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Abstract: The discovery of a new type of soliton occurring in periodic systems is reported. 
This type of nonlinear excitation exists at a Dirac point of a photonic band structure, and 
features an oscillating tail that damps algebraically. Solitons in periodic systems are localized 
states traditionally supported by photonic bandgaps. Here, it is found that besides photonic 
bandgaps, a Dirac point in the band structure of triangular optical lattices can also sustain 
solitons. Apart from their theoretical impact within the soliton theory, they have many 
potential uses because such solitons are possible in both Kerr material and photorefractive 
crystals that possess self-focusing and self-defocusing nonlinearities. The findings enrich the 
soliton family and provide information for studies of nonlinear waves in many branches of 
physics. 
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

It is well-known that the photonic bandgap of a periodic system can support linear localized 
modes at a defect. It is also well-known that, if the defect is induced by nonlinearity of the 
medium, the corresponding self-localized mode is called gap soliton. Confinement of waves 
within a finite area is the basis of all information processing [1–4]. Traditionally, such wave 
trapping is achieved by cavities and waveguides that rely on total internal reflection, or a 
photonic bandgap, to suppress radiation losses [5, 6]. Cavities and waveguides can be formed 
by a high-index core surrounded by a cladding with a lower refractive index so that total 
internal reflection can take place. Alternatively, cavities and waveguides can be formed in 
discrete, or periodic, systems as defects. Due to the presence of allowed bands and forbidden 
gaps, radiation losses of a wave packet accommodated by the defect are suppressed by any 
photonic bandgap of the systems. There are various other pathways towards localization that 
uniquely involve nonlinearity. Indeed, localized modes due to nonlinearity are commonly 
called solitons [7, 8]. In homogeneous media, nonlinearity raises the refractive index of the 
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media so that light creates its own high-index core. In this sense, light of a conventional 
soliton is still essentially guided by total internal reflection. In periodic systems, nonlinearity 
creates its own defect by changing its onsite refractive index, so that light is trapped to the 
defect by photonic bandgaps of the periodic lattices, forming a gap soliton in this case. 
Solitons, as nonlinear self-trapped wave packets, have been extensively studied in many 
branches of physics including optics [9–11]. Among them, algebraic solitons with power-law 
asymptotic behavior arise mathematically from a particular limit of hyperbolic solitons [12]. 

In parallel with the above advances, research on graphene has made great progress [13]. 
The electronic band structure of graphene contains Dirac cones at the six corners of the 
hexagonal Brillouin zone. The Dirac point is a conical singularity of a band structure where 
the associated energy-wavenumber relation resembles the two-dimensional massless Dirac 
equation −iv(σx∂x + σy∂y)Ψ = (ω−ωD)Ψ for relativistic electrons in a vacuum, where v is the 
group velocity, ωD/2π is the Dirac frequency, σx and σy are Pauli matrices, and |Ψ|2 is the 
probability of finding the electrons in space. The band structure of a photonic crystal formed 
by a triangular lattice also possesses Dirac cones at the corners of the Brillouin zones [14]. At 
these high-symmetry points Maxwell’s equations can be replaced by the Dirac equation, with 
Ψ being the wave functions of two degenerate Bloch states. Due to similarity between band 
structures of a solid and of a photonic crystal, recent years have seen an increased interest in 
simulations of relativistic quantum effects using photonic structures [15]. Wave behavior at 
the Dirac frequency has been studied extensively in photonic crystals [16–20], and localized 
modes have also been found recently at the Dirac frequency [21, 22]. It has been shown that 
the Dirac point in the band structures of these lattices can take the role of a bandgap to form 
localized modes at a defect. A soliton in a photonic crystal is, essentially, a localized mode at 
a nonlinearly-induced defect. Since the Dirac point can suppress radiation loss like a band 
gap, it is natural to imagine the existence of Dirac-point soliton, in parallel to gap soliton. As 
long as a defect is formed by nonlinearity, it is understandable that a self-localized mode can 
be supported around the defect by the Dirac point. 

In this work we report the discovery of a new type of soliton, the Dirac-point soliton that 
exists at the Dirac point in a nonlinear triangular photonic lattice. We begin by studying the 
case of a linear defect and the associated localized Dirac mode. The transition to the nonlinear 
case is effected by replacing the defect by the auto-induced defect created by nonlinearity, 
then a soliton localized mode is found to exist. This new specific entity is sustained by the 
Dirac point rather than photonic bandgaps, so is designated here as Dirac-point soliton. It 
should be noted that the name, Dirac soliton, has been designated to a soliton of the nonlinear 
relativistic Dirac equation [23, 24]. We show that the Dirac-point solitons are possible in both 
Kerr and photorefractive crystals with self-focusing and self-defocusing nonlinearities. 
Characteristics of the Dirac-point solitons are revealed and their stability is analyzed with 
linear stability analysis. It is found that the Dirac-point soliton is unstable in a self-focusing 
lattice, and stable in a self-defocusing lattice, obeys the so-called Vakhitov-Kolokolov (V-K) 
stability criterion [25]. We verify the stability criterion by direct numerical simulations. 

