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ABSTRACT 

Oxidation by reactive species can cause changes in protein function and affect cell signaling 

pathways. Phosphatase and tensin homolog (PTEN) is a negative regulator of the PI3K/AKT 

pathway and is known to be inhibited by oxidation, but its oxidation by the myleoperoxidase-

derived oxidant hypochlorous acid (HOCl) has not previously been investigated. PTEN-GST 

was treated with HOCl:protein ratios from 15:1 to 300:1.  Decreases in PTEN phosphatase 

activity were observed at treatment ratios of 60:1 and higher, which correlated with the loss of 

the intact protein band and appearance of high molecular weight aggregates in SDS-PAGE. 

LC-MSMS was used to map oxidative modifications (oxPTMs) in PTEN-GST tryptic peptides 

and label-free quantitative proteomics used to determine their relative abundance. Twenty 

different oxPTMs of PTEN were identified, of which 14 were significantly elevated upon 

HOCl treatment in a dose-dependent manner. Methionine and cysteine residues were the most 

heavily oxidized; the percentage modification depended on their location in the sequence, 

reflecting differences in susceptibility. Other modifications included tyrosine chlorination and 

dichlorination, and hydroxylations of tyrosine, tryptophan, and proline. Much higher levels of 

oxidation occurred in the protein aggregates compared to the monomeric protein for certain 

methionine and tyrosine residues located in the C2 and C-terminal domains, suggesting that 

their oxidation promoted protein destabilization and aggregation; many of the residues 

modified were classified as buried according to their solvent accessibility. This study provides 

novel information on the susceptibility of PTEN to the inflammatory oxidant HOCl and its 

effects on the structure and activity of the protein.  
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INTRODUCTION 

Hypochlorous acid (HOCl) is a reactive molecule produced by neutrophils as an 

antimicrobial oxidant through the action of the heme-containing enzyme myeloperoxidase 

(MPO) [1,2]. Its production is triggered by pro-inflammatory stimuli that activate the 

phagocytes, and it is increased in various pathophysiological states [3-5]. However, because of 

its significant oxidizing capacity, production of HOCl can also result in oxidative damage to 

biomolecules of the host tissue, including proteins. HOCl-modified proteins have been detected 

in diseased tissues, including atherosclerotic plaques [6], bowel tissue obtained from patients 

affected by inflammatory bowel disease [7], and the glomeruli of patients affected by 

membranous glomerulonephritis [8]. Interestingly, significant levels of myeloperoxidase 

expression have been found in brain tissue showing neuropathology, especially in amyloid 

plaques in Alzheimer’s disease [9] and may contribute to the pathology through protein 

oxidation. 

The actions of HOCl on amino acid residues, peptides and proteins have been extensively 

studied [10-12]. The most susceptible residues are the sulfur containing residues, with 

methionine being the most reactive [10].  The general susceptibility of methionine to oxidation 

has resulted in the evolution of protective mechanisms, including methionine sulfoxide 

reductases [13]. HOCl-mediated oxidation of thiol groups can cause the formation of reversible 

disulfide bonds potentially leading to protein crosslinking and inactivation [10], other non-

specific thiol oxidative products such as cysteine sulfinic and sulfonic acids [4,14,15], and a 

cyclic sulfonamide product that has been reported to be specific for HOCl oxidation [11]. 

Evidence of further oxidation of disulfides has also been reported, although the oxidation 

products are not well characterized [10,16,17]. Reaction of HOCl with the amino groups of 

proteins can result in the formation of unstable chloramines, which can either be rapidly 

reduced back to the amine or can break down to give aldehydes [18]. HOCl also reacts with 

tyrosine residues of proteins to form 3-chlorotyrosine and 3,5-dichlorotyrosine [19]; these 

reactions are less favored than those with amine groups and thiols, but chlorinated tyrosines 

are more stable end products of HOCl oxidation than chloramines [18], and have emerged as 

reliable biomarkers of protein damage by myeloperoxidase [20]. Free chlorinated amino acids 

have been identified in clinical samples from patients affected by various inflammatory 

conditions [18,21,22]. It has also been reported that HOCl-induced oxidative damage can cause 

irreversible formation of protein aggregates in vivo [23]; this has attracted interest as a possible 

factor contributing to the pathophysiology of conditions such as atherosclerosis [24]. The 

molecular reactions involved in this aggregate formation are not completely understood, but 
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reports of hypobromous acid protein oxidation induced aggregation [25] and of non-covalent 

aggregation of proteins on HOCl treatment [26] suggest that amino acid side chain oxidation 

may play a critical role. HOCl has also been shown to react with the heme-containing enzyme 

lactoperoxidase, causing heme destruction and aggregation of the protein [27]. 

Some studies suggest that HOCl is also involved in the modulation of redox-sensitive 

intracellular signaling pathways, although the major focus of redox signaling has been on 

hydrogen peroxide. For example, both MPO and HOCl have been implicated in the regulation 

of cancer-related cellular processes [28], and it has been reported that HOCl is involved in the 

selective elimination of transformed fibroblast through the induction of apoptosis [29]. 

Moreover, HOCl has been shown to promote the activation of several cellular pathways via the 

activation of key proteins such as the tumour suppressor p53 [30], members of the MAP kinase 

pathway [31] and the iron-regulatory protein 1 [28].  

The dual specificity phosphatase PTEN (Phosphatase and tensin homolog) is a negative 

regulator of the PI3K/Akt pathway and is involved in a number of cellular processes, including 

metabolism, apoptosis, cell cycle regulation, cell proliferation and survival [32,33]. Much of 

the research into the oxidative post-translational modifications (oxPTMs) of PTEN has been 

focused on the redox status of the Cys71 and Cys124 thiols in the active site of the phosphatase, 

which have been shown to form a reversible disulfide bond that inactivates the protein upon 

H2O2-mediated oxidation [34-36]. We recently showed that such oxidative modification of 

PTEN also altered its protein interactome, thus potentially affecting its role in signaling 

pathways [37]. However, no study to date has investigated the effect of HOCl on PTEN 

activity, or addressed the correlation between oxidation-induced irreversible inactivation and 

oxidative post-translational modifications (oxPTMs). As HOCl has been shown to induce 

protein modifications other than reversible thiol oxidation, it is likely that HOCl-specific 

modifications such as tyrosine chlorination are associated with a permanent alteration of PTEN 

phosphatase activity and may have adverse effects on its signaling pathways. 

The identification of HOCl-specific modifications to proteins is critical to understanding 

HOCl-mediated regulation of cellular networks [4]. The leading analytical technique for the 

analysis of oxPTMs is mass spectrometry, as it offers high levels of selectivity and 

reproducibility for the detection of oxPTMs such as tyrosine chlorination [38]. In this study, 

LC/MS-based quantitative mapping of HOCl-induced oxidative post-translational 

modifications (oxPTMs) of PTEN was carried out using a purified GST-tagged PTEN. The 

purified protein was treated with increasing HOCl concentrations and the modification status 

of protein residues was compared to the extent of inactivation of phosphatase activity and 



5 

 

aggregation. This functional proteomics approach provided novel information on HOCl-

induced oxPTMs of PTEN and their effects. 

 

MATERIALS AND METHODS 

Reagents 

All reagents were purchased from Fisher Scientific (Loughborough, UK) or Sigma-Aldrich 

Chemical Co. (Poole, UK) unless otherwise indicated. All solvents were of LC-MS grade and 

high purity water (>17 MOhms) was used at all times. 

HOCl concentration assay 

The sodium hypochlorite stock solution was assayed to determine its molar concentration 

as described previously [39] assuming a molar extinction coefficient of 350 M−1 cm−1 at λ = 

292 nm under basic conditions [40]. HOCl stock solution was then diluted in 50 mM phosphate 

buffer pH 7.4 to prepare the solutions for the oxidation experiment.  

Expression and purification of PTEN  

Glutathione S-transferase (GST)-PTEN cDNA was cloned, overexpressed and purified as 

described previously [37]. Essentially, E. coli DH5α were transformed with the PGEX-4T1-

PTEN-GST expression plasmid DNA, grown in the presence of 100 µg/mL ampicillin and 

protein expression was induced with isopropyl-β-D-1-thiogalactopyranoside. Harvested cells 

were extracted in 50 mM Tris pH 7.4 containing 2 mg/mL lysozyme, 2 mM EDTA, 2 mM 

DTT, 1% Triton, and supplemented with EDTA-free protease inhibitor cocktail (Roche 

Diagnostics GmbH, Mannheim, Germany) by ultrasonication and Potter homogenization 

before filtering through a 0.45 µm syringe filter (Millipore, Watford, UK). The GST-tagged 

PTEN was purified at 4ºC by binding to glutathione sepharose 4B beads (GE Healthcare, Little 

Chalfont, UK) and subsequently eluted with 50 mM Tris pH 7.4, 2 mM DTT, 2.7 mM KCl and 

increasing NaCl up to 500 mM. Prior to use the purified PTEN-GST was buffer-exchanged 

into 50 mM phosphate buffer and protein concentration was calculated by absorbance at 280 

nm using a Nanodrop c2000 UV-Vis Spectrophotometer (Thermo Fisher Scientific, Hemel 

Hempstead, UK), using an extinction coefficient of 88,130 M-1 cm-1. 

Oxidation and activity assay 

Purified, buffer-exchanged PTEN-GST was oxidized with 0, 0.5, 1, 2, 5 or 10 mM HOCl 

(molar ratios of 15:1, 30:1, 60:1, 150:1, and 300:1 respectively) for 1 hour at room temperature. 

The reaction was stopped by the addition of excess methionine and the phosphatase activity 

measured by monitoring hydrolysis of the artificial substrate 3-O-methylfluorescein phosphate 
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(OMFP) to 3-O-methylfluorescein (OMF), essentially as described by Tierno et al [41]. OMFP 

was freshly prepared in dimethyl sulfoxide (DMSO) at 20 mM and diluted in assay buffer 

immediately before use. The final assay contained 15 mM Tris-HCl pH 7.4, 75 mM NaCl, 1 

mM EDTA, 1 mM DTT, 160 µM OMFP, 20 µg of protein from the control or HOCl-oxidized 

samples, and was carried out in a 96-well plate with 250 µL volumes per well. The released 3-

O-methylfluorescein (OMF) fluorescence was determined with excitation at 485 nm, emission 

at 525 nm and cutoff at 515 nm continuously over 20 min using a Spectra MAX GEMINI XS 

Fluorescence plate reader (Molecular Devices Sunnyvale, CA, USA) controlled with the 

Softmax Pro® software. A standard curve generated by reading serial dilutions of OMF was 

used to determine protein specific activity. Aliquots of each treatment were also incubated with 

100 mM DTT for 15 min prior to assaying the phosphatase activity as described above. 

SDS PAGE and Image processing 

Fifty µg of HOCl-oxidized PTEN-GST samples were analyzed by SDS-polyacrylamide gel 

electrophoresis on a 12% gel using standard reducing conditions [42] followed by staining with 

InstantBlue (Expedeon, Cambridge, UK). Gel densitometry was performed with the Java-based 

image processing ImageJ [43]. For the full lane gel densitometry, gel images were first 

imported into Microsoft Powerpoint® and cropped so that white space was left between lanes 

corresponding to different experimental conditions. The images were saved as .png and opened 

in ImageJ. All images were converted to 8-bit, background subtracted using a rolling ball radius 

of 50 pixels and light background, and contrast enhanced by 0.4% of saturated pixels. The 

stacking gel was included in the crop selection of the full lanes. For the densitometry analysis 

of the single approximately 70 kDa PTEN band, the gel images were first imported into 

Microsoft Powerpoint® and cropped so that white space was left between lanes corresponding 

to different experimental conditions. Next, the lanes were further cropped to include only the 

protein band at 73 kDa corresponding to PTEN, cropping the image along the edge of the gel 

band. The images were then saved as .png and opened in ImageJ. All images were converted 

to 8-bit, and no background subtraction or contrast enhancing was performed. 

