endotherm at 197oC disappearing after 21 days, indicating an increase in less 

ordered domains as the PU degraded, Fig. 3.11a (Chapter 3). 

Although these results supported the weight loss and the FTIR-ATR findings, it did not 

explain why the ADP ester had hydrolysed, as opposed to the PCL ester which had not. 

Therefore, the Tg value of the samples was examined to determine the extent of phase 

separation. Previous studies, [54, 66] have shown that the soft segment molecular weight 

can affect the Tg value, with lower molecular weight polymers increasing the Tg value due to 

the restricted mobility of the shorter soft segment molecular chains [54, 66]. However, this 

would not influence results obtained in this instance as both the soft segments contained in 

PU PCL (PCL) and PU ADP (ADP) had a molecular weight of 2000. Tg values of -28oC for 

PU ADP and -18oC for PU PCL were found, and it was surmised that this difference in Tg 

values was due to microphase separation between the hard and soft segments, however, 

previous studies have shown that the Tg for PEA (molecular weight 2000) was found to be      

-53oC and -59oC for PCL (2000 molecular weight) [64], therefore the difference seen 

between PU ADP and PU PCL is probably due to the different polyols used, so although 

difference between the samples was found, it did not provide an explanation for the 

increased rate of hydrolysis of PU ADP in comparison to PU PCL.  

The hydrophobicity of the polymer chains also needs to be taken into consideration regarding 

the rate of alkaline hydrolysis, and numerous studies on PCL have reported on the 

hydrophobic nature, and hence dramatic reduction on the rate of degradation and hydrolysis 

of PCL [154, 158], in comparison to other more hydrophilic polymers. Results from water 

absorption experiments supported these findings, and revealed that altering the polyol 
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affected the diffusion of water into the PU. Although PU ADP was seen to be relatively 

hydrophobic (4.5% weight increase) in comparison to the polyether containing PUs (PU PEG 

and PU PGPC), PU PCL was found to be more hydrophobic than PU ADP with a weight % 

increase of only 2%, and can therefore be concluded that this hydrophobicity of the PCL 

segment is most likely to be the reason for the slower rate of hydrolysis of PU PCL.   

Accelerated alkaline hydrolysis was performed on these samples to give an indication of rate 

of degradation which was performed over a short length of time. Soil burial experiments were 

also performed to provide a ‘real time’ study to examine the effect of the polyol on the rate of 

degradation and biodegradation on PU. Results from these experiments were interesting in 

that PU PCL was observed to degrade faster than PU ADP when subjected to soil burial at 

RT, which was in contrast to that of the accelerated hydrolysis. PU ADP or PU PCL did not 

display significant weight losses during soil burial, however upon removal of the PU films 

from the soil, PU PCL displayed distinct and visible cracking by eye and microscopic images 

highlighted the differences between these samples further, Fig. 5.23 g & h, indicating that 

PU PCL had degraded to a greater extent than PU ADP. Surprisingly, results obtained from 

FTIR-ATR did not display significant changes, with small decreases observed at        

1161cm-1(PU PCL), 1137cm-1 (PU ADP), Fig. 5.16b & 3.18b (Chapter 3) indicating 

degradation of the ester groups, and 3301 cm-1 and 1528cm-1 (PU PCL and PU ADP) 

denoting N-H degradation of the hard segment. In order to observe changes in morphology 

during soil burial, thermograms from DSC analysis were examined and revealed distinct 

differences between PU ADP and PU PCL.  

The most notable difference observed between the thermograms for PU ADP and PU PCL 

was the change in microcrystalline regions given at 197oC, Fig. 5.23 i & j. This endotherm 

remained relatively unchanged for PU ADP after 20 months soil burial (Initial ΔH 4.9 J/g, 

soil 1 burial ΔH 4.9 J/g). In contrast to this, the endotherm at 197oC was seen to decrease 

significantly for PU PCL (Initial ΔH 4.2 J/g, soil 1 burial ΔH 2.5 J/g) suggesting a 

decrease in crystallinity of the sample. Also noteworthy was the decrease in the Tg Δ Cp 

value relating to the soft segment (Initial Δ Cp 0.25, soil 1 burial Δ Cp 0.19 J/g) 

suggesting that a smaller proportion of the soft segment remained. These results 

indicate that partial degradation of the PCL soft segment had taken place, which in turn then 

altered the morphology of the hard segment resulting in a reduction of highly ordered 

microcrystalline regions. The same was not observed for PU ADP with the Tg Δ Cp value 

remaining unchanged after soil burial (Initial Δ Cp 0.19, soil 1 burial Δ Cp 0.19 J/g), 

indicating that PU ADP had not degraded during soil burial, Fig. 5.23 i & j. These results 

were in contrast to accelerated hydrolysis, however the mechanism of biodegradation in soil 

is complex, and involves a multitude of physical, chemical and biological reaction 
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mechanisms all of which contribute to the breakdown of the polymer into oligomers and 

monomers [2, 57], and numerous studies have shown PCL to be degradable in soil and 

compost [5, 152]. One of the principal mechanisms of polymer biodegradation is that from 

hydrolysis by microorganisms, and in the case of PUs fungi have been shown to be the 

predominant organism responsible [21, 22]. Results reported in the literature have shown 

that the rate of biodegradation by microorganisms is influenced by the ability of 

microorganisms to adhere to the surface of the polymeric material [57]. The mechanism by 

which microorganisms adhere to the surface of polymeric materials is by hydrophobic 

interactions, and studies have shown that many microorganisms exhibit a preference for 

hydrophobic surfaces [29, 57], therefore it is reasonable to assume that one of the reasons 

for the increased rate of biodegradation of PU PCL in comparison to PU ADP is due in part 

to the hydrophobic nature of the PCL soft segment chain, Fig. 5.1. This hydrophobicity also 

explains the resistance towards accelerated alkaline hydrolysis, and therefore provides an 

explanation for the difference in degradability of PU PCL found between the two degradation 

test methods.  

Enzymatic degradation was also monitored and used as an indication of degradation, 

however the results from these experiments were disappointing in that PU PCL and PU ADP 

did not exhibit any weight losses during the experiment and microscopic images did not 

reveal any major degradation of the films, Figs. 5.18-5.19 & Figs. 3.20-3.22 (Chapter 3). 

This may be due to the relatively short length of time to which the PU films were exposed to 

enzymatic degradation, or that the PU samples PU ADP and PU PCL were not suitable 

substrates for the enzymes used in the experiment namely, lipases from Aspergillus niger 

and Rhizopus sp. PU PCL and PU ADP were also subjected to enzymatic hydrolysis by a 

fungal protease by Rhizopus sp. in which microscopic images from PU PCL highlighted 

extensive cracking after 24 days, Fig. 5.21, however, this may have been due in part to the 

acidic buffer which was required for optimisation of enzyme activity of the protease therefore 

it is difficult to attribute degradation to enzymatic degradation.  
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5.3.2 Comparison between ester and ether soft segment on chemical structure, 

crystallinity and thermal stability during alkaline hydrolysis (PU ADP & PU PEG). 

Degradation of polyethers has been studied extensively, and it has been found that the 

molecular weight of polyethers affects degradability, with polyethers having a molecular 

weight of up to 1000 being degradable [26]. Therefore, a PU was synthesised containing a 

1000 molecular weight PEG soft segment and compared to the control sample PU ADP 

which contained a PEA soft segment with a molecular weight of 2000. Prior to degradation, 

hydrophobicity was monitored and revealed a dramatic difference, Fig 5.1. Altering the polyol 

to a PEG (polyether) soft segment was found to enhance water permeability dramatically, 

with PU PEG increasing in weight after immersion in water by 56%, (PU ADP 4.5%), Fig 5.1. 

Accelerated hydrolytic degradation also revealed distinct differences between these two 

samples. Although PU ADP displayed the greatest weight loss during exposure to the 10% 

NaOH solution, examination of the films visually showed quite clearly that PU PEG had in 

fact broken up, whereas, although the PU ADP film was brittle, it still remained intact Fig. 

5.24a. From these results, it can be stated that weight loss measurements were not an 

accurate indication of the rate of degradation, especially when examining hydrophilic 

polymers such as PEG, which can take up a large amount of water. Microscopic images 

during hydrolysis also produced some interesting differences, in that visible structured cracks 

were observed for PU ADP, which, increased proportionally to hydrolysis time, Fig. 5.6. 

However, the same was not observed for PU PEG, and possibly indicates some hydrolysis of 

the ester bonds occurring in PU ADP which are not present in PU PEG. In order to 

investigate this further, structural changes were examined by FTIR-ATR. 

PU PEG displayed similar hard segment spectral peaks as of that for PU ADP. However, 

changes in peak height for PU PEG were negligible, with minimal change observed for the 

peak at 1100cm-1 denoting the C-O-C ether linkages, Fig. 5.24C. This indicates that minimal 

degradation of the soft segment had occurred. The same was observed for the peak at 

1703cm-1 which related to the hydrogen bonded urethane linkages in the PU, however a 

decrease in the peak at 1722cm-1, Fig. 5.24C, denoting free urethane linkages was 

observed, and therefore it can be surmised that a proportion of the free urethane linkages 

had degraded. These observations were unexpected in that weight loss and visual 

observations indicated that substantial degradation of the PU had occurred. As FTIR-ATR is 

an infrared spectroscopic technique which only penetrates the sample at a depth of around 

2µm, only changes on the surface of the sample can be observed, therefore degradation of 

PU PEG is more than likely to have occurred in the bulk. To investigate this further, 

morphological properties of the PUs were examined by DSC. 
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Initial thermograms of PU ADP and PU PEG revealed that the morphology of these to PUs 

were distinctly different. PU ADP displayed three endotherms relating to highly crystalline 

hard segment domains, Fig. 5.24 e & f, whereas PU PEG did not exhibit any endotherms, 

indicating that PU PEG was of an amorphous nature. A difference in the Tg value of the two 

PUs were also noted, with PU ADP having a Tg value of -18oC and PU PEG having a Tg 

value of -1oC. This may be due to two reasons. Firstly, the difference in Tg values can be 

partially attributed to the different molecular weights of the soft segments in PU ADP (PEA 

2000) and PU PEG (PEG 1000), and previous studies have shown that molecular weight 

influences the Tg value, with higher molecular weight polymers producing lower Tgs due to 

the greater mobility of the longer chains [66]. The second reason is concerning the 

microphase separation between the hard and soft segments in the PU samples, with greater 

phase separation inferred with lower Tg values [107, 109]. Therefore, the increased Tg value 

of PU PEG can also be attributed to a reduction in phase separation between the hard and 

soft segments. It would be reasoned that the reduced phase separation and amorphous 

nature of PU PEG would be favourable towards degradation in comparison to PU ADP, 

which was highly crystalline in nature and this supposition supports visual results from 

accelerated alkaline degradation. However, as the PEG soft segment in PU PEG does not 

contain any hydrolysable bonds, the Tg Δ Cp value denoting the soft segment was examined, 

as results from previous chapters and literature have found this value to be a good indication 

of degradation [59]. The results are given in Fig. 5.24d and clearly show that the majority of 

the PEG soft segment remained after 56 days, therefore degradation of this PU was not due 

to the break-up of the soft segment chains. It is more likely that degradation of PU PEG was 

due to hydrolysis of the urethane linkages contained in the hard segment. Although results 

from previous chapters have shown that hydrolysis of the PU hard segment is minimal, the 

nature of the PEG soft segment which does not contain hydrolysable bonds and the 

hydrophilicity of this polymer attests that this is the most plausible explanation. It is thought 

that the high water absorption capacity results in a swelling of the PU matrix which then 

facilitates degradation by creating more free volume within the matrix allowing more diffusion 

of water and consequently access to the urethane linkages which in turn increases hydrolysis 

of the PU.  

PU PEG was subjected to ‘real time’ soil burial experiments as of that for PU ADP and PU 

PCL. Visual examination of the PU PEG films after removal from the soil did not reveal 

significant degradation. Some minor cracks were observed, however microscopic images 

also confirmed that limited degradation had occurred as of that for PU ADP, Fig. 5.13. FTIR-

ATR analysis did highlight some changes to the hard and soft segments, with a decrease in 

the peaks at 1722cm-1, 1702cm-1 and 1531cm-1 denoting the urethane linkages in PU PEG, 
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and a small decrease was also noted for the C-O-C ether peak at 1099cm-1, Fig. 5.16d, 

indicating that partial degradation of the soft segment had occurred during soil burial. This 

was confirmed by results from DSC which revealed a decrease in the soft segment Tg Δ Cp 

value from 0.35 J/g (initial) to 0.18J /g (soil 1) and 0.20 J/g (soil 2), Table 5.4. These results 

were in contrast to results obtained from accelerated hydrolysis in which the soft segment 

had not degraded, which is likely due to be due the mode of the experiment and mechanistic 

degradation of the PEG soft segment. Under soil burial conditions many factors play a role in 

the degradation of polyethers, and it is generally thought to be a combination of oxidative 

degradation followed by microbial degradation facilitated by esterases and /or lipases [159]. 

A degradation mechanism of polyether urethanes has been proposed by Anderson et al 

. [160]  and is given in Fig. 5.24 g. Degradation proceeds by the attack of a hydro-peroxy 

radical, after initiation by an activating factor. This causes a dehydration reaction resulting in 

an ester linkage within the ether backbone. This ester linkage is then hydrolysed by 

microrganisms within the soil substrate, to produce oligomers and monomers. Therefore it is 

proposed that the partial degradation of the PEG soft segment occurred through a 

combination of oxidative and microbial action during soil burial. However, although some 

limited degradation occurred during soil burial, neither PU ADP nor PU PEG displayed 

extensive biodegradation after soil burial for 20 months. 

Degradation by lipases Aspergillus niger and Rhizopus sp. did highlight differences between 

PU PEG and PU ADP, with PU PEG being more susceptible towards both of these fungal 

enzymes than PU ADP. Fig. 5.24h displays microscopic images from PU PEG after 

exposure to Aspergillus niger and Rhizopus sp. lipases for 24 days, in which PU PEG clearly 

shows visible signs of degradation. Analysis of the FTIR-ATR spectra revealed that after 

being subjected to Rhizopus sp. the peaks at 1722cm-1 and 1702cm-1 relating to the urethane 

linkages in the PU film had decreased to a large extent, Fig.5.24h. However, after exposure 

to Aspergillus niger, the peak at 1722cm-1 was seen to increase, which is thought to be due 

to the formation of degradation products of PU PEG. The spectra also highlighted some 

degradation of the PEG soft segment, with the peak at 1097cm-1 decreasing. The 

degradation of both the hard and soft segments during exposure to Rhizopus sp. is thought 

to be due to a combination of hydrolysis from the buffer solution, which probably resulted in 

degradation of the hard segment and partial soft segment hydrolysis by an 

oxidative/enzymatic degradation mechanism as of that for soil burial.  
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5.3.3 Effect of blended soft segment containing PEG (polyether) and PCL (polyester) 

on chemical structure, crystallinity and thermal stability during alkaline hydrolysis  

Results from degradation experiments of PU PCL and PU PEG samples highlighted major 

differences between PUs synthesised with a polyether and a polyester, in terms of 

crystallinity, phase separation and hydrophilicity, which ultimately affected the rate of 

degradation and biodegradation of the PU films, therefore a PU was synthesised (PU PGPC) 

which incorporated a blend of PCL and PEG (50:50). In order to examine the effect of a soft 

segment blend containing these two polymers on degradation, accelerated hydrolysis, soil 

burial and enzymatic hydrolysis was performed and examined in detail.  Microscopic images 

of PU PGPC after 42 days of hydrolysis did not reveal any signs of degradation, however, 

visual photographs showed that the film was deformed and flaky, indicating that some 

degradation had occurred, Fig. 5.25a. This was also confirmed by FTIR-ATR spectra.  

