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A B S T R A C T

When strength of forensic evidence is quantified using sample data and statistical models, a concern may be
raised as to whether the output of a model overestimates the strength of evidence. This is particularly the case
when the amount of sample data is small, and hence sampling variability is high. This concern is related to
concern about precision. This paper describes, explores, and tests three procedures which shrink the value of the
likelihood ratio or Bayes factor toward the neutral value of one. The procedures are: (1) a Bayesian procedure
with uninformative priors, (2) use of empirical lower and upper bounds (ELUB), and (3) a novel form of reg-
ularized logistic regression. As a benchmark, they are compared with linear discriminant analysis, and in some
instances with non-regularized logistic regression. The behaviours of the procedures are explored using Monte
Carlo simulated data, and tested on real data from comparisons of voice recordings, face images, and glass
fragments.

1. Introduction

When strength of forensic evidence is quantified using sample data
and statistical models, a concern may be raised as to whether the output
of the model overestimates the strength of evidence, particularly when
the amount of sample data is small. The present paper explores three
different statistical procedures for addressing this concern, and dis-
cusses their advantages and disadvantages.

From a frequentist perspective, the models used to calculate the
numerator and denominator of a likelihood ratio are sample-based es-
timates of probability density functions that have true but unknown
population distributions. Given a large amount of sample data and as-
suming models appropriate for fitting the population distributions, the
modelled sample distributions will be reasonable approximations of the
population distributions, and a calculated likelihood ratio value will be
a reasonable estimate of the true but unknown likelihood ratio value.
When the amount of data sampled is small, sampling variability may
result in modelled sample distributions that deviate substantially from
the population distributions, and hence a calculated likelihood ratio
could be a poor estimate of the true but unknown likelihood ratio value.
This raises a concern about imprecision in general, about whether the
estimate is too high or too low, but practical proposals for dealing with

imprecision are usually also driven by a desire not to overstate strength
of evidence. Hence, rather than calculate and report an upper and lower
bound for a coverage interval around a calculated likelihood ratio
value, what may be reported is the bound closest to the neutral like-
lihood ratio value of 1 (assuming both upper and lower bounds are
greater than 1 or both are less than 1), e.g., rather than report a two-
sided 90% interval of 100 to 10,000, report a one-sided 95% bound of
at least 100. The practice may be to interpret a confidence interval as if
it were a credible interval, or actually formally calculate a Bayesian
credible interval, or to simply adjust the value of the reported like-
lihood ratio to that of a bound.1 If the amount of sample data is large,
the coverage interval will be small, hence there will be little adjustment
to the reported value, but if the amount of sample data is small, the
coverage interval will be large, hence the reported value will be sub-
stantially closer to 1. For discussion and examples of approaches of this
sort, see [1–9].

From a subjectivist Bayesian perspective, there are no true but un-
known population distributions, and the value of a Bayes factor (which
is the Bayesian counterpart of the frequentist likelihood ratio) is a state
of belief, not an estimate of a true but unknown value (in the context of
evaluation of forensic evidence, this position is espoused in, for ex-
ample [10,11]). Calculation of a Bayesian posterior predictive
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distribution is based not only on sample statistics but also on prior
distributions for parameter values. If the amount of sample data is small
the effect of the priors will be greater. Two Bayesians starting with
different priors will arrive at different posterior predictive distributions
when the amount of sample data is small, but their posterior predictive
distributions will converge on the sample distribution as the amount of
sample data increases.

If a Bayesian does not have strong prior beliefs about the distribu-
tion of the parameter values, they will use (relatively) uninformative
priors. Uninformative priors have broad flat distributions, such that
when the amount of sample data is small the posterior predictive dis-
tributions will be substantially broader and flatter than the sample
distributions. The solid blue lines in Fig. 1a show two Gaussian dis-
tributions. The means for the leftmost and rightmost distributions are
−1 and +1 respectively, and they both have the same variance, which
is 1. These can be thought of as representing sample distributions. In
contrast, the dashed red lines show Bayesian posterior predictive dis-
tributions given the same sample means and variance, assuming 10
sample data points were used to calculate each mean, a pooled calcu-
lation of the variance using all 20 data points, and uninformative Jef-
freys reference priors.2 With such a small amount of data, the posterior
predictive distributions are substantially broader and flatter than the
sample distributions.

We take the rightmost Gaussian distribution in Fig. 1a as a model for
calculating the numerator of a likelihood ratio, and the leftmost dis-
tribution as a model for calculating the denominator. This model, one

Gaussian for each category with both Gaussians having the same var-
iance, is known as linear discriminant analysis (LDA).3 We also take the
rightmost Bayesian posterior predictive distribution in Fig. 1a as a
model for calculating the numerator of a Bayes factor, and the leftmost
distribution as a model for calculating the denominator. We calculate
log likelihood ratios or log Bayes factors for the range of values on the x
axis, and plot the resulting values on the y axis in Fig. 1b. The solid blue
line corresponds to log likelihood ratios calculated using LDA, and the
dashed red line corresponds to log Bayes factors calculated using the
posterior predictive distributions. Note that the broader flatter posterior
predictive distributions result in log Bayes factors that are closer to 0
than the log likelihood ratios calculated using the narrower peakier
sample distributions (if the amount of sample data were larger, the log
Bayes factor values would be closer to the log likelihood ratio values).

Although philosophically very different, a frequentist procedure
using the bound of the coverage interval closest to 1 and a Bayesian
procedure using uninformative priors would have the same practical
effect: If the amount of sample data is small, the strength of evidence
value will be closer to the neutral value of 1 (the log strength of evi-
dence value will be closer to the neutral value of 0) than it would be if
the amount of sample data were larger. Both procedures exhibit a
property known as shrinkage. As a potential practical solution to the
philosophical impasse, [12] proposed that those on both sides of the
debate agree to use procedures involving shrinkage, without having to
adopt the other side's philosophical interpretation of probability. We
hope that those on both sides will give this proposal serious con-
sideration and not dismiss it out of hand. Imprecision or sensitivity
would still be assessed, but the results of such an assessment would only
be used to help decide whether the performance of the system was good
enough to be used in casework, and would not be used to further reduce
the magnitude of the reported strength of evidence.

[13] presents another proposal for avoiding overestimating the
strength of evidence. Large magnitude log likelihood ratio values are
desirable, as they give strong support for one hypothesis over the other,
but large magnitude log likelihood ratio values result from the ques-
tioned-origin data being on the tail of at least one of the distributions.
The tails of distributions are intrinsically sparsely sampled, hence
probability density estimates in tail areas are susceptible to large fluc-
tuations resulting from even small changes due to sampling variability.
[13] proposes the imposition of upper and lower bounds on the value of
the likelihood ratio. Values beyond the bounds are replaced by the
values at the bounds. The bounds are empirically determined as the
value at which adding one misleading log likelihood ratio value4 would
result in worse performance in the trier of fact's decision making pro-
cess than if the system were replaced by a system that always outputs a
log likelihood ratio value of 0 (a likelihood ratio of 1). This is called a
consequential misleading likelihood ratio. The dotted green line in Fig. 1b
shows an example of the result of applying the empirical lower and upper
bound (ELUB) procedure to the likelihood ratios calculated using the
LDA procedure (assuming 10 data points for training each sample mean
and a pooled sample variance based on all 20 data points). All else
being equal, as the amount of sample data increases the number of data
points falling in the tails of the distributions will increase, and the de-
viation of the upper and lower bounds from the neutral log likelihood

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y 

D
en

si
ty

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5

score

-10

-8

-6

-4

-2

0

2

4

6

8

10

ln
(L

R
) 

or
 ln

(B
F

)

(b)

-4

-3

-2

-1

0 

1 

2 

3 

4 

lo
g 

ba
se

 1
0

Fig. 1. (a) Sample-based Gaussian distributions (solid blue lines), and Bayesian posterior
predictive distributions (dashed red lines). (b) Score to log likelihood ratio or score to log
Bayes factor transformation functions based on: Sample-based Gaussian distributions
(solid blue line), Bayesian posterior predictive distributions (dashed red line), ELUB
(dotted green line), and regularized logistic regression (dot-dashed magenta line). For
interpretation of the references to colour in figure captions, the reader is referred to the
electronic version of this article.