Protein in-gel digestion  

The Coomassie-stained bands corresponding to the intact protein and the protein aggregates 

were cut out from the gel. The gel pieces were washed twice with 500 µL of 100 mM NH4HCO3 

and twice with 100 mM NH4HCO3/50% acetonitrile. Reduction was performed adding 10 µL 

of 45 mM DTT (Sigma-Aldrich Chemical Co., Poole, UK) to 150 µL NH4HCO3 and incubating 

at 60ºC for 30 mins. Cysteine alkylation was performed by adding 10 µL of 100 mM 

iodoacetamide (Sigma-Aldrich Chemical Co., Poole, UK) to 150 and incubating at room 
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temperature for 30 min in the dark. The gel pieces were washed in 100 mM NH4HCO3/50% 

acetonitrile and incubated in 50 µL of 100% acetonitrile for 10 min. The gel pieces were then 

dried completely in a centrifugal evaporator and resuspended in 25 µL of 0.1 µg/µL trypsin 

(Trypsin Gold, Mass Spectrometry Grade, Promega, Southampton, UK) in 50 mM acetic acid 

or 20 µL of 0.042 µg/µL Lys-C (Endoproteinase LysC Sequencing Grade, Promega, 

Southampton, UK) resuspended in water. 100 µL 40 mM NH4HCO3/10% acetonitrile was 

added to the trypsin digests, while 40 µL of 25 mM Tris pH 8.5, 1mM EDTA were added to 

the LysC digests, and the digestions incubated overnight at 37 ºC. The gel pieces were pelleted 

by centrifugation and the supernatant was collected into a fresh tube. Further peptide extraction 

from the gel pieces was performed by adding 20 µL 5% formic acid and incubating at 37 ºC 

for 20 mins, followed by addition of 40 µL acetonitrile and incubation for 20 mins at 37 ºC. 

The gel pieces were pelleted by centrifugation, and the supernatant was removed and combined 

with the first supernatant; this procedure was repeated twice.  The peptide extracts were dried 

completely in a vacuum centrifuge and resuspended in a volume up to 50 µl of 98% H2O, 2% 

acetonitrile, 0.1% formic acid (HPLC solvent A) and loaded into screw top glass autosampler 

vials (Chromacol, Speck and Burke analytical, Clackmannanshire, UK). 

Liquid Chromatography-Mass Spectrometry (LC-MS) 

Peptides were separated and analyzed using an Ultimate 3000 system (Thermo, Heemel 

Hempstead, UK) coupled to a 5600 TripleTOF (Sciex, Warrington, UK) controlled by 

Chromeleon Xpress and Analyst software (TF1.5.1, Sciex, Warrington, UK). Enrichment and 

desalting of the peptides was achieved using a C18 pre-column (C18 PepMap™, 5 μm, 5 mm 

× 0.3 mm i.d. Dionex, Bellefonte, PA, US) washing for 4 min with aq. 2% acetonitrile, 0.1% 

formic acid at 30 μL/min. The peptides were then separated on a C18 nano-HPLC column (C18 

PepMap™, 5 μm, 75 μm i.d. × 150 mm, Dionex, Dionex, Camberley, UK) at 300 nL/min using 

a gradient elution running from 2% to 45% aqueous acetonitrile (0.1% formic acid) over 45 

min followed by a washing gradient from 45% to 90% aq. acetonitrile (0.1% formic acid) in 1 

min. The system was washed with 90% aq. acetonitrile (0.1% formic acid) for 5 min and then 

re-equilibrated to the starting solvent. Ionization of the peptides was achieved with spray 

voltage set at 2.4 kV, a source temperature of 150°C, declustering potential of 50 V and a 

curtain gas setting of 15. Survey scans were collected in positive mode from 350 to 1250 Da 

for 200 ms using the high resolution TOF-MS mode. Information-dependent acquisition (IDA) 

was used to collect MS/MS data using the following criteria: the 10 most intense ions with +2 

to +5 charge states and a minimum of intensity of 200 cps were chosen for analysis, using 

dynamic exclusion for 12s, and standard rolling collision energy setting. 
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Label-free quantification using Progenesis QI for Proteomics or manual Extracted Ion 

Chromatogram generation 

For the analysis of PTEN modifications, LC-MS runs obtained from the analysis of the 

HOCl-oxidized PTEN-GST samples were used to generate a total of four separate Progenesis 

QI experiments, two using the trypsin-digested samples and two using the LysC-digested 

samples. For each of these, one experiment was generated using the intact PTEN-GST band 

samples and the other using the protein aggregates sample. Each Progenesis experiment file 

was generated using a total of 18 LC-MS runs (three independent experiments across six 

different experimental conditions). The protein identification list was filtered to include only 

peptides corresponding to PTEN. To analyze PTEN modification, the conflicts between the 

detected modified peptides were handled as follows: firstly, the MS/MS fragmentation pattern 

of each conflicting peptide was analyzed by de novo sequencing as described below. Where 

the de novo sequencing was not sufficient to resolve the conflicts, the peptide showing the 

highest Mascot Ion score among the conflicting detected peptides was selected. In the event of 

conflicting peptides showing equal Mascot Ion score, the peptide showing the highest number 

of hits was selected. To calculate the relative modification, the summed abundance of the 

modified peptide was divided by the summed abundance of every other peptide containing the 

residue in question in the unmodified form (including peptides carrying other modifications). 

For the analysis of GST modifications, extracted ion chromatograms (XICs) were generated 

manually for modifications identified using an error tolerant MASCOT search against the 

complete SwissProt database.  

Database Searching 

Progenesis-generated .mgf files for both the PTEN peptides from the 70 kDa PTEN-GST 

band and the protein aggregates LC-MS runs were searched with Mascot. Variable 

modifications were searched for in groups of 3-5 modifications at a time. Tyrosine chlorination 

and dichlorination, cysteine dioxidation and trioxidation, methionine oxidation and 

dioxidation, proline oxidation, tyrosine oxidation, lysine oxidation, tryptophan oxidation, and 

histidine oxidation were specifically searched for as variable modifications. Carbamidomethyl 

cysteine was used as a fixed modification. The peptide tolerance used was +/- 0.8 Da, peptide 

charges of 2+, 3+ and 4+ was used, MS/MS ion search was selected. Other parameters for the 

searches were as follows: Enzyme: Trypsin; Peptide tolerance: ±0.8 Da; MS/MS tolerance: 

±0.8 Da; Peptide charge state: +2, +3 and +4; Max Missed cleavages: 1; #13C: 1; Quantitation: 

None; Instrument: ESI-QUAD-TOF; Data format: Mascot Generic; Experimental mass values: 

Monoisotopic; Taxonomy Homo Sapiens (Human).  To identify GST modifications, an error 
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tolerant search of the .wiff files generated for the LC-MS runs used for the ProgenesisQI 

analysis for PTEN was performed against the full SwissProt database with no fixed 

modifications, and methionine oxidation and cysteine carbamidomethylation as variable 

modifications. 

Solvent Accessible Surface Area Calculations 

Residues were classified as buried or exposed according to their solvent accessibility. Class 

assignment was predicted using GETAREA [44] with a probe diameter of 1.4A (equivalent to 

water) and the 1d5r.pdb 3D-data file from the PDB database. The higher the ratio the more 

solvent accessible the residue: ratios <20 are considered buried and >50 exposed.  Between 

these values residues show some solvent accessibility and were classed as intermediate. The 

N-terminal 13 residues and C-terminal tail (residue 352 onwards) are disordered in the crystal 

structure so NetsurfP (ver. 1.1) (http://www.cbs.dtu.dk/services/NetSurfP) was used to predict 

solvent accessibility using the PTEN FASTA sequence obtained from Uniprot. The software 

predicts relative solvent accessibility (RAS), absolute solvent accessibility (ASA) for each 

residue, and regions of the protein are divided between exposed and buried by using a cut-off 

of 25% exposed accessible surface area based on the ASAmax of each given amino acid. The Z-

score indicates the reliability of the prediction (data points with high Z-scores have lower 

predicted error compared to data points with low Z-scores) [45]. 

Statistical analysis 

Graph Pad Prism was used for the statistical analysis performed on all data presented in this 

paper. Activity, densitometry and modifications data within sample types (70 kDa monomer 

or Aggregates) were analyzed using one-way ANOVA with Dunnett’s multiple comparisons 

test, comparing the values of each treated sample to the mean of the untreated control. 

Comparisons between 70 kDa monomer or Aggregates at each treatment concentration were 

made using 2 way ANOVA with Sidak’s multiple comparisons test. Correlation between 

activity and densitometry data was performed using Pearson’s correlation analysis. To compare 

retained activity between two treated samples before and after the reducing wash, two-tailed 

unpaired Student’s t-test was used. P < 0.05 was considered significant. 

 

RESULTS  

Effect of HOCl oxidation on PTEN phosphatase activity  

Following buffer exchange into 50 mM phosphate buffer pH 7.4, PTEN-GST was treated 

for 1 hour with a 15:1, 30:1, 60:1, 150:1, or 300:1 molar ratio of HOCl to PTEN-GST. HOCl-

oxidized samples and untreated control were assayed for phosphatase activity using the OMFP 
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assay. Increasing molar ratios of HOCl to PTEN-GST were found to correlate with a decrease 

in PTEN phosphatase activity (Figure 1A), with significant loss of activity at ratios of 1:60 

and higher. In a separate set of experiments, after oxidation the samples were incubated with 

100 mM DTT for 15 min to assess recovery of activity following re-reduction of any inhibitory 

disulfides formed (Figure 1B). This high level of DTT was determined empirically to be 

necessary to recover full PTEN activity in a 15 minute incubation. Increased activity following 

the 1 hr DTT incubation was observed even in the control samples, suggesting adventitious 

oxidation of the active site to the disulfide form during purification of the protein. The specific 

activities measured for the reduced protein are in good agreement with those reported 

previously for PTEN [37,46].  The significant variation in control PTEN activity prior to 

treatment with high levels of DTT is likely to be indicative of the variable oxidation to form 

the regulatory disulfide occurring during purification, which was only fully reversed following 

treatment with high DTT, or alternatively some reduction of the disulfide by the 1 mM DTT 

during sample preparation for the assay.  At low levels of oxidant (15:1 and 30:1), no 

statistically significant loss in recoverable activity, and only a small increase in unrecoverable 

activity was observed (<10%), which was also not statistically significant.  At 60:1 molar ratio, 

statistically significant activity loss was observed (approximately 75%), of which only 

approximately 20% could be recovered by DTT treatment. At higher oxidant levels (150:1 and 

300:1) activity loss of >90% was observed, which was essentially non-recoverable by DTT 

treatment.  

 

SDS-PAGE and densitometry analysis of HOCl-oxidized PTEN 

HOCl-treated and control samples were analyzed by SDS-PAGE on a 12% gel with samples 

prepared using reducing sample loading buffer (under standard Laemmli conditions [42]) 

(Figure 2). The intensity of the PTEN-GST band (~70 kDa) decreased with increasing molar 

ratios of HOCl to PTEN-GST, especially above 60:1 (Figure 2A), while the protein staining 

at molecular weights > 100 kDa in both the resolving and stacking gel increased, most likely 

corresponding to protein aggregation. Samples treated with 150:1 and 300:1 molar ratios 

showed little or no PTEN-GST band. ImageJ was used to analyze the Coomassie stained gels 

quantitatively (Figure 2B). The signal intensity corresponding to the PTEN-GST main band 

decreased following a pattern similar to that of the unrecoverable phosphatase activity (Figure 

1B), with a statistically significant reduction in intensity for the sample treated with molar ratio 

of HOCl to PTEN-GST of 60:1 or greater. However, the total protein signal, generated by 
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summing the total signal intensity in the lane, was less affected, with the increase in aggregated 

protein effectively counterbalancing the loss of protein in the main band except in the sample 

treated with a 300:1 molar ratio of HOCl to PTEN-GST. 

 

Identification and quantification of HOCl-modified PTEN peptides 

For each of the HOCl treatments, the bands corresponding to the PTEN-GST main band 

(~70 kDa) and the areas of gel corresponding to protein aggregation (both in the resolving and 

stacking gel) were excised, in-gel digested with trypsin and LysC, and analyzed by LC-MS. 

LC-MS runs were quantitatively analyzed using Progenesis QI for Proteomics or manually 

generated XICs. For the identification of oxPTMs in PTEN, Mascot database searches were 

performed in multiple rounds on the aligned LC-MS runs, searching for no more than 5 

modifications at a time. Combining the data from the trypsin and Lys-C digestions, the PTEN 

sequence coverage was 85% for the 70kDa PTEN-GST band, and 82% for the aggregates. The 

PTEN amino acid sequence with oxidation sites and modifications detected is shown in Figure 

3. Some residues were missing from the analysis: for example, the catalytic T1-loop (amino 

acids 160-171) was missing from the analysis of the 70 kDa band and only partially detected 

in the aggregates (residues 164-172 were not detected). A total of 15 oxidatively modified 

PTEN amino acids were detected in the peptides generated from the 70 kDa bands and 20 in 

the protein aggregation area of the gel, with 10 different types of modification detected: 

methionine sulfoxide and sulfone, cysteine sulfinic and sulfonic acids, 4-hydroxyproline, 5-

hydroxytryptophan, 2-oxo-histidine, 3,4-dihydroxyphenylalanine, 3-chlorotyrosine and 3,5-

dichlorotyrosine. 

