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Abstract 

The main aim of this paper is to investigate the impact of patent applications, 

development level, employment level and degree of technological diversity on 

innovation efficiency. Innovation efficiency is derived by relating innovation inputs 

and innovation outputs. Expenditures in Research and Development and Human 

Capital stand for innovation inputs. Technological knowledge diffusion that comes 

from spatial and technological neighborhood stands for innovation output. We derive 

innovation efficiency using Data Envelopment Analysis for 192 European regions for 

a 12-year period (1995–2006). We also examine the impact of patents production, 

development and employment level and the level of technological diversity on 

innovation efficiency using Structural Equation Modeling. This paper contributes a 

method of innovation efficiency estimation in terms of regional knowledge spillovers 

and causal relationship of efficiency measurement criteria. The study reveals that the 

regions presenting high innovation activities through patents production have higher 

innovation efficiency. Additionally, our findings show that the regions characterized 

by high levels of employment achieve innovation sources exploitation efficiently. 

Moreover, we find that the level of regional development has both a direct and 

indirect effect on innovation efficiency. More accurately, transition and less 

developed regions in terms of per capita GDP present high levels of efficiency if they 

innovate in specific and limited technological fields. On the other hand, the more 

developed regions can achieve high innovation efficiency if they follow a more 

decentralized innovation policy. 
 

Keywords: Technological diversity, R&D, Patents, Data Envelopment Analysis, 

Structural Equation Modeling. 
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1. Introduction 

The last thirty years European Union has applied several technological policies in 

order to increase innovation production across the regions. A issue of significant 

importance, however, is whether European regions can reach high levels of innovative 

efficiency.  

The concept of technical efficiency was initially introduced by Farrell (1957). 

Applying this concept from firm to regional level, Fritsch and Slavtchev (2010) define 

that ‘‘a region is technically efficient if it is able to produce a possible maximum of 

innovative output from a given amount of innovative input’’ (p. 91). Thus, our 

understanding of the efficiency of regional innovation system (RIS) follows the latter 

definition.  

Researchers have rarely examined the efficiency of innovation activity—

especially in terms of regional knowledge spillovers—by using aggregate data 

through DEA. Specifically, most of the papers do not examine knowledge transfer 

among a whole regional innovation system and usually confined to US data. Thus, 

several papers mainly focus on the effectiveness of universities research output 

transfer based on survey data (Thursby and Thursby 2002b; Berbegal-Mirabent et al. 

2013; Anderson et al. 2007) where the creation of start up companies, licensing 

income, and patents production usually stand for outputs (Siegel et al. 2003; Thursby 

and Kemp 2002a; Chapple et al. 2005). Additionally, few papers use DEA to examine 

the effects of domestic R&D and international spillovers but their measurement is 

mainly based on trade and not patenting activity (Kim and Lee 2004). 

Most relationships between innovation inputs and outputs are tested through 

regression models by the related literacy (Bottazi and Peri 2003; Guellec and 

Pottelsberghe de la Potterie 2004; Tappeiner et al. 2008, etc.). Regarding the 

efficiency measurement of knowledge transfer at regional level through regression 

models few papers are written. Identically, Fritsch and Slavtchev (2010) constructed 

an efficiency measure by relating regional R&D input and output and they 

investigated the way that regional specialization and other additional factors (high 

R&D intensity of the local private sector and knowledge from local public research 

institutions) impact on efficiency. Kalapouti and Varsakelis (2015), following an 

econometric analysis, constructed an efficiency measure by relating not only the 

conventional knowledge inputs (expenditures in R&D and Human Resources) but also 
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factors that determine knowledge diffusion within and between regions with the 

knowledge output. 

In this study, we have constructed an efficiency measure following a Data 

Envelopment Analysis (DEA) by using as inputs R&D expenditure (R&D) and 

Human Capital (HC) and as outputs variables that measure the knowledge transferred 

between regions because of geographical proximity (Jaffe 1989; Bottazi and Peri 

2003) and because of technological proximity (Jaffe 1986; Maurseth and Verspagen 

2002; Bottazi and Peri 2003). Our main target is to investigate if EU regions can take 

advantage of their innovative inputs and leverage them in a manner that they can 

absorb and simulate the knowledge diffused from their geographical and 

technological neighbors. Specifically, our research concerns 192 EU NUTS- 2 regions 

and covers a 12 years period (1995-2006). This study puts into further scrutiny the 

regional capacity to leverage innovative inputs by controlling for the impact of a) 

patent applications that regions produce, b) regional employment level c) regional 

development level and d) the degree of diversity of innovative activity which takes 

place within regions on the efficiency measurement. We also investigate how the 

latter predictor variables interact with one another by following Structural equation 

modeling (SEM) analysis.  

We argue that the contribution of this study is threefold. First, even though 

agglomeration economies have been used in research to associate innovative activity 

with various regional economic phenomena, such as growth (Romer 1990; Griliches 

1984), employment level (Buerger et al. 2012) and the degree of technological 

diversity (Greunz 2004; Van Oort 2002), their impact on regional efficiency level has 

not been thoroughly examined. Second, we demonstrate how efficiency level of 

regional knowledge spillovers can be estimated through application of DEA methods. 

Third, it is shown that efficiency level of innovative activity can be predicted by 

various variables (patents production, development and employment level and degree 

of technological diversity) that take place at regional level through SEM analysis 

where causal relationships between variables—in contrast to typical regression 

analysis techniques—can be either directly observed or latent or a mixture of both of 

these. According to knowledge of authors of this paper, the combination of DEA and 

SEM modeling has not been implemented in such way before, especially in the 

specific field of research, thus the paper besides the empirical research contributions 
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can serve as an illustrative example of combining the latter methodologies for 

efficiency measurement and estimation through suitable causal factors. 

The rest of the paper is organized as follows: The theoretical background is 

presented in Sect. 2 and the methodology is described in Sect. 3. A profiling analysis 

of the data is presented in Sect. 4 while results regarding efficiency are presented in 

Sect. 5. The factors that affect efficiency are presented in Sect. 6 while the results of 

the second stage are demonstrated in Sect. 7. Conclusions are drawn in Sect. 8. 