2 This procedure and the other procedures outlined in the introduction are described in
greater detail in Section 3.

3 LDA is generalizable to any number of categories, but in the present paper (in the
context of score to likelihood ratio conversion, and in one case feature to likelihood ratio
conversion) we only use binomial LDA. In the automatic speaker recognition and auto-
matic face recognition literature LDA is used to refer to a procedure for reducing the
number of dimensions prior to applying some other probabilistic classification model. In
the statistics literature, however, LDA itself refers to a probabilistic classification model.
In the present paper we use the term LDA in the latter sense. The former sense might be
described as using canonical linear discriminant functions for dimension reduction
without actually performing a linear discriminant analysis.

4 A misleading log likelihood ratio is one which is less than 0 when the hypothesis in
the numerator is actually true, or greater than 0 when the hypothesis in the denominator
is actually true.
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ratio value of 0 will increase.
Another model which explicitly includes shrinkage is regularized

logistic regression. In score-based approaches to likelihood ratio calcu-
lation, logistic regression is a popular model for score to likelihood ratio
conversion (aka calibration; e.g., [14–16]). Small amounts of regular-
ization can be applied to logistic regression to avoid numerical pro-
blems in parameter estimation. Larger amounts of regularization can be
applied to deliberately reduce the slope of the fitted logistic regression
model, and hence shrink the log likelihood ratio output. The present
paper introduces a novel variant of regularized logistic regression in-
spired by uninformative Bayesian prior distributions. Regularization is
achieved by adding to the sample data a uniform “prior” distribution
with a weight equivalent to a specified number of pseudodata points.
The dot-dashed magenta line in Fig. 1b shows an example of the result
of applying regularized logistic regression to the same sample data as
before (10 sample points from each of two categories) using regular-
ization based on a uniform prior with a weight of 5 pseudodata points.
The log likelihood ratio values resulting from the regularized logistic
regression procedure are closer to 0 than the log likelihood ratio values
resulting from LDA.

We have outlined four different procedures for calculating like-
lihood ratios or Bayes factors:

1. linear discriminant analysis (LDA),
2. a Bayesian procedure using uninformative priors,5

3. empirical lower and upper bounds (ELUB),6 and
4. regularized logistic regression (LogReg).

The latter three involve some form of shrinkage. LDA is included as
a baseline against which to compare the other procedures. Also for
comparison purposes, on some datasets we will also test non-regular-
ized logistic regression.7

In the remainder of the present paper:

• Section 2 briefly outlines score-based approaches for the calculation
of likelihood ratios/Bayes factors.

• Section 3 provides additional details related to each of the proce-
dures outlined above.

• Section 4 explores the behaviour of each procedure on simulated
score data.

• Section 5 tests the performance of each procedure when applied to
real data from comparisons of voice recordings, face images, and
glass fragments.

• Section 6 provides discussion and conclusion.

In order to more quickly understand the main arguments of the
present paper, readers may wish to skip Section 3 on first reading.

Software that implements the procedures described in Section 3,
and the analyses reported in Section 4 and Section 5.2 (along with the
score data for the latter), is provided at http://geoff-morrison.net/#
shrunk_LRs. The score data for the analysis reported in Section 5.3 is
available from http://personal.ee.surrey.ac.uk/Personal/Norman.Poh/

web/fusion/.

2. Score-based approaches for the calculation of likelihood ratios/
Bayes factors

Score-based approaches are increasingly popular across multiple
branches of forensic science, e.g., [17–25]. Quantitative measurements
made on objects of interest such as voice recordings, face images, and
glass fragments usually result in multivariate data with complex dis-
tributions. Models fitted to these feature data may be, for example,
kernel density models or Gaussian mixture models, the former semi-
parametric and the latter parametric requiring a large number of
parameter values to be estimated. For example, in forensic voice com-
parison it is not uncommon to fit a Gaussian mixture model with 1024
Gaussian components to feature data with around 28 dimensions, re-
quiring estimates for 85,988 parameter values. The amount of training
data is seldom sufficient to obtain good estimates for such a large
number of parameters, hence the values output by such models cannot
be safely interpreted as the ratios of likelihoods answering the same-
origin and different-origin hypotheses specified for the case. Instead,
the outputs of such (first-stage) models are treated as scores which must
be converted to likelihood ratios (or calibrated) before their values can
be interpreted.

The first stage of a score-based procedure can be considered a
procedure for extracting information about the similarity of the ques-
tioned-origin data with respect to the known source and their typicality
with respect to the relevant population,8 and projecting the complex
multidimensional feature space down to a univariate score space. The
second stage then fits simple models to the univariate scores. These
second-stage models only require estimation of a few parameter values,
and there are a relatively large number of training scores available for
estimating the values of those parameters. The parameter estimates for
the second-stage models are therefore good estimates, and the outputs
of these models are naturally well calibrated. The projection from a
complex multidimensional feature space to a simple univariate score
space involves a loss of information, but, given the difficulty of fitting
good models in the original feature space, score-based procedures may
empirically outperform procedures which attempt to directly estimate
likelihood ratio values in the original complex multidimensional feature
space.

The absolute value of a score is not interpretable, but a score has the
form of a log likelihood ratio, it quantifies the similarity of the ques-
tioned-origin data with respect to the known-origin sample and the
typicality of the questioned-origin data with respect to a sample of the
relevant population. Hence, given two scores, the absolute values of the
scores and the absolute difference between the scores are not inter-
pretable, but the higher valued score should correspond to a higher
valued likelihood ratio than does the lower valued score. An appro-
priate score to likelihood ratio conversion model should, therefore, be
monotonic, at least within the foreseeable operating range of the
system.9

The second-stage score to likelihood conversion model should be
trained using training data that are distinct from the training data used
to train the first-stage model. The second-stage training data should
consist of feature values extracted from pairs of objects of interest (pairs
of voice recordings, facial images, glass fragments, etc.). Some pairs

5 In the present paper, we will always use Jeffreys reference priors as the uninformative
priors for the Bayesian procedure.

6 ELUB is not actually a procedure for calculating likelihood ratios, but a procedure for
limiting the size of the likelihood ratios generated by another procedure. In the present
paper, with one exception, we will always apply ELUB to the output of LDA. ELUB could
also be applied to the output of other procedures.

7 In the present paper we do not explore the performance of procedures based on kernel
density models or Gaussian mixture models because they do not induce shrinkage. When
data are sparse, even if only locally sparse, this increases concern regarding imprecision
and/or overestimating strength of evidence, and in such circumstances non-parametric,
semi-parametric, and low-bias parametric procedures are prone to overfitting the training
data and exacerbating the problem. Such procedures are also potentially problematic
because they are not monotonic and do not naturally produce well calibrated results by
estimating a small number of parameters using a relatively large amount of data.

8 Scores should be calculated in a manner which captures information about both si-
milarity and typicality, i.e., the procedure for calculating a score should be an attempt to
estimate a log likelihood ratio value. Scores based only on similarity lack information
about the typicality of the questioned-origin data with respect to the relevant population,
and that information cannot be adequately incorporated as part of the score to likelihood
ratio conversion stage [26].