2. Band structure and the Dirac point 

The propagation of optical beams in a photorefractive material with an optically induced 
nonlinear photonic lattices is described by the nonlinear Helmholtz equation [10, 11, 26, 27]: 

 
2 2 2

2 2
02 2 2

0eE k n n E
x y z

 ∂ ∂ ∂  + + + − Δ =   ∂ ∂ ∂ 
 (1) 

where Δn = ne
4r33E0/[1 + I(x,y) + |E|2] represents an index change due to linear modulation 

and saturable nonlinearity, ne and r33 are the refractive index and electro-optic coefficient of 
the extraordinary wave, E0 is the applied field, and k0 = 2π/λ0. In the derivation of Eq. (1), the 
scalar approximation has been invoked on the basis that both the index modulation and 
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nonlinearity are so small that they can be treated as perturbations to the homogeneous 
medium. For a highly anisotropic Strontium Barium Niobate crystal SBN:75, ne ≈2.299, r33 
≈1340pmV−1. When a static electric field of E0 = 102V/mm is applied, Δn ≤ 3.82 × 10−3, 
verifies that Δn << ne

2. The linear lattice function Δn = ne
4r33E0/(1 + I) is optically induced by 

the linear periodic diffraction-free wave with the intensity distribution given by I(x,y). For 
this study the intensity function is assumed I = I0[χ + cos(b1⋅r) + cos(b2⋅r) + cos(b3⋅r)]2, which 
is a triangular photonic lattice with a being the lattice spacing and a1 = aẋ, a2 = a/2(ẋ + √3ẏ) 
being the lattice basis vectors, where ẋ and ẏ are respectively the unit vectors in the x and y 
directions. The reciprocal basis vectors are b1 = 2π/a(ẋ-√3ẏ/3), b2 = 2π/a(2√3ẏ/3). Such 
pattern can be generated experimentally, on a stationary background illumination (I0χ), from 
the interference of three plane waves possessing an intensity I0 and transverse wave vectors 
bi, where i = 1,2,3 and b3 is defined as b3 = -b1-b2. In fact, the three wave vectors of the plane 
waves form a triangle, i.e., b1 + b2 + b3 = 0. The waveguide is uniform in the z direction. 
Suppose that the wave propagates along the z-direction predominantly, Eq. (1) can be further 
reduced by factoring out the fast phase variation E = Uexp(ik0nez) and dropping the second 
derivative of the slowly varying envelope function U: 

 
2 2

2 2
0NL

U
i U V U

Z X Y

 ∂ ∂ ∂+ + − = ∂ ∂ ∂ 
 (2) 

where a dimensionless coordinates X = x/a, Y = y/a, Z = z/Ld has been adopted, Ld = 2k0nea
2 is 

the diffraction length of a light beam of width a, V0 = k0
2a2ne

4r33E0, V = V0/[1 + I(X,Y)] is the 
linear lattice potential, and VNL = V0/(V0/V + |U|2) is the nonlinear lattice potential. The new 
intensity function I(X,Y) has a period normalized to 1. The lattice constant a and the 
diffraction length Ld define a basic length scale for the system. If V0>0 (<0) the nonlinearity 
considered here has a self-focusing (self-defocusing) nature. In addition to the saturable 
nonlinearity, the Kerr nonlinearity can also be incorporated into the above model by resetting 
VNL to V−σ|U|2, where σ = 1 (−1) corresponds to a nonlinear self-focusing (self-defocusing) 
Kerr medium, and V is the linear lattice potential function that is defined as V = V0[χ + 
cos(b1⋅r) + cos(b2⋅r) + cos(b3⋅r)]2 for this study. Four typical examples of the linear lattice 
potential V are depicted in Fig. 1. 
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Fig. 1. Four different lattice potentials. (a, b) Index potential of the photorefractive material for 
I0 = 2, χ = 0, V0 = 250 (a, self-focusing) and I0 = 1, χ = 3, V0 = −150 (b, self-defocusing). (c, d) 
Index potential of the Kerr nonlinear medium for V0 = 10, χ = 3/2 (c) and V0 = −35, χ = −1/3 
(d). In the cases of (b) and (c) the potentials exhibit absolute index maxima on lattice sites, 
while in the cases of (a) and (d) the potentials exhibit absolute index minima on lattice sites. 