The peaks pertaining to both the hard and soft segments for PU PGPC exhibited significant 

changes during hydrolysis. The peaks at 1725cm-1 and 1702cm-1, denoting the free and 

hydrogen bonded C=O urethane/ester groups indicated structural changes relating to both 

the hard and soft segments during hydrolysis, with a significant decrease in the peak at 

1725cm-1, and a slight decrease at 1702cm-1, Fig. 5.9c. The CH2 group absorbance peaks at 

2868cm-1, 2917cm-1, 1478cm-1 and 1350cm-1 all decreased during the 42 days, although the 

decrease was minimal and not as extensive as that of PU ADP, Fig 5.8d & Fig. 3.9b 

(Chapter 3). It is difficult to predict with certainty whether degradation had occurred within 

the hard segment, soft segment, or both, however from the interpretation of the peaks 

associated with the hard segment only (in which minimal changes had occurred), it is more 

than likely that the majority of these peak changes related to degradation of the soft 

segment. As PU PGPC contained a blend of PEG and PCL soft segments, two peaks were 

observed in the initial spectra which characterise the soft segment. The peak at 1161cm-1 

relating to the C-(C=O)-O ester (PCL) soft segment displayed a significant reduction during 

hydrolysis, which indicated that hydrolysis of the ester groups (PCL) had occurred, Fig. 

5.25c. This can further be supported by a reduction in the free C=O peak at 1724cm-1. A 

decrease was also observed for the peak at 1102cm-1 pertaining to the PEG, C-O-C stretch 

in the soft segment but this was minimal. These findings indicate that complete degradation 

of the PCL ester segments within the soft segment had occurred, and that minimal 

degradation of the PEG segments had taken place. This would concur with results from PU 

PEG which indicated that the PEG ether soft segment was not conducive to alkaline 

hydrolysis. However, what is interesting to note, is that degradation of the PCL soft segment 

occurred in PU PGPC, which was not observed in PU PCL, with the PCL segment remaining 



                                                                        

190 
 

relatively unchanged after accelerated hydrolysis, Fig.5.25 c & d, see Section 5.3.1, 

therefore DSC, thermograms were examined to confirm this finding. 

The initial thermogram prior to hydrolysis revealed two Tg values at -48oC and -10oC for PU 

PGPC, which would be expected due the blend of PCL and PEG contained in the soft 

segment, and from DSC thermograms from PU PCL and PU PEG it was reasoned that the 

Tg at -48oC denoted the PCL chains and the Tg at -10oC denoting the PEG chains             

Fig. 5.25 e. It was interesting to note that blending these polymers resulted in lower Tg 

values than the individual PCL and PEG segments contained in PU PCL and PU PEG. 

Therefore, it can be surmised that the soft segment was more phase separated when 

containing a blend of PCL and PEG than when these polymers were used alone. Results 

from previous chapters have revealed that an increase in phase separation may increase the 

rate of hydrolytic degradation. The hard and soft segments in PU PGPC were more phase 

separated than in PU PCL, and PU PGPC hydrolysed faster that PU PCL, Figs. 5.10 & 5.5, 

therefore this theory holds for these two PUs. However, PU PEG hydrolysed faster than PU 

PGPC but was found to be less phase separated, therefore it can be speculated that phase 

separation is not a major factor on the rate of degradation for PU PGPC. During accelerated 

alkaline hydrolysis, the Tg Δ Cp values was examined, and further confirmed results from 

FTIR-ATR regarding degradation of the PCL chains in the soft segment. The Tg Δ Cp was 

seen to decrease from -48oC to zero after 56 days. The Tg Δ Cp at -10oC denoting the PEG 

soft segment chains remained relatively unchanged during the experiment, Fig 5.25 f, again 

confirming results from FTIR-ATR that the PEG chains in PU PGPC had not degraded. 

Crystallinity of the PU was examined and PU PGPC was found to be relatively amorphous in 

character, which was completely different from PU PCL which contained a 100% PCL soft 

segment, therefore it can be surmised that the 50% addition of PEG into the soft segment 

disrupted the morphology of the hard segment chains and altered the morphology of the PU 

dramatically.  

It is thought that both the increase in phase separation and decrease in crystallinity of PU 

PGPC did affect the rate of hydrolysis after exposure to alkaline degradation, however these 

were not considered to be major factors, as if this were the case, then logically PU PGPC 

should have degraded faster than both PU PCL and PU PEG, however, this was not 

observed, with PU PEG degrading faster than PU PGPC, Fig. 5.7.  Therefore, it is suggested 

that the major factor on the rate of degradation of this PU is the hydrophilicity of PU PGPC. 

Results from water absorption experiments confirmed this, as PU PGPC was seen to 

increase in weight by 30% after immersion in water for 10 days, Fig. 5.1. This was compared 

to PU PCL which was deemed as hydrophobic with a 2% weight increase, Fig. 5.25 g. This 

would also explain the rate of hydrolytic degradation for the PUs in this group, which was 
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found to be in the order of PU PCL< PU PGPC < PU PEG, corresponding to the order of 

hydrophilicity of the samples at; 2% (PU PCL) < 30% (PU PGPC) < 56% (PU PEG). 

Soil burial experiments revealed interesting findings in that degradation of PU PGPC was 

observed even after 3 months, with microbial attachment to the surface of the film visible by 

eye, Fig. 5.25 b. After 20 months the sample had not broken up, but cracking was observed 

on the surface and the film itself was fragile. Examination of the FTIR-ATR spectra  

confirmed visual results, as a substantial decrease in the free C=O ester/urethane peak at 

1722cm-1 was perceived, and the peak at 1137cm-1 denoting the C=O ester bond contained 

in the PCL soft segment chains had also disappeared, indicating degradation of this polymer. 

Also changes in the CH2 groups were also noted, with a decrease in the peaks at 2952cm-1 

for soil type 1, Fig. 5.15 f. For soil type 2 relatively little change was observed for the peak at 

1061cm-1 relating to the PEG C-O-C bond which was surprising, however this peak was seen 

to decrease for soil type 1, which indicated that some degradation of the PEG chains in the 

soft segment had degraded. DSC analysis supported these findings in that again, as of that 

for accelerated alkaline hydrolysis the Tg at -48oC was seen to disappear after removal from 

the soil after 20 months, Fig.5.17c, indicating that the PCL chains in the soft segment had 

degraded.  

From these results it can be concluded that PU PGPC was more susceptible towards 

biodegradation than PU PCL or PU PEG. Soil burial results for PU PCL which contained a 

PCL soft segment highlighted that this PU was more prone to biodegradation than PU ADP 

or PU PEG, however, results for PU PGPC indicated that the addition of PEG into a PCL soft 

segment increased biodegradation, probably due to combination of a decrease in crystallinity 

of the polymer (in comparison to PU PCL), an increase in hydrophilicity from the PEG chains 

to enable hydrolysis (in comparison to PU PCL), and at the same time also retaining some 

hydrophobic domains from the PCL chains in order to facilitate hydrophobic interactions 

between the PU film and microflora contained in the soil, thereby inducing enzymatic 

degradation. 

The final method used to analyse the degradability of PU PGPC was that of enzymatic 

degradation. The results given in Fig. 5.25 h, show that this PU was relatively resistant 

towards enzymatic degradation from the Rhizopus sp. lipase, however, some degradation of 

the PU film was observed microscopically after exposure to Aspergillus niveus lipase. 

Results from FTIR-ATR also substantiated this in that little change in the spectra was 

observed after exposure to Rhizopus sp., however, a decrease in the peaks at 1702cm-1 and 

1722cm-1 was observed after immersion for 24 days in the buffer solution containing 

Aspergillus niger lipase, Fig. 5.20e, indicating degradation of the C=O ester/urethane 
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linkages. The peak at 1137cm-1 was also seen to decrease with exposure to Aspergillus 

niger lipase, and this indicated that the PCL chains in the soft segment of PU PGPC had 

been hydrolysed. Analysis of PU PGPC after exposure to protease Rhizopus sp. was found 

to be problematic, in that the optimum pH for the protease activity was 2.8, at this acidic pH 

level PU PGPC was seen to degrade in the buffer solution alone, without the addition of the 

protease, Fig.5.25 i. In light of this, susceptibility of PU PGPC to this protease could not be 

determined, however, it can be stated that PU PGPC is susceptible towards acidic hydrolysis 

as well as alkaline hydrolysis.  

 

5.3.4 Overall Summary of the effect of the Polyol (soft segment) on Polyurethane 

Degradation and Biodegradation. 

The work described in this chapter focused on the effect of the polyol (soft segment) on the 

rate of degradation and biodegradation of PU. It was found that soft segments containing 

different esters affected the rate of degradation and biodegradation of PU. Accelerated 

alkaline hydrolysis of the PU samples resulted in degradation of PU ADP which contained an 

ADP soft segment, Fig 5.5. Alteration of the soft segment to a different ester (PCL) resulted 

in a dramatic reduction in the rate of hydrolytic degradation; with PU PCL remaining intact 

even after 56 days with limited signs of degradation of the PU film, Fig. 5.5 & 5.7. Soil burial 

conditions produced results that contrast those obtained from accelerated alkaline hydrolysis, 

as the PU ADP film was not seen to degrade after soil burial for 20 months, however, PU 

PCL was found to be more biodegradable with visible cracks in the film noted, Fig. 5.12 & 

5.13. Previous studies, and results from chapters 3 and 4 indicated that the extent of 

crystallinity affect the rate of degradation in PU, however this was not deemed to be the case 

in this instance, as the extent of crystallinity for PU ADP and PU PCL was found to be 

similar, Fig. 5.23 e & f. Results from water absorption indicated that PU PCL was more 

hydrophobic than PU ADP, which supported previous literature in that the PCL ester soft 

segment in PU PCL is hydrophobic in nature, and this was believed to be the reason for both 

the resistance towards accelerated alkaline hydrolysis, as water was not able to penetrate 

into the PCL soft segment. The increased rate of biodegradation under soil burial conditions 

for PU PCL was thought to be due to increased adhesion of microorganisms onto the surface 

of the PU which occurred through hydrophobic interactions between the microorganisms and 

the hydrophobic soft segment.  

Altering the polyol from a polyester (ADP) to a polyether (PEG) did influence the rate of 

degradation and biodegradation of the PU samples. Results from photographic and 

microscopic images after accelerated hydrolysis, enzymatic hydrolysis and soil burial 
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revealed that the PU containing a polyether polyol (PU PEG) was found to degrade faster 

than PU ADP, which contained a polyester soft segment. The main reason for these findings 

is thought to be due to a combination of the amorphous nature of PU PEG, and also the 

increased hydrophilicity of PU PEG, which then resulted in an increase in the diffusion of 

water into the PU matrix and thereby accelerated its hydrolysis. The mechanism of 

degradation for PU PEG is expected to depend on the experimental conditions, with 

accelerated hydrolysis resulting in degradation of the hard segment by the hydrolysis of the 

urethane bonds, while the soft segment remained relatively unchanged, Fig.5.24 c & d. 

Exposure of PU PEG films to soil burial and enzymatic hydrolysis resulted in partial limited 

degradation of both the hard and soft segments resulting from a combination of oxidative and 

microbial degradation mechanisms, Fig. 5.24.   

The soft segment containing a combination of PCL and PEG (PU PGPC) resulted in a PU 

that degraded under both accelerated alkaline hydrolysis conditions and soil burial. The 

morphological profile of PU PGPC was found to be relatively amorphous in nature, and 

showed a greater degree of phase separation than its PU PCL and PU PEG counterparts, 

Fig. 5.25e. These two factors were considered to play a role in the rate of degradation and 

biodegradation of PU PGPC, however, the major factor regarding the rate of degradation of 

all of the samples in this group was deemed to be hydrophilicity of the PU sample, with a 

positive correlation observed between the rate of accelerated hydrolysis and hydrophilicity, 

Fig. 5.25g. The combination of a PEG and PCL soft segment resulted in a PU which 

contained hydrophilic domains from the PEG chains thereby enabling the diffusion of water 

into the PU, and also hydrophobic domains from the PCL chains conferring hydrophobic 

binding sites for degradation by microorganisms in the soil. 

In summary, accelerated alkaline hydrolysis measured by weight loss revealed that the rate 

of hydrolysis was in the order of PU ADP > PU PEG > PU PGPC > PU PCL, Fig 5.5. 

However, examination of the films visually revealed that the extent of degradation was in the 

order of PU PEG > PU PGPC > PU ADP > PU PCL, Fig 5.7, which was also the order of the 

hydrophilic nature of the PUs. This difference between weight losses and visual images was 

mainly thought to be due to the hydrophillicty of PU PEG and PU PGPC which were thought 

to retain water in the bulk, even after drying, therefore distorting the weight loss 

measurements. Alteration of the soft segment from a PCL and ADP ester to a PEG ether 

resulted in a PU with increased hydrophilicity and reduced crystallinity, Figs. 5.1 & 5.24e & f, 

and these were thought to be the major factors involved in the rate of degradation. Results 

from soil burial indicated that PU PCL and PU PGPC was deemed to be the most 

biodegradable under these conditions, Figs. 5.11 - 5.13, and this was thought to be due to 

the hydrophobic PCL soft segment contained in both of the PUs, which would then result in 
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greater enzymatic hydrolysis from microorganisms by hydrophobic interactions. Overall, PU 

PGPC containing a 50:50 soft segment composition of PEG and PCL was thought to be the 

most biodegradable, and this PU also exhibited substantial degradation during accelerated 

alkaline hydrolysis.  