 

Validation of peptide quantification and identification 

The Progenesis QI screen view was used to assess the quality of feature matching and 

differential quantification for relevant peptides. Figure 4A shows a representative 3D image 

corresponding to the 3-chlorotyrosine modified peptide AQEALDFYGEVR (m/z = 716.33, 

charge = +2), corresponding to PTEN Tyr155 chlorination, in the trypsin-digested 70 kDa band 

across the six different HOCl treatments. This peptide was also detected in the HOCl-oxidized 

PTEN-GST aggregate bands and showed a dose-dependent increase in abundance. The 

modified peptide abundance was highest in the protein sample treated with a 300:1 molar ratio 

of HOCl to PTEN-GST and lowest in the untreated PTEN-GST sample (maximum fold change 

= 17.7, ANOVA p-value < 0.0001). 
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Peptide oxPTM(s) identified by statistical searching were validated by de novo sequencing. 

Figure 4B shows de novo sequencing of the modified PTEN peptide AQEALDFYGEVR with 

a 3-chlorotyrosine modification at Tyr155 as an example. This validation demonstrated that the 

Mascot cutoff score used when filtering the peptide feature identifications in Progenesis QI 

resulted in no false assignments of oxPTM(s).  

 

Quantitative mapping of HOCl-induced oxPTMs to PTEN 

Figure 5 shows the quantitative analysis of all of the oxPTMs of PTEN found in either the 

70 kDa protein or the aggregate bands, or both (full data are given in Supplementary table 1). 

Cysteine sulfinic acid was observed only in the 70 kDa monomeric band (Figure 5e), while 

Tyr240 oxidation, His272 oxidation, Trp274 oxidation and chlorinations of Tyr 377 and 379 

(Figure 5 l, o, p. r, s and t respectively) were only observed in aggregates.  After statistical 

analysis, 14 amino acids out of the 20 for which a modification was detected showed a 

significant increase for at least one HOCl:protein ratio and a fold change ≥ 2.5 in the level of 

oxidative modification on increasing HOCl treatment; these were Met35, Cys71, Met134, 

Cys136, Tyr155, Met205, Met239, Tyr240, Met270, His272, Trp274, Tyr315, Tyr377 and 

Tyr379.  The majority of these residues carried only one type of oxPTM; however, Met35 and 

Cys136 in the 70 kDa band, and Tyr377 in the aggregates showed two different types of 

oxPTMs.  

Methionine residues were, as expected, very susceptible to HOCl-mediated oxidation to 

both sulfoxide and sulfone, although in many cases significant methionine oxidation to the 

sulfoxide was also found in the untreated control. In the 70 kDa band Met134, Met239, and 

Met270 reached approximately a 70% modification with the highest HOCl concentrations 

compared to 10-20% in the untreated control. Met205 was up to 38% oxidized to sulfoxide in 

the aggregated protein but was not detected in the intact PTEN-GST band. Met35 showed 

increased oxidation to the sulfone, with approximately 10% sulfone generated upon >150:1 

treatment in both intact band and aggregates. HOCl treatment was also found to give extensive 

cysteine oxidation. Cys71, the PTEN active site regulatory cysteine, was significantly more 

oxidized to the sulfonic acid in treatments >150:1 in the 70 kDa band, and at treatments >30:1 

in the aggregates fraction. Treatments >150:1 caused a significant increase in Cys136 sulfonic 

acid (to 80% oxidized to in the 70 kDa band and >90% in the aggregates for all samples) and 

a low level of oxidation to the sulfinic acid was also detected at in the 70 kDa band. At >60:1 

treatment Cys250 was significantly more oxidized to sulfonic acid in all bands, with a peak 

modification level of approximately 50%. Interestingly, very low oxidation levels of the active 
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site cysteine (less than 2%) were detected for all oxidant concentrations (Supplementary 

figure 1a).  However, the level of the unmodified peptide containing this residue normalized 

against another peptide that did not contain easily oxidized residues (m/z 462.8, residues 190-

197, PVALLFHK) did drop to some extent with increasing oxidant concentration, especially 

in the 70 kDa band (Supplementary figure 1b), although a concomitant increase in this 

peptide carrying other modifications could not be detected. This is likely to be due to the low 

signal for this large peptide, coupled to the heterogeneity of oxidation that could occur at other 

residues within it.  

HOCl treatment also resulted in the chlorination of several tyrosine residues in both the 70 

kDa band and aggregate band. Tyr155 showed a maximum level of 10% chlorination in the 70 

kDa band and 15% in the aggregates upon 300:1 treatment, and Tyr315 gave a maximum 

modification level of approximately 10% in the 70 kDa band and 5% in the aggregates at higher 

level treatments. Tyr377 was significantly more modified in the aggregates but not in the intact 

PTEN-GST band, with a maximum of 15% chlorination and 10% dichlorination at 300:1 

treatment. In the aggregate fraction, but not in the intact band, significantly higher levels of 

hydroxylation of aromatic amino acids were detected, including tyrosine, histidine and 

tryptophan. Hydroxylation of tyrosine was significantly higher on HOCl treatment, although 

the overall levels were low (maximum approximately 6%). His272 and Trp274 showed a 

significant increase in hydroxylation at >150:1 treatment with maximal modification levels 

>20% in the samples treated more aggressively. Oxidative modification to the GST tag were 

also analyzed for the 70 kDa band and aggregates, and showed a similar behavior to PTEN, in 

that the extent of modification was very residue specific; example data are shown in 

Supplementary figure 2.  Chlorination of Tyr33 and oxidation of Trp41, both of which are 

located in the globular core of the protein, are found mainly in the aggregates, with up to 15% 

chlorination of Tyr33 detected, whereas oxidation of Met94 to sulfoxide and sulfone occurs 

approximately equally in both the 70 kDa and aggregate bands. 

 

DISCUSSION 

It is well-established that PTEN can be redox-regulated by formation of a disulphide 

between the catalytic Cys124 and the regulatory Cys71, and is therefore sensitive to oxidation 

by H2O2 [34,35,37], but the effect of the myeloperoxidase-derived oxidant HOCl on PTEN 

activity and amino acid residue modification has not previously been investigated. This study 

describes the effect of HOCl-induced oxidative modification of a GST-tagged PTEN. The 

oxidations were carried out at physiological pH (7.4) in order that amino acid side chains were 
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in the most relevant ionization states. The pKa of HOCl is 7.59, so at this pH the HOCl:OCl- 

ratio is approximately 1:1 [40]; in the absence of metal ions decomposition of HOCl to chlorate 

is reported to be slow [47], and thus the major route of HOCl consumption is likely to be 

reaction with protein amino acid side chains [10]. A range of HOCl to PTEN-GST molar ratios 

from 15:1 to 300:1 were found to cause inactivation of the protein, oxidations to a variety of 

amino acid residues, as well as chlorinations of tyrosine, which are recognized as specific 

markers of myeloperoxidase- and HOCl-induced protein damage [48-50]. DTT-reversible loss 

of activity was detected even at low oxidant concentrations, but these lower levels of treatment 

had little effect on DTT-recoverable protein activity, whereas at higher treatment ratios 

significant irreversible loss of activity was observed, in parallel with the formation of protein 

aggregates. The concentrations of HOCl that we found were required to observe these effects 

in vitro are significantly higher than the levels reported to be present in vivo of up to 400 µM 

[51].  We used the higher levels to induce the modifications that might occur in vivo under 

conditions of chronic inflammation where, while HOCl levels may be lower than we used in 

vitro, irreversible modifications could be introduced and accumulate over the extended 

exposure time.  

The activity of untreated PTEN could be increased by incubation with high levels of DTT, 

suggesting that the protein was already partially inactivated by disulphide bond formation 

during purification, and that the 1 mM DTT present in the phosphatase assay was insufficient 

to fully reverse this. In our hands, treatment with 100mM DTT for 15 minutes was necessary 

to recover maximal activity.  This resistance to re-reduction may partially explain the need for 

the thioredoxin-mediated reduction of PTEN in vivo [52].  Exposing PTEN to HOCl caused a 

dose-dependent decrease in PTEN activity that was reversible at low and partially reversible at 

an intermediate HOCl:PTEN ratio by high DTT concentrations (compatible with disulfide 

formation) but was not reversible at higher treatment concentrations. Despite good protein 

sequence coverage (80-85%), data on the peptide containing the catalytic Cys124 was 

challenging to obtain; the tryptic peptide is 41 residues long and contains many oxidizable 

residues (1 Tyr, 1 Phe, 3 His, 1 Lys and 1 Trp as well as cysteines 105 and 124).  We were able 

to detect and identify the unmodified peptide and to measure the % modification of the active 

site cysteine 124 to the sulfonic acid.  Unlike the other cysteine residue oxidations observed 

(e.g Cys136), the % modification of Cys124 was low (< 2%) and did not appear to increase 

significantly with increasing oxidant concentration. This low level of active site Cys124 

modification may indicate that this is protected from over oxidation by the rapid formation of 

a disulfide with the resolving Cys71.  
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It is also possible that modification of other residues could have contributed to the loss of 

activity. Of the 20 PTEN modified residues mapped and quantified, 14 were significantly more 

modified following HOCl treatment; these included methionine sulfoxide and sulfone, cysteine 

sulfinic and sulfonic acid, tyrosine hydroxylation, chlorination and dichlorination, histidine 

hydroxylation and tryptophan hydroxylation. These oxidation sites were mapped on the PTEN 

3D crystal structure obtained from the Protein Data Bank (PDB) ID 1D5R using the UCSF 

Chimera Molecular Modeling software to indicate the solvent exposure and their distribution 

throughout the protein structure (Figure 6A). The relationship between maximum extent of 

modification and fold-increase in modification was determined and plotted in Figure 6B.  It is 

interesting that residues divide roughly into 2 categories: those that could be highly modified 

but did not show large fold changes compared to the control, and those with very high fold 

increases in oxidation, which tended to occur at low levels in the controls. This is in agreement 

with the concept that residues can differ substantially in their susceptibility to oxidation 

depending on their nature and location in the protein [12,53,54].  Most methionine residues 

were found to be extensively modified, in agreement with previous findings on their 

susceptibility to HOCl [12,55], but their modification profile varied significantly in different 

locations. In view of the fact that there was no significant decrease in phosphatase activity until 

treatment ratios greater than 30:1, it can be concluded that modifications that increase at lower 

treatment ratios do not affect activity significantly. No individual residue monitored had an 

oxidation profile in the 70kD band that closely matched the activity profile, where the major 

loss occurred between 30: and 60:1 HOCl ratios. 

Loss of enzymatic activity could also result indirectly from general structural disruption and 

(partial) unfolding of the protein, which is likely to lead to aggregation owing to exposure of 

core hydrophobic residues [56]. There was a strong correlation between the loss of the 70 kDa 

band for the intact protein signal and the decrease in phosphatase activity (r = 0.936; p-value = 

0.006). In parallel, the formation of high molecular mass aggregates on polyacrylamide gels 

were observed following treatment with high HOCl ratios; these aggregates were resistant to 

solubilization by detergent and thiol-reducing reagents during the sample preparation. This 

could be due to formation of alternative covalent cross-links, such as dityrosine formation, or 

non-covalent aggregation that was resistant to solubilisation. For many residues, the profile of 

oxidation differed between the native protein and the aggregates; Met134 sulfone and Cys136 

sulfinic acid were only observed in the 70 kD band, whereas modifications of Met198, Met 

199, Met205, Tyr225, Tyr240, His 272, Trp274, Tyr377 and Tyr379 were only found in PTEN 

aggregates.  Cysteine sulfonic acids on Cys136, Cys250 and Cys71 also occurred at higher 
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proportions in the PTEN aggregates. In contrast, Met35 and Met239 sulfoxides occurred at 

very similar levels in both native and aggregated PTEN. 