Wave propagation in such a linear periodic lattice V(X,Y) is known to exhibit unique 
features that arise from the presence of allowed bands and forbidden gaps. The associated 
band structure of the lattice can be found by the plane wave expansion method [1]. By 
substituting a solution of the form U(X,Y,Z) = Φ(X,Y)exp(-iqZ) into Eq. (2), in the linear limit 
the following eigenvalue equation is resulted 

 
2 2

2 2
V q

X Y

 ∂ ∂+ Φ − Φ = − Φ ∂ ∂ 
 (3) 

Eigenfunction Φ can be written as a summation of plane waves Φ(r) = Σh(G)exp[i(G + 
k)·r], where k is the Bloch momentum, G = b1P1 + b2P2, (P1,P2) are any integers and (b1, b2) 
are the reciprocal basis vectors of the lattice. Potential V can be expanded as V(r) = 
Σf(G)exp(iG·r), where f(G) = 1/Scell V(r)exp(-iG·r)ds is the expansion coefficient and Scell = 
√3/2 is the area of a unit cell. Substituting these expressions into Eq. (3) leads to 

 2

'

( ') | | ( ') ( ') ( )
G

G G k G f G G h G qh Gδ − + + − =   (4) 

Given the potential V(r), the eigenvalue Eq. (4) can be solved numerically to obtain the 
lattice band structure. The results are shown in Fig. 2 for the potentials of Fig. 1. As can be 
seen, the band structure of the lattice exhibits Dirac point at the six corners of the Brillouin 
zone. The eigenvalues at these Dirac points are respectively qD = 115.64, qD = −8.67, qD = 
29.45, and qD = −41.81 for the four different potentials. 
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Fig. 2. Band structures (up) and 3D views of Dirac cones around the six Brillouin zone corners 
(down) of four different optical lattices. (a-d) correspond to the lattices shown in Fig. 1(a-d). 

The Dirac point can support guided modes [21]. A defect, which is introduced by resetting 
V(X,Y) to Vd for √(X2 + Y2)≤R, works as a circular waveguide in the configuration. Based on 
the linear version of Eq. (2), guided modes are discovered by the finite difference beam 
propagation method (BPM). A source beam S(X,Y,Z) = exp[-(X2 + Y2)]exp(−iqDZ) with a 
fixed propagation constant qD is launched in the waveguide. By changing parameters R and Vd 
of the defect, propagation constant of the waveguide eigenmode varies. When propagation 
constant of the eigenmode coincides with propagation constant of the source beam, a situation 
arises in which power monotonously grows with distance, as illustrated in Fig. 3(a). This 
happens when synchronization of the eigenmode with the source beam is established, so that 
the eigenmode is always in-phase with the source, and energy is extracted from the source at 
each step of propagation. This indicates the excitation of an eigenmode of the waveguide with 
a propagation constant q = qD. In this way, we find the defect mode of the system by carefully 
designed numerical tests. Field profile of this defect-guided Dirac mode is shown in Fig. 3(b). 
In Fig. 3(c) |U| of the mode is multiplied by r3/2. The almost constant level of oscillation in the 
tail of the product reveals a 1/r3/2, asymptotic, algebraic-decay feature of the mode, similar to 
the Dirac mode found in a triangular photonic crystal [21]. In the second stage of evolution 
shown in Fig. 3(a), the source is switched off and amplitude of the eigenmode starts a 
propagation decline. In the free evolution stage, electromagnetic power within the mode 
decays exponentially according to the format P = P0exp(−αZ). This law shows that the 
instantaneous decay rate is α = −1/P dP/dZ and this can be calculated from slope of the 
numerically obtained power evolution curve. The calculated instantaneous α value is shown 
in Fig. 3(d) as a function of distance. The average α value is taken for power loss rate of the 
mode. The BPM yields the space domain response U(X,Y,Z) directly. The spectral response 
u(q) is subsequently obtained by a discretized Fourier transform from the spatial series: u(q) = 
1/N ΣU(0,0,nΔZ)exp(iqnΔZ), where ΔZ is step-size, N is the number of steps, q is the 
propagation constant. The obtained spectrum of the eigenmode is shown in Fig. 3(e), which 
verifies that the propagation constant of the guided mode is truly centered at qD = −41.81. 
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Fig. 3. Mode formed at a defect in the potential of Fig. 1(d). Parameters of the defect are R = 2 
and Vd = −43.3. Waveguide runs from Z = 0 to 75. Between Z = 0 and 20 a source with a 
propagation constant qD = −41.81 is imposed. In the second stage (Z≥20) the source beam is 
turned off and the eigenmode evolves freely on its own. (a) Amplitude evolution of the excited 
eigenmode. (b) The excited field pattern |U| of the eigenmode at Z = 75. (c) The product r3/2|U| 
on the X-axis at Z = 75. (d) The instantaneous decay rate α of the excited beam as it propagates 
down the waveguide. (e) The propagation constant spectrum of the excited mode. The green 
vertical line indicates the position of the Dirac point. 