9 [27] describes some models which are in principle non-monotonic, but which in
practice may be monotonic (but not linear) within the operating range of the system. [28]
illustrates problems with models that are not monotonic within the operating range of the
system.
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must be known to be same-origin pairs and some pairs must be known
to be different-origin pairs. Each pair is input to the already-trained
first-stage model, and the output is a set of same-origin scores and a set
of different-origin scores. These same- and different-origin scores are
then used to train the second-stage model.

The training data for the second-stage model should be sampled
from the relevant population specified in the different-origin hypoth-
esis. One member of each pair must have conditions reflecting those of
the known-origin data in the case and the other member of the pair
must have conditions reflecting those of the questioned-origin data in
the case. For example, in a forensic voice comparison case the relevant
population may be specified to be speakers of a given sex speaking a
particular language with a particular accent, and the questioned-
speaker recording may be of a lively mobile telephone conversation
(mobile telephone codecs distort and discard information from the
speech signal) whereas the known-speaker recording may be of sub-
dued answers to a police interview made in a room with substantial
reverberation and ventilation system noise. If the second-stage training
data differ substantially from the relevant population or conditions, this
will produce miscalibrated results [29,30].

3. Details regarding each of the four procedures

3.1. Linear discriminant analysis (LDA)

A simple model for score to likelihood ratio conversion is linear
discriminant analysis [31], i.e., two Gaussian distributions with the
mean of one calculated using the different-origin training scores, the
mean of the other calculated using the same-origin training scores, and
both using the same pooled variance calculated using all the training
scores. Use of the same variance for both Gaussians ensures that the
score to likelihood ratio conversion function is linear, and hence
monotonic, [12,18 §6.5.2.1, 28,32]. Using different variances for each
Gaussian (quadratic discriminant analysis) would result in a non-linear
non-monotonic function.

Eq.1 represents a linear discriminant analysis model, in which: ΛLDA

is the likelihood ratio corresponding to score value x; μs and μd are the
sample means calculated from the same-origin training scores and dif-
ferent-origin training scores respectively; ̂σ 2 is the pooled sample var-
iance calculated using data from both same-origin and different-origin
training scores;  ̂f x μ σ( | , )2 is the Gaussian probability density function;
and ln(·) are natural logarithms.

 ̂ ̂= −Λ f x μ σ f x μ σln( ) ln( ( | , )) ln( ( | , ))s d
LDA 2 2 (1a)
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The linear form given in Eq. (2) can be derived from Eq. (1).
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Note that the slope b is the difference between the means divided by
the variance. In Fig. 1 the means were 2 variance units apart, hence the
slope was 2.

The linear discriminant analysis model does not include shrinkage,
but it will be tested below to provide results against which the per-
formance of the other models can be compared.

3.2. Bayesian model using uninformative Jeffreys reference priors

For a Bayesian calculation of likelihood using sample data assumed

to be from a Gaussian distribution with unknown mean and variance,
the conjugate prior is a Gaussian-gamma distribution, and the posterior
predictive distribution is a t location and scale distribution [33 §9.6,
34]. The calculations are described in Eq. (3), in which: λB is the like-
lihood of the Bayesian model evaluated at a score value x; n is the
number of sample data points used for calculating the sample mean μ
and sample variance ̂σ 2; μprior is the prior belief regarding the mean, and
κprior is how strong that belief is (quantifiable as the number of pseu-
dodata points); and βprior is the prior belief regarding the variance, and
αprior is how strong that belief is. In Eq. (3f), ν is the degrees of freedom
and Γ(·) is the gamma function.
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In general, values for the hyperparameters μprior, κprior, βprior, and
αprior must be selected, either reflecting informative prior beliefs or
giving (relatively) uninformative wide flat prior distributions. This
model was previously described in [35], and used in conjunction with
relatively uninformative priors to convert scores to Bayes factors. This
included a demonstration of the effect of varying the amount of sample
data on the average magnitude of log Bayes factors: as the amount of
sample data decreases the average magnitude of the log Bayes factors
decreases. See [12] for a graphical example of calculating Bayes factors
using this model and relatively uninformative priors. [36] includes
results of applying a similar (but multivariate) model using informative
priors and using relatively uninformative priors. The latter resulted in a
log Bayes factor that was much closer to zero.

An option for uninformative priors is to use Jeffreys reference
priors, for which the values for the hyperparameters κprior, βprior, and
αprior are 0, 0, and −½ respectively (the value of μprior is irrelevant
since it is always multiplied by κprior = 0).10 Substituting these hy-
perparameter values into Eq. (3) and simplifying leads to Eq. (4).
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A Bayes factor ΛBF can then be calculated as in Eq. (5), in which the
s and d subscripts indicate values derived from same-origin training
scores and different-origin training scores respectively.
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Because of the use of t distributions rather than Gaussian distribu-
tions, using the same variance in both numerator and denominator will
not guarantee monotonicity, but we impose this constraint to reduce
the potential extent of non-monotonicity. This leads to a modification of
Eq. (5), as shown in Eq. (6), in which ̂σ 2 is the pooled sample variance

10 Note that the Jeffreys reference priors are improper priors with distributions that do
not integrate to 1 and that cannot be graphically represented. The pseudodata inter-
pretation also breaks down.
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and the degrees of freedom have been adjusted to take account of the
pooled variance calculation (the adjusted degrees of freedom imply that
αprior was −1).
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When we calculate scores below, we often adopt a procedure of the
following form: If we have 2 recordings from each of 10 speakers
(nspk = 10), we compare every speaker's first recording with their own
second recording and with every other speaker's second recording. This
results in a total of 100 scores, 10 same-speaker scores (ns = 10) and 90
different-speaker scores (nd = 90). The calculation of different-speaker
scores reuses each recording multiple times, and thus the score values
are not statistically independent. Rather than base the expansion of the
variance and the degrees of freedom on ns + nd, we therefore base them
on nspk, i.e., as in Eq. (5) but with ns = nd = nspk and using the pooled
variance ̂σ 2. Mutatis mutandis when the comparisons are of face images
or glass fragments.

3.3. Empirical lower and upper bound (ELUB)

The ELUB procedure is a secondary procedure applied to the output
from a procedure that calculates likelihood ratios. The procedure and
its rationale are described in [13]. To implement the procedure, we
need training data consisting of a set of likelihood ratio values known to
be from same-origin comparisons and a set of likelihood ratio values
known to be from different-origin comparisons (note that these are
likelihood ratio values, not score values). We sort the likelihood ratio
values from the training set in ascending order, and at each likelihood
ratio value in the training set (a threshold value LRth) we calculate the
expected utility ratio EUratio(ELUB) using Eq. (7), in which: nLRs

and
nLRd

are the total number of same-origin and different-origin likelihood
ratios in the training set; nLRs

≤ LRth is the number of same-origin
likelihood ratios in the training set that are less than or equal to LRth;
and nLRd

> LRth is the number of different-origin likelihood ratios in
the training set that are greater than LRth. The numerator reads: If
LRth > 1 then 1, else LRth.11
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The first value of LRth for which EUratio(ELUB) is greater than 1 is
the empirical lower bound, and the last value of LRth for which EUratio
(ELUB) is greater than 1 is the empirical upper bound. When the ELUB
procedure is applied, all likelihood ratios below the empirical lower
bound are replaced by the value of the empirical lower bound, and all
likelihood ratios above the empirical upper bound are replaced by the
value of the empirical upper bound.