 

2. Theoretical background  

In recent years innovative activity of agglomeration economies has been mainly 

analyzed at regional level. Thus, many studies have underlined the important role of 

regional innovation system as interactions between knowledgeable agents to increase 

the learning capabilities of a region (Autio 1998; Doloreux 2002) and several essential 

determinants of economic performance are dominant (Storper 1997; Porter 2003; 

Uyarra 2010). 

Grilliches (1979, 1990) in his seminal work analyzed the role of expenditures 

in Research and Development (R&D) as basic input of innovation and new knowledge 

creation while Romer (1986, 1990) emphasized the substantial role of human capital 

in knowledge diffusion. Guellec and Van Pottlesberghe de la Potterie (2004), 

estimated the contribution of several sources of knowledge (public and private R&D) 

in productivity growth. Tappeiner, et al. (2008) found that three basic inputs (R&D, 

human and social capital) exert an economically substantial impact on the level of 

regional innovation. However, the literature argues that the production of innovation 

is not only a result of inputs mentioned before, but also a result of knowledge diffused 

by other agents (businesses, cities, regions). Thus, absorptive capacity is crucial since 

it proves the ability of an agent to identify, assimilate and exploit knowledge from the 

environment (Cohen and Levinthal 1989; Criscuolo and Narula 2002). 

Therefore, we may conclude that there are some special features which 

characterize the ability of agents (e.g. regions) to enforce the knowledge spillovers 

either within them (intra- regional spillovers) or between them (inter- regional 

spillovers). The composition of innovative activity that a region applies determines its 

intra- knowledge spillovers and has been the subject of a heated debate in the 

economics literature. Two theoretical tracks have been developed around this debate 
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to explain whether diversity or specialization of economic activity stimulates better 

technological change and subsequent innovation and economic growth. The first track 

is based on the Marshall’s (1890) analysis and the second follows the Jacob’s (1969) 

analysis. According to Marshall, agents specialized in similar technological fields 

achieve stronger knowledge spillovers and subsequently higher new knowledge 

production. Jacobs (1969), on the other hand, argues that knowledge spillovers are 

increased between agents of different but complementary industries. 

Although there is a plenty of empirical literature sources testing these 

theoretical tracks, it is unclear whether specialization or diversity promotes more 

innovative activity. For the US the majority of the findings support diversity (Glaeser 

et al. 1992; Feldman 1999a; Feldman and Audretch 1999b). However, in small cities, 

specialization promotes knowledge diffusion between industries which belong to the 

same sector (Henderson 1997). 

At the European Union’s level, Paci and Usai (2000) and Moreno et al. (2006) 

found a positive relationship between industry specialization and regional innovative 

output. On the other hand, Greunz (2004), for several European regions found that 

new knowledge creation is positively influenced by diversity. Similar results were 

also found for regions in Netherlands (Ouwersloot and Rietveld 2000; Van Oort 

2002). Fritsch and Slavtchev (2010) studying German regions, found an optimum 

level of industrial diversity beyond which an increase in diversity may have a 

negative impact on innovative efficiency. 

Apart from each region’s innovation infrastructure which influences intra-

regional knowledge spillovers, special factors facilitate the knowledge transfer 

between regions (interregional knowledge spillovers). Two of these factors deal with 

geographical and technological proximity between the knowledgeable regions since 

significant part of the literature found that knowledge spillovers are strongly affected 

by both of them. 

At the European regional level, knowledge spillovers based on patenting 

activity are enhanced from geographical proximity (Maurseth and Verspagen 2002; 

Bottazi and Peri 2003; Tappeiner et al. 2008) as the capacity of regions to compete is 

linked to specific local competitive advantages and enhanced by the geographic 

proximity that is crucial to diffuse and strengthen them (Uyarra 2010). A plenty of 

literature sources regarding the USA (Jaffe 1989; Feldman and Florida 1994; Feldman 
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1999a; Acs et al. 1994; Anselin et al. 1997) come to reconfirm the positive 

relationship between spatial proximity and innovation productivity. 

However, geographical proximity alone is not sufficient to enhance knowledge 

spillovers across regions as the regional capacity to absorb and exploit the knowledge 

coming from outside allows knowledge spillovers developing beyond regions’ 

surrounding areas. The concept of absorptive capacity (Cohen and Levinthal 1990) 

and technological proximity (Jaffe 1988) at firm level, can be easily applied at 

regional level (Caragliu and Nijkamp 2012). Thus, empirical literature underlines the 

substantial role of technological proximity as spatial proximity is not enough for 

absorbing knowledge if regions do not innovate in similar technologically fields. 

Following a similar methodology to Jaffe (1988) at regional level, Maurseth and 

Verspagen (2002) found that the patents of pairs of 112 European regions that 

innovate in similar technologically fields are more frequently cross cited than other 

pairs. Greunz’s (2003) results show that when technological proximity is weighted by 

a geographical decay factor, the technological knowledge spillovers increase. Moreno 

et al. (2005) show clearly that innovative activity across 175 European regions is 

getting enforced with the simultaneous existence of technological and geographical 

proximity. 

Summarizing, based on the related literature, the role of diversity innovation 

degree and of spatial and technological neighborhood in regional knowledge transfer 

is essential at this paper’s analysis in the context of innovation efficiency. 

 

3. Methodology  

The two stage methodology steps followed in the current study are presented in this 

section. In the first stage, the production process is described and inputs and outputs 

are used to extract the efficiency score based on which countries are ranked, through 

DEA. In the next stage (second stage analysis) the effect of external factors on the 

efficiency scores is investigated, through SEM. The methodologies used in this 

analysis are described analytically below. 