Existence of the Dirac mode is attributed to the vanishing density of radiation states at the 
Dirac point [28]. This means that travelling waves are forbidden in the surrounding triangular 
lattice at q = qD. Because of this feature, field concentration around a defect becomes possible 
and the optical lattices can therefore support defect modes. Such localized states can also 
exist for a range of propagation constant q around qD. When q≠qD the state is no longer a truly 
localized mode but becomes a guided resonance similar to that observed in [21]. Eigenmode 
of propagation constant q other than qD can be found in a similar way by setting the source 
beam to S(X,Y,Z) = exp[-(X2 + Y2)]exp(−iqZ) while adjusting the parameters of the defect for 
synchronization. The results are shown in Figs. 4(a)-4(d), corresponding to the lattice 
potentials, respectively, of Figs. 1(a)-1(d). They show parameter Vd of the defect versus the 
propagation constant q of the eigenmode for fixed R. Leakage of the Dirac mode can be 
studied numerically by the BPM conveniently. The average loss rates α, of the localized 
modes, extracted from free evolution of the power are shown also in Figs. 4(a)-4(d) as a 
function of the propagation constant q using, respectively, the four different lattices. In the 
absence of material absorption, there still exists two loss mechanisms for the Dirac mode, 
namely, leakage αp to the surrounding medium due to the finite lattice size (called losses 
associated with field penetration across boundary into the surrounding), and leakage αs due to 
scattering into the continuum of states (called losses associated with coupling into radiation 
modes). The net decay rate is the sum α = αp + αs. At the Dirac point losses αs associated with 
scattering into radiation modes vanish. Any residual values of losses at this point, αp, are 
entirely due to the finite lattice sizes but they can be made as small as desired by increasing 
the boundary surrounding the defect. As the propagation constant moves away from the Dirac 
point, the density of radiation states increases in a linear fashion. Then, in addition to leakage 
αp to the surrounding medium, there can be leakage αs to the continuum of states. The net 
decay rate α increases with |q-qD|. Minima of the loss rates α in Fig. 4 occur around the 
corresponding qD, thus confirming the positions of the Dirac points. As revealed in Fig. 4, 
there exists a small range q around qD where decay rate is low and waveguiding by a defect is 
practically realizable. A linear damping length Llin can be defined for the localized mode 
through exp(−αLlin) = 0.9, which represents the propagation distance of the mode when it is 
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damped to 90% of its initial amplitude. In the literature damping length is often defined at 1/e 
or 50% of the original amplitude. We use a threshold value of 90% here to leave more margin 
for experiments. This value also facilitates comparison with soliton propagation distance Lsol 
introduced later in Fig. 13, where amplitude drops to about 90% as the Dirac point soliton 
degrades into a gap soliton. By saying the decay rate is small and waveguiding by the defect 
is possible, the wave is required to propagate for more than 5 diffraction lengths [7]. Using 
the condition Llin≥5 in the definition of damping length exp(−αLlin) = 0.9 leads to a critical 
decay rate αc = −ln0.9/5≈0.021. This critical value of α is indicated in Fig. 4 by red horizontal 
lines, and results in the region q around qD where α is below αc, is marked red in the figure. 

 

Fig. 4. (a-d) Defect parameter Vd (up) and the corresponding power loss rate α (down) versus 
eigen propagation constant q of the localized mode for respectively the lattices shown in Fig. 
1(a-d). The green vertical lines indicate the positions of the Dirac points. The red horizontal 
lines at α = 0.021 mark level of the critical decay rate αc, below which waveguiding is possible. 

3. The Dirac-point soliton 

The defect that accommodates the above discussed Dirac modes could be created by 
nonlinearly-induced, onsite, index change. If the defects are self-induced optically by 
nonlinearity, the corresponding, self-localized nonlinear eigenmodes are referred to as 
solitons. In other words, the presence of a defect mode at the Dirac point in the linear limit 
suggests the existence of a Dirac-point soliton in the corresponding nonlinear regime. This is, 
indeed, the case. To find the Dirac-point solitons of Eq. (2), a solution is sought with the form 
U(X,Y,Z) = Φ(X,Y)exp(-iqZ). Using this reduce Eq. (2) to 

 
2 2

2 2 NLV q
X Y

 ∂ ∂+ Φ − Φ = − Φ ∂ ∂ 
 (5) 