Examination of the effect of the polyol on the rate of degradation and biodegradation 

revealed that the hydrophilicity/hydrophobicity of the soft segment was one of the main 

factors involved in the rate of degradation and biodegradation of PU. This chapter and the 

previous chapters examined the method of synthesis and the effect of the chemical 

constituents on the PU degradation, and as a result of this work, the next chapter will look at 

how different additives affect PU properties such as crystallinity, hydrophilicity and phase 

separation, and how these additives effect the rate of degradation and biodegradation.  
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Table 5.1   Effect of Polyol on PU Degradation 

PU Code Composition M.w.t Ratio 
polyol: 

isocyanate: 
chain 

extender 

Method 
of 

synthesis  
(Table 
3.1a) 

Soft segment polyol Hard segment 

Isocyanate Chain Extender 

PU-ADP Polyethylene adipate (PEA) Methylene diisocyanate (MDI) Butane diol (BD) 1:3:2 OS-102 

PU-PCL Polycaprolactone (PCL) Methylene diisocyanate (MDI) Butane diol (BD) 1:3:2 OS-102 

PU -PEG Polyethylene Glycol (PEG) Methylene diisocyanate (MDI) Butane diol (BD) 1:3:2 OS-102 

PU-PGPC PCL:PEG (50:50) Methylene diisocyanate (MDI) Butane diol (BD) 1:3:2 OS-102 

PU Code                                                                                                                                      Chemical Structure 

PU-ADP 

 

PU-PCL 

 

PU-PEG 

 

PU-PGPC 

 

 

Table 5.2  Effect of polyol on morphology of PU characterised by DSC 

Sample 
Code 

 

 

Polyol 

Soft Segment Hard Segment 

Tg 
(oC) 

Cp 
(J/g) 

Tm 
(oC) 

 

H 
(J/g) 

Tm 
(
o
C) 

(I) 

H(J/g) 
(I) 

Tm(oC) 
(II) 

H(J/g) 
(II) 

Tm(oC)  
(III) 

H 
(J/g)    
(III) 

PU 
ADP 

Ester 

(PEA) 

-18 0.27 71 0.1 109 0.5 147 0.8 195 6.1 

PU 
PCL 

Ester 
(PCL) 

-28 0.25 66 0.4 126 0.7 - - 197 4.2 

PU 
PEG 

Ether 
(PEG) 

-1 0.35 - - - - - - - - 

PU 
PGPC 

(PEG/ 
PCL) 

-48  
-10 

0.07 

0.17 

- - - - 160 4.9 - - 

 

Hard Segment 
Soft Segment 

Polyol; PEA Hard Segment Soft Segment 

Polyol; PCL 

Hard Segment 
Soft Segment 

Polyol; PEG 

Polyol; 

PEG:PCL 

Soft Segment Hard Segment 



                                                                        

196 
 

Table 5.3  Effect of chemical hydrolysis on morphology of PU characterised by DSC 

Sample 
Code 

Hydrolysis 
time 

Soft Segment Hard Segment 

Tg 
(oC) 

Cp 
(J/g) 

Tm 
(oC) 

 

H 
(J/g

) 

Tm 
(
o
C) (I) 

H 
(J/g) 

(I) 

Tm 
(oC) 
(II) 

H(J/g) 
(II) 

Tm(oC)  
(III) 

H 
(J/g)    
(III) 

PU ADP  time 0 -18 0.27 71 0.1 109 0.5 147 0.8 195 6.1 

PU PCL time 0 -28 0.25 66 0.1 126 0.7 - - 197 4.2 

PU PEG time 0 -1 0.35 - - - - - - - - 

PU 
PGPC 

time 0 -48    

-10 

0.07 

0.17 

- - - - 160 4.9 - - 

PU ADP 14 days -18 0.19 - - 109 0.47 148 0.74 198 5.11 

PU PEG 14 days -4 0.35 - - - - 152 0.2 - - 

PU 
PGPC 

14 days -38 

-9 

0.06 

0.15 

 - 128 0.5 170 1.7 - - 

PU ADP 28 days -31 0.11 - - - - - - - - 

PU PCL 28 days -28 0.24 66 0.1 128 0.6 - - 198 3.7 

PU PEG 28 days -6 0.32 - - - - 150 1.2 - - 

PU 
PGPC 

28 days -40 

-11 

0.05 

0.16 

- - 128 0.3 176 1.7 - - 

PU ADP 56 days -31 0.05 - - - - - - - - 

PU PCL 56 days -28 0.21 66 0.1 128 0.7 - - 197 4.7 

PU PEG 56 days -10 0.30 - - - - 167 4.4 - - 

PU 
PGPC 

56 days - 0 

0.17 

- - - - 137 0.6 - - 
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Table 5.4  Effect of soil burial on morphology of PU characterised by DSC 

Sample 
Code 

 

Soil burial 
20 months 

RT 

Soft Segment Hard Segment 

Tg 
(oC) 

Cp 
(J/g) 

Tm 
(oC) 

 

H 
(J/g

) 

Tm 
(
o
C) 

(I) 

H 
(J/g) 

(I) 

Tm 
(oC) 
(II) 

H(J/g) 
(II) 

Tm(oC)  
(III) 

H 
(J/g)    
(III) 

PU ADP  time 0 -18 0.27 71 0.1 10
9 

0.5 147 0.8 195 6.1 

PU ADP Soil 1 -15 0.20 - -  0 147 0.1 200 4.9 

PU ADP Soil 2 -17 0.19 - - - - 147 0.34 199 5.26 

PU PCL time 0 -28 0.25 66 0.1 12
6 

0.7 - - 197 4.2 

PU PCL Soil 1 -24 0.19 67 0.5 12
6 

1.3 - - 198 2.5 

PU PCL Soil 2 -23 0.21 67 0.7 12
6 

1.2 - - 198 2.4 

PU PEG time 0 -1 0.35 - - - - - - - - 

PU PEG Soil 1 -5 0.18 - - - - - - - - 

PU PEG Soil 2 -4 0.20 - - - - - - - - 

PU 
PGPC 

time 0 -48  
-10 

0.07 

0.17 

- - - - 160 4.9 - - 

PU 
PGPC 

Soil 1 0 

-14 

0 

0.15 

- - - - - - - - 

PU 
PGPC 

Soil 2 0 

-11 

0 

0.17 

- - - - - - - - 

 

 

Figure 5.1  Hydrophilicity of PU samples determined by weight percentage increase of water 

uptake  
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Figure 5.2  Chemical structure characterisation by FTIR-ATR of PU PCL (A), PU PEG (B),  
PU PGPC (C) 
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Figure 5.3  TGA  of PU; PU PCL (A), PU PEG (B), PU PGPC (C)  
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Figure 5.4  Morphology of PU using DSC; PU PCL (A), PU PEG (B), PU PGPC (C)  
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Sample 

Code 
Isocyanate 

Weight Remaining % 

0  
days 

7 
 days 

14 

days 

21 

days 

28 

days 

42  

days 
56 

days 

PU ADP Polyethylene adipate 100 96 89 81 71 56 33 

PU PCL Polycaprolactone (PCL) 100 100 100 100 100 100 100 

PU PEG Polyethylene glycol (PEG) 100 99 95 95 94 68 66 

PU PGPC PCL:PEG (50:50) 100 98 93 93 88 78 75 
 

 

 

Figure 5.5   Effect of polyol on the rate of hydrolytic degradation (A)  with 10% NaOH (aq) 
(see table 5.1 pg. for acronyms). Visual surface cracking (B)  

Arbitrary scale of degradation stage 

min  0   no signs of cracking deformation 
        1   slight signs of limited surface degradation 
        2   deformation of sample (curling) & discolouration 
        3   visible cracks showing 

        4   Small pieces of sample broken away from film 

max 5   complete breaking of sample - small pieces 
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Figure 5.6 Visual changes of PU during hydrolytic degradation with 10% NaOH (aq), 
determined by optical microscope  
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Figure 5.7 Visual changes of PU during hydrolytic degradation with 10% NaOH (aq), 
determined by photographic images 
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Figure 5.8   Effect of polyol on NH and CH2 groups during alkaline hydrolysis of PU PCL   
(A-B), PU PGPC (C-D) & PU PEG (E-F) by FTIR/ATR 
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Figure 5.9  Effect of polyol on C=O and C-O-C ester/urethane linkages during alkaline 
hydrolysis of PU PCL (A-B), PU PGPC (C-D) & PU PEG (E-F) by FTIR/ATR 

PU PCL  1760cm
-1

- 1580cm
-1

 PU PCL  1260cm
-1

- 1020cm
-1

 A B

PU PGPC  1780cm
-1

- 1580cm
-1

 PU PGPC  1240cm
-1

- 1020cm
-1

 C D

PU PEG  1760cm
-1

- 1580cm
-1

 PU PEG  1240cm
-1

- 1040cm
-1

 E F

t=0 days 

t=7 days 

t=21 days 

t=28 days 
t=42 days 

t=0 days 

t=7 days 

t=21 days 

t=28 days 
t=42 days 

t=0 days 

t=7 days 

t=21 days 

t=28 days 
t=42 days 



                                                                        

206 
 

 

 

 

Figure 5.10 Changes in crystallinity during alkaline hydrolysis of PU samples PU PCL (A), 
PU PEG (B) and PU PGPC (C)  
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Figure 5.11 Effect of Polyol on the rate of biodegradation under soil burial conditions, soil 1 
50oC (A), soil 1 RT (B), soil 2 RT (C)  
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Figure 5.12  Photographic images of PU ADP, PU PCL, PU PEG & PU PGPC during soil 
burial   
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Figure 5.13 Optical microscopic images of PU PCL, PU PEG & PU PGPC during soil burial 

 

 

 

1mm 1mm 1mm 



                                                                        

210 
 

 

 

 

 

 

 

Figure 5.14 Changes in C=O and C-O-C ester/urethane linkages during soil burial at 50oC of 
PU PCL, PU PEG & PU PGPC monitored by FTIR/ATR.  
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Figure 5.15  Changes in N-H and CH2 ester/urethane linkages during soil burial at RT of PU  
PCL, PU PEG & PU PGPC monitored by FTIR/ATR.  
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Figure 5.16  Changes in C=O and C-O-C ester/urethane linkages during soil burial at RT of 
PU PCL, PU PEG & PU PGPC monitored by FTIR/ATR.  
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Figure 5.17  Effect of polyol on morphology changes during biodegradation in soil at RT and 
50oC of PU PCL, PU PEG & PUPGPC.  
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Figure 5.18 Effect of polyol on enzymatic degradation by lipase Rhizopus sp. PU PCL, PU 

PEG & PU PGPC by optical microscope images 
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Figure 5.19 Effect of polyol on enzymatic degradation by lipase Aspergillus niger. PU PCL, 

PU PEG & PU PGPC by optical microscope images 
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Figure 5.20 Effect of polyol on structural changes during enzymatic degradation by Lipase 

Aspergillus niger and Rhizopus sp. on PU PCL, PU PEG & PU PGPC 

determined by FTIR-ATR 
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Figure 5.21 Effect of polyol on enzymatic degradation by protease Rhizopus sp. PU PCL, 

PU PEG & PU PGPC by optical microscope images 
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Figure 5.22  Effect of polyol on structural changes during enzymatic degradation by protease 
Rhizopus sp. on PU PCL, PU PEG & PU PGPC determined by FTIR-ATR 
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Figure 5.23 Showing the effect of altering the soft segment from ADP to PCL. (A-B) PU films 
after alkaline degradation, (C-D)  FTIR-ATR  peak heights at 1161cm-1 , (E-F) 
crystallinity of PU ADP and PU PCL, (G-H)  PU films after 20 months soil burial at 
RT, (I-J) Changes in crystallinity and soft segment degradation after soil burial.  
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Figure 5.24 Showing the effect of altering the soft segment from ADP to PEG. (A-B) PU films 
after alkaline and soil burial degradation, (C-D)  FTIR-ATR  peak height changes 
and soft segment degradation, (E-F) crystallinity of PU ADP and PU PEG, (G) 
Oxidative degradation mechanism for polyethers, (H) enzymatic degradation  
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Figure 5.25  Effect of a PCL/PEG soft segment blend. (A-B) PU films after alkaline and soil 
burial degradation, (C-D)  FTIR-ATR  peak height changes at 1161cm-1, (E) 
Effect of PCL/PEG blend on phase separation, (G) Effect of PCL/PEG blend on 
PU hydrophilicity, (H-I) Effect of PCL/PEG blend on enzymatic degradation  
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Chapter 6 

The Role of Additives on the Degradation and 

Biodegradation of Polyurethanes   

 

6.1 Objectives and methodology 

Many mechanisms are involved in the degradation and biodegradation of PU and include but 

not limited to, chemical hydrolysis, enzymatic hydrolysis by microbes, and external 

environmental weathering conditions such as UV induced photo-oxidation. Results from 

previous chapters have highlighted that the degradation and biodegradation of PU is 

dependent on many factors, and include the method of synthesis, the type of isocyanate 

used and the type of polyol. All of these elements were seen to have a profound effect on the 

interactions between the hard and soft segments as well as the extent of crystallinity, which 

in turn have affected the rate of degradation and biodegradation to varying degrees. 

As a progression of the systematic analysis of the components of PU and how they affect 

degradation and biodegradation, the work described in this chapter will examine how the 

addition of different additives used during the synthesis of PU affect the rate of degradation 

and biodegradation. One of the main uses of additives with respect to polymeric materials is 

to protect and prolong the life of the polymer during processing and exposure to external 

environments. However, additives are currently being used as a method to increase the rate 

of degradation and biodegradation [9, 72, 80, 161]. 

Iron stearate and microcrystalline cellulose (at 2% wt each) Table 6.1a, were added to the 

control sample PU ADP with the aim of inducing photo-oxidation (iron stearate) and 

consequently increasing the rate of hydrolysis of the polymer. The addition of cellulose was 

thought to increase hydroxyl content and hence water absorption. Cellulose is also a natural 

substrate which can be broken down by enzymes and, thus increasing enzymatic hydrolysis 

to which PU was shown to be relatively resistant, Figs. 5.8-5.9, Fig. 4.13 & Fig. 3.20.   

A natural montmorillonite modified with a quarternary ammonium salt; Cloisite 30B was also 

examined, and added (12% wt), Table 6.1b,  to three PUs synthesised by Eurothane Ltd; PU 

PR, PU CE and PUI (Group 5). This modified organoclay has been used in previous studies 

to improve the physical properties of polymers [127, 162, 163]. 
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6.2 Results  

6.2.1 Characterisation of PU CE and PUI (Effect of the additives cellulose and 

iron stearate) 

Full characterisation of these samples was performed prior to any degradation and 

biodegradation experiments, in order to compare the degraded samples to the virgin 

samples, and thereby provide a full understanding of the changes taking place to the 

chemical structure and morphology of the PU samples during degradation. Chemical 

structure was characterised by FTIR-ATR, thermal stability by TGA and the morphological 

profile was obtained by DSC analysis. Samples were synthesised by Eurothane Ltd in 

granule form, therefore, prior to characterisation, samples were pressed to films (100-

120µm), see Table 2.3. Additives were incorporated into the PU in powder form and mixed 

into the PU during synthesis.  

 

All samples in group 4 (PU CE, PUI) were found to be insoluble in acetone, acetonitrile, 

ethanol, water and hexane, as of that for PU samples in groups 1-3, see Table 2.4. The 

samples were partially soluble in dimethyl sulfoxide and soluble in tetrahydrofuran and 

dimethylformamide, and the use of these additives did not affect the solubility of the sample. 

Past studies [33, 55] and results from previous chapters have shown hydrophilicity to 

influence the rate of hydrolysis of PU, therefore the hydrophilicity of each sample was 

measured by water absorption prior to the experimental work, see Section 2.2.2. From the 

results shown in Fig.6.1a, it can be noted that the addition of the additives increased the 

extent of water absorption by almost 100% in comparison to the control sample PU ADP, 

(PU CE 8.5%, PUI 8.2%, PU ADP 4.5%). 