The following flowchart presents in summary the methodological steps of our 

analysis (Figure 1). 
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Figure 1 Step-by-step description of methods of the current study 

 

3.1. Data Envelopment Analysis 

A main claim in the present paper is that the final level of efficiency as was measured 

by the Data Envelopment Analysis (DEA) is significantly influenced from various 

predictors that are not directly related to R&D efficiency of patents. Nevertheless, few 

studies have put these claims to the test as far as patent efficiency is concerned. In 

order to assess the efficiency of each region based on the patents and other 

characteristics, an underlying production function is assumed.  

Data Envelopment Analysis is a benchmarking technique that assesses the 

efficiency of a unit in comparison to other homogeneous units. These units are called 

Decision Making Units (hereafter DMUs). Based on the assumption that each 

DMU        consumes        inputs (    ) to produce        outputs 

(    ), then in order to assess efficiency, the following linear programming (LP) 

model is formulated: 
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In LP model (1), variable   measures the efficiency of each DMU and yields a score 

in the range of      . A DMU is efficient if       and inefficient for      (   

denotes the optimal solution). Model (1) is considered as a Variable Returns to Scale 

(VRS), however, removing constraint       
   , then the corresponding DEA 

model (1), is a Constant Returns to Scale (CRS). Constant returns to scale technology 

assumes that a reduction in the inputs will lead to a proportional increase in outputs 

but under VRS technology is assumed that there is no proportionality between inputs 

and outputs. The DEA models have been solved using Benchmark package (Bogetoft 

and Otto 2010) in R Studio (Studio R, 2012). 

As DEA is a benchmarking technique, then additional information on the 

projected values can be derived. In the case where a DMU is not efficient, then a re-

adjustment must be done in inputs and outputs so that this DMU will become part of 

the frontier of efficient DMUs. 
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In LP formulation (2), the slack variables (  
 ,   

 ) are associated with inputs and 

outputs corresponding and provide a magnitude of reduction or increase 

correspondingly in order for an inefficient DMU to become efficient. A DMU is fully 

efficient if      and  
    

    . For inefficient units, the projected values (for 

inputs and outputs) are given by the following formulas:             
    

  for 

inputs and              
 .  

The model adjusted to the data used in this analysis is formulated as follows: 
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3.2 Structural Equation Modeling (SEM) 

Structural equation models (SEM) (Bollen 1989) is a system where causal 

relationships are modeled between variables. The distinguishing feature is that 

variables here – in contrast to typical regression analysis techniques – can be either 

directly observed or latent or a mixture of both of these. 

Fitting a SEM model with maximum likelihood assumes multivariate normal 

data and a reasonable sample size (e.g. N>=200 measurements). However, with non-

normal data, for instance to apply structural equation modeling with ordinal variables, 

there exist alternative methods such as the method of Weighted Least Squares (WLS) 

(Jöreskog 1994).  

As regards assessing the fit of a SEM model, there exist a large variety of 

goodness-of-fit measures that are mostly functions of the model’s chi-square. Typical 
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examples of such indices are the GFI (goodness-of-fit index) and the AGFI (adjusted 

goodness-of-fit index) devised by Jöreskog and Sörbom (1989), with AGFI adjusting 

the GFI for the complexity of the fitted model. Another popular measure is the Root 

Mean Square Error of Approximation (RMSEA). If the fit of the model is good, GFI 

and AGFI should approach one, whereas RMSEA should be small (typically less than 

0.05). 

In the current analysis, we employ the efficiency variable as derived from the 

first-stage analysis utilizing DEA, and subsequently fit a Structural Equation Model 

linking efficiency with various potential predictors to examine associations between 

the latter with efficiency and between each other. We fit the SEM model by utilizing 

the IBM SPSS AMOS software (Arbuckle 2006). 

 

4. Data 

In each production process, the inputs and outputs of each unit under assessment 

should be provided in order to extract the efficiency of each unit. In this production 

process it is assumed that each region is the unit under assessment. Our database 

consists of 192 NUTS- 2 European regions which produce and exchange knowledge 

for 12 years (1995-2006) and we have estimated the average values of some measures 

which constitute the dependent variable of our model. The appropriate data have been 

extracted by Eurostat
2
.  

In particular, there are 192 regions (             to be assessed based on 

the fact that, consume inputs to produce outputs. The inputs considered here, are 

Human Capital (HC) and R&D expenditure (R&D) while the outputs are the PATTPS 

and PATGPS. The vector of inputs consists of the number of researchers in science 

and technology and the expenditures in research and development. We use annual 

data on Human Resources in Science and Technology (HC) as percentage of total 

population as a proxy of the first input and the total intramural R&D expenditure 

(R&D) measured as euro per inhabitant as a proxy of the second input. Inter-regional 

knowledge spillovers are used to measure the outputs and they captured by PATGPS 

and PATTPS variables
3

. PATGPS measures the knowledge transferred between 

regions because of geographical proximity and PATTPS measures the knowledge 

transferred between regions because of technological proximity.  

                                                             
2 Data were retrieved from http://ec.europa.eu/eurostat. 
3 Following Kalapouti and Varsakeli’s (2015) methodology we construct inter- regional knowledge spillovers. 
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Patents have been extensively used as a proxy for measuring innovative 

output—and therefore as proxy of new knowledge creation—as they are a reliable and 

direct indicator of “innovation” (Acs et al. 2002) and “a good approximation to ideal 

data on “economically profitable ideas which one would like to have for testing 

theories on innovation” (Botazzi and Peri 2003, p. 692).  

In this paper we refer to patents according to application date measured per 

million of inhabitants. Patent applications are filed at the European Patent Office- 

(EPO) and they are classified according to International Patent Classification (IPC). 

Regional spatial proximity, which has been extensively used in literature, is measured 

by a quadratic matrix GP for the 192 regions. Each element GPjk of the GP represents 

the geographical proximity between regions j and k. It takes the value 1 for two 

neighboring regions and 0 otherwise. Next, the product of multiplication of the GP 

matrix with the vector of patents P gives the vector of the global knowledge for 

region j weighted by the geographical proximity. PATGPSj indicates whether the 

region j is contiguous to strong innovative regions (PATGPSj takes high values) or to 

weak innovative regions (PATGPSj takes low values).  

