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ABSTRACT 

Purpose: To assess and compare the effect of the corneo-scleral lenses (C-ScL) 

and scleral lenses (ScL) on tear film parameters and central corneal thickness (CCT) 

in healthy presbyopic subjects. 

Methods: Thirty subjects wore two contact lenses (CLs), randomly assigned, of neutral 

power, but of different diameters, 12.7 mm (C-ScL) and 18 mm (ScL) and being equal 

in the others parameters: material (HS100) and centre thickness (0.29mm). At 

baseline, 20 minutes after insertion and at 8 hours, the tear meniscus area (TMA) and 

CCT was measured (with optical coherence tomography) as well as tear osmolarity. 

Results: TMA revealed statistical differences for both lenses at 20 min (p<0.001), and 

also at 8 hours (p=0.003), being greater for the C-ScL. CCT showed statistical 

differences for both lenses at 20 min (p=0.002), and also at 8 hours (p=0.001), being 

lower for the C-ScL. Osmolarity did not reveal statistical differences at 20 min (p=0.29), 

while it was statistically different at 8 hours (p=0.03), being lower for the C-ScL. 

Conclusions: C-ScL lead to a lesser reduction in the TMA and a lower induced 

hypoxic stress than the ScL. Osmolarity levels remained within normal values across 

the day with no clinical difference between lenses. Both designs can represent a good 

optical platform for correcting presbyopia as well as protecting the ocular surface by 

vaulting the cornea. 
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INTRODUCTION 

Scleral lenses (ScLs) are rigid gas permeable devices that are supported partly 

by the conjunctival tissue overlying the sclera and partly by the tear reservoir (acting 

like a water bed), and vault the cornea and limbus [1]. Their major advantage lies in 

the vaulting of the cornea (and the subsequent apical clearance) that avoids direct 

mechanical stress to this ocular tissue. The development of new lens materials, 

computer-generated lens geometries as well as new insights into the anterior scleral 

shape and corneo-scleral junction have contributed to improve designs and oxygen 

transmissibility allowing better ocular health, longer wearing time and ease of lens fit 

[2-5]. ScLs are typically prescribed for corneal ectasia (primary corneal ectasia like 

keratoconus) [6] and ocular surface diseases, when a patient’s cornea shows 

intolerance to other forms of vision correction (corneal rigid gas permeable and soft 

lenses materials) and they do not provide adequate visual acuity to the patient [1]. 

ScLs have shown good results in patients with graft versus host disease, dry eye 

disease (DED) and exposure keratopathy among other conditions[1], but also for high 

ametropias [7] and for cosmetic purposes such as in atrophia bulbi [5,8].  

As well as the prevalence of DED increasing with age, systemic disorders (and 

the medication associated with them) are recognized as risk factors that might 

jeopardize ocular surface homeostasis and induce dry eye signs and symptoms [9]. 

Fitting contact lenses (CLs) in a presbyopic population is as such, expected to be more 

challenging in comparison with a younger sample. However, presbyopic patients could 

benefit from wearing ScLs; multifocal designs, such as centre near or centre distance 

geometries exist and these present a great advantage over conventional rigid gas 

permeable lenses devices (the lens optics are more stableover the pupil due to 

reduced lens movement) and to a lesser extent, over multifocal soft CLs (better optical 
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quality, resulting in higher contrast sensitivity) [5]. ScLs allow for a better centration of 

the lens and an easier adaptation to simultaneous vision due to the stability of the 

image provided by the scleral design. Furthermore, ScLs have demonstrated the ability 

to  maintaintear film homeostasis beneath the lens [4-6].  

However, even if a larger CL diameter provides greater stability regarding 

multifocal designs, the academic literature does not reveal how CL diameter changes 

affect ocular surface physiology as well as tear quality/quantity of presbyopic patients. 

Hence this study investigated the differences between a full ScL and a smaller 

diameter lens that partly rests on the sclera [corneo-scleral lens (C-ScL)]. Theses CLs 

offer more consistent visual performance, due to the larger optic zone and increased 

stability compared to corneal CLs.   

