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Green Chemistry regards the design of products and processes that minimise the 

use and generation of hazardous substances. Heterogeneous catalysis facilitates such 

energy and atom efficient processes, affording simple and low cost product isolation 

methods, and catalytic materials that can be easily recovered and reused. 

This thesis reports on the selective aerobic oxidation of 5-hydroxymethyl-2-

furufural (HMF), a potential platform chemical that may be derived from cellulose, into 

2,5-furandicarboxylic acid (FDCA) over noble metal nanoparticles dispersed on a solid 

base support. FDCA has been touted as a potential replacement for 

polyethyleneterephtalate (PET) and is also an interesting synthetic building block.  

Au nanoparticles are extremely active and selective oxidation catalyst for a 

range of environmental and fine chemical transformations, however they require a 

homogeneous base, such as NaOH, to work. Au NPs dispersed on hydrotalcites (HT), 

anionic microporous clays, have shown promise in HMF oxidation to FDCA, 

hydrotalcite acting as both the support and the source of base. However, key questions 

remained regarding the nature of active site, potential role of homogeneous 

contributions and importance of reaction basicity upon activity and selectivity.  

Kinetic profiling of HMF and its intermediates HMFCA and FFCA over Na-

free Au/MgAl HT catalysts highlight the role of base in achieving high FDCA yields. 

The order of reaction in Au, in oxygen and in HMF were found, determination of the 

Arrhenius Ea for the R-OH and the R-CHO functions allowed to find the rate-

determining step. Ex situ and operando XAS were performed to detect Au oxidation 

state and Au chemical environment in the catalyst, enlighting the true active site during 

the selox. Eventual changes in Au oxidation state were investigated to find how the 

precursor HAuCl4 evolves during the calcination.  

As the reaction was found to be pH-sensitive and as the calcination of HTs 

convert them into stronger bases, the impact of calcination temperature was studied; 

also a comparison between calcination and calcination rehydration protocols was done. 

The incorporation of Pd into Au catalysts improved activity and lifetime for 

these AuPd bimetallic formulations. AuPd NPs were prepared via DP method on HT 

support, varying Au:Pd ratio, then kinetic studies for the selox of HMF to FDCA were 

carried out, followed by accurate characterisations. 
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1.1 The role of heterogeneous catalysis for “green” chemistry 

The rising cost, decreasing availability and environmental impact of fossil fuels have 

generated increasing interest in the production of sustainable alternative energy and chemical 

feedstocks1. In the case of organic chemicals, renewable biomass is a potential candidate to 

supply this need2, 3. Therefore, Green Chemistry has evolved into an underpinning philosophy 

for the chemicals industry, advancing the design and use of products and processes that 

minimise the use and generation of hazardous substances, and promoting a transition from 

chemistry based upon fossil fuel resources to new technologies utilising bio-derived 

sustainable feedstocks1, 2, 4-8. 

Heterogeneous catalysis is one of the most important supports of green chemistry1, 8; 

the research and development of new catalysts, catalytic systems, new chemical products and 

processes that reduce or eliminate the use and generation of hazardous substances lead to reach 

important results for human health and environmental protection4, facilitating such energy and 

atom efficient processes, affording simple and low cost production and isolation methods and 

catalytic materials that can be easily recovered and re-used9, giving thus economic, social and 

environmental benefits. The interesting challenge of Green Chemistry is to provide a more 

stable and secure supply of feedstocks, an environmentally beneficial reduction in the carbon 

footprint of chemicals and liquid fuels, and a more stable and profitable agricultural economy, 

minimising waste2. 

1.1.1 Definition of catalyst and its components  

1.1.1.1 Catalysts, promoters, supports and pore networks  

A catalyst10 is a substance that increases the rate at which a chemical reaction occurs, 

without itself being significantly consumed during the reaction, providing a new reaction 

pathway that proceeds via an alternative mechanism, through a distinct transition state that 

facilitates the reaction because of its lower activation energy barrier. A reagent forms, indeed, 

an intermediate complex with the catalyst, from which the product is formed and leaves the 

catalyst unaltered. It is worth underscoring that the process does not overrule the 

thermodynamic equilibrium, but it accelerates the kinetics by enhancing the rate at which the 

equilibrium is reached10. 
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Catalysis can be divided into two subdivisions. A catalytic reaction is said to be 

homogeneous when both reagents and catalyst are in the same phase, as for the common case 

of soluble metal complexes in liquid phase reactions. Active and selective homogeneous 

catalysts are commonly investigated, with improvements obtained via careful adjusting of new 

ligands and the auxiliary chemicals used.  

Nevertheless, their use is still far to be ideal and sometimes presents inconveniences for 

an industrial scale: their recovery and reuse require purifications, which lead to either loss of 

catalytic active component and/or further costs for industrial processes. Again, homogeneous 

catalysts can contaminate products and this is not tolerable, especially for pharmaceutical 

industries, where high quality and purity is a necessary requirement for human health and most 

homogeneous catalysts particularly toxic, even in minimal quantities.  

Although these are the most important reasons to consider homogeneous catalysts 

sometimes environmentally and economically unjustificable for large industrial scale 

applications11, there are some industrial processes where homogeneous catalysis is profitably 

used, when high selectivity is crucial. The Noyori12 asymmetric hydrogenation uses different 

BINAP-Ru homogeneous catalysts for the enantioselective hydrogenation13, 14 of olefins, 

ketones, aldehydes and imines; this enantioselective hydrogenation is largely used for the 

production of several drugs and medicines15, such as antibiotics and  antipsychotic agents.  

Another interesting industrial application of homogeneous catalysis is for the olefin 

metathesis16, used to prepare higher olefins from -olefins. The most important industrial 

process for the olefin metathesis is the SHOP (Shell higher olefins process)17, in which linear 

-olefins are produced via ethylene oligomerisation, using Ni-phosphine complex; then, olefin 

metathesis produces higher olefins, using Schrock18 (Mo-complexes) or Grubbs19 (Ru-

complexes) catalysts.   

 A catalytic reaction is said to be heterogeneous when the catalyst is in a different phase, 

such as a solid catalyst and liquid/gas reagents, being the recovery of the catalyst facilitated at 

the end of the catalytic process itself, either by filtration, centrifugation or decantation and 

reducing both economical and environmental impact. Nevertheless, the nature of the active 

sites is usually less well understood; for this reason, studying the actual site of action and 

subsequent catalyst deactivation, specifically under operating conditions, is also an interesting 

subject. 
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A heterogeneous catalyst is made of several components: active sites, support and 

promoters10. The catalytic surface is always heterogeneous, because its chemical and physical 

properties are different, depending on which region is considered; this implicates that active 

sites are in determined points of the catalyst surface where the reaction actually occurs.  

A support, usually a porous solid or a high polymer, immobilises the active phase (e.g. 

metal nanoparticles) and makes easier the separation of the products from the catalyst itself. 

Then, promoters increase the activity and or selectivity of a catalyst. Promoters can be 

deposited onto an already supported catalyst or alternatively they can be simultaneously 

deposited onto the support along with the active species. The promoter can exist as either 

adatom sites, very small particles of up to a few atoms which do not form multiple layers, or 

as multilayer sites either positioned on the catalyst or the support, although they must be in 

close proximity to the active sites. The role of promoters is not fully understood and thus has 

led to the speculation of numerous effects:   

a) The promoters actively block some of the active sites.  Decomposition is favoured at 

either surface vacancies present on the active metal face or on large flat surfaces. These 

sites are blocked by the promoter, reducing poisoning of the active sites. 

b) Oxygen absorbed to the promoters can facilitate the cleaning of the catalyst surface, 

removing impurities that could cause poisoning.  

c) The promoters cause an electronic modification of the surface, altering the strength of 

adsorption/desorption. 

d) The promoters and active species form an alloy that has higher activity/selectivity.  

Pore networks in catalysts and their supports play a key role for the mass transport of 

substrates to active sites within the catalyst bulk, and are important for a high activity of 

catalytic materials. According to the average pore diameters, materials can either be defined as 

microporous (pore size < 2 nm), mesoporous (2-50 nm) or macroporous (> 50 nm)20. 
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1.1.1.2 Deactivation of catalysts 

Deactivation can be split into four main different types21, 22: the first is poisoning23 of 

the active sites via the adsorption of strongly bound chemisorbed species. A poison is an 

impurity in the feed that reacts selectively on the catalytic sites stopping their activity and the 

way to regenerate them is to destroy the poison with an adequate treatment, such as the removal 

of sulfur via hydrogenation to give H2S. 

The second is fouling24 due to powders, coke or polymers that block the active sites or 

support and the way to regenerate the catalyst is combustion with air enriched or impoverished 

of O2. Then, the sintering (agglomeration)25, 26 is a physical irreversible process that reduces 

the surface area and might be due to crystallyte growth either of the support or of the dispersed 

metal or both of them. The fourth is metal leaching27-29, that is a cleavage and a consequential 

lost of the active species and/or the promoter from the support into the reaction solution. Then, 

mechanical degradation and solid state transformation (reduction of surface oxidation state)25, 

26 also play a role in the loss of active phase. 

1.1.1.3 Kinetic pathways and activation energy 

In theory, reactions would be 100 % selective to the desired products30, nevertheless in 

practice this is seldom the case. Therefore, as important as activity is, selectivity of a catalytic 

system can be an important deciding factor on whether this catalyst can be implemented on an 

industrial scale31. The overall selectivity of a catalyst, under reaction conditions, is determined 

by the relative occurrence of various possible reaction pathways. The formation of undesired 

products rather than the preferable one, from identical or differing transition states, is 

counterproductive32. 

If a reaction can occur with a catalyst10 in the heterogeneous phase or without it in the 

homogeneous one, the effect of a catalyst is to give an alternative reaction pathway with lower 

activation energy, which is easier to overcome (Scheme 1.1). As said before, while the catalyst 

lowers the activation energy, by forming a different activated complex on its surface at the 

transition state, it does not change the energies of the original reactants or products. Rather, the 

reactant energy and the product energy remain the same and only the activation energy is 

lowered. 
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Scheme 1.1:  the reaction pathway with and without the catalyst; Ea indicates the activation 

energy. 

Activation energy barriers of by-product formation must be similar to the favourable 

product, with the degree to which they form being relative to how close they are33. This occurs 

due to several reaction pathways that an adsorbed intermediate can undergo and is responsible 

for the simultaneous formation of side products.  

Any modification of the active surface during the reaction will result in changes to the 

activation energy barriers towards possible products, and thus shift selectivity to a parallel 

reaction33. Controlling desired product selectivity requires a varied approach to enhance 

activity because the rate determining step might not necessarily be the step that decides 

selectivity. 

Consecutive reactions, which is the case of selox of HMF in this thesis work, where the 

major product can further react to form more thermodynamically stable product(s) might be 

either desired or disconcerting. When selectivity towards an intermediate of these possible 

products is desired, the use of a catalyst that will not form unwanted by-products is crucial, 

allowing kinetic control. When the desired product is at the end of the possible reaction 

pathway, the use of a catalyst that can undergo all the predicted steps, without following 

parallel pathways and without stopping to the first intermediate, help to achieve high yields of 

desired products32. These selectivity influencing factors depend on surface structure, adsorbate 

induced restructuring, reaction intermediates and surface composition33.  

Reaction coordinate 

reagents 

products 

uncatalysed 

catalysed 
Ea 

Ea 

H 



20 

 

1.2 Production and selective oxidation of 5-hydroxymethylfurfural  

1.2.1 Production of HMF 

Several raw materials have been studied for new green processes in the last years, 

especially sugars, glycerol and vegetable oils, giving the attention to the production of biofuels, 

green polymers and fine chemical intermediates. 5-hydroxymethyl-2furufural (HMF)1, 3, 6, 8, 34 

belongs to a class of biomass-derived oxygenated organic chemicals and it is one of the many 

promising potential platform chemicals for biorenewable chemicals production. HMF is a 

waste product from sugars (Figure 1.1) and it has been successfully synthesized by dehydration 

of glucose, fructose and cellulose35-38; this important relatively new platform molecule might 

be transformed into several high value products. 2,5-furandicarboxylic acid (FDCA) is an 

interesting monomer for the synthesis of a new biodegradable polymer39 that might replace 

polyethylenetereftalates, then it is also an interesting building block for other polymers1, 5, 6, 8, 

40.  

 

Figure 1.1: left – sugar crops, natural source of HMF and right – an example of application of 

biodegradable polymers for daily use. 

A process to synthesize HMF starts from glucose, which is extracted from cellulose, 

isomerised to fructose41 via base catalysts and dehydrated in the aqueous phase using either 

HCl or an acidic ion-exchange resin or auto-catalytic formation in DMSO; then the HMF 

product is continuously extracted into an organic phase (methylisobutylketone) modified with 
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2-butanol, giving 80% HMF selectivity at 90% fructose conversion, from 10 to 50 wt % 

fructose)42.  

Other synthesis are well known3, and one of them is based on heterogeneous strong 

acid ion exchange resins in methyl isobutylketone, which allow the dehydration of D-fructose 

to 5-hydroxymethyl-2-furancarboxaldehyde at mild temperature and pressure43. Then, metal 

chloride containing ionic liquids (CuCl2 and CrCl2) dissolved in 1-ethyl-3-methylimidazolium 

chloride ([EMIM]Cl) at temperatures of 80–120 °C collectively catalyzed the single-step 

process of converting cellulose to HMF with an unrefined 96 % purity among recoverable 

products at 55 % HMF yield44, giving also sugars or sugar-derivatives.  

It is worth mentioning two interesting works recently published by our research group45, 

46 about bifunctional heterogeneous sulfonated zirconia catalysts for HMF production from 

glucose in water solvent. Mesoporous silica SBA-15 was grafted with ZrO2 film with various 

thickness, followed by sulfation. Sulfated zirconia films prepared with S/Zr < 0.18 appeared 

chemically stable through the conversion from glucose to 5-HMF; glucose isomerization to 

fructose was achieved via base or Lewis acid sites, while subsequent dehydration of fructose 

to HMF was possible because of sulfated Brønsted acid sites. These catalysts showed 3-fold 

enhancement in HMF productivity per gram of Zr and exhibit excellent hydrothermal stability 

at temperatures as high as 170 °C, showing promises for further applications in biomass 

processes.  

1.2.2 Selective oxidation of HMF 

HMF oxidation into FDCA was examined using stoichiometric oxidants1, 40, such as 

KMnO4, or homogeneous metal salts (Co/Mn/Zn/Br)47 under high pressure (70 bar, in air) or 

vanadyl-pyridine complexes48. To bypass problems due to the homogeneous catalysts (toxicity, 

harsh working conditions, purification and recycling), heterogeneous catalysts were studied 

and afforded FDCA via HMF oxidation with molecular oxygen.  

Supported Pt/C or Pt/Pb/C catalysts were first demonstrated to work1, 40, 49 with the aid 

of homogeneous base at high pH (pH = 14) resulting in near quantitative FDCA yield. Direct 

synthesis of FDCA from fructose has been also tried using a solid acid and PtBi/C in 

water/MIBK, affording 25 % FDCA yield with 50 % selectivity40. Although high conversion 

with excellent FDCA selectivity (99 %) was obtained from fructose in the presence of 
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Co(acac)–SiO2 bi-functional catalyst, this reaction was performed under harsh conditions (433 

K, 20 bar)50.  

The oxidation of HMF over Pt/Al2O3 catalysts was also investigated by Vinke and co-

authors51 at lower pH (pH = 9). Although FDCA was eventually formed, the intermediate 

product 5-formyl-2-furancarboxylic acid (FFCA) was observed, while the intermediate product 

5-hydroxymethylfuran-2-carboxylic acid (HMFCA) appeared at higher pH. 

Recently, three noticeable improvements were reported, using Au supported catalysts 

for aqueous HMF oxidation. Gorbanev and co-authors40 demonstrated that commercial 

Au/TiO2 could oxidise HMF into FDCA in 71 % yield at near room temperature. Pasini and 

co-authors5 obtained good results, at higher temperature (95 °C) using the bimetallic Au-

Cu/TiO2 that gave FDCA in 99 % yield. Then, Casanova and co-authors6 showed Au/CeO2 

nanocrystalline was more active and selective, giving FDCA in 96 % yields at room 

temperature.  

However, these catalysts require addition of homogeneous base (1–20 equiv. NaOH) 

that is suspected to play a role in the deactivation of these catalysts, and high oxygen pressure 

(10–20 bar). Then, a decrease in the catalytic activity and selectivity is shown after 2-5 catalytic 

cycles and, in the most of cases, the HMF/Au bulk molar ratio required for a full and selective 

conversion was quite low (100-640).  

An interesting and innovative heterogeneous catalytic system was tested by Gupta et 

al.8 and these authors tried the selective oxidation with Au supported on hydrotalcite as the 

solid base, giving FDCA in high selectivity and nearly quantitative conversion. This was the 

first catalyst that worked at ambient pressure and the first attempt to use a heterogeneous source 

of base instead of the usual NaOH. This showed the way forward to a new recyclable catalyst, 

even if the HMF/Au bulk molar ratio used was still too low (40).  

Another remarkable work was carried out by Davis and co-authors1, 52, 53, who compared 

the activity of commercial Pt, Pd and Au NPs supported on TiO2 or C at room temperature and 

10-20 bar of O2. Even if the HMF/M ratio, where M is one of the named metals, was higher 

(6700) than all the other tried experiments, the selectivity in FDCA decreased (Pt = 79 %, Pd 

= 71 % and Au = 8 %). This work clearly showed a big difference between Pt and Au activity, 

giving a decrease for Au as the amount of loaded metal decreases. Nevertheless, Pt and Pd 
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catalysts lose the activity and the yield decreases after 4 cycles, and Davis Au NPs were larger 

than 10 nm and tested without an adequate amount of base. 

This research project aims to study and develop heterogeneous catalysts for the 

selective oxidation of 5-hydroxymethylfurufural (HMF) into 2,5-furandicarboxylic acid 

(FDCA) using an heterogeneous catalytic system made of Au or AuPd nanoparticles supported 

onto hydrotalcites54, a class of synthetic anionic clays. 

1.3 Supported Au NPs for selox 

Gold in its bulk state has been thought to be catalytically inert and the most noble of 

the elements, until in the 1980’s Haruta and Hutchings understood its important role in catalysis 

and its activity, when divided to the nanoscale55, 56. Haruta57, 58 disclosed the unexpected 

capability of gold NPs as the most promising catalyst for the oxidation of CO at temperatures 

as low as – 76 °C, while Hutchings59, working on vapour phase hydrochlorination of acetylene, 

found that gold would have been the most active catalyst for this reaction and his further studies 

supported his initial predictions60-62. 

The oxidation of primary alcohols to aldehydes or to carboxylic acids is an important 

process for the synthesis of highly valuable intermediates63. Different substrates64, 65, such as 

alcohols66, 67, polyols67, aldehydes and sugars68, 69, have been oxidised using gold nanoparticles 

as a naked sol65, 70 or supported on solid64, 65, 69, 71-74, the most common ones being carbon, TiO2 

or CeO2
75-77.  

The need for a homogeneous base52, such as NaOH, in the aerobic selective oxidation 

of sugars, alcohols and aldehydes, carried out over supported Au catalysts, is a serious and not 

environmental friendly limitation78 of this catalytic system, as the final product requires 

acidification with HCl to get the free acid from the disodic salt and purification. These steps 

increase the operating cost of the industrial process and produce additional salt byproducts, 

which are of no added value and may have a negative environmental impact. 

 This already explained need of NaOH has been recognised as an essential component 

for supported Au catalysts since initial studies carried out by Prati and Rossi67, 74, in which 

these authors demonstrated that supported Au NPs can be very effective for the selox of 1,2 

propanediol to lactic acid, by oxidation of the primary alcohol group rather than the secondary 

one, which might have been expected to be more reactive. Carrettin and co-workers9 and 
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Hutchings and co-workers79 also demonstrated that glycerol cannot be oxidised in absence of 

base over Au catalysts.  

The use of gold for manufacturing new catalytic systems56 was affected by the high 

variation of the catalytic results, depending on the preparation method employed related to the 

support used80 and to gold particle morphology and metal support interactions, both crucial to 

modify activity and selectivity of a catalyst.    

 

Recent mechanistic studies carried out by Davis and co-workers52, 53, 81 on gold catalysts 

have shown the essential role of hydroxide ions during the selective oxidation of alcohols. 

Hydroxide ions facilitate the initial deprotonation of alcohols, which are weak acids (pKa = 

14–18), since a gold catalyst, by itself, cannot deprotonate the hydroxyl group in alcohols.  

Rossi, Prati and co-workers tried to explain64, 65, 82, 83 this need of base and to understand 

their catalytic system made of pre-formed Au sol deposited onto different solid supports; the 

oxidation of the aldehydic group in sugars is reported as a significant example. Scheme 1.2 

shows the proposed mechanism of oxygen molecular activation for gold catalysts on the basis 

of the promoting effect of liquid base on the aldehydic carbon and the formation of hydrogen 

peroxide as a reaction product.  
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Scheme 1.2: proposed mechanism via gem-diol for the selective oxidation of the aldehydic 

carbon of glucose using Au nanoparticles, from references 64, 65, 82 and 83. 

 

The critical point is represented by electron-rich gold species, formed by the hydrated 

glucose anion and gold surface atoms, which are supposed to activate molecular oxygen via 

nucleophilic attack. An efficient nucleophilic behaviour is determined by the electronic 

properties of the nanometric gold particles (d < 10 nm). In the dioxogold intermediate, either 

Au+−O2
- or Au2+−O2

2-  were proposed64, 65, 83 as a bridge for the two electrons-transfer from 

glucose to dioxygen and peroxidic-like species have been supposed as a reaction intermediate 

during dihydrogen oxidation to water on a gold catalyst.  

One of the aims of this thesis was to study if it was possible to replace the homogeneous 

base with a heterogeneous one, the solid being both the support and the source of base. Also, 

EXAFS experiments were carried out either to verify or to prove wrong the proposed 

mechanism by Rossi and Prati, analysing Au oxidation state and its chemical environment 

during the aerobic selox of HMF in situ. 
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1.4 Hydrotalcites and mixed MgAl oxides as the catalytic support and 

the source of solid base 

Hydrotalcites (HTs), with the general formula [M2+
(1-x)M

3+
x(OH)2]

x+(Ax/n)
n- . y H2O, 

belong to a class of anionic clays named layered double hydroxides (LDH)54, 84, 85. Their 

structure is composed of positively charged brucite-like hydroxide layers, in which some 

octahedrally coordinated M2+ cations have undergone isomorphous substitution by M3+ ones. 

Counter anions An-, commonly carbonates, reside in the interlayer space to balance the residual 

positive charges54, 86, 87, although intercalation of sulfate88, nitrate89 and various organic 

anions90 have been reported in the literature. An example of hydrotalcite structure is shown in 

Figure 1.2. 

 

Figure 1.2: a schematic representation of the layered double hydroxide structure of a MgAl 

hydrotalcite91, 92.  

Hydrotalcites find a wide use as catalysts for aldol reactions or for transesterification 

of bio-oils54, 85, 92-94, but they have also found applications as in flame retardants or antacids54. 

They have good anion exchange capacity95 and are therefore used in applications such as the 

removal of anions from wastewater supplies96. 

This thesis focuses on MgAl hydrotalcites, in which M2+ is Mg2+ and M3+ is Al3+, with 

a generic formula of [Mg(1-x)Alx(OH)2]
x+(CO3)x/n

2- . y H2O. Variations in the Al content, 

reported as x = Al/(Al+Mg), are known to modify the base properties of these materials, with 

stable pure HT structures reported to form for compositions in the range 0.20 < x < 0.3354, 86, 
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CO3

2- CO3
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97. For these values, the Al3+ ions in the brucite-like sheet remain distant one from the other, 

because of the repulsion of their positive charges.  

According to Brindley and Kikkawa97, for x values lower than 0.33, the Al octahedra 

are not neighbouring and HT structure is stable. For higher values of x, the increased number 

of Al octahedra results in the formation of Al(OH)3 bayerite or gibbsite and, in the same way, 

lower values of x lead to a higher Mg octahedra content in the brucite-like sheets, with 

concomitant phase separation of Mg(OH)2 brucite or Mg5(CO3)4(OH)2·4(H2O) 

hydromagnesite91, 92, 97, 98. These considerations will be proved and discussed in Chapter 3. 

It is also important to note that conventional preparative routes, such as those reported 

by Cavani and co-workers54 or Géraud and co-workers99, involve co-precipitation induced by 

alkali hydroxides and carbonates, which presents problems of alkali contaminants in the 

finished catalyst. In this case, the removal of contaminants is often incomplete, the catalyst 

might leach and afford homogeneous contributions to the observed catalysis92, 100.  

Based on previous work conducted by Cantrell and co-workers92, or Géraud and co-

workers99, an alkali-free route was chosen to prepare Na-free hydrotalcites, using (NH4)2CO3 

and NH4OH as the precipitation agents, at pH values of 9.3-9.5. High pH values generally 

facilitate greater incorporation of Mg into the hydrotalcite structure, due to increased solubility 

of Mg(OH)2 compared to Al(OH)3 and increase the basic strength of the solid base101.  

Gupta and co-workers8 previously employed hydrotalcites obtained via alkali 

precipitation routes as both a support and solid base for Au nanoparticles, resulting in 

significant HMF oxidation and high 2,5-furandicarboxylic acid (FDCA) yields. In this work a 

hydrotalcite with a nominal Mg:Al molar ratio of 5 was reported as the most active, however 

the actual composition was not quantified and such a high Mg:Al ratio is not generally accepted 

as possible for pure phase HTs, as mentioned before54. 

Calcination of hydrotalcites at temperatures between 450–500 °C is known to result in 

the loss of interlayer carbonate anions and the concomitant formation of mixed metal oxides53, 

54, 92, 102. Subsequent rehydration of such mixed metal oxides can promote re-regeneration of 

the parent layered double hydroxide structure, the so-called “memory effect”54, 86, 94, 103, 104, in 

which hydroxide anions replace the original carbonates within the interlayers, provided that the 

calcination temperature remains below around 550 °C94. Rehydration of thermally generated 
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periclase-like Mg-(Al)-O is critical for the production of Brønsted base sites within 

hydrotalcites and their associated solid base catalysis84, 105-107.  

Our group have previously demonstrated the utility of calcined-rehydrated 

hydrotalcites as solid bases for the transesterification of triglycerides in biodiesel production,92-

101 however the corresponding 48 h vapour phase rehydration protocol is time-consuming, and 

the impact of calcination temperature on base properties has not been systematically 

investigated to date108.  

1.5 Supported AuPd NPs for selox 

The oxidation of alcohols and polyols to carbonyls has been widely studied using 

supported heterogeneous Pd catalysts1, 52, 53, 109-114 in aqueous109 and organic solvents66, 109, 115. 

Our research group has shown that high surface area (300 m2.g-1) mesoporous alumina116 or 

mesoporous silica115, 117, 118, such as surfactant-templated SBA-15 (a high surface area support 

with hexagonally packed, p6mm, parallel mesopore channels (950 m2.g-1), and two high 

surface area cubic silica supports with three-dimensional interpenetrating mesopore networks, 

SBA-16, Im3m, (m2.g-1) and KIT-6, Ia3d, (940 m2.g-1)), potentially linked via micropores117, 

118, were able to stabilise atomically highly dispersed Pd2+ centres, that exhibit exceptional 

activity toward the aerobic selox of allylic alcohols, being PdO the true active site for the 

oxidative dehydrogenation.  

These materials were found to be highly selective (70-80 %) to the allylic aldehyde 

with the remaining products due to decarbonylation, breaking the C-O bond and hydrogenation, 

due to surface hydrogen arising from the oxidative dehydrogenation mechanism. However, 

PdO can undergo in situ reduction to Pd0 during alcohol selox117-119 and does not carry on the 

second step required for HMF selox, the oxidation of the aldehyde to carboxylic acid.  

To overcome these issues, our research group66, 120 and several other authors55, 79, 109, 121 

tested bimetallic AuPd NPs catalysts for the selox of different alcohols and polyols. Also, 

Hutchings and co-authors55, 79, 122 found this alloy to be very active for direct synthesis of H2O2 

from hydrogen and oxygen, either prepared via deposition-precipitation, or via impregnation, 

or via sol immobilisation. 

Different routes are known in literature to prepare AuPd NPs and different kind of 

structured nanoparticles can be obtained123.  Mainly, polymer-stabilised bimetallic alloys can 
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be obtained following co-reduction of mixed ions precursors, while successive reduction of 

two metal salts can be considered an adequate method to prepare core-shell bimetallic 

nanoparticles. For this purpose, the presence of an adequate polymer for NPs stabilisation is 

crucial, being PVP or PVA the most common used, and the order in which precursors are 

reduced may yield Au-core/Pd-shell, Pd-core/Au-shell or cluster-in-cluster particles123. 

Several old methods were reported for the reduction of precursor ions to metallic NPs; 

Schmid and co-authors124, for example, prepared ligand-stabilised (p-H2NC6H4SO3Na) AuPd 

NPs by successive reductions, using citrate. PVP-stabilised AuPd bimetallic particles were 

prepared from their salts by alcohol reduction method by Toshima and co-authors123, under 

refluxing of alcohol solutions of metal ions: alcohols work as a solvent and as reductants, being 

oxidised into aldehyde or ketone during the preparation. 

Nevertheless, AuPd NPs, with a better control of particle size distribution, small sizes 

and higher catalytical activity have been prepared by deposition-precipitation55, 79 at pH = 10, 

using NH3, wet impregnation79 or sol immobilisation on inorganic supports74, 121, with or 

without the addition of polymers as stabilisers. The deposition-precipitation was chosen for 

this thesis work, because it was used also to prepare Au NPs and therefore offered a good 

comparison between NPs obtained using similar procedures. 

Positive synergic effects, both geometric and electronic between Au and Pd have been 

found to increase not only catalytic activity, yields and selectivity, but also catalytic lifetime 

under mild reaction conditions66, 109. Prati and co-authors reported in their works109 that, in the 

presence of a homogeneous base, such as NaOH, the activity of all these catalysts was 

enhanced; in this thesis work, AuPd NPs were deposited-precipitated on HT as both the support 

and the source of solid base and tested as catalysts for the selox of HMF to FDCA. 

1.6 Reaction scheme for the selox of HMF 

The selective oxidation of HMF proceeds through three steps8 (Scheme 1.3). In the 

presence of O2, supported Au nanoparticles and NaOH, the final product is actually the disodic 

salt of FDCA and not the free acid but, in order to simplify the discussion, the reagent and the 

products will be indicated as HMF (5-hydroxymethyl-2-furfural), HMFCA (5-hydroxymethyl-

2-furancarboxylic acid), FFCA (5-formyl-2-furancarboxylic acid) and FDCA (2,5-

furandicarboxylic acid) and the carboxylic group as the free acid instead of sodium salt. 
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Scheme 1.3: selective oxidation of HMF to FDCA from reference 8. 

 

1.7 Thesis Aims 

Based on the previous studies reported in the literature, this PhD focuses its attention 

on understanding how the catalytic system, made of Au nanoparticles supported on solid bases, 

works for the selective oxidation of HMF. As reported by Gupta and co-authors8, their 

hydrotalcites obtained via alkali route have a nominal Mg/Al ratio of 5 and have shown a high 

activity, both for the conversion and selectivity to FDCA. Nevertheless, these authors did not 

characterise accurately their hydrotalcites and, as well-known by Cavani and co-authors54 and 

also reported by Cantrell and co-authors92, such high Mg/Al ratio is not accepted for pure phase 

hydrotalcites and contaminations of NaOH and/or Mg(OH)2 in the HT-phase might affect their 

results. One of the first goals of this project was to understand if the catalytic system described 

by Gupta and co-authors8 is really heterogeneous or partially homo- and partially 

heterogeneous, focusing the attention on the role of NaOH and Mg(OH)2 contaminations in the 

prepared hydrotalcite and consequentially the role of pH for this selective oxidation.  