The concept of technological proximity at firm level has been extensively used 

by Jaffe (1986, 1988) based on the concept of technological distance and patents 

classification. We adopt Jaffe’s (1988) concept at cross regional level analysis to 

capture the impact of technological proximity on inter- regional spillovers using the 

patent applications to EPO, disaggregated into the 121 technological fields of the IPC: 

                               
    

 

where    
  
 

  
 
  and    

  
 

   
    

 
 is the number of patents of technological field i in 

region j and   
  is the number of patents of technological field i in region k. Since the 

number of technological fields is N, there are two vectors:        and         and 

the angular separation between   and    leads to the quadratic matrix TP. The 

element TPjk of TP is a positive correlation index which takes values in [0, 1]. If TPjk 

tends to 0, the regions j and k contact research in different technological fields. On the 

other hand, if TPjk tends to 1, the regions j and k conduct research in similar 

technological fields. Finally, if TPjk =1, the regions j and k conduct research in exactly 

the same fields. 
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In order to capture inter- regional spillovers due to technological proximity, 

we multiply TP with the vector of patents P, the global stock of knowledge. The 

result is the vector PATTPS, whose elements could be regarded as each region’s 

global knowledge weighted by technological proximity. A PATTPSj =0 is an 

indication of low absorptive capacity since the region conducts research completely 

different from those regions which produce high volume of knowledge. A high 

PATTPSj is an indication that the region j is technologically contiguous to strongly 

innovative regions and, therefore, the region j will absorb more knowledge from the 

public domain.  

It is of high concern to investigate if regions can take advantage of their 

innovative inputs and leverage them in a manner that they can absorb and simulate the 

knowledge diffused from their geographical and technological neighbors. 

The descriptive statistics of the production process are demonstrated in Table 

1 while the dispersion of the observations for inputs and outputs is given in Figures 1 

and 2.  

Table 1: Summary statistics of the inputs and outputs used for Data Envelopment Analysis. 

  Mean 
Standard 

Deviation 
Median 1

st
Quartile 

3
rd

 

Quartile 

In
p

u
ts

 

Average 

R&D 

Expenditures 

380 394.54 251.5 101.5 491 

Average 

Human 

Capital 

23.52 6.82 23.22 19.37 27.77 

O
u

tp
u

ts
 Average 

PATTPS 
10070 2694.18 10830 7598 12240 

Average 

PATGPS 
587.9 558.63 458 117.9 866.8 

 

 

In Figure 2 a graphical statistical summary of input variables RD and HC is 

demonstrated. From Figure 1 a1 and a2 it is observed that the distribution of average 

expenditures on R&D is not symmetrical. On the contrary, average human capital 

input variable is symmetrical and normally distributed as visually inspected from 

Figure 3 b1, and b2; both histogram and quartile plot indicate normality in data 

distribution. Regarding the outputs as presented in Figure 3, there is no symmetrical 

distribution on the average PATTPS and average PATGPS output variables. More 
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specifically, concerning the average PATTPS the largest concentration of values is 

found between 10000 and 14000 (Figure 2, c1) while the largest concentration of 

values for average PATGPS output variable is observed in the interval [0, 500].  

 

 

 

 
(a1) (b1) 

  

(a2) (b2) 

  

(a3) (b3) 

 

Figure 2: Graphical illustration of input variables: a1) histogram of average expenditures on Research & 
Development,b1) histogram of average Human Capital, a2) quartile plot of average expenditures on Research & 

Development,b2) quartile plot of average Human Capital,a3) boxplot of average expenditures on Research & 
Development,b3) boxplot of average Human Capital 
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(c1) (d1) 

  

(c2) (d2) 

 
 

(c3) (d3) 

 

Figure 3: Graphical illustration of output variables: c1) histogram of average PATTPS,d1) histogram of average 
PATGPS, c2) quartile plot of average PATTPS,d2) quartile plot of average PATGPS,c3) boxplot of average 

PATTPS,d3) boxplot of average PATGPS 

 

5. First-Stage Analysis Results  

5.1 Efficiency analysis-Data Envelopment Analysis (DEA) Results 

5.1.1 Aggregated analysis  

One of the main characteristics of DEA is that a single score is extracted based on the 

inputs and outputs that are assumed. Solving LP model (1) a VRS technology is 

assumed while removing constraint       
   , then CRS technology is assumed. 
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The efficiency scores for each technology assumed are shown in Figure 4. It can be 

seen that under CRS technology, there are more efficient units (viz. θ
CRS

=1) than 

under VRS technology. More specifically, there are 20 efficient DMUs under CRS 

technology while only 11 under VRS. This indicates that VRS technology provides 

more discrimination power providing better analysis for the specific set of inputs and 

outputs.  

 

Figure 4: Line plots of efficiency under VRS technology (θVRS) and CRS (θCRS). 

Under CRS technology the following efficient units (DMUs), corresponding to 

research regions producing patents, were identified: 1 Austria, 1 Belgium, 1 Bulgaria, 

1 Czech republic,  5 Germany, 1 France, 2 Hungary, 3 Italy, 1 Latvia, 2 Poland, 1 

Portugal, and 1 Romania.  The names of the institutes with the corresponding data are 

provided in Appendix (Table A1).  

Under VRS technology the following efficient units (DMUs), corresponding 

to research regions producing patents, were identified: 1 Austria, 1 Belgium, 1 

Bulgaria, 1 Czech republic,  3 Germany,  2 Italy, 1 Portugal and 1 Romania. The 
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names of the institutes with the corresponding data are provided in Appendix (Table 

A2). At this point it is essential to mention that the presence of high efficiency levels 

(in both technologies) in some regions that belong to less developed countries (e.g. 

Bulgaria, Romania, etc) can be explained by some special circumstances which are 

subsequently described (sections 7 and 8). Therefore, we can conclude that these 

types of countries can take advantage of knowledge transferred by their technological 

and spatial neighborhood under specific conditions although they do not present high 

level of innovative inputs. 