In the present paper, we will apply the ELUB procedure to the
output of the LDA procedure. As same- and different-origin likelihood
ratios for training, we use likelihood ratio values calculated from the
same same- and different-origin scores that were used to train the LDA
model. The upper and lower bounds are then imposed on the LDA
output obtained when the model is applied to test scores.

3.4. Regularized logistic regression

If the assumptions for LDA hold that the data have Gaussian

distributions with equal variance, and there are sufficient training data,
logistic regression will give the same results as LDA. Logistic regression,
however, is not dependent on these assumptions, and hence is more
robust to violations of these assumptions than is LDA, [37] §4.4.5. A
logistic regression model is fitted using an iterative maximum-like-
lihood algorithm, descriptions of which can be found in multiple
sources including [37–41]. Logistic regression is usually thought of as
calculating posterior probabilities, but if equal priors are used log
posterior odds outputs are interpretable as log likelihood ratios. The
model is linear in the logistic space (i.e., the logged odds space), and the
fitted intercept and slope values in the logistic space can therefore be
used to convert a score x to a log likelihood ratio ln(ΛLogReg) as in Eq.
(8). Eq. (8a) is identical to Eq. (2a), except that a different algorithm is
used to calculate a and b.
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To fit a logistic regression model for p(Hs|x), we code each dif-
ferent-origin training score xdi as pdi = 0 and each same-origin training
score xsj as psj = 1 (see Fig. 2 in which [xdi, pdi] are plotted as large
magenta triangles and [xsj, psj] as large blue circles). The iterative
training algorithm searches for a and b values that will maximize the
likelihood of the model averaged over all the [xdi, pdi] and [xsj, psj] va-
lues (and taking into account any priors on the two categories). In the
probability space shown in Fig. 2, p(Hs|x) is plotted as the green sig-
moidal curve. The slope of a tangent to the steepest part of the sig-
moidal curve (which occurs at p(Hs|x) = 0.5) is b/4 ([42] p 24).

A numerical problem may occur in fitting the model if there is
complete separation between the two categories in the training data
(e.g., same-origin versus different-origin categories). The likelihood is
maximized when the slope b is infinite and the intercept a is anywhere
between the highest different-origin training score and the lowest same-
origin training score. In practice, if the algorithm is stopped after a set
number of iterations or when the change in the coefficients from one
iteration to the next is less than a specified threshold, the slope will not
actually reach infinity. The results from the last iteration, however, are
unlikely to produce a model that is a good predictor for new data that
fall between or close to the highest different-origin score and the lowest
same-origin score in the training data. A solution proposed in [40] ch7
(and previously in [43] §4.3) for categorical predictor variables when
some cells have zero count, is to add one observation to each cell. [44]
extended this idea to continuous predictor variables by adding a copy of
the same-origin training data (coded as psj = 1) and recoding the copy
as psj

copy = 0 but giving it a small weight relative to the original same-
origin training data, and mutatis mutandis for the different-origin
training data (coded as pdi = 0) with the copy coded as pdi

copy = 1 but
with a small weight. Adding the copies removes the complete separa-
tion in the training data and the algorithm converges on a non-infinite
slope. The model has been regularized.12 Whatever the data, the slope
fitted using regularization will be shallower than for a model not in-
cluding regularization, but, apart from in circumstances involving
complete or near complete separation, the difference in slope will be
slight if the regularization weight is small.

Here we propose a revision to this form of regularization which can

11 We have simplified by assuming that we only add one consequential misleading
likelihood ratio at LRth.

12 Note that this is a different form of regularization than the more common form
described in [37] §4.4.4.
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be used to substantially reduce the fitted slope and hence shrink the log
likelihood ratio output. The proposed procedure is inspired by and
mimics uninformative priors from Bayesian analyses. A “prior” dis-
tribution is added consisting of pseudodata points that have an unin-
formative uniform distribution. At each data point, xdi and xsj, we add
two pseudodata points which we code as pdi

ψ0 = 0 and pdi
ψ1 = 1 or as

psj
ψ1 = 1 and psj

ψ0 = 0. We set the weights on these pseudodata points
such that the sum of all the weights equals κψ. The overall strength of
the “prior” distribution is equivalent to κψ data points, as was the case in
the Bayesian procedure described in Section 3.2 above in which κprior

was the strength of belief for the mean quantified as a number of
pseudodata points. If the number of pseudodata points is fixed, the
relative effect of regularization will decrease as the amount of real
training data increases.

The weighting procedure we use is the same as the weighting pro-
cedure used for dealing with priors and imbalances in the amount of
training data from each category. For example, if the priors for each
category are equal, i.e., p(Hs) = p(Hd), but the training data are im-
balanced, e.g., nd = 3ns, then the pdi are weighted by wd = ns/(nd + ns)
= 1/4 and the psj are weighted by ws = nd/(nd + ns) = 3/4, such that
ndwd = nsws.13xdi and xsj with low weights will have pdi and psj values
close to 0.5, whereas xdi and xsj with high weights will have pdi and psj
values close to 0 and 1 respectively.

We apply the same procedure as described in the previous para-
graph to weight the pseudodata points, weighting each point by
wψ = κψ/2(nd + ns). Fig. 2b and c show the weighted pseudodata points
as the small symbols near p(Hs|x) = 0.5 (triangles represent weighted

pdi
ψ0 and psj

ψ0, circles represent weighted pdi
ψ1 and psj

ψ1). For Fig. 2b,
κψ = 0.1, and for Fig. 2c, κψ = 5 (the amount of training data was 10
points for each category, generated using equal-variance Gaussians
whose means were 4 variance units apart). As a heuristic, we re-
commend values of κψ ≤ 0.1 to avoid numerical problems, and κψ ≥ 1
to induce shrinkage.

For the remainder of the present paper, we will fix the value of κψ at
5. This value was chosen based on some preliminary exploration of
performance using simulated data. Ultimately the choice of the value
for κψ is arbitrary, which is a disadvantage of this procedure, although
one should note that prior distributions also have to be selected for
Bayesian procedures (even if the choice is to use Jeffreys reference
priors that is still a choice).

When we calculate scores below, we often adopt a procedure of the
following form: If we have 2 recordings from each of 10 speakers
(nspk = 10), we compare every speaker's first recording with their own
second recording and with every other speaker's second recording. This
results in a total of 100 scores, 10 same-speaker scores (ns = 10) and 90
different-speaker scores (nd = 90). The calculation of different-speaker
scores reuses each recording multiple times, and thus the score values
are not statistically independent. Rather than weight the pseudodata
points by wψ = κψ/2(nd + ns), we will therefore weight them according
to the number of speakers used to generate the scores wψ = κψ/2nspk.
Mutatis mutandis when the comparisons are of face images or glass
fragments.

4. Exploration of the behaviour of the four procedures using
simulated data

As a preliminary exploration of the behaviour of the four proce-
dures, we use simulated data. In the context of Monte Carlo simulations,
one specifies the parameter values for the population distributions, and
one can therefore calculate what in frequentist terms would be true
likelihood ratio values. In subjectivist Bayesian terms, these would be
the values towards which all individuals' beliefs regarding Bayes factors
should converge given enough data. We will henceforth call these va-
lues the reference values.

We specified same-origin score and different-origin score Monte
Carlo distributions as Gaussians with means of μd = − 1 and μs =
+ 1, and a common variance σ2 of 1, i.e., the distributions shown as the
solid blue lines in Fig. 1a.14 We then used a pseudorandom-number
generator (based on Mersenne Twister with a seed of 0) to generate
samples from the specified Monte Carlo distributions. For each set of
training data, 10 same-origin sample scores and 10 different-origin
sample scores were generated. The sample generation process was re-
peated 1000 times to generate 1000 sets of training data.