 

Chemical structure was characterised by FTIR-ATR and the spectrum for each sample is 

given in Fig.6.1. It was noted that the absorbance spectra for these two samples was almost 

identical to that of the control sample PU ADP, Chapter 3, Section 3.2., Fig. 3.2a, and Fig 

6.1.  

Cellulose and iron stearate were also characterised by FTIR-ATR prior to addition into the 

PU, and these spectra are given in Chapter 2, Fig. 2.4. The most notable absorbances 

observed for the microcrystalline cellulose was the absorbance at 3327cm-1 which 

corresponds to the O-H stretching vibration and the C-O stretching vibration at 1025cm-1. For 

iron stearate, the notable absorbances were the CH2 stretching vibration at 2850cm-1 and the 

C-O stretching vibration of the carboxylic acid group at 1444cm-1. It was surmised that some 

of these peaks relating specifically to the additives would be observed in the PU samples PU 
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CE and PUI, however this was not found to be the case, therefore, in order to determine 

whether the additives had been incorporated into the PU samples, microscope images were 

obtained, and are given in Fig.6.2. The microscopic image for PU CE shows an almost 

porous like structure in the PU film, so much so that it was difficult to determine whether the 

cellulose had been mixed successfully, therefore a polarised image was obtained, Fig 6.2b. 

It can be seen that although the FTIR-ATR spectra did not display absorbances relating to 

the additives in the two PU samples (PU CE and PUI), the microscopic images did in fact 

show that both the microcrystalline cellulose and iron stearate had been incorporated 

successfully.  

The thermal stability of each sample was evaluated by TGA prior to degradation experiments 

as of that for PU groups 1-3, see section 2.3.4. The thermograms for each sample are given 

in Fig.6.3. It was found that the addition of cellulose to PU had a minimal effect on thermal 

stability. The greatest mas loss of the hard segment of PU CE occurred at 330oC (PU ADP 

336oC), and that of the soft segment at 436oC (PU ADP 427oC). However, the addition of iron 

stearate to PU was seen to affect the thermal stability dramatically with greatest mass loss of 

the soft segment occurring at a 310oC for PUI, compared to the control PU ADP (336oC), and 

that of the hard segment at 383oC, (PU ADP 436oC), and from these findings it can be stated 

that the addition of iron stearate decreased the thermal stability of the PU.  

The initial morphology of PU CE and PUI was examined by DSC and compared to the 

control sample PU ADP, Fig 6.4. One endotherm relating to the highly ordered 

microcrystalline region was observed at 202oC [107, 109] for PU CE and 197oC for PUI  

indicating that both of these PU films were highly crystalline in nature with ΔH values of 8.31 

J/g (PU CE) and 7.16 J/g (PUI), more than the control sample PU ADP (ΔH 6.1 J/g). The Tg 

values were examined to provide an indication of microphase separation between the hard 

and soft segments in the PU samples [41, 54, 108]. It was found that there was little 

difference in the Tg values between PU CE, PUI and the control sample PU ADP, with Tg 

values of -15oC, -15oC and -18oC respectively. Therefore, adding either cellulose or iron 

stearate did not affect the phase separation significantly. However, it was thought that the 

increase in crystallinity may reduce the rate of degradation of the PU samples. 

 

6.2.2 Characterisation of PU PR30, PU CE30 and PUI 30 (Effect of Cloisite 30B) 

Full characterisation of the PU samples in group 5 containing Cloisite 30B (12% wt.); PU 

PR30, PU CE30 and PUI 30 was performed as of that for the group 4 samples (see section 

6.2.1). 



                                                                        

225 
 

The solubility of all the samples in this group were similar to that of PU groups 1-4 in which 

samples were insoluble in acetone, acetonitrile, ethanol, water and hexane, partially soluble 

in dimethyl sulfoxide and soluble in tetrahydrofuran and dimethylformamide, therefore the 

addition of Cloisite 30B did not affect the solubility of the PU samples in this group 

Sample films were prepared using the solvent casting method in which the appropriate 

amount of PU was dissolved in THF, and the of Cloisite 30B (12% wt), dispersed in THF and 

was added and sonicated for 3.5 hours. The solution was poured into 80mm glass petri 

dishes which were then left overnight until the THF had evaporated, (method is one which 

had been used previously) [110].  

Hydrophilicity of PU PR30, PU CE30 and PUI 30 was obtained by the water uptake method, 

measured by submerging the sample in water and noting the weight increase until 

equilibrium was obtained, and the results are given in Fig.6.5. Fig 6.5a shows the % weight 

increase of PU samples containing Cloisite 30B and compared to PU ADP. Cloisite 30B 

containing PU was shown to be more hydrophobic than the control sample PU ADP, (PU 

ADP 4.5%, PU PR30 2%, PUI 30 2%, PU CE30 3%). PU CE30 was compared to PU CE, 

Fig 6.5b, and a dramatic difference was noted, with PU CE30 being more hydrophobic than 

PU CE (PU CE 8.5%, PU CE30 3%). The same was observed for both PUI 30, (PUI 8.2%, 

PUI 30 2%) and PU PR30, (PU PR 3.6%, PU PR30 2%), Figs. 6.5c & d. From these results 

it can be concluded that the addition of Cloisite 30B had significantly increased the 

hydrophobicity of the PU. 

The chemical structure was characterised by FTIR-ATR, and the spectrum for each sample 

is given in Fig.6.6.  The spectrum for PU CE30 was similar to that of the spectrum for PU 

CE, (see section 6.2.1). However, there were some notable differences, specifically the 

peak at ~1700cm-1 denoting the hydrogen bonded C=O ester/urethane linkages, which was 

seen to increase with the addition of Cloisite 30B. Also noted was an increase in the peak at 

1078cm-1 which relates to the C-O-C linkages contained within the hard and soft segments, 

Fig.6.6a. The same was observed for PUI 30 and PU PR30, with an increase in the peak at 

~1700cm-1 and a large increase in the peak at 1077cm-1, Figs. 6.6b & c. 

For all of the spectra in this group, a peak at 992cm-1 denoting the Si-O-Si linkages was 

expected to be observed due to the addition of the nanoclay additive, (see section 2, Fig. 

2.4c) however this peak was not present, and this was thought to be due to the method of 

analysis used, with the FTIR-ATR technique only measuring the surface of the PU film. 

Therefore it was suspected that the nanoclay additive was dispersed within the bulk of the 

PU films and not present on the surface. To examine the dispersion of the nanoclay, TEM 
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analysis was performed and the results are given in Fig.6.7. From the images obtained it can 

be seen that the nanoclay was present and well dispersed within the PU films. 

The addition of Cloisite 30B to the PU samples was found to increase the thermal stability. 

Fig. 6.8 displays the TGA thermograms where it can be noted that thermal degradation of 

the hard segment for PU CE30 occurred at 330oC, for PU PR30, was at 318oC and for PUI 

30 at 310oC. The soft segment of the PU samples on the other hand exhibited greater 

thermal stability after the addition of the organoclay; PU CE30 soft segment degradation 

occurred at 439oC (PU CE 427oC), PU PR30 soft segment degradation at 408oC (PU PR 

390oC), and PUI 30 soft segment degradation at 400oC (PUI 383oC). 

Crystallinity and phase separation were determined using DSC, and results are given in Fig. 

6.9. Phase separation was ascertained by examining the Tg value from the DSC 

thermographs and it was found that the addition of Cloisite 30B did not alter phase 

separation for PU CE30, PUI 30 and PU PR 30 with the Tg value for PU CE30 at -15oC (PU 

CE -15oC) and PUI 30 at -15oC (PUI -15oC), Figs. 6.9 & 6.4. PU PR30 -16oC (PU PR -16oC) 

Fig. 6.9 & Chapter 3 Fig.3.4. 

A decrease in crystallinity for all samples was noted compared to the original samples which 

did not contain Cloisite 30B. Two endotherms were observed for all of the samples in this 

group (group 5) at around 176oC and 200oC, indicating that the hard segment was of a highly 

ordered microcrystalline nature. The area under each peak was determined to quantify the 

microcrystalline domains and for PUI 30 and PU CE30 and it was found that these 

endotherms were of a smaller area than those of the control samples PU CE and PUI which 

contained only one large endotherm at around 196oC, Figs. 6.9 & 6.4. For PU PR30 the 

endotherm at 196oC denoting highly crystalline regions was found to be less than that of PU 

PR, (PU PR30 ΔH 0.6, PU PR ΔH 1.8), Fig 6.9 & Chapter 3 Fig 3.4, again indicating that 

the addition of Cloisite 30B decreased the concentration of highly crystalline regions. 

Degradation and biodegradation of the group 4 and group 5 samples were then determined 

by subjecting the samples to alkaline hydrolysis, enzymatic hydrolysis and soil burial, and the 

results for alkaline hydrolysis are given below. 

 

6.2.3 Effect of additives (PU CE and PUI) on the rate of alkaline hydrolysis 

Samples were placed into a 10% NaOH solution for a period of 42 days and removed at 

weekly intervals to monitor degradation visually and by weight loss, with the aim of 

increasing the rate of degradation by alkaline hydrolysis in comparison to the control sample 

(PU ADP). Results obtained, Fig 6.10, showed that this was the case, whereas both PUI and 
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PU CE films completely broken up after 42 days. Both weight loss and visual images 

revealed PUI to degrade at a faster rate than PU ADP (control) and PU CE, with weight 

losses of 100% (PUI), 58% (PU CE) and 44% (PU ADP), with the PUI film completely broken 

up after 28 days, Fig.6.11. Microscopic images from PU CE and PUI obtained during 

hydrolysis also displayed extensive cracking after just 7 days in comparison to PU ADP, 

Fig.6.12. Also noteworthy was the microscopic image of PU CE, which clearly showed the 

PU film to be of a porous like nature, and may be one of the reasons for the increased rate of 

degradation of PU CE. FTIR-ATR was performed on the PU samples at weekly intervals to 

ascertain structural changes taking place during alkaline degradation.  

6.2.3.1  Structural changes of PU CE and PUI during alkaline hydrolysis  

Structural changes of the PU sample during hydrolysis were monitored by FTIR-ATR and 

compared to the initial spectra obtained prior to experimentation, see section 6.2.1.  

i) Spectral changes Hard Segment structure PUI and PU CE 

For PUI, the peaks relating to the hard segment structure were similar to that of PU ADP see 

Section 3.1.1 & Fig. 6.13a & b. From the spectrum obtained, Fig.6.13c & d, it can be seen 

that there were numerous changes during hydrolysis for the 42 days. The N-H peak at 

3322cm-1 shifted to 3299cm-1 after 42 days and this peak was seen to increase after 28 days 

which indicates structural changes in the hard segment.  

Some notable changes to the peaks relating the hard segment were observed for PU CE. 

After 35 days hydrolysis the N-H peak at 3323cm-1 shifted to 3303cm-1 and increased 

gradually indicating structural changes in the hard segment, Fig.6.13e. This can further be 

supported by changes in the peak at 1528cm-1 associated with the N-H + C-N (amide II) 

band which decreased and shifted to 1519cm-1 after 35 days, Fig.6.13f.  

ii) Spectral changes Hard/Soft Segment Structure PUI and PU CE 

Both PUI and PU CE displayed dramatic changes in the peaks relating to the hard/soft 

segment. The peak at 1726cm-1 representing the C=O free ester/urethane groups was seen 

to drop drastically after 14 days for both samples indicating that the non-hydrogen bonded 

ester/urethane groups had been hydrolysed, Fig.6.14c & e. The peak at 1703cm-1 

associated with the hydrogen bonded ester/urethane group decreased over the 42 day 

period, and also shifted to 1695cm-1. Also noteworthy was a substantial decrease of the peak 

at 1066cm-1 for both samples, denoting C-O-C linkages contained in the hard and soft 

segments, Fig.6.14d & f. The peak at 1381cm-1 relating to the CH2 linkages were found to 

decrease substantially for both samples during alkaline hydrolysis, Fig.6.13d & f, and this 
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coupled with the increase in the peak at 1479cm-1 (CH group deformation absorbance) 

implied that some degradation of the both the hard and soft segment had occurred. 

iii) Spectral changes Soft Segment Structure PUI and PU CE 

For both PUI and PU CE, the soft segment can be characterized by the peak at 1137cm-1 

shown in Fig.6.14d & f, which is associated with the C-(C=O)-O ester group. This peak was 

seen to decrease substantially (90% decrease in peak height) after just 7 days of exposure 

to 10% NaOH solution, indicating that soft segment had been hydrolysed.  

6.2.4 Effect of modified nanoclay (Cloisite 30b) on the rate of alkaline 

hydrolysis, (PU PR30, PU CE30 and PUI 30) 

PU PR30, PU CE30 and PUI 30 were subjected to accelerated alkaline hydrolysis, as of that 

for PU groups 1-4, see Section 6.2.2. Degradation was monitored both by weight loss and 

visually, and the results from these experiments are given in Figs.6.15 & 6.16.  It can clearly 

be seen that the addition of Cloisite 30B increased the rate of alkaline hydrolysis significantly, 

Fig.6.15 with all of the samples in this group becoming completely broken up after just 7 

days, Fig.6.16. This was unexpected due to the hydrophobic nature of the samples (see 

section 6.2.2). To examine the changes taking place within the chemical structure during 

hydrolysis, FTIR-ATR analysis was undertaken. 

6.2.4.1  Structural changes of PU PR30, PU CE30 and PUI 30 during alkaline hydrolysis  

For all of the PU samples containing Cloisite 30B the most notable changes during alkaline 

hydrolysis were the peaks pertaining to the C=O ester and urethane linkages at 1728cm-1, 

1701cm-1 and 1138cm-1. The trend was similar for all of the samples, with a dramatic 

decrease in the non-hydrogen bonded C=O ester/urethane peak at 1728cm-1 after only 7 

days, Fig.6.17. The same was also observed for the peak at 1137cm-1 for all samples, with 

this peak disappearing after 7 days alkaline hydrolysis, Fig.6.17. Also noted was a 

substantial decrease in the peak at 1078cm-1 again for all samples, and this implies 

degradation of the C-O-C linkages contained within the hard segment and the hard/soft 

interfaces., Fig.6.17. 

Changes to the hard segment structure are given in Fig.6.18, and display a similar trend for 

PU PR30, PU CE30 and PUI 30. After 7 days of alkaline hydrolysis the peak at 3311cm-1 

denoting the N-H group was seen to increase for all of the samples. A decrease in the peak 

at 1523cm-1 denoting the N-H urethane bend and C-N stretch was observed for PU CE30 

and PUI 30, and this indicated that some degradation of the urethane linkages had occurred. 
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The increase in the N-H stretch at 3311cm-1 was more than likely to be due to the formation 

of amine products during degradation.  

A decrease was also observed in all of the peaks relating to the CH2 moieties. Fig. 6.18 

displays these peaks for PU PR30, PU CE30 and PUI 30, and it can be seen that the peaks 

at ~2955cm-1, ~1457cm-1 and 1381cm-1 all decreased after just 7 days of alkaline hydrolysis. 

This was observed for all of the PU samples in this group, and supports results from weight 

loss measurements and visual images in that substantial degradation of both the hard and 

soft segment had occurred. 