The differences in levels of oxidation between native PTEN and PTEN aggregates raise 

interesting questions about how oxidation of specific residues affects the stability of the 

protein. It is not possible to determine cause and effect in this study, but the observation of 

substantial levels of certain modifications only in aggregates suggests that their formation may 

lead to destabilization of the native structure, and rapid conversion to an aggregated form. Most 

of the residues observed preferentially in the aggregates were located either in the C2 domain 

(Met 198-Trp274) or in the C-terminal tail (Tyr377 and Tyr379). As a stabilization role has 

been proposed for both the C2 domain of PTEN [57] and the C-terminal tail [58,59], it is 

possible that modification of these residues decreases protein stability and contributes to the 

increased PTEN aggregation observed at higher HOCl ratios. The presence of Met oxidation 

in oxidation-inducible protein aggregates has been reported previously, although is unclear 

whether the modification occurs before or after formation of the aggregates [60,61]. It is 

important to note that although a high % oxidation of certain residues (e.g. Met35 and Met270) 

was observed in aggregates at low HOCl treatment ratios, the amount of aggregates in these 

samples was very low, therefore the total amount of oxidation was also low. Finally, it is 

important to consider that as the PTEN was a fusion protein with GST and oxidative 

modifications to the GST were also observed in the aggregate bands, these could contribute to 

protein aggregation. 

Recent studies have reported that oxidation of surface-exposed redox-sensitive amino acids 

is a primary event that promotes protein misfolding and aggregation [62,63]. Consequently, 

the solvent accessibility of the modified residues was predicted with NetsurfP and is shown in 

Table 1 for all residues in Figure 5. Solvent accessibility data obtained for all 403 PTEN amino 

acids are reported in Supplementary Table 2. It was noted that the majority of the oxPTMs 

detected after HOCl treatment were residues that under normal folding conditions are 

inaccessible to the surface solvent and hence should be protected from oxidation [64].  

However, published data support the concept that HOCl can oxidize buried hydrophobic 

residues such as methionine [23,65], and Fu et al. suggest that oxidation of methionines 

converts them from a hydrophobic to a hydrophilic form, and would be expected to lead to 

large conformational changes [65]. The exceptions were Met205, Tyr240 and Tyr377, which 

mapped to regions of the proteins predicted to be solvent-exposed and were detected 

exclusively in the aggregates fraction. The profile of oxidation of Tyr240 and chlorination of 

Tyr377 matched better with aggregate formation than Met205, which was oxidized 
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substantially at lower treatment concentrations.  One explanation could be that HOCl-induced 

aggregation may occur through the initial oxidation of a small number of exposed surface 

residues, resulting in some disruption of the structure leading to exposure of more buried 

residues, which can then also become oxidized leading to further, more extensive unfolding 

and aggregation.   

The oxidative modifications observed in PTEN occur in a number of residues that have been 

reported to have functional effects and may therefore have physiological importance. Tyr155, 

which was chlorinated, has been shown by mutagenesis to be required for PTEN catalytic 

activity [66], as well as for the regulation of PTEN interaction with the E3 ubiquitin ligase 

WWP2, which mediates degradation of PTEN through an ubiquitination-dependent pathway 

[67]. It has been reported that mutation of either Tyr240 or Tyr315 causes a decrease in both 

phosphatase activity and PTEN tumour suppressing function [68]. Trp274 has been identified 

as a cancer-related mutation site in PTEN  [69] and Met 134 has previously been identified as 

a PTP mutational hotspot [70], so oxidative damage to these residues may be important in 

cancer progression, which is known to be linked to inflammation and oxidative imbalance [71]. 

In summary, we report for the first time the effect of HOCl-mediated damage on the activity 

and structure of the phosphatase PTEN. The LC-MS-based quantitative mapping identified 

oxPTMs at residues important for PTEN activity and protein-protein interactions, and 

suggested residues that contribute to oxidative unfolding and aggregation. However, a 

limitation of the study was that some residues located in the T1-loop, CBR3-loop, and the cα2 

helix were not observed, and also the method used in this study does not enable the 

identification of disulfide bonds, as they are reduced and alkylated during sample preparation. 

Data interpretation is also complicated by the fact that the oxidation process leads to 

heterogeneous products: while the overall sample has all the modifications observed, any single 

protein molecule may have only a sub-set of them. Bottom up proteomics provides information 

on a population of peptides from multiple protein molecules without to the possibility of 

determining which individual molecule they came from. This is a challenge that still needs to 

be overcome to understand fully the effect of oxPTMs on PTEN phosphatase activity and 

folding status. Nevertheless, the proteomics approach described holds a great potential for 

measuring the effects of oxidation on proteins. To understand fully the biological relevance of 

these effect will require the application of this approach to assess PTEN oxidation status in 

stressed or stimulated cells.  
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ABBREVIATIONS 

ASA, Absolute solvent accessibility; DTT, Dithiothreitol;  FC, Fold change; GSH, glutathione 

(reduced form); GST, Glutathione-S-transferase; LC, liquid chromatography; MS, Mass 

spectrometry;  OMFP, 3-O-methylfluorescein phosphate; oxPTMs, oxidative post-translational 

modifications;  PTEN, Phosphatase and tensin homolog; RAS, relative solvent accessibility. 
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FIGURE LEGENDS 

 

Figure 1. HOCl irreversibly inactivates PTEN at higher treatment ratios.  (A) The OMFP 

assay was used to monitor the effect of increasing HOCl to PTEN-GST molar ratios on PTEN 

specific activity. The results are presented as mean ± SD (n = 4). Statistical significance for 

different to the untreated control was assessed by one-way ANOVA followed by Dunnett’s 

correction for multiple comparisons. PTEN specific activity is expressed in nmol OMF/min/mg 

protein. (B) The effect of DTT reduction on the phosphatase activity of HOCl-oxidized PTEN 

was evaluated by comparing the specific activity retained by the HOCl-oxidized PTEN before 

and after recovery with 100 mM DTT. The results are presented as mean ± SD (n = 3). 

Statistical significance was assessed by two-tailed unpaired Student’s t-test for each 

HOCl:protein ratio. Untr = untreated; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 

0.0001; ns = not significant). 

 

Figure 2. SDS-PAGE/densitometry analysis versus phosphatase activity of HOCl-

oxidized PTEN-GST. (A) Representative (of n=3) Coomassie-stained gel of HOCl-oxidized 

PTEN-GST. 50 µg of protein was loaded per well. Untr = 0 mM HOCl; MW = molecular 

weight markers.  (B) The percentage signal intensity of the Coomassie-stained intact PTEN-

GST band and the full gel lane analyzed by densitometry were plotted versus the percentage 

phosphatase activity as a % of control. Statistical analysis was performed with one-way 

ANOVA followed by Dunnett’s multiple comparisons test before baseline correction. 

Densitometry data are presented as mean ± SD for N= 3 and activity data are presented as mean 

± SD for N = 4 (* = p < 0.05; *** = p < .001; **** = p < 0.0001). (C) Correlation between 

PTEN phosphatase activity and the protein signal on the gel corresponding to the PTEN-GST 

band or the full lane. The correlation coefficient r and the p-value were calculated using 

Pearson’s correlation analysis. 

 

 

Figure 3. PTEN sequence coverage and oxidation sites identified from LC-MS/MS data.  

For both intact band and aggregate samples, modified PTEN residues were identified by 

Mascot database search of LC-MS/MS data and confirmed by de novo sequencing. The amino 

acid numbers are indicated on the left and the oxidation sites are in bold red. The oxPTMs 
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detected are indicated by the symbol on top of each modified amino acid, and the position of 

each modification detected is indicated below each modified residue. 

 

Figure 4. Representative example of peak-picking data review and de novo sequencing 

validating quantification and identification of HOCl-modified peptides. (A) The 

representative 3D montage zoomed into the feature corresponding to the chlorinated peptide 

AQEALDFYGEVR, matched across the HOCl-oxidized PTEN samples. The peak picking area 

drawn by the software algorithm around the peaks (red line) corresponds to the peptide matched 

across the LC-MS runs aligned for quantification. (B) MS/MS spectrum of the doubly-charged 

ion at m/z 716.33 identified as AQEALDFY(Cl)GEVR. The tryptic peptide carried a 

chlorination on Tyr, corresponding to Tyr155 in PTEN. The y1 ion observed at m/z 175 was 

established as the C-terminal residue R, and used to determine the remaining amino acid 

residues by calculating the mass difference of adjacent y-ions (labeled using red arrows on the 

x-axis). By following the y-ion series residues Gln2-Arg12 were sequenced, while Ala1 could 

not be determined from the above MS/MS spectrum. The chlorinated tyrosine (Y(Cl)) 

corresponded to a mass shift of 197 Da (163 Da for tyrosine + 34 Da due to the addition of one 

chlorine). 

 

Figure 5. Relative quantitation of PTEN oxPTMs upon HOCl treatment.  Quantification 

of 20 different modifications detected in either the monomeric protein band at 70 kDa (light 

grey bars) or the high molecular weight aggregates isolated from the top of the gel (black bars), 

or both. Vertical axes are % modification and horizontal axes are the ratio of the oxidant to 

protein (Untr = no oxidant), and data are presented as mean ± SD (n = 3). Cysteine sulfinic 

acid (e) was only observed in the 70 kDa band whereas Tyr240 oxidation (l), His272 oxidation 

(o), Trp274 oxidation (p), Tyr377 chlorination (r) and dichlorination (s) and Tyr379 

chlorination (t) were only observed in aggregates. For comparison of the effect of oxidant 

treatments against the untreated control in either monomeric or aggregate protein one-way 

ANOVA with Dunnett’s multiple comparison test was performed (*=p< 0.05, **=p<0.01, 

***=p< 0.001, ****=p< 0.0001). For comparison of differences between the 70 kDa band and 

the high molecular weight aggregates, two-way ANOVA Sidak’s multiple comparison test was 

performed; these differences are discussed in the text. 
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Figure 6. Quantitative mapping of PTEN oxPTMs upon HOCl treatment. (A) The 3D 

structure map was generated using UCSF Chimera Molecular Modeling System software, 

highlighting oxidation sites corresponding to a significant increase in modification level for 

oxPTMs. Residues that were found to be significantly more modified upon HOCl treatment in 

both intact PTEN-GST and aggregates are highlighted in red. Met134, which was found to be 

significantly more oxidized only in the PTEN-GST intact band, is highlighted in cyan; Met205, 

His272, and Trp274, which only showed a significant increase modification levels in the 

aggregates fractions are highlighted in green. Tyr 377 was also significantly more oxidized in 

the PTEN aggregates upon HOCl treatment, but is not visible in the 3D model as this region is 

disordered. (B) The maximum fold change relative to the untreated control and the maximum 

percentage modification abundance were compared for each oxPTM detected in aggregates or 

monomeric PTEN bands. Triangles correspond to oxPTMs detected in the 70 kDa band; 

squares correspond to oxPTMs detected in aggregates. Different colours in the scatterplot 

correspond to different residues and modifications. Data is presented as the mean of the % 

maximum relative abundance versus maximum average fold change from three independent 

experiments for each detected modification.   
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Table 1. Surface accessibility of selected HOCl-modified residues 

Amino 

acid 

Amino 

acid 

position 

Total Apolar Backbone Sidechain Ratio 

(%) 

Class 

assignment a 

M 35 0 0 0 0 0 Buried 

C 71 5.06 0 3.39 1.66 1.6 Buried 

M c 134 0 0 0 0 0 Buried 

C 136 0 0 0 0 0 Buried 

Y 155 0 0 0 0 0 Buried 

M 198 0 0 0 0 0 Buried 

M 199 18.13 18.13 0 18.13 11.5 Buried 

P 204 0.12 0.12 0.12 0 0 Buried 

M d 205 63.81 58.97 5.15 58.66 37.1 Intermediate 

M 239 4.7 4.7 0 4.7 3 Buried 

Y 240 22.78 8.63 0 22.78 11.8 Buried 

C 250 42.32 18.24 7.29 35.03 34.2 Intermediate 

M 270 0.62 0 0.62 0 0 Buried 

H 272 31.53 18.71 0 31.53 20.4 Intermediate 

W 274 25.58 24.98 0 25.58 11.4 Buried 

Y 315 59.77 21.64 15.01 44.76 23.2 Intermediate 

      

Amino 

acid 

Amino acid 

position 

Relative Surface 

Accessibility 

Absolute Solvent 

Accessibility 

Z-Score Class 

assignment b 

Y 377 0.325 69.41 ‐1.253 Exposed 

Y 379 0.419 89.626 -1.669 Exposed 
 

a Class assignment was predicted using GETAREA [44] with a probe diameter of 1.4A 

(equivalent to water) and the 1d5r.pdb 3D-data file from the PDB database. The higher the 

ratio the more solvent accessible the residue. Ratios <20 are considered buried and >50 

exposed.  Intermediate values show some solvent accessibility. The C-terminal tail (residue 

352 onwards) is disordered in the crystal structure so for this region NetsurfP (ver. 1.1) 

(http://www.cbs.dtu.dk/services/NetSurfP) was used to predict solvent accessibility of PTEN 

residues using the PTEN FASTA sequence obtained from Uniprot [45].  
bClass assignment was predicted using a threshold of 50 exposed accessible surface area, based 

on the Absolute Solvent Accessibilitymax of a given amino acid.  
c Met134, which was found to be significantly more modified exclusively in the PTEN-GST 

intact band, is indicated in italics. 
d Residues that were found to be significantly more modified exclusively in the aggregates 

fraction are indicated in bold. 