Thus, the aim of this study was to assess and compare the effect of the C-ScL 

and ScLs on tear film (TF) parameters and central corneal thickness (CCT) in healthy 

presbyopic subjects.  
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MATERIAL AND METHODS 

This prospective, non-randomized study was conducted in the Valencia’s University 

laboratory facility, Valencia, Spain. The institutional Ethical Committee approved the 

project. Patient’s consent was obtained from all participants following explanation of 

the study requirements. The clinical study adhered to the tenets of the Declaration of 

Helsinki. As part of the study screening, each of the participants underwent a 

comprehensive ophthalmic examination, which included, in the order as follow: visual 

acuity, refraction, slit lamp biomicroscopy, topographic examination using the 

topographer Atlas 9000 (Carl Zeiss Meditec, Jena, Germany), ocular fundus 

examination, horizontal visible iris diameter measurement using a ruler to nearest 0.5 

mm and CCT measurement (Visante, Carl Zeiss, Germany) using Optical Coherence 

Tomography (OCT). Patients who experienced any anterior segment pathology, 

previous corneal surgery, corneal abnormalities, chronic DED, ocular fundus 

abnormalities or previous CL wearers were excluded from the study. The subjects wore 

two CLs, randomly assigned, with neutral power and different diameters [12.7 mm (C-

ScL), 18 mm (ScL)] and being equal for the other parameters: material (HS100) and 

central central thickness (0.29mm) (Tiedra Farmacéutica SL, Alcorcón, Spain). All CLs 

used during this experiment were taken from a trial lens fitting set and were fitted 

following the manufacturer’s instructions. After CL insertion, the initial fit of the lens 

was evaluated with slit lamp examination. CLs were fitted with about 20 to 35 µm and 

280 to 400 µm of central clearance for the C-ScLs and ScLs, respectively. Saline 

solution without conservative agents was used for all participants to fill the bowl of the 

ScL before insertion. 

At baseline (without CL), 20 min margin (t1) and 8 hours margin after insertion (t2) (t1 

and t2 wearing CL), the tear meniscus area (TMA) was evaluated with OCT (SL SCAN-
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1, Topcon, Japan) as well as CCT and tear osmolarity (TearLab Osmolarity System, 

TearLab Corp, San Diego, USA). Special care was taken to avoid measurement 

affectson CCT from the OCT images from the post-lens fluid reservoir. CLs wear has 

been discontinued for four days between each measurement in order for the eyes to 

fully recover. 

The details of the anterior segment OCT (AS-OCT) imaging technology have been 

described previously [9-11]. An anterior segment OCT [SL SCAN-1 (Topcon, Japan)] 

coupled with a slit-lamp was performed in order to assess the tear meniscus 

parameters of the inferior eyelid using the B-scan mode and scanning at 6 o´clock the 

inferior eyelid right below the centre of the pupil. TMA [12], the triangular area delimited 

by the anterior corneal boundary, anterior boundary of the lower eyelid and anterior 

borderline of the tear meniscus was calculated using an image analysis software 

ImageJ (http://imagej.nih.gov/ij/). Baseline measurements of TMA performed before 

lens insertion were used in order to ensure that no participant suffered from marginal 

or confirmed aqueous deficiency, conditions that could easily jeopardize 

measurements of this parameter across the day. The same examiner carried out all of 

the three measurements for each patient as well as manual demarcation of the 

boundaries of the tear meniscus. 

The global corneal “pachymetry map” protocol of the Visante OCT (Carl Zeiss Meditec 

Inc, Dublin, CA, USA) was used to capture 8 radial scans centered on the corneal 

vertex reflection [11]. Each scan line was 10 mm long, with a transverse resolution of 

60 µm and a vertical resolution of 18 µm. Three consecutive scans were carried out for 

each eye by the same examiner.  