6.2.4.2 Effect of Additives on Crystallinity during Alkaline Hydrolysis (PU PR30, PUI 30 

and PU CE30) 

Morphology of the PU samples was examined by DSC after exposure to alkaline hydrolysis 

for 7 days, and the results are given in Fig.6.19. Initial thermographs of PU CE30, Fig 6.3 

revealed a microcrystalline structure, with two endotherms observed at 195oC and 214oC. 

These peaks were seen to increase after 7 days indicating a more crystalline structure after 

degradation (ΔH initial 0.7 J/g & 1.15 J/g, after hydrolysis ΔH 18.78 J/g). The Tg value of PU 

CE30 also indicated substantial structural changes to the PU sample with an initial value of -

15oC, which then disappeared after 7 days, indicating that the soft segment had degraded.  

Similar findings were also observed for PUI 30. The endotherms at 192oC and 208oC 

denoting highly crystalline hard segment domains increased from ΔH 0.9 J/g to ΔH 23.7 J/g. 

after 7 days of exposure to the alkaline medium, Fig. 6.19. As of that for PU CE30 the Tg for 

PUI 30 was also seen to change dramatically after 7 days, which had an initial value of -15oC 

and then disappeared after 7 days, indicating that the soft segment had degraded.  

PU PR30 also increased in crystallinity with the endotherms at 175oC and 196oC increasing 

from ΔH 1.3 J/g and ΔH 0.6 J/g, respectively to ΔH 1.3 J/g and ΔH 9.05 J/g after 7 days 

hydrolysis, Fig. 6.19. As of that for PUI 30 and PU CE30, a Tg value was not observed after 7 

days alkaline hydrolysis, which indicated that the soft segment had degraded.  

All of the samples in this group (group 5) and group 4 (PUI and PU CE) were placed in soil to 

monitor biodegradation, and the results are given below. 

6.2.5 Susceptibility of polyurethane samples PUI and PU CE (Effect of 

Additives) towards biodegradation under soil burial conditions 

PU samples were subjected to two different types of soil burial in order to assess their 

susceptibility towards microbial degradation in soil. The addition of additives was used to 
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determine whether iron stearate or cellulose would increase biodegradation under soil burial 

conditions. It would be assumed that the addition of iron stearate would increase the rate of 

biodegradation due to increased oxidative degradation occurring simultaneously with 

enzymatic/microbial degradation [9, 164]. The addition of cellulose would also be expected to 

increase the rate of biodegradation due to the fact that cellulose is a natural substrate which 

can be degraded by many microorganisms [77, 83, 85]. 

After 20 months of soil burial at RT there was limited weight loss is soil type 1, with the 

greatest weight loss occurring for PUI at 10% Fig.6.20. All of the PU film samples in group 4, 

in soil type 1 were still intact after 20 months and did not show any visible signs of cracking 

Figs.6.21 & 6.22.  However, in soil type 2, PU CE was found to have degraded more than 

PUI and PU ADP, with a weight loss of 18%, Fig.6.20. After removal of the film from the soil, 

it was found that the film was not intact with part of film broken away from the sample. The 

remaining part of the film could not be recovered from the soil, and it was deduced that it had 

degraded.  

The PU samples subjected to soil burial at 50oC after 5 months displayed a dramatic weight 

loss than those at RT Fig.6.20, with the greatest weight loss of 75% for PUI, although weight 

losses was also noted for PU CE at 62% and PU ADP 21%. After 5 months, the films PUI 

and PU CE were not intact and very fragile when removed from the soil Fig.6.21. In fact 

visible signs of cracking were observed after 3 months for PU CE Fig.6.21. In conclusion the 

PU films in this group were more susceptible to soil degradation with the addition of both of 

the additives iron stearate and cellulose at 50oC. Minimal degradation was observed for all 

samples in the soil at RT, however the addition of PU CE seemed to increase biodegradation 

in comparison to the other samples in this group. 

6.2.5.1 Structural changes during soil burial at 50oC in PUI and PU CE monitored by 

FTIR-ATR. 

Both PU CE and PUI displayed significant FTIR-ATR spectral changes during soil burial at 

50oC, and these spectra are given in Fig.6.23. The peaks at 1726cm-1 (1727cm-1 PUI) and 

1703cm-1 denoting the free and hydrogen bonded C=O urethane and ester linkages 

respectively were seen to decrease after 5 months indicating that substantial degradation 

had occurred. This was deemed to be degradation of the soft segment, as the peak at 

1138cm-1 corresponding to the C-(C=O)-O-C ester linkages was also observed to decrease 

substantially after 5 months, with a new peak observed at 1038cm-1 which was thought to 

correspond to the C-O stretch of an alcohol degradation product [105]. However, it was 

surmised that partial degradation of the hard segment had also occurred due to the small 

reduction in the peak at 1076cm-1 and the new peak formed at 1659cm-1, which is indicative 
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of amine degradation products [105]. However, whether the addition of cellulose and iron 

stearate to PU ADP increased biodegradation at 50oC is unclear, as PU ADP was also found 

to degrade after 5 months at this temperature.  

6.2.5.2 Structural changes during soil burial at RT after 20 months in PUI and PU CE 

monitored by FTIR-ATR 

 

Significant changes in the FTIR-ATR spectra were noted to both PUI and PU CE after 20 

months soil burial and are given in Fig.6.24. A decrease was observed in the peaks relating 

to the C=O ester/urethane linkages at 1726cm-1 and 1702cm-1 for PUI, after burial in both soil 

type 1 and 2. However, the decrease in these peaks was more substantial for PU CE, 

indicating that this PU had degraded more than PUI. The same was observed for the peak at 

1137cm-1 denoting the O-C=O–C ester linkages, with this peak decreasing for both PU CE 

and PUI in both soil types.  

 

Changes to the hard segment structure were also indicated, with the peak at 3317cm-1 

denoting the N-H urethane linkages increasing for PU CE after burial in soil type 1, Fig. 

6.24a. This is more than likely due to the formation of amine degradation products. However, 

little change was noted with respect to the N-H bond after burial in soil type 2. The opposite 

was found for PUI, shown in Fig.6.24b with a large increase in the peak at 3318cm-1 after 

burial in soil type 2, with the formation of a shoulder on this peak, indicating possible alcohol 

degradation products, however, this finding was not observed after burial in soil type 1. 

 

6.2.6 Susceptibility of polyurethane samples PU PR30, PU CE30 and PUI 30 

(Effect of Nanoclay, Cloisite 30b) towards biodegradation under soil burial 

conditions 

The addition of Cloisite 30B to the PU samples PU PR, PUI and PU CE affected the rate of 

degradation under soil burial conditions at 50oC and RT. The results are given in Fig 6.25. 

After 5 months the PU PR30 film was still intact with only minimal visual degradation 

observed. The weight loss also supported this finding with 72% weight remaining after the 5 

months, Fig.6.25a. Greater degradation was observed for PUI 30 and PU CE30, with 50% 

weight remaining for both of these PU films, Fig.6.25a. Visual images also supported this 

with the films fragile and brittle. Small sections of the films were also observed to have 

broken away from the original films indicating extensive degradation, Fig.6.26. Structural 

changes were monitored using FTIR-ATR. Conversely, the samples when subjected to soil 
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burial at RT displayed relatively little weight loss, Fig 6.25b & c. However, microscopic 

images did show some signs of degradation occurring for PU CE30 in soil type 2, Fig. 6.27. 

6.2.6.1 Structural changes during soil burial at 50oC in PU PR30, PU CE30 and PUI 30 

monitored by FTIR-ATR. 

Noticeable differences were observed in the PU films after 5 months of soil burial at 50oC. 

Spectral changes for each of these samples are given in Fig.6.28 and all of the samples in 

this group displayed similar changes. The peaks at ~1727cm-1 denoting free C=O urethane 

and ester linkages were seen to decrease after the 5 months for all samples. The same was 

also observed for the peak at 1700cm-1 denoting the hydrogen bonded C=O linkages. 

Degradation of the ester soft segment was also indicated for all of the samples with the peak 

at 1138cm-1 decreasing dramatically after 5 months, Fig.6.28. A large peak at 1017cm-1 was 

observed for PU CE30 after 5 months soil burial, Fig.6.28f, which was not seen in the 

original sample, and this was thought to be due to the Si-O-Si linkage contained within the 

Cloisite 30B additive; as the PU film degraded the additive which was dispersed within the 

bulk of the sample was then exposed on the surface of the sample, thereby showing this 

peak on the spectrum of the degraded sample. 

6.2.6.2 Structural changes during soil burial at RT after 20 months in PU PR30 and PU 

CE30 and PUI 30 monitored by FTIR-ATR 

FTIR-ATR spectra obtained for PUI 30 after 20 months soil burial revealed that minimal 

degradation had occurred for all samples, with almost no difference found between the initial 

spectra and after burial in soil 1, Fig.6.29. However, some minor differences were observed 

for the film buried in soil type 2, with decreases observed at 1726cm-1, 1701cm-1,1529cm-1 

and   1222cm-1, denoting the free and hydrogen bonded C=O ester/urethane linkages, C-N & 

N-H bend and C-N linkages respectively, Fig.6.29. No changes were observed relating to the 

soft segment ester groups given by the peaks at 1163cm-1 and 1139cm-1 for all samples. 

These results imply that the soft segment had remained intact with degradation occurring in 

the hard segment. However, as microscopic images for PU CE30 displayed cracking within 

the film, degradation of this sample may have occurred in the bulk and not on the surface.  

PU samples were then subjected to enzymatic hydrolysis. 
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6.2.7. Susceptibility of Polyurethane Samples PUI and PU CE (Effect of 

Additives) towards enzymatic degradation. 

PU samples PUI and PU CE were exposed to fungal lipases from Aspergillus niger and 

Rhizopus sp. and a protease from Rhizopus sp. in order to ascertain rate of degradation by 

enzymatic hydrolysis.  

Samples were immersed in a phosphate buffer solution containing the enzyme. After 24 days 

there was very little weight loss observed for any of the samples in this group (not shown), 

however, microscopic images did reveal signs of degradation dependant on the enzyme 

used, Figs.6.30 & 6.31. The PU samples in this group did not display any weight loss or 

visual degradation after exposure to the protease from Rhizopus sp. (not shown). 

PU CE did seem susceptible to degradation by both Rhizopus sp. and Aspergillus niger, with 

cracking observed on both of these films, however the cracking was more extensive when 

PU CE was exposed to Aspergillus niger, Figs.6.30 & 6.31. Although the PUI film samples 

also displayed minor degradation after exposure to the lipases, the extent of degradation was 

not deemed to be as extensive as that of PU CE, Figs. 6.30 & 6.31. Results from FTIR-ATR 

analysis which are given in Fig.6.32, also supported these findings in that for both PUI and 

PU CE the peaks at 1702cm-1, (hydrogen bonded C=O) 1727cm-1 (non-bonded C=O) and 

1137cm-1 (C=O ester) decreased after 24 days exposure, indicating that some degradation of 

the ester soft segment had occurred.  There was also a small decrease in the peak at 

1077cm-1 denoting C-O-C bonds Fig. 6.32, along with a small decrease at 1220cm-1 relating 

to the N-H and C-N group. Therefore it can be assumed that the hard segment was 

subjected to a limited amount of degradation. In comparison, PU ADP (control sample), 

displayed relatively minimal changes in the FTIR-ATR spectra after exposure to the lipases, 

with only small decreases observed at 1701cm-1, 1727cm-1 and 1137cm-1 after exposure to 

Aspergillus niger, and no noticeable differences observed in the spectra after exposure to 

Rhizopus sp. This can further be supported by visual images in which minimal degradation 

was observed, Figs. 6.30 & 6.31, and one can conclude that the addition of both cellulose 

and iron stearate did increase susceptibility of PU towards enzymatic degradation, with the 

extent of degradation occurring in the order of PU CE > PUI > PU ADP for both Aspergillus 

niger and Rhizopus sp. 
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6.2.8. Susceptibility of Polyurethane Samples PU PR30, PU CE30 and PUI 30 

(Effect of Modified Nanoclay cloisite 30b) towards enzymatic degradation 

Samples were exposed to Lipases from Aspergillus niger and Rhizopus sp., and the results 

were disappointing in that no weight loss (not shown) or visual degradation, Figs. 6.33-6.34 

was observed after 24 days. Results from FTIR-ATR analysis also displayed relatively little 

structural changes to the PU films after exposure, Fig 6.35. A small decrease in the peak at 

1726cm-1 was observed for all samples in this group, indicating degradation of the free 

ester/urethane C=O linkages, however, the peak denoting the ester linkages in the soft 

segment at 1137cm-1 was unchanged after exposure to the lipases for all samples, and can 

therefore conclude that partial degradation of the hard segment had occurred with little or no 

degradation occurring within the soft segment. This can be supported by a small decrease at 

1220cm-1 denoting the C-N urethane linkages. Overall, these results were disappointing as 

none of the PU films in this group were susceptible towards enzymatic degradation by the 

enzymes used in this study. 

 

6.3 Discussion 

6.3.1 Effect of Cellulose and Iron Stearate as Additives on Polyurethane 
Degradation and Biodegradation 

The cellulose and iron strearate were chosen as additives for PU ADP, due to their specific 

action that may contribute to degradation mechanisms of the polymer. Cellulose, which in 

itself is a natural polymer contains numerous hydroxyl groups, is was expected  to increase 

the degradation and biodegradation by increasing the hydrophilicity of the PU result in an 

increase in the rate of hydrolysis.  Iron stearate, on the other hand, was added to increase 

degradation by oxidative processes by acting as a pro-oxidant [9, 74, 164] 

From the results obtained it was found that the addition of cellulose did increase the rate of 

hydrolysis under accelerated alkaline conditions, with a weight loss of 58% as opposed to the 

control sample PU ADP with a weight loss of 44%, Fig.6.10.  However, the weight losses 

given do not highlight the significant differences in the rate of degradation between these 

samples, as visual images taken during the experiment revealed that PU CE had degraded 

significantly more than PU ADP, with the PU ADP film remaining intact and the PU CE 

becoming completely broken up after 42 days, Fig.6.11.  

The morphology of PU ADP and PU CE were compared using DSC, and the thermographs 

for the un-degraded samples are given in Fig.6.4. It was found that the addition of cellulose 

altered the morphology of the PU dramatically with only one endotherm visible at 202 oC (ΔH 
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8.31J/g), denoting highly structured crystalline regions contained within the hard segment. 

Conversely, PU ADP displayed three endotherms at 109 oC, 147 oC and 195 oC (ΔH 6.1 J/g), 

Fig.6.4 indicating that although the hard segment contained a large proportion of highly 

structured crystalline domains, less ordered regions were also present. This was surprising in 

that previous studies have shown that an increase in crystallinity would decrease the rate of 

hydrolysis [59, 60, 100, 120]. Cellulose itself has been shown to be of a highly crystalline 

nature [83, 85], and has also been shown to increase crystallinity when incorporated into 

polymer systems [71, 81].  