 

 



Figure 1. HOCl irreversibly inactivates PTEN. (A) The OMFP assay was used to monitor the
effect of increasing HOCl to PTEN-GST molar ratios on PTEN specific activity. The results are
presented as mean ± SD (n = 4). Statistical significance for different to the untreated control
was assessed by one-way ANOVA followed by Dunnett’s correction for multiple comparisons.
PTEN specific activity is expressed in nmol OMF/min/mg protein. (B) The effect of DTT
reduction on the phosphatase activity of HOCl-oxidized PTEN was evaluated by comparing the
specific activity retained by the HOCl-oxidized PTEN before and after recovery with 100 mM
DTT. The results are presented as mean ± SD (n = 3). Statistical significance was assessed by
two-tailed unpaired Student’s t-test for each HOCl:protein ratio. Untr = untreated; * = p < 0.05;
** = p < 0.01; *** = p < 0.001; **** = p < 0.0001; ns = not significant).
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Figure 2. SDS-PAGE/densitometry analysis versus phosphatase activity of HOCl-oxidized PTEN-
GST. (A) Representative (of n=3) coomassie-stained gel of HOCl-oxidized PTEN-GST. 50 µg of
protein was loaded per well. Untr = 0 mM HOCl; MW = molecular weight markers. (B) The
percentage signal intensity of the Coomassie-stained intact PTEN-GST band and the full gel lane
analyzed by densitometry were plotted versus the percentage phosphatase activity as a % of
control. Statistical analysis was performed with one-way ANOVA followed by Dunnett’s multiple
comparisons test before baseline correction. Densitometry data are presented as mean ± SD for
N= 3 and activity data are presented as mean ± SD for N = 4 (* = p < 0.05; *** = p < .001; **** = p
< 0.0001). (C) Correlation between PTEN phosphatase activity and the protein signal on the gel
corresponding to the PTEN-GST band or the full lane. The correlation coefficient r and the p-value
were calculated using Pearson’s correlation analysis.
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Figure 3 PTEN sequence coverage and oxidation sites identified from LC-MS/MS
data. For both intact band and aggregate samples, modified PTEN residues were
identified by Mascot database search of LC-MS/MS data and confirmed by de
novo sequencing. The amino acid numbers are indicated on the left and the
oxidation sites are in bold red. The oxPTMs detected are indicated by the symbol
on top of each modified amino acid, and the position of each modification
detected is indicated below each modified residue.



Figure 4. Representative example of peak-picking data review and de novo sequencing validating
quantification and identification of HOCl-modified peptides. (A) The representative 3D montage
zoomed into the feature corresponding to the chlorinated peptide AQEALDFYGEVR, matched across the
HOCl-oxidized PTEN samples. The peak picking area drawn by the software algorithm around the peaks
(red line) corresponds to the peptide matched across the LC-MS runs aligned for quantification. (B)
MS/MS spectrum of the doubly-charged ion at m/z 716.33 identified as AQEALDFY(Cl)GEVR. The tryptic
peptide carried a chlorination on Tyr, corresponding to Tyr155 in PTEN. The y1 ion observed at m/z 175
was established as the C-terminal residue R, and used to determine the remaining amino acid residues
by calculating the mass difference of adjacent y-ions (labeled using red arrows on the x-axis). By
following the y-ion series residues Gln2-Arg12 were sequenced, while Ala1 could not be determined
from the above MS/MS spectrum. The chlorinated tyrosine (Y(Cl)) corresponded to a mass shift of 197
Da (163 Da for tyrosine + 34 Da due to the addition of one chlorine).
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Figure 5. Relative quantitation of PTEN oxPTMs upon HOCl treatment. Quantification of 20 different 
modifications detected in either the monomeric protein band at 70 kDa (light grey bars) or the high molecular 
weight aggregates isolated from the top of the gel (black bars), or both. Vertical axes are % modification and 
horizontal axes are the ratio of the oxidant to protein (Untr = no oxidant), and data are presented as mean ± SD (n 
= 3). Cysteine sulfinic acid (e) was only observed in the 70 kDa band whereas Tyr240 oxidation (l), His272 oxidation 
(o), Trp274 oxidation (p), Tyr377 chlorination (r) and dichlorination (s) and Tyr379 chlorination (t) were only 
observed in aggregates. For comparison of the effect of oxidant treatments against the untreated control in either 
monomeric or aggregate protein one-way ANOVA with Dunnett’s multiple comparison test was performed (*=p< 
0.05, **=p<0.01, ***=p< 0.001, ****=p< 0.0001). For comparison of differences between the 70 kDa band and 
the high molecular weight aggregates, two-way ANOVA Sidak’s multiple comparison test was performed; these 
differences are discussed in the text.
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Figure 6. Quantitative mapping of PTEN oxPTMs upon HOCl treatment. (A) The 3D structure map
was generated using UCSF Chimera Molecular Modeling System software, highlighting oxidation sites
corresponding to a significant increase in modification level for oxPTMs. Residues that were found to
be significantly more modified upon HOCl treatment in both intact PTEN-GST and aggregates are
highlighted in red. Met134, which was found to be significantly more oxidized only in the PTEN-GST
intact band, is highlighted in cyan; Met205, His272, and Trp274, which only showed a significant
increase modification levels in the aggregates fractions are highlighted in green. Tyr 377 was also
significantly more oxidized in the PTEN aggregates upon HOCl treatment, but is not visible in the 3D
model as this region is disordered. (B) The maximum fold change relative to the untreated control and
the maximum percentage modification abundance were compared for each oxPTM detected in
aggregates or monomeric PTEN bands. Triangles correspond to oxPTMs detected in the 70 kDa band;
squares correspond to oxPTMs detected in aggregates. Different colours in the scatterplot correspond
to different residues and modifications. Data is presented as the mean of the % maximum relative
abundance versus maximum average fold change from three independent experiments for each
detected modification.
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Verrastro et al. Supplementary Tables for  

“The effect of HOCl-induced modifications on PTEN structure and function” 

 

 

Supplementary Table 1.  Identification and quantification of PTEN oxidative modifications in the 

PTEN-GST intact band and aggregates following HOCl oxidizing treatment. 

Peptide 
sequencea 

Enzyme
b Modc 

Fraction 
detectedd  

HOCl:PTEN-GST molar ratios 

15:1 30:1 60:1 150:1 300:1 

TVEEPSNPEA
SSSTSVTPDV
SDNEPDHYR 

 
Trypsin Tyr377 

CHLOR* 
Aggregates 

FC 0 Infinity  Infinity Infinity Infinity 

p-value >0.9999 >0.9999 0.6843 0.9908 0.0417 

% 0.00 0.00 0.00 0.01 0.29 

FMYFEFPQPL

PVCGDIK 
Trypsin 

Tyr240 
OX* 

Aggregates 

FC 10.06 47.11 84.95 323.25 1031.21 

p-value 0.9997 0.3521 0.0196 0.0001 
< 
0.0001 

% 0.07 0.60 1.20 2.27 7.24 

IYNLCAERHY

DTAK 
LysC 

Cys71 
TRIOX* 

PTEN-GST 
band 

FC 4.16 8.04 70.11 310.14 405.21 

p-value > 0.9999 0.9998 0.5733 0.0003 <0.0001 

% 0.12 0.24 2.08 9.20 12.02 

FMYFEFPQPL

PVCGDIKVEFF
HK 

LysC 
Tyr240 
OX* 

PTEN-GST 
band 

FC 4.20 5.67 28.18 197.52 226.35 

p-value > 0.9999 0.9999 0.9868 0.0252 0.0107 

% 0.20 0.27 1.33 9.34 10.70 

ADNDKEYLVL

TLTK 
Trypsin 

Tyr315 
CHLOR* 

PTEN-GST 
band 

FC 1.22 4.82 25.45 88.76 156.24 

p-value > 0.9999 0.9568 0.0087 < 0.0001 
< 
0.0001 

%  0.07 0.27 1.44 5.03 8.85 

Aggregates 

FC 0.92 0.86 0.80 3.66 3.56 

p-value 0.9999 0.9985 0.9801 0.0131 0.0164 

%  1.39 1.21 2.06 5.52 5.38 

GRTGVMICAY

LLHRGK 
LysC 

Cys136 
TRIOX* 

PTEN-GST 
band 

FC 0.91 1.22 11.59 132.57 131.08 

p-value > 0.9999 > 0.9999 0.9958 0.0039 0.0042 

% 0.12 0.17 1.58 18.10 17.90 

Aggregates 

FC 0.84 0.90 1.48 2.08 2.47 

p-value 0.9381 0.9874 0.2071 0.0023 0.0002 

% 23.61 25.04 41.39 58.32 69.00 

TVEEPSNPEA
SSSTSVTPDV
SDNEPDHYR 

 
Tyr377 
DICHL* 

Aggregates 

FC 6.31 9.78 15.99 41.92 71.31 

Trypsin p-value 0.9916 0.6690 0.4131 0.0305 0.0006 

 %  0.92 2.32 3.10 6.09 10.35 

FMYFEFPQPL
PVCGDIK 

 

Cys250 
TRIOX* 

PTEN-GST 
band 

FC 1.20 5.64 33.08 51.84 38.82 
 p-value > 0.9999 0.9899 0.0449 0.0022 0.0176 

Trypsin %  1.60 7.52 44.11 69.12 51.76 
 

Aggregates 

FC 1.77 2.26 3.66 13.20 16.48 
 

p-value 0.9674 0.2470 0.0020 < 0.0001 
< 
0.0001 

 %  5.34 11.02 22.54 39.74 49.61 

YQEDGFDLDL
TYIYPNIIAMGF

PAER 
Trypsin 

Met35 
DIOX* 

PTEN-GST 
band 

FC 1.05 1.07 1.98 14.78 20.67 

p-value > 0.9999 > 0.9999 0.9982 0.0059 0.0003 

%  0.36 0.37 0.69 5.12 7.16 

Aggregates  

FC 5.11 7.48 8.31 23.39 42.33 

p-value 0.7291 0.2585 0.1209 0.0003 
< 
0.0001 

%  1.13 1.84 2.24 5.18 9.37 

MFHFWVNTFF

IPGPEETSEK 
LysC 

Met270 
OX* 

PTEN-GST 
band 

FC 0.27 0.61 1.92 41.78 27.76 

p-value 0.9999 > 0.9999 0.9999 0.0021 0.0355 

%  0.10 0.24 0.75 16.40 10.89 

AQEALDFYGE

VRTRDK 
LysC 

Tyr155 
CHLOR* 

PTEN-GST 
band 

FC 0.81 1.28 1.71 20.14 24.67 

p-value > 0.9999 > 0.9999 0.9998 0.0056 0.0011 

% 0.02 0.02 0.03 0.39 0.47 

Aggregates 

FC 0.64 0.84 1.65 3.21 2.28 

p-value 0.9864 0.9997 0.864 0.0546 0.3753 

% 0.59 0.76 1.50 2.92 2.08 



AQEALDFYGE

VR 
Trypsin 

Tyr155 
CHLOR* 

PTEN-GST 
band 

FC 0.68 0.84 1.34 8.91 22.48 

p-value 0.9997 0.9999 0.9997 0.0035 
< 
0.0001 

%  0.32 0.39 0.62 4.14 10.45 

Aggregates 

FC 0.91 0.77 0.57 1.52 3.42 

p-value 0.9885 0.2165 0.2214 0.1095 

< 
0.0001 

%  4.70 2.94 2.96 7.91 17.75 

TGVMICAYLLH

R 

 
Cys136 
DIOX* 

PTEN-GST 
band 

FC 2.68 3.71 12.40 15.39 3.63 
Trypsin p-value 0.9952 0.9628 0.1075 0.0352 0.9672 
 %  0.45 0.62 2.06 2.56 0.60 