For each set of simulated training data, we fitted an LDA model, a
Bayesian model using Jeffreys reference priors, ELUB applied to the
LDA output (LDA was used to calculate likelihood ratios on the training
data and these were used to derive the upper and lower bounds), and
regularized logistic regression with a uniform “prior” weighted by
κψ = 5 pseudodata points. Fig. 3 shows the resulting score to likelihood
ratio conversion functions. The x axis represents the score values and
the y axis the corresponding log likelihood ratio or log Bayes factor
values. The y axis is scaled in natural logarithms (equivalent log base 10
values are given on the right). Each thin line represents a function
trained on one sample set. The thick line indicates the score to reference
value function (this is the same as the solid blue line in Fig. 1b).

The LDA functions (Fig. 3a) have a substantial variation in log
likelihood ratio values (vertical spread), which increases as the
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Fig. 2. (a) Example of logistic regression fitted without regularization. (b) Example of
logistic regression fitted with a small amount of regularization to avoid numerical pro-
blems. (c) Example of logistic regression fitted with a large amount of regularization to
induce shrinkage. The large symbols represent sample data, and the small symbols re-
present weighted pseudodata with an uninformative uniform distribution.

13 The weighting is implemented by linearly transforming the probabilistic space from
the range 0 to 1, to the range − 1 to +1, and multiplying the transformed pdi and psj by
the weights wd and ws. The space is subsequently transformed back to the usual range of 0
to 1.

14 For this preliminary exploration of the behaviour of the procedures, we generate
data based on a model which meets the distributional assumptions of the LDA and
Bayesian procedures, and are thus not a priori biassed against these procedures. Most of
the sets of real data used in Section 5 clearly violate these assumptions.
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Fig. 3. Score to log likelihood ratio or score to log Bayes
factor transformation functions fitted to Monte Carlo si-
mulated data: 10 same-origin sample scores and 10 dif-
ferent-origin sample scores, same-origin and different-
origin population means separated by 2 variance units. (a)
LDA. (b) Bayesian procedure with uninformative Jeffreys
reference priors. (c) ELUB applied to LDA output. (d)
Regularized logistic regression.
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Fig. 4. Score to log likelihood ratio or score to log Bayes
factor transformation functions fitted to Monte Carlo si-
mulated data: 10 same-origin sample scores and 10 dif-
ferent-origin sample scores, same-origin and different-
origin population means separated by 4 variance units. (a)
LDA. (b) Bayesian procedure with uninformative Jeffreys
reference priors. (c) ELUB applied to LDA output. (d)
Regularized logistic regression.
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Fig. 5. Score to log likelihood ratio or score to log Bayes
factor transformation functions fitted to Monte Carlo si-
mulated data: 100 same-origin sample scores and 100
different-origin sample scores, same-origin and different-
origin population means separated by 2 variance units. (a)
LDA. (b) Bayesian procedure with uninformative Jeffreys
reference priors. (c) ELUB applied to LDA output. (d)
Regularized logistic regression.
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Fig. 6. Score to log likelihood ratio or score to log Bayes
factor transformation functions fitted to Monte Carlo si-
mulated data: 100 same-origin sample scores and 100
different-origin sample scores, same-origin and different-
origin population means separated by 4 variance units. (a)
LDA. (b) Bayesian procedure with uninformative Jeffreys
reference priors. (c) ELUB applied to LDA output. (d)
Regularized logistic regression.
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reference values deviate from 0. This imprecision is symmetrical about
the reference values. Values that are substantially further from 0 than
the reference values are of practical concern given that they over-
estimate the strength of evidence.

The Bayesian functions (Fig. 3b) have a substantial variation in log
Bayes factor values (vertical spread), but on average less than the
variation of log likelihood ratio values for the LDA functions. The
Bayesian functions also tend to be closer to 0 than the reference value
function – shrinkage has been effected. A substantial proportion of the
Bayesian functions are, however, further from 0 than the reference
value function. The Bayesian functions are sigmoidal and the rate at
which they deviate from 0 is close to that of the reference function for
low reference values, but decreases as the magnitude of the reference
values increase. This may be considered desirable. Non-monotonicity
can be observed in some Bayesian functions. This is not desirable.

The ELUB functions (Fig. 3c) follow the LDA functions for low
magnitude reference values (by design), and are then suddenly trun-
cated. The ELUB procedure is clearly the most conservative of those
already considered. One could conclude that it is overly conservative.
One could argue that limiting the log likelihood ratio values is desir-
able, but that the sudden truncation (cliff-edge effect) is not, and that
score values substantially beyond a bound should correspond to log
likelihood ratios further from 0 than scores just at the bound.15 The
better precision of ELUB compared to the other procedures is an arte-
fact of the fact that all likelihood ratios beyond the upper or lower
bound are replaced by the value at the bound and therefore all have the
same value.

The regularized logistic regression functions (Fig. 3d) have sub-
stantial variation in log likelihood ratio values (vertical spread), but
substantially less than that for the LDA functions. The regularized lo-
gistic regression functions exhibit shrinkage, they are almost always
closer to 0 than the reference value functions. Unlike the Bayesian and
ELUB functions, the regularized logistic regression functions are linear.
One could consider this desirable.

Figs. 4–6 show results from simulations using larger amounts of
training data and/or greater separation between the means used to
generate the simulated same-origin scores versus different-origin
scores. Fig. 4 is based on 10 data points per category, but with a se-
paration between the means of 4 variance units. Figs. 5 and 6 are based
on 100 points per category, and with separations between the means of
2 and 4 variance units respectively.16

Given a larger amount of training data (Figs. 5 and 6), the relative
effect of shrinkage is less. All procedures give more precise results, and
the procedures involving shrinkage also give more accurate results.

Given greater separation between the different-origin and same-
origin scores (Figs. 4 and 6), the slopes of the reference value function,
LDA functions, and Bayesian functions increase. When the separation
between the categories is greater and the amount of data is larger, the
ELUB bounds are further from 0 and the slopes of the regularized lo-
gistic regression functions increase (compare Fig. 5c and d with Fig. 6c
and d). In contrast, when the separation between the categories is
greater and the amount of data is small, the increases in the ELUB
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Fig. 7. Boxplots of RMS error values for each procedure in each condition: (a) 10 training samples per category and separation between the means in the Monte Carlo population
distributions of 2 variance units. (a) 10 training samples per category and separation between the means in the Monte Carlo population distributions of 4 variance units. (a) 100 training
samples per category and separation between the means in the Monte Carlo population distributions of 2 variance units. (a) 100 training samples per category and separation between the
means in the Monte Carlo population distributions of 4 variance units. Note that the y-axis scale is different for each panel.

15 A potential alternative that avoids the sudden truncation could be to fit a sigmoidal
function in the logistic space [45].

16 We believe that this range of amount of sample data and range of separation be-
tween the categories is sufficient to gain an understanding of the relative behaviour of the
procedures and to conceptually interpolate and extrapolate within and beyond these
ranges. Other values can easily be substituted into the software we provide.
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bounds and the slopes of the regularized logistic regression functions
are relatively small, although they both become more precise (compare
Fig. 3c and d with Fig. 4c and d). The latter procedures are conservative
in not increasing the magnitudes of log likelihood ratios unless there is
sufficient data to support those larger magnitude values. Given a larger

separation even with a relatively large amount of data (Fig. 6), the
ELUB and regularized logistic regression procedures are more con-
servative than the LDA and Bayesian procedures, either by imposing
bounds or by having a substantially shallower slope. In these examples
we known that the greater separation is due to a change in the Monte
Carlo population, not due to sampling variability, but in a single in-
stance of real sample data we would not know whether the sample
distributions were close to or far from the population distributions. The
conservativeness of the ELUB and regularized logistic regression pro-
cedures may therefore be considered desirable.