Equation (5) is the static nonlinear Schrödinger equation, and yields solitary wave 
solutions as the outcomes of a, numerical, modified squared-operator method [29]. For a 
fundamental soliton Φ is real and Φ(∞) = 0. Apart from the fundamental soliton, Eq. (5) also 
supports a vortex soliton of the form: Φ = f(r)eimθ, where the integer m stands for a phase twist 
around the intensity ring. Some typical Dirac-point solitons of Eq. (5), including fundamental 
and vortex solitons, are shown in Figs. 5(a)-8(a) and Figs. 5(b)-8(b) respectively for the 
focusing and defocusing saturable/Kerr nonlinearities. Characteristics show that the Dirac-
point solitons belong to a group labelled as algebraic solitons [12, 30, 31]. As shown in Figs. 
5(c)-8(c) and Figs. 5(d)-8(d), tail of the Dirac-point soliton oscillates while decays 
asymptotically and algebraically according to a power-law (roughly r−3/2) at large distances. It 
is understandable because towards the end of the tail soliton field is so weak that it resumes a 
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linear behavior, and in the linear limit an optical lattice can support waves with power-law 
asymptotics at the Dirac point, as demonstrated in section 2. Total power conveyed by the 
soliton P = |Φ|2rdrdθ versus the eigenvalue q is shown in Figs. 5(e)-8(e). 

The soliton results build upon earlier results in section 2 that show that localized states 
may exist at the Dirac point in a triangular lattice in the presence of defects. Here the defects 
are replaced with self-induced defects, achieved through the presence of nonlinearity, so, 
soliton is somewhat expected. Such states constitute a new addition to the soliton family. It 
should be stressed that an optical defect is necessary to anchor the localized mode. After all, 
in the absence of a defect, the system is periodic and all the modes are extended Bloch modes. 
In the nonlinear case nonlinearity provides an effective defect. 

 

Fig. 5. Dirac-point solitons in a saturable self-focusing lattice. The lattice potential is shown in 
Fig. 1(a). (a, b) The field profiles of the fundamental soliton (a) and the first vortex soliton (m 
= 1) (b) at the Dirac point qD = 115.644. (c, d) Product r3/2Φ of the fundamental soliton (c) and 
r3/2|Φ| of the first vortex soliton (d) on the X axis. (e, f) Power P (e) and the real part of the 
perturbation growth rate Re(λ) (f) versus the propagation constant q of the soliton, where “o” 
represents the fundamental soliton and “+” represents the vortex soliton. The grey scale in the 
background indicates level of linear losses of the wave in the lattice potential. The dotted 
vertical line indicates the position of the Dirac point. 

 

Fig. 6. Dirac-point solitons in a saturable self-defocusing lattice. The lattice potential is shown 
in Fig. 1(b). (a, b) The field profiles of the fundamental soliton (a) and the first vortex soliton 
(m = 1) (b) at the Dirac point qD = −8.67. (c) Product r3/2Φ of the fundamental soliton on the Y 
axis. (d) Product r3/2|Φ| of the first vortex soliton on the X axis. (e, f) Power P (e) and the real 
part of the perturbation growth rate Re(λ) (f) versus the propagation constant q of the soliton, 
where “o” represents the fundamental soliton and “+” represents the vortex soliton. The grey 
scale in the background indicates level of linear losses of the wave in the lattice potential. The 
dotted vertical line indicates the position of the Dirac point. 
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Fig. 7. Dirac-point solitons in Kerr nonlinear media. The lattice potential is shown in Fig. 1(c). 
(a, b) The field profiles of the fundamental solitons in a Kerr self-focusing (σ = 1) lattice (a) 
and a Kerr self-defocusing (σ = −1) lattice (b) at the Dirac point qD = 29.445. (c) Product r3/2Φ 
of the fundamental soliton of a Kerr self-focusing lattice on the X axis. (d) Product r3/2Φ of the 
fundamental soliton of a Kerr self-defocusing lattice on the Y axis. (e, f) Power P (e) and real 
part of the perturbation growth rate Re(λ) (f) versus the propagation constant q of the soliton, 
where “o” corresponds to the self-focusing case and “+” corresponds to the self-defocusing 
case. The grey scale in the background indicates level of linear losses of the wave in the lattice 
potential. The dotted vertical line indicates the position of the Dirac point. 

 

Fig. 8. Dirac-point solitons in Kerr nonlinear media. The lattice potential is shown in Fig. 1(d). 
(a, b) The field profiles of the fundamental solitons in a Kerr self-focusing (σ = 1) lattice (a) 
and a Kerr self-defocusing (σ = −1) lattice (b) at the Dirac point qD = −41.81. (c, d) Product 
r3/2Φ of the fundamental soliton of a Kerr self-focusing lattice (c) and of a Kerr self-defocusing 
lattice (d) on the X axis. (e, f) Power P (e) and real part of the perturbation growth rate Re(λ) 
(f) versus the propagation constant q of the soliton, where “o” corresponds to the self-focusing 
case and “+” corresponds to the self-defocusing case. The grey scale in the background 
indicates level of linear losses of the wave in the lattice potential. The dotted vertical line 
indicates the position of the Dirac point. 