GRTGVMICAY

LLHRGK 
Lys C 

Met134 
OX* 

PTEN-GST 
band 

FC 1.25 1.13 2.58 14.14 12.15 

p-value 0.8655 0.8724 0.8247 0.0178 0.0065 

% 3.44 3.11 7.07 38.81 33.36 

TGVMICAYLLH

R 

 

Cys136 
TRIOX* 

PTEN-GST 
band 

FC 0.87 2.31 5.75 8.41 7.85 

 p-value 0.9999 0.6478 0.0040 0.0001 0.0002 

 %  9.22 24.41 60.64 88.72 82.82 

Trypsin 

Aggregates 

FC 1.00 1.01 1.04 1.11 1.12 

 p-value > 0.9999 0.5898 0.6901 0.0064 0.0048 

 %  87.18 90.42 90.05 97.07 97.46 

MFHFWVNTFF

IPGPEETSEK 

 

His272 
OX* 

Aggregates 

FC 1.46 1.68 1.68 4.13 5.47 

Trypsin 
p-value 0.8268 0.5526 0.6474 0.0002 

< 
0.0001 

 %  5.50 6.33 6.05 15.58 20.65 

TGVMICAYLLH

R 
Trypsin 

Met134 
OX* 

PTEN-GST 
band 

FC 0.91 1.64 4.01 5.05 4.89 

p-value 0.9998 0.7326 0.0013 0.0001 0.0002 

 % 13.07 23.52 57.49 72.39 70.11 

Aggregates 

FC 1.03 1.07 1.00 1.10 1.19 

p-value 0.9779 > 0.9999 0.5731 0.2360 0.0138 

%  65.55 63.97 68.18 70.35 75.81 

MFHFWVNTFF

IPGPEETSEK 

 

Met270 
OX* 

PTEN-GST 
band 

FC 1.13 1.08 1.47 4.78 4.86 

 
p-value 0.9985 0.9997 0.7986 < 0.0001 

< 
0.0001 

Trypsin %  17.90 17.09 23.27 75.51 76.89 
 

Aggregates 

FC 1.12 1.17 1.23 1.22 1.05 
 p-value 0.3084 0.0172 0.0019 0.0227 0.8982 
 %  58.51 64.31 68.59 63.78 55.06 

MFHFWVNTFF

IPGPEETSEK 

 

Trp274 
OX* 

Aggregates 

FC 1.16 1.20 1.04 2.63 4.86 

Trypsin 
p-value 0.9926 0.9999 0.9997 0.0065 

< 
0.0001 

 %  8.88 7.98 7.00 20.10 37.18 

GRTGVMICAY

LLHRGK 
LysC 

Cys136 
DIOX* 

PTEN-GST 
band 

FC 0.00 0.01 0.12 3.49 3.35 

p-value 0.9952 0.9628 0.1075 0.0352 0.9672 

% 0.00 0.00 0.11 3.14 3.01 

MMFETIPMFS

GGTCNPQFVV
CQLK 

 

Met205 
OX* 

PTEN-GST 
band 

FC 0.95 0.58 0.57 0.23 2.43 
 p-value > 0.9999 0.9985 0.9985 0.9799 0.8160 
Trypsin %  0.03 0.02 0.02 0.01 0.09 
 

Aggregates 

FC 2.02 2.64 2.72 3.41 3.22 

 p-value 0.5278 0.1311 0.0493 0.0254 0.0398 

 %  22.71 30.59 35.29 38.40 36.30 

FMYFEFPQPL

PVCGDIK 

 

Met239 
OX* 

PTEN-GST 
band 

FC 1.09 1.26 1.80 3.18 3.34 

 
p-value 0.9968 0.8082 0.0483 < 0.0001 

< 
0.0001 

Trypsin % 23.06 26.67 38.17 67.24 70.65 
 

Aggregates 

FC 1.21 1.40 1.56 1.97 2.31 
 

p-value 0.6932 0.0457 0.0354 0.0010 
< 
0.0001 

 % 35.0135 44.9442 45.7299 56.9346 66.5483 

YQEDGFDLDL
TYIYPNIIAMGF

PAER 

 
Met 35 
OX* 

PTEN-GST 
band 

FC 1.05 0.99 1.34 1.80 1.74 
 p-value 0.9942 0.9999 0.0950 0.0003 0.0006 

 %  52.79 49.61 67.18 90.22 87.34 



Trypsin 

Aggregates  

FC 0.92 0.99 1.06 1.11 1.24 
 p-value 0.9433 0.9819 0.9998 0.8455 0.2735 
 %  62.35 72.23 66.89 75.57 84.18 

IYNLCAER 

 

Cys71 
TRIOX 

PTEN-GST 
band 

FC 1.20 2.62 3.58 4.20 3.42 
 p-value 0.9998 0.7290 0.3467 0.1874 0.4026 
Trypsin %  10.43 22.85 31.23 36.62 29.79 
 

Aggregates  

FC 0.88 0.79 0.74 2.33 2.53 
 p-value 0.9998 0.9971 0.9725 0.3804 0.2653 
 %  3.72 3.14 2.37 9.84 10.70 

TGVMICAYLLH

R 

 

Met134 
DIOX 

PTEN-GST 
band 

FC 0.85 2.59 1.20 0.38 1.01 

Trypsin 
p-value 0.9997 0.1617 0.9985 0.8523 

> 
0.9999 

 %  13.07 23.52 57.49 72.39 70.11 

GRTGVMICAY

LLHRGK 
LysC 

Met134 
DIOX 

Aggregates 

FC 1.01 0.75 1.02 2.42 2.30 

p-value > 0.9999 0.9811 > 0.9999 0.0576 0.0866 

% 1.97 1.47 1.99 4.73 4.50 

MMFETIPMFS

GGTCNPQFVV
CQLK 

 

Met198 
OX 

PTEN-GST 
band 

FC 0.96 1.32 1.27 1.09 1.36 
 p-value 0.9999 0.8843 0.9388 0.9997 0.8426 
 %  0.35 0.48 0.46 0.40 0.49 
Trypsin 

Aggregates 

FC 1.53 1.82 1.70 2.00 1.93 
 p-value 0.5635 0.3338 0.2112 0.1034 0.1328 
 %  38.16 42.23 45.30 49.67 48.18 

MMFETIPMFS

GGTCNPQFVV
CQLK 

 

Met199 
OX 

PTEN-GST 
band 

FC 0.96 1.32 1.26 1.09 1.42 
 p-value 0.9999 0.8920 0.9484 0.9989 0.7536 
 %  0.35 0.48 0.46 0.40 0.52 
Trypsin 

Aggregates 

FC 1.57 1.93 1.63 1.86 1.92 
 p-value 0.5032 0.6319 0.1596 0.5086 0.4257 
 %  30.82 31.98 33.18 36.44 37.67 

MMFETIPMFS

GGTCNPQFVV
CQLK 

 

Pro204 
OX 

PTEN-GST 
band 

FC 1.13 1.39 1.37 0.53 0.70 
 p-value 0.9910 0.6105 0.6534 0.4490 0.7928 
Trypsin %  33.36 41.09 40.49 15.50 20.54 
 

Aggregates 

FC 0.94 0.87 0.97 0.88 0.97 
 p-value 0.9965 0.9998 0.9631 0.9543 0.9997 
 %  29.24 30.40 34.63 27.57 30.16 

MMFETIPMFS

GGTCNPQFVV
CQLK 

 
Met205 
DIOX 

PTEN-GST 
band 

FC 1.10 0.63 0.37 0.39 0.85 
Trypsin p-value 0.9998 0.9644 0.7835 0.8006 0.9996 
 %  0.09 0.05 0.03 0.03 0.07 

VKIYSSNSGPT

R 

 
Tyr225 
CHLOR 

Aggregates 

FC 0.99 0.96 1.14 1.35 1.40 
Trypsin p-value > 0.9999 0.8106 0.5871 0.1363 0.0780 
 %  67.54 77.73 81.32 91.78 95.16 

MFHFWVNTFF
IPGPEETSEK 

 
Pro281 
OX 

PTEN-GST 
band 

FC 0.37 0.77 0.65 0.00 0.00 
Trypsin p-value 0.8137 0.9960 0.9770 0.4673 0.4673 
 %  0.12 0.25 0.21 0.00 0.00 

YSDTTDSDPE

NEPFDEDQHT
QITK 

Trypsin 
Tyr379 
CHLOR 

Aggregates 

FC 7.37 12.40 14.83 170.06 459.86 

p-value > 0.9999 0.9999 0.9107 0.8143 0.0944 

%  0.26 0.53 4.80 6.03 16.31 

GRTGVMICAY

LLHRGK 
LysC 

Met134 
DIOX 

Aggregates 

FC 1.01 0.75 1.02 2.42 2.30 

p-value > 0.9999 0.9811 > 0.9999 0.0576 0.0866 

% 1.97 1.47 1.99 4.73 4.50 

a Peptide sequence obtained from the Mascot database search of LC-MS runs aligned on 

Progenesis QI, carrying the modified residue (in red). 

b Enzyme used for the digestion of  

c Gel Fraction corresponding to the LC-MS run where the peptide was detected 

d Modification type and position within the protein amino acid sequence 



F.C = fold change relative to untreated control; p-value was returned by one-way ANOVA 

with Dunnett’s multiple comparison test for each modification detected following relative 

quantification. % = average percentage abundance of the modification;  

Bold indicates more than 2.5-maximum fold change in abundance of the modification in at 

least one HOCl to PTEN-GST molar ratio used; * indicates modification with a statistically 

significant increase in abundance, and the significant p-values are highlighted in bold red. 

Infinity indicates FC values obtained when the abundance of the modification in the untreated 

control was 0. 

The data was obtained from the analysis of PTEN-GST intact band and protein aggregates 

features present in three independent HOCl oxidation experiments.  

Ranking of modifications with * is based on maximum FC, highlighted in bold blue. 

Ranking of other modification is based on their position within PTEN structure. 

  



Supplementary Table 2. Surface accessibility of PTEN residues 

 

AAa AA positionb RSAc ASAd Z-Score Class assignment 

M 1 0.625 125.143 ‐2.026 Exposed 

T 2 0.425 58.892 ‐0.289 Exposed 

A 3 0.495 54.582 ‐0.833 Exposed 

I 4 0.307 56.832 0.949 Exposed 

I 5 0.162 30.062 ‐0.631 Buried 

K 6 0.274 56.465 0.904 Buried 

E 7 0.421 73.619 0.447 Exposed 

I 8 0.103 19.073 0.663 Buried 

V 9 0.098 15.124 ‐0.324 Buried 

S 10 0.416 48.708 ‐0.458 Exposed 

R 11 0.494 113.24 0.467 Exposed 

N 12 0.345 50.523 0.018 Exposed 

K 13 0.441 90.631 ‐0.405 Exposed 

 