The aforementioned efficiency analysis, as illustrated in Figure 5, concerns all 

the countries. However, based on Figure 4, it can be seen that there is a segregation of 

the countries based on the average number of patents. There is a finite line that 

divides countries based on their potential to produce patents; the countries that belong 

to the first group are located geographically in Northern Europe. These countries are 

Germany, Finland, Sweden, Luxemburg, Austria, Netherlands, Belgium, France, and 

the UK. Under the dashed line (Figure 4) which indicates less than 50 patents on 

average level, there are Eastern and Southern European countries. Therefore, a 

separate DEA analysis on the two groups should be made that would lead to sensible 

comparisons between countries.  

 

Figure 5: Average number of patents per country. 
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5.1.2. Analysis for Groups 1 and 2 

Here the analysis for each group (namely Group 1 and 2) is presented. Northern 

Europe countries belong to Group 1 and efficiency scores are compared against the 

efficiency scores of Group 2 (Easter and Southern European countries). From the 

aforementioned segregation of countries into two groups, according to Figure 4, 121 

research regions (DMUs) belong to Group 1 while 70 DMUs belong to Group 2. 

From Figure 5, it can be seen that the efficiency scores from Group 1 are higher in 

comparison to the same efficiency scores of Group 2. More specifically, it must be 

noted that under VRS technology, 10 DMUs were efficient (namely       ) from 

Group 1, whereas 7 DMUs were efficient from Group 2. The density as illustrated in 

Figure 6 confirms the results. 

 

Figure 6: Density function of efficiency scores under VRS technologies for Group 1 (black line) and Group 2 (red 
line). 

Regarding the efficiency analysis under CRS technology, the results for 

Groups 1 and 2 are shown in Figure 7. Again, the efficiency scores from Group 1 

outperform the corresponding scores from Group 2. From Figure 7, it can be seen that 

in the interval 0.9 until 1, the solid black line (Group 1) is higher that the 

corresponding red line (Group 2). 
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Figure 7: Density function of efficiency scores under CRS technologies for Group 1 (black line) and Group 2 (red 
line). 

 

6. Second-Stage Analysis Results 

6.1 General Description of the factors expected to affect innovative efficiency 

(Predictor Variables) 

Measuring the efficiency of technology transfer is a special issue that concerns not 

only specific spin off companies (Perez and Sanchez, 2003) or universities (Anderson 

et al. 2007, Thursby and Kemp, 2002), but also the whole system of regional 

stakeholders who play an active role in technology transfer process. 

Fritsch and Slavtchev (2010) constructed an efficiency measure by relating 

regional R&D input and output. More specifically, efficiency in 93 German regions 

was measured by the output elasticity of private sector R&D employment which was 

estimated by means of robust negative-binomial regression technique. They 

investigated the way that regional specialization and other additional factors (high 

R&D intensity of the local private sector and knowledge from local public research 

institutions) impact on efficiency. They found that both these factors influence 

efficiency but their impact is different for regions at different efficiency levels. 

Kalapouti and Varsakelis (2015) constructed an efficiency measure for 210 

European regions by relating not only the conventional knowledge inputs 

(expenditures in R&D and Human Resources) but also factors that determines 

knowledge diffusion within and between regions with the knowledge output. Panel 

data analysis proved that fixed effects were valid and therefore the regional 

idiosyncratic constants of their Knowledge Production Function had been used as a 

proxy of Total Factor Productivity or a leveraging capacity-efficiency (LCE) term. 

They prove that there are regions which although produce many patent applications 

they do not efficiently leverage their innovative inputs. They also show that there are 
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regions which are able to efficiently leverage their innovative inputs despite the fact 

that they are not ranked to the top regions in terms of innovative activity.  

This study puts into further scrutiny the regional capacity to leverage 

innovative inputs as we will empirically test the role of regional economic 

performance, the European regions’ level of development and the degree of diversity 

of innovative activity which takes place within regions vis-à-vis other predictors on 

patent efficiency. Thus, our analysis helps in offering further clues on an ongoing 

under examined theoretical issue. 

Therefore, in the present study we shall examine the influence of a) patent 

applications and b) employment level, which both compose regional economic 

performance, c) a dummy variable of region, which captures regions’ development 

level, and d) NEI, which measures the diversity of regional innovative activity, on the 

efficiency measurement. We are also interested on how the various predictor variables 

interact with one another. Since our research covers a twelve years period (1995-

2006) we have estimated the average values of these variables which influence the 

dependent variable of our model.  

a) Patent Applications 

Studies that use patent statistics as technology indicator consists a major part of the 

relative literature observing mainly the relationship between technological change, as 

measured by patent statistics, and economic development (Schmookler 1966, 1972; 

Griliches 1984).Since endogenous growth theory links innovation and growth, 

technological change has been regarded as a major source of long-run productivity 

growth (Romer 1990; Grossman and Helpman 1991), with innovation no longer being 

treated as an exogenous process.  

Therefore, differences in innovation capacity and potential become, from an 

‘endogenous growth’ perspective, one of the basic explanations for persistent 

differences in wealth and economic performance (Rodríguez-Pose and Crescenzi, 

2008). The use of patents indicator has been extensively analyzed in the previous 

section. The data of patent applications have been extracted from Eurostat.  

b) Employment level 

The level of employment is a basic identical index which reveals the level of 

economic performance where each region presents. Various studies (Freeman et al. 

1982; Freeman and Soete 1987; Freeman and Soete 1994; Vivarelli and Pianta 2000; 

Edquist et al. 2001) underline the positive relationship between innovation 

https://scholar.google.com/citations?user=hLRMgKsAAAAJ&hl=tr&oi=sra
https://scholar.google.com/citations?user=dQL4xkgAAAAJ&hl=tr&oi=sra
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productivity and employment since innovations contribute to the development of 

either entire new goods or main differentiation of mature goods.  