TF osmolarity was measured using a laboratory-on-a-chip system which analyzes the 

electrical impedance of a 50 nL tear sample taken from the inferior lateral meniscus of 



 7

both eyes of the patient. Osmolarity values below 308mOsm/L are considered as 

normal [13]; readings between 308 and 325 mOsm/L are representative of mild-to-

moderate osmolarity levels, and values above 325mOsm/L indicate higher osmolarity 

levels, these values representing a risk factor to develop inflammation on the ocular 

surface [14]. The highest value between the two eyes as well as the interocular difference were 

taken into account as it is well known that CL wear might be affected by increased 

inflammatory response of the ocular surface [9]. 

 

Statistical analysis 

Measurements were evaluated using SPSS v.22 (IBM Corp., New York). Normality 

was evaluated by the Shapiro-Wilk test. To analyze the results as a function of the lens 

wearing time, a repeated measures analysis of variance (rANOVA) was performed to 

reveal statistically significant differences among time periods; Greenhouse-Geisser 

correction was applied when the rANOVA sphericity assumption checked using the 

Mauchly's test was breached [15]. Bonferroni correction was applied to post-hoc tests 

for comparisons between time periods. When normality of data groups could not be 

assumed, a non-parametric Friedman test was performed. If needed, a Wilcoxon 

signed-rank or a Sign test, depending on the symmetry of the differences distribution, 

was performed as a post-hoc test. To analyze the results as a function of the diameter 

of the lens, a Student’s t test for related samples was used when normality can be 

assumed, while a Wilcoxon signed-rank or a Sign test was used when normality could 

not be assumed. The statistical significance limit was set at p<0.05.  
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RESULTS 

Thirty right eyes from thirty presbyopic non contact lens wearers, 13 males and 

17 females, (average age 54 ± 4 years, range: 46-63 years) completed the study. Mean 

spherical equivalent refractive error was +0.16 ± 0.19 D and mean keratometry 

readings were 43.60 ± 0.64 D and 44.40 ± 0.41 D for flatter and steeper meridian, 

respectively. The mean amount of initial clearance was 30.17 ± 3.65 µm for C-ScLs 

and 316.93 ± 19.35 µm for ScLs. 

Analysis as a function of the lens wearing time 

 Boxplots obtained for the TMA for both designs are shown in Figure 1. For the 

C-ScL, median values for baseline, 20 min, and 8 hours were 0.0213, 0.0216, and 

0.0152 mm2, respectively. For the ScL, median values obtained for baseline, 20 min, 

and 8 hours were 0.0213, 0.0205, and 0.0137 mm2, respectively. For both lenses, 

Friedman test revealed statistically significant differences with time (p<0.001), while 

the post-hoc analysis revealed only statistically significant differences between the 

measurements taken at 8 hours and the other two earlier time periods (p<0.001). 

Boxplots for the CCT for both designs are shown in Figure 2. For the C-ScL, 

median values for baseline, 20 min, and 8 hours were 549, 555, and 563 µm, 

respectively. For the ScL, median values obtained for baseline, 20 min, and 8 hours 

were 549, 556, 577 µm, respectively. For both lenses, Friedman test was statistically 

significant between visits (p<0.001), while the post-hoc revealed statistically significant 

differences for all paired comparisons (p<0.001). 

Figure 3 shows the boxplots obtained for osmolarity changes for both lens 

designs with time. For the C-ScL, mean values for baseline, 20 min, and 8 hours were 

296, 298, and 305 mOsm/L, respectively. For the ScL, mean values for baseline, 20 
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min, and 8 hours were 296, 299, and 306 mOsm/L, respectively. For both lenses, the 

rANOVA procedure revealed statistically significant differences between visits 

(p<0.001), while the post-hoc revealed statistically significant differences between all 

paired time periods (p≤0.002). 

 

Figure 1: Boxplots over time obtained for the tear meniscus area for the corneo-

scleral lens (orange) and the scleral lens (grey). 

 

Figure 2: Boxplots over time obtained for the central corneal thickness for the 

corneo-scleral lens (blue) and the scleral lens (grey). 
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Figure 3: Boxplots over time obtained for the osmolarity for the corneo-scleral lens 

(orange) and the scleral lens (grey). 