As the extent of hydrogen bonding in PUs has been shown to affect PU morphology, it was 

suspected that the addition of cellulose would increase hydrogen bonding interactions in PU 

CE, thereby increasing crystallinity. The extent of hydrogen bonding was determined by 

analysis of the FTIR-ATR spectra obtained on virgin samples using peak fitting software 

Origin, and measuring the area under each peak, this method has been used previously to 

determine the extent of hydrogen bonding in PUs [46, 143]. Results are given in Table 6.2 

and show that the extent of hydrogen bonding in PU CE decreased in comparison to PU 

ADP, therefore differences in phase separation were considered in order to provide an 

explanation as to the increased rate of hydrolysis.  

Phase separation was determined by examination of the Tg value, which was found to 

increase slightly with the addition of the cellulose powder (PU ADP -18oC, PU CE -15oC), 

indicating that the hard and soft segments were less phase separated than the control 

sample PU ADP, Fig.6.4. Although previous studies have shown phase separation in PU to 

have an influence on the rate of degradation [54], this was not considered to be a major 

factor on the increased rate of hydrolysis of PU CE as the difference in the Tg values was 

minimal.  

The addition of cellulose did increase the hydrophilic nature of the PU, which was found to be 

4.5% (PU ADP) and 8.5% (PU CE). This increase was thought to be influential on the 

increased rate of hydrolytic degradation. Also noteworthy, was the ‘porous’ like film structure 

of PU CE which was observed using optical microscopy, Fig.6.2A. This was also suspected 

to have contributed to the increased rate of hydrolysis of PU CE in comparison to PU ADP. 

This ‘porosity’ has also been observed in other polymeric materials which have incorporated 

cellulose into the polymer bulk, and it has been speculated that the ‘porous’ structure 

increases the rate of degradation and biodegradation due to the higher interfacial area that 

this morphology confers [82], and therefore it was surmised that the porous morphology of 

PU CE resulted in more of the PU film samples being exposed to the NaOH solution, thereby 

increasing the rate of hydrolysis. 
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Similar findings were also observed after soil burial experiments, in which PU CE was placed 

into two different types of soil at RT for a period of 20 months. Minimal visual degradation 

was observed in respect of the control sample PU ADP, however, after burial in soil type 2 

PU CE did display visual signs of degradation, with the film not intact upon removal, 

Fig.6.21. Limited degradation had occurred in soil type 1 though for either sample. 

Degradation of the urethane and ester linkages contained within PU CE had partially 

degraded, and the FTIR-ATR spectra denoting the urethane and ester linkages supported 

this, with decreases observed at 1726cm-1 and 1137cm-1, Fig 6.24c & e. The degradation 

was not substantial, and this was thought to be due to the nature of the chemical 

components of this PU, which was synthesised with the same raw materials as that of the 

control sample PU ADP (MDI, BD, ADP), which had previously been found to be non-

biodegradable. Therefore, although the addition of cellulose did not result in complete 

degradation of the PU sample under soil burial conditions, it did increase the biodegradability 

of a PU previously deemed to be non-biodegradable. This finding supports similar results in 

the literature in which the addition of cellulose fibres increased the biodegradability of 

polyethylene [82], and this has been thought to be due to not only the porous nature of the 

polymer matrix with the addition of cellulose, but also the fact that cellulose itself is a food 

source for microbes, which as they digest the cellulose, leaves indentations and cavities in 

the polymer surface which then facilitates increased biodegradation [82]. 

Previous studies have highlighted that hydrophobic interactions are involved in the enzymatic 

degradation of polymers [19, 57, 120], and it was thought that the increased hydrophilicity of 

PU CE would reduce the rate of enzymatic hydrolysis. However, enzymatic degradation of 

PU CE resulted in degradation occurring, which was found to be dependent on the choice of 

the enzyme, with the film samples being more susceptible towards enzymatic degradation by 

the lipase from Aspergillus niger, with extensive cracking observed microscopically, Fig. 

6.33. This was supported by FTIR-ATR analysis with the peaks at 1702cm-1, (hydrogen 

bonded C=O) 1727cm-1 (non-bonded C=O) and 1137cm-1 (C=O ester) decreasing after 24 

days exposure, Fig. 6.32c & d. The increased susceptibility towards enzymatic degradation 

by Aspergillus niger was thought to be due to the porous nature of the film, thereby exposing 

more surface area of the PU film to the enzyme. 

Iron stearate has been added into polymeric materials in order to increase degradation by 

oxidative means [9, 74, 165], and therefore iron stearate was added as a means to possibly 

increase the degradation and biodegradation of the control PU ADP.  The addition of iron 

stearate did increase the rate of hydrolysis of PUI, when samples were subjected to 

accelerated alkaline hydrolysis, and the samples were seen to degrade faster than both PU 

ADP and PU CE, with cracks appearing in the film after only 14 days, Fig. 6.11. Examination 
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of morphology by DSC, Fig. 6.4, revealed that as with PU CE the addition of iron stearate 

increased PU crystallinity, with the microcrystalline hard segment region increasing from ΔH 

6.1 J/g for PU ADP to ΔH 7.2J/g for PUI, this was unexpected in that increased crystallinity 

has been associated with decreased degradation [30, 59] however, as the accelerated 

hydrolysis was performed at 45oC it was suspected that the addition of iron stearate made 

the PU more susceptible towards thermal degradation, by increasing the rate of hydrolysis, 

[34].  however, it was suspected that PUI would not induce an increase in degradation by soil 

burial at RT. 

Results from soil burial experiments confirmed this suggestion. Soil burial at 50oC resulted in 

complete break up of PUI which was not observed to the same extent in PU ADP or PU CE, 

Fig. 6.21. However, soil burial at RT for 20 months did not reveal any signs of biodegradation 

visually for PUI, Fig. 6.21. This was confirmed by FTIR-ATR, which showed only minimal 

decreases in the peaks at 1725cm-1 and 1137cm-1 relating to the urethane and ester 

linkages, Fig. 6.24. These results confirmed that the increase in temperature to 50oC 

resulted in an increased rate of biodegradation of PUI under soil burial conditions compared 

to PU ADP and PU CE, again thought to be due to the thermal properties of PUI, however at 

RT no biodegradation of PUI was observed, Fig. 6.21.  

Similar results were found when PUI was exposed to enzymatic degradation, with minimal 

degradation observed visually compared to PU CE, Fig 6.30. However, FTIR-ATR spectra 

did reveal degradation of the ester and urethane linkages, which were substantially greater 

than that of the control sample PU ADP, Fig. 6.32, indicating that the addition of iron stearate 

increased the rate of enzymatic degradation. This may be due to the structure of iron 

stearate, which in itself would probably be susceptible towards degradation by lipases, as the 

three stearate chains, which in themselves are esterified moieties of steric acid, are 

substrates for lipases, and therefore the hydrolysis of these ester groups may increase 

degradation within the PU matrix. However, this was not examined and therefore could 

possibly be investigated in the future. 
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6.3.2 Effect of the addition of Cloisite 30B on Polyurethane Degradation and 
Biodegradation 

The addition of organoclays to alter polymer properties has been the focus of much research, 

and previous studies to increase biodegradation and degradation by the incorporation of 

such clays has resulted in conflicting results [73, 92-94], which seems to be dependent on 

the type of clays used, the concentration of clay and the type of polymer system, along with 

processing conditions and numerous other factors [161]. Cloisite 30B was added to the PU 

CE30, PUI 30 and PU PR30, and compared to the control sample PU ADP and also the 

corresponding PUs without the clay; PU CE, PUI and PU PR, and the results obtained were 

interesting.  

Accelerated hydrolysis of the samples proved to have a dramatic effect on all of the samples 

containing Cloisite 30B, with the all of the films completely broken up after only 7 days, and 

extensive cracking observed after 48 hours Fig.6.16, and results from FTIR-ATR spectra 

displayed significant decreases in the peaks pertaining to the C=O ester and urethane 

linkages at 1728cm-1, 1701cm-1 and 1138cm-1 and a substantial decrease in the peak at 

1078cm-1. This was observed for all samples with little difference noted between them, 

therefore it could not be stated whether the addition of the organoclay with another additive 

(PU CE30 and PUI 30) increased the rate of hydrolysis compared to PU PR30 which 

contained only the clay. A decrease in the peak at 3311cm-1 denoting the N-H stretch of the 

urethane linkages was seen to increase for all of the samples, indicating the formation of 

amines, Fig.6.18. 

This dramatic increase in the rate of alkaline hydrolysis, Fig. 6.16, was unexpected due to 

some of the physical properties, examined by DSC and TGA that these PU films displayed 

prior to the degradation experiments. Thermal stability was measured using TGA, and it was 

found that all of the samples in this group exhibited a greater thermal stability than the 

corresponding films without the addition of the organoclay, Figs.6.3 & 6.8. It was also noted 

that all of these films were somewhat crystalline in nature with an endotherm at ~200oC, for 

PU CE30 ΔH 1.15 J/g, PUI 30 0.9, PU PR30 ΔH 0.6 J/g, Fig.6.9, denoting highly ordered 

microcrystalline domains, and as previous studies have shown, increased crystallinity gave 

rise to a decrease in the rate of degradation [121]. However, these crystalline domains were 

less in comparison to the control samples PU CE (ΔH 8.3 J/g), PUI (ΔH 7.2 J/g) and PU PR 

(ΔH 1.8 J/g). 

Also surprising was the hydrophobicity that these films displayed after the addition of Cloisite 

30B, (PU PR30 2%, PU PR 3.6%; PUI 30 2%, PUI 8.2%; PU CE30 3%, PU CE 8.5%) 

Fig.6.5.This phenomenon has previously been observed, and it was shown that Cloisite 30B 
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had a lower water affinity than unmodified montmorillonite due to the hydrohphobicity of the 

modifier which contains long hydrophobic chains [86].  Previous studies, and results from 

earlier chapters found that increased hydrophobicity decreased the rate of hydrolysis, 

therefore it would be expected that this increase in hydrophobicity, would increase the 

crystallinity whereas thermal stability would decrease the rate of hydrolysis. However, the 

addition of Cloisite 30B was seen to dramatically increase the rate of hydrolysis, Fig. 6.16 

Similar findings were observed by Jeong et al., [110] who incorporated Cloisite 30B in PU 

synthesised with PCL/MDI/BD. The addition of 7% clay increased weight loss after 12 days 

by over 30%, compared to the PU without clay, with a weight loss of <5% [110]. They 

explained the increase in hydrolysis by differences in phase separation, with the 

nanocomposites being more phase separated than the PCL/MDI/BD PU. However, this was 

not found to be the case here for PU CE30, PUI 30 and PU PR30. Phase separation was 

examined using the Tg values obtained from virgin polymer samples containing Cloisite 30B 

and compared to the control samples which did not contain clays, and it was found that the 

addition of Cloisite 30B did not alter phase separation for any of the samples in this group 

(PU CE Tg -15oC, PU CE30 Tg -15oC), (PUI Tg -15oC, PUI 30 Tg -15oC), (PU PR Tg -16oC, 

PU PR30 Tg -16oC), Figs. 6.4 & 6.9, therefore this could not be offered as an explanation as 

to the increase in the rate of hydrolytic degradation. Subsequently, the extent of hydrogen 

bonding was examined using the Origin software by Lorenzian peak fitting program, to 

analyse the appropriate peak areas. It can be noted that the addition of the organoclay 

resulted in a small increase in hydrogen bonded C=O linkages denonted by the peak at 

1701cm-1, Table 6.3. This was found to be the case for all samples in this group, and was 

most notable for PU CE30, Figs. 6.36-6.38. However, this slight increase in hydrogen 

bonding would not explain the increased rate of hydrolytic degradation. 

Addition of organoclays to increase degradation and biodegradation of PU has not been 

studied extensively, however some investigations have been reported [110, 166]. Addition of 

nanocomposites into PLA and PCL has been studied more extensively, and many of these 

studies found that the addition of organoclays increased the rate of hydrolysis dramatically 

[94, 167, 168]. Numerous explanations have been proposed as to the reason for this 

increase, and some of these theories include; decrease in crystallinity [169], higher water 

absorption properties [170] and chemical structure of organoclay [171]. From the results 

obtained, the only plausible explanation which could account for the increased rate of 

hydrolysis of PU CE30, PUI 30 and PU PR30 is the slight decrease in crystalline regions with 

the addition of the clay compared to the control samples PU CE, PUI and PU PR as addition 

of the clay in these samples resulted in a PU in which more hydrogen bonding occurring 
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between the hard and soft segments, Table 6.3, and were more hydrophobic than the control 

samples without the organoclay.   

Soil burial and enzymatic degradation results proved disappointing. PU PR30 and PUI 30 did 

not display any signs of degradation either by weight loss of visually after soil burial at RT for 

20 months, Fig.6.27. However, microscopic images of PU CE30 did reveal signs of cracking 

of the PU film, similar to those found when films were exposed to alkaline hydrolysis, 

Fig.6.27. Weight loss measurements, Fig. 6.20, did not reveal any significant changes, and 

can therefore conclude that only minimal degradation had occurred. Structural changes in 

each of the PU samples were monitored by FTIR-ATR, in which only minor differences at   

1726cm-1, 1701cm-1, 1529cm-1 and 1222cm-1, were observed after burial in soil type 2, 

indicating minimal degradation of the hard segment or hard/soft segment interfaces, 

Fig.6.29. The soft segment ester groups had not degraded, with the peaks at 1163cm-1 and 

1139cm-1 remaining unchanged after soil burial, Fig.6.29 b,d & f. which supported weight 

loss and visual findings. These results proved interesting in that these films completely 

degraded under alkaline conditions after 7 days, but proved to be relatively resistance to 

biodegradation. This is especially noteworthy in the case of PU CE30, which contained 

cellulose, and previous results for PU CE proved that the addition of cellulose into the PU 

matrix increased biodegradability however the addition of Cloisite 30B to this PU decreased 

the rate of biodegradation. 

 

Exposure to lipases by Aspergillus niger and Rhizopus sp. revealed similar findings to that of 

soil burial with no weight loss or microscopic visual degradation observed for all samples, 

Figs. 6.33 – 6.35. The resistance towards biodegradation and enzymatic degradation of 

polymer nanocomposites has also been noted in previous studies [73, 92], and an 

explanation for this has been proposed by Bikiaris [161], who examined degradation of 

polyester nanocomposities, and suggested that reduced enzyme attack and growth occurs 

on polyester nanocomposites due to increased barrier properties and, reduction of the 

surface area available for enzymatic hydrolysis, due to the fact that nano additives cannot be 

degraded by enzymes, and their position on the surface of the polymer would reduce the rate 

of degradation [161]. This theory does make logical sense and could be applied to the 

samples examined in this chapter, specifically PU CE30, which when compared to the 

control sample PU CE exhibited a decreased rate in enzymatic degradation, Figs. 6.33 & 

6.30.  
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6.3.3  Overall Summary of the effect of Additives on Polyurethane Degradation 

and Biodegradation 

The work described in this chapter examined the effect of three additives on the hydrolytic, 

enzymatic and biodegradation of PUs.  

Overall, comparison of the rate of degradation of PU ADP, PU CE and PUI was found to be 

dependent upon the method used to degrade the samples. Accelerated hydrolysis, Fig.6.10, 

revealed the rate of degradation to be in the order of PU ADP< PU CE< PUI.. The addition of 

cellulose increased microcrystalline hard segment domains in the PU samples, Fig. 6.4, 

which was thought to decrease the rate of alkaline hydrolysis of PU CE, however this was 

not found to be the case, with PU CE degrading after 42 days while PU ADP the control 

sample remained intact, Fig. 6.11. 