In addition to the graphical representations of system performance
described above, numeric metrics of system performance were calcu-
lated. A single test set consisting of 1000 simulated data points from
each category was generated for each condition, and likelihood ratios
or Bayes factors were calculated for these test data using each training
sample set and each of the four procedures. The root mean square
(RMS) error between the calculated log likelihood ratio or log Bayes
factors values and the log reference values was calculated, as was the
log likelihood ratio cost (Cllr, [6,15,46–48]). Each metric can be con-
sidered a quantifier of a different form of accuracy. For both metrics the
better the performance, the lower the value. The boxplots in Figs. 7 and
8 show the distributions of the RMS error and Cllr metrics respectively,
calculated over the 1000 sets of training data.

Across all condition, and for both metrics, the Bayesian procedure
outperformed the other procedures or was not substantially worse than
the best performing system for a condition. When the amount of
training data was large, LDA outperformed the other procedures on
both metrics or was not substantially worse than the best performing
system for a condition. The performance of the regularized logistic re-
gression procedure on these metrics was generally not as good as for the
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Fig. 9. Data from the forensic voice comparison case involving two sisters: CLDF values
for the elder-sister recordings (blue circles), younger-sister recordings (red triangles), and
the questioned-speaker recording (green cross), along with pooled-variance Gaussian
distributions fitted to the known-speaker data. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Bayesian procedure. The ELUB procedure usually performed the worst
on these metrics.

It should, however, be borne in mind that the training and test data
were drawn from Monte Carlo population distributions that met the
LDA and Bayesian procedures' assumption of Gaussian distributions
with equal variance. The regularized logistic regression procedure
could have advantages when these assumptions are violated. Based on
the reported results using these metrics, the Bayesian procedure would
be preferred. Ones utilities for casework, however, could warrant the
acceptance of some decrease in accuracy in exchange for decreasing the
probability of overestimating strength of evidence, leading one to prefer
the ELUB or the regularized logistic regression procedure.

5. Tests using real data

The previous section explored the behaviour of the different score to
likelihood ratio conversion procedures using simulated data. In order to
explore the generalizability to conditions more reflective of casework,
the present section applies the procedures to real data from compar-
isons of voice recordings, face images, and glass fragments. In order to
keep the focus on the score to likelihood ratio conversion procedures,
we will only briefly describe the data and systems which were used to
generate the scores. Readers interested in more detailed descriptions
are directed to the cited papers. For simplicity, in describing the per-
formance of the different procedures on the different data sets, we will
focus on accuracy and not report results related to precision.

5.1. Forensic comparison of voice recordings: sisters case

The first set of real data comes from a forensic voice comparison
case previously reported in [49]. These data are not actually scores, but
features (mel frequency cepstral coefficients, MFCCs) projected down to
a single dimension using a canonical linear discriminant function
(CLDF). The hypotheses in this case were that the voice on the ques-
tioned-speaker mobile-telephone recording (Q) was either the elder (E)
or the younger (Y) of two sisters: p(xQ|HE)/p(xQ|HY). The sisters were
cooperative, and 5 recordings were made of each sister using the same

mobile telephone as had been used to make the questioned-speaker
recording.

Fig. 9 shows the CLDF values for the elder sister's recordings (blue
circles), younger sister's recordings (red triangles), and the questioned-
speaker recording (green cross), along with pooled-variance Gaussian
distributions fitted to the known-speaker data.

Table 1 shows the results of using the different procedures to cal-
culate likelihood ratios and Bayes factors on these feature data. Results
for recordings known to be of either the elder or the younger sister were
obtained using leave-one-out cross validation. The LDA procedure re-
sulted in extremely large magnitude log likelihood ratio values, that
would be difficult to justify give any realistic amount of training data,
let alone 5 recordings per speaker. The Bayesian procedure resulted in
smaller log Bayes factor values,17 but still reaching values that may be
difficult to justify given the small amount of training data. ELUB gave
very conservative results. Since there was complete separation in the
training data, the bounds simplified to the number of training data
points for the least likely category. Regularized logistic regression re-
sulted in likelihood ratio values around the same size as those from
ELUB, but which could be up to several times larger or several times
smaller. Given the small amount of training data (5 data points per
category), the relative effect of the regularization (5 pseudodata points)
was large.

5.2. Forensic comparison of voice recordings: scores from GMM-UBM and i-
vector PLDA systems

The next sets of real data come from a forensic voice comparison
case previously reported in [50,51 ch 4]. The questioned-speaker re-
cording was of a landline telephone call. It included background office
noise and was saved in a compressed format. The known-speaker

Table 1
Likelihood ratio and Bayes factor results p(x|HE)/p(x|HY) for the four procedures applied to the data from the elder- versus younger-sister case.

Speaker Y Y Y Y Y E E E E E Q

LDA 2 × 10−20 3 × 10−20 6 × 10−24 5 × 10−40 2 × 10−22 1 × 1012 2 × 108 1 × 1016 5 × 1016 3 × 1040 6 × 10−19
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Fig. 10. Histograms of score data from (a) the GMM-UBM forensic voice comparison system, and (b) the i-vector PLDA forensic voice comparison system. Both systems were applied to
the same voice-recording data.

17 The Bayes factor values reported here are closer to 1 than those reported in [46].
The version of the formula used for calculating the Bayes factors in [46] included what we
now believe to be an error with respect to how to account for the pooled calculation of
variance. The version used in the present paper (Eq. 6) is, we believe, correct.
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recording was of a police interview. It had substantial reverberation
and background ventilation system noise. One set of scores was gen-
erated using a Gaussian mixture model universal background model
(GMM-UBM) system, and the other set was generated using an i-vector
PLDA system. Both systems were trained and tested using the same
feature data. Feature data were MFCC + deltas. Data from recordings
of 105 speakers were used for training the first-stage model, and data
from recordings of an additional 61 speakers were used to train the
second-stage model and for testing. There were multiple recordings of
each speaker resulting in a total of 111 same-speaker scores and 9720
different-speaker scores. A cross-validation procedure was used to avoid
training and testing on the same data.18

Histograms of the different-speaker and same-speaker scores from
the GMM-UBM and the i-vector PLDA systems are shown in Fig. 10a
and Fig. 10b respectively. For the scores from the GMM-UBM system,
the assumptions of normality and equal variance appear to be met. For
the scores from the i-vector PLDA system, the different-speaker scores
have a slight skew, and the assumption of equal variance is clearly
violated.

The results of using the different procedures to convert the scores to
likelihood ratios are shown as Tippett plots [48,52,53] in Fig. 11
(GMM-UBM scores) and Fig. 12 (i-vector PLDA scores), and as Cllr va-
lues in Table 2. Results from a non-regularized logistic regression model
are also included.

For the GMM-UBM scores, which met the assumptions of normality
and equal variance, LDA gave the best results in terms of Cllr. The
Bayesian procedure and regularized logistic regression effected
shrinkage, which was greatest for the latter. Shrinkage came at the cost
of a decrease in accuracy (an increase in Cllr).

For the i-vector PLDA scores, which violated the assumptions of
normality and equal variance, logistic regression outperformed LDA
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Fig. 11. Tippett plots resulting from fitting the score to log likelihood ratio or score to log Bayes factor transformation functions to the score data from the GMM-UBM forensic voice
comparison system. (a) LDA. (b) Bayesian procedure with uninformative Jeffreys reference priors. (c) ELUB applied to LDA output. (d) Regularized logistic regression. (e) Non-regularized
logistic regression.