All the articles previously cited reported that when Au supported on carbon or TiO2 is 

used as the catalyst for the selective oxidation of HMF, the reaction does not work without the 

addition of a homogeneous base and high NaOH/substrate ratios were necessary to oxidise both 

the R-OH and the R-CHO to R-COOH.  

Furthermore, the selective oxidation of the aldehydic group is easier than the alcoholic 

one using this catalytic system but, to date, a systematic study of how important is the pH in 

this reaction and a systematic direct comparison between Na-free hydrotalcites as the 

heterogeneous base and NaOH as the homogeneous one have not been performed yet, together 

with the effect of alkali contaminations or phase impurities in the hydrotalcites on the selective 

oxidation of HMF.  

base base base 
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The use of hydrotalcite as the support and the heterogeneous solid base allows the 

reaction to work at ambient pressure, even if a temperature of 90 °C is still required for the 

oxidation of the –OH group, and it was thought by Gupta and co-authors8 to be the way to get 

the free carboxylic acid instead of its alkaline or alkaline-earth salt, without further 

purifications. Au nanoparticles dispersed on hydrotalcites (HT)8, anionic microporous clays 

with a layered double hydroxide structure, have shown promise in HMF oxidation to FDCA, 

however key questions remain regarding the nature of active site6, potential role of 

homogeneous and Na impurities contributions1, and importance of reaction basicity upon 

activity and selectivity5. The incorporation of Pd into Au catalysts to provide a series of AuPd 

NPs, from Au-rich to Pd-rich alloys and its effect in enhancing Au catalytic activity were 

studied to improve the catalyst and FDCA yields.  
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2.1 Catalyst preparation 

2.1.1 Parent hydrotalcite synthesis 

Hydrotalcites were synthesised using the alkali-free co-precipitation method of 

Cantrell and co-workers1, with some modifications, from aqueous dilute solutions. Briefly, an 

Atlas Syrris pump-syringe with two addition channels was used instead of conventional 

addition funnels, in order to have a better repeatability; 1 M solutions of Mg(NO3)2 6H2O 

(Sigma-Aldrich, 98.0 – 102.0 %) and Al(NO3)3 9H2O (Sigma-Aldrich, ≥ 98 %) were 

separately prepared in de-ionised H2O, then mixed in a volumetric flask to get 100 ml of a 

new solution, having Mg/Al = 3 as the theoretical molar ratio (pump 1). 100 ml of a 2 M 

buffer aqueous solution of (NH4)2CO3 (Sigma-Aldrich Fluka, 30-33 % NH3 basis) and 

NH4OH (Fisher NH4OH, NH3 solution, 35 wt. %) at pH = 9 was prepared and charged into 

another volumetric flask (pump 2). The addition rate was set up to be 1 mL/min, the pH was 

monitored using a Jenway 3510 pH meter and kept constant in the range of 9.3-9.5 by adding 

concentrated NH4OH when necessary (35 wt. % NH3 aqueous solution).  

The two solutions were added dropwise in parallel and simultaneously at room 

temperature into a 2 L Radleys Ready reactor (Figure 2.1), pre-filled with 300 ml of de-

ionised water and under stirring (300 rpm); the white hydrogel formed was left to age 

overnight at T = 65 °C, washed with H2O until the pH was as close to the neutral as possible, 

then dried in a vacuum oven overnight at T = 100 °C. High pH values generally facilitate 

greater incorporation of Mg into the hydrotalcite structure, due to increased solubility of 

Mg(OH)2 compared to Al(OH)3 and increase the basic strength of the solid base2.  
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Figure 2.1: top left – Radleys Ready reactor, top right – Jenway 3510 pH meter with 

equipped electrode for Radleys Ready reactor and bottom left – Atlas Syrris pump-syringe. 
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2.1.2 Typical preparation of Au/HT or Au/CHT catalysts  

The deposition-precipitation method was chosen to prepare a series of gold catalysts, 

respectively 0.5, 1, 2, 5 and 10 wt. % Au. This method allowed to prepare Au nanoparticles 

supported onto HT, following the procedure described by Gupta and co-authors3. Briefly, an 

adequate amount of aqueous solution of HAuCl4 3H2O (Alfa Aesar, ≥ 99.99 %, Au = 49.5 wt. 

%), having a concentration of [Au] = 10 or 20 mg.mL-1, was dissolved in 40 ml H2O under 

stirring, then 1 g of hydrotalcite was added, followed by concentrated NH4OH (35 wt. % NH3 

aqueous solution), until the pH was monitored to be 10 (0.6 - 0.8 mL base solution added).  

The reaction was left under stirring at room temperature for 6 h, then under reflux for 

30 min. The yellow-orange solid was filtered off, washed through with H2O until neutral pH 

was determined with a pH indicator, then calcined under O2 (always used in this thesis work 

pure at 99.995 %) in a tube furnace for 4 h at T = 200 °C. The final catalysts were purple and 

this change in colour was first empirical evidence that Au0 nanoparticles were formed, due to 

their associated surface plasmon resonance4, 5.  

To support gold on mixed oxides, the same procedure was followed, but the 

calcination temperatures used were 300, 400 or 500 °C respectively. 

2.1.3 Typical preparation of Au/CHT and rehydrated 

The prepared catalyst described in Chapter 2.1.2, 2 wt. % Au supported on HT, was 

divided in six separated batches. The calcination followed by reconstruction of the 

hydrotalcite phase in H2O was systematically studied in different conditions, to optimise the 

preparation procedures. Two different calcination temperatures were tested, respectively 300 

or 450 °C and three rehydration methods were tested: vapour phase6, 7, water in subcritical 

conditions at 120 °C in pressured flasks8 or simply hot water at 100 °C 9.  

In order to explain each procedure and to help distinguish the batches, samples are 

labelled according to the following nomenclature: CHT-XXX-YYY, where XXX is the 

calcination temperature and YYY is the rehydration protocol. Oxygen and nitrogen purity is 

99.995 %. 
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- CHT300Vap: calcined hydrotalcite at 300 °C for 4 h in O2, cooled down under N2 

until RT and then rehydrated in water-wet N2, at RT, for 48 h. The flow was held 

at 20 ml/min using a gas regulator. 

- CHT300Subw: calcined hydrotalcite at 300 °C for 4 h, then rehydrated in water, 

under pressure, in Ace™ round-bottomed flasks, at 120 °C in subcritical 

conditions for 6 h. 

- CHT300Hotw: calcined hydrotalcite at 300 °C for 4 h, then rehydrated in boiling 

water at ambient pressure and for 6 h. 

The same three procedures were used to prepare the analogous CHT 450 °C series. 

CHT-RW represents the general family of rehydrated materials, as distinguished from the 

parent hydrotalcites.  

After this screening, a range of gold loadings spanning 0.5, 1, 2, 5 and 10 wt. % were 

supported on HT as described above, calcined at 450 °C for 4 h and subsequent water vapour 

phase rehydration under wet N2 for 48 h, as described above. 

2.1.4 Typical preparation of AuPd/hydrotalcites  

The deposition-precipitation method3 was chosen to prepare a series of AuPd/HT 

catalysts. The total amount of metal was chosen to be 1 wt. %, while the chosen molar ratios 

were Au95Pd5, Au90Pd10, Au80Pd20, Au70Pd30 and Au60Pd40. Briefly, an adequate amount of 

aqueous solution of HAuCl4 3 H2O (Alfa Aesar, ≥ 99.99, Au = 49.5 wt. %), having a 

concentration of [Au] = 10 mg.mL-1, and of aqueous solution of PdCl2 having [Pd] = 5.5 

mg.mL-1 (Alfa Aesar PdCl2 mother solution, Pd 20-25 w/w) were dissolved in 40 mL H2O 

under stirring, then 1 g of hydrotalcite was added, followed by concentrated NH4OH (35 wt. 

% NH3 aqueous solution), until the pH was monitored to be 10 (0.6 - 0.8 mL base solution 

added).  

The reaction was left under stirring at room temperature for 6 h, then under reflux for 

30 min. The white solid was filtered off, washed through with H2O until neutral pH, calcined 

under O2 in a tube furnace for 4 h at T = 200 °C and then reduced under H2 at the same 

temperature for 4 h. The final catalysts were grey and this change in colour was first 

empirical evidence that AuPd metal nanoparticles were formed10.  
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2.1.5 Preparation of 2 wt. % Au on C and of 1 wt. % Pd/HT 

Rossi’s11 and Prati’s12 methods were chosen to prepare a supported Au sol on 

carbon13; 2 g of carbon (Johnson Mattey, carbon support) was washed under stirring at 500 

rpm with 20 mL HNO3 6M (diluted in de-ionised water from HNO3 70 wt. % Fisher 

Scientific), to remove ash and inorganic salts, which might plug carbon micropores, poison 

the catalyst and not guarantee constant properties even from batch to batch14. After filtration, 

carbon was washed with deionised water until pH = 7 and dried in the oven at T = 100 °C.  

A solution of HAuCl4 having [Au] = 20 mg/mL was prepared as described in 

Chapter 2.1.2, then 1 mL of this was diluted in a 1 L beaker in deionised H2O 500 mL. 

Glucose (D-(+)-Glucose, Sigma-Aldrich, > 99.5 %) was then added as a stabiliser and pH 

adjusted to 2.6 using HCl 1M, (diluted in de-ionised water from HCl 37 wt. % Fisher 

Scientific), then 5 mL of a freshly prepared aqueous solution of reductant, NaBH4 0.1 M 

(NaBH4 Sigma-Aldrich 98 %) were added to the solution. The colour changed from yellow to 

red ruby-mahogany and this was a first indicator that a sol made of Au0 nanoparticles was 

formed, due to their associated surface plasmon resonance4, 5. 

 Pre-treated carbon was added as the support immediately after the described change 

in colour and left under stirring for 1 h. The catalyst was filtered off, washed through with 

H2O until neutral pH and dried in the oven at 80 °C overnight. The same method was follow 

under identical conditions to support 1 wt. % Pd colloid on 1 g of HT, starting from a PdCl2 

aqueous solution having [Pd] = 5.5 mg.mL-1.  

2.2 Support and catalyst characterisation 

2.2.1 Elemental analysis 

Bulk Au and Pd loadings, together with Mg and Al contents for the HT, CHT and 

CHT-RW series were determined by MEDAC Analytical and Chemical Consultancy Service 

LTD. Samples were digested in aqua regia (a mixture of HCl:HNO3 = 3:1) and diluted in 

aqueous 10 wt. % HNO3 until the sample was not clear, prior analysis on a Varian Vista 

MPX ICP-OES.  

ICP-OES is a type of emission spectroscopy based on an inductively coupled plasma, 

which is used to produce excited atoms and ions that emit electromagnetic radiations at a 



43 

 

wavelength characteristic of particular elements. The plasma torch is made of three 

concentric quartz tubes15 and a coil of a radio-frequency generator surrounds a part of it. 

Argon is used to generate the plasma and its flame temperature reaches 10,000 °C. When the 

torch is turned on, an intense electromagnetic field is generated within the coil by the high 

power radio-frequency signal flowing through it (i.e. 27 or 40 MHz) and cages the plasma. 

The Ar gas is ignited by a Tesla coil that generates a discharge arc through the gas flow and 

initiates the ionisation process; after that, the Tesla unit is switched off; the Ar flow feeds 

plasma, being ionized by the strong magnetic field. A peristaltic pump sends the solution, 

usually metal ions in 10 wt. % HNO3, to a nebuliser and then inside the plasma, where it 

collides with electrons, ionized gas and it breaks into charged ions itself. Thus, sample atoms 

break up in ions, lose electrons and recombine in the plasma, generating radiations at the 

characteristic wavelength of the involved element, analysed in an adequate optical chamber. 

Calibration curves, obtained via different concentration standards, allow quantification of the 

unknown concentration in the analysed solution. Figure 2.2 shows a schematic illustration of 

ICP instrument16.    

 

 

Figure 2.2: inset top left – ionised Ar plasma flame; main – a scheme illustrating the 

difference between ICP-AES and ICP-MS analysis system, from reference 16. 
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When ICP was not available, samples were analysed by XRF spectroscopy on a 

Horiba XGT-7000 X-ray analytical microscope fitted with a rhodium X-ray tube operating at 

50 kV, a nickel filter, a spot size of 1.2 mm and a silicon detector. Bombardment of a sample 

with sufficiently high energy X-rays facilitates ejection of a core electron. The “hole” in the 

lower energy shell decreases atomic stability, which is overcome by the relegation of a high 

energy shell electron to the hole17; this process generates excess energy, which is emitted as a 

secondary X-ray photon, whose energy is characteristic. The secondary X-ray is described by 

the electron shell transition, i.e. L → K is Kα while M → K is Kβ. Fluorescence is thus 

described as the phenomenon of radiation absorption, which may be followed by radiative 

emission at a different energy, as shown in Figure 2.3 

 

Figure 2.3: an illustrative representation of X-ray fluorescence mechanism. 

2.2.2 Powder X-ray diffraction 

During the first part of this thesis work at Cardiff University, ex-situ X-ray diffraction 

(XRD) patterns were recorded on a Panalytical X’pert Pro diffractometer fitted with an 

X’Celerator detector, using a Cu Kα (1.54 Ǻ, 8.04 KeV) source with a nickel filter, calibrated 

against a Si standard, wide angle patterns were collected over a range of 2θ = 5-80° or 5-100° 

(step size 0.02°, scan speed 0.020° s-1). During the second part of this work at Aston 

University, X-ray diffraction patterns were recorded on a Bruker d8 Advance XRD fitted 

with a LYNX eye high speed strip detector, patterns were obtained between 5 and 100 

degrees and a step size of 0.02 degrees and 1 second per step. In-situ XRD patterns were 

performed using an Anton-Paar XRK-900 cell and Bronkhorst EL-Flow mass flow 

controllors, O2 (99.995 %) was used for the calcination ramp. 
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A tungsten filament is electrically heated (40 KV, 40 mA) and emits e-, which are 

fired on a Cu anode. Cu Kα (1.54 Å, 8.04 KeV) X-ray photons, generated via the demotion of 

a high energy shell electron to a lower vacancy, in the copper anode, are fired at a 

homogeneous powder sample, at a sufficient energy to allow bulk characterisation. Sample 

homogeneity guarantees that, for a randomly organised powder specimen, there will be 

enough material correctly orientated to allow constructive interference from crystal planes18. 

This arises from elastic scattering of the photons which if in-phase19, as shown in Figure 2.4, 

results in constructive interference.  

 

Figure 2.4 a) constructive and b) deconstructive interference of X-ray photons20. 

Interaction of X-rays with the sample, in the specific case with atoms in the 

crystallographic groups, creates secondary “diffracted” beams (actually generated in the form 

of cones) of X-rays related to interplanar spacings in the crystalline powder, according to a 

mathematical relation, Bragg’s Law, that must apply when constructive interference occurs 

(Equation 2.1). For set refraction angles, the distance between scatterers must be equal to an 

integer multiplied by the X-ray wavelength19. Figure 2.5 illustrates X-ray diffraction from a 

crystalline material. 

 

𝟐𝐝𝐬𝐢𝐧𝛉 = 𝐧𝛌     Equation 2.1 

 

Whereas n = order of interference (integer) λ = incident wavelength of the X-rays, d = 

interplanar lattice spacing generating the diffraction and θ = diffraction angle; λ and d are 

usually measured in Å.  

 

nλ = 2dhkl sin (θ)
(n=1,2,3...)

a b
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Figure 2.5: Schematic illustrating Bragg’s X-ray and the relationship between lattice spacing 

and constructive interference.20 

Around 3 % of the incident X-ray photons will be elastically scattered and diffracted 

by the crystal planes, while the other 97 % leave the crystal as transmitted radiation. The 

angle of the X-rays is altered and as a 2θ value is reached where constructive interference can 

occur for the crystal phase being examined, the diffracted X-rays are recorded by the 

detector, giving rise to characteristic diffraction patterns unique to individual materials.18, 19 

Diffraction peaks only occur if long range order is present (crystalline materials or ordered 

porosity), with a minimum detectable crystallite size of ~2 nm.19, 21 

As it will be discussed later in Chapter 3.2.3.2, page 81, for a hydrotalcite mineral, 

existing in the polytype form named rombohedral 3R6, with 3R stacking of the brucite layers, 

the interlayer spacing d can be calculated from measuring the peak position of the d003 

reflection from the XRD pattern and then with the Equation 2.2. 

d = d003 = 
𝐧 𝛌

𝟐 𝐬𝐢𝐧 𝛉
        Equation 2.2 

  The lattice parameter a, related to the unit cell6, was calculated using the d(110) 

XRD peak position, with the Equation 2.3. 

 a = 2 d110                    Equation 2.3 

The lattice parameter c, that corresponds to three times the interlayer spacing d 

between two consecutive layers22, was calculated using the d(003), d(006) and d(009) XRD 

peak position, with the Equation 2.4 

nλ = 2dhkl sin (θ)
(n=1,2,3...)
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 c = d003 + 2 d006 + 3 d009          Equation 2.4 

Peak width increases with decreasing particle size, due to incomplete cancelling of 

scattered X-rays close to the peak maxima. This happens because the refraction from the next 

lattice plane, when just off the maxima, is only slightly out of phase and cancels weakly. In 

larger crystals the combination of multiple refractions overcome this, whereas the limited 

number of lattice planes in small crystals diminishes this effect.18, 19 The peak width can 

therefore be utilised for particle size determination by the Scherrer Equation (Equation 2.5)23 

and in this specific case it was used either for Au or for AuPd NPs.           

                    𝐏𝐒𝐚𝐯 =  
𝐤𝛌

(√(𝐁𝟐−𝐒𝟐)𝐜𝐨𝐬𝛉)
   Equation 2.5 – Scherrer equation 

 

Whereas PSav = average particle size (Å); B = FWHM of diffraction peak; S = 0.15 

(systematic broadening caused by diffractometer); k = 0.9 (constant). 

2.2.3 Nitrogen porosimetry 

N2 porosimetry was undertaken on a Quantachrome Nova 1200 porosimeter (Figure 

2.6) using NovaWin analysis software, version 11.03. Samples were degassed at 120 °C for 2 

h prior to N2 adsorption. Adsorption/desorption isotherms were recorded at – 196 °C (liquid 

nitrogen temperature). BET surface areas were calculated over the relative pressure range 

0.01-0.2 where a linear relationship was observed. Micropore analysis was undertaken using 

an Autosorb porosimeter, at lower relative pressures of 0.015-0.2, using ASiQwin, version 

3.1 analysis software, pore diameters and volumes were calculated applying the DFT method 

and using the fitting model for N2 at – 196 °C on carbon (slit pores, QSDFT equilibrium 

mode), because it was capable of giving the best fitting with experimental data. 
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Figure 2.6: Quantachrome Nova 1200 porosimeter connected with a computer for data 

analysis. 

 

In physisorption there is a van der Waals interaction (dipole to dipole attractions)17, 24 

between the adsorbate and the substrate; in this specific case, N2 adsorption, recorded at – 

196 °C, results from London forces17, and are due to induced temporary dipoles. These 

interactions have a long range but are weak, and the energy released when a particle is 

physisorbed is of the same order of magnitude as the enthalpy of condensation. This small 

energy can be absorbed as vibrations of the lattice and dissipate as thermal motion, so a 

molecule bouncing across the surface will gradually lose its energy and adsorb on it in a 

process named accommodation25.  

The enthalpy of physisorption is in the region of 20 kJ mol-1, but this small enthalpy 

change does not lead to bond breaking, so a physisorbed molecule does not change its nature, 

even if it might be distorted by the presence of the surface. N2 physisorption occurs at 

temperatures below its boiling point,24 due to the weak enthalpy of adsorption, and this 

permits multilayer adsorption, as the enthalpy of vaporisation (condensation) from adsorbate–

adsorbate interactions is near in value to the enthalpy of adsorption and non-selective to sites 

of physisorption26. 
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For a spontaneous process, the free Gibbs energy must be negative. Adsorption, at 

constant temperature and pressure, results in a decrease in system entropy, because the 

translational freedom of the adsorbate is reduced when it is adsorbed, thus enthalpy of 

adsorption must be negative (that means the process is exothermic)17 to satisfy the negative 

condition of free Gibbs energy (exoergic) to occur24, 27.  

Isotherms are generated by the static volumetric technique,26 N2 is incrementally 

dosed and the amount adsorbed (under dynamic equilibrium,  when rate of adsorption = rate 

of desorption) at a given pressure and constant temperature recorded.  The isotherm type and 

its shape divulge information regarding the adsorbents. There are six classifications of 

isotherm, according to the IUPAC, shown in Figure 2.7 – left28, 29.   

 

Figure 2.7 – Common adsorption isotherms and hysteresis types, from reference 28. B 

indicates the monolayer. 

Type I represents microporous materials where a strong interaction between adsorbate 

and adsorbent occurs from their close proximity within micropores, type II is typical for 

either nonporous or macroporous materials; the unusual type III occurs when adsorbate 

interactions are greater than those with the surface. Hysteresis observed in types IV and V is 

indicative of mesoporous supports, while type VI indicates consecutive adsorbate layer 

formation due to uniform surface. 

Hysteresis, visible in isotherm types IV and V, presents as four types, as shown in 

Figure 2.7 – right and occurs because of differences in condensation (adsorption) and 

evaporation (desorption) within mesopores;26 adsorption occurs from the pore wall inwards. 
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The neighbourhood between adsorbate and pore wall improves the attractive interactions, 

leading to capillary condensation, and therefore there is a much sharper increase in the 

volume of gas adsorbed compared to non-porous materials.  

Desorption, instead, occurs from the liquid surface at pore openings, where there is a 

strong interaction,26 lowering the pressure that gas evaporation occurs relative to the 

condensation process.  Hysteresis shape reveals further information: type H1 is shown for 

uniform pore sizes, while H2 represents non-uniformity ink bottle pore shapes. In the case of 

non-uniform pores, adsorption (condensation) will occur at the narrowest part of the pore and 

not fill the wider cross section until the vapour pressure has increased sufficiently. On 

desorption however, no evaporation will occur until the vapour pressure relating to 

evaporation from the widest cross-section of the pore has been reached, giving this much 

wider hysteresis loop30.  Slit shaped pores produce H3 and H429. 

Total surface areas were calculated using the BET equation (Equation 2.6)31 that 

arises as a development of the Langmuir theory to accommodate multilayer formation via an 

additional parameter, c. If the initial adsorbed layer can act as a substrate for further (for 

example, physical) adsorption, then, instead of the isotherm levelling off to some saturated 

value at high pressures, it can be expected to rise indefinitely.  

This accounts for differences between the strength of mono- and multilayer 

interactions, with a low value indicating a stronger interaction between adsorbate molecules 

than with the surface (adsorbent), and an opposite behaviour for high values.29 Surface areas 

are determined from the monolayer volume, assuming N2 molecules close pack and each 

occupies 0.162 nm2 (Equation 2.7).24, 26, 29      

             
𝐏

 𝐕𝐚(𝐏𝟎−𝐏)
=

𝟏

𝐕𝐦𝐂
+

𝐂−𝟏

𝐕𝐦𝐂
(

𝐏

𝐏𝟎
)           Equation 2.6 – BET (linear) 

              𝐕𝐦 = 
𝟏

(𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭+𝐈𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭)
             

             𝐜 = (
𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭

𝐈𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭
) +  𝟏 

             𝐒𝐚 =  
𝐕𝐦𝛔𝐍𝐚

𝐦𝐯
                              Equation 2.7 

 



51 

 

Whereas P = pressure, P0 = saturation pressure, Va = volume adsorbed, Vm = 

monolayer volume, C = multilayer adsorption parameter, Sa = surface area; σ = N2 area 

(0.162 nm2); Na = Avogadro number; m = sample mass; v = gas molar volume. 

Micro- and mesoporosity were assessed using the DFT method,32, 33 and the fitting 

model for N2 at 77 K on carbon for slit pores. The QSDFT equilibrium gave the best 

agreement with experimental data. These classical models are limited in the scope of their 

applicability: the Kelvin equation is valid for mesopores26 and the HK method34 is valid for 

micropores; furthermore, it has been demonstrated that these pore-filling models do not 

provide a realistic description of adsorption in micropores35, 36. The DFT pore-filling model, 

instead, describes adsorption over the entire range of pore sizes and treats experimental 

isotherms as the summation of sorbate uptake, at a given pressure, in pores of variable size H. 

Equation 2.8 is the resulting integral equation of the isothermal adsorption for distributed 

pore size. 

𝑄(𝑝) = ∫ 𝑑𝐻𝑞(𝑝, 𝐻)𝑓(𝐻)                          Equation 2.8 

Whereas Q(p) is the total amount of adsorbate per gram of adsorbent at pressure p in 

pores H, distributed over the entire micro – meso – macro range; q(p,H) is the Kernel 

function and describes the adsorption isotherm for an ideally homoporous material 

characterised by pore width H as quantity of adsorbate per m2 of pore surface and f(H) is the 

pore surface area distribution function as a function of H. An accurate description of the DFT 

function has been described by Dombrowski and co-authors32 and by Occelli and co-authors33 

and it is not the main aim of this thesis work; nevertheless it is worth mentioning that 

Equation 2.8 can be simplified as a summation of the numerical values of f(H) and re-written 

as Equation 2.9: 

∑ 𝑞(𝑝, 𝐻𝑖)𝑓(𝑖 𝐻𝑖)                          Equation 2.9 

Whereas Q(p) is an experimental adsorption isotherm interpolated onto a vector p of 

pressure points, q(p,Hi) is a matrix of values for quantity adsorbed per square meter, each row 

calculated for a value of H, at pressures p, and f(Hi) is the solution vector that represents the 

area of surface in the sample characterised by each pore width Hi. Using the set of hybrid 

models constructed described by Occelli and co-authors33, as the function q(p,Hi) and the 
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experimental adsorption isotherm for the function Q(p), Equation 2.9 can be solved for the 

distribution vector f(Hi) and gives distributions of pore area and pore volume as a function of 

pore width. 

2.2.4 SEM and TEM Electron microscopy 

2.2.4.1 Scanning electron microscopy 

Scanning electron microscopy (SEM) images were recorded on a Carl Zeiss Evo-40 

SEM, operating at a wavelength of 12.3 pm, 10 kV, at Cardiff University or on a Carl Zeiss 

EVO MA15 variable pressure W SEM with Oxford Instruments AZtecEnergy EDX system 

with 80mm X-Max SDD detector- secondary and backscattered imaging, EDX elemental 

mapping and line scans plus CZ STEM detector at University of Leeds. Samples were 

supported on aluminium stubs using adhesive carbon tape and gold sputter coated to reduce 

charging.  

An electron beam is emitted from an electron gun fitted with a tungsten filament 

cathode. Tungsten is normally used because it has the highest melting point and lowest 

vapour pressure of all metals and can be heated for electron emissions; the electron beam is 

then focused through a series of electromagnetic lenses onto the sample. These electrons hit 

the sample and lose energy through interactions occurring in multiple ways, generating high 

energy backscattering electrons, secondary electrons through inelastic scattering and X-ray 

radiation. In secondary electron imaging (SEI) mode, SEM images are formed by detection of 

these secondary electrons that result from the displacement of a K orbital (1s) electron.37   

The low energy, ~50 eV, of the secondary electrons means that their escape is 

impeded and therefore the technique is surface sensitive. Scanning coils within the 

microscope allow the electron beam to raster over a sample.  Image contrast is generated 

from the morphology of the sample: surfaces at right angles to the beam are brightest and as 

surfaces tilt towards being parallel to the beam increasingly darker areas are observed. This 

allows the production of a 3-D image of the sample surface. Figure 2.8 shows a schematic 

explanation about the working principles of a SEM microscope42. 

https://en.wikipedia.org/wiki/Electron_gun
https://en.wikipedia.org/wiki/Tungsten
https://en.wikipedia.org/wiki/Cathode
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Figure 2.8: a scheme showing the operating principle of an SEM microscope, from reference 

42. 

The Everhart-Thornley detector38 with its light-guide and highly efficient 

photomultiplier is the most frequently used detector in SEMs for secondary electrons and it 

consists of a scintillator inside a Faraday cage, inside the specimen chamber of the 

microscope. A low positive voltage is applied to the Faraday cage to attract the low-energy 

secondary electrons. The scintillator generates a high positive voltage (10,000 eV) to 

accelerate the incoming electrons to it, where they can be converted to light photons. Their 

direction is then focused to the light-guide by a metal coating on the scintillator acting as a 

mirror. In the light pipe the photons travel outside of the microscope’s vacuum chamber to a 

photomultiplier tube for amplification. 

BSE detectors39 are usually either of scintillator or of semiconductor types. High 

atomic number elements backscatter electrons more strongly than low atomic number ones, 

therefore appear brighter in the image and BSE are used to detect contrast between areas with 

different chemical compositions. When all parts of the detector are used to collect electrons 

symmetrically about the beam, atomic number contrast is produced. By collecting back-

scattered electrons from one side above the specimen using an asymmetrical, directional BSE 

detector, a strong contrast is produced and generates illumination of the interested region 

from that side. Semiconductor detectors can be made in radial segments that can be switched 

in or out to control the type of contrast produced and its directionality. Backscattered electron 

https://en.wikipedia.org/wiki/Scintillator
https://en.wikipedia.org/wiki/Faraday_cage
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Scintillator
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detectors are positioned above the sample in a toroid type arrangement, concentric with the 

electron beam, maximising the solid angle of collection. 

In the most of cases, a Field Emission Scanning Electron Microscope is used to image 

the surface structures or near-surface structures of a specimen, nevertheless a Scanning 

Transmission Electron Microscope detector (STEM) allows to detect also transmitted 

electrons. Specimens need to be ultra-thin to be penetrated easily by the electron beam. The 

1-channel a-STEM40 is optimised to the scattering behaviour of electrons in STEM mode and 

provides improved low kV response and higher sensitivity. Bright field (BF) and dark field 

(DF) signals can be clearly separated, allowing electrons scattered at higher angles to be 

detected by the annular dark field (ADF) or the high angle annular dark field (HAADF) 

segment. 

2.2.4.2 Transmission electron microscopy 

High resolution TEM/STEM (HAADF) images were recorded on a JEOL 2100F FEG 

STEM operating at 200 keV and equipped with a spherical aberration probe corrector (CEOS 

GmbH) and a Bruker XFlash 5030 EDX, with analysis carried out at the University of 

Birmingham. 

Samples were prepared by dispersion in methanol and drop casted onto a copper grid 

coated with a holey carbon support film (Agar Scientific Ltd). Images were analysed using 

the software ImageJ 1.41, above 100 nanoparticles per sample were measured in different 

sites of interest to get an average particle size distribution. 

For TEM analysis, the electron beam that is transmitted through the sample, with and 

without interaction generates 2-D representative images of the sample37. STEM can be 

considered as a combination of both SEM and TEM, allowing a converged electron beam to 

raster across the sample, generating HAADF images, commonly referred to as Z contrast.  

Bright or dark field images are produced from high angle scattering of the beam by 

the atoms nucleus: the higher the atomic mass of the element, the stronger it diffracts and 

thus appears brighter41. High resolution of heavier elements or clusters on lower molecular 

weight substrates is possible; nevertheless, if the specimen thickness is excessive, high angle 

scattering from low atomic mass species increases because of multiple scattering processes41. 

Figure 2.9 shows a schematic picture of TEM microscope42. 
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Figure 2.9: a scheme showing the operating principle of a TEM microscope, from reference 

42. 

2.2.4.3 Energy dispersive X-ray analysis 

Samples were analysed using Oxford INCA energy EDX analysis software linked to 

the SEM with a 30 mm two light element capable atmospheric twin window (ATW) detector. 