Biodegradation of the samples under soil burial conditions at 50oC was found to be in the 

order of PU ADP < PU CE < PUI, Fig. 6.20, however, at RT the order was PU ADP < PUI < 

PU CE, Fig. 6.20, and the difference was thought to be due to thermal degradation of PUI. 

Enzymatic degradation revealed that only PU CE had degraded significantly, therefore only 

PU CE was deemed to confer degradability on PU irrespective of the method of degradation, 

and this was thought to be due to the overriding effect of increased hydrophilicity, Fig. 6.1a, 

and porous like structure of the PU films, Fig. 6.2a, which increased the rate of alkaline 

hydrolysis, enzymatic hydrolysis and biodegradation.  

Addition of the organoclay, Cloisite 30B into PU PR, PU CE and PUI resulted in mixed 

findings, and again was found to be dependent on the method used to degrade the samples. 

Results from alkaline hydrolysis revealed that addition of the clay accelerated hydrolysis 

dramatically with the films completely broken up after just 7 days, for PU PR30, PU CE30 

and PUI 30, Fig 6.16. All of the samples displayed greater thermal stability, Figs. 6.3 & 6.8, 

increased hydrophobicity, Fig. 6.5, and increased hydrogen bonding, Table 6.3, within the 

PU matrix than the control samples, all of which have previously been found to decrease the 

rate of hydrolysis. Therefore the most likely explanation as to this increase in hydrolytic 

degradation was the decrease in the microcrystalline domains, Figs. 6.4 & 6.9, with the 

addition of Cloisite 30B. 

Biodegradation under soil burial conditions and enzymatic degradation produced opposite 

results to those of alkaline hydrolysis, in which the addition of the organoclay reduced 

degradation in the case of PU CE30, Figs. 6.21 & 6.26, and did not induce degradation of 

PUI 30 or PU PR30. This was thought to be due to the inaccessibility of the microorganisms 

and enzymes to the PUs which displayed increased barrier properties. 
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Results 

Table 6.1a   Effect of Additives on PU Degradation 

PU Code Composition M.w.t Ratio 
% polyol: 

isocyanate: 
chain 

extender 

Method 
of 

synthesis  
(Table 
3.1a) 

Soft segment polyol Hard segment Additive 

Isocyanate Chain 

Extender 

 

PU CE Poly (ethylene adipate) 
(PEA) 

Methylene 
diisocyanate (MDI) 

Butane diol 
(BD) 

Cellulose 
Powder (50μm) 

(2%) 

1:3:2 OS-102 

PUI Poly (ethylene adipate) 
(PEA) 

Methylene 

diisocyanate (MDI) 
Butane diol 
(BD) 

Iron Stearate 
(2%) 

1:3:2 OS-102 

PU PR Poly( ethylene adipate) 

(PEA) 

Methylene 

diisocyanate (MDI) 

Butane diol 
(BD) 

- 1:3:2 OS-102 

PU Code                                                                        
                                                              Chemical Structure 

PU PR 
PU CE & 

PUI  

 

Additive PU CE - Cellulose  

 

  

 

 

 

 

 

 

 

 

 

 

 

Fe

O

O OO

O

O

CH2

CH3

CH2

CH3

CH2

CH3

 16 

16 

Hard Segment 
Soft Segment 

Polyol; PEA 

Additive PUI - Iron 

Stearate 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=Wyr3gGImFSrapM&tbnid=5RfPugyV3gz5NM:&ved=0CAUQjRw&url=http://commons.wikimedia.org/wiki/File:Cellulose-2D-skeletal.png&ei=3MZKUZ6nE6ay0QWksIHgBA&bvm=bv.44158598,d.d2k&psig=AFQjCNEbpjgeOAvZ48ngLt0HttLMgRBr1g&ust=1363941237981259
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Table 6.1b Effect of Additive Cloisite 30B alone and in the Presence of other Additives on 
PU Degradation 

PU Code Composition M.w.t Ratio 
polyol: 

isocyanate: 
chain 

extender 

Method 
of 

synthesis  
(Table 
3.1a) 

Soft segment polyol Hard segment Additive 

Isocyanate Chain 

Extender 

 

PU PR30 
Polyethylene adipate 
(PEA) 

Methylene 

diisocyanate (MDI) 

Butane diol 

(BD) 

Cloisite 30B 
(12%) 1:3:2 PR - 102 

PU CE30 Polyethylene adipate 
(PEA) 

Methylene 
diisocyanate (MDI) 

Butane diol 
(BD) 

Cellulose 
Powder (50μm) 
(2%) & Closite 
30B (12%) 

1:3:2 OS-102 

PUI 30 Polyethylene adipate 
(PEA) 

Methylene 

diisocyanate (MDI) 
Butane diol 
(BD) 

Iron Stearate 
(2%) & Cloisite 
30B (12%) 

1:3:2 OS-102 

PU Code                                                                        
                                                              Chemical Structure 

PU CE30 
PU PR30 
PUI 30  

PU  PR30        No Additional Additive Additive Cloisite 30B 

 

 

PU CE30 

Additive Cellulose 

 

PUI 30 

                 

 

 

 

 

 

 

Fe

O

O OO

O

O

CH2

CH3

CH2

CH3

CH2

CH3

 16 

16 

Hard Segment 
Soft Segment 

Polyol; PEA 

Additive Iron 

Stearate 

T is Tallow (65%,C18; ~30%,C16; ~5%,C14) 

Surfactant used in Cloiste 30B nanoclay 
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Table 6.2   Assignment of N-H and C=O bands, area of deconvoluted peaks 

Sample Code N-H Stretching Urethane C=O Stretching Urethane/ester 

Band I (area) 

Non- hydrogen 
Bonded 

ν ~ 3322cm-1 

Band II (area)  

Hydrogen 
Bonded 

ν ~ 3332cm-1 

Band I (area) 

Hydrogen 
Bonded 

ν ~ 1702cm-1 

Band II (area) 

Non-hydrogen 
Bonded 

ν ~ 1727cm-1 

PU ADP 
(Control) 

2.3 2.6 14.7 16.2 

PU PR 3.0 2.7 14.4 16.0 

PU PR30 5.7 - 16.1 13.7 

PUI 5.6 - 15.3 16.4 

PUI 30 5.5 - 16.0 14.3 

PU CE 5.0 - 14.7 17.5 

PU CE30 6.3 - 18.0 15.5 
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        PUI – Hard Segment MDI/BD: Soft Segment PEA 

 

 

       PU CE – Hard Segment MDI/BD: Soft Segment PEA 

 

 

Figure 6.1 Hydrophilicity of PU samples (A) chemical structure characterisation of PU 
samples PUI (B), PU CE (C), by FTIR-ATR  
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Figure 6.2 Microscopic images showing dispersal of cellulose in PU CE (A-B) and iron 
stearate in PUI (C) in comparison to the control sample PU ADP (D) 
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Figure 6.3 TGA thermal analysis characterisation of PU, PU ADP (A), PU CE (B), PUI (C)   
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Figure 6.4  Morphology of PU using DSC; PU ADP (A), PU CE (B), PUI (C)  
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Figure 6.5 Hydrolphilicity of PU samples determined by weight percentage increase of water 

uptake.  
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 PU CE30, PU PR30, PUI 30 – Hard Segment MDI/BD: Soft Segment PEA 

 

 

 

 

Figure 6.6   Chemical structure characterisation of PU samples PU CE30 (A), PU PR30 (B),    

PUI 30 (C) by FTIR-ATR  

NN

O

O
O

O

O
O

O

O

O

OH H

Hard Segment Soft Segment 

A 

C 

D F E 
B 

C B 

G 

PU CE30 

PU PR30 

PUI 30 

A

B

C



                                                                        

251 
 

  

  

  

Figure 6.7  TEM images showing dispersal of cloisite 30b in PU PR30 (A-B), PU CE30 (C-D) 

and PUI 30 (E-F) 
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Figure 6.8  TGA thermal analysis characterisation of PU, PU PR30 (A), PU CE30 (B),      
PUI 30(C)  
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Figure 6.9  Morphology of PU using DSC; PU PR30 (A), PU CE30 (B), PUI 30(C)  
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Sample 
Code 

Additive Weight Remaining % 

  0 days 7 days 14 days 21 days 28 days 42 days 

PU ADP No Additive 100 96 89 81 71 56 

PU CE Cellulose 100 95 87 78 67 42 

PUI Iron Stearate 100 92 82 69 32 0 
 

 

 
Figure 6.10  Effect of additives on the rate of hydrolytic degradation (A)  with 10% NaOH (aq) 

(see table 2.1 & 2.2 pg. for acronyms). Visual surface cracking (B)  

PU ADP 
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PUI 

Arbitrary scale of degradation stage 

min  0   no signs of cracking deformation 

        1   slight signs of limited surface degradation 

        2   deformation of sample (curling) & discolouration 

        3   visible cracks showing 

        4   Small pieces of sample broken away from film 

max 5   complete breaking of sample - small pieces 
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Figure 6.11 Photographic Images of PU ADP, PU CE & PUI during hydrolytic degradation            
with 10% NaOH (aq)  
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Figure 6.12 Optical microscopic images of PU ADP, PU CE & PUI during alkaline    

hydrolysis 
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Figure 6.13 Structural changes of NH and CH2 bonds during alkaline hydrolysis of PU ADP, 

PU CE & PUI by FTIR/ATR 
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Figure 6.14 Structural changes of C=O and C-O-C urethane and ester linkages during  
alkaline hydrolysis of PU ADP, PU CE & PUI by FTIR/ATR  
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Time 
(days) 

Weight Remaining % 

PU ADP 
(Control) 

PU 
PR 

PU 
PR30 
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7 96 83 43 

14 89 46 0 

21 81 7 0 
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Figure 6.15  Effect of Cloisite 30B on the rate of hydrolytic degradation with 10% NaOH (aq)  

PU PR 

PU PR30 

PU ADP - Control 

PU CE 

PU CE30 

PU ADP - Control 

PUI 

PUI 30 

PU ADP - Control 

A 

B 

C 



                                                                        

260 
 

 PU PR30  
(Prepolymer synthesis with 

12%wt  cloisite 30B) 

PU CE30 
(additive cellulose with 12%wt 

cloisite 30B) 

PUI 30 
(additive iron stearate with 12%wt 

cloisite 30B) 

           In
itia

l 

 

 

 

        

   

4
8
 h

o
u

rs
 

   

7
 d

a
y
s
 

    

   

 

Figure 6.16 Photographic and microscopic Images of PU PR30, PU CE30 & PUI 30 during 
hydrolytic degradation with 10% NaOH (aq)  
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Figure 6.17 Structural changes of C=O and C-O-C urethane and ester linkages during  
alkaline hydrolysis of PU PR30, PU CE30 & PUI 30 by FTIR/ATR  
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Figure 6.18 Structural changes of C=O and C-O-C urethane and ester linkages during  
alkaline hydrolysis of PU PR30, PU CE30 & PUI 30 by FTIR/ATR  
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Figure 6.19 Morphology changes after alkaline hydrolysis of PU PR30, PU CE30 & PUI 30 
by DSC 
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Figure 6.20 Effect of additives, cellulose and iron stearate on the rate of biodegradation 
under soil burial conditions, soil 1 50oC (A), soil 1 RT (B), soil 2 RT (C)  
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 Figure 6.21  Photographic images of PU ADP, PU CE & PUI after soil burial 
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Figure 6.22 Optical microscopic images of PU ADP, PU CE & PUI during soil burial 
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Figure 6.23 Effect of additives cellulose and iron stearate on C=O and C-O-C ester/urethane 
linkages during soil burial at 50oC of PU CE & PUI by FTIR/ATR 
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Figure 6.24 Structural changes of N-H, C=O and C-O-C urethane and ester linkages after 
soil burial at RT for 20 months of PU CE & PUI by FTIR/ATR 
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Figure 6.25 Effect of additive cloisite 30b on the rate of biodegradation under soil burial 
conditions, soil 1 50oC (A), soil 1 RT (B), soil 2 RT (C)  
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Figure 6.26  Photographic images of PU PR30, PU CE30 & PUI 30 during soil burial 
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Figure 6.27 Optical microscopic images of PU PR30, PU CE30 & PUI 30 during soil burial 
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Figure 6.28 Structural changes of C=O and C-O-C urethane and ester linkages after soil 
burial at 50oC for 3 and 5 months of PU PR30, PU CE30 & PUI 30 by FTIR/ATR 
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Figure 6.29 Structural changes of C=O and C-O-C urethane and ester linkages after soil 
burial after 20 months at RT of PU PR30, PU CE30 & PUI 30 by FTIR/ATR 

 

PU CE30 1790cm
-1 

- 1560cm
-1

 PU CE30 1280cm
-1 

- 950cm
-1

 

PUI 30 1780cm
-1 

- 1560cm
-1

 PUI 30 1300cm
-1 

- 900cm
-1

 

PU PR30 1790cm
-1 

- 1560cm
-1

 PU PR30 1300cm
-1 

- 900cm
-1

 

t=0  
20 mon. soil 1  
t=20 mon. soil 2  

t=0  
20 mon. soil 1  
t=20 mon. soil 2  

t=0  
20 mon. soil 1  
t=20 mon. soil 2  

t=0  
20 mon. soil 1  
t=20 mon. soil 2  t=0  

20 mon. soil 1  
t=20 mon. soil 2  

t=0  
20 mon. soil 1  
t=20 mon. soil 2  

A B

C D

E F



                                                                        

274 
 

 Initial  24 Days 

P
U

 A
D

P
 

  

P
U

 C
E

 

 

 

P
U

I 

  

 
Figure 6.30 Effect of additives on enzymatic degradation by lipase Aspergillus niger PU 

ADP, PU CE & PUI by optical microscope images 
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Figure 6.31 Effect of additives on enzymatic degradation by lipase Rhizopus sp. PU ADP, 

PU CE & PUI by optical microscope images 
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Figure 6.32 Effect of additives cellulose and iron stearate on structural changes during 

enzymatic degradation by lipase Aspergillus niger and Rhizopus sp. on PU ADP, PU CE & 

PUI determined by FTIR-ATR 
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Figure 6.33 Effect of Cloisite 30B on enzymatic degradation by lipase Aspergillus niger PU 

PR30, PU CE30 & PUI 30 by optical microscope images 
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Figure 6.34 Effect of Cloisite 30B on enzymatic degradation by lipase Rhizopus sp. PU 

PR30, PU CE30 & PUI 30 by optical microscope images 
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Figure 6.35 Effect of Cloisite 30B on structural changes during enzymatic degradation by 
lipase Aspergillus niger and Rhizopus sp. on PU CE30, PU PR30 & PUI 30 determined by 
FTIR-ATR 
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Figure 6.36  Effect of cellulose and iron stearate on hydrogen bonding in PUs 
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Figure 6.37  Effect of Cloisite 30B on hydrogen bonding in PUs 
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Figure 6.38  Effect of Cloisite 30B on hydrogen bonding in PUs 
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Chapter 7  

Conclusions and Future Work  

 

7.1 Conclusions 

 

It can be concluded from the results discussed in Chapters 3 to 6 that: 

 

7.1.1 The method of synthesis was found to affect the rate of degradation and 

biodegradation of the TPU samples synthesised by Eurothane Ltd, with the PU sample 

synthesised by the pre-polymer method (PU PR) degrading faster than the PU 

synthesised by the one shot method (PU ADP), Figs. 3.6 - 3.8. Weight loss results 

during alkaline hydrolysis showed that PU PR (pre-polymer method), was more prone 

to degradation under alkaline conditions than PU ADP (one shot method), with a 7% 

weight remaining for PU PR after 21 days, (PU ADP 81% weight remaining) Fig.3.6a. 