 

Analysis as a function of the lens diameter  

 The TMA revealed statistical differences for both lenses at 20 min (p<0.001), 

and also at 8 hours (p=0.003), being greater for the C-ScL. The CCT revealed 

statistical differences for both lenses at 20 min (p=0.002), and also at 8 hours 

(p=0.001), being lower for the C-ScL. Osmolarity was not statistically different at 20 

min (p=0.29), while it was statistically different at 8 hours (p=0.03), being lower for the 

C-ScL. 
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DISCUSSION 

The aim of this study was to assess and compare the effect of the C-ScL and 

ScLs on TF parameters and CCT in healthy presbyopic subjects. In this study, a 

statistically significant decrease occurred in TMA regarding both CLs, being more 

marked for ScL. CL wear, regardless of the type of lens, induces smaller TMA values 

across the day [16-19]. Moreover, CL wear is known to negatively impact TF, 

separating it into two parts; pre and post lens TF, making it thinner and more 

susceptible to evaporation [20,21] and disruption [22]. Czajkowski et al. found 

sensitivity and specificity for tear meniscus height (TMH) of 80.56% and 89.33%, 

respectively for diagnosing DED [12]. These values were 86.11% and 85.33% for TMA 

[12]. These two parameters showed a good correlation with Schirmer’s test [23] 

indicating that they are suitable metrics  to assess in the extent which ScL and C-ScL 

diameter influence the tear film volume across a day of wear.  C-ScL showed a 29% 

decrease in TMA across the day whereas the diminution was up to 36% regarding the 

ScL. 

 When a ScL is fitted on an eye, little to no movement is expected which is not 

the case with a C-ScL, the latter providing greater mobility and thus, tear exchange 

under the lens [5]. This is an important point to take into account when comparing both 

designs, as the CL material used in this study is not expected to absorb, nor 

accumulate TF (which is instead expected to flow over and around the lens and thus 

minimally impact TMA values). Indeed, movement and tear exchange (C-ScL) 

compared to an almost sealed post-lens TF (ScL), coupled with increased instability of 

the tears induced by the insertion of the material and its interaction with TF, could partly 

explain the statistically significant differences in TMA found at the end of the day. 

Recent studies have shown that conjunctival folds could directly influence TMH and 
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thus TMA values by modifying tear meniscus geometry and repartition along the eyelid 

[24] and  that ScL directly impact conjunctival profile by inducing a significant decrease 

in conjunctival/episcleral layer [25] which might influence tear meniscus geometry 

between lenses even in a cross-over design trial. 

 Failure to deliver proper amounts of oxygen to the cornea during CL wear might 

induce corneal oedema, observed as increased CCT, as one of the numerous 

complications [26, 27] that can occur secondary to CL induced hypoxia. It is 

acknowledged that the great majority of ScLs available on the market, once placed on 

eye and thus forming a tear reservoir beneath the lens, do not meet either the Holden 

and Mertz (central cornea) or Harvitt and Bonanno’s (limbal area) criteria [28-31]. 

However, clinical manifestation of corneal oedema, even if present, is seldom 

observed in clinical practice [26, 27]. 

ScLs, once settled on the sclera, have a tear reservoir beneath the lens which 

is believed to be almost sealed potentially inducing hypoxic complications [31-35]. 

Hence the perpendicular outflow of oxygen through the material and its further mixing 

with the tear reservoir is more important than transversal tear exchange that could 

occur between tear reservoir and peripheral tears [34].  Michaud et al. calculated that 

a lens (with characteristics very similar to the one used in this study) would need 

parameters of central thickness of 250 µm (versus 290 µm in the present study), Dk 

100 and central clearance of no more than 100 µm to give Dk/t of 26.5, above the cut-

off value of Holden and Mertz criteria [27,32,33] and the more recent findings of Morgan 

et al. [36]. Previous studies have investigated the correlation between tear clearance, 

central lens thickness and corneal hypoxia [36, 37]. In our study, an average 2.6% (C-

ScL) and 5.1% (ScL) CCT increase occurred across the day of lens wear. 