EDX measures the X-ray radiation produced as the electron beam is fired at the sample. The 

electron beam excites ground state electrons in atoms of the sample, which are then ejected 

from the atom. As an electron from a higher energy shell moves to fill the hole left by the 

ejected electron, the difference in energy between the higher energy shell and lower energy 

shell is released as an X-ray. Measurement of these X-rays provides information about the 

atomic structure of the sample, as the energy of the X-rays are characteristic of the element 

from which they were emitted.39 

The X-ray penetration depth is about 10 μm.43 Therefore, EDX is a bulk technique 

when compared to the 1-3 nm penetration depth through XPS analysis. The atomic ratios 

calculated via EDX analysis in this study are considered bulk ratios, with those calculated 

from XPS surface ratios. 
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2.2.5 Thermal gravimetric analysis 

Thermal gravimetric analysis (TGA) was performed on a Stanton Redcroft STA-780 

thermal analyser fitted with a temperature programmer, DC amplifier and balance control 

(Figure 2.10). Samples (10-12 mg) were placed into an alumina crucible on a two plate 

balance, together with a reference alumina crucible containing around 15 mg of pre-treated 

and inert γ-alumina. Samples were heated to 700 ºC at a calcination ramp of 10 ºC min-1 

under O2 gas flow, set up to be 20 mL min-1 and controlled via mass flow controller. The 

mass of the analysed sample was monitored with increasing temperature and differential 

thermal analysis (dTGA) was followed via computer, using PicoLog recording software.  

TGA allows monitoring changes in mass of a sample when heated under gases. This 

analysis was used to follow and identify the loss of water in the hydrotalcite interlayers, the 

loss of hydroxyl groups and of carbonates, decomposed via gas production. Differences 

between the temperature of the sample and that of the inert reference material are measured 

during heating process.  

 

Figure 2.10: a photo showing Stanton Redcroft STA-780 thermal analyser. 
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2.2.6 Diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) 

Ex and in situ DRIFTS analysis were performed on a Thermo Scientific Nicolet IS50 

FT-IR with Smart Collector accessory, ever-glo mid/near infrared source and mercury 

cadmium telluride (MCT-A) photon detector at -196 °C, cooled by liquid N2 (Figure 2.11). 

Ex situ analysis were carried out at room temperature, then a temperature programmable, 

gold-coated in-situ cell, interfaced to electronic mass flow controllers via a gas manifold 

permitted the following treatment. A calcination ramp (5 °C/min) under flowing O2 (20 ml 

min−1) was set up from room temperature up to 500 °C, spectra were acquired from 4000 to 

400 cm-1
 wavenumbers with a resolution of 4. Thus, changes in the HT morphology were 

followed as a function of calcination temperature. 

 

Figure 2.11: top – Thermo Scientific Nicolet IS50 FT-IR instrument, bottom – in situ cell. 
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Diffuse reflectance orientation focuses infrared radiation onto the sample (Figure 

2.12)44, 45; photons are partially reflected by it and the remaining photons are transmitted 

through it, in different directions. Reflected signal originates both from the surface and bulk, 

the latter by reflection of photons that transmits through the surface. Random orientation in 

powder sample generates multiple scattering angles, so a parabolic mirror is required to focus 

the reflected beam maximising detection19.  

A molecule can vibrate in many ways and each way is called “vibrational mode”. A 

vibrational mode in a molecule is “IR active” when it is associated with changes in the 

dipole. A permanent dipole is not necessary, as only a change in dipole moment is required19, 

25. Molecular vibrations, either stretching or bending, are excited by the adsorption of photons 

of an appropriate energy, causing the dipole moment of the molecule to pulse.  
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Figure 2.12: top – scheme showing FTIR spectrophotometer, from reference 44 and bottom 

– different FTIR detection types, from reference 45.   
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2.2.7 CO2 titration and TPD (Temperature programmed desorption) 

CO2 pulse chemisorption, followed by temperature programmed desorption (TPD) of 

the CO2 saturated samples were carried out on a Quantachrome ChemBet3000 system, using 

a thermal conductivity detector. The catalyst sample being tested (~ 25 mg) was placed into a 

quartz U-shaped chemisorption cell, plugged with quartz wool and connected to the 

ChemBet. A furnace was set-up with a thermocouple inside the quartz cell, in parallel with 

the sample. Figure 2.13 illustrates the ChemBet system set-up.  

 

Figure 2.13: a) the ChemBet 3000 instrument and b) a schematic representation of the 

chemisorption cell set-up. 

The sample was outgassed at 120 ºC for 2 h under He (20 mL min-1), then it was 

cooled to 40 ºC; analyses were carried out at this temperature to avoid fluctuations in room 

temperature affecting the results. CO2 gas was pulsed through the cell and over the sample in 

50 μL doses; a part of this gas was adsorbed on the sample, a part was released and recorded 

on a computer when reaching the detector. The analysis was considered finished once 3 peaks 

of the same height and counts had been recorded by the detector, meaning that the sample 

was saturated, and all of the CO2 was travelling through the system instead of being adsorbed 

on the sample. The sample was then heated up to 550 ºC at 10 ºC min-1 under a flow of He to 

desorb the CO2. 

Calibration was done injecting three pulses of CO2 in an empty tube, knowing the 

volume of CO2 injected; the peak area corresponded to a known amount of CO2 and therefore 

by measuring the TCD/ID peak areas of unknown samples, the amount of CO2 desorbing can 
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be determined. Therefore, as CO2 is already present in bulk hydrotalcites, titrations are less 

accurate than TPD analysis and some sites are blocked; CO2 contribute determined by TGA 

analysis was subtracted from TPD results to get a more accurate base site distribution.  

CO2 is an acidic probe molecule and it is assumed that each molecule of CO2 adsorbs 

onto one base site on the hydrotalcite, forming a bicarbonate species with the hydroxide 

anions or surface hydroxyl groups1, 2, 46, 47. The number of CO2 molecules desorbed from the 

surface during a TPD experiment gives therefore the number of base sites per mass of sample 

analysed. The CO2 can adsorb as an acidic probe molecule to base sites of hydrotalcites in 

several ways, as monodentate, bidentate or bicarbonate anions, detected through IR studies46. 

Figure 2.14 illustrates these different CO2 species.  

 

Figure 2.14: Adsorbed CO2 species on a basic solid, and the associated IR signals, taken 

from Debecker and co-workers48. 

The monodentate carbonate anion adsorbs to low coordinate oxygen atoms and 

therefore accounts for strong basic sites47, 49, 50, while the bidentate anion forms at 

intermediate strength acid-base pairs50, such as Mg2+-O2-. Bicarbonate anions form at weakly 

basic surface hydroxyl groups in Mg rich hydrotalcites51. 

2.2.8 X-ray photoelectron spectroscopy 

XPS quali- and quantitative analysis was performed on a Kratos Axis HSi X-ray 

photoelectron spectrometer fitted with a charge neutraliser and magnetic focusing lens 
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employing Mg Kα monochromated radiation (1253.6 eV) (Figure 2.15). Spectral fitting was 

performed using CasaXPS version 2.3.15. Binding energies were corrected to adventitious C 

1s at 284.6 eV, Au 4f peaks were fitted using a common peak shape determined from a Au 

standard and the Mg 2s contribution, which falls in the same region, was subtracted. Errors 

were estimated by varying a Shirley background across reasonable limits. 

 

 

Figure 2.15: a photo of the Kratos Axis HSi X-ray photoelectron spectrometer. 

In XPS instruments, X-rays are generated by bombarding a metallic anode with high-

energy electrons. The energy of the emitted X-rays depends on the anode material and beam 

intensity depends on the electron current striking the anode and its energy. 

XPS gives information on elemental composition, oxidation state, and local elemental 

environment of the sample.  XPS is a surface-sensitive analysis, due to the short distance (1-3 

nm) that a photoelectron can escape from (1-3 nm). The low escape depth is due to 

interactions between the ejected photoelectron and electrons of other atoms imparting short 

electron mean free path values over the  electron energy range of 0-1000 eV.52   

 X-rays routinely employed are Mg Kα (1253.6 eV) and Al Kα (1486.6 eV) which 

due to their low energy, relative to XAS, are classed as soft X-rays.53 The incident X-ray 

source excites a core electron, which is emitted as a photoelectron, when adequate energy is 
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supplied17, 53. A schematic representation of this photoelectron emission can be seen in 

Figure 2.1619, 52.   

 

Figure 2.16: Schematic explanation of photo-ionisation, illustrating how a photo-electron is 

generated and ejected. (EKin = photo-electron kinetic energy; hν = photon energy (Planck’s 

constant multiplied by frequency); Eb = electron binding energy; φ = work function; Ef = 

Fermi level; Ev = vacuum level) 

The ejected photoelectron has a discrete kinetic energy, characteristic of the element 

and its chemical environment. Quantification of kinetic energy, and the intensity of 

photoelectrons at this energy, generates an XPS spectrum. Spectra are plotted as a function of 

the binding energy, which obeys the following mathematic relationship (Equation 2.10).   

𝐄𝐤𝐢𝐧 = 𝐡𝐯 − 𝐄𝐛 − 𝛗sp Equation 2.10 

 

Whereas Ekin = Photoelectron kinetic energy; hν = photon energy; Eb = electron 

binding energy; φsp = spectrometer work function.  

Work function relates to the energy required to eject an electron at the Fermi level 

into the vacuum, i.e. the ionisation potential19. For conducting samples, an electrical 

connection between the sample and spectrometer aligns their Fermi levels. For insulating 

samples, e.g. silica, charge referencing is required19. This is achieved by systematically 

shifting binding energies by a common value, usually adventitious carbon at 284.6 eV, so that 

a known peak is aligned at its correct value. This justifies uniform shifts in binding energies 
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to higher values due to an increasing positive charge at the analyte surface; charge 

neutralisers can help to compensate this problem.   

To detect electrons, a hemispherical analyser with a magnetic field is used. Electrons 

emitted from the sample travel across a column, in which focusing lens help keeping a 

straight pathway, then across a magnetic field in the hemispheric analyser and are detected by 

one of the five channeltrons analysers, according to their kinetic energy. 

Oxidation state and the local elemental environment influence creates shifts in 

photoelectron binding energy of an element19, 52. As the oxidation state of an atom increases, 

the binding energy increases, due to the greater attractive force of the nucleus felt by fewer 

electrons. The binding energy of an electron is related to the electronegativity of adjacent 

atoms. Electrons ejected from orbitals having an angular momentum (𝑙 > 0, i.e. p, d and f 

orbitals) are affected by spin coupling between orbital angular momentum (𝑙) and electron 

spin magnetic fields (ms) and their sum is equal to total angular momentum (𝑗). This 

interaction might give a valid contribute or not, because 𝑚𝑠 can be anti-clockwise (+½) or 

clockwise (-½) and thus two values for 𝑗 exist. This spin coupling results in peak doublets 

(spin-orbital splitting)19, with predetermined ratios equal to 2𝑗 + 1; for 2p orbitals 𝑙 = 1 and 

thus 𝑗 = 3/2 and 1/2. The area ratio of the two spin orbit peaks will be 2:1, corresponding to 4 

electrons in the 2p3/2 orbital and 2 electrons in the 2p1/2 orbital.  

The number of components fitted to an XP spectrum must be justified with the 

number of environments that the element is found within the sample. In this thesis work, for 

example, magnesium was found as mixed MgAl oxides or MgAl hydrotalcite, so the Mg 2p 

peak was fitted with 2 different components with differing binding energies, peak areas and 

FWHMs.  

2.2.9 XAS – XANES and EXAFS 

XAS (X-ray adsorption spectroscopy) – X-ray adsorption near edge structure 

(XANES) and extended X-ray adsorption fine structure (EXAFS) measurements were made 

on beamline B18 of the Diamond Light Source in fluorescence mode, using a Si(111) double 

crystal monochromator and 9-element Ge solid state detector; Au LIII edge (11919 eV) 

spectra were acquired. In situ thermal decomposition of the catalyst precursor was followed 

in a bespoke “Sankar” pellet furnace under flowing oxygen (10 ml.min-1 O2) between 25-



65 

 

500 °C. Operando measurements were made in a bespoke PTFE cell with Kapton windows 

on a catalyst reaction mixture (250 mg 2 wt. % Au/HT, 1 mmol HMF, 60 ml H2O) 

recirculated from an external oxygenated round bottom flask (10 ml.min-1 O2) between room 

temperature and 90 °C; spectra were processed using Athena and Artemis software within the 

IFEFFIT software suite. Figure 2.17 shows an example of in situ experimental setup54, while 

Figure 2.18 shows a schematic of the B18 beam line. 

 

Figure 2.17: operando Au LIII-edge XAS of a 2 wt. % Au/HT catalyst during aqueous phase 

selective aerobic oxidation of HMF; catalytically active, metallic gold nanoparticles are 

unaffected by hot water or NaOH addition. Image published in reference 53. 
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Figure 2.18: The design of B18 beamline at “Diamond”, based on three main optical 

elements: a collimating mirror, a water-cooled double crystal monochromator and a focusing 

mirror. 

The first element is a water-cooled, vertically collimating Si mirror, which is placed at 

20 m from the source. It is coated with Cr and Pt stripes and is able to cover the whole energy 

range from 2 to 35 keV. The fixed exit double crystal monochromator is water cooled and 

allows run fast scanning. It has two sets of crystals, Si(111) and Si(311), that can be 

translated horizontally under vacuum to allow a rapid configuration change. 

A double toroidal mirror, coated with Cr and Pt, is placed at 25 m from the source to 

focus the two beam branches horizontally and vertically onto the sample. The position of this 

mirror is also fixed in the vertical and horizontal directions while a pair of smaller plane 

mirrors for harmonics rejection is placed in the Experimental Hutch. They are inserted in the 

beam path for low energy (<11 keV) operations.  

The in-air section of the table can be used for experiments between 4 and 35 keV and 

it is equipped with ionization chambers for transmission mode measurement and intensity 

monitoring and a high rate fluorescence 9 element Ge solid state detector system with  

Portable Vortex detector. 
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Ex situ spectra of the powder catalyst samples mounted in a stainless steel washer 

were acquired, XANES and EXAFS spectra were normalised, background subtracted, and 

fitted, using the Athena and Artemis components of the IFEFFIT software suite respectively, 

recording Au foil, Au(OH)3, Au2O3, HAuCl4, PdO and Pd foil as standards.  

XAS involves the generation of photoelectrons, but instead of evaluating these 

directly the technique assess their influence on the adsorption of subsequent X-ray photons19. 

The technique is an X-ray photon in X-ray photon out measurement, which eliminates the 

need for ultra-high vacuum systems, allowing characterisation of materials under atmospheric 

conditions and the option of in situ/operando investigations55. When the adsorption of an X-

ray photon bears sufficient energy, greater than the binding energy of the electron, it ejects an 

electron as a photoelectron56. Electrons from a shell close to the nucleus are generally 

targeted, which results in increasingly energetically demanding transformations. 

 In the case of Au, the LIII edge (2p electrons) is commonly studied, with adsorption 

occurring at 11919 eV for Au. Ejection of a photoelectron results in excitation of the probed 

atom by the unfilled electron orbital, which affects subsequent X-ray photon adsorption. This 

excited state can be stabilised by fluorescence, by ‘electron hole’ shifting or by adsorption of 

scattered photoelectrons, including backscattering of the original. The scattering of 

photoelectrons by their neighbouring atoms induces a multitude of effects19, both constructive 

and deconstructive in regards to photon absorption.  

The resulting spectra show bulk information regarding both electronic and local 

geometry. Typically photon energies are varied from ~300 eV below to ~1000 eV above the 

adsorption edge, this being the minimum energy at which X-ray photon absorption occurs 

and generate photoelectrons19.  

The first 100 eV or so after the adsorption edge is named the XANES region and 

gives information about oxidation state,  due to both photoelectrons and valence electron 

interactions; a result of the relatively low photoelectron kinetic energy which occur because 

of the close proximity between incident X-rays and electron binding energy. 

The EXAFS region extends up to ~1000 eV or as far as oscillations are detectable; 

these photoelectrons possess higher kinetic energy, because of the increasing incident X-ray 

energy, which allow them to propagate further. These scattering of the photoelectrons by 

surrounding atoms result and allow local geometry to be understood. For the EXAFS, the 
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interesting signals are the oscillations well above the absorption edge, and define the EXAFS 

fine-structure function (E) as in the Equation 2.11: 

(E)  = 
μ(E)− μ0 (E) 

∆ μ0 (E)
            Equation 2.11 

where μ(E) is the measured absorption coefficient, μ0(E) is a smooth background function 

representing the absorption of an isolated atom, and ∆μ0 is the measured jump in the 

absorption μ(E) at the threshold energy E0. EXAFS is best understood in terms of the wave 

behaviour of the photo-electron created in the absorption process. It is therefore common to 

convert the x-ray energy to k, the wave number of the photo-electron, which has dimensions 

of 1/distance and is defined as in the Equation 2.12: 

k =√
2𝑚(𝐸−𝐸0)

h2               Equation 2.12 

where E0 is the absorption edge energy, m is the electron mass and h is the reduced Planck 

constant or Dirac constant. The primary quantity for EXAFS is then χ(k), the oscillations as a 

function of photo-electron wave number, and χ (k) is often referred to as “the EXAFS”, it is 

oscillatory and decays quickly with k. To emphasize the oscillations, χ(k) is often multiplied 

by a power of k, typically k2 or k3. 

The different frequencies apparent in the oscillations in χ(k) correspond to different 

near neighbour coordination shells, which can be described and modelled according to the 

EXAFS equation (Equation 2.13). 

χ(k) = ∑
𝑁𝑗 𝑓𝑗 (𝑘)𝑒

−2𝑘2𝜎𝑗
2

𝑘 𝑅𝑗
2𝑗  sin[2𝑘𝑅𝑗 + 𝛿𝑗(𝑘)]      Equation 2.13 

 

where f(k) and δ(k) are scattering properties of the atoms neighbouring the excited atom, N is 

the number of neighbouring atoms, R is the average scattering distance to the neighbouring 

atom, and σ2 is the Debye-Waller disorder factors, the mean square fluctuation in the 

neighbour distance. D-W factor accounts for thermal and structural disorder and generally 
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governs the ”melting” of the XAFS oscillations with respect to increasing temperature and 

their decay with respect to increasing photoelectron energy.  

The EXAFS equation allows determination of N, R and σ2 knowing the scattering 

amplitude f(k) and phase-shift δ(k). Furthermore, since these scattering factors depend on the 

Z of the neighbouring atom, EXAFS is also sensitive to the atomic species of the 

neighbouring atoms. An example of typical XAS spectrum for FeO, taken from Ravell and 

Newville57, 58 is shown in Figure 2.19, while Figure 2.20 shows the mathematic functions 

applied: 

 

 

 

Figure 2.19: from reference 52 and 53, top – XAFS μ(E) for FeO; measured XAFS spectrum 

is shown with the XANES and EXAFS regions identified, μ(E) is shown with smooth 

background function, μ0(E), and the edge-step, μ0(E0). Bottom – the EXAFS weighted by k2 

amplifies the oscillations at high k. The window Function shows that it will be multiplied by 

k2(k) before doing a Fourier transform.  

XANES EXAFS 
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Figure 2.20: from reference 52 and 53, the Fourier Transformed XAFS, (R). Top – the 

magnitude |(R)|, but as the Fourier transformed XAFS is a complex function, with both real 

and imaginary parts, the bottom figure shows the Real part of  (R) together with |(R)|. 

2.2.10 Nuclear Magnetic Resonance 

Nuclear Magnetic resonance experiments were performed on a  Bruker AVANCE 300 

spectrometer, equipped with a 5 mm broadband dual probe. Nuclear Magnetic Resonance is a 

physical phenomenon in which nuclei in a magnetic field absorb and re-emit electromagnetic 

radiation, in the range of radio frequencies. This frequency depends on the strength of the 

magnetic field and the magnetic properties of the isotope of the studied atoms, 1H and 13C 

being the most common nuclei.  
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Many atomic nuclei have a property called spin and they behave as if they were 

spinning; any atomic nucleus that has either odd mass, odd atomic number or both has a 

quantised spin angular momentum and a magnetic moment59. For each nucleus with spin, the 

number of allowed spin states is quantised and determined by its nuclear spin quantum 

number I. For each nucleus, this number I is a physical constant and there are 2I + 1 allowed 

spin states ranging from + I to – I and fit into the sequence shown in Equation 2.11 

+ I, (I – 1), … (– I + 1), – I              Equation 2.11 

Spin states are not of equivalent energy when they are in an applied magnetic field, 

because the nucleus is a charged particle59, and any moving charge generates a magnetic field 

of its own. A nucleus has therefore a magnetic moment  generated by its charge and spin; 

the spin might be clockwise (+ ½) or anticlockwise (– ½) both pointing in opposite 

directions. In the case of 1H nuclei, they can be in one or the other orientations, with respect 

to the applied magnetic field, being the spin (+ ½) at lower energy, as it is aligned with the 

applied field, and (– ½) at higher energy, since it opposes to the applied field59, 60. 

NMR phenomenon occurs59, 60 when nuclei aligned in an applied field absorb energy 

and change their spin orientation with respect to the applied field. This energy absorption is 

quantised and it must be equal to the energy difference between the two states involved, 

according to Equation 2.12 and it is a function of the strength of the applied magnetic field 

B0: the stronger the field is, the higher the energy difference between the two states is. 

Eabs = (E – ½ state – E + ½ state) = hEquation 2.12 

Each nucleus has a different ratio of magnetic moment to angular moment because of 

each has a different mass and charge; this is called magnetogyric ratio  and allows 

calculation of the energy dependence on the magnetic field, considering that the 

magnetogyric ratio is quantised in units of h/2 (Equation 2.13) 

E = 
ℎ

2𝜋
B0 = hEquation 2.13 

Solving Equation 2.13 allows us to find the Larmor frequency of the absorbed energy 

(Equation 2.14): 
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
𝛾

2𝜋
B0           Equation 2.14 

When the magnetic field increases, the Larmor frequency increases and so the higher 

the difference between the two spin levels is. The nuclear magnetic momentum, instead, is 

given by the Equation 2.15: 

𝜇 =  𝛾 𝐼
ℎ

2 𝜋
                  Equation 2.15 

 where is the magnetogyric momentum, I is the nuclear spin quantic number, h is the 

Planck constant.  

Not all the protons in a molecule show resonance at the same frequency, as they are 

surrounded by electrons, in different electronic (magnetic) environments, therefore there is a 

variation in the valence-shell electron density from a proton to another and protons are 

shielded by the surrounding electrons59. When a magnetic field is applied, the valence 

electrons of the protons are forced to circulate and this phenomenon is called local 

diamagnetic current; this current opposes the applied magnetic field and this effect is called 

diamagnetic shielding or diamagnetic anisotropy. Each proton in a magnetic field is therefore 

shielded from the applied magnetic field to an extent related to and directly proportional to 

the electron density surrounding it59, 60.  

Each proton is in a different chemical environment and has a different amount of 

electronic shielding, which results in a different resonance frequency; differences in 

frequency are very low, in the range of ppm, hence it is very difficult to measure precisely 

exact frequencies. An internal standard, tetramethylsilane (CH3)4Si, abbreviated as TMS, is 

used as reference, as its protons are most shielded than those of most other compounds, and 

its signal is the “zero”. When another compound is measured, the resonance of its protons are 

reported as how far, in Hertz, they are shifted from those of TMS.59, 60 

As this shift depends on the strength of the applied magnetic field, and as different 

instruments are available nowadays (300, 400, 500 and 600 MHz are the most common), a 

standardisation in measurements is required to have similar data for comparisons, by dividing 

the shift in Hz of a given proton by the frequency in MHz of the instrument and obtaining a 

field-independent measure, called chemical shift () and expressed in ppm. (Equation 2.16) 
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
shift in Hz

spectrometer frequency in MHz
Equation 2.16 

Modern instruments work as pulsed Fourier – Transform NMR: a pulse of energy 

excites all magnetic nuclei in the molecule; when this pulse is discontinued, the excited 

nuclei lose energy and return to their original spin state, or relax. Since the molecules contain 

many different nuclei, their emissions generate a time-domain free induction decay (FID) 

signal. The Fourier transformation converts signals from time-domain to frequency-domain 

and separate each of the individual components, easily understandable. Chemical shifts, 

obtained as explained above because of different chemical environments, give information 

about different types of protons, carbons or other analysed nuclei; in this thesis work, main 

attention was put on protons. The integration of the area under each spectrum peak gives 

information about how many protons fall in that ppm range and allow quantification59, 60.    

It is not aim of this thesis to explain all the phenomena influencing chemical shifts, as 

tables and textbooks are available59, 60, but it is worth focusing attention on the spin-spin 

splitting. In organic molecules, each type of protons rarely gives a single resonance peak; an 

example can be made when considering the spectrum for 1,1,2-trichloroethane (Scheme 2.1). 

 

Scheme 2.1: 1H NMR spectrum of 1,1,2-trichloroethane. 

On the basis of the information explained before, a prediction would be two resonance 

peaks with a ratio of 2:1. Nevertheless, the signal at 3.96 ppm, corresponding to the two Ha 

protons, is split into two sub-peaks of equal height and area; this is referred to as a doublet. 
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The Hb signal at 5.76 ppm, instead, is split into three sub-peaks, being the middle peak higher 

than the two other outside, the integration of each sub-peak giving the middle peak twice that 

of each of the outside peaks; this is called a triplet59.  

The reason of this spin-spin splitting phenomenon can be explained by the so-called 

(n + 1) rule: each proton is influenced by the number of equivalent protons (n) on the carbon 

atoms next to the one to which is bonded, and its resonance peak is split into (n+1) 

components. Considering the Ha signal in Scheme 2.1, a simple explanation can be done: 

each of these protons is shielded by nearby valence electrons and is also influenced by the 

small magnetic field generate by its neighbour Hb. In some molecules, the magnetic moment 

of Hb is aligned with B0 and in some others it is aligned in the opposite direction, therefore 

the chemical shift of protons Ha is influenced by the direction of the spin in proton Hb or, in 

other words, it is said Ha protons are coupled to Hb, resulting in a doublet for Ha and in a 

triplet for Hb. Scheme 2.2 shows how protons can be shielded or de-shielded and helps 

understand the explanation59.    
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Scheme 2.2: an example of doublet and triplet for the 1,1,2-trichloroethane, showing 

shielding and de-shielding effects. 

2.2.11 HPLC and HPLC analysis protocol 

Quali- and quantitative analysis were carried out in duplicate, with values averaged, 

on an HPLC Agilent Technologies 1200 Series Infinity, equipped with UV-visible light and 

refractive index detectors (Figure 2.21). The column was a Zorbax Hilic plus 4.6x100 mm, 

3.5m  (p/n: 959961-901). To protect the column, a guard cartridge in a guard column Rx-

SIL Guard 4.6x12.5 (p/n 820950-919) was used. 
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Figure 2.21: a photo showing an HPLC Agilent Technologies 1200 Series Infinity, equipped 

with UV-visible light and refractive index detectors 

 A gradient was necessary to get the best peak resolution, the mobile phase was 

prepared choosing HPLC grade acetonitrile (Fisher Scientific, ≥ 99.99 %) as the eluent A and 

the eluent B was prepared by dissolving in HPLC grade water a buffer of 50 mM 

CH3COONH4 (Sigma-Aldrich, ≥ 98.0 % ) and the pH was adjusted to 5.2, adding the needed 

amount of glacial CH3COOH (Sigma-Aldrich, ≥ 99.7 %) and the column was working at a 

temperature of 20 °C. 

Table 1 shows the gradient variation as the time analysis increases: from 0 to 5 

minutes, the percentage of A decreases and B increases until the desired set-point, then the 

new concentrations are kept constant for a minute, to ripristinate gradually the initial values; 

the analysis is complete in 10 minutes. 
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Table 1: gradient of eluents for HPLC analysis 

Time % A CH3CN % B aqueous pH = 5.2 

0 95 5 

5 60 40 

6 60 40 

6.5 95 5 

 

HILIC (hydrophylic interaction chromatography) uses polar columns, made of non-

bonded silica, optimised for hydrophilic interaction systems. It works in an organic/aqueous 

mobile phase, using a water layer on the silica sorbent, then acetonitrile is the weak solvent 

with increasing aqueous composition being used to elute more polar analytes.  

Calibration curves were prepared using the method of external standards at the 

following concentrations: 1 mM, 2 mM, 5 mM and 7 mM in the aqueous mobile phase B. For 

the selective oxidation of HMF, four standards were used, respectively HMF (Sigma-Aldrich 

≥ 99.0 %) (retention time = 1.2 min, UV wavelength = 282 nm), HMFCA (Sigma-Aldrich,   

(r.t. = 3.0 min, UV wavelength = 260 nm), FFCA (Tokyo Chemical Industry, ≥ 98.0 %) (r.t. 

= 4.2 min, UV wavelength = 282 nm) and FDCA (Alfa Aesar, ≥ 98.0 %) (r.t. = 5.2 min, UV 

wavelength = 260 nm). The flow rate was 1.2 ml/min, the injected volume 1L and the 

temperature 20 °C. 

2.3 Selox reactions 

2.3.1 HMF, HMFCA and FFCA selective oxidations 

2.3.1.1 HMF, HMFCA and FFCA reaction profiles and kinetic study tuning the [NaOH] 

All the reactions were performed using a Radleys reactor (Figure 2.22), into 3-neck 

round bottom flasks equipped with condensers, using 25 mg of catalyst, either 0.1 mmol of 

HMF (Sigma-Aldrich ≥ 99.0 %) (12.61 mg) or of HMFCA (Sigma Aldrich, ≥ 99.0 %) (14.23 

mg) or of FFCA (Tokyo Chemical Industry, ≥ 98.0 %) (14.16 mg), T = 90 °C, V = 6 ml H2O 

and  O2 = 15 ml/min, under stirring at 500 rpm, sufficient to eliminate external reagent 

diffusion limitations. In order to slow down the reaction, kinetic studies for HMF and FFCA 

were performed using 0.2 instead of 0.1 mmol. The catalyst used for this study was the 2 wt. 
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% Au/HT and it was tested either alone or after the addition of a pre-determined amount of 

NaOH (Fisher Scientific, 98.3 %) to the reaction mixture for Na:Mg molar ratios of 0.1, 1, 5, 

10, 20 and 50, respectively 2.85 × 10-2, 2.85 × 10-1, 1.43, 2.85, 5.7 and 14.3 mmol. Reactions 

were sampled (0.3 mL) at adequate intervals and diluted (1 mL) with aqueous mobile phase B 

at pH = 5.2 described in Chapter 2.2.11, for the acquisition of activity and selectivity 

profiles.  

 

Figure 2.22: Radleys reactor, fitted with 3-neck round bottom flasks equipped with 

condensers and oxygen line for selox reactions. 

2.3.1.2 HMF, HMFCA, FFCA selox, standard protocol for Au reaction profiles 

All the reactions were performed using a Radleys reactor, into 3-neck round bottom 

flasks equipped with condensers, using 25 mg of catalyst, either 0.1 mmol of HMF (12.61 

mg) or of HMFCA (14.23 mg) or of FFCA (14.16 mg), T = 90 °C, V = 6 ml H2O and  O2 = 

15 ml/min, under stirring at 500 rpm, sufficient to eliminate external reagent diffusion 

limitations. Catalysts used for this study were varied in the range of 0.5-10 wt. % Au/HT, 

tested either alone or after the addition of [NaOH] 1M to have pH = 14. Reactions were 

sampled (0.3 mL) at adequate intervals and diluted (1 mL) with aqueous mobile phase B at 

pH = 5.2 described in Chapter 2.2.11, for the acquisition of activity and selectivity profiles.  
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2.3.1.3 HMF, HMFCA, FFCA selox, standard protocol for Au kinetic studies 

All the reactions were performed using a Radleys reactor, following the standard 

protocol described in Chapter 2.3.1.2 with a minor modification: in order to allow 

monitoring the reaction and take more data points in the first minutes, kinetic studies for 

HMF and FFCA were performed using 0.2 instead of 0.1 mmol. Catalysts used for this study 

were varied in the range of 0.5-10 wt. % Au/HT, tested either alone or after the addition of 

[NaOH] 1M to have pH = 14. Reactions were sampled (0.3 mL) at adequate intervals and 

diluted (1 mL) with aqueous mobile phase B at pH = 5.2 described in Chapter 2.2.11, for the 

acquisition of activity and selectivity profiles.  