Strictly speaking, the Dirac-point soliton exists only at a single point in the [q, P] space. 
In practice, however, it can be excited within a small range around qD. When q≠qD the soliton 
becomes a nonlinear guided resonance similar to the linear guided resonance at these q 
values. The nonlinear guided resonance can leak at a small rate into the continuum of states 
that makes up the band. Nevertheless, the mode still concentrates much of its field energy 
near the defect. Loss of the nonlinear guided resonance is estimated at about the same level of 
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loss of the linear guided resonance in the same potential, so the range of existence is allocated 
to the valley of the linear loss shown in Fig. 4. Outside the valley, loss increases quickly and 
disturbs the solitons. To indicate the level of linear losses, the net decay rate α of the linear 
wave is superimposed in Figs. 5(e)-8(e) and Figs. 5(f)-8(f) as background. The Dirac-point 
solitons are expected to exist roughly within the ranges shaded light grey, where level of the 
linear decay rate α is below αc. Beyond the shaded light grey range heavy losses may 
seriously restrict propagation distance of the Dirac-point solitons. 

4. Stability analysis 

The Dirac-point solitons are nonlinear stationary solutions of Eq. (2) so that preserve their 
shapes upon evolution in the media, but their stability is not guaranteed because of the non-
integrable nature of the underlying equation. In fact, their stability against small perturbations 
is a crucial issue because only stable (or weakly unstable) self-trapped beams can be observed 
experimentally. To study the stability of these Dirac-point solitons, a perturbation, with the 
form U = e-iqZ[Φ + (v-w)eλZ + (v + w)*eλ*Z], is invoked, where v, w<<1. Substituting this 
expression into Eq. (2) and then linearizing, results in an eigenvalue problem of the form LΨ 
= λΨ, here Ψ = [v, w]T is the eigenfunction, λ is the eigenvalue. Expressions of the operator L 
for Kerr and saturable nonlinearities are respectively 
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where L0 = ∂2/∂x2 + ∂2/∂y2-VNL + q. The eigenvalue equation LΨ = λΨ is solved by a 
numerical iteration method [32] for growth rate. The real part of the soliton perturbation 
growth rate is Re(λ) and this is plotted in Figs. 5(f)-8(f) as function of the propagation 
constant of the soliton for respectively the four different lattices shown in Figs. 1(a)-1(d). It 
can be seen that in a saturable self-focusing lattice (Fig. 5), growth rates exceed 10 and both 
the fundamental and the first vortex solitons are unstable. In a saturable self-defocusing lattice 
(Fig. 6), growth rates are of the order of 1 so the fundamental and the first vortex solitons are 
weakly unstable. In Kerr lattices (Figs. 7 and 8), the fundamental solitons for self-focusing 
nonlinearity have excessively large growth rates (>40) so are surely unstable. By contrast, the 
fundamental solitons in self-defocusing nonlinearity have much smaller growth rates (∼0.1) 
so are referred to as being quasi-stable. The power curves in Figs. 5(e)-8(e) give information 
about the stability of the solitons also. According to the V-K stability criterion [25], a soliton 
is stable (unstable) if the slope of the corresponding power curve is positive (negative). The 
V-K stability criterion is derived for homogenous nonlinear medium but a periodic potential 
is present here, so it is not directly applicable. However, the depth of index modulation is 
very shallow. As such, the linear stability analysis comes up with results that agree well with 
the V-K stability criterion. The Dirac-point solitons in self-defocusing lattices [Figs. 6(a), 
6(b), Fig. 7(b), Fig. 8(b)] exhibits dP/dq≥0 on the power curve and are quasi-stable (or 
weakly unstable), whereas the Dirac-point solitons in self-focusing lattices [Figs. 5(a), 5(b), 
Fig. 7(a), Fig. 8(a)] exhibits dP/dq<0 and are unstable. The Dirac-point solitons are confirmed 
to obey the simple V-K stability criterion despite the potential. 
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Fig. 9. Evolution of the first vortex Dirac-point soliton in a saturable self-focusing lattice. The 
initial soliton is the one shown in Fig. 5(b), with 2% of relative random noise superposed to the 
profile. The lattice potential is shown in Fig. 1(a). The Dirac-point soliton is shown to degrade 
into a gap soliton in propagation. (a) Evolution of amplitude |Φ | on the ring of the soliton in 
propagation. (b) Propagation constant spectrum of the soliton. The green vertical line indicates 
the position of the Dirac point. The second peak centered at q = 128.96 (within a bandgap) 
corresponds to a gap soliton. (c-e) The |Φ | field of the soliton at respectively Z = 0, 5, 10. 