18 For example, to test a same-speaker comparison for Speaker 1, all scores based on
comparisons which included a recording of Speaker 1 were held out from the training
data, and to test a different-speaker comparison for Speaker 1 versus Speaker 2, all scores
based on comparisons which included a recording of either Speaker 1 or Speaker 2 were
held out from the training data. Mutatis mutandis for cross-validated testing of the face-
image and glass-fragment scores below.
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and the Bayesian procedure in terms of Cllr. Regularizing the logistic
regression model effected substantial shrinkage. Shrinkage came at the
cost of a decrease in accuracy (an increase in Cllr).

We also tested regularized and non-regularized logistic regression
fusion of the GMM-UBM scores and the i-vector PLDA scores.19

Performance was very slightly better than that of the i-vector system
alone: Cllr was 0.286 and 0.241 for the regularized and non-regularized
procedures respectively.

5.3. Forensic comparison of face images

The next set of real data is scores from comparisons of face images
previously described in [54,55]. The images of 225 faces (8 images per
face) came from the XM2VTS database [56]. These were frontal face
images from high-definition video sequences with controlled lighting
and background. Such conditions could potentially exist at a police
station or an immigration post, and could be realistic for comparison
with previously collected mug shots or passport photographs, but these
data are not reflective of more challenging forensic conditions such as
CCTV surveillance images.

Feature data were extracted from 40 × 32 pixel images, and con-
sisted of two-dimensional discrete cosine transform coefficient values
(2D-DCTs) fitted within an 8 × 8 pixel sliding window. This resulted in
a sequence of 35 18-dimensional feature vectors per image. Scores were
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Fig. 12. Tippett plots resulting from fitting the score to log likelihood ratio or score to log Bayes factor transformation functions to the score data from the i-vector PLDA forensic voice
comparison system. (a) LDA. (b) Bayesian procedure with uninformative Jeffreys reference priors. (c) ELUB applied to LDA output. (d) Regularized logistic regression. (e) Non-regularized
logistic regression.

Table 2
Cllr values for the results of each procedure when applied to scores from the GMM-UBM
and the i-vector PLDA forensic voice comparison systems.

System GMM-UBM i-vector PLDA

LDA 0.410 0.357
Bayesian 0.413 0.374
ELUB 0.412 0.361
LogReg regularized 0.430 0.290
LogReg non-regularized 0.413 0.261

19 Each set of scores was first independently normalized to a mean of 0 and variance of
1 (without reference to category).
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Fig. 13. Histograms of score data from (a) the GMM-UBM face-image comparison system, and (b) the MLP face-image comparison system. Both systems were applied to the same face-
image data.
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Fig. 14. Tippett plots resulting from fitting the score to log likelihood ratio or score to log Bayes factor transformation functions to the score data from the GMM-UBM face-image
comparison system. (a) LDA. (b) Bayesian procedure with uninformative Jeffreys reference priors. (c) ELUB applied to LDA output. (d) Regularized logistic regression. (e) Non-regularized
logistic regression.
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generated using two systems. The first system was a GMM-UBM system
with 64 Gaussian components. The second system was a multi-layer
perceptron (MLP), three layers with 32 nodes in the hidden (middle)
layer.20 The systems are described in [57]. The protocol for model

training and score calculation is described in [56].21 It resulted in 600
same-origin scores (from 200 faces) and 40,000 different-origin scores
(comparing 200 face models with images of 25 other faces). A cross-
validation procedure was used to avoid training and testing on the same
data.

Histograms of the different-face and same-face scores from the
GMM-UBM and the MLP systems are shown in Fig. 13a and Fig. 13b
respectively. Both deviate from the assumptions of Gaussian distribu-
tions with equal variance. The assumption of equal variance is clearly
violated, and the same-origin scores are skewed, the skewness being
more pronounced for the MLP system.

The results of using the different procedures to convert the scores to
likelihood ratios are shown as Tippett plots in Fig. 14 (GMM-UBM
scores) and Fig. 15 (MLP scores), and as Cllr values in Table 3. Results
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Fig. 15. Tippett plots resulting from fitting the score to log likelihood ratio or score to log Bayes factor transformation functions to the score data from the MLP face-image comparison
system. (a) LDA. (b) Bayesian procedure with uninformative Jeffreys reference priors. (c) ELUB applied to LDA output. (d) Regularized logistic regression. (e) Non-regularized logistic
regression.

Table 3
Cllr values for the results of each procedure when applied to scores from the GMM-UBM
and the MLP face-image comparison systems.

System: GMM-UBM MLP

LDA 0.220 0.167
Bayesian 0.215 0.159
ELUB 0.206 0.143
LogReg regularized 0.181 0.115
LogReg non-regularized 0.169 0.104

20 The MLP system was a closed box with score output scaled to the range −1 to +1.
An inverse hyperbolic tangent function was applied to rescale the scores in the form of log
likelihood ratios.

21 The protocol was not designed for forensic application, and we would have used the
data differently if starting from scratch, but it suffices for the purpose of examining the
behaviour of the different score to likelihood ratio conversion procedures on different
score distributions.
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from a non-regularized logistic regression model are also included.
From the Tippett plots it can be seen that the LDA and Bayesian

procedures, which depend on the assumption of Gaussian distributions
with equal variance, produced clearly biassed results (both the same-
origin and different-origin curves are too far to the left). Both these
procedures applied to both sets of scores also produced some very large
magnitude log likelihood ratio values (beyond the −4 to +4 range
plotted on the Tippett plots) which would be difficult to justify given
the amount of training data. Bias was much smaller for the logistic
regression results, and the range of log likelihood ratio values produced
were more reasonable. Logistic regression gave the best results in terms
of Cllr, and regularizing the logistic regression model effected shrinkage,
with a concomitant decrease in accuracy (an increase in Cllr).

5.4. Forensic comparison of glass fragments

The final set of real data is scores from comparisons of glass frag-
ments previously reported in [58]. The feature data were measurements
of the concentrations of 10 trace elements made using Laser Ablation
Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The hy-
potheses tested were Hs: the glass fragment found on the suspect's
garment is from the window at the crime scene, versus Hd: the glass
fragment found on the suspect's garment is from a different source in
the relevant population. The sample representing the relevant popula-
tion was a sample of known-source glass fragments collected during
casework over a 10 year period. The sample contained multiple frag-
ments from each of 979 sources. Data from 659 sources were used for
training the first-stage feature to score model, and data from 320
sources used for training and testing the second-stage score to like-
lihood ratio conversion procedures. A cross-validation procedure was
used to avoid training and testing on the same data.

The feature to score model was a two-level multivariate kernel
density (MVKD) model [59,60]. A total of 320 same-origin scores and
51,040 different-origin scores were calculated. 41,108 of the different-
origin scores had values which were smaller than the smallest encod-
able value in the software used to calculate them (hereinafter “very
small score values”, note that these were not smaller than the smallest
encodable value in the software used for the second-stage model). We
ran two versions of the tests on the procedures for converting scores to
likelihood ratios. In one version the very small score values were ex-
cluded from both training and testing, and only the remaining 10,032
different-origin scores were used. In the other version, for both training
and testing, the very small score values were replaced with the same

value as the smallest score value in the data that had been encoded. The
latter version was included to allow for comparison with the results
reported in [58]. In the present research, the interest is in the relative
performance of the different score to likelihood ratio conversion pro-
cedures, not on the best way to deal with this particular data set.