2.3.1.4 Mass transfer limitations 

The role of stirring rate was studied for the 2 wt. % Au/HT; standard reaction protocol 

described in Chapter 2.3.1.2 was followed, with stirring rates varied (100-700 rpm). As no 

significant dependence of the reaction profile upon stirrer speed was revealed, no evidence 

for external diffusion limitations was found in these experiments and 500 rpm was chosen as 

the optimal speed. This conclusion was supported by tests using three different charges of the 

2 wt. % Au/HT catalyst for 5-HMF selox of 10, 50 and 100 mg. A linear increase in the 

conversion and a slope of 1 on the associated bi-logarithm plot of Ln[cat] vs. Ln r, confirmed 

that reaction was not under external diffusion control, as it will be shown in details in 

Chapter 3.2.4.1. 

2.3.1.5 HMF and HMFCA selox, standard protocol for AuPd reaction profiles or kinetic 

studies 

All the reactions were performed using a Radleys reactor, following either the 

protocol described for standard reactions in Chapter 2.3.1.2 or the one for kinetic reactions 

in Chapter 2.3.1.3. Catalysts used for this study were prepared varying the AuPd ratio, 

respectively Au90Pd10, Au80Pd20, Au70Pd30 and Au60Pd40, having a total amount of 1 wt. % 

metal; 2g mg of catalyst were tested either alone or after the addition of [NaOH] 1M to have 

pH = 14. Reactions were sampled (0.3 mL) at adequate intervals and diluted (1 mL) with 

aqueous mobile phase B at pH = 5.2 described in Chapter 2.2.11, for the acquisition of 

activity and selectivity profiles.  
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2.3.2 Heterogeneity of the active site – the Sheldon test 

The Sheldon test61 consists in a hot filtration of the heterogeneous catalyst to 

determine if, after its removal, any homogeneous contribution affects the reaction and 

confirm the heterogeneity of the active species. The standard reaction protocol described in 

Chapter 2.3.1.2 was followed for the 2 wt. % Au catalyst, samples were taken and analysed 

with HPLC as described in Chapter 2.2.11. After 1 h, the hot mixture was filtered off and the 

catalyst was removed. The reaction was left on-going for other two h, but no reaction 

occurred in the absence of catalyst, suggesting that Au nanoparticles do not leach from the 

support to the homogeneous phase. When the catalyst was added back to the reaction, the 

conversion restarted. 

2.3.3 Role of oxygen on HMF selox 

HMF selox was scaled-up by a factor of 10, reaction conditions were therefore chosen 

as follow: 1 mmol of HMF, 60 ml of H2O, 250 mg of catalyst, T = 90 °C and 500 rpm. A 

“Parr 5500 series, 316 stainless steel autoclave” (100 mL volume), fitted with a magnetically 

driven impellor (≤ 1500 rpm agitation) and dip-tube sampling system for kinetic analysis was 

used to find the order of reaction in O2 (Figure 2.23 and  Figure 2.24); the reaction was 

tested at 1, 5 and 10 atm of oxygen.  

 

Figure 2.23: a photo of the Parr 5500 series, 316 stainless steel autoclave used for high 

pressure reactions. 
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Figure 2.24: top – scheme showing the head fittings for the autoclave; bottom – scheme 

showing the autoclave parts and the internal part, in which also the stirrer is visible. 
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2.3.4 Order of reaction in HMF for HMF selox and Arrhenius parameters 

The standard reaction protocol described in Chapter 2.3.1.2 was followed for the 2 

wt. % Au catalyst, with some minor modifications: in order to find the order of reaction for 

HMF: different quantities of HMF, respectively 0.1, 0.2 and 0.5 mmol, were tested. 

The same standard reaction protocol was tested for HMF and HMFCA selox at four 

different temperatures, respectively 25, 40, 60 and 90 °C. Kinetic constants were determined 

and a plot of the logarithm of kinetic constants for HMF or for HMFCA vs. 1/T allowed 

estimation of the Arrhenius activation energy Ea. 

2.3.5 Recycle testing 

Catalyst reusability was assessed for 3 consecutive reactions. The catalyst was 

reactivated by calcination at 200 °C for 4 h in oxygen (10 mL/min, ramp rate 10 °C min-1) 

and reaction conditions were scaled up as follow, to get enough catalyst for each step: 1st test) 

0.6 mmol of HMF, 36 ml of H2O, 151 mg of 2 wt. % Au/HT. 2nd test) 0.3 mmol of HMF, 18 

ml of H2O, 78 mg of 2 wt. % Au/HT. 3rd test) 0.1 mmol of HMF, 6 ml of H2O, 25 mg of 2 wt. 

% Au/HT; all reactions were carried out at T = 90 °C, 15 ml/min O2 and 500 rpm. 

2.3.6 Selox of 2-furfuryl alcohol and 2-furaldehyd to 2-furoic acid, standard 

protocols 

All the reactions were performed using a Radleys reactor, following the standard 

protocol described in Chapter 2.3.1.2 for reaction profiles (0.1 mmol either of 2-furfuryl 

alcohol, 98.6 mg, or of 2-furaldehyde, 96.4 mg) or for kinetic studies (as above, but 0.2 

mmol). This model reaction was studied to help distinguish the effects of gold and of NaOH 

on the alcohol and on the aldehyde function. The catalyst used for this model reaction was 2 

wt. % Au/HT, tested either alone or after the addition of [NaOH] 1M to have pH = 14. 

Reactions were sampled and analysed as described in Chapter 2.2.11, with a minor 

modification: the solvent used to separate the compounds was pure HPLC grade acetonitrile.  
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3.1 Introduction 

A range of oxygenated substrates, such as alcohols1, 2, polyols2, aldehydes and 

sugars3, 4, have been oxidised using gold nanoparticles, either as naked stabilised sols3, 5 

or dispersed on solid supports6-9. This chapter explores the aerobic selective oxidation 

of 5-hydroxymethyl-2-furfural10 (5-HMF) catalysed by Au nanoparticles on a MgAl 

hydrotalcite solid base support11. 

The common requirement for basicity12, 13 in the aerobic selective oxidation of 

alcohols and aldehydes in aqueous solvent represents a serious and environmentally 

unfriendly limitation14, 15 of this catalytic system, since the final product requires 

neutralisation and purification. The presence of a homogeneous base, usually NaOH, 

has been recognised as an essential component for supported Au catalysts since initial 

studies carried out by Prati and Rossi2; recent mechanistic studies by Davis and co-

workers12, 14, 16 have further highlighted the essential role of hydroxide ions during the 

selective oxidation of alcohols over gold. However, the exact role of base and gold has 

yet to be clarified, and hence the nature of the catalytically active species and reaction 

mechanism require elucidation. 

Hydrotalcites, with the general formula [M2+
(1-x)M

3+
x(OH)2]

x+(Ax/n)
n- . y H2O, 

belong to a class of anionic clays named layered double hydroxides (LDH)17, 18. Their 

structure is composed of positively charged brucite-like hydroxide layers, in which 

some octahedrally coordinated M2+ cations have undergone isomorphous substitution by 

M3+ ones. Counter anions An-, commonly carbonates, reside in the interlayer space to 

balance the residual positive charges19. An example of hydrotalcite structure is shown in 

Figure 3.1. 



 
 

88 
 

 

Figure 3.1: a schematic representation of the layered double hydroxide structure of a 

MgAl hydrotalcite20.  

Gupta and co-workers11 previously employed hydrotalcites obtained via alkali 

precipitation routes as both a support and solid base for Au nanoparticles, resulting in 

significant 5-HMF oxidation and high 2,5-furandicarboxylic acid (FDCA) yields. In this 

work a hydrotalcite with a nominal Mg:Al molar ratio of 5 was reported as the most 

active, however the actual composition was not quantified and such a high Mg:Al ratio 

is not generally accepted as possible for pure phase HTs, as mentioned before17. 

In order to quantitatively assess the role of basicity in the aerobic selective 

oxidation of 5-HMF, this chapter explores the role of solution pH and a heterogeneous 

alkali-free MgAl HT support in regulating Au catalysis. Subsequently, the influence of 

gold loading was studied to further elucidate the role of gold in each step of the cascade 

oxidations, and the nature of the gold active species examined via XPS and in-situ XAS. 

3.2 Results and discussion 

3.2.1 Typical preparation of Mg3Al HT  

Hydrotalcites were synthesised following the procedures described before in 

chapter 2.1.1.  
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3.2.2 Typical preparation of Au/HT and Au/mixed oxides  

Au/hydrotalcites and Au/CHT (mixed oxides) were synthesised following the 

procedures described chapter 2.1.2 and chapter 2.1.3, respectively.  

 

3.2.3 Characterisation of hydrotalcite and Au/hydrotalcites 

Bulk elemental analysis was performed to determine the actual Au content and 

Mg:Al ratio, and the structural properties of materials examined by powder X-ray 

diffraction (XRD), N2 porosimetry and electron microscopy. SEM was also used to 

study the support morphology, and TEM to measure the average Au particle size. IR, 

TGA, XPS, XAS and CO2 TPD analysis were also performed to investigate the 

oxidation state and acid properties of the hydrotalcite support and Au nanoparticles. 1H 

NMR was used to follow changes in 5-HMF upon NaOH addition to understand the 

reaction mechanism. 

3.2.3.1 Elemental analysis 

XPS, EDX and ICP analysis were conducted on the parent hydrotalcite and 

Au/HTs to quantify their bulk and surface compositions. Gold loadings are reported in 

Table 3.1.  

Table 3.1: elemental analysis of Au/HTs.  

Nominal Au  

loading / wt% 

EDX 

/ wt% 

ICP 

/ wt% 

XPS 

/ wt% 

Parent HT - - - 

0.5 0.7 ± 0.04 0.5 ± 0.005 0.3 ± 0.02 

1 1.3 ± 0.03 0.9 ± 0.007 0.9 ± 0.01 

2 2.6 ± 0.05 1.9 ± 0.004 1.9 ± 0.03 

5 4.9 ± 0.07 4.5 ± 0.008 6.8 ± 0.05 

10 9.6 ± 0.06 9.6 ± 0.006 10.2 ± 0.08 

 

Table 3.2 summarises surface elemental compositions of the same catalysts and 

hydrotalcite support.  
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Table 3.2: surface elemental analysis of Au/HTs by XPS. 

0.5 wt.% 

AuHT 

Element / 

wt.% 

1 wt.% 

AuHT 

Element 

/ wt.% 

2 wt.% 

AuHT 

Element / 

wt.% 

Mg 27.5 Mg 26.2 Mg 26.0 

Al 8.2 Al 7.0 Al 9.3 

O 59.4 O 60.5 O 57.9 

C 3.4 C 4.2 C 3.7 

Cl 1.2 Cl 1.1 Cl 1.3 

Au 0.3 Au 1.0 Au 1.9 

 

5 wt.% 

AuHT 

Element 

/ wt.% 

10 wt.% 

AuHT 

Element 

/ wt.% 

Parent 

HT 

Element / 

wt.% 

Mg 26.4 Mg 21.9 Mg 27.7 

Al 7.6 Al 8.5 Al 8.3 

O 54.3 O 54.3 O 60.5 

C 3.8 C 3.7 C 3.5 

Cl 1.1 Cl 1.4 Cl - 

Au 6.8 Au 10.2 Au - 

 

The average Mg:Al atomic ratio was 3.0 ± 0.2 by both EDX and XPS, consistent 

with the nominal ratio in the synthesis. However, this high Mg content was achieved via 

a substantial modification of the Na-free method described by Cantrell20 and 

Woodford21, wherein both authors observed that the actual bulk and surface ratios were 

lower than the nominal targets, as a result of increasing the pH from 7.6-8.0 to 9.3-9.517.  

3.2.3.2 Ex situ XRD analysis 

Ex situ powder XRD were run on the parent HT and Au/HTs. The parent HT 

exhibited reflections at 11.2° (d 003), 22.4° (d 006), 34.2° (d 009), 38.3° (d 015), 44.6° 

(d 018), 60.1° (d 110), 61.3° (d 113) and 64.7° (d 116) (Figure 3.2), consistent with 

literature values for this material17, 22, 23.  

In contrast to Woodford and co-authors21, no Mg and Al oxide or carbonate 

impurities were detected for these Mg3Al hydrotalcites prepared at pH 9.3-9.5. Volume-

averaged crystallite sizes were determined as 7.2 nm from the 11.2° peak applying the 

Scherrer equation24. These small crystallite sizes indicate that the extended porous 

network arises from agglomeration or fusion of these nanocrystalline platelets. 
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The intensity of Au peaks, that usually are visible at 38° (d 111), 44° (d 200), 

65° (d 220) and 78° (d 311), increased with Au loading25, 26; nevertheless, these peaks 

overlap with HT ones and are not visible for low gold loading, necessitating background 

subtraction of the parent HT contribution. Peak fitting of the resultant gold reflection 

reveals an increase in Au particle size with loading. 

 
Figure 3.2: left – X-ray diffractograms of Au/HT catalysts, middle – evolution of Au 

reflection, and right – evolution of Au particle size with loading from line broadening of 

the 78° reflection by Scherrer analysis. 

Powder XRD patterns were phase corrected using the software EVA, interlayer 

spacing d and lattice parameters a and c subsequently calculated for different Au 

loadings, showing good agreement with literature values17, 20, 27. Results are shown in 

Table 3.3 below.  

Table 3.3: Structural parameters of Au/HTs from powder XRD. 

Catalyst Interlayer  

spacing d / Å 

Lattice parameter 

a / Å 

Lattice parameter 

c / Å 

Parent hydrotalcite 7.70 ± 0.01 3.053 ± 0.001 23.164 ± 0.001 

0.5 wt.% Au 7.78 ± 0.01 3.071 ± 0.001 23.447 ± 0.001 

0.9 wt.% Au 7.86 ± 0.01 3.071 ± 0.001 23.567 ± 0.001 

1.9 wt.% Au 7.86 ± 0.01 3.074 ± 0.001 23.607 ± 0.001 

4.5 wt.% Au 7.90 ± 0.01 3.074 ± 0.001 23.640 ± 0.001 

9.6 wt.% Au 7.94 ± 0.01 3.076 ± 0.001 23.671 ± 0.001 

          Nominal     Au loading / wt%                  

                                                   10                                      

 

5 

 
2  

 

1 

 

0.5 

 

HT 
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A mineral having the ideal formula Mg6Al2(OH)16CO3 ·4 H2O can exist in two 

different polytypes, as the brucite-like sheets can stack one on the other in two different 

symmetries: the so-called hydrotalcite, having the 3R rombohedral17 symmetry and the 

so-called manasseite, having the 2H hexagonal one, according to Cavani and co-

authors17. For clarity, if the three-fold axis of the OH group between the HT interlayers 

can be named ABC, the stack may follow the sequence BC-CA-AB-BC including three 

sheets per unit cell (rombohedral 3R symmetry) or the sequence BC-CB-BC (hexagonal 

2H symmetry). For a hydrotalcite model with rombohedral 3R17 stacking of the brucite 

layers, the interlayer spacing d can be calculated from measuring the peak position of 

the d003 reflections from the XRD pattern and then with the Equation 3.1. 

d = d003 = 
n λ

2 sin θ
        Equation 3.1 

  The lattice parameter a, related to the unit cell, was calculated using the d(110) 

XRD peak position17 with the Equation 3.2. 

 a = 2 d110                    Equation 3.2 

The lattice parameter c, that corresponds to three times the interlayer spacing d 

between two consecutive layers28, was calculated using the d(003), d(006) and d(009) 

XRD peak position, with the Equation 3.3 

 c = d003 + 2 d006 + 3 d009          Equation 3.3 

Vegard’s law states that at a constant temperature, a linear relationship exists 

between a crystal lattice parameter of an alloy and the concentration of the constituent 

elements29-31. Cavani and co-authors17 plotted HT lattice parameters as a function of 

Al/(Al+Mg) ratio, taking them from different authors in the literature and shown in 

Figure 3.3, showing that linear relationships for pure HT phases are valid in the range 

of 0.2 ≤ x ≤ 0.33, whereas x = Al/(Al+Mg). In terms of Mg/Al ratio, these values can be 

written as 2 ≤ Mg/Al ≤ 4.  
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The experimental value (marked in red in Figure 3.3) was obtained in this thesis 

work for parent HT Mg/Al = 3.0 and it corresponds to 0.25; lattice parameter a was 

found to be 3.053 Å, showing a good agreement with literature values17.  

 

Figure 3.3: lattice parameter a as a function of the Al content, x, for HT materials, from 

reference 17. The experimental point for this thesis work is marked in red: experimental 

lattice parameter gave 0.25 using the Vegard’s law and confirmed a pure phase Mg/Al = 

3 for the obtained HT. 

The parameter a decreases when the aluminium content x increases17, within the 

range of pure HTs, because the Al3+ radius is smaller than Mg2+, thus satisfying 

Vegard’s law, while it remains constant outside the range.  

3.2.3.3 N2 Porosimetry 

N2 adsorption-desorption isotherms32, 33 for the parent hydrotalcite and Au/HTs 

are shown in Figure 3.4. The isotherms have been offset for clarity.  

brucite 



 
 

94 
 

 

Figure 3.4: N2 adsorption-desorption isotherms for Au/HTs. 

The parent hydrotalcite exhibits a type II H3 isotherm, that is retained in all the 

Au/HTs, and is consistent with microporous crystallites with interplatelet mesoporous 

voids and slit type pores34. Following Au deposition and 200 °C calcination the Au/HTs 

exhibit smaller hysteresis loops than the parent HT. A reduction in the hysteresis may 

suggest that pores are more accessible35 after calcination at 200 °C, due to an expansion 

of interplatelet mesoporous voids and a removal of water from interlayers19, 36. Table 

3.4 reports BET surface areas for the parent hydrotalcite and Au/HTs, with values in 

accordance with the literature20. 

Table 3.4: Surface areas of HT and Au/HTs determined by N2 porosimetry. 

 BET surface area / m2g-1 

Parent HT 95 ± 9.5 

0.5 wt.% AuHT 88 ± 8.8 

1 wt.% AuHT 88 ± 8.8 

2 wt.% AuHT 90 ± 9.0 

5 wt.% AuHT 91 ± 9.1 

10 wt.% AuHT 75 ± 7.5 

 

parent HT 

0.5 wt.% Au HT 

5 wt.% Au HT 

2 wt.% Au HT 

10 wt.% Au HT 

1 wt.% Au HT 
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A more accurate pore analysis was carried out over the parent HT, using a 

QuantaChrome Autosorb instrument and N2 at 77 K as the gas for the analysis. Figure 

3.5 – left shows the resulting mesopore size distribution, obtained using the DFT 

method37 and the fitting model for N2 at 77 K on carbon for slit pores and a QSDFT 

equilibrium; Figure 3.5 – right shows good agreement between the model and 

experimental data. The average mesopore diameter was 8.2 nm, similar to values from 

previous works32, and attributed to intercrystallite voids, with a total pore volume of 

0.814 cm3.g-1 ± 0.024. 

 

Figure 3.5: left – pore diameter vs. pore volume and its derivative function for Mg3Al 

hydrotalcite, right – fitted vs. measured volume shows a good agreement for the 

selected mathematical model.  

 

3.2.3.4 SEM, TEM and Au particle size distribution 

An SEM image was obtained for the parent HT and TEM images were obtained 

for Au/HTs, with Figure 3.6 illustrating the morphology of the parent material.  
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Figure 3.6: SEM micrograph of parent Mg3Al HT, showing characteristic sand rose 

morphology. 

 

According to the nature of the charge-compensating counter-anion in the 

interlayers, or when an excess of NH4OH is used, the co-precipitation method might 

yield poor surface area manasseite, instead of the desired high surface area 

hydrotalcite17, 38, as already mentioned in Chapter 3.2.3.2. Large and well-defined 

(around 200 nm up to 1 μm) compact particles fused together are clearly visible,20, 21, 39 

showing the characteristic hydrotalcite sand-rose morphology and confirming the 

rombohedral 3R crystal system17, 38.  



 
 

97 
 

Dark/bright field (S)TEM images of the Au/HT series are shown in Figure 3.7  

 

 
 

Figure 3.7: Dark and bright field (S)TEM images of (a) 0.5 wt. %, (b) 1 wt. %, (c) 2 wt. 

%, (d) 5 wt. % and (e) 10 wt% Au/HT; (f) image of 2 wt. % Au/HT highlighting 

hydrotalcite nanosheets. EDX and XPS confirmed Mg3Al composition. 

 

a b 

c d 

e 

Element
EDX

/ atom%

XPS

/ atom%

Mg 15.3 16.8

Al 5.0 5.6

Mg:Al 3.0 3.0

f 
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ImageJ software was used to measure the particle size distribution for each 

material, 100 NPs were measured for each sample and results are shown in Figure 3.8. 

The mean particle size increased with gold loading, resulting in a trend similar to that 

observed by XRD. Particles appear to be very well dispersed for the 0.5, 1 and 2 wt. % 

Au/HT, growing and agglomerating at higher loadings to give a broad range of size.  

 

Figure 3.8: particle size distributions for Au/HT obtained by counting 100 NPs per 

sample using ImageJ software and counting 100 NPs per sample; mean particle size 

increases with gold loading. 

3.2.3.5 Ex situ DRIFT spectra  

Ex situ DRIFT spectra (Figure 3.9 – left) compare the uncalcined parent 

hydrotalcite and 2 wt. % Au/HT calcined at 200 °C; the peak assignment was made 

according to that reported by Meliàn-Cabrera and co-authors40 and Davis and co-

authors36. At 3800-2500 cm-1 the OH stretching is clearly visible for both the parent 

hydrotalcite and the 2 wt. % Au/HT as a broad band. The shoulder at 3080 cm-1 is 

characteristic of layered HTs, arising from hydrogen bonding between water molecules 

and CO3
2- groups within the interlayer region. The OH bend of physisorbed water is 

visible at 1590 cm-1, while the two bands at 1497 cm-1 and 1331 cm-1 are due to the 

stretching of CO3
2- in the interlayer region. 
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Deposition-precipitation of Au, followed by calcination, caused interlayer water 

removal and a carbonate rearrangement, evidenced by the absence of the previous 

shoulder in the OH region at 3080 cm-1 and the 1590 cm-1 bend, and emergence of two 

new peaks corresponding to C=O at 1508 cm-1 and to C-O at 1338 cm-1 in Figure 3.9 – 

left. No significant changes were seen in ATR spectra as a function of Au loading 

(Figure 3.9 – right). 

 

 

Figure 3.9: left – DRIFT spectra of parent uncalcined HT and 2 wt. % AuHT calcined 

at 200 °C, right – ATR spectra of 0.5, 1, 2, 5 and 10 wt. % Au on HT calcined at 200 

°C. 

Scheme 3.1 below40 illustrates the proposed changes in HT morphology during 

calcination up to 150 °C. 

 

OH 

OH 

OH 

CO3
2- 

CO3
2- 
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Scheme 3.1: schematic of carbonate rearrangement and interlayer water removal for 

calcined HT from reference 40.  

3.2.3.6 CO2 titration and TPD 

CO2 pulse chemisorption and following TPD analysis were used to determine 

the base site density and strength for different Au/HTs. CO2 is an acidic probe 

molecule, and it is assumed that each molecule of CO2 adsorbs onto one base site on the 

hydrotalcite, forming a bicarbonate species with the hydroxide anions or surface 

hydroxyl groups21, 39, 41.The impact of Au loading on basicity was explored in Figure 

3.10 – left.  
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Figure 3.10: left – base site densities as a function of Au loading in Au/HT materials 

and right – base site strength for the same materials, all values from CO2 TPD. 

Since the same hydrotalcite and thermal treatment was employed in every case, 

the resulting TPD profiles were similar for Au loadings, and the base site densities 

almost identical as summarised in Table 3.5. 

Table 3.5: Base site density and peak desorption temperature for Au/HTs. 

Au/HT / wt. % Number of base sites / g-1 Desorption peak max T / ºC 

0.5 1.83 × 1020 367 ± 0.2 

1 1.90 × 1020 367 ± 0.2 

2 1.66 × 1020 380 ± 0.2 

5 1.77 × 1020 383 ± 0.2 

10 1.79 × 1020 371 ± 0.2 

 

 The desorption peak maxima all fell between 370-380 °C, attributed to medium 

strength base sites (Figure 3.10 – right). The 10 wt. % Au/HT material also exhibited a 

low concentration of weak base sites at 180 °C, attributed to weak bicarbonate species 

bound to surface hydroxyls in the lattice. 
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3.2.3.7 Surface chemical analysis 

XPS analysis was carried out on the Au/HT series. The Mg 2p spectra (Figure 

3.11) was fitted by a single chemical environment containing the spin-orbit 2p doublet 

(separation = 0.28 eV), with binding energies of 49.80 eV and 50.08 eV (NIST 

database42 50.40 eV for MgAl2O4 spinel, 49.5-49.9 eV for hydrotalcite phase, Cantrell 

and co-authors20).  

 

Figure 3.11: High resolution Mg 2p XP spectra for 2 wt. % Au/HT showing a single 

chemical state assigned to pure HT. 

The Al 2p spectra (Figure 3.12) was likewise fitted by a single chemical 

environment containing the spin-orbit 2p doublet (doublet separation = 0.41 eV), with 

binding energies of 73.52 eV and 73.93 eV (NIST database42 74.10 eV for MgAl2O4 

spinel, 73.50 for hydrotalcite phase, Creasey and co-authors43). 
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Figure 3.12: High resolution Al 2p XP spectra for 2 wt. % Au/HT showing a single 

chemical state assigned to pure HT. 

Shifts in the Mg and Al binding energies relative to the literature are attributed 

to the different Mg:Al ratio, being 3 for the catalysts prepared in this thesis, and 2 for 

literature materials20, 21, 43 and the NIST database42. The observation of a single HT 

phase agrees with XRD results (see Chapter 3.2.3.2.). 

The O 1s spectra (Figure 3.13) comprised two distinct chemical components: 

one attributed to the O2- of HT and carbonates with a binding energy of 531.42 eV, 

(NIST database42 531.50 eV for MgAl2O4 spinel and for MgCO3), and the second one 

attributed to hydroxyls with a lower binding energy of 529.25 eV. (NIST database42 

530.9 eV for Mg(OH)2, 529.3-530.9 eV for OH in hydrotalcite phase, Cantrell and co-

authors20).  
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Figure 3.13: high resolution O 1s XP spectrum of 2 wt. % Au/HT highlighting the high 

binding energy CO3
2- and low binding energy OH- states. 

The C 1s spectrum (Figure 3.14) was likewise fitted by two chemical states: one 

at 284.6 eV due to adventitious carbon, and one at 288.99 eV due to carbonate (NIST 

database42 289.40 for MgCO3). 

 

Figure 3.14: high resolution C 1s XP spectrum of 2 wt. % Au/HT highlighting the high 

binding energy CO3
2- and low binding energy adventitious carbon states.  
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The Cl 2p spectrum (Figure 3.15) comprised a single 2p doublet (separation = 

1.60 eV) with binding energies of 198.3 and 196.8 eV (NIST database42 NaAuCl4 

198.80 eV), arising from residual chlorine due to trace of NH4Cl during the synthesis, 

even following catalyst washing and low temperature calcination. 

 

Figure 3.15: high resolution Cl 2p XP spectrum, highlighting residual chloride for 2 wt. 

% Au/HT. 

The Au 4f spectrum (Figure 3.16) could only be adequately fitted by two 

separate chemical species, a single Au 4f chemical state (doublet separation = 3.70 eV) 

and an additional overlapping Mg 2s state whose fitting and subtraction permitted 

quantification of the gold species. The Au 4f binding energies of 83.21 eV and at 86.92 

eV were consistent with the presence of metallic gold (NIST database42 CsAuCl4 (Au3+) 

87.5-91.2 eV, Au foil 84.0-88.0 eV). 
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Figure 3.16: high resolution Au 4f XP spectra of 2 wt. % Au/HT (left) before and 

(right) after subtraction of the overlapping Mg 2s component.  

Au 4f XP spectra were subsequently compared as a function of gold loading on 

hydrotalcite as shown in Figure 3.17.  

 

Figure 3.17: High resolution Au 4f XP spectra of Au/HTs as a function of Au loading. 

The weak peak for 1 wt. % Au comes from the Mg 2s subtraction.  

A common experimental shift of 0.6 eV to lower binding energy relative to Au 

foil was found across the loading series, with all materials consistent with the presence 

of metallic gold; Radnik and co-authors44 attributed this shift to the presence of gold 

nanoparticles instead of gold foil and their average value was found to be 0.4–0.6 eV. 
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These authors proposed that such shift to lower binding energy might be related to 

different effects, such as a difference in the formal oxidation state or band structure of 

Au nanoparticles. Complementary ex and in situ XANES measurements described later 

in this thesis (see Chapter 3.2.3.8) confirm the presence of gold in a formal Au0 

oxidation state after calcining at 200 °C for Au/HT.  

The lower coordination number of Au surface atoms has also been proposed by 

Radnik and co-authors44 to account for the observed binding energy shift relative to 

bulk gold. Initial state effects depend on the orbital energy of the emitted electron, while 

final state effects reflect relaxation (reabsorption) of the photoexcited system. For small 

particles < 2 nm, low-coordination surface atoms such as those at edge and corners 

dominate, and a change of initial state is expected, due to not efficient overlapping of 

Au orbitals, while for particles > 3 nm, as is largely the case in this thesis, final state 

contributions may be more significant, particular on poorly conductive HT supports. 

EXAFS measurements (see Chapter 3.2.3.8) confirmed that the Au-Au nearest 

neighbour coordination number varied between 10.2 and 11.4 across the Au/HTs, and 

hence was indeed lower than the bulk value of 12, supporting the hypothesis of Radnik 

and co-authors44. 

3.2.3.8 Operando XAS studies on the Au oxidation state 

Au LIII-edge (11.9 keV) fluorescence XAS measurements45, 46 were recorded in 

situ to study the thermochemical transformation of the HAuCl4 catalyst precursor over 

the Mg3Al hydrotalcite (post NH4OH addition) in order to identify the active gold 

species and optimise its synthesis. The catalyst precursor was studied within an 

environmental (Sankar) reaction cell at Diamond Light Source. The precursor was 

heated under air flow at 2 °C/min from 25 °C to 500 °C. XANES spectra of the as-

prepared material was consistent with the presence of a Au(III) salt45, 47-49, most likely a 

mix of Au(NH3)4(OH)3 and around 10% of Au(OH)3.   

Heating to 65 °C under flowing air initiated precursor decomposition and the 

concomitant appearance of Au2O3, which remained stable to ~110 °C before 

decomposing to metallic Au. Complete decomposition of both the Au(NH3)4(OH)3 

precursor and Au2O3 to metallic gold required calcination > 170 °C as shown in Figure 

3.1850.  
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Figure 3.18 In-situ Au LIII XANES during thermal processing of the HAuCl4/Mg-Al 

HT precursor a) waterfall plot showing thermal evolution of normalised XANES 

spectra; b) representative least squares fitted XANES spectra to reference gold species; 

c) quantitative thermal evolution of fitted Au species.  

An operando in situ XAS study was subsequently performed of the thermally 

processed 2 wt.% Au/HT material, in order to identify the nature of the gold active sites 

during 5-HMF oxidation. A 1.96 wt. % Au/HT sample was placed within a bespoke 

PTFE trickle-bed, recirculating cell, held in place using carbon fibre wadding; the 

catalyst was charged with oxygenated aqueous solution from an external reservoir  and 

heated to 90 °C. On reaching reaction temperature, first 1 M NaOH, and subsequently 

0.1 mmol of 5-HMF, were added to the reservoir and the reaction operated for 16 h 

during spectral acquisition.  