AAa AA 
positionb 

Total Apolar Backbone Sidechain Ratio (%) Class 
assignment 

R 14 223.13 109.05 27.57 195.57 100 e 

R 15 105.18 39.11 7.18 98 50.1 e 

Y 16 102.3 64.06 4.34 97.96 50.7 e 

Q 17 71.89 8.43 17.93 53.96 37.6 i 

E 18 31.36 10.42 9.65 21.71 15.4 b 

D 19 100.54 37.05 30.35 70.19 62.1 e 

G 20 68.42 35.77 68.42 0 78.5 e 

F 21 83.85 69.03 29.11 54.74 30.4 i 

D 22 96.71 29.6 14.88 81.83 72.4 e 

L 23 13.41 13.41 1.75 11.66 8 b 

D 24 32.49 11.81 0.24 32.25 28.5 i 

L 25 0.49 0.1 0.39 0.1 0.1 b 

T 26 3.44 3.44 2.02 1.42 1.3 b 

Y 27 39.59 38.2 1.08 38.51 19.9 b 

I 28 6.52 0 6.52 0 0 b 

Y 29 36.99 36.21 5.36 31.63 16.4 b 

P 30 114.09 109.51 11.45 102.64 97.6 e 

N 31 41.62 9.54 0.25 41.38 36.2 i 

I 32 5.99 5.99 0 5.99 4.1 b 

I 33 0 0 0 0 0 b 

A 34 0 0 0 0 0 b 

M 35 0 0 0 0 0 b 

G 36 2.05 2.05 2.05 0 2.4 b 

F 37 7.1 5.07 2.05 5.05 2.8 b 

P 38 0 0 0 0 0 b 

A 39 1.04 0.74 0.36 0.69 1.1 b 

E 40 93.03 29 26.3 66.72 47.3 i 



R 41 190.84 87.36 10.07 180.77 92.5 e 

L 42 79.45 75.1 4.35 75.1 51.4 e 

E 43 123.71 46.35 13.95 109.77 77.7 e 

G 44 66.83 47.58 66.83 0 76.6 e 

V 45 91.43 83.93 14.75 76.68 62.7 e 

Y 46 29.42 24.85 5.07 24.36 12.6 b 

R 47 180.11 74.06 15.84 164.27 84 e 

N 48 5.78 3.21 3.16 2.63 2.3 b 

N 49 59.73 5.01 0.63 59.1 51.7 e 

I 50 4.56 4.56 0 4.56 3.1 b 

D 51 64.65 14.92 1.62 63.03 55.8 e 

D 52 45.27 3.52 0 45.27 40.1 i 

V 53 0 0 0 0 0 b 

V 54 23.14 23.14 0 23.14 18.9 b 

R 55 131.63 69.96 6.77 124.86 63.9 e 

F 56 0 0 0 0 0 b 

L 57 0 0 0 0 0 b 

D 58 45.25 27.53 5.98 39.27 34.8 i 

S 59 80.59 52.74 41.11 39.48 51 e 

K 60 97.55 63.22 29.79 67.76 41.2 i 

H 61 24.44 18.04 6.48 17.97 11.6 b 

K 62 149.21 108.18 5.16 144.04 87.6 e 

N 63 92.69 35.83 9.85 82.83 72.5 e 

H 64 61.27 42.64 0.07 61.2 39.6 i 

Y 65 1.72 0.14 1.58 0.14 0.1 b 

K 66 22.24 2.34 0 22.24 13.5 b 

I 67 0 0 0 0 0 b 

Y 68 0 0 0 0 0 b 

N 69 0.49 0 0.02 0.46 0.4 b 

L 70 0 0 0 0 0 b 

C 71 5.06 0 3.39 1.66 1.6 b 

A 72 40.75 16.66 26.28 14.47 22.3 i 

E 73 80.91 45.69 30.71 50.2 35.6 i 

R 74 130.96 56.78 6.42 124.54 63.7 e 

H 75 76.3 55.17 19.37 56.93 36.8 i 

Y 76 6.69 5.9 6.69 0 0 b 

D 77 113.28 34.01 9.09 104.2 92.2 e 

T 78 48.42 9.98 8.76 39.66 37.3 i 

A 79 84.99 66.63 34.64 50.35 77.6 e 

K 80 101.7 78.35 14.97 86.73 52.7 e 

F 81 4.85 0 4.85 0 0 b 

N 82 90.64 30.88 15.63 75.01 65.6 e 

C 83 39.95 22.13 36.7 3.24 3.2 b 

R 84 149.84 75.13 7.8 142.04 72.7 e 

V 85 8.02 3.41 4.62 3.4 2.8 b 

A 86 9.48 9.48 1.63 7.85 12.1 b 

Q 87 94.74 16.57 21.95 72.79 50.7 e 

Y 88 30.29 18.54 0.61 29.67 15.4 b 

P 89 67.22 54.69 12.53 54.69 52 e 



F 90 14.04 14.04 5.68 8.35 4.6 b 

E 91 74.36 34.38 0.29 74.06 52.5 e 

D 92 54.59 24.33 8.96 45.63 40.4 i 

H 93 114.36 90 3.99 110.37 71.4 e 

N 94 23.66 2.24 0.71 22.95 20.1 i 

P 95 8.23 1.27 6.97 1.27 1.2 b 

P 96 1.63 0.99 1.63 0 0 b 

Q 97 97.29 22.52 2.2 95.09 66.2 e 

L 98 4.54 3.5 1.04 3.5 2.4 b 

E 99 105.29 34.87 8.27 97.02 68.7 e 

L 100 41.59 41.57 3.01 38.58 26.4 i 

I 101 0.31 0.31 0 0.31 0.2 b 

K 102 96.77 73.04 0.03 96.73 58.8 e 

P 103 62.95 60.57 4.2 58.75 55.8 e 

F 104 0 0 0 0 0 b 

C 105 0 0 0 0 0 b 

E 106 76.23 30.42 4.36 71.87 50.9 e 

D 107 32.68 16.81 10.04 22.64 20 i 

L 108 0 0 0 0 0 b 

D 109 41.6 0.35 0.13 41.47 36.7 i 

Q 110 93.42 34.86 2.28 91.14 63.4 e 

W 111 24.48 24.48 0 24.48 10.9 b 

L 112 18.33 7.22 11.12 7.22 4.9 b 

S 113 70.47 51.28 29.25 41.22 53.3 e 

E 114 108.9 61.82 22.8 86.1 61 e 

D 115 62.26 25.98 38.04 24.22 21.4 i 

D 116 93.7 18.6 33.31 60.39 53.4 e 

N 117 25.01 2.72 2.72 22.29 19.5 b 

H 118 68.86 55.41 0 68.86 44.5 i 

V 119 6.42 6.42 0 6.42 5.2 b 

A 120 0 0 0 0 0 b 

A 121 0.01 0.01 0 0.01 0 b 

I 122 0 0 0 0 0 b 

H 123 0 0 0 0 0 b 

C 124 4.86 0 0 4.86 4.8 b 

K 125 39.52 17.97 2.61 36.9 22.4 i 

A 126 46.97 40.96 8.24 38.73 59.7 e 

G 127 1.19 0 1.19 0 1.4 b 

K 128 87.8 83.55 0.27 87.53 53.2 e 

G 129 10.09 8.85 10.09 0 11.6 b 

R 130 7.19 3.11 0.56 6.63 3.4 b 

T 131 0 0 0 0 0 b 

G 132 0 0 0 0 0 b 

V 133 0 0 0 0 0 b 

M 134 0 0 0 0 0 b 

I 135 0 0 0 0 0 b 

C 136 0 0 0 0 0 b 

A 137 0 0 0 0 0 b 

Y 138 6.39 2.45 0 6.39 3.3 b 



L 139 1.95 1.95 0 1.95 1.3 b 

L 140 
10.76 1.63 9.16 1.6 1.1 b 

H 141 
48.45 23.73 18.54 29.9 19.3 b 

R 142 146.16 39.7 19 127.16 65 e 

G 143 42.16 22.98 42.16 0 48.3 i 

K 144 117.6 65.86 19.52 98.08 59.6 e 

F 145 37.9 37.78 1.95 35.95 20 b 

L 146 136.85 129.59 9.16 127.68 87.3 e 

K 147 126.69 90.14 2.03 124.66 75.8 e 

A 148 3 2.12 0.88 2.12 3.3 b 

Q 149 100.77 22.34 0.15 100.62 70 e 

E 150 67.68 36.32 9.44 58.24 41.2 i 

A 151 0 0 0 0 0 b 

L 152 4.47 0.39 4.08 0.39 0.3 b 

D 153 70.53 26.32 7.95 62.58 55.4 e 

F 154 57.22 57.22 3.13 54.08 30 i 

Y 155 0 0 0 0 0 b 

G 156 2.47 2.47 2.47 0 2.8 b 

E 157 77.34 15.54 0.89 76.45 54.1 e 

V 158 28.45 28.45 0.98 27.46 22.5 i 

R 159 10.17 5.49 0.26 9.91 5.1 b 

T 160 12.67 12.42 0.25 12.42 11.7 b 

R 161 139.76 62.73 28.98 110.77 56.7 e 

D 162 73.48 38.8 15.77 57.71 51.1 e 

K 163 145.82 88.33 21 124.82 75.9 e 

K 164 113.69 74.64 0.85 112.83 68.6 e 

G 165 3.34 1.07 3.34 0 3.8 b 

V 166 3.44 0.18 3.26 0.18 0.1 b 

T 167 37.46 25.66 8.36 29.1 27.4 i 

I 168 30.2 30.2 0.32 29.88 20.3 i 

P 169 11.56 10.55 1.63 9.93 9.4 b 

S 170 0.09 0.09 0 0.09 0.1 b 

Q 171 0.57 0 0 0.57 0.4 b 

R 172 60.97 32.48 0 60.97 31.2 i 

R 173 30.38 21.53 6.45 23.93 12.2 b 

Y 174 0.07 0.07 0 0.07 0 b 

V 175 0 0 0 0 0 b 

Y 176 94.9 84.79 2.61 92.29 47.8 i 

Y 177 20.92 18.76 0.51 20.41 10.6 b 

Y 178 3.86 2.91 0 3.86 2 b 

S 179 5.63 3.11 1.16 4.48 5.8 b 

Y 180 98.71 64.47 1.15 97.56 50.5 e 

L 181 9.01 8.7 0.31 8.7 6 b 

L 182 54.31 51.04 6.95 47.36 32.4 i 

K 183 125.09 95.21 27.32 97.77 59.4 e 

N 184 60.66 13.56 21.21 39.45 34.5 i 

H 185 161.65 119.85 29.09 132.57 85.7 e 



L 186 77.61 68.27 13.53 64.08 43.8 i 

D 187 108.01 34.38 10.3 97.71 86.5 e 

Y 188 34.36 15.26 16.25 18.1 9.4 b 

R 189 170.47 75.89 1.14 169.33 86.6 e 

P 190 95.65 78.22 17.43 78.22 74.4 e 

V 191 42.89 42.89 3.7 39.19 32 i 

A 192 47.41 42.12 5.29 42.12 64.9 e 

L 193 0.31 0.04 0.27 0.04 0 b 

L 194 53.88 53.88 0 53.88 36.9 i 

F 195 0.14 0.14 0 0.14 0.1 b 

H 196 43.72 28.36 5.24 38.48 24.9 i 

K 197 31.65 8.29 0 31.65 19.2 b 

M 198 0 0 0 0 0 b 

M 199 18.13 18.13 0 18.13 11.5 b 

F 200 0 0 0 0 0 b 

E 201 41.55 7.94 1.09 40.46 28.7 i 

T 202 31.35 30.8 0.01 31.34 29.5 i 

I 203 21.94 15.83 6.28 15.66 10.6 b 

P 204 0.12 0.12 0.12 0 0 b 

M 205 63.81 58.97 5.15 58.66 37.1 i 

F 206 38.11 14.14 28.34 9.77 5.4 b 

S 207 42.26 18.31 15.74 26.52 34.3 i 

G 208 85.78 57.06 85.78 0 98.4 e 

G 209 46.34 33.65 46.34 0 53.1 e 

T 210 54.49 34.95 0 54.49 51.3 e 

C 211 7.6 0.82 7.6 0 0 b 

N 212 65.84 6.51 0.97 64.88 56.8 e 

P 213 0.19 0.07 0.12 0.07 0.1 b 

Q 214 9.5 1.03 0.37 9.13 6.4 b 

F 215 5.56 5.56 0 5.56 3.1 b 

V 216 29.15 28.47 0.67 28.47 23.3 i 

V 217 0 0 0 0 0 b 

C 218 24.08 1.52 0 24.08 23.5 i 

Q 219 43.93 3.08 0.27 43.66 30.4 i 

L 220 84.89 82.82 4.89 80.01 54.7 e 

K 221 176.37 110.59 33.3 143.07 87 e 

V 222 98.18 98.18 3.69 94.49 77.3 e 

K 223 149.85 91.3 14.21 135.64 82.5 e 

I 224 60.44 38.19 30.15 30.3 20.6 i 

Y 225 54.73 40.95 7.04 47.68 24.7 i 

S 226 72.4 33.67 19.86 52.54 67.9 e 

S 227 15.64 8.81 8.83 6.81 8.8 b 

N 228 119.12 58.93 17.07 102.06 89.3 e 

S 229 52.02 34.19 13.83 38.19 49.3 i 

G 230 22.46 16.76 22.46 0 25.8 i 

P 231 35.5 17.43 18.09 17.41 16.6 b 

T 232 78.82 51.97 39.9 38.92 36.6 i 

R 233 105.48 73.5 7.64 97.84 50 e 

R 234 114.6 52.15 24.05 90.55 46.3 i 



E 235 79.99 45.32 9.1 70.89 50.2 e 

D 236 99.17 43.85 9.63 89.54 79.2 e 

K 237 127.61 87 0.71 126.89 77.1 e 

F 238 59.52 59.52 0 59.52 33 i 

M 239 4.7 4.7 0 4.7 3 b 

Y 240 22.78 8.63 0 22.78 11.8 b 

F 241 2.78 2.68 0.41 2.37 1.3 b 

E 242 66.83 18.59 8.05 58.78 41.6 i 

F 243 12.82 1.18 11.81 1.01 0.6 b 

P 244 98.74 78.59 34.67 64.07 60.9 e 