Greenan and Guellec (2000), using data from French manufacturing sectors over 

the period 1986-90, found out a positive relationship between innovation and 

employment at the firm’s level (both product and process innovation). Yet, at the 

sectoral level, their results confirmed the idea that only product innovation create 

additional jobs, while process innovation generate jobs within the innovative firm but 

at the expense of the competitors, leading to an overall negative effect at the sectoral 

level. Hall et al. (2008) found a positive effect on employment of product innovation 

and no evidence of employment displacement due to process innovation using a panel 

of Italian manufacturing firms over the period 1995-2003. Buerger et al. (2012) found 

that an increase in patents is associated with subsequent growth of employment in 

German regions over the period 1999–2005. 

It is obvious that the relative literature has mainly investigated the effect that 

innovation has on employment level. Thus, since little knowledge is available about 

the effect of employment level on innovative activity and particularly on innovative 

efficiency, this paper tries to shed light to this direction. Data for regional level of 

employment are also available by Eurostat for the period of twelve years and 

therefore we calculate the average level of employment for every single region. 

Employment is measured in thousands of people from 15 to 64 years old.  

As both Patents and the level of Employment are identical variables measuring the 

economic performance of European regions, they constitute a variable called Regional 

Effects. 

c) Region 

A dummy variable has been constructed and depicts the development level of each 

region in terms of per capita GDP
4
. Traditionally, per capita GDP measures the 

development level in a given area (city, region, country) and it has been connected 

with innovative activity by researchers (Griliches 1984; Romer 1990; Furman et al. 

2002) since innovative activity leads to productivity growth and therefore to 

development.  

Specifically, for the most developed regions dummy variable takes the value 1, 

for the transition regions dummy variable takes the value 2 and 3 for the less 

                                                             
4Based on the report of European Commission, 2014. 
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developed regions. According to European Commission (2014), these regions (mainly 

the transition and less developed regions) are eligible for structural funds which go to 

research and development and aim to increase innovative activity. Therefore, we are 

interested to investigate which of these regions can absorb more efficiently these 

funds. In other words, we will investigate if the level of development in European 

regions plays an important role to regional leveraging capacity. 

d) NEI 

With the current study we investigate if the degree of innovative diversity in a region 

affects its capacity to efficiently manage its innovative inputs. To put it differently, 

we test if a region which produces patent applications in many technological fields 

can manage efficiently its innovative inputs. So, does diversity in innovative activity 

enforce regions to accept and diffuse knowledge from and to their spatial and 

technological neighbors?  

Entropy index is an adequate measure for the diversity of regional economic 

activity because it takes into consideration the share and the variety of the regional 

sectoral activity (Audretsch et al., 2010). Variety, according to Audretsch et al. 

(2010), refers to “richness”, that is the sectors that are present in the specific region 

and the distribution of those different sectors within the regional economic activity. 

Raw data reveal that not all sectors are present in the innovative activity of every 

region. Therefore, as Frenken (2004) pointed out, entropy index, due to its 

decomposition property, considered an appropriate measure of regional industrial 

diversification. In this paper, we use the Shannon’s entropy index as a measure of the 

technological diversity
5
. We calculate the Normalized Shannon’s Entropy Index 

(NEI) (Kumar, et al. 1986): 

     
 

   
        

 

   
 

 

 

 

where     is the patents share of the technological field i in the total innovation 

activity of region j. N is the number of technological fields, i= 1, 2,…, 121, j is the 

number of regions, j=1, 2, … , 192. The NEI takes values from 0 to 1. If NEIj=0 the 

region produces innovations in one field only. If NEIj=1, the regionally produced 

innovations are equally distributed across the 121 technological fields. Therefore, an 

                                                             
5 Kalapouti and Varsakeli’s (2015) methodology is used 
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increase of it means that the innovation activity becomes more diversified. NEI is 

calculated for the twelve years period and we use the average NEI for each region. 

The conceptual model for our analysis is shown in the following graph (Figure 

8). 

 

 

 

 

 

 

 

 

 

Figure 8: Conceptual theoretical model (the shaded circle represents the latent construct created by the variables 

of patents and employment level – rectangles represent the observed items of the SEM analysis model). 

 

According to the hypothetical associations depicted in the previous graph, the 

PATENTS and level of EMPLOYMENT are forming a more general construct of 

REGIONAL EFFECTS.  

We then explore the connection between the EFFICIENCY level with this 

latent variable of REGIONAL EFFECTS and then we introduce the REGION and NEI 

variables in order to explore whether there is a direct connection between them and 

the level of EFFICIENCY. Finally, we also test whether the variable of REGION is 

indirectly affecting the EFFICIENCY through the variable of NEI.  

 

7. Structural Equation Model (SEM):  Model fit and results 

In order to test our research hypothesis we implement a SEM analysis with latent and 

observed structures using the IBM SPSS AMOS software (Arbuckle, 2006). In 

particular, the fit of the SEM model depicting effects of the various independent 

variables on level of EFFICIENCY is presented by the following path diagram (Figure 

9). 
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Figure 9: Standardized regression weights of the fitted empirical SEM model. 

***: p< 0.01; **: p<0.05; *: p<0.1; R2: Nagelkerke’s R square 

 

In this graph, the single-headed arrows are used to imply a direction of 

assumed causal influence while the numerical values next to each arrow correspond to 

the standardised factor loadings (β’s) of each item on the corresponding 

latent/observed variable while the statistical significance of each loading is also 

indicated by the corresponding asterisks. Finally, we also report the Nagelkerke’s R
2
 

for the “EFFICIENCY’’ variable. 

From the results of the analysis we observe that the level of EFFICIENCY is 

connected positively with the NEI variable (β = 0.28, p-value<0.001), the REGION 

(β=0.47, p-value<0.001) and with the latent variable of REGIONAL EFFECTS (β= 

0.78, p-value<0.001). The latter results imply that the European regions that tend to 

achieve high levels of “NEI”, “REGION” and “REGIONAL EFFECTS” they also 

present a higher level of EFFICIENCY.  