 

Fig. 10. Evolution of the first vortex Dirac-point soliton in a saturable self-defocusing lattice. 
The initial soliton is the one shown in Fig. 6(b), with 2% of relative random noise superposed 
to the profile. The lattice potential is shown in Fig. 1(b). The Dirac-point soliton is shown to 
break up into radiation waves in propagation. (a) Evolution of amplitude |Φ| on the ring of the 
soliton in propagation. (b) Propagation constant spectrum of the soliton. The green vertical line 
indicates the position of the Dirac point. (c-e) The |Φ | field of the soliton at respectively Z = 0, 
15, 30. 
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Fig. 11. Evolution of the fundamental Dirac-point soliton in a Kerr self-focusing lattice. The 
initial soliton is the one shown in Fig. 7(a), with 2% of relative random noise superposed to the 
profile. The lattice potential is shown in Fig. 1(c). The Dirac-point soliton is shown to break up 
into radiation waves in propagation. (a) Evolution of amplitude |Φ | of the soliton in 
propagation. (b) Propagation constant spectrum of the soliton. The green vertical line indicates 
the position of the Dirac point. (c-e) The |Φ | field of the soliton at respectively Z = 0.0, 0.03, 
0.06. 

 

Fig. 12. Evolution of the fundamental Dirac-point soliton in a Kerr self-defocusing lattice. The 
initial soliton is the one shown in Fig. 8(b), with 2% of relative random noise superposed to the 
profile. The lattice potential is shown in Fig. 1(d). The Dirac-point soliton is shown to degrade 
into a gap soliton in propagation. (a) Evolution of amplitude |Φ | of the soliton in propagation. 
(b) Propagation constant spectrum of the soliton. The green vertical line indicates the position 
of the Dirac point. The second peak centered at q = −47.35 (within a bandgap) corresponds to a 
gap soliton. (c-e) The |Φ | field of the soliton at respectively Z = 0, 32.5, 65. 

The stability of Dirac-point solitons can be checked numerically using the split-step 
Fourier method based on Eq. (2). Some simulated evolution scenarios of typical stable and 
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unstable solitons are shown in Figs. 9-12. The dimension of evolutions can be understood by 
recalling that X = x/a, Y = y/a, Z = z/Ld. Using data from a real experiment [10, 26]: a = 11μm, 
ne≈2.299, λ0 = 0.5μm, the diffraction length Ld = 2k0nea

2 is about 6.99mm in real space. In Fig. 
9 it is shown that the first vortex Dirac-point soliton in a saturable self-focusing lattice is 
unstable. It breaks down after Z>1. In Fig. 10 it is shown that the first vortex Dirac-point 
soliton in a saturable self-defocusing lattice is weakly unstable. The breakdown distance of 
the weakly unstable soliton (Fig. 10) is about an order of magnitude larger than that of the 
unstable soliton (Fig. 9). In Kerr lattices the fundamental soliton is unstable for self-focusing 
nonlinearity (Fig. 11) and quasi-stable for self-defocusing nonlinearity (Fig. 12). The 
breakdown distance of the quasi-stable soliton (Fig. 12) is about three orders of magnitude 
larger than that of the unstable soliton (Fig. 11). These results confirm the stability analysis 
that has been deployed in this investigation. The broadening of propagation constant spectrum 
is attributed to a phenomenon called self-propagation-constant shift. Unlike the eigenmode of 
a linear waveguide that has a fixed propagation constant, soliton, which is an eigenmode of a 
nonlinearly-induced waveguide, has a changeable propagation constant. As the Dirac-point 
soliton loses power its amplitude reduces. This alters the parameters of the nonlinearly-
induced defect, and, in turn, shifts its propagation constant. This process is an analogue of the 
self-frequency shift of a temporal soliton. For the case of dP/dq>0 (<0), q is smaller (larger) 
for soliton with smaller amplitude. So, as amplitude drops in propagation the corresponding q 
continuously shifts downwards (upwards). This explains why in Figs. 9-12 the propagation 
constant of the soliton sweeps through a wide range of values. For the particular lattice of Fig. 
9 (Fig. 12), there is a photonic band gap above (below) the Dirac point, as shown in Fig. 2(a) 
[Fig. 2(d)]. As the propagation constant q shifts upwards (downwards) into the band gap, the 
Dirac-point soliton degrades into a gap soliton and settles down there. This is confirmed by 
the second peak in the spectrum as shown in Fig. 9(b) [Fig. 12(b)]. When the Dirac point is 
surrounded by bands of extended Bloch modes, as in the case of Figs. 10 and 11, the Dirac-
point solitons break up into radiation waves in propagation. 