Despite such high pH, the XANES spectra remained unperturbed following 

NaOH or 5-HMF addition,51 confirming that gold remained in its metallic form during 

the selective oxidation of 5-HMF, with no evidence of Au(OH)3 or Na-Au intermetallics 

detected as might arise due to either gold leaching or Na chemisorption and alloying 

(Figure 3.19).  

 

Au L(III)

0

20

40

60

80

100

35 46 57 68 79 90 101 112 123 134 145 156 167 200

A
u
 s

p
e
c
ie

s
 /

 %

Au metallic Au2O3

Au(OH)3 HAuCl4

a)

c)

0.0

0.4

0.8

1.2

11900 11920 11940

N
o

rm
a
li

s
e
d

 m

Energy (eV)

35 °C

11900 11920 11940

Energy (eV)

156 °Cb)

11900 11920 11940
Energy (eV)

145 °C



 
 

109 
 

 

Figure 3.19: Au LIII edge (11.9 keV) in situ XANES spectra for the aerobic selective 

oxidation of HMF, as a function of reaction conditions. No changes were visible in the 

Au0 oxidation state. 2 wt. % Au catalyst used for this experiment. 

These results confirm that gold nanoparticles do not sinter or leach even after 16 

h reaction and that NaOH directly promotes oxidation without influencing the electronic 

or structural properties of gold. This is consistent with reported isotope-labelling and 

DFT studies6, 12, which suggest that hydroxyls adsorbed at the edge of Au clusters are 

the critical surface species participating in the catalytic cycle, lowering the barriers to C-

H and O-H dissociation52 and removing surface hydride.  

Ex situ measurements of the same catalyst were run and the EXAFS region of 

Au foil standard was fitted to its Fm-3m space group53. This enabled amplitude factors, 

interatomic distances of the neighbouring scatters (coordination shell distances), and 

Debye-Waller disorder factors to be determined, identifying only Au-Au coordination 

shells. The resulting K3
 weighted and Fourier transformed fits are presented in Figure 

3.20, with their corresponding coordination numbers, interatomic distance and Debye-

Waller factors recorded in Table 3.6.  
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Figure 3.20: (left) Au LIII-edge k3-weighted EXAFS spectra and (right) Fourier 

transformed spectra of Au/HT catalysts as a function of Au loading. 

Table 3.6: Au LIII-edge EXAFS fitting parameters for Au/HT catalysts, calcined at T = 

200 °C in air. 

Au loading / 

wt% 

Scattering 

pair 

Coordination 

number 

Scattering 

distance 

/ Å 

σ / Å2 
Fit 

factor  

Au foil 
Au-Au 12 2.86 (±0.02) 0.0083 (±0.0005) 

2.56 
Au-Au 6 4.04 (±0.03) 0.0159 (±0.0051) 

0.5 Au-Au 10.2 (±0.3) 2.85 (±0.03) 0.0089 (±0.0016) 7.26 

0.9  Au-Au 10.5 (±0.2) 2.85 (±0.03) 0.0089 (±0.0010) 6.98 

1.9  Au-Au 10.6 (±0.1) 2.85 (±0.03) 0.0084 (±0.0008) 1.94 

4.5  Au-Au 11.1 (±0.1) 2.86 (±0.02) 0.0086 (±0.0006) 5.12 

9.6 Au-Au 11.4 (±0.1) 2.85 (±0.03) 0.0083 (±0.0006) 7.33 

 

Figure 3.21 shows the mean Au nanoparticle diameters estimated from TEM, 

XRD and EXAFS first shell coordination numbers employing the model proposed by 

Jentys54, showing excellent agreement between these different local and averaging 

analytical methods. 
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Figure 3.21: Measured (TEM) and calculated (XRD and EXAFS) mean particle sizes 

gold nanoparticles as a function of Au loading in Au/HTs.   

3.2.3.9 1H NMR studies of HMF ± NaOH 

As the preceding operando XAS analysis showed that liquid NaOH does not 

affect the Au oxidation state, 1H NMR studies were undertaken to investigate the role of 

soluble base upon the HMF substrate55. It is worth remembering that in the absence of 

hydrogens, NaOH does not react with aldehydes through the aldol reaction, but 

rather an equilibrium exists between the aldehyde and its hydrated 1,1 gem-diol form56. 

Rossi and co-workers57 have proposed the gem-diol as the reactive species in gold 

catalysed selective oxidation of aldehydes and sugars under basic conditions58. In order 

to demonstrate the formation of this postulated reactive intermediate, 1H NMR spectra 

of HMF in D2O was recorded before and after NaOH addition (Figure 3.22 and Figure 

3.23). 
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Figure 3.22: 
1H NMR spectra of HMF. H (300 MHz, D2O): A) 9.3 ppm (s, 1H, –CHO); 

B) 7.4 ppm (d, 1H, aromatic –CH near R–CHO, J = 3.477), C) 6.5 ppm (d, 1H, aromatic 

–CH near R–OH, J = 3.48); D) 4.7 ppm (s, 1H, –OH and water); E, F) 4.5 ppm (s, 2H, 

R–CH2). 

As H2O is visible at 4.7 ppm, this signal was attributed to the exchange of R-OH 

moieties with D2O. A NaOH pellet was subsequently added to the same NMR tube, to 

produce a 0.1 M aqueous solution in D2O at pH = 13 and a spectrum was acquired 

immediately. Such concentration was chosen to prevent side reactions in the absence of 

catalyst. The 1H NMR spectrum in Figure 3.23 reveals interesting changes in the 

molecule after the NaOH addition: both the aldehydic CHO (A) and the adjacent 

aromatic H (B) appear broader and weaker, indicative of an anionic species forming and 

of chemical equilibrium, in which bonds are breaking and forming59, 60.  

A low concentration of a new compound is visible in the NMR spectrum, as the 

equilibrium favours the aldehyde form, and spectra analysis has shown this is the 1,1 

gem-diol forming; experimental data agree with the NMR prediction (see spectra in 

Figure 3a.1 and Figure 3a.2 Appendix). 
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Figure 3.23: 1H NMR spectra of HMF + NaOH. Hydrogens A, B, C, D, E and F for 

HMF attributed as in Figure 3.22. H HMF gem-diol (300 MHz, D2O): K, L) 6.2 ppm 

(d, 2H, aromatic –CH, J = 3.46), M) 6.1 ppm (s, 1H, aldehyde that became gem-diol); 

N, P) 4.7 ppm (s, 3H, –OH and water); G, I) 4.5 ppm (s, 2H, R–CH2). 

Nevertheless, 1,1-geminal diols, also known as hydrates, are not stable enough 

to be isolated, as the equilibrium shifts back to starting materials56; also, the molecule  

can undergo to subsequent Cannizzaro disproportion61, as it happened in the absence of 

catalyst after 20-30 minutes, to yield a 1:1 mixture of an alcohol, respectively 2,5-

dihydroxymethylfuran (DHMF) and the Na salt of HMFCA (Figure 3.24). A spectra of 

HMFCA standard is available in the Appendix, Figure 3a.3, together with DHMF 

prediction, Figure 3a.4. 
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Figure 3.24: 1H NMR spectra of HMFCA sodic salt + DHMF. H DHMF (300 MHz, 

D2O): A, B) 5.9 ppm (s, 2H, aromatic –CH); C, D) 4.7 ppm (s, 2H, –OH and water), F, 

G, H, L) 4.22 ppm (s, 4H, two for –CH2). H HMFCA sodic salt (300 MHz, D2O): O) 

6.7 ppm (d, 1H, aromatic –CH near –COONa), P) 6.1 ppm (d, 1H, aromatic –CH near 

the R–OH); E) 4.7 ppm (s, 2H, –OH and water), M, N) 4.24 ppm (s, 2H, –CH2). 

It is widely reported that prolonged exposure of 5-HMF to aqueous NaOH 

results humin production62, 63, hence it is likely that Au NPs are crucial to rapidly 

oxidise the 1,1 gem-diol product to the desired 2,5-FDCA in order to avoid humins. 

3.2.4 Au/HT catalysed aerobic selective oxidation of 5-HMF 

3.2.4.1 Diffusive or chemical regime? 

Preliminary tests were performed using the 2 wt. % Au/HT material to 

determine whether aqueous phase 5-HMF oxidation was rate-limited by external mass 

transport effects prior to a detailed kinetic analysis of the reaction network. Figure 3.25 

revealed no significant dependence of the reaction profile upon stirrer speed, and hence 

no evidence for external diffusion limitations in these experiments was seen, and 500 

rpm was chosen as the optimal speed. 
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Figure 3.25: reaction profiles for the aqueous phase selox of 5-HMF by 2 wt. % Au/HT 

as a function of stirring rate. Reaction conditions: 0.1 mmol of HMF, 25 mg of catalyst, 

V = 6 ml of H2O,  O2 flow15 ml min-1, T = 90 °C, different stirrer speeds.  

This conclusion was supported by tests using three different charges of the 2 wt. 

% Au/HT catalyst for 5-HMF selox of 10, 50 and 100 mg. A linear increase in the 

conversion and a slope of 1 on the associated bi-logarithm plot of Ln[cat] vs. Ln r 

(Figure 3.26), confirmed that reaction was not under external diffusion control. 

 

Figure 3.26: Bi-logarithm plot of Ln [cat] vs. Ln [rate] for the aqueous phase selox of 

5-HMF by 2 wt. % Au/HT as a function of catalyst charge. Reaction conditions: 0.1 

mmol of HMF, 10, 50 or 100 mg of catalyst, V = 6 ml of H2O,  O2 flow15 ml min-1, 

T = 90 °C, 500 rpm. 
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3.2.4.2 The effect of solution pH on the aerobic selox of HMF, HMFCA and FFCA 

Systematic reactions were subsequently carried out to understand the impact of 

pH (via tuning the [NaOH]) upon 5-HMF selox. Scheme 3.2 shows the reaction 

pathway for the aerobic selective oxidation of 5-HMF to 2,5-FDCA over Au/HTs. 

 

 

Scheme 3.2: the aerobic selective oxidation of HMF to FDCA. 

The catalyst used for this study was the 2 wt. % Au/HT. Reaction conditions 

were as follows: 25 mg of catalyst, 0.1 mmol of HMF in order to have HMF/Au = 40 

(mol/mol), T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. This catalyst was tested 

either alone in solution, or after the addition of a pre-determined amount of NaOH to the 

reaction mixture for Na:Mg molar ratios of 0.1, 1, 5, 10, 20 and 50 (Figure 3.27 and 

3.28). 

 

Figure 3.27: influence of NaOH addition on the aqueous phase selox of 5-HMF by 2 

wt. % Au/HT after 7 h. Reaction conditions: 25 mg of catalyst, 0.1 mmol of HMF in 

order to have HMF/Au = 40 (mol/mol), T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 

Amount of added NaOH / mmol = no addition, 2.85 × 10-2, 2.85 × 10-1, 1.43, 2.85, 5.7 

and 14.3 mmol.  
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Figure 3.28: main – influence of pH on the aqueous phase selox of 5-HMF by 2 wt.% 

Au/HT after 7 h; inset – postulated pH dependent reaction mechanism50. Reaction 

conditions as in Figure 3.27. 

The measured pH of the reaction before the addition of NaOH was 9, due to the 

intrinsic basicity of the hydrotalcite support. Even a minor amount of added NaOH was 

enough to increase 5-HMF conversion, although a large [NaOH] was necessary to 

increase the yield of desired 2,5-FDCA product. It is important to note that two control 

tests confirmed Rossi and Prati’s earlier work2, namely that 5-HMF could not be 

activated over Au NPs supported on either carbon or silica under base-free conditions. 

The following control reactions also yielded no 5-HMF conversion: H2O + O2; H2O + 

O2 + HT. 

Soluble base thus appears essential for the efficient activation of 5-HMF and 

HMFCA formation for this particular 5-HMF:surface gold ratio; the highest pH delivers 

the highest FDCA yield. Note that this conclusion is not generally valid, as will be 

shown in Chapter 3.2.4.4.  
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In order to elucidate the origin of this striking pH sensitivity, comprehensive 

kinetic mapping of all the individual steps in the reaction pathway was carried out, 

using the same 2 wt. % Au/HT catalyst in the absence or presence of NaOH (6 mmol, 

pH 14). Results are summarised in Scheme 3.3 below, which highlights the principal 

role of NaOH is to accelerate HMF oxidation to HMFCA, at least partially through 

suppressing the dehydration of the reactively – formed geminal diol intermediate50. 

 

Scheme 3.3: impact of NaOH on kinetics for the aerobic selective oxidation of HMF 

over 2 wt. % Au/HT and kinetic constant experimentally determined. 

In accordance with previous literature, which holds that alcohols are oxidised 

more slowly than aldehydes over Au58, 64, the step HMFCA  FFCA exhibited the 

slowest rate with/without additional NaOH; however, the aldehyde oxidation in step 1 

and 3 exhibited the strongest NaOH dependencies.  
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3.2.4.3 The effect of NaOH on the aerobic selox of 2-furfuryl alcohol and 2-furfural 

A model reaction, the aerobic selective oxidation of 2-furfuryl alcohol and 2-

furfural to 2-furoic acid, was chosen to isolate and understand the differences between 

the NaOH contribution to the selective oxidation of the alcohol function and the 

aldehyde one. The catalyst studied was 2 wt. % Au on HT with and without extra added 

NaOH and the reaction is shown in Scheme 3.4. 

 

 

 

 

Scheme 3.4: two-steps aerobic selective oxidation of 2-furfuryl alcohol to 2-furfural and 

to 2-furoic acid.  

Reaction conditions were identical to the previously described ones for the 

aerobic selective oxidation of HMF. As expected, the NaOH contribution was essential 

to accelerate the oxidation of the alcohol function of 2-furfuryl alcohol, remarking the 

importance of pH also for the model reaction. The selective oxidation of 2-furaldehyde 

was already fast at pH = 9 and further proof that the rate-determining step is the 

oxidation of R-OH function.  

Figure 3.29 summarises and compares all the results for the selox of HMF, 

HMFCA, FFCA, 2-furfuryl alcohol and 2-furaldehyde.  
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Figure 3.29: comparative NaOH rate enhancements for the selective aerobic oxidation 

of furanic aldehydes versus alcohols over a 2 wt. % Au/HT catalyst. Reaction 

conditions: 25 mg of catalyst, 0.2 mmol of R-CHO or 0.1 mmol of R-OH, T = 90 °C, V 

= 6 ml H2O and  O2 = 15 ml/min. Amount of added NaOH = 6 mmol, pH = 14. 

 

3.2.4.4 The effect of different Au loading on the aerobic selox of HMF and HMFCA 

A series of different Au loadings, respectively 0.5, 1, 2, 5 and 10 wt. %, were 

supported on HT, following the previously described deposition-precipitation 

procedure11 and reactions were carried out with and without extra added NaOH as 

described in Chapter 3.3.2. The raw and complete reaction profiles without extra added 

base are shown in Figure 3.30 below: 

 

R-CHO R-CH2OH 
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Figure 3.30: reaction profiles for the aerobic selective oxidation of HMF, using 

different Au loadings and without extra added base at pH = 9 a) 0.5 wt. % Au, HMF/Au 
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= 160 (mol/mol), b) 1 wt. % Au, 80 (mol/mol), c) 2 wt. % Au, 40 (mol/mol), d) 5 wt. % 

Au, 16 (mol/mol), and e) 10 wt. % Au, 8 (mol/mol). Reaction conditions: 25 mg of 

catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O, 500 rpm and  O2 = 15 ml/min.  

As the amount of gold increases, conversion and FDCA yields appear to 

increase, suggesting a positive impact of higher gold loading. The reactions were then 

repeated in the presence of 6 mmol of NaOH (pH = 14) and all the raw complete 

reaction profiles are shown in Figure 3.31. 

 



 
 

123 
 

 

Figure 3.31: reaction profiles for the aerobic selective oxidation of HMF, using 

different Au loadings and NaOH at pH = 14. A) 0.5 wt. % Au b) 1 wt. % Au c) 2 wt. % 

Au d) 5 wt. % Au and e) 10 wt. % Au. Reaction conditions and ratios as in Figure 3.31, 

added NaOH = 6 mmol (pH = 14). 

In order to better decouple the influence of gold from NaOH on the selective 

oxidation of the aldehyde and the alcohol function in HMF, additional reactions were 

performed in the same working conditions on 0.1 mmol of HMFCA. Raw reaction 

profiles are shown in Figure 3.32. 
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Figure 3.32: reaction profiles for the aerobic selective oxidation of HMFCA using 

different Au loadings and without extra added base at pH = 9. A) 0.5 wt. % Au, 

HMFCA/Au = 160 (mol/mol), b) 1 wt. % Au, 80 (mol/mol), c) 2 wt. % Au, 40 

(mol/mol), d) 5 wt. % Au, 16 (mol/mol), and e) 10 wt. % Au, 8 (mol/mol). Reaction 

conditions: 25 mg of catalyst, 0.1 mmol of HMFCA, T = 90 °C, V = 6 ml H2O and  O2 

= 15 ml/min.  

Also for HMFCA, as the amount of gold increases, conversion and FDCA yields 

appear to increase, suggesting a positive impact of higher gold loading. The reactions 

were then repeated in the presence of 6 mmol of NaOH (pH = 14) and all the raw 

complete reaction profiles are shown in Figure 3.33. 
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Figure 3.33: reaction profiles for the aerobic selective oxidation of HMFCA using 

different Au loadings + NaOH at pH = 14. A) 0.5 wt. % Au, b) 1 wt. % Au, c) 2 wt. % 

Au, d) 5 wt. % Au and e) 10 wt. % Au. Reaction conditions as in Figure 3.32, added 

NaOH = 6 mmol (pH = 14). 

A systematic kinetic study to follow any eventual minor impact of NaOH on the 

conversion of HMF as the gold loading increases was then carried out using an excess 

of HMF (0.2 mmol instead of 0.1 mmol), in order to slow down the rapid oxidation of 

HMF to HMFCA. Results for HMF and for HMFCA are shown in Figure 3.34, 

showing 0.5 wt. % Au/HT as the most active catalyst per gram of Au in the presence or 

absence of NaOH 1M (pH = 14) for the selox of HMF, and showing 5 wt. % Au/HT as 

the most active for the selox of HMFCA. 
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Figure 3.34: left – mass normalised rates of HMF oxidation as a function of Au loading 

with and without NaOH = 6 mmol (pH = 14) addition. Reaction conditions: 25 mg of 

catalyst, 0.2 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. Right – 

mass normalised rates of HMFCA oxidation as a function of Au loading with and 

without NaOH = 6 mmol (pH = 14) addition. Reaction conditions: 25 mg of catalyst, 

0.1 mmol of HMFCA, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 

The preceding mass normalised initial rates factor in the total gold present, and 

hence are only proportional to the density of surface Au active sites. A better parameter 

for comparing catalyst performance is the Turnover Frequency (TOF), which is 

problematic for gold since it is hard to implement conventional CO or H2 chemisorption 

methods adopted for Platinum Group Metals. A correlation between geometric 

properties of gold nanoparticles and the bulk amount of gold determined by ICP 

analysis was therefore used to estimate the Au surface atom density and thereby 

calculate TOFs. Corma and co-authors65 estimated the number of external surface Au 

atoms on the basis of Au mean particle size. In this thesis, the same model is adopted. 

Assuming that gold nanoparticles can be modelled as an fcc crystal lattice; the number 

of gold atoms per particle (NT) was found using the Equation 3.4:    

< d > = 1.105 × dat × NT
1/3            Equation 3.4 

whereas < d > is the mean diameter of gold particle size, determined as an average from 

XRD, XAS and TEM measurements and dat is the atomic diameter of gold (0.288 nm). 
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According to the fcc model, one atom is surrounded by 12 neighbour atoms, 

assuming a full shell close packing model, and NT is related to the number of shells (m) 

(Equation 3.5). Then, the number of external Au atoms can be estimated using the 

Equation 3.6. 

NT = 
(10 𝑚3−15 𝑚2+11𝑚−3) 

3
     Equation 3.5 

Ns = 10 m2 – 20m + 12                       Equation 3.6 

TOF = 
𝐻𝑀𝐹 𝑟𝑎𝑡𝑒 (𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 ×ℎ−1)

𝑛° 𝑜𝑓 𝐴𝑢 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑡𝑜𝑚𝑠 
          Equation 3.7 

TOF values were calculated using the Equation 3.7. Comotti and co-authors5 

and also Fang and co-authors66 observed that for particles larger than 6 nm, TOF values 

deviate from linearity and a sharp cut off is observed above 10 nm. Also in this thesis 

work the same problem occurred, therefore TOF values were normalised by the fraction 

of particles below 6 nm, obtained from TEM measurements, and results for Au/HT 

selox of HMF and HMFCA are shown in Figure 3.35.  

 

Figure 3.35: left – calculated TOF values for the aerobic selective oxidation of HMF as 

a function of gold loading, right – TOF values for the aerobic selective oxidation of 

HMFCA. Reaction conditions: 25 mg of catalyst, 0.2 mmol of HMF, T = 90 °C, V = 6 

ml H2O and  O2 = 15 ml/min.  
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Based on experimental results shown thorough Chapter 3.2.4.4, it appears that 

the overall selective oxidation of HMF to FDCA can be promoted enhancing the rate of 

surface catalysed geminal diol dehydrogenation in step 1 (HMF/HMFCA) and 3 

(FFCA/FDCA) (see Scheme 3.3 in Chapter 3.2.4.2) to corresponding carboxylic acid 

simply by increasing the gold concentration50.  

Figure 3.36 summarises that higher gold loadings indeed promoted FDCA 

production (at the expense of HMFCA), with a 78 % yield of the desired dicarboxylic 

acid, attainable for 10 wt. % Au/HT in the absence of any soluble base50. This 

achievement shows the ability of gold to ameliorate the strong requirement for 

additional NaOH to drive the two R-CHO oxidation steps (HMF/HMFCA and 

FFCA/FDCA respectively). It is evident that NaOH rate – enhancements for the selox 

of HMF fall three-fold as the bulk Au content rises from 0.5 – 10 wt. %, while for the 

final FFCA oxidation step this enhancement falls 40 – fold over the same gold range.  

High FDCA yields are therefore achievable either by using low concentrations 

of Au in conjunction with a strong soluble base, or high concentrations of Au on a 

moderate strength solid base.  

 

Figure 3.36: (main) impact of Au loading on the sensitivity of individual oxidation 

steps towards soluble base addition over Au/HT catalysts; (inset) Au loading dependent 

product selectivity in HMF oxidation in the absence of soluble base. Reaction 

conditions: 25 mg of catalyst, 0.2 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 

15 ml/min.  
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3.2.4.5 The effect of Mg(OH)2 and extra added HT on the selective oxidation of HMF 

According to Gupta and co-authors11, a nominal Mg/Al ratio of 5 was declared 

for the best hydrotalcite chosen as the support for Au NPs but, as shown by Vegard’s 

law in Chapter 3.2.3.2, this value is outside the accepted limits for pure phase HT17. 

The following series of experiments was carried out to understand if Gupta’s 

hydrotalcites were affected by contaminations, due to the precipitation and segregation  

of Mg(OH)2 brucite. The same batch of catalyst used for the tests described in Chapter 

3.3.1 was run with or without the addition of different amounts of Mg(OH)2 from 1 to 4 

times the total amount of Mg in the hydrotalcite. (Figure 3.37). 

 

Figure 3.37: the minor impact of extra added HT (+ 75 mg) or Mg(OH)2 (+ 17.5, + 

49.8 or + 67.5 mg) on the aerobic selective oxidation of HMF after 7 h. Reaction 

conditions: 25 mg of catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 

15 ml/min.  

Even if the addition of Mg(OH)2 improved both the conversion and the FDCA 

yield, this enhancement was not as significant as the one obtained with NaOH. The 

measured pH for all the different quantities of added Mg(OH)2 was 10, as expected by 

its limited solubility (Kps = 1.5 × 10-11), and this provided further evidence of the effect 

of pH on this reaction.  

The addition of extra hydrotalcite to the catalyst did not improve the conversion 

or FDCA yield. The pH was found to be always 9, independent by the amount of added 
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HT, as expected. A blank test with only parent hydrotalcite was performed for the 

aerobic selective oxidation of HMF and no conversion was obtained. 

3.2.4.6 Leaching study 

The Sheldon test67 consists in a hot filtration of the heterogeneous catalyst to 

determine if, after its removal, any homogeneous contributes affect the reaction and it 

was performed in the following conditions: 0.1 mmol of HMF, 6 ml H2O, 25 mg of 2 

wt. % Au/HT and 15 ml/min O2 at T = 90 °C and 500 rpm. Samples were taken and, 

after 1 h, the hot mixture was filtered off and the catalyst was removed. The reaction 

was left on-going for other two h, but no reaction occurred in the absence of catalyst, 

suggesting that Au nanoparticles do not leach from the support to the homogeneous 

phase. When the catalyst was added back to the reaction, the conversion restarted and 

results are shown in Figure 3.38. 

 

Figure 3.38: Sheldon test showing no reaction after the removal of the catalyst and its 

restart once that the catalyst was re-added. Reaction conditions: 0.1 mmol of HMF, 6 ml 

of H2O, 25 mg of 2 wt. % Au/HT and 15 ml/min O2, at T = 90 °C and 500 rpm.  

The reaction was repeated in the same conditions in parallel, pH was monitored 

for all the 7 h, showing that it dropped down from 9 to 6.5 during the reaction. ICP 

analysis was thus carried out to look for Mg, Al and Au in the liquid phase after the 

filtration. No significant Au and Al was found, 0.012 and 0.029 ppm respectively, but a 
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Mg leach was detected to be 19 % of the initial amount, suggesting that it might react 

with formed FDCA, permanently removing Mg as FDCA salts. 

The catalyst was then filtered off, washed several times with H2O, dried in the 

oven overnight at T = 100 °C, recovered, calcined at 200 °C in oxygen to be reactivated 

and re-used for three times. Results are shown in Figure 3.39. The catalyst maintained 

activity after three catalytic tests, after thermal treatment prior to re-use, and decreases 

in yields and selectivity were attributed to the already discussed loss of Mg and of 

basicity. 

 

Figure 3.39: recycling test for the aerobic selection of HMF, catalyst 2 wt. % Au/HT at 

200 °C. The activity was maintained after three catalytic tests. Reaction conditions: 1st 

test) 0.6 mmol of HMF, 36 ml of H2O, 151 mg of 2 wt. % Au/HT. 2nd test) 0.3 mmol of 

HMF, 18 ml of H2O, 78 mg of 2 wt. % Au/HT. 3rd test) 0.1 mmol of HMF, 6 ml of H2O, 

25 mg of 2 wt. % Au/HT; all reactions were carried out at T = 90 °C, 15 ml/min O2 and 

500 rpm. 

3.2.4.7 EDX and XPS elemental analysis on the spent catalyst 

To further understand the effect and the importance of NaOH and high pH on 

the deactivation of the catalyst, EDX elemental analysis was run on the spent and on the 

fresh catalysts (Table 3.7), showing that for Na-free HT, a minor leaching of Mg occurs 

after the reaction. The loss of added NaOH forms the disodic salt of FDCA and prevents 

Mg leaching. 
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Table 3.7: comparison between EDX on Na-free fresh catalyst and all the exhausted 

ones, all data in wt. %. 

 

Na-Free fresh Na-Free spent Na/Mg 0.1 Na/Mg 1  Na/Mg 5 Na/Mg 10 Na/Mg 20 

C 10.50 11.83 12.18 8.96 8.59 19.10 6.91 

O 59.32 56.97 55.48 59.53 59.46 55.39 57.12 

Na 0 0 0.03 0.54 1.74 2.24 6.70 

Mg 21.40 21.44 22.29 21.50 21.03 16.53 20.18 

Al 7.77 8.64 8.70 8.37 8.26 6.11 7.63 

Au 0.97 1.11 1.35 1.08 0.94 0.63 1.45 

Mg/Al 2.75 2.48 2.56 2.57 2.54 2.65 2.64 

  

3.2.4.8 Order of reaction and Arrhenius parameters 

The selective oxidations of HMF and HMFCA were studied and compared using 

25 mg of 0.5, 1, 2, 5 and 10 wt. % Au/HT, in the reaction conditions previously 

described, in order to find the order of reaction in gold. Plots of the logarithm of initial 

rates vs. logarithm of gold concentration (Figure 3.40) show a linear increase for the 

first four points and a slope of 1, corresponding to first order of reaction in gold. For 

catalysts having 10 wt. % of gold, the regime is not linear anymore, suggesting that not 

all gold but exclusively surface Au atoms participate to the reaction5, as already 

discussed in Chapter 3.2.4.4. 
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Figure 3.40: order of reaction in gold for the aerobic selective oxidation of HMF (blue) 

and HMFCA (red). Reaction conditions: 0.1 mmol of HMF, 6 ml of H2O, 25 mg of 

catalyst; all reactions were carried out at T = 90 °C, 15 ml/min O2 and 500 rpm. 

To find the order of reaction in HMF, 25 mg of 2 wt. % Au were tested for 

different quantities of HMF, respectively 0.1, 0.2 and 0.5 mmol, and the relative rate 

constants were found. A plot of the logarithm of HMF concentrations vs. logarithm of 

relative rates of reaction (Figure 3.41) has shown an order of reaction 1 for HMF. 

 

Figure 3.41: aerobic selective oxidation of HMF over Au/HT catalysts, an order of 

reaction of 1 was found for HMF. Reaction conditions: 0.1, 0.2 or 0.5 mmol of HMF, 6 

ml of H2O, 25 mg of catalyst, T = 90 °C, 15 ml/min O2 and 500 rpm. 

A Parr autoclave was used to find the order of reaction in O2, the reaction was 

carried out at 1, 5 and 10 atm. A logarithm plot of the O2 pressure vs. logarithm of 

relative rates of reaction (Figure 3.42) has shown an order of reaction of 0.5 for O2, 

which is consistent with slow activation of oxygen by gold. 
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Figure 3.42: a fractionary order of reaction in O2 for the aerobic selox of HMF over 

Au/HT catalysts. Reaction conditions: 1 mmol of HMF, 60 ml of H2O, 250 mg of 

catalyst, T = 90 °C, 500 rpm and different pO2 (1, 5 or 10 atm). 

To find the Arrhenius activation energy Ea for the selective oxidation of HMF 

and HMFCA, 25 mg of 2 wt. % Au were tested with 0.1 mmol of HMF or HMFCA, at 

different reaction temperatures, respectively 25, 40, 60 and 90 °C. Kinetic constants68 

were determined and a plot of the logarithm of k HMF or k HMFCA vs. 1/T (Figure 

3.43) has given Ea = 32 kJ mol-1 for the selox of HMF and Ea = 40 kJ mol-1 for the selox 

of HMFCA; these values agree with what reported by Davis and co-authors16, even if in 

this thesis work a higher difference between the alcohol and the aldehyde was found, 

confirming that the activation of the alcohol is the rate-determining step50, 58, 64. 
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Figure 3.43: Arrhenius Ea for the selox of HMF (left) and for the selox of HMFCA 

(right). Reaction conditions: 0.1 mmol of HMF, 25 mg of 2 wt. % Au/HT at 200 °C 

catalyst, V = 6 ml H2O, 500 rpm and  O2 = 15 ml/min. T = 25, 40, 60 or 90 °C.  

3.2.5 Proposed reaction pathway 

Following the discussion through this Chapter, high FDCA yields have been 

proved to be achievable either by using low concentrations of Au and a strong soluble 

base, such as NaOH, or high concentrations of Au on a moderate strength solid base, 

such as hydrotalcite. 

The proposed explanation50 for the loading dependence of these two catalytic 

regimes (soluble base  2 wt. % Au  solid base) is the competitive adsorption between 

HMF and HMFCA. The HMF:surface Au molar ratio approaches 60:1 for the 0.5 wt. % 

Au/HT catalyst, hence it is unlikely that the low concentration of gem-diol formed 

without NaOH can effectively compete for adsorption sites over gold nanoparticles.  