It is interesting also to note that for the “REGION” item besides the significant 

direct effect on the “EFFICIENCY”, it also has a significant indirect effect on this 

variable, through the “NEI” variable (β = -0.72, p-value<0.001). The negative sign of 

this coefficient indicates that the less developed regions (“REGION” variable takes 

increased values) are characterized by a more concentrated innovative policy which 

means that they innovate in specific and limited technological fields. 

Regarding the connection of “REGIONAL EFFECTS” variables with the latent 

construct of “REGIONAL EFFECTS”, PATENTS is positively correlated with this 

latent construct (β = 0.21, p-value<0.1). The positive relation is also presented with 

the level of EMPLOYMENT. In particular, EMPLOYMENT is positively correlated 

PATENTS 

EMPLOYMENT 

EFFICIENCY  
 

NEI 
REGION 

REGIONAL 

EFFECTS 

0.21* 
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0.28*** 0.47*** 
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with “REGIONAL EFFECTS” (β = 0.14, p-value<0.001). In Table 2 we report the 

predictor variables effects’ on efficiency, both direct and indirect. 

 

Table 2: Effects’ analysis on efficiency levels (based on the standardized path coefficients) 

 ‘NEI’, ‘REGION’ and ‘REGIONAL EFFECTS’ predictors 

Latent/observed 

variables Effects 

Direct Effect 

(DE) 

Indirect Effect 

(INDE) 

Total Effect 

(=DE+INDE) 

NEI 0.283 --- 0.283 

REGION 0.474 -0.046 0.428 

REGIONAL EFFECTS 0.78 --- 0.78 

Squared multiple 

correlation (R
2
) 

0.719 

 

The squared multiple correlation R
2
 multiple correlations index for the model 

is 0.719 while the fit statistics available by the AMOS software reveal a good fit of 

the model to the data (RMSEA: 0.05, GFI: 0.851). As is shown by the value of the R
2
, 

the fitted model explains a large proportion of the level of EFFICIENCY variance 

(71.9%). 

Generally, the results of SEM analysis reveal that NEI, REGION and 

REGIONAL EFFECTS are all influential factors concerning the formation of the 

EFFICIENCY levels; however it is observed that this influence is not the same among 

all EFFICIENCY parameters. 

 

8. Discussion & Conclusions 

During the last two decades in the EU, an extensive funding in research and 

innovation has taken place (Cohesion Policy 2007-2013, Horizons 2020) with the 

ultimate goal of enhancing innovative activity and the European Research Area 

(ERA) Integration. Region has been extensively used as a territorial unit of innovative 

activity by many researchers who extensively analyzed patenting activity and regional 

knowledge transfer determinants. As policy makers expect to achieve the highest 

possible returns of funding in research and innovation, we investigate the way that 

some basic factors can influence the regional  innovative efficiency.  

To attain this, we have constructed the dependent variable of our model 

(“EFFICIENCY”) by utilizing DEA, where expenditures in research and development 

(R&D) and Human Capital (HC) constitute its inputs and knowledge spillovers due to 
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spatial and technological proximity (PATGPS and PATTPS respectively) constitute its 

output. Our research question concerns the capacity of regions to manage their 

innovative inputs in order to accept and absorb more efficiently the technological 

knowledge that comes from their spatial and technological neighbours. Using SEM, 

as a second stage analysis, we investigate in which way various factors can influence 

innovative efficiency. Therefore we test if regions with high a) innovative activity, b) 

employment level, c) development level and d) technological diversity present high 

innovative efficiency.  

The results indicate that regions which present high innovative activity 

through patents production they also present high innovative efficiency. This means 

that as regions produce knowledge via patent applications they not only contribute to 

their innovative activity but also create the structures to decode and exploit the 

knowledge spillovers from their neighbours in geographical and technological space 

(inter- regional knowledge spillovers). Therefore, these regions the more they 

innovate the more they develop the capacity and skills to leverage and absorb more 

efficiently inter- regional knowledge spillovers as knowledge transfer is most likely 

to be exploited first in those regions whose innovative environment is most conducive 

to the development of new-to-the-world technology.  

On the other hand, the results show that regions characterized by high levels of 

employment achieve to manage efficiently their innovative sources as a larger part of 

employees are devoted to sectors of research and development. Besides, as the 

technology transfer process demands trained and skilled personnel and adequate 

resources (Rogers et al. 2001), a greater number of employees in a region increase the 

opportunity of its innovative agents to find suitable partners from its spatial and 

technological neighborhood in order to cooperate and exchange knowledge. 

Therefore, when regions dispose both high level of patents production and 

employment, which compose the regional effect, efficiently manage their innovative 

sources. These regions can follow the technological changes, employees can be 

adjusted to new conditions, as the high skilled workers are getting increased, and 

therefore they are able to produce more innovative products. 

Furthermore, we observe that the level of regional development influences 

innovative efficiency. More accurately, the dummy variable of “REGION” has a 

positive direct effect on the “EFFICIENCY” which means that transition and less 

developed regions (“REGION” variable takes increased values) in terms of per capita 
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GDP present high levels of efficiency. This finding reveals an interesting option of 

transition and less developed regions as, although they do not present very high level 

of development (and usually very high innovative activity), they are able to manage 

their innovative sources efficiently. This statement does not imply that developed 

regions are not able to manage their innovative inputs, but that transition regions can 

achieve better efficiency levels without a high waste of their - usually limited-  

innovative sources. However, this indication has to be associated with the impact of 

low NEI index on transition and less developed regions and with the impact of high 

NEI index on more developed regions as our estimations prove that REGION has a 

significant and negative indirect effect on EFFICIENCY, through the NEI variable. 