5. Discussion 

It is revealed by Figs. 9-12 that a stable soliton is not fully stable but has a finite propagation 
distance. For example, it is shown in Fig. 12 that the quasi-stable Dirac-point soliton degrades 
after about 40 diffraction lengths. Indeed, real part of the perturbation growth rate Re(λ) 
shown in Fig. 8(f) for this soliton does not drop to exact zero at qD = −41.81 but has a small 
residue Re(λ) = 3.81 × 10−2. As discussed in section 2, the linear defect mode at the Dirac 
point experiences a propagation decline due to losses. Since soliton can be considered as a 
self-induced defect state, from this analogue picture, it cannot be fully stable while the 
corresponding linear defect state is weakly unstable. Similar to the linear Dirac modes, 
leakage of the Dirac-point soliton consists of leakage into the surrounding medium and 
leakage into radiation states. The vanishing density of radiation states at the Dirac point can 
suppress the decay rate leading to long-lived, soliton-like propagation. If window of cladding 
is made larger, losses associated with field penetration across boundary into the surrounding 
will be made smaller, and propagation distance of the quasi-stable Dirac-point soliton can be 
further extended to almost as long as desired. 

Recently, a type of nonlinear leaky mode called soleakon has been studied [33, 34]. The 
soleakon features oscillating delocalized tails, indicating the outgoing flow of energy to the 
cladding. Such undamped oscillating tail also leads to a diverging total power of the mode, 
i.e., |Φ|2rdrdθ→∞. However, our finding is a new phenomenon and does not fit the 
description of the so-called soleakon. The Dirac-point soliton occurs at a conical singularity, 
where the density of radiation states vanishes so, coupling between a Dirac-point soliton and 
radiation states is actually suppressed at the Dirac frequency. The residue damping is due to 
the finite lattice size and can be reduced by enlarging thickness of cladding. Because of this 
reason, leakage of the Dirac-point soliton is accidental and can be removed, whereas the 
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soleakon is intrinsically leaky. Furthermore, oscillating tail of the Dirac-point soliton is 
localized as it damps asymptotically according to an algebraic law 1/r3/2. As a matter of fact, 
tail of the Dirac-point soliton decays faster than 1/r, the quantity |Φ | is therefore square 
integrable, i.e., P = |Φ |2rdrdθ is finite. This leads to a converging total power, and confirms 
that the Dirac-point soliton at q≠qD is a well-behaved, true-bound state. 

Degradation of the quasi-stable Dirac-point soliton in propagation is understandable as 
loss is in existence. The losses will sooner, or later, breakup the balance between contraction 
and diffraction, and eventually diminish the soliton. By examining numerically the evolution 
scenarios, the finite propagation distance Lsol of the Dirac-point soliton that shown in Fig. 8(b) 
is estimated and the obtained value is plotted in Fig. 13 as a function of the initial eigenvalue 
q (initial propagation constant). The corresponding linear damping length Llin for the Dirac 
mode in the same lattice is plotted in Fig. 13 also, alongside the soliton propagation distance 
Lsol. It is found that Lsol matches Llin on the left hand side of the Dirac point. However, on the 
right hand side it does not follow the trend of Llin and, surprisingly, remains at a rather high 
level, implies that the Dirac-point soliton in this case can survive for longer distance than its 
linear counterpart. The extended propagation distance of the Dirac-point soliton on the right 
hand side of the Dirac point is attributed to the phenomenon of self-propagation-constant 
shift. The correlation of the linear damping length Llin and the propagation distance Lsol of the 
Dirac-point soliton as illustrated in Fig. 13 can be understood as following: For the Dirac-
point soliton starts on the left-hand side of the Dirac point, its q departs from qD straight away 
so the soliton decays into a gap soliton quickly. In this process |q-qD| increases, and so does 
the loss rate. This is why the propagation distance Lsol of the soliton is below the linear 
damping length Llin on this side. On the other hand, for the Dirac-point soliton starts from the 
right hand side of the Dirac point, its q approaches qD from the right so |q-qD| reduces in the 
initial stage. As |q-qD| reduces, losses associated with coupling into radiation modes 
decreases, so the soliton encounters a weaker damping than that does the corresponding linear 
mode encounter, and consequently, it lasts longer in propagation than its linear counterpart. 
This explains why the propagation distance Lsol of the soliton is above the linear damping 
length Llin on the right hand side of the Dirac point. 

 

Fig. 13. The linear and nonlinear propagation lengths versus the initial eigenvalue q in a Kerr 
self-defocusing lattice potential as that shown in Fig. 1(d). Red + : Propagation distance Lsol of 
the fundamental Dirac-point soliton. Blue x: Damping length Llin of the corresponding linear 
eigenmode. The green vertical line indicates the position of the Dirac point. 

6. Conclusions 

A new type of soliton is discovered for photonic lattices. This new soliton relies upon a Dirac 
point, rather than photonic bandgaps, in order to establish field localization. We believe the 
outcomes reported here will have an immediate impact because of the unique mechanism 
underpinning the soliton. The Dirac equation is a special symbol of relativistic quantum 
mechanics, the investigations of the Dirac-point soliton, given here, will lead to new findings 
in the area of relativistic quantum effects on the transport of photons, phonons, and electrons. 
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