 NaOH addition promotes and accelerates gem-diol formation12, 16, 58, 69 from 

HMF in solution, displacing the HMF adsorption equilibrium and liberating reactive 

gold surface site for both geminal diol dehydrogenation to HMFCA, and subsequent 

OH- mediated oxidative dehydrogenation of HMFCA to FFCA and FFCA 

hydration/dehydrogenation to FDCA.  

In contrast, the HMF:surface Au molar ratio is only 5:1 for the 10 wt. % Au/HT 

catalyst, and the geminal diol may face significantly less competition from HMF for 
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vacant gold sites. These hypotheses are supported by the strong non-linear dependence 

of FDCA production on HMF conversion (Figure 3.44 main). FDCA production 

requires a threshold HMF conversion > 80 %, indicating that high concentrations of 

reactively-formed HMFCA, that comes from the first oxidation step, are necessary to 

compete effectively with unreacted HMF for subsequent oxidation.  

FDCA production via the direct aerobic oxidation of HMFCA is, instead, near 

quantitative and increases linearly with surface Au concentration/conversion, as 

anticipated for a structure-insensitive reaction in which the reactant coverage is low 

(weak adsorption or rapid reaction). 

 

Figure 3.44: FDCA yield as a function of HMF (HMFCA) conversion over 25 mg  

( ) 0.5 wt. %, () 1 wt. %,  ( ) 2 wt. %, () 5 wt. %, and () 10 wt. % 

Au/HT catalysts, and 50 mg ( ) 2 wt. % Au/HT. Inset shows the FDCA productivity as 

a function of HMF:surface Au molar ratio for 2 wt. % Au/HT. 

Further evidence that strong HMF adsorption site-blocks oxidation of its 

reactively-formed products is apparent in Figure 3.44 inset, wherein the HMF:surface 

Au ratio was varied for the 2 wt. % Au/HT catalyst. In the absence of diffusion 

limitations, and the presence of available reaction sites, the mass normalised FDCA 

productivity should be independent of substrate:catalyst ratio, whereas Figure 3.44 

inset reveals that halving the HMF:surface Au ratio imparts a seven-fold increase in 

FDCA productivity. Reactive gold sites for HMFCA oxidation only become available 
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for HMF:surface Au ratios below a critical threshold wherein it can effectively compete 

with adsorption of the parent HMF. 

3.3 Conclusions 

Hydrotalcites having Mg/Al = 3 molar ratio were prepared using an alkali-free 

method via co-precipitation route. A series of different gold wt. % catalysts were 

supported on them using the deposition precipitation method and calcined at 200 °C.   

Catalysts were tested for the aerobic selective oxidation of HMF to FDCA 

before or after the addition of an excess of NaOH 1M solution. On increasing of pH, 

conversion and FDCA yields improved and the reaction was found to be pH-dependent, 

being the oxidation of alcohol the rate-determining step.  

Hydroxide ions facilitate both the activation of the aldehyde function and the 

initial deprotonation of alcohols, which are well-known to be weak acids (pKa = 14–

18), since a gold catalyst, by itself, cannot deprotonate the hydroxyl group of alcohols. 

The order of reaction for gold, for HMF and for oxygen were experimentally 

determined and the Arrhenius parameters explained why alcohols react slower than 

aldehydes under these working conditions, being Ea R–OH > Ea R–CHO.   

The combination of operando XAS and detailed kinetic mapping has elucidated 

the nature of the active sites and mechanism of Au catalysed HMF aerobic selox to 

FDCA. A delicate balance is revealed between the rate of base catalysed HMF 

activation and the latter’s self-poisoning of requisite metallic gold sites for subsequent 

oxidation of reactively-formed HMFCA/FFCA intermediates. Hydrotalcite solid base 

can only drive HMF selox in concert with high concentrations of surface gold, a 

discovery that has important implications for gold catalysis and cascade oxidations. 
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3.4 Appendix 

It is worth remembering that softwares consider NMR predictions in CDCl3, but 

D2O was used in this thesis work to have NaOD. Differences between predictions and 

experimental data are explained in each spectra below. Spectra prediction was obtained 

using ChemDraw 12. 

 

Figure 3a.1: predicted 1H NMR spectra of HMF. H: A) 9.74 ppm (s, 1H, –CHO); B) 

7.20 ppm (d, 1H, aromatic –CH near R–CHO, J = 3.477), C) 6.33 ppm (d, 1H, aromatic 

–CH near R–OH, J = 3.48); D) 4.64 ppm (s, 1H, –OH); E, F) 4.5 ppm (s, 2H, R–CH2). 

Minor shifts appear in experimental data, run in D2O. 
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Figure 3a.2: predicted 1H NMR spectra of HMF gem-diol. H: A, B) 6.22 ppm (d, 2H, 

aromatic –CH, J = 3.46), C) 6.11 ppm (s, 1H, aldehyde that became gem-diol); D, E, F) 

4.7 ppm (s, 3H, –OH); G, I) 4.5 ppm (s, 2H, R–CH2). In D2O –OH exchange with 

water. 

 
Figure 3a.3: predicted 1H NMR spectra of HMFCA. H: A) 11.0 ppm (s, 1H, R–COOH, 

B) 7.15 ppm (d, 1H, aromatic –CH near aldehyde, J = 7.5), C) 6.72 ppm (d, 1H, 

aromatic –CH near alcohol, J = 7.5); D, E) 4.39 ppm (s, 2H, R–CH2); F) 3.65 ppm (s, 

1H, –OH). In D2O –OH and –COOH exchange with water. 
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Figure 3a.4: 1H NMR spectra of HMFCA standard. H (300 MHz, D2O): A, F) 4.70 

ppm (s, 2H, R–OH and R–COOH; B, C) 4.49 ppm (s, 2H, R–CH2), D) 6.42 ppm (d, 1H, 

aromatic –CH near alcohol, J = 7.52); E) 7.13 ppm (d, 1H, aromatic –CH near 

carboxylic acid, J = 7.52). In D2O –OH and –COOH exchange with water. 

 

Figure 3a.5: predicted 1H NMR spectra of DHMF. H: A, B) 6.34 ppm (s, 2H, aromatic 

–CH) C, D, E, F) 4.39 ppm (s, 4H, R–CH2) G, I) 3.65 ppm (s, 1H, –OH). In D2O –OH 

and –COOH exchange with water. 
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4.1 Introduction 

Calcination of hydrotalcites at temperatures between 450–500 °C is known to 

result in the loss of interlayer carbonate anions and the concomitant formation of mixed 

metal oxides1-4. Subsequent rehydration of such mixed metal oxides can promote re-

regeneration of the parent layered double hydroxide structure, the so-called “memory 

effect”4-8, in which hydroxide anions replace the original carbonates within the 

interlayers, provided that the calcination temperature remains below around 550 °C9. 

Rehydration of thermally generated periclase-like Mg-(Al)-O is critical for the 

production of Brønsted base sites within hydrotalcites and their associated solid base 

catalysis10-13.  

Our group has previously demonstrated the utility of calcined-rehydrated 

hydrotalcites as solid bases for the transesterification of triglycerides in biodiesel 

production,14-15 however the corresponding 48 h vapour phase rehydration protocol is 

time-consuming, and the impact of calcination temperature on base properties has not 

been systematically investigated to date16.  

In this chapter, a 2 wt. % Au/HT material prepared as described in Chapter 3 

(200 °C calcination without rehydration) has therefore been compared with analogues 

prepared at different calcination temperatures between 300-500 °C wherein mixed 

Mg3Al oxides are expected to form in order to identify the optimal calcination 

temperature. The effect of gold loading and attendant catalytic 5-HMF oxidation was 

subsequently studied over this optimal hydrotalcite. 

Alternative rehydration strategies were then assessed in terms of their effect 

upon hydrotalcite basicity selective 5-HMF oxidation over a 2 wt. % Au/HT calcined at 

either 300 or 450 °C. Three rehydration methods were compared: room temperature 

vapour phase treatment2, 4, 16 with wet N2; subcritical water treatment at 120 °C under an 

autogenous water pressure17; and immersion in boiling water at ambient pressure16. 

Synergies between calcination temperature and rehydration protocol were explored in 

regard of hydrotalcite reconstruction and catalysis.  

Finally, the impact of gold loading on hydrotalcite calcined at 450 °C and 

subject to vapour phase rehydration was explored, in order to identify the optimum 

synthetic route to Au/HT catalysts for high activity and selectivity in 5-HMF oxidation. 
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4.2 Results and discussion 

4.2.1 Preparation of 2 wt. % Au/HT and Au/mixed oxides 

Hydrotalcites were synthesised as previously described in Chapter 2.1.1 using 

the alkali-free co-precipitation method of Cantrell and co-workers14, with some 

modifications, from diluted metal nitrate solutions. A deposition-precipitation method 

was employed to prepare 2 wt. % Au/HT or Au/MgAl oxide catalysts as previously 

described by Gupta and co-authors18 and as already described in Chapter 2.1.2.   

The preceding 2 wt. % Au supported on HT catalyst was subsequently divided 

into two batches: one calcined at 300 °C under oxygen for 4 h; the other one calcined at 

450 °C for the same duration, indicated by calcined hydrotalcite (CHT). Each of these 

batches was sub-divided into three portions and rehydrated in three different ways: 

vapour phase2, 4, 16, subcritical water at 120 °C in a pressure flask17, or boiling in hot 

water at 100 °C16, as described in Chapter 2.1.3 

4.2.2 Preparation of different Au loadings on different calcined and 

rehydrated hydrotalcites  

A range of gold loadings spanning 0.5, 1, 2, 5 and 10 wt. % were supported on 

HT as described above, calcined at 450 °C for 4 h and subsequent water vapour phase 

rehydration under wet N2 for 48 h was conducted. 

4.2.3 Characterisation of 2 wt. % Au supported on mixed oxides 

4.2.3.1 XRD  

Ex situ powder XRD was run on the sample of parent HT calcined at 200 °C and 

on 2 wt. % Au/CHT at 200, 300, 400 and 500 °C. The parent HT exhibited reflections at 

11.2° (d 003), 22.4° (d 006), 34.2° (d 009), 38.3° (d 015), 44.6° (d 018), 60.1° (d 110), 

61.3° (d 113) and 64.7° (d 116). As discussed in Chapter 3.2.3.2, no impurities of Mg 

or Al oxides or carbonates were observed, indicating a pure HT phase4, 15. As reported 

by Corma10-12 and Cavani4, calcination converts hydrotalcites into mixed Mg3Al oxides 

at above 450 °C, as shown in Figure 4.1. 



 
 

150 

 

 

Figure 4.1: XRD patterns of 2 wt. % Au/CHT catalysts as a function of calcination 

temperature: ● hydrotalcite, ○ MgxAlyOz-like phase, ◊ Au. 

The nature of these mixed oxides and their formulas have been widely debated 

in the literature19; Reichle and co-authors9 and Corma and co-authors13 proposed either 

Mg6Al2O8(OH)2 or Mg6Al2O9 at 300 °C ≤ calcination T ≤ 500 °C.  

The a value was calculated from the 43.6° (d 200 for MgO) reflection in Figure 

4.1 and exhibited a common value of 4.184 Å for the materials calcined at 400 °C and 

500 °C, very similar to the 4.174 Å reported by Miyata and co-authors20 and by Rives 

and co-authors19, which is less than the 4.214 Å observed for pure MgO21. This 

indicates replacement of Mg2+ by smaller Al3+ cations in the formation of a mixed 

MgxAlyOz-like oxide, and consequent lattice contraction, with a likely Mg/Al 

stoichiometry of 3:1.  

Considering Figure 4.1, calcination at 300 °C was sufficient to partially 

transform the initial HT structure into a mixture of hydrotalcite and mixed metal oxide 

phases. Higher calcination temperatures > 400 °C proved necessary to fully decompose 

the hydrotalcite structure into mixed Mg3Al oxides2, 4. The peak widths of high 

temperature calcined samples were also broad, indicating small crystallites6. Peak fitting 

was done on peaks at 43.6° (d 200 for MgO) and Scherrer analysis for mixed Mg3Al 

oxides has shown very small crystallites, respectively 2.3 nm for materials calcined at 

400 °C and 2.1 nm for materials at 500 °C; gold peaks at 38° were clearly visible, 
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showing nanoparticles of 5.2 nm for the sample at 400 °C and 5.4 nm for the sample at 

500 °C.     

Vegard’s law1, 2 is an empiric rule and states that the lattice parameters of a solid 

solution of two constituents is approximately equal to a rule of mixtures of the two 

constituents’ lattice parameters at the same temperature. Vegard’s law (Equation 1) 

was used to demonstrate that these obtained Mg3Al mixed oxides were not a simple 

physical mixture of MgO and Al2O3, as the law is valid when both components A and B 

have the same crystal structure.  

aA(1-x)Bx = (1 – x) aA + x aB               Equation 1 

Whereas aA(1-x)Bx is the lattice parameter of the solution, aA and aB are the 

lattice parameters of the pure constituents, and x is the molar fraction of B in the 

solution.  Considering lattice parameters for MgO = 4.214 Å (d 200) and for -Al2O3 = 

2.380 Å (which is the most stable alumina phase at 400-600 °C), the Vegard’s law 

becomes 

            aA(1-x)Bx = (0.75 * 4.214) + (0.25 * 2.38) = 3.755 Å 

which is far from the measured 4.184 Å. Therefore, the resulting material is not a 

physical mixture of magnesium and aluminum oxides. 

To further elucidate this phase transformation, in situ XRD was carried out of a 

HAuCl4 precursor supported onto HT as a function of calcination temperature under O2 

between room temperature and 600 °C (Figure 4.2). 

https://en.wikipedia.org/wiki/Lattice_constant
https://en.wikipedia.org/wiki/Solid_solution
https://en.wikipedia.org/wiki/Solid_solution
https://en.wikipedia.org/wiki/Rule_of_mixtures
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Figure 4.2: in-situ XRD patterns for HAuCl4 deposited on HT as a function of 

calcination temperature.  

 The characteristic hydrotalcite reflections20, 22 begin to weaken above 144 °C, 

although the structure is maintained until 200-250 °C. By 300 °C, a mixture of 

hydrotalcite and mixed Mg3Al oxides is observed, likely due to the loss of hydroxyls as 

indicated by DRIFTS (see Chpater 4.2.3.4), while after 350 °C the material starts 

losing carbonates, yielding mixed Mg3Al oxides and being stable until the chosen 

temperature of 600 °C23. 

As already explained in Chapter 3.2.3.2, Au peaks are usually visible at 38° (d 

111), 44° (d 200), 65° (d 220) and 78° (d 311), however these peaks overlap with the 

stronger HT reflections and are hence not visible for low gold loadings, necessitating 

background subtraction of the parent hydrotalcite contribution. The resulting 

background subtracted Au refelctions (Figure 4.3) were fitted in order to estimate the 

average gold particle size via Scherrer analysis24, which reveals a monotonic increase in 

Au particle size with temperature. 
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Figure 4.3: left - XRD patterns of 2 wt. % Au/CHT after subtraction of HT component 

as a function of calcination temperature; right – evolution of Au particle size with 

loading. The XRD spectra of HT were subtracted from the Au/HT ones and the peak at 

38° was fitted using CASA, using GL curves to find the FWHM. 

 

4.2.3.2 N2 Porosimetry 

N2 adsorption-desorption isotherms25, 26 for parent hydrotalcite and for 2 wt. % 

Au supported on CHT at different calcination temperatures are shown in Figure 4.4. 

The parent hydrotalcite exhibited a type II H3 isotherm, consistent with microporous 

crystallites having interplatelet mesoporous voids and slit type pores27. As the 

calcination temperature increased the isotherms exhibited smaller hysteresis loops than 

the parent HT indicating a loss of mesoporosity and increased crystallinity. 
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Figure 4.4: N2 porosimetry isotherms for 2 wt. % Au/CHT as a function of calcination 

temperature. Isotherms offset for clarity. 

Table 4.1 reports the corresponding BET surface areas for the parent 

hydrotalcite and 2 wt. % Au/CHT materials. No significant differences were detected 

between the parent HT and catalyst calcined at 200 °C, with areas around 95 m2.g-1 in 

agreement with literature values1. As the calcination temperature increased to 300 °C 

the surface area increased1, 2, 6, 19, attributed to removal of interlayer carbonate and 

unblocking of micropores, reaching a maximum at 400 °C before falling at 500 °C, 

likely due to particle sintering as discussed in Chapter 4.2.3.4 and 4.2.3.6.  

Table 4.1: BET surface areas for parent HT and 2 wt. % Au/CHT materials from N2 

porosimetry. 

 BET surface area / m2.g-1 

Parent HT 95 ± 9.5 

2 wt.% AuCHT 200°C 90 ± 9 

2 wt.% AuCHT 300°C 122 ± 12.2 

2 wt.% AuCHT 400°C 143 ± 14.3 

2 wt.% AuCHT 500°C 110 ± 11 
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4.2.3.3 Thermal analysis 

TGA and dTGA profiles for parent HT and 2 wt. % Au/HT can be seen below in 

Figure 4.5; dTGA peak areas were quantified using fitting in Origin software. TGA 

analysis conducted on the parent HT revealed a three-stage weight loss2, 20, 28, 29.  

 

Figure 4.5: Thermogravimetric analysis of Mg3Al HT as prepared and after Au 

deposition-precipitation and 200 °C calcination.  

A first loss of weight (13.1 wt. % of the initial mass) occurred between 65-220 

°C, reaching a maximum at 217 °C. This is attributed to the removal of loosely bound 

water molecules from the hydrotalcite, trapped in slit-type pores; hence a higher 

temperature is necessary to desorb water, than the expected 100 °C. A second weight 

loss (34.3 wt. % of the initial amount) was observed between 330-380 °C, attributed to 

the loss of hydroxyls.  

A final weight loss (45.2 wt. % of the initial amount) is ascribed to the 

decomposition of interlayer carbonate anions between 400-550 °C, whose loss is 

anticipated to trigger the formation of mixed Mg3Al oxides. The principal difference 

following Au addition was the absence of the physisorbed water desorption at T = 217 

°C, suggesting that the thermal activation required to generate Au NPs (200 C 

calcination) sufficed to remove all interlayer water. These results and those from bulk 

elemental analysis in Chapter 3.2.3.1 were combined together to calculate the 

experimental chemical formula4, 30 of parent hydrotalcite before gold deposition-
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precipitation, that was found to be Mg5.77Al1.92(OH)15.3CO3·4.3 H2O, which is in good 

agreement with the theoretical formula4, 14 Mg6Al2(OH)16CO3·4 H2O.  

4.2.3.4 In situ DRIFTS 

Structural changes during calcination of the as-prepared hydrotalcite were 

further explored through an in situ DRIFT study as shown in Figure 4.6. 

 

Figure 4.6: left – in situ DRIFT spectra of hydrotalcite and 2 wt. % Au/CHT as a 

function of calcination temperature, spectra offset for clarity. Right – peak areas as a 

function of calcination temperature, showing a progressive decrease in OH stretching, in 

blue (loss of water and OH) and a two-step decrease in CO3
2- stretching, in red 

(rearrangement and loss of carbonates).  

As clearly visible, the carbonates’ rearrangement31 at 1497 cm-1 and 1331 cm-1 

starts already at 150 °C and it is complete at 300 °C, the new peaks corresponding to 

C=O at 1508 cm-1 and to C-O at 1338 cm-1, as discussed in Chapter 3.2.3.5; for higher 

temperatures, the carbonate band loses intensity, showing a loss of carbonates at 

temperatures above 450 °C.  

The physisorbed water removal from the interlayers starts at 100 °C and it is 

complete at 200 °C (loss of the band at 3080 cm-1), while higher temperatures are 

necessary to remove the OH groups (3800-2500 cm-1). This subsequent structural 

change begins at 300 °C and it is almost complete at 400 - 450 °C, when mixed Mg3Al 

oxides are formed, stable until 500 °C without evident changes31, 32.  
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4.2.3.5 Surface basicity 

CO2 chemisorption and subsequent thermal desorption was employed to 

calculate the surface base site density and strength1, 3, 15 of the 2 wt. % Au/CHT family 

as a function of calcination temperature. TPD spectra reveal differences in the total 

amount of CO2 adsorbed, and the CO2 adsorption strength.  

All materials were dominated by a desorption peak around 400 C, indicative of 

moderate solid basicity 1, 15, 33-35, which shifted slightly to higher temperature upon 

increasing the Au/CHT calcination temperature from 200 °C to 500 °C, indicating a 

small increase in base strength (Figure  4.7 – left).  

However, the 500 °C calcined sample also exhibited a low temperature CO2 

desorption peak around 200 °C, suggesting the presence of some weak base sites 

accompanies decomposition of the hydrotalcite and formation of mixed Mg3Al oxides. 

Figure  4.7 – right shows the integrated CO2 desorption peak areas, which reveals the 

number of base sites increased with calcination temperature, as previously reported in 

the literature36, 37. 

 

Figure 4.7: left –CO2 TPD spectra, and right - surface base density determined for 2 wt. 

% Au/CHT materials as a function of calcination temperature.  



 
 

158 

 

TPD data were further analysed to quantify the distribution of weak, medium 

and strong base sites, assuming that a molecule of CO2 can bind as bicarbonate species 

on the surface hydroxyls in lattice (weak sites), or as bicarbonate species on the 

interlayer anions (medium sites) or as mono- and bidentate species on strong oxides 

sites3, 38. Results are shown in Table 4.2 and Table 4.3. 

Table 4.2: base site strength percentage distribution for 2 wt. % Au/HT calcined at 

different temperatures. 

Calcination 

 T / °C 

Weak sites / % 

(200-280 °C) 

Medium sites / % 

(280-380 °C) 

Strong sites / %  

(380-450 °C) 

200 - 92.8 7.2 

300 - 71.9 28.1 

400 - 54.0 46.0 

500 23.6 43.9 32.5 

 

Table 4.3: Surface area normalised strong sites for 2 wt. % Au/CHT as a function of 

calcination temperature, and maximum CO2 desorption temperature. 

Calcination  

T / °C 

Density of strong 

sites / m-2 

Tmax CO2  

desorption  / °C 

200 1.26 × 1017 390 

300 9.19 × 1017 400 

400 1.45 × 1018 420 

500 1.04 × 1018 420 
 

4.2.3.6 Surface analysis 

XPS analysis was performed on the parent hydrotalcite and 2 wt. % Au/HT 

calcined at 200, 300, 400 and 500 °C in order to study the evolution of the HT to mixed 

Mg3Al oxide phase. Figure 4.8 – left shows the Mg 2p XP region for the parent 

hydrotalcite, for which a single chemical environment was fitted with a spin-orbit split 

doublet (separation = 0.28 eV) with binding energies of 50.54 and at 50.82 eV. These 

were attributed to Mg-OH in hydrotalcite phase, as in Chapter 3.2.3.8 (NIST database39 

50.40 eV for MgAl2O4 spinel, 49.50-49.90 eV for Mg hydrotalcite); the shift was 

attributed to the different Mg/Al ratio (3 for the analysed sample, 2 for HT in the 

database).  
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Figure 4.8 – right shows the Mg 2p XP region for 2 wt. % Au/HT calcined at 

200 °C, which required fitting with two distinct chemical environments. The first 

doublet was attributed to the parent HT phase as discussed above; the second state, with 

binding energies of 51.02 and 51.30 eV, was attributed to the formation of a mixed 

Mg3Al oxide following the loss of physisorbed water within the HT interlayers, due to 

the proximity of the Al3+ cations withdrawing charge from oxygen anions bound to 

Mg2+ centres2, 22.  

 

Figure 4.8: High resolution Mg 2p XP spectra of (left) the parent hydrotalcite and 

(right) 2 wt. % Au/CHT200. HT phase shown in red, mixed Mg3Al oxide in blue. 

Figure 4.9 shows the corresponding Mg 2p XP spectra following 300 °C and 

400 °C calcination, in which two chemical environments were likewise fitted, with the 

intensity of the higher binding energy mixed Mg3Al oxide state increasing at the 

expense of the hydrotalcite features with increasing calcination, in accordance with 

literature reports wherein OH and carbonate decomposition to mixed oxide phases 

occurs by 400-450 °C4, 10, 11. 
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Figure 4.9: High resolution Mg 2p XP spectra for (left) 2 wt. % Au/CHT300 and (right) 

2 wt. % Au/CHT400. HT phase shown in red, mixed Mg3Al oxide in blue. 

After calcination at 500 °C (Figure 4.10 – left) the amount of mixed Mg3Al 

oxide was much higher than HT. Temperature dependence intensities of both phases are 

shown in Figure 4.10 – right. 

 

Figure 4.10: left – high resolution Mg 2p XP spectra of 2 wt. % Au/CHT500; right – 

molar ratio of Mg in HT/Mg in mixed Mg3Al oxide surface concentrations (in blue) and 

of Al in HT/Al in mixed Mg3Al oxide (in red) as a function of calcination temperature. 
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The Al 2s spectra for the parent hydrotalcite (Figure 4.11 – left) was fitted by a 

single chemical environment, while the Al 2s spectra for CHT at 200 °C (Figure 4.11 – 

right) was fitted by a double chemical environment; the binding energy of 119.68 eV 

was attributed to HT-like phase and the one of 121.32 eV was attributed to the 

formation of a mixed Mg3Al oxide following the loss of physisorbed water within the 

HT interlayers, due to the proximity of the Al3+ cations withdrawing charge from 

oxygen anions bound to Mg2+ centres, as discussed above (NIST database39 119.50 eV 

for Al2O3, 119.10 eV for MgAl2O4; 118.5 eV for HT-phase, Cantrell and co-authors14).  

 

Figure 4.11: high resolution Al 2s XP spectra for parent hydrotalcite (left) and 2 wt. % 

Au/CHT at 200 °C (right). HT phase shown in red, mixed Mg3Al oxide in blue. 

The Al 2s spectra of CHT at 300 °C (Figure 4.12 – a) CHT at 400 °C (Figure 

4.12 – b) and CHT at 500 °C (Figure 4.12 – c) were likewise fitted by a double 

chemical environment; the amount of Al in Mg3Al oxides increased with the calcination 

temperature. 
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Figure 4.12: high resolution Al 2s XP spectra for a) 2 wt. % Au/CHT at 300 °C, b) at 

400 °C and c) at 500 °C. HT phase shown in red, mixed Mg3Al oxide in blue. 

Analysis of the analogous O 1s XP spectra supported the preceding observations 

of a phase change. The parent HT exhibited two distinct chemical components (Figure 

4.13 – a), one attributed to the O2- of HT and carbonates40, with a binding energy of 

532.4 eV, and the second one attributed to hydroxyls with a lower binding energy of 

531.0 eV (529.3-530.9 eV for OH in hydrotalcite phase, Cantrell and co-authors14).  

Figure 4.13 – b shows that after calcination at 200 °C, three chemical 

environments were necessary to fit the O 1s spectra, with the additional state at 529.7 

eV binding energy attributed to O2- in a Mg3Al oxide41, 42 (NIST database39 530.6-529.6 
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eV for MgO). The intensity of this mixed oxide component increased with calcination 

temperature (Figure 4.13 - a-e).  
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Figure 4.13: High resolution O 1s XP spectra of a) parent HT, b) 2 wt. % Au/CHT200, 

c) 2 wt. % Au/CHT300, d) 2 wt. % Au/CHT400 and e) 2 wt. % Au/CHT500. 

 In summary, calcination of Au/HT between 200-400 °C increases the surface 

area, accompanied by the formation of a mixed metal oxide phase with enhanced solid 

basicity. Additional calcination to 500 °C begins to lower the surface area and generates 

a small number of weak base sites, the latter due to segregation of Mg and Al oxide 

phase, possible at the edges of mixed oxide crystallites17. 

4.2.4 Characterisation of 2 wt. % Au/calcined-rehydrated hydrotalcites 

Bulk elemental analysis was performed to determine the actual Au content and 

Mg:Al ratio, and the structural properties of materials examined by powder X-ray 
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diffraction (XRD), N2 porosimetry and electron microscopy. SEM was also used to 

study the support morphology, and TEM to measure the average Au particle size. IR, 

TGA, XPS and CO2 TPD analysis were also performed to investigate the oxidation state 

and base properties of the hydrotalcite support and Au nanoparticles. 

4.2.4.1 Elemental analysis 

XPS analysis was run on the parent HT and 2 wt. % Au/calcined-rehydrated 

hydrotalcites, calcined at either 300 or 450 °C and subsequently rehydrated in the 

vapour phase, subcritical water or boiling water. Table 4.4 shows the surface Au 

loading of calcined and subsequently rehydrated materials. 

Table 4.4: surface Au loading of 2 wt. % Au/CHT and Au/CHTrehydrated series, from 

XPS. In all cases the average Mg:Al atomic ratio was 3.4 ± 0.3. 

Nominal 2 wt. %  

Au loading 

XPS / wt. % Au 

CHT200 2.1 

CHT300  1.9 

CHT300Vap 1.6 

CHT300Subw 1.3 

CHT300Hotw 1.3 

CHT450Vap 2.2 

CHT450Subw 1.1 

CHT450Hotw 1.3 

XPS elemental analysis has therefore shown that a gold leach occurred for all 

the catalysts calcined and rehydrated either in boiling water or in subcritical conditions, 

which did not happen in the case of calcination and rehydration in vapour phase. During 

the preparation of those two types of catalysts, the filtered water was visibly pink, 

indicating that gold was indeed leached under these aggressive conditions. All the 

resulting catalysts were subsequently tested for 5-HMF selox, however we note here 

that the most stable and promising material was the CHT450vap for which no leaching 

occurred.  Table 4.5 presents full surface elemental analysis for the CHT rehydrated 

materials. 
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Table 4.5: XPS surface elemental analysis of 2 wt. % Au loading supported on different 

CHT-RW. 

CHT300  

Vap 

Element 

/ wt.% 

CHT300 

Subw 

Element 

/ wt.% 

CHT300 

Hotw 

Element  

/ wt.% 

Mg 25.0 Mg 24.5 Mg 24.4 

Al 8.8 Al 7.6 Al 7.6 

O 54.0 O 50.9 O 52.8 

C 9.2 C 14.6 C 12.9 

Cl 1.4 Cl 1.1 Cl 0.8 

Au 1.6 Au 1.3 Au 1.3 

 

CHT450  

Vap  

Element 

/ wt.% 

CHT450  

Subw 

Element 

/ wt.% 

CHT450  

Hotw 

Element  

/ wt.% 

Mg 28.4 Mg 24.4 Mg 22.8 

Al 8.2 Al 7.9 Al 7.8 

O 53.1 O 52.1 O 53.2 

C 6.9 C 13.2 C 13.1 

Cl 1.2 Cl 1.5 Cl 1.7 

Au 2.2 Au 1.1 Au 1.3 

Calcined and rehydrated hydrotalcites, in which OH anions replace CO3
2- are 

also called meixnerite4, 6, 29, 37 and a detailed discussion on their structure, morphology 

and properties will be done in Chapter 4.2.4.2, while the formulas will be calculated in 

Chapter 4.2.4.6.  

4.2.4.2 XRD 

Ex situ powder X-ray diffraction was performed on the parent HT and 2 wt. % 

Au/CHT300vap or Au/CHT450vap materials. The parent hydrotalcite (Figure 4.12 – 

left) exhibited a series of reflections at 11.5° (d 003), 23.0° (d 006), 34.7° (d 009), 38.7° 

(d 015), 45.9° (d 018), 60.4° (d 110), 60.8° (d 113) and 65.4° (d 116), as already 

debated in Chapter 4.2.3.2. No impurities of Mg and Al oxides or carbonates were 

detected for this Mg3Al hydrotalcite, showing a pure HT phase2, 4, 19, 28, 43.  