This was supported by visual images in which the PU PR film became broken and 

fragile after 21 days while the PU ADP film remained intact even after 42 days, Fig.3.8. 

The reason for the increase in the rate of hydrolysis of PU PR is thought to be due to 

the morphology of the sample, and this was indeed found to be the case. Results from 

DSC analysis on the virgin films highlighted a difference in morphology dependent on 

the method of synthesis, with PU ADP, (synthesised by the one shot method) 

exhibiting a more crystalline structure than PU PR (synthesised by the pre-polymer 

method), Fig. 3.4. However, the Tg values were found to be similar for PU ADP (-18oC) 

and PU PR (-17oC), Fig. 3.3, indicating little difference in phase separation between 

the samples. An explanation as to the difference in crystallinity was thought to be due 

to the chain build up during synthesis. The pre-polymer method is more controlled and 

involves the rapid build-up of the molecular weight of the pre-polymer by the chain 

extender (BD), which then alters the morphology as the molecules become entangled 

and immobilized before order can be established. The one shot process in which  all of 

the reactants are added at the same time resulted in highly crystalline mobile chain 

structures acting as crosslinks due to the lightly favoured reaction between BD and 

MDI, Fig. 3.25.  
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7.1.2 Neither PU PR nor PU ADP exhibited any significant degradation after exposure to the 

enzymes Aspergillus niger, Aspergillus satoi and Rhizopus sp., Fig.3.20 & 3.22. The 

same was observed after the samples had been buried in soil at RT for 20 months, with 

little biodegradation occurring in either PU PR or PU ADP, Fig. 3.14. It was concluded 

that the chemical components contained within the PU, had a greater influence than 

the method of synthesis with respect to enzymatic degradation, and the chemical 

components ADP, MDI and BD and the interactions between these components were 

not favourable substrates for enzymatic degradation. Overall, PU PR synthesised by 

the pre-polymer method was found to be less thermally stable, Fig. 3.3, less crystalline, 

Fig. 3.4, and more susceptible to hydrolysis, Figs.3.6- 3.8, than the PU synthesised by 

the one shot method (PU ADP). Therefore, in order to obtain PU’s with limited shorter 

lifespans the pre-polymer method should be used, with a further possibility of increased 

biodegradation using alternative chemical constituents, 

 

 

7.1.3 Altering the isocyanate was shown to have a profound effect on the morphology of the 

PU, with differences in phase separation, crystallinity and hydrogen bonding observed. 

PUH ADP, which contained the aliphatic isocyanate H12MDI resulted in a TPU with 

increased phase separation, and increased hydrogen bonding, in comparison to the 

control sample PU ADP (aromatic isocyanate; MDI), Figs. 4.2, 4.3 & 4.17. It also 

resulted in a reduction of the amount of highly ordered crystalline structured regions, 

Figs 4.2 & 4.3. This change in morphology was shown to have a significant effect on 

the rate of degradation of the PU during alkaline hydrolysis, with the increased phase 

separation, and the reduction of crystalline regions in PUH ADP resulting in a faster 

rate of degradation, Figs. 4.4 & 4.5.  

 

7.1.4 Alterating the isocyanate did not induce enzymatic degradation by the fungal enzymes 

Aspergillus niger, Aspergillus satoi and Rhizopus sp. nor did it increase the 

biodegradation under the soil burial conditions at RT, Fig 4.11, although PUH ADP, 

containing the aliphatic isocyanate did seem to confer a higher degree of enzymatic 

binding to the surface of the PU than the control sample PU ADP (aromatic 

isocyanate), Fig. 4.14, and this may have resulted in enzymatic degradation after a 

greater length of time. Although altering the isocyanate from MDI to H12MDI did not 

influence the rate of biodegradation significantly, Fig. 4.11, it was considered to be 

more environmentally friendly to use PUs with aliphatic isocyanates for biodegradable 

PUs due to the possible toxic degradation/biodegradation products produced from PUs 

synthesised with an aromatic isocyanates. 
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7.1.5  The soft segment composition of the TPUs was shown to have a profound effect on 

the rate of degradation and biodegradation with a dramatic difference observed 

between PU ADP and PU PCL each of which contained a different polyester.  PU 

ADP which contained an ADP soft segment was found to degrade at a faster rate 

under alkaline conditions than PU PCL which contained a PCL ester soft segment, 

Fig 5.5. The PU PCL film sample remained intact even after 56 days, with limited 

signs of degradation either visually or by weight loss Figs 5.5 -5.7. However, 

biodegradation under soil burial conditions produced results in contrast to accelerated 

alkaline hydrolysis. PU ADP (ADP ester) was not seen to degrade after soil burial for 

20 months, however, PU PCL was found to be more biodegradable with visible 

cracks in the film noted, Figs 5.12 & 5.13. Previous studies, and results from 

Chapters 3 and 4 have shown that the extent of crystallinity affected the rate of 

degradation in PU, however this was not deemed to be the case in this instance, as 

the extent of crystallinity for PU ADP and PU PCL was found to be similar, Fig 5.23. 

Results from water absorption indicated that PU PCL was more hydrophobic than PU 

ADP, Fig 5.1, which supported previous literature in that the PCL ester soft segment 

in PU PCL is hydrophobic in nature, and this was believed to be the reason for the 

resistance towards accelerated alkaline hydrolysis, as water was not able to 

penetrate into the PCL soft segment. The increased rate of biodegradation under soil 

burial conditions for PU PCL was thought to be due to increased adhesion of 

microorganisms onto the surface of the PU which has previously been shown to occur 

through hydrophobic interactions between the microorganisms and the hydrophobic 

soft segment.  

 

7.1.6   Altering the polyol from a polyester (ADP) to a polyether (PEG) was also found to 

influence the rate of degradation and biodegradation of the PU samples. Results from 

accelerated hydrolysis, enzymatic hydrolysis and soil burial revealed that the PU 

containing the polyether polyol (PU PEG) was found to degrade faster than PU ADP, 

which contained a polyester soft segment, Fig 5.5. The main reason for these 

findings was thought to be due to a combination of the amorphous nature of PU PEG, 

Fig 5.24, and also the increased hydrophilicity of PU PEG, Fig 5.1, which then 

resulted in an increase in the diffusion of water into the PU matrix and thereby 

accelerated its hydrolysis. The mechanism of degradation for PU PEG was 

speculated to depend upon the experimental conditions, with accelerated hydrolysis 

resulting in degradation of the hard segment by the hydrolysis of the urethane bonds, 

while the soft segment remained relatively unchanged, Fig 5.24. Exposure of PU 

PEG films to soil burial and enzymatic hydrolysis resulted in limited degradation of 
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both the hard and soft segments resulting from a combination of oxidative and 

microbial degradation mechanisms, Fig 5.24.   

7.1.7  PU PGPC containing a combination of PCL and PEG soft segment was found to 

degrade under both accelerated alkaline hydrolysis conditions Figs 5.5 & 5.7, and 

soil burial, Figs 5.11-5.13. The morphological profile of PU PGPC was found to be 

relatively amorphous in nature, and showed a greater degree of phase separation 

than its PU PCL and PU PEG counterparts, Fig 5.4. These two factors were 

considered to play a role in the rate of degradation and biodegradation of PU PGPC, 

however, the major factor regarding the rate of degradation of all of the samples in 

this group was deemed to be hydrophilicity of the PU sample, with a positive 

correlation observed between the rate of accelerated hydrolysis and hydrophilicity, 

Figs 5.1 & 5.5. The combination of a PEG and PCL soft segment resulted in a PU 

which contained hydrophilic domains from the PEG chains thereby enabling the 

diffusion of water into the PU, and also hydrophobic domains from the PCL chains 

conferring hydrophobic binding sites for degradation by microorganisms in the soil, 

therefore from the PUs examined in this study the soft segment containing a 50:50 

PCL/PEG blend was considered to be the most conducive towards biodegradation 

and also exhibited substantial degradation during accelerated alkaline hydrolysis.  

 

7.1.8   Determination of degradation in respect of alteration of the soft segment was found to 

be dependent on the method used. Accelerated alkaline hydrolysis measured by 

weight loss revealed that the rate of hydrolysis was in the order of PU ADP > PU PEG 

> PU PGPC > PU PCL, Fig 5.5. However, examination of the films visually revealed 

that the extent of degradation was in the order of PU PEG > PU PGPC > PU ADP > 

PU PCL, which was also the order of the hydrophilic nature of the PUs, Figs. 5.1 & 

5.7. This difference between weight losses and visual images was mainly thought to 

be due to the hydrophillicty of PU PEG and PU PGPC which were thought to retain 

water in the bulk, even after drying, therefore distorting the weight loss measurements 

 

7.1.9 The addition of microcrystalline cellulose and iron stearate affected the rate of 

degradation and biodegradation dependent on the method used to degrade the 

samples. Accelerated hydrolysis revealed the rate of degradation to be in the order of 

PU ADP< PU CE< PUI, Fig. 6.10 - 6.12. The increased rate of hydrolysis of PUI was 

deemed to be due to the reduced thermal stability of PUI, which was ascertained by 

TGA, Fig. 6.3. The addition of cellulose increased microcrystalline hard segment 
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domains in the PU samples Fig 6.4, however this did not reduce the rate of 

hydrolysis, with PU CE degrading after 42 days while PU ADP the control sample still 

remained intact, Fig 6.11. Biodegradation of the samples under soil burial conditions 

at 50oC was found to be in the order of PU ADP < PU CE < PUI, Fig 6.20, however, 

at RT the order was PU ADP < PUI < PU CE, Figs 6.20 - 6.22, and again the 

difference was thought to be due to the reduced thermal stability of PUI similar to its 

alkaline hydrolysis. Enzymatic degradation revealed that only PU CE had degraded 

significantly, Figs 6.30 - 6.32, therefore only PU CE was deemed to confer 

degradability on PU irrespective of the method of degradation, and this was thought 

to be due to the overriding effect of increased hydrophilicity and porous like structure 

of the PU film, Fig. 6.2, which increased the rate of alkaline hydrolysis, enzymatic 

hydrolysis and biodegradation by increasing the surface area exposed to the 

degradation media, Fig. 6.2a. 

 

7.1.10 The effects of the addition of the organoclay, Cloisite 30B (12%) into PU was again 

found to be dependent on the method used to degrade the samples as of that for PU 

CE and PUI. Results from alkaline hydrolysis revealed that addition of the clay 

accelerated hydrolysis dramatically with the films completely broken up after just 7 

days, for PU PR30, PU CE30 and PUI 30, Figs 6.15 - 6.16. All of the samples 

displayed greater thermal stability, Fig 6.8, increased hydrophobicity, Fig 6.5 and 

increased hydrogen bonding, Figs 6.37 – 6.38, within the PU matrix than the control 

samples PU PR, PU CE and PUI. However, the addition of Cloisite 30B also resulted 

in PUs with less microcrystalline domains, Figs 6.4 & 6.9. Therefore the most likely 

explanation as to this increase in hydrolytic degradation was due to this decrease in 

crystallinity. Biodegradation under soil burial conditions and enzymatic degradation 

produced opposite results to those of alkaline hydrolysis, in which the addition of the 

organoclay reduced degradation in the case of PU CE30, Fig 6.22 & 6.26, and did 

not induce degradation of PUI 30 or PU PR30, Fig 6.26. This was thought to be due 

to the inaccessibility of the microorganisms and enzymes to the PUs which displayed 

increased hydrophobicity with the addition of the organoclay, Fig 6.5. 
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7.2 Recommendations for Further Work 

 

7.2.1 This research and that by others have shown that degradation and biodegradation of 

TPU primarily occurs in their ‘soft segment’ (polyol), and although a variety of polyols 

were examined, it would be useful to examine other polyols which are deemed to be 

‘biodegradable’ such as PLA, polyglycolic acid and polyhydroxyalkanoates.  

 

7.2.2 A multitude of chemical constituents can be used in polyurethane synthesis as the ‘soft 

segment’ with the limiting factor being that the molecule contains at least either two 

hydroxyl or amine groups. It would be useful therefore to explore biological molecules 

which may be more prone to biodegradation as natural substrates, such as those from 

plant oils. Castor oil already contains a single hydroxyl group per fatty acid chain, and 

many other polyunsaturated fatty acids can be hydroxylated to make them potential 

candidates for biodegradable PUs. 

 

7.2.3 This work showed that PUs synthesised by the pre-polymer method resulted in PUs 

which degraded faster under hydrolysis conditions and therefore, it would be useful to 

perform degradation and biodegradation experiments on PUs synthesised by the pre-

polymer method which also contained chemical constituents and were found to be 

more degradable than the PU PR constituents, i.e. ADP, MDI and BD, such as; using a 

PCL/PEG soft segment and aliphatic isocyanate combination synthesised by the pre-

polymer method. 

 

7.2.4 During this work, the isocyanate and polyol were examined in respect of increasing 

biodegradability of TPUs. Future work could focus on alteration of the chain extender, 

not only by testing the effect of common chain extenders used commercially in TPU 

synthesis such as hexanediol, butanediol and diamines but also as described above in  

section 6.2.2, by exploring biological molecules to incorporate into TPUs as chain 

extenders. 

 

7.2.5 This work highlighted the fact that the method of synthesis is an important factor on the 

rate of hydrolytic degradation. Therefore, further work should examine other synthesis 
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and processing conditions of TPUs; so as to determine the effect of process 

parameters such as reaction temperature, curing time and extrusion temperature etc 

on the rate of degradation and biodegradation. 

 

7.2.6 The addition of Cloisite 30B was found to have a dramatic effect on the rate of 

degradation during alkaline hydrolysis but did not confer increased biodegradable 

properties on the PU.  Further work could look at using other types of organoclays such 

as Bentonite and other modified montmorillonite clays. Also, more investigation into the 

interactions between the hard and soft segments and the organoclays in TPUs and the 

effect on degradation and biodegradation, better understood through the application of 

X-ray diffraction and small angle X-ray scattering techniques. 

 

7.2.7 The incorporation of cellulose into TPU was found to increase hydrolytic and enzymatic 

degradation as well as biodegradation under soil burial conditions. As a follow up, it 

would be interesting to examine cellulosic derivatives known for their water absorbing 

capacity such a carboxymethylcellulose, as hydrophilicity was shown to increase 

degradation, as well examining the effect of the addition of other biopolymers into the 

PU matrix such as chitosan, starches, pectins and alginates. 
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