Q 245 128.06 68.32 4.61 123.45 85.9 e 

P 246 62.79 55.68 7.42 55.37 52.6 e 

L 247 13.06 13.06 2.38 10.69 7.3 b 

P 248 95.59 92.37 3.23 92.36 87.8 e 

V 249 2.76 1.98 2.76 0 0 b 

C 250 42.32 18.24 7.29 35.03 34.2 i 

G 251 13.53 13.53 13.53 0 15.5 b 

D 252 10.06 1.15 1.5 8.56 7.6 b 

I 253 3.43 3.43 0 3.43 2.3 b 

K 254 43.04 9.36 0.02 43.03 26.2 i 

V 255 0.36 0.36 0 0.36 0.3 b 

E 256 27.29 2.09 0 27.29 19.3 b 

F 257 0.03 0 0.03 0 0 b 

F 258 21.21 21.21 0 21.21 11.8 b 

H 259 0.47 0.47 0 0.47 0.3 b 

K 260 66.99 47.95 3.55 63.44 38.6 i 

Q 261 44.34 14.74 6.61 37.73 26.3 i 

N 262 92.57 43.07 15.02 77.55 67.8 e 

K 263 195.49 141.34 36.12 159.38 96.9 e 

M 264 111.29 99 21.23 90.07 56.9 e 

L 265 190.76 171.01 27.66 163.11 100 e 

K 266 134.4 94.91 14.2 120.2 73.1 e 

K 267 78.71 25.7 14.03 64.69 39.3 i 

D 268 60.14 18.07 5.85 54.29 48 i 

K 269 97.57 84.55 4 93.57 56.9 e 

M 270 0.62 0 0.62 0 0 b 

F 271 0.6 0.48 0.6 0 0 b 

H 272 31.53 18.71 0 31.53 20.4 i 

F 273 0.79 0.79 0 0.79 0.4 b 

W 274 25.58 24.98 0 25.58 11.4 b 

V 275 2.74 2.74 0 2.74 2.2 b 

N 276 0.43 0 0 0.43 0.4 b 

T 277 0.19 0.19 0 0.19 0.2 b 

F 278 32.44 24.88 7.55 24.88 13.8 b 

F 279 29.9 12.19 20.48 9.42 5.2 b 

I 280 18.35 1.08 17.35 1 0.7 b 

P 281 82.58 54.28 54.76 27.82 26.4 i 

G 282 247.54 161.65 67.66 179.88 100 e 

P 283 146.54 44.25 40.34 106.19 75.2 e 



E 284 59.77 21.64 15.01 44.76 23.2 i 

E 285 33.8 33.8 10.43 23.38 16 b 

T 286 69.58 41.97 27.62 41.95 34.3 i 

S 287 43.54 43.54 1.9 41.64 28.5 i 

E 288 59.02 20.1 14.3 44.71 42.1 i 

K 289 8.46 8.46 0 8.46 5.8 b 

V 290 48.32 44.23 0 48.32 45.5 i 

E 291 15.32 14.57 0.02 15.3 9.3 b 

N 292 103.91 28.56 9.41 94.5 82.7 e 

G 293 49.68 5.6 2.07 47.61 42.1 i 

S 294 0 0 0 0 0 b 

L 295 10.16 1.69 8.03 2.13 1.9 b 

C 296 98.62 75.72 5.24 93.38 56.8 e 

D 297 1.25 1.25 1.25 0 0 b 

Q 298 13.14 4.49 1.88 11.26 9.9 b 

E 299 116.76 67.96 17.26 99.5 60.5 e 

I 300 18.34 14.86 9.11 9.23 8.2 b 

D 301 146.01 109.15 20.17 125.83 76.5 e 

S 302 77.13 65.55 27.15 49.99 77 e 

I 303 59.06 13.63 11.78 47.28 41.4 i 

C 304 168.36 64.7 13.78 154.58 79.1 e 

S 305 107.27 66.86 0 107.27 55.6 e 

I 306 2.83 2.83 0.37 2.45 1.4 b 

E 307 29.93 28.64 0.47 29.46 38.1 i 

R 308 74.31 74.31 4.09 70.22 66.8 e 

A 309 103.17 25.6 15.38 87.79 76.8 e 

 

AAa AA positionb RSAc ASAd Z-Score Class assignmente 

D 310 0.424 61.026 ‐1.278 Exposed 

N 311 0.44 64.401 ‐2.283 Exposed 

D 312 0.369 53.216 ‐2.157 Exposed 

K 313 0.277 56.897 ‐1.363 Buried 

E 314 0.316 55.258 ‐1.470 Exposed 

Y 315 0.177 37.932 0.048 Buried 

L 316 0.092 16.809 ‐0.174 Buried 

V 317 0.097 14.863 0.417 Buried 

L 318 0.041 7.58 ‐0.148 Buried 

T 319 0.273 37.851 0.733 Exposed 

L 320 0.031 5.694 0.612 Buried 

T 321 0.403 55.868 0.548 Exposed 

K 322 0.227 46.714 0.052 Buried 

N 323 0.517 75.689 ‐0.953 Exposed 

D 324 0.391 56.386 ‐0.797 Exposed 

L 325 0.098 17.999 ‐0.515 Buried 

D 326 0.193 27.811 ‐0.911 Buried 

K 327 0.62 127.616 ‐0.058 Exposed 

A 328 0.316 34.867 ‐1.196 Exposed 

N 329 0.274 40.172 ‐0.312 Buried 



K 330 0.555 114.122 ‐0.170 Exposed 

D 331 0.508 73.26 ‐0.896 Exposed 

K 332 0.59 121.363 0.184 Exposed 

A 333 0.546 60.202 0.237 Exposed 

N 334 0.309 45.238 0.043 Exposed 

R 335 0.682 156.178 0.613 Exposed 

Y 336 0.332 71.034 0.663 Exposed 

F 337 0.061 12.323 0.919 Buried 

S 338 0.319 37.363 0.887 Exposed 

P 339 0.758 107.503 ‐0.106 Exposed 

N 340 0.63 92.217 0.415 Exposed 

F 341 0.043 8.59 ‐0.172 Buried 

K 342 0.427 87.875 1.712 Exposed 

V 343 0.052 7.962 0.22 Buried 

K 344 0.192 39.556 0.917 Buried 

L 345 0.066 12.14 0.321 Buried 

Y 346 0.16 34.256 0.832 Buried 

F 347 0.043 8.65 ‐0.603 Buried 

T 348 0.333 46.187 0.269 Exposed 

K 349 0.555 114.225 0.06 Exposed 

T 350 0.209 29.058 0.074 Buried 

V 351 0.433 66.475 ‐0.384 Exposed 

E 352 0.563 98.286 ‐0.035 Exposed 

E 353 0.622 108.646 0.17 Exposed 

P 354 0.262 37.22 ‐0.597 Exposed 

S 355 0.67 78.524 0.089 Exposed 

N 356 0.578 84.605 ‐0.571 Exposed 

P 357 0.491 69.687 ‐1.625 Exposed 

E 358 0.708 123.757 ‐0.558 Exposed 

A 359 0.272 29.93 ‐0.330 Buried 

S 360 0.536 62.772 ‐0.547 Exposed 

S 361 0.62 72.711 ‐1.781 Exposed 

S 362 0.462 54.1 ‐0.984 Exposed 

T 363 0.543 75.342 ‐0.723 Exposed 

S 364 0.615 72.031 ‐0.832 Exposed 

V 365 0.276 42.452 ‐0.380 Exposed 

T 366 0.484 67.089 ‐0.052 Exposed 

P 367 0.405 57.498 ‐1.305 Exposed 

D 368 0.566 81.546 ‐1.095 Exposed 

V 369 0.324 49.799 ‐0.405 Exposed 

S 370 0.37 43.329 ‐0.989 Exposed 

D 371 0.625 90.077 ‐1.035 Exposed 

N 372 0.623 91.163 ‐1.923 Exposed 

E 373 0.534 93.22 ‐0.386 Exposed 

P 374 0.287 40.754 ‐1.197 Buried 

D 375 0.54 77.785 ‐1.074 Exposed 

H 376 0.345 62.701 ‐0.945 Exposed 

Y 377 0.325 69.41 ‐1.253 Exposed 

R 378 0.612 140.217 ‐0.378 Exposed 



Y 379 0.419 89.626 ‐1.669 Exposed 

S 380 0.434 50.877 ‐1.696 Exposed 

D 381 0.652 93.939 ‐1.746 Exposed 

T 382 0.386 53.483 ‐0.547 Exposed 

T 383 0.484 67.145 ‐2.135 Exposed 

D 384 0.651 93.751 ‐1.375 Exposed 

S 385 0.577 67.624 ‐1.643 Exposed 

D 386 0.411 59.153 ‐0.394 Exposed 

P 387 0.446 63.231 ‐0.994 Exposed 

E 388 0.595 103.859 ‐0.758 Exposed 

N 389 0.644 94.34 ‐0.928 Exposed 

E 390 0.422 73.776 ‐0.732 Exposed 

P 391 0.604 85.651 ‐1.141 Exposed 

F 392 0.368 73.898 ‐1.544 Exposed 

D 393 0.403 58.043 ‐0.967 Exposed 

E 394 0.475 82.948 ‐2.052 Exposed 

D 395 0.472 68.087 ‐1.271 Exposed 

Q 396 0.289 51.633 ‐0.103 Buried 

H 397 0.241 43.82 0.088 Buried 

T 398 0.166 23.094 ‐0.150 Buried 

Q 399 0.452 80.799 0.882 Exposed 

I 400 0.129 23.958 ‐0.236 Buried 

T 401 0.479 66.465 0.851 Exposed 

K 402 0.562 115.645 0.516 Exposed 

V 403 0.68 104.455 ‐0.634 Exposed 

a AA=Amino acid. Residues 1-13 and the C-terminal tail (residue 352 onwards) are 

disordered in the crystal structure so for this region NetsurfP (ver. 1.1) 

(http://www.cbs.dtu.dk/services/NetSurfP) was used to predict solvent accessibility of PTEN 

residues using the PTEN FASTA sequence obtained from Uniprot [36]. Class assignment 

was predicted using a threshold of 50 exposed accessible surface area, based on the Absolute 

Solvent Accessibilitymax of a given amino acid. For Residues 14-351, class assignment was 

predicted using GETAREA with a probe diameter of 1.4A (equivalent to water) and the 

1d5r.pdb 3D-data file from the PDB database. The higher the ratio the more solvent 

accessible the residue. Ratios <20 are considered buried and >50 exposed.  Intermediate 

values show some solvent accessibility.  

b Amino acid position 

c RSA= Relative Surface Accessibility 

d ASA= Absolute Solvent Accessibility 

 



Supplementary figure 1. Active site cysteine modification. Quantification of a) the

cysteine sulfonic acid forms of the observed active site (Cys124) containing peptide and

b) the intensity of the unmodified active site containing peptide normalized to another

PTEN peptide (m/z 462.8, residues 190-197, PVALLFHK). Light grey bars represent the

monomeric protein band at 70 kDa and black bars the high molecular weight aggregates

isolated from the top of the gel. The vertical axes are % modification, the horizontal axes

are the molar ratio of HOCl to protein (Untr = no oxidant), and data are presented as

mean ± SD (n = 3).
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Supplementary figure 2. Relative quantitation of selected GST oxPTMs upon

HOCl treatment. Quantification of 6 different modifications detected in either the

monomeric protein band at 70 kDa (light grey bars) or the high molecular weight

aggregates isolated from the top of the gel (black bars), or both. The vertical axes

are the percentage (%) of peptide modified, the horizontal axes are the molar ratio of

HOCl to protein (Untr = no oxidant), and data are presented as mean ± SD (n = 3).
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