As shown in Figure 4.14, calcination at 300 °C was sufficient to partially 

transform the HT structure to a mixture of hydrotalcite and oxide phases, as already 

described in Chapter 4.2.3.1. For both calcination temperatures, vapour phase 

rehydration proved sufficient to fully reconstruct the parent hydrotalcite phase22 from 
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the mixed oxides observed after calcination, with sharper reflections observed for the 

450 °C sample, indicating a higher degree of crystallinity in the reconstructed 

hydrotalcite10, 16. When carbonates are replaced by hydroxyl groups in hydrotalcite, the 

new resulting anionic clay is called meixnerite, for which the reported formula is 

Mg6Al2(OH)18 4H2O 4, 6, 29, 44 and this name was used also in this thesis work to indicate 

it.  

 

Figure 4.14: Ex situ XRD patterns of parent hydrotalcite and 2 wt. % Au/CHT and 

CHTrehydrated materials.  

Powder X-ray diffraction was carried out also on CHT calcined at 300 or at 450 

°C and rehydrated in three different ways (Figure 4.15), as described in Chapter 4.2.2. 

Rehydration in boiling water or in subcritical water appear to show a better 

reconstructed HT phase than rehydration in vapour phase, evidenced by more intense 

reflections which may be due to the presence of atmospheric CO2 that is intercalated 

within the HT structure during rehydration in water exposed to air, as opposed to 

aqueous vapour phase rehydration which was performed under an inert atmosphere. 
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Figure 4.15: Ex situ XRD patterns of (left) CHT300 and (right) CHT400 as a function 

of subsequent rehydration protocol.   

Powder XRD patterns were phase corrected using the software EVA, then 

interlayer spacing d and lattice parameters a and c were calculated for 2 wt. % Au 

supported on CHT300vap CHT450vap and compared with literature values1, 4, 45. 

Results are shown in Table 4.6 below.  

Table 4.6: interlayer spacing d and lattice parameters values for different gold loading 

on CHT-RW series at 300 and at 450 °C, as determined from powder XRD patterns. 

Catalyst Interlayer  

spacing d / Å 

Lattice parameter 

a / Å 

Lattice parameter 

c / Å 

Parent hydrotalcite 7.70 ± 0.01 3.053 ± 0.001 23.164 ± 0.001 

CHT300Vap 7.62 ± 0.01 3.062 ± 0.001 23.179 ± 0.001 

CHT450Vap 7.62 ± 0.01 3.043 ± 0.001 23.011 ± 0.001 

CHT300Hotw 7.62 ± 0.01 3.050 ± 0.001 23.037 ± 0.001 

CHT450Hotw 7.62 ± 0.01 3.043 ± 0.001 23.011 ± 0.001 

CHT300Subw 7.62 ± 0.01 3.050 ± 0.001 23.037 ± 0.001 

CHT450Subw 7.62 ± 0.01 3.043 ± 0.001 23.011 ± 0.001 

 

 

CHT300 

CHT300Vap 

CHT300Subw 

CHT300Hotw 

CHT450 

CHT450Vap 

CHT450Subw 

CHT450Hotw 
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For meixnerite materials, the reported literature value4 for the lattice parameter a 

was 3.046 Å, while for the lattice parameter c was 22.93 Å. Values calculated for 

CHT450vap were closer to the expected ones than values calculated for CHT300vap, 

confirming that higher calcination temperatures yielded higher removal of CO2 from the 

HT interlayers and subsequent major replacement with OH groups. As expected, also 

the interlayer spacing d was lower for meixnerite than for parent hydrotalcite, for the 

same reason above.  

As explained in Chapter 3.2.3.2, for a hydrotalcite–like structure with 

rombohedral 3R symmetry and stacking of brucite layers4, 46, the interlayer spacing d 

can be calculated from measuring the peak position of the d003 reflection from the XRD 

pattern and then with the Equation 4.1. 

d = d003 = 
n λ

2 sen θ
        Equation 4.1 

  The lattice parameter a, known as the unit cell parameter, was calculated using 

the d(110) XRD peak position, with the Equation 4.2. 

 a = 2 d110                    Equation 4.2 

For a hydrotalcite – like structure with rombohedral 3R symmetry stacking of 

brucite layers4, 16, The lattice parameter c, that corresponds to three times the interlayer 

spacing d between two consecutive layers, was calculated using the d(003), d(006) and 

d(009) XRD peak position, with the Equation 4.3 

 c = d003 + 2 d006 + 3 d009          Equation 4.3 

Volume-averaged HT crystallite sizes were determined using the peak at above 

11.5° using the Scherrer equation24 and results are summarised in Table 4.7. As already 

discussed in Chapter 3.2.3.2, small crystallite sizes indicate there is an extended 

ordered porous architectures formed via the agglomeration or fusion of these 

nanocrystalline platelets45. 
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Table 4.7: volume-averaged crystallite size for HT-like materials, obtained via Scherrer 

equation. Crystallite sizes increase after calcination-rehydration, being 7.2 nm for the 

starting material. 

Catalyst Peak position 2  / ° Average crystallite 

size / nm 

CHT300Vap 11.5 7.6 

CHT300Subw 11.4 16.1 

CHT300Hotw 11.7 17.5 

CHT450Vap 11.7 11.7 

CHT450Subw 11.7 19.3 

CHT450Hotw 11.8 18.4 

 

The reconstructed hydrotalcites have stronger peak intensities, sharper and more 

symmetric peaks and bigger average crystallite sizes than the parent hydrotalcite, 

indicating less stacking disorder and less turbostatic disorder16, 47-49. As observed by 

Davis and co-authors also in this thesis work, independently by the calcination 

temperature, the XRD patterns were weaker, and so crystallites size of the vapour phase 

reconstructed samples was significantly smaller, than that of either the reconstructed in 

hydrothermal treatment ones, but disappearing of MgO phase suggested the vapour 

phase rehydration was successful.   

4.2.4.3 N2 Porosimetry 

N2 adsorption-desorption isotherms25, 26 for the parent hydrotalcite and for CHT 

at 300 or 450 °C and rehydrated in aqueous vapour phase or in boiling water or in 

subcritical water can be seen in Figure 4.16 and Figure 4.17. The isotherms have been 

offset for clarity. 
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Figure 4.16: N2 porosimetry isotherms for the series of 2 wt. % Au loading on CHT at 

300 °C, then rehydrated at room temperature in aqueous vapour phase, at 120 °C in 

subcritical water or in boiling water at 100 °C.   

 

   

Figure 4.17: N2 porosimetry isotherms for the series of 2 wt. % Au loading on CHT at 

450 °C; then rehydrated at room temperature in aqueous vapour phase and under N2 

flow, at 120 °C in subcritical water or in boiling water at 100 °C. 

The parent hydrotalcite shows type II H3 isotherm, consistent with microporous 

crystallites having interplatelet mesoporous voids and slit type pores27, 50. This 

Subw 

Vap 

Hotw 

Subw 

Vap 

Hotw 
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behaviour remains in each case after calcination and subsequent rehydration, regardless 

of the rehydration method followed. Surface area values are shown in Table 4.8, 

whereas it is possible to observe an increase in surface area when parent HT is calcined 

at 300 °C, due to the partial removal of carbonates from the interlayers and 

consequential formation of interplatelet voids1.  

When rehydration occurs, a minor reduction of surface area is visible and it is 

identical for all the less hydroxylated CHT treated at 300 °C, in the range of 

experimental error, while surface area shows a dramatic drop off when the treatment 

occurred at 450 °C and yields more hydroxylated materials. This loss in surface area 

after rehydration was previously reported by several authors2, 10, 11 and described as a 

consequence of the closure of micropores and mesopores by agglomeration of platelets 

and subsequently formation of compact aggregates6, 51. 

Table 4.8: surface area values for parent HT and 2 wt. % gold loading on CHT at 300 

or 450 °C and rehydrated in three different ways, as determined by N2 porosimetry. 

 BET surface area / m2g-1 

Parent HT 95 ± 9.5 

CHT300 122 ± 12.2 

CHT300Vap 70 ± 7.0 

CHT300Subw 74 ± 7.4 

CHT300Hotw 76 ± 7.6 

CHT450Vap 25 ± 2.5 

CHT450Subw 24 ± 2.4 

CHT450Hotw 32 ± 3.2 
 

4.2.4.4 SEM of HT and CHTVap  

SEM images were obtained for the parent HT and for the CHT450Vap 

meixnerite4 materials without Au loaded on them and Figure 4.18 shows an example of 

typical SEM image of the parent hydrotalcite.  
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Figure 4.18: a representative SEM image of parent Mg3Al HT, showing characteristic 

sand rose morphology. 

The sample was calcined at 450 °C in oxygen for 4 hours and then rehydrated in 

aqueous vapour steam under wet nitrogen at room temperature for 48 hours, yielding 

meixnerite4, as already discussed in Chapter 4.2.3.2; SEM analysis has shown a 

complete reconstruction of sand-rose structure after the CHT-RW process, as visible in 

Figure 4.19 below. 

 

Figure 4.19: a representative SEM image of Mg3Al meixnerite, showing the 

reconstruction of characteristic sand-rose morphology after calcination and rehydration. 
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Large and well-defined (around 200 nm up to 1 μm) compact particles16, fused 

together, are clearly visible in both Figure 4.18 and 4.19, showing the characteristic 

sand-roses morphology and confirming the rombohedral 3R crystal system of 

hydrotalcite and meixnerite4, 46. 

4.2.4.5 Ex-situ DRIFT spectra  

Ex situ DRIFT spectra (Figure 4.20) show the differences between parent 

hydrotalcite and 2 wt. % Au/CHT at 300 or 450 °C and rehydrated either in aqueous 

vapour phase, or in boiling water or in subcritical water; the peak attribution was made 

according to Meliàn-Cabrera and co-authors’ paper31 and according to Davis and co-

authors’ one16. 

For the parent HT, the OH stretching at 3800-2500 cm-1 is clearly visible for all 

the materials as a broad band, attributed to the stretching of the hydroxyl groups of the 

brucite-like sheets, while the shoulder at 3080 cm-1 is given by hydrogen bonding 

between the water molecules and CO3
2- groups, both available in the interlayer region of 

a typical layered double hydroxide structure.  

 

Figure 4.20: left – ex-situ DRIFT-IR spectra of parent uncalcined HT and 2 wt. % 

Au/CHT-RW series at 300 °C, right – ex-situ DRIFT-IR spectra of parent uncalcined 

HT and 2 wt. % Au/CHT-RW series at 450 °C, showing that hydrotalcite phase was 

successfully reconstructed. 
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In the case of meixnerite4 materials, this shoulder band becomes more intense as 

the calcination temperature before the following rehydration increases, showing its 

highest intensity for CHT450Vap samples. This increase in intensity was attributed to 

partial replacement of CO3
2- with –OH ions31, suggesting the formation of stronger 

hydrogen bonds between vicinal –OH.    

The OH bending of physisorbed water is visible at 1590 cm-1 for parent HT, 

while the two bands at 1497 cm-1 and 1331 cm-1 are due to the stretching of CO3
2- in the 

interlayer region of the parent HT. As the calcination temperature before rehydration 

increases, the CO3
2- band decreases, while the OH bending becomes sharper, confirming 

what observed for the stretching bands16. DRIFT-IR spectra did not show significant 

differences between CHT-RW at 300 or at 450 °C, being the reappearing of water and 

OH bands after rehydration the main information in each case. Differences between the 

two calcined and rehydrated materials at different temperatures could be observed in 

XRD patterns, Chapter 4.2.4.2, in surface areas, as observed in Chapter 4.2.4.3 and 

after CO2 TPD analysis, as it will be discussed in Chapter 4.2.4.7. 

4.2.4.6 TGA and dTGA 

TGA and dTGA profiles for 2 wt. % Au/CHT at 300 °C or at 450 °C and 

rehydrated in three different ways series can be seen below in Figure 4.21; dTGA peak 

areas were analysed using Origin software.  
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Figure 4.21: Thermogravimetric analysis (TGA) and dTGA of 2 wt. % Au on CHT a) 

calcined at 300 °C and rehydrated in aqueous vapour phase, b) calcined at 300 °C and 

rehydrated in subcritical water c) calcined at 300 °C and rehydrated in hot water d) 

calcined at 450 °C and rehydrated in aqueous vapour phase e) calcined at 450 °C and 

rehydrated in subcritical water f) calcined at 450 °C and rehydrated in boiling water. 

The TGA analysis carried out on these materials has shown a two- or three-stage 

loss of weight2, 20, 28, 52, typical of rehydrated hydrotalcites containing hydroxide as the 

interlayer anions15. The first weight loss, between about 70 ºC and 220 ºC, was 

attributed to the loss of water molecules adsorbed to the hydrotalcite surface, as well as 

interlayer water.  
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For CHT at 300 °C RW series, the loss of weight at higher temperatures, 

between 315 and 490 °C was attributed to the loss of hydroxide anions and carbonates 

from within the brucite-like layers, while for CHT at 450 °C RW is attributed to the loss 

of hydroxides anions, being the carbonates removed during the catalyst preparation; 

results are shown in Table 4.9.  

Table 4.9: loss of weight values and their respective temperatures obtained by TGA and 

dTGA analysis for 2 wt. % Au on CHT-RW catalysts. 

 Temperature  

1st loss / °C 

1st loss of 

weight (from 

total) / % 

Temperature  

2nd loss / °C 

2nd loss of 

weight (from 

total) / % 

CHT300Vap 205 19.4 428 19.5 

CHT300Subw 252 16.7 430 21.3 

CHT300Hotw 248 15.9 426 20.5 

CHT450Vap 245 22.0 419 18.8 

CHT450Subw 216 12.9 396 22.2 

CHT450Hotw 214 13.7 388 23.2 

 

It is already evident from values in Table 4.9 that rehydration in vapour phase 

was capable of introducing more water than its analogue in hot water or in subcritical 

conditions, both for calcination at 300 and 450 °C, as it was carried out under aqueous 

nitrogen steam that prevented carbonates to go in the interlayers during the HT-phase 

reconstruction.  

Further proof is given considering dTGA diagrams for catalysts series calcined 

at 300 °C, whereas the water region appears broader when the rehydration occurs in 

vapour phase, suggesting a major closure of micropores and mesopores by 

agglomeration of platelets, confirmed by N2 porosimetry (Chapter 4.2.4.3); while it is 

sharper in the other two cases, suggesting minor closure, due to the presence of 

carbonates. The OH and carbonates region shows, instead, the opposite behaviour. 

These differences are more evident when catalysts are calcined at 450 °C prior to 

rehydration, as the amount of removed carbonates at that temperature is higher.  
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While the desorption temperature minimum in the OH and carbonates region is 

almost always the same in the case of catalysts treated at 300 °C, in the range of 

experimental error, a shift at lower temperatures occurs for catalysts treated at 450 °C, 

suggesting a decrease in base strength44 from CHTVap to CHTSubw or CHTHotw. 

These considerations will be confirmed with TPD analysis in Chapter 4.2.4.7. 

4.2.4.7 Surface basicity 

CO2 pulse chemisorption and following TPD analysis were used to calculate the 

base site density and strength1, 3, 15 for CHT calcined at 300 or 450 °C and rehydrated in 

vapour phase, boiling water or subcritical water. As already mentioned in Chapter 

3.2.3.7, CO2 is an acidic probe molecule and it is assumed that each molecule of CO2 

adsorbs onto one base site of the HT, or CHT, or CHT-RW materials, forming a 

bicarbonate species with the hydroxide anions, or surface hydroxyl groups, or surface 

oxides.  

Known volumes of CO2 were injected on an out-gassed sample of catalyst until 

saturation of the surface, then the sample was heated up to 550 ºC and the desorbing 

CO2 measured using a TCD detector, to obtain the base site strength.  

 

Figure 4.22: CO2 TPD profiles for 300 vs. 450 °C CHT-RW series, in vapour phase or 

in boiling water or in subcritical water.  
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As shown in Figure 4.22, it is evident that all the CHT-RW at 450 °C were 

similar and show stronger base sites than the similar materials at 300 °C, the desorption 

temperature being higher for stronger bases. TPD data were therefore further analysed 

and areas were integrated using CASA software, to quantify the amount of weak, 

medium and strong base sites per catalyst, assuming that a molecule of CO2 can bind as 

bicarbonate species on the surface hydroxyls in the lattice (weak sites), or as 

bicarbonate species on the interlayer anions (medium sites) or as mono- and bidentate 

species on strong oxides sites. Results are shown in Table 4.10 for 2 wt. % Au/CHT-

RW series.  

Table 4.10: base site strength percentage distribution for 2 wt. % Au/CHT-RW series.  

Catalyst 
Weak sites / % 

(200-280 °C) 

Medium sites / % 

(280-380 °C) 

Strong sites / %  

(380-450 °C) 

CHT200 - 92.8 7.2 

CHT300 - 71.9 28.1 

CHT300Vap - 74.1 25.9 

CHT300Subw - 77.2 22.8 

CHT300Hotw - 79.2 20.8 

CHT450Vap - 59.7 40.3 

CHT450Subw - 62.2 37.8 

CHT450Hotw - 60.1 39.9 

 

Table 4.11 shows, instead, normalised data per surface area, to obtain a 

significant comparison. The strength of the base sites increases as the temperature of 

calcination increases, as previously reported in the literature36, 37 and as observed in 

Chapter 4.2.3.5. 
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Table 4.11: normalised number of strong sites per surface area of catalyst for 2 wt. % 

Au/CHT-RW series and maximum temperature for strong sites.  

Catalyst Strong sites / m-2 T max for strong sites / °C 

CHT200 1.26 × 1017 390 

CHT300 9.19 × 1017 400 

CHT300Vap 1.39 × 1017 385 

CHT300Subw 1.09 × 1017 383 

CHT300Hotw 1.03 × 1017 383 

CHT450Vap 6.88 × 1017 410 

CHT450Subw 4.52 × 1017 408 

CHT450Hotw 5.99 × 1017 408 

 

4.2.4.8 Surface chemical analysis 

XPS analysis was run on the parent hydrotalcite, used as a fitting model, and 

then on 2 wt. % Au supported on CHT–RW series. Figure 4.23 shows the Mg 2p region 

for a) CHT300Hotw and CHT450Hotw b) CHT300Vap and CHT450Vap c) 

CHT300Hotw and CHT450Hotw. Mg 2p was fitted by a double chemical environment 

containing the spin-orbit 2p doublet (separation = 0.28 eV), one with binding energies 

of 49.4 and 49.7 eV, attributed to Mg-OH in hydrotalcite-like phase after rehydration 

(NIST database39 50.40 eV for MgAl2O4 spinel, 49.50-49.90 eV for Mg hydrotalcite) 

and one at binding energies of 50.8 and 51.1 eV, attributed to loss of physisorbed water 

and loss of carbonates in the HT interlayers to form mixed oxides14, 15, as observed in 

Chapter 4.2.3.6.  

The presence of not rehydrated mixed oxides in all the catalysts suggested that 

the calcination-rehydration process was incomplete when the calcination temperature 

chosen was 300 °C. 
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Figure 4.23: high resolution XP spectra, showing the Mg 2p chemical environment for 

a) CHT300Hotw and CHT450Hotw b) CHT300Vap and CHT450Vap c) CHT300Subw 

and CHT450Subw.  

Table 4.12 reports all the exact measured maximum values for each CHT-RW; 

for the HT-phase, shifts in Mg 2p binding energy were observed between samples 

rehydrated under aqueous vapour phase (lower B. E.) and the ones rehydrated either in 

boiling water or in subcritical water (higher B. E.). This was attributed to a major CO3
2- 

replacement by OH- anions in the case of CHTVap, due to the presence of inert nitrogen 

atmosphere that prevented the formation of carbonates in the interlayers. The presence 

of a higher amount of carbonates was confirmed by elemental analysis, as discussed in 

Chapter 4.2.4.1 and by TGA in Chapter 4.2.4.6. 
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An opposite trend, instead, was observed for mixed Mg3Al oxides, meaning that 

for CHTVap the amount of available oxides (higher B.E.) was higher than the other two 

cases (lower B.E.), in which carbonates contaminate the formed oxides.   

Table 4.12: measured Mg 2p maximum B. E. values for each CHT300 – RW. 

CHT 300 Mg 2p1/2 / eV Mg 2p3/2 / eV Mg 2p1/2 / eV Mg 2p3/2 / eV 

Vap 49.66 49.38 51.14 50.86 

Hotw 49.72 49.44 50.92 50.64 

Subw 49.72 49.44 50.92 50.64 
 

Analogous considerations should be done to explain the Mg 2p fitting for 

CHT450 – RW series shown in Figure 4.23, whereas the best HT-like phase 

reconstruction, yielding higher purity meixnerite materials, was achieved when aqueous 

vapour phase under nitrogen was chosen, confirming observations made in Chapter 

4.2.4.2. Table 4.13 reports all the exact measured maximum values for each CHT450 – 

RW, the discussion of which agrees with what previously observed for CHT300 – RW.  

Table 4.13: measured Mg 2p maximum B. E. values for each CHT450 – RW. 

CHT 450 Mg 2p1/2 / eV 

HT 

Mg 2p3/2 / eV 

HT 

Mg 2p1/2 / eV 

oxides 

Mg 2p3/2 / eV 

oxides 

Rvap 49.39 49.11 51.08 50.80 

Rhotw 49.72 49.44 50.92 50.64 

Rsubw 49.72 49.44 50.92 50.64 

 

The Al 2s spectra (Figure 4.24) of CHT300 – RW series was likewise fitted by 

a double chemical environment; the binding energy of 118.2 eV was attributed to HT-

like phase and the one of 120.2 eV was attributed to mixed Mg3Al oxides (NIST 

database39 119.50 eV for Al2O3, 119.10 eV for MgAl2O4; 118.5 eV for HT-phase, 

Cantrell and co-authors14). Analogous considerations are valid for the Al 2s spectra of 

CHT450 – RW series. 
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Figure 4.24: high resolution XP spectra, showing the Al 2s chemical environment for a) 

CHT300Vap and CHT450Vap, b) CHT300Subw and CHT450Subw c) CHT300Hotw 

and CHT450Hotw.  

Table 4.14 reports all the exact measured maximum values for each CHT300 – 

RW and CHT450 – RW series. Shifts in Al 2s binding energy were observed between 

samples rehydrated under aqueous vapour phase (lower B. E.) and the ones rehydrated 

either in boiling water or in subcritical water (higher B. E.); these are more evident for 

samples calcined at higher temperatures. An opposite trend, instead, was observed for 

mixed Mg3Al oxides, confirming all the considerations done for Mg. 
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Table 4.14: measured Al 2s maximum B. E. values for CHT300 – RW and CHT450 – 

RW series. 

CHT 300 Al 2s HT-like / eV Al 2s Mixed oxides / eV 

Rvap 118.16 120.06 

Rhotw 118.68 120.17 

Rsubw 118.68 120.17 

CHT 450 Al 2s HT-like / eV Al 2s Mixed oxides / eV 

Rvap 118.29 119.88 

Rhotw 118.69 120.17 

Rsubw 118.69 120.17 

 

The analysis of O 1s spectra comprised two or three distinct chemical 

components, depending on the material. For CHT 300Vap (Figure 4.25), one was 

attributed to the O2- of HT and carbonates, with a binding energy of 531.55 eV, (NIST 

database39 531.50 eV for MgAl2O4 spinel and for MgCO3), the second one attributed to 

hydroxyls with a lower binding energy of 530.17 eV (NIST database39 530.90 eV for 

Mg(OH)2, 529.3-530.9 eV for OH in hydrotalcite phase, Cantrell and co-authors14). The 

third chemical component, with a lower binding energy of 528.96 eV was attributed to 

O2- in Mg3Al oxides41, 42. (NIST database39 530.60-529.60 eV for MgO) This new 

component was visible only for CHT300Vap, confirming the presence of not rehydrated 

mixed oxides, but it was not detected for materials rehydrated in water (Figure 4.25).  
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Figure 4.25: high resolution XP spectra, showing the O 1s chemical environment for a) 

CHT300Vap and CHT450Vap b) CHT300Subw and CHT450Subw c) CHT300Hotw 

and CHT450Hotw, highlighting the high binding energy CO3
2-, the low binding energy 

OH- and the lower binding energy O2- states. 

Similar considerations should be done for CHT450 – RW catalyst series, 

(Figure 4.25) even if, at this calcination temperature, no traces of mixed oxides were 

visible, suggesting a better rehydration and reconstruction of HT-like structure.   

As already described in Chapter 3.2.3.8, the Au 4f region was fitted by creating 

three distinct chemical environments. The first one was fitted with two components for 

the doublet of Au 4f orbitals (doublet separation = 3.70 eV), then two others were 

necessary to subtract the Mg 2s contribution, that overlaps in the same region, 

respectively one for Mg in HT and one for Mg in CHT-RW phase. All the binding 

energy values for Au 4f are shown in Table 4.15 and confirmed the presence of metallic 

gold (NIST database39 CsAuCl4 (Au3+) 87.5-91.2 eV, Au foil 84.0-88.0 eV).  
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Table 4.15: Au 4f 7/2 and 5/2 binding energy for 2 wt. % Au on CHT 300 °C and 

rehydrated in three different ways. 

2 wt. % Au supported on Au 4f 5/2 B.E / eV Au 4f 7/2 B.E / eV 

CHT200 86.92 83.21 

CHT300 86.65 82.95 

CHT300Vap 86.46 82.76 

CHT300Subw 86.88 83.18 

CHT300Hotw 86.55 82.85 

 

Figure 4.26 shows a comparison of XPS spectra for nominal 2 wt. % Au/CHT 

300 or 450 °C and rehydrated in aqueous vapour phase, in boiling water or in subcritical 

water. Gold leaching for liquid phase rehydration protocols was discussed in Chapter 

4.2.4.1. 

 

Figure 4.26: high resolution XP spectra, showing the Au 4f chemical environment for 

the 2 wt. % Au on CHT 300 °C R-vap, R-hotw or R-subw (left) and for their analogous 

at 450 °C (right). 

4.2.5 Characterisation of different wt. % Au loadings on CHT450Vap 

4.2.5.1 Elemental analysis 

Five different Au loadings, respectively 0.5, 1, 2, 5 and 10 wt. %, were 

supported on HT via DP method18 and calcined at 450 °C under O2 flow, then 

rehydrated in aqueous vapour phase, under N2 at room temperature. XPS surface and 

CHT 300 °C R-hotw 

CHT 300 °C R-subw 

CHT 300 °C R-vap 

CHT 450 °C R-hotw 

CHT 450 °C R-subw 

CHT 450 °C R-vap 
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XRF bulk analysis were run initially on the parent HT, then on the Au/CHTVap 

materials. Table 4.16 shows bulk and surface values for gold elemental analysis.  

Table 4.16: elemental analysis of different wt. % Au loaded on CHT450Vap, obtained 

by XPS (surface) and XRF (bulk) composition.  

Nominal wt. % Au 

loading on CHT450Vap 

XPS / wt. % 

(surface) 

XRF / wt. %  

(bulk) 

0.5 0.7 0.6  

1 1.1 1.3 

2 2.2 2.4 

5 4.8 6.2 

10 10.0 9.3 

The nominal amount of gold was verified to agree with the effective expected 

one, XPS and XRF elemental analysis showing also a good agreement between bulk 

and surface composition in the range of experimental error, as shown in Figure 4.27.  

 

Figure 4.27: nominal vs. measured Au loading on CHT450Vap. 

 Table 4.17, instead, summarises XPS elemental analysis values for the same 

catalyst series, showing all the elements for an accurate characterisation. The average 

value of Mg/Al (atomic %) was found to be 3.4 ± 0.3. 
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Table 4.17: elemental analysis of different wt. % Au loaded on CHT450Vap, obtained 

by XPS (surface) composition, all elements shown.  

0.5 wt.% Au 

CHT450Vap 

Element / 

wt.% 

1 wt.% Au 

CHT450Vap 

Element / 

wt.% 

2 wt.% Au 

CHT450Vap 

Element  

/ wt.% 

Mg 27.6 Mg 27.3 Mg 28.4 

Al 7.9 Al 8.0 Al 8.2 

O 54.6 O 54.6 O 53.1 

C 8.1 C 7.9 C 6.9 

Cl 1.1 Cl 1.1 Cl 1.2 

Au 0.7 Au 1.1 Au 2.2 

 

5 wt.% Au 

CHT450Vap 

Element / 

wt.% 

10 wt.% Au 

CHT450Vap 

Element 

/ wt.% 

Mg 26.9 Mg 23.3 

Al 8.0 Al 7.6 

O 51.6 O 50.8 

C 7.4 C 6.7 

Cl 1.3 Cl 1.5 

Au 4.8 Au 10.0 

 

 

4.2.5.2 XRD 

Ex situ powder X-ray diffraction was run on the parent HT and on Au/CHTVap 

series (Figure 4.28) to study the reconstruction of hydrotalcite phase and to estimate the 

average gold particle size via Scherrer analysis24. The parent hydrotalcite exhibited a 

series of reflections at 11.2° (d 003), 22.4° (d 006), 34.2° (d 009), 38.3° (d 015), 44.6° 

(d 018), 60.1° (d 110), 61.3° (d 113) and 64.7° (d 116). As already discussed in 

Chapter 4.2.3.2, no impurities of Mg and Al oxides or carbonates were detected for this 

Mg3Al hydrotalcite, showing a pure HT phase2, 4, 19, 28, 43.  
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Figure 4.28: top left – XRD patterns of different gold wt. % loading on HT calcined at 

200 °C, top right – after calcination at 450 °C, mixed MgAl oxides were formed; bottom 

left – after rehydration in aqueous vapour phase, HT-like structure was reconstructed 

successfully. Middle: evolution of Au reflections, bottom right – average Au particle 

size vs. Au loading. 

As already observed in Chapter 3.2.3.2, gold peaks overlap with hydrotalcite 

ones and their intensity increases as the gold loading increases. After a calcination at 

450 °C, all the hydrotalcites became mixed Mg3Al oxides and this is evident because 

HT peaks disappeared; then, the vapour phase rehydration yielded a good reconstruction 

of the HT-like phase. As discussed in Chapter 4.2.3.5, after rehydration all the typical 

HT peaks were clearly visible again, being the overall result a replacement of 

carbonates with hydroxide species and the formation of meixnerite4. 

10 % Au/CHT200 

5 % Au/CHT200 

2 % Au/CHT200 

1 % Au/CHT200 

0.5 % Au/CHT200 

Parent HT CHT450 

0.5 % Au/CHT450 

1 % Au/CHT450 

2 % Au/CHT450 

5 % Au/CHT450 

10 % Au/CHT450 

CHT450Vap 

0.5 % Au CHT450Vap 

1 % Au CHT450Vap 

2 % Au CHT450Vap 

5 % Au CHT450Vap 

10 % Au CHT450Vap 
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The intensity of Au peaks, that usually are visible at 38° (d 111), 44° (d 200), 

65° (d 220) and 78° (d 311), increases with Au loading; nevertheless, these peaks 

overlap with HT ones and are not visible for low gold loading. Thus, a sample of parent 

CHT450Vap was used as the background and subtracted, to allow peaks at 78°, the less 

affected by HT contribute, to be fitted using CASA software and find the average Au 

particle size via Scherrer analysis, showing an increase of Au particle size as the gold 

loading increases (Figure 4.28 – bottom right). 

4.2.5.3 N2 Porosimetry 

N2 adsorption-desorption isotherms for the parent HT and for CHT450Vap can 

be seen in Figure 4.29, while Figure 4.30 shows isotherms for different gold loadings 

supported on CHT450Vap. The isotherms have been offset for clarity. 

 

Figure 4.29: N2 porosimetry isotherms for parent hydrotalcite vs. CHT450Vap. It is 

evident a minor hysteresis after CHT-RW process and a drop off in surface area. 

 

 

Parent HT 

CHT450Vap. 
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Figure 4.30: N2 porosimetry isotherms for 0.5, 1, 2, 5 and 10 wt. % Au loading, 

supported on CHT at 450 °C and rehydrated at room temperature in aqueous vapour 

phase, under N2 flow. 