This finding may be explained as following:  

The more developed regions can achieve high innovative efficiency if they 

follow a more decentralized innovative policy. These regions present also high levels 

of patents production and of employment. Therefore, if they choose to distribute their 

innovative activity and their innovative inputs in a wide range of technological fields 

they will achieve a high efficiency level. On the other hand, if the transition and less 

developed regions follow a more concentrated innovative policy they can reach higher 

levels of innovative efficiency. As they present a moderate patents production and a 

relatively low level of employment, they have to select specific technological fields to 

innovate and not to disperse their capabilities in many technological fields. This 

position gleaned from our estimations, supported also from the context of Regional 

Smart Specialization which forms one of the main pillars of the reformed EU 

Cohesion Policy and highlights the need for regions to identify and select their own 

potential sources of innovation and economic growth. In that respect, regions should 

proceed to self-assessment of their knowledge assets, capabilities and competences 

and the knowledge agents between whom knowledge is exchanged (Mccann and 

Ortega-Argile´s 2013, p. 10). 

 One of the basic principles of Regional Smart Specialization is the specialized 

diversification. Since, each region is characterized by specific structure, it is able to 

take advantage of its domains where specific technologies are dominant and to 

promote diversity of activities in these existing technological fields. Therefore, we 

can argue that regions which apply specialized diversification across related 

technologies can achieve growth (Mccann and Ortega-Argile´s 2013). Besides, ‘‘self-

discovery’’ (Hausmann and Rodrik 2003) is critical for regions’ success. The smart 
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specialization suggests that the policy recommendations at regional level may be very 

different across different places, depending on the region’s technological profile, 

industrial structure and geography. The S
3
 platform aims to assist regions and the EU 

Member States in developing, implementing and reviewing regional smart 

specialization strategies, and help regions identify high-value added activities which 

offer the best chances of strengthening their competitiveness (Commission of Europe 

2010). 

In the light of our results, the ‘‘one size fits all’’ technological policy is not the 

appropriate for European regions if they aim to take advantage of knowledge that 

comes from their spatial and technological neighborhood. If regions develop the 

mechanisms to efficiently decode and exploit the technological achievements that take 

place in several sectors, then EU funding devoted to innovation will be proved fruitful 

for the recipient regions. Therefore, as each European region presents its unique 

technological profile, EU should apply a ‘‘tailor made’’ technological policy to 

increase each region’s level of efficiency.  
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Appendix  

Table A1 Fully efficient DMUs under CRS technology. 

Regions 

 

average 

RD 

average 

HC 

average 

PATTPS 

average 

PATGPS 

AVERAGE 

PATENTS 

AT330: Tirol (Austria) DMU08 581.925 19.70833 11069.2 1501.315 129.1744 

BE220: 
Prov.Limburg(Belgium) DMU12 231.4 22.9 11330.47 1793.637 78.81083 

BG300:Severna iiztochna: 

(Bulgaria) DMU21 3.38 17.625 4635.338 6.40425 0.778167 

CZ040: Severozápad (Czech 
Republic)  DMU26 17.83333 16.53333 5211.362 732.2093 2.06575 

DE120: Karlsruhe (Germany) DMU32 1020.62 30.03636 13967.55 2668.258 426.5713 

DE220: Niederbayern 
(Germany) DMU36 85.05 23.01818 12386.36 1211.976 153.2252 

DEA100: Düsseldorf 

(Germany) DMU53 406 25.38182 13174.88 1794.804 256.9131 

DEA200: Köln (Germany) DMU54 823.84 29.17273 14616.49 1204.894 289.5086 

DEB100: Koblenz (Germany) DMU58 131.02 25.7 12755.17 1535.592 153.2205 

FR420: Alsace (France) DMU92 321.25 24.5 13546.41 1542.691 146.0978 

HU230: Dél-

Dunántúl(Hungary) DMU111 20.5875 14.83 7167.35 14.47442 3.505417 

HU330: Dél-Alföld(Hungary) DMU114 33.375 13.69 8208.527 41.45417 5.714833 

ITC100: Piemonte (Italy) DMU115 380.8889 15.89167 13068.63 642.9922 112.8396 

ITC400: Lombardia (Italy) DMU118 304.5667 18.35833 14324.75 604.9917 136.9808 

ITF300: Campania (Italy) DMU120 129.9889 12.7 12133.52 62.95392 9.356417 

LV00: Latvia DMU126 17.49167 21.75556 7067.748 9.18275 2.630417 

PL300: RegionWschodni 

(Poland)  DMU143 12.7 15.32222 6242.075 9.022 0.828417 

PT110: Norte (Portugal) DMU147 46.01111 10.14167 8407.392 24.85133 4.001917 

PT1600: Centro(Portugal)) DMU148 70.01667 9.75 4905.98 18.95142 4.344667 

RO200: Macroregiunea doi 
(Romania) DMU149 3.833333 10.41111 4783.689 2.238917 0.235083 
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Table A2 Fully efficient DMUs under VRS technology. 

Regions 

 

average 

RD 

average 

HC 

average 

PATTPS 

average 

PATGPS 

AVERAGE 

PATENTS 

AT330: Tirol (Austria) DMU08 581.925 19.70833 11069.2 1501.315 129.1744 

BE220: Prov.Limburg(Belgium) DMU12 231.4 22.9 11330.47 1793.637 78.81083 

BG300: Severna iiztochna (Bulgaria) DMU21 3.38 17.625 4635.338 6.40425 0.778167 

CZ040: Severozápad (Czech Republic) DMU26 17.83333 16.53333 5211.362 732.2093 2.06575 

DE120: Karlsruhe (Germany) DMU32 1020.62 30.03636 13967.55 2668.258 426.5713 

DE220: Niederbayern (Germany) DMU36 85.05 23.01818 12386.36 1211.976 153.2252 

DEB100: Koblenz (Germany) DMU58 131.02 25.7 12755.17 1535.592 153.2205 

ITC100: Piemonte (Italy) DMU115 380.8889 15.89167 13068.63 642.9922 112.8396 

ITF300: Campania (Italy) DMU120 129.9889 12.7 12133.52 62.95392 9.356417 

PT110: Norte (Portugal) DMU147 46.01111 10.14167 8407.392 24.85133 4.001917 

RO200: Macroregiunea doi (Romania) DMU149 3.833333 10.41111 4783.689 2.238917 0.235083 
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