Nevertheless, final differences in corneal thickness observed between the two lenses 
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(563 µm versus 577 µm for C-ScL and ScL respectively) were not clinically significant. 

CCT changes can be directly related to patient specific corneal physiology as it is 

acknowledged that corneal response to hypoxic stress is specific to each individual 

and is subject to a great variability [38]. However, the 2.6% increase found in this study 

is in agreement with Mountford et al. and corresponds to 1µm per hour CCT increase, 

a result obtained in the former study with a 120 Dk material [39]. It allows us to 

hypothesize that since the lenses were of the same material and transmissibility, the 

combination of movement induced tear exchange beneath the lens on one hand and 

a sufficiently low tear clearance on the other hand, explain lower values of CCT 

increase across the day for the C-ScL by bringing (laterally) more oxygen to the area 

under the lens and by efficiently mixing (transversally) the transported oxygen to the 

underlying tear pool to nourish the corneal tissue. In order to alleviate hypoxic stress 

with unknown long-term effects on corneal physiology, lenses manufactured and fitted 

according to a theoretical model should be favoured. In the present study, it would 

have been interesting to compare peripheral and central swelling. Indeed, models 

predict oedema build-up when clearance under the lens exceeds 200 µm [5,27]. 

However peripheral clearance over the limbus hardly ever reaches values over 100 

µm and for that reason it would have been interesting to look into the possible 

difference in pachymetry values across a day of CL wear. 

TF osmolarity assessment is proven to be an effective diagnostic tool for DED 

[16-18, 40-43]. Tear osmolarity increases have been associated with CL wear in some 

studies [22, 44, 45], whereas other studies evidenced no changes [46, 47]. According 

to Efron and colleagues, it is thought increased tear evaporation inducing electrolyte 

concentration changes could explain tear osmolarity build up associated with CL wear 

[21, 48]. 
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Over the past decade, there has been a growing interest in using ScL for the 

protection of the ocular surface [49-57] due to advances in CL materials and oxygen 

permeability [29, 34, 53-57]. The vaulting of the cornea and conjunctiva is believed to 

prevent evaporation and the tear reservoir maintains direct contact between tears and 

corneal tissue in addition to playing the role of protecting the cornea from possible 

abrasion from eyelid conjunctiva irregularities or trichiasis [38, 58]. In the present study, 

only healthy presbyopic patients were recruited without any anterior segment signs or 

symptoms of dryness; baseline osmolarity levels were below 308mOsm/L, which are 

expected values for a normal population and this remained the case after lens 

insertion, even if a statistically significant increase in osmolarity occurred during the 8 

hours of wear. The end of the day difference found between the two lenses (305 

mOsm/L versus 306 mOsm/L for C-ScL and ScL respectively) even if statistically 

significant, is not clinically relevant since those values belong to the normal range. 

Further studies are needed to better assess the influence of lens diameter on the 

interactions with TF and ocular surface that could trigger osmolarity changes over a 

longer period of wear and in conditions such as DED. Furthermore, as suggested by 

Carrecedo et al., it would have been interesting to compare osmolarity measurements 

just before and after removal of the ScL as it is expected that the release of the tears 

held under the scleral lens vault might increase tear meniscus volume and thus modify 

the final value of osmolarity, giving further information about the retained volume of 

tears beneath the lens [59].  

 

CONCLUSIONS 

C-ScL lenses lead to less reduction in TMA than ScL, probably due to less 

impact of this lens type on conjunctival tissue from the reduced lens diameter as well 
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as  less induced hypoxic stress, as  it favours tear exchange and allows more direct 

oxygen transmission through the lens and a thinner TF beneath it. Osmolarity 

increased after CL insertion regardless of the lens type; however, these changes were 

not clinically significant. C-ScL and ScLs present a double advantage for this 

population as they can be a good optical platform for correcting presbyopia through 

multifocality as well as protecting the ocular surface by vaulting the cornea. Further 

studies are needed to better identify the benefits that ScLs could bring to an older 

population with anterior segment pathologies and to better understand the potential 

role of ScLs in restoring/maintaining ocular surface homeostasis over longer periods 

of time. 
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