Histograms of the different-speaker and same-speaker scores are
shown in Fig. 16 (excluding the very small score values). These scores
exhibit an extreme case of non-equal variance. The results of using the
different procedures to convert the scores to likelihood ratios are shown
as Tippett plots in Fig. 17 and as Cllr values in Table 4. Results from a
non-regularized logistic regression model are also included. A Tippett
plot and Cllr value based on the results reported in [58] are also in-
cluded. In [58] ELUB was applied to a second-stage model that was
tailored to be a good fit to these particular data. A kernel density model
was used for the different-origin scores and a double exponential decay
was used for the same-origin scores.

The difference in the lower bound visible in panels (c) and (e) ELUB
of Fig. 17, ELUB applied to LDA and ELUB applied to the output of the
tailored model respectively, is due to the former being based on cal-
culations excluding the very small score values and the latter being
based on calculations including the very small score values.

LDA and the Bayesian procedure depend on assumptions of
Gaussian distributions with equal variance and, as expected, performed
poorly on these data. Non-regularized logistic regression gave by far the
best performance in terms of Cllr, and regularization effected substantial
shrinkage with a concomitant loss in accuracy (although still a sub-
stantially lower Cllr than the other procedures). All procedures except
non-regularized logistic regression and the tailored model had a sub-
stantial bias in their output.

6. Discussion and conclusion

We have tested several procedures for converting scores to inter-
pretable likelihood ratios or Bayes factors. Three of these procedures (a
Bayesian procedure with uninformative Jeffreys reference priors, a
procedure which imposes empirical lower and upper bounds ELUB, and
regularized logistic regression) involve some form of shrinkage so as to
address concerns about imprecision and overstating strength of evi-
dence. Which score to likelihood ratio conversion procedure one prefers
will depend on one's utilities. Based on the results of fitting the different
procedures to real data, we prefer regularized logistic regression for the
following reasons.

When the amount of sample data is small, we prefer regularized
logistic regression because it induces a degree of shrinkage which re-
sults in likelihood ratio values which would seem defensible given the
amount of training data. The values are around the same magnitude as
the bounds from the ELUB procedure, but do not suffer from ELUB's
cliff-edge effects. We prefer regularized logistic regression over the
Bayesian procedure as the latter was non-monotonic and produced re-
latively large Bayes factor values that may be difficult to justify given
the amount of sample data. When the distributions of the same-origin
and different-origin scores deviate from Gaussian distributions with
equal variance, we prefer logistic regression since, unlike the Bayesian
procedure, it does not depend on such distributional assumptions. Since
deviations from these distributional assumptions are common in score
data, we prefer regularized logistic regression in general.

It may be that for a Bayesian approach other choices with respect to
the model and uninformative priors used would have produced more
favourable results. For simplicity in the present paper, we only tested a
model which assumed equal-variance Gaussian distributions and used
Jeffreys reference priors.

Given the extreme difference in variance between the same-origin
and different-origin scores for the glass data, only the non-regularized
logistic regression procedure and the tailored model produced unbiased
output. The fact that the output of the regularized logistic regression
procedure was biassed indicates that in this extreme case the form of
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Fig. 16. Histograms of score data from the 2-level MVKD system applied to the glass-
fragment data.
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regularization used affected not only the slope but also the intercept of
the score to likelihood ratio transformation model. A potential solution
could be to use a more common form of regularization which only
targets the slope coefficient and does so explicitly (see [37] §4.4.4).
Such a model would not be applicable for addressing numerical

problems associated with complete or near complete separation (and
would not directly have a pseudodata interpretation), but may offer a
better solution when complete separation is not an issue and there is a
relatively large amount of data but same-origin and different-origin
scores have very different variances.22

By design, the procedures including shrinkage reduced over-
estimation of the strength of evidence, and hence on average
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Fig. 17. Tippett plots resulting from fitting the score to log likelihood ratio or score to log Bayes factor transformation functions to the score data from the 2-level MVKD system applied to
the glass-fragment data. (a) LDA. (b) Bayesian procedure with uninformative Jeffreys reference priors. (c) ELUB applied to LDA output. (d) Regularized logistic regression. (e) ELUB
applied to the output of a tailored model. (f) Non-regularized logistic regression. For all panels except (e) the results presented are those when very small score values were excluded from
both training and testing.

Table 4
Cllr values for the results of each procedure when applied to MVKD scores from the
comparison of glass fragments. Plus ELUB applied to output from the tailored model used
in [58]. Very small scores were either included or excluded from both the training and the
test data.

Very small scores Excluded Included

LDA 0.391 0.242
Bayesian 0.413 0.236
ELUB on LDA 0.389 0.244
ELUB on tailored model – 0.009
LogReg regularized 0.104 0.111
LogReg non-regularized 0.021 0.007

22 Postscript: Upon reflection, we realize that the results are as would be expected
given logistic regression’s minimization of the deviance statistic. The different-origin log-
base-10 likelihood ratio values have a wide range, but the same-origin log-base-10 like-
lihood ratio values are in a narrow range mostly between +1 and +1.5. Moving them to
say 0 to +0.5 would not represent better calibration. Looking at the histogram of score
distributions one would actually expect higher values for same-speaker likelihood ratios.
The fundamental problem lies in the disparate distributions of the same-origin and dif-
ferent-origin scores, but we think our practical error in attempting to address this problem
was actually choosing too high a degree of regularization, and that it would have been
better to use a smaller degree of regularization giving results somewhere between those
shown in Fig. 17d and f.
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underestimated the strength of evidence (see the Monte Carlo simula-
tion results). Thus, these procedures did not produce results that were
as accurate as their non-shrinkage counterparts. The procedures in-
cluding shrinkage did not produce Cllr values that were as low as their
non-shrinkage counterparts. The Cllr metric, however, does not take
account of the utility of not overstating the strength of evidence. A
metric which does take this into account could potentially be devel-
oped, but we have not attempted to do so here. The challenge would be
to develop a principled metric which did not simply arbitrarily favour
the procedure one preferred a priori.

A major disadvantage of the regularized logistic regression proce-
dure is that one has to specify the weight (κψ) of the uninformative
“prior” distribution, and the choice is essentially arbitrary. As pointed
out, however, the specification of particular uninformative priors for a
Bayesian procedure also requires a choice which arguably is also ar-
bitrary. One should make it clear what weight one has used, one should
choose the weight before looking at the data, and one should not
change the weight after having examined the data and especially not
after one has obtained the likelihood ratio results. In hindsight, in the
results reported in the present paper using κψ = 5 may have induced a
greater degree of shrinkage than one might prefer. Following our own
advice, we have not rerun the experiments using a smaller value for κψ.
Before commencing future research or casework, one could decide to
use a smaller value (e.g., κψ = 2, or κψ = 1), declare that value before
beginning and then proceed to use that value. We are not presently in a
position to develop an optimization strategy for κψ since that would
require an optimization objective such as the metric discussed in the
previous paragraph.

In the research reported in the present paper, we have tested a
number of different procedures for converting scores to likelihood ratio
values. In casework, one should not test multiple procedures and then
use the one which gives the best results. Doing so would over-optimize
on the test data, and the best performing procedure on the particular
test data may not be the best performing procedure on new data, e.g.,
on the actual known- and questioned-origin data in the case. With re-
spect to admissibility, the issue is not whether the system used is better
than all other systems, but whether the performance of the system used
is adequate under the conditions of the case. One should choose a
system before looking at the data, and one should test and use that
system. One should choose a system which based on previous research
one believes will have an adequate level of performance. One may
optimize the system using data other than the test data, but one should
not over-optimize on those data. After optimization, one should em-
pirically assess the performance of the chosen system using previously-
unseen test data that reflect the conditions of the known- and ques-
tioned-origin data in the case under investigation.
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