The parent hydrotalcite shows type II H3 isotherm, that remains before and after 

Au deposition-precipitation, consistent with microporous crystallites with interplatelet 

mesoporous voids and slit type pores53. All the considerations in Chapter 4.2.4.3 are 

valid to explain this behaviour; Table 4.18 shows surface areas for these materials. 

Table 4.18: surface area values for parent HT and different wt. % gold loading on CHT 

at 450 °C and rehydrated in aqueous vapour phase, as determined by N2 porosimetry. 

 BET surface area  

/ m2g-1 

Parent HT 95 ± 9.5 

CHT450Vap 20 ± 2.0 

0.5 wt.% Au/ 

CHT450Vap 

24 ± 2.4 

1 wt.% Au/ 

CHT450Vap 

27 ± 2.7 

2 wt.% Au/ 

CHT450Vap 

25 ± 2.5 

5 wt.% Au/ 

CHT450Vap 

27 ± 2.7 

10 wt.% Au/ 

CHT450Vap 

22 ± 2.2 

 

0.5 % Au 

1 % Au 

2 % Au 

5 % Au 

10 % Au 
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No significant variations of surface areas were visible, in the range of the 

experimental error, for different Au loading on CHTVap series. 

4.2.5.4 TEM and Au particle size distribution 

Dark/bright field (S)TEM images of different Au loading on CHT 450°C-Rvap 

series are shown in Figure 4.31. 

 

Figure 4.31: Dark/bright field (S)TEM images of (a) 0.5 wt. %, (b) 1 wt. %, (c) 2 wt. 

%, (d) 5 wt. % and (e) 10 wt% Au on CHT 450 °C R-vap catalysts. 

ImageJ software was used to measure the particle size distribution for each 

material, and results are shown in Figure 4.32. The mean particle size increased with 

gold loading, resulting in a trend similar to that observed by XRD. Despite of what 

observed in Chapter 3.2.3.4, particles appear to be well dispersed for 0.5 and 1 wt. %  

Au loadings, growing and agglomerating at higher loadings to give a broad range of 

size. One of the possible explanations for this agglomeration is the minor space 

available, being the surface area of the support CHT-RW lower than the conventional 

HT one; the other is that, after thermal treatment at 450 °C, gold NPs start sintering, 

showing a growth. 

                                   a)                                       b)    c) 

 

d)                                      e) 
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Figure 4.32: particle size distributions for different Au loadings supported on 

CHT450Vap; mean particle size increases with gold loading, showing broad 

distributions. 

Figure 4.33 shows a comparison between average particle sizes obtained with 

Scherrer analysis and with TEM measurements.  

 

Figure 4.33: measured (TEM) and calculated (XRD) mean particle sizes for gold 

nanoparticles as a function of Au loading in Au/CHT450Vap. The fits look very similar, 

which shows good agreement between TEM and XRD measurements.  
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4.2.5.5 Ex situ DRIFT-IR spectra  

Ex situ DRIFT-IR spectra shows differences between parent hydrotalcite, 

different gold loading on CHT at 450 °C (Figure 4.34 - left) and after rehydration in 

aqueous vapour phase; the peak attribution was made according to Meliàn-Cabrera and 

co-authors’ paper31 and according to Davis and co-authors’ paper16.  

At 3800-2500 cm-1 the OH stretching is clearly visible for the parent 

hydrotalcite, the shoulder at 3080 cm-1 is characteristic of layered HT materials and is 

given by hydrogen bonding between the water molecules and CO3
2- groups, both 

available in the interlayer region.  

This band tends to disappear after calcination and becomes less intense, due to 

loss of OH from the interlayers; nevertheless, after rehydration of these materials, the 

band appears again and its intensity confirms the reconstruction of HT structure was 

successful, yielding meixnerite materials, for which this band is given by hydrogen 

bonding between water molecules.  
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Figure 4.34: left – parent hydrotalcite and different gold loading on CHT450, right – 

the same samples after rehydration in aqueous vapour phase, under nitrogen and at room 

temperature. 

For parent HT, the OH bending of physisorbed water is visible at 1590 cm-1, 

while the two bands at 1497 cm-1 and 1331 cm-1 are due to the stretching of CO3
2- in the 

interlayer region. The calcination caused an interlayer water removal and a carbonate 

rearrangement, justified by the absence of the previous shoulder in the OH region at 

3080 cm-1 and the presence of a bending at 1590 cm-1, then two new peaks appear, 

corresponding to C=O at 1508 cm-1 and to C-O at 1338 cm-1, as previously observed in 

Chapter 3.2.3.5. No significant changes were visible across the different Au wt. % 

loading series on CHT and on CHTVap.  

4.2.5.6 TGA and dTGA 

TGA and dTGA profiles for different gold loading supported on CHT450Vap 

can be seen below in Figure 4.35; dTGA peak areas were analysed using Origin 

software.  

The TGA analysis carried out on these materials has shown a two- or three-stage 

loss of weight2, 20, 28, 52, typical of rehydrated hydrotalcites containing hydroxide as the 

interlayer anions15. For lower Au loading, the first weight loss between about 70 ºC and 

220 ºC was a two-step, attributed to loss of physisorbed water (loss of water molecules 

adsorbed to the hydrotalcite surface), and to loss of interlayer water54; while a one-step 
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weight loss underwent for higher gold loading, showing a shift at slightly higher 

temperatures for the loss of interlayer water.  

A loss of weight at higher temperatures, between 315 and 490 °C, was attributed 

to the loss of hydroxides anions, being the carbonates removed during the catalyst 

preparation, as already discussed in Chapter 4.2.4.6.  
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Figure 4.35: thermogravimetric analysis (TGA) and dTGA of different gold loadings 

on CHT 450 °C – Rvap. a) 0.5 wt. %, b) 1 wt. %, c) 2 wt. %, d) 5 wt. % and e) 10 wt. % 

Au. 

Table 4.19 shows loss of weight values for Au/CHT 450 °C Rvap and 

temperatures. Similar considerations to what already explained in Chapter 4.2.4.6 must 

be done to understand these data. An excess of gold per surface area might slow down 

water adsorption and the effect of rehydration, and so the reconstruction of HT-like 

structure.  

Table 4.19: loss of weight values and their respective temperatures obtained by TGA 

and dTGA analysis for Au/CHT450Vap series. 

Au CHT 450 °C 

Rvap / wt. % Au 

Temperature  

1st loss / °C 

1st loss of 

weight (from 

total) / % 

Temperature  

2nd loss / °C 

2nd loss of 

weight (from 

total) / % 

0.5  179 - 243 20.3 419 16.8 

1 188 - 238 18.2 416 15.7 

2 183 - 237 22.0 419 18.8 

5 246 17.5 435 19.9 

10 190 -237 21.0 415 13.5 
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4.2.5.7 Surface basicity 

CO2 pulse chemisorption and following TPD analysis (Figure 4.36) were used 

to determine the base site density and strength for different Au/CHT-Rvap, as already 

described in Chapter 4.2.3.51, 3, 15.   

 

Figure 4.36: base site strength from CO2 TPD as a function of Au loading in Au/CHT 

450Vap catalysts. 

The same calcination-rehydration in vapour phase procedure was followed in 

each case, but the resulting TPD profiles show similar results at lower gold loading. For 

5 and 10 wt. % Au, a weaker site was detected, showing similarities with 10 wt. % 

Au/HT sample described in Chapter 3.2.3.7. Table 4.20 summarises base site strength 

percentage values for these materials. 

Table 4.20: base site strength percentage distribution for different wt. % Au/CHT - 

Rvap series. 

Au/CHT Vap 

 / wt. % 

Weak sites / % 

(200-280 °C) 

Medium sites / % 

(280-380 °C) 

Strong sites / % 

(380-450 °C) 

0.5 - 67.0 33.0 

1 - 66.1 33.9 

2 - 59.7 40.3 

5 24.2 75.8 - 

10 18.0 82.0 - 
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For high gold loading, 5 and 10 wt. % respectively, no strong sites were 

detected; this information was combined with TGA data in Chapter 4.2.5.6 to support 

the hypothesis that, at high gold loading and low surface areas, Au blocks some base 

sites and slow down or even partially blocks the rehydration in vapour phase.    

4.2.5.8 Surface chemical analysis 

XPS analysis was run on the parent hydrotalcite, used as a fitting model, and 

then on 0.5, 1, 2, 5 and 10 wt. % Au/CHT450Vap materials; results for gold are shown 

in Figure 4.37. As already described in Chapter 3.2.3.8 and Chapter 4.2.4.8, the Au 4f 

region was fitted by creating three distinct chemical environments; the first one was 

fitted with two components for the doublet of Au 4f orbitals (doublet separation = 3.70 

eV) then other two were necessary to subtract the Mg 2s contribution, that overlaps in 

the same region, respectively one for Mg in HT and one for Mg in CHT-RW phase.  

 

Figure 4.37: high resolution Au 4f XPS spectra of different Au loading series. A scale 

of 0.5 was applied to high loading (5 and 10 wt. %), in order to allow an optimal 

visualisation of the lower ones in the same scatter. 

All the binding energy values for Au 4f are shown in Table 4.21 and confirmed 

the presence of metallic gold (NIST database39 CsAuCl4 (Au3+) 87.5-91.2 eV, Au foil 

84.0-88.0 eV). 

Au loading wt. % 
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Table 4.21: Au 4f 7/2 and 5/2 binding energy for Au/CHT450Vap series. 

Au loading / wt. % Au 4f 5/2 B.E / eV Au 4f 7/2 B.E / eV 

0.5 85.85 82.15 

1 85.85 82.15 

2 85.88 82.18 

5 86.12 82.41 

10 86.12 82.41 

 

4.2.6 Au/CHT and Au/CHT-RW catalysed aerobic selective oxidation of 

5-HMF  

4.2.6.1 The effect of calcination temperature on the selective oxidation of HMF  

As already discussed through Chapter 4.2.3, the calcination of 2 wt. % Au/HT 

produced mixed Mg3Al oxides, enhancing the base properties of the support. These 

catalysts were tested for the selective oxidation of HMF, in the same working 

conditions already described in Chapter 3.2.4.4, before or after the addition of NaOH 

1M. Scheme 4.1 recalls the reaction pathway for the aerobic selective oxidation of 

HMF to FDCA in the presence of Au nanoparticles supported onto hydrotalcite. 

 

 

Scheme 4.1: the aerobic selective oxidation of 5-HMF to 2,5-FDCA. 

Raw reaction profiles for the selective oxidation of HMF without addition of 

NaOH are shown in the Appendix, Figure 4a.1. A systematic kinetic study to follow the 

impact of NaOH 1 M (pH = 14) on the conversion of HMF was carried out using an 

excess of HMF (0.2 mmol instead of 0.1 mmol), in the same conditions previously 

described in Chapter 3.2.4.  

As shown in Figure 4.38, the calcination at higher temperatures generated a new 

series of catalysts, that were found to be 12 – 25 times more active than the 

conventional 2 wt. % Au/HT activated at 200 °C; these results agree with the measured 

pH values, being 9 for the catalyst at 200 °C, 10 for the 300 °C, 10.5 for the 400 °C and 
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10.2 for the 500 °C. The new catalysts were capable to provide high conversions and 

FDCA yields without the need of added NaOH. 

 

Figure 4.38: relative NaOH rate enhancements for the aerobic selective oxidation of 

HMF using 2 wt. % Au/CHT catalysts, calcined at different T. Reaction conditions: 25 

mg of catalyst, 0.2 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 

Added NaOH = 6 mmol (1 M, pH = 14). 

The most active catalyst, and consequentially the minor rate enhancement after 

the addition of NaOH 1M, was found to be 2 wt. % Au/CHT 400 °C, as shown in 

Figure 4.39, being the amount of gold identical for all these catalysts. 



 
 

202 

 

 

Figure 4.39: left – initial rate dependence HMF selox over 2 wt. % Au/CHT at different 

temperatures, with (in blue, right axis) and without (in red, left axis) NaOH 1M 

addition. Right – mass normalised initial rates of HMF selox over 2 wt. % Au/CHT at 

different calcination T, with (in blue, right axis) and without (in red, left axis) NaOH 

1M addition. Reaction conditions: 25 mg of catalyst, 0.2 mmol of HMF, T = 90 °C, V = 

6 ml H2O and  O2 = 15 ml/min. Added NaOH = 6 mmol (1 M, pH = 14). 

Based on results obtained by CO2 TPD analysis (see Chapter 4.2.3.5), an 

explanation to attempt rationalising the enhanced FDCA production was given by 

plotting the normalised strongest base sites per m2 vs. FDCA yields for 2 wt. % Au 

supported on HT or CHT vs. calcination temperature. Figure 4.40 shows clearly the 

same trend between strong base sites and FDCA yield as a function of calcination 

temperature. These considerations, together with the characterisation already discussed 

through Chapter 4, underline the importance of strong base sites for the production of 

desired FDCA.    



 
 

203 

 

 

Figure 4.40: selox of HMF, strong base surface density from CO2 TPD analysis (blue, 

left axis) and FDCA production (red, right axis) as a function of calcination 

temperature. Catalysts: 2 wt. % Au on HT or on CHT. Reaction conditions: 25 mg of 

catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 

4.2.6.2 The effect of CHT on lower gold loading for the selox of HMF  

 An attempt to promote the activity and FDCA yields for lower Au loading was 

carried out by calcining these catalysts, respectively 0.5 and 1 wt. % Au/HT, at 400 °C 

before testing for the selective oxidation of HMF, in reaction conditions already 

described in Chapter 3.2.4.4. The enhanced basicity of the CHT obtained improved 

also the two poorest catalytic systems, as shown in the Appendix, Chapter 4.4, Figure 

4a.2.  

The kinetic study was then carried out before and after the addition of NaOH 

1M in reaction conditions already described in Chapter 3.2.4.4. Figure 4.41 clearly 

shows a reduced impact of NaOH on the selective oxidation of HMF when CHT at 400 

°C was used instead of HT at 200 °C, confirming that a solid base support can enhance 

also the poorest catalytic systems. As expected, the calcination temperatures of 400 °C 

enhanced the catalytic performances of lower gold loading and the best performances 

were achieved for 0.5 wt. % Au. 
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Figure 4.41: relative NaOH rate enhancements for the aerobic selective oxidation of 

HMF using different gold loading on HT at 200 °C (green) and on CHT at 400 °C (blue) 

catalysts. Reaction conditions: 25 mg of catalyst, 0.2 mmol of HMF, T = 90 °C, V = 6 

ml H2O and  O2 = 15 ml/min. Added NaOH = 6 mmol (1 M, pH = 14). 

4.2.6.3 The effect of different calcination and rehydration methods on the aerobic 

selective oxidation of HMF and HMFCA 

As already discussed through Chapter 4.2.4 and 4.2.5, the calcination of Au/HT 

materials produced mixed Mg3Al oxides, which were then rehydrated following 

different protocols and reconstructing HT-like structure. Several systematic reaction 

tests were carried out in order to understand how these higher pH solid bases enhance 

the activity, yield and selectivity to FDCA for the aerobic selective oxidation of 5-HMF.  

The catalysts used for this study were the 2 wt. % Au on a Na-free Mg3Al 

hydrotalcite, calcined at 300 or at 450 °C and rehydrated following three different 

protocols described in Chapter 4.2.2, respectively CHTVap, CHTHotw and CHTSubw. 

Reaction conditions were chosen as follows: 25 mg of catalyst, 0.1 mmol of HMF in 

order to have HMF/Au = 40 (mol/mol), T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 

These catalysts were tested alone or after the addition of a pre-determined amount of 

1M NaOH, at pH = 14. Results for CHT300 – RW series are shown in the Appendix, 

Chapter 4.4, Figure 4a.3 and Figure 4a.4. 

The major impact on FDCA yield was obtained for the catalyst supported on 

CHTVap and two reasons were used to explain these results: at a first instance, as 
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observed in Chapter 4.2.4.1, when the rehydration was carried out in liquid water, gold 

leaching occurred, but the catalyst was stable when the rehydration took place in 

aqueous vapour phase. Furthermore, XRD and XPS analysis have underlined a higher 

content of mixed oxides for the material rehydrated in the vapour phase, and the 

formation of meixnerite instead of hydrotalcite, due to the absence of CO2. The 

measured pH was 9.0 for all these catalysts, so the gold leaching must have a major 

impact in different performances of these materials.  

The same reaction tests were carried out in identical conditions using 2 wt. % 

Au/CHT450 – RW series and raw reaction profiles are available in the Appendix, 

Chapter 4.4, Figure 4a.5 and Figure 4a.6. Gold leaching occurred also when the 

catalysts were calcined at 450 °C prior to rehydration in liquid water, while they were 

stable when the aqueous vapour phase protocol was followed. The measured pH was 

10.2 – 10.3 for these catalysts and this is one of the explanations of the higher 

performances achieved. XRD and XPS analysis have underlined a better reconstruction 

of HT-like phase than samples calcined at 300 °C prior to rehydration, and this justifies 

the observed enhancement. 

A systematic kinetic study to follow the impact of NaOH on enhancing the 

conversion of HMF and FDCA yield was carried out using an excess of HMF (0.2 

mmol instead of 0.1 mmol), in the same conditions previously described in Chapter 

3.2.4. As shown in Figure 4.42, the highest performances were obtained for 2 wt. % 

Au/CHT calcined at 300 and 450 °C rehydrated in aqueous vapour phase, showing 

higher initial rates per g Au without extra base and a consequential lower impact of 

extra added NaOH and higher FDCA yields.  
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Figure 4.42: left – NaOH rate enhanchements for the selox of HMF using 2 wt. % Au 

on CHT calcined at two different temperatures (300 vs. 450 °C) and rehydrated in three 

different ways (aqueous vapour phase, boiling water or subcritical water).  Right – 

normalised rates per g Au before and after the addition of NaOH. Reaction conditions: 

25 mg of catalyst, 0.2 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 

Added NaOH = 6 mmol (1 M, pH = 14).  

Data for the selective oxidation of HMFCA to FDCA were taken and analysed 

from the same reactions, considering the initial conversion of HMFCA to FFCA and 

then to FDCA; 2 wt. % Au/CHT450Vap was capable of giving the highest FDCA yield, 

showing better performances than the catalyst calcined at 300 °C in alcohol 

deprotonation and results are shown in Figure 4.43.  
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Figure 4.43: left – NaOH relative rate enhancements for the aerobic selox of HMFCA 

using 2 wt. % Au/CHT at two different temperatures (300 or 450 °C) and rehydrated in 

three different ways (aqueous vapour phase, boiling water or subcritical water).  Right – 

normalised rates per g Au before and after the addition of NaOH for the same reactions. 

Reaction conditions: 25 mg of catalyst, 0.2 mmol of HMF, T = 90 °C, V = 6 ml H2O 

and  O2 = 15 ml/min. Added NaOH = 6 mmol (1 M, pH = 14). 

4.2.6.4 The effect of different gold loading on CHT450Vap on the aerobic selective 

oxidation of HMF and HMFCA 

A series of different Au loading, respectively 0.5, 1, 2, 5 and 10 wt. %, were 

supported on CHT450Vap and several systematic reaction tests were carried out in 

order to understand the impact of different gold loading on the activity, yield and 

selectivity to FDCA for the aerobic selective oxidation of 5-HMF.  

Reaction conditions were chosen as follows: 25 mg of catalyst, 0.1 mmol of 

HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. These catalysts were tested 

alone or after the addition of a pre-determined amount of 1M NaOH, at pH = 14. Raw 

reaction profiles are shown in the Appendix, Figure 4a.7 and Figure 4a.8. 

The measured pH for these catalysts was 10-10.5 and this was one of the factors 

that enhanced catalytic properties. As the amount of gold increases, HMF conversion 

and FDCA yields appear to increase, confirming the positive impact of higher gold 

loading already observed in Chapter 3.2.4.4.  
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A systematic kinetic study to follow the impact of NaOH on the conversion of 

HMF as the gold loading increases was then carried out using an excess of HMF (0.2 

mmol instead of 0.1 mmol), in order to slow down the rapid oxidation of HMF to 

HMFCA; data about selective oxidation of HMFCA were obtained from the same 

reaction, considering the initial conversion of HMFCA to FFCA and then to FDCA. 

Results are shown in Figure 4.44. 

 

Figure 4.44: left – selox of HMF and HMFCA, NaOH relative rate enhancements for 5 

different Au loading on CHT450Vap, highlighting a minor relative impact of NaOH on 

the HMF rates. Right – a recall of results for different Au loading on HT from Chapter 

3, as a comparison. Reaction conditions: 25 mg of catalyst, 0.2 mmol of HMF, T = 90 

°C, V = 6 ml H2O and  O2 = 15 ml/min. Added NaOH = 6 mmol (1 M, pH = 14).  

All the gold loadings have shown a similar NaOH enhancement (4-6 fold, in the 

range of the experimental error) and the rates per gram of gold increase until 2 wt. %, 

then decrease exponentially, either when the solid base is used alone or after the 

addition of NaOH 1M (Figure 4.44 - left).  

Despite of previous results, obtained for Au on HT at 200 °C and recalled in 

Figure 4.44 – right, where lower loading had shown a higher enhancement, in this case 

the enhancement was constant for all of them. Figure 4.45 shows, instead, raw and 

normalised initial rates per gram of gold of the same reactions. 
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Figure 4.45: left – selox of HMF, normalised rates per g Au before and after the 

addition of NaOH. Right – the same data for the selox of HMFCA. Catalysts: different 

Au loadings on CHT 450 °C R-vap. Reaction conditions: 25 mg of catalyst, 0.2 mmol 

of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. Added NaOH = 6 mmol (1 

M, pH = 14).  

An attempt to explain these differences was done, considering that when Au is 

loaded on HT and calcined at 200 °C, the presence of a consistent amount of CO3
2- ions 

in the interlayer, as it appears observing all TPD and TGA graphs reported in Chapter 

3 and Chapter 4, blocks base sites needed for the formation of the reactive intermediate 

gem-diol. As the reaction, in absence of NaOH, occurs on the catalyst surface, for lower 

gold loading, respectively 0.5 and 1 wt. %, Au NPs are not always surrounded by –OH 

ions, but the higher is the loading, the higher is the chance for gold NPs to be 

surrounded by –OH ions. 

When Au is loaded on CHT at 300 or, better, at 450 °C, the rehydration in 

aqueous vapour phase under N2 replaces a high amount of CO3
2- with –OH ions, so 

more Au particles, either at low or high loading, are surrounded by them and HMF 

activation occurs on the surface. This explains lower Au loadings benefit of a high 

enhancement (from poor to high activity) after the addition of NaOH when supported on 

conventional HTs and why this enhancement is lower (from moderate high to high 

activity) when NaOH is added on the rehydrated series. The neighbourhood between Au 

and OH appears to be important for the activation and following oxidation of HMF.  
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TOF values were therefore calculated using the method55 already described in 

Chapter 3.2.4.4; results for HMF are shown in Figure 4.46, results for HMFCA are 

shown in Figure 4.47, showing surface gold as the active site and confirming what 

obtained in Chapter 3: the presence of more gold improved FDCA yields, but when 

normalised as surface gold, TOF values were constant in the range of experimental 

error. 

 

Figure 4.46: calculated TOF values for the aerobic selective oxidation of HMF as a 

function of gold loading. Reaction conditions: 25 mg of catalyst, 0.2 mmol of HMF, T = 

90 °C, V = 6 ml H2O and  O2 = 15 ml/min. Added NaOH = 6 mmol (1 M, pH = 14).  

 

Figure 4.47: calculated TOF values for the aerobic selective oxidation of HMFCA as a 

function of gold loading. Reaction conditions: 25 mg of catalyst, 0.2 mmol of HMFCA, 
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T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. Added NaOH = 6 mmol (1 M, pH = 

14).  

4.3 Conclusions 

Hydrotalcites having Mg/Al = 3 molar ratio were prepared using an alkali-free 

method via co-precipitation route. At a first instance, 2 wt. % Au was loaded on them 

using the deposition-precipitation method, the materials were calcined at different 

temperatures, respectively 300, 400 and 500 °C, to generate mixed Mg3Al oxides.  

Subsequently, a calcination – rehydration protocol was set up, in order to try 

optimising the calcination temperature and the preparation time, using an easy method: 

2 wt. % Au/HT was calcined at 300 or at 450 °C, then the rehydration step was tested in 

aqueous vapour phase using N2, or in subcritical water under pressure at 120 °C or in 

hot water at 100 °C.  

Even if the vapour-phase rehydration required longer time, above two days, 

yielded not only a better reconstruction of meixnerite materials, being 450 °C the best 

temperature to remove CO3
2-, but also no gold leach was detected during this 

preparation. Identified the most adequate temperature and rehydration protocol, five 

different gold loadings, respectively 0.5, 1, 2, 5 and 10 wt. % Au, were supported on the 

same materials and an accurate characterisation was done on them, to correlate 

morphology, base properties and their impact on reaction parameters.    

All the catalysts were tested for the aerobic selective oxidation of HMF to 

FDCA before or after the addition of an excess of NaOH 1M solution. On increasing of 

solid basicity, the activity, the conversion and FDCA yields improved and the addition 

of an extra amount of NaOH 1 M was found to have a minor impact on all these 

parameters. Calcination at high temperatures enhanced dramatically the activity of low 

gold loadings and generates efficient catalysts. 

The best catalyst, which has shown highest FDCA yield (100 %), was 2 wt. % 

Au/CHT 400 °C. This calcination temperature removes carbonates from the HT 

interlayers; then, a rehydration in situ occurs during the reaction, either generating –OH 

ions in water that activate HMF to 1,1 gem-diol or deprotonating easily the rate – 

determining step, the activation  of R-OH group, for the selox of HMF and HMFCA. 
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TPD analysis, in Chapter 4.2.3.5, has shown this catalytic system possesses the 

strongest basicity and the highest base active sites density, while N2 porosimetry has 

also shown the highest surface area. Therefore, no extra soluble base, NaOH, is needed 

to significantly enhance performances of this catalyst.  

The combination of XRD, XPS, CO2 TPD and detailed kinetic mapping has 

elucidated the nature of base sites, their role enhancing Au catalysed HMF aerobic selox 

to FDCA and any eventual deactivation, such as the formation of segregated oxides at 

high temperatures (500 °C) or gold leaching during liquid phase rehydration. Either 

mixed oxides or meixnerite solid bases can drive HMF selox even in concert with low 

concentrations of surface gold, a discovery that has important implications to enhance 

gold catalysis and cascade oxidations. 
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4.4 Appendix 

Raw reaction profiles for the selox reactions described through Chapter 4: 

 

Figure 4a.1: reaction profiles for the aerobic selective oxidation of HMF, using 2 wt. % 

Au on CHT at different temperatures a) 300 °C b) 400 °C c) 500 °C. Reaction 

conditions: 25 mg of catalyst, 0.1 mmol of HMF in order to have HMF/Au = 40 

(mol/mol), T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 
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Figure 4a.2: left – aerobic selective oxidation of HMF using 0.5 wt. % Au/CHT 400 °C 

and right – using 1 wt. % Au on CHT 400 °C without added NaOH. Reaction 

conditions: 25 mg of catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 

15 ml/min. 
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Figure 4a.3: reaction profiles for the aerobic selective oxidation of HMF, using 2 wt. % 

Au on CHT at 300 °C, rehydrated in different ways without extra added base a) at room 

temperature, in aqueous vapour phase, under N2 flow, pH =  9.0 b) in subcritical water 

at 120 °C, pH = 9.0 c) in boiling water at 100 °C, pH = 9.0. Reaction conditions: 25 mg 

of catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 
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Figure 4a.4: reaction profiles for the aerobic selective oxidation of HMF, using 2 wt. % 

Au on CHT at 300 °C, rehydrated in different ways, after the addition of 6 mmol NaOH 

(1 M, pH = 14) a) at room temperature, in aqueous vapour phase, under N2 flow b) in 

subcritical water at 120 °C c) in boiling water at 100 °C. Reaction conditions: 25 mg of 

catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 
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Figure 4a.5: reaction profiles for the aerobic selective oxidation of HMF, using 2 wt. % 

Au on CHT at 450 °C, rehydrated in different ways without extra added base. a) at room 

temperature, in aqueous vapour phase, under N2 flow b) in subcritical water at 120 °C c) 

in boiling water at 100 °C. Reaction conditions: 25 mg of catalyst, 0.1 mmol of HMF, T 

= 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 
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Figure 4a.6: reaction profiles for the aerobic selective oxidation of HMF, using 2 wt. % 

Au/CHT at 450 °C, then rehydrated in different ways, after the addition of 6 mmol 

NaOH (1 M, pH = 14) a) rehydrated at room temperature, in aqueous vapour phase, 

under N2 flow b) in subcritical water at 120 °C c) in boiling water at 100 °C. Reaction 

conditions: 25 mg of catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 

15 ml/min. 
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Figure 4a.7: reaction profiles for the aerobic selective oxidation of HMF, using 

different gold loading on CHT at 450 °C, rehydrated at room temperature, in aqueous 

vapour phase, under N2 flow and without extra added base. a) 0.5 wt. % Au b) 1 wt. % 

Au c) 2 wt. % Au d) 5 wt. % Au and 3) 10 wt. % Au. Reaction conditions: 25 mg of 

catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 15 ml/min. 
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Figure 4a.8: reaction profiles for the aerobic selective oxidation of HMF, using 

different gold loading on CHT at 450 °C, rehydrated at room temperature, in aqueous 

vapour phase, under N2 flow, after the addition of 6 mmol NaOH (1 M, pH = 14) a) 0.5 

wt. % Au b) 1 wt. % Au c) 2 wt. % Au d) 5 wt. % Au and 3) 10 wt. % Au. Reaction 

conditions: 25 mg of catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O and  O2 = 

15 ml/min. 
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5.1 Introduction  

The oxidation of alcohols and polyols to carbonyls has been widely studied using 

supported heterogeneous Pd catalysts1-9 in aqueous1 and organic solvents1, 10, 11. Our research 

group has shown that high surface area (300 m2.g-1) mesoporous alumina12 or mesoporous 

silica11, 13, 14, such as surfactant-templated SBA-15 (a high surface area supports with 

hexagonally packed, p6mm, parallel mesopore channels (950 m2.g-1), and two high surface 

area cubic silica supports with three-dimensional interpenetrating mesopore networks, SBA-

16, Im3m, (m2.g-1) and KIT-6, Ia3d, (940 m2.g-1), potentially linked via micropores13, 14, were 

able to stabilise atomically highly dispersed Pd2+ centres, that exhibit exceptional activity 

toward the aerobic selox of allylic alcohols, being PdO the true active site for the oxidative 

dehydrogenation.  

These materials were found to be highly selective (70-80 %) to the allylic aldehyde 

with the remaining products due to decarbonylation, breaking C-O bond and hydrogenation, 

due to surface hydrogen arising from the oxidative dehydrogenation mechanism. However, 

PdO can undergo in situ reduction to Pd0 during alcohol selox13-15 and does not carry on the 

second step required for HMF selox, the aldehyde to acid one.  

To overcome these issues, AuPd bimetallic catalysts were tested for the selox of 

HMF. Our research group10, 16 and several other authors1, 17-19 have indeed tested bimetallic 

AuPd catalysts for the selox of different alcohols and polyols. Also, Hutchings and co-

authors18-20 found this alloy to be very active for direct synthesis of H2O2 from hydrogen and 

oxygen, either prepared via deposition-precipitation, via impregnation or via sol 

immobilisation.  

Positive synergic effects,21, 22 both geometric and electronic, between Au and Pd have 

been found to increase not only catalytic activity, yields and selectivity, but also catalytic 

lifetime under mild reaction conditions1, 10. Prati and co-authors reported in their works1, 17 

that, in the presence of a base, the activity of all these catalysts was enhanced, therefore in 

this chapter the use of HT as both the support and the solid source of base as a promoter will 

be explored, as well as it was for Au in previous chapters. 

The main overarching goal is to verify if AuPd/HT can oxidise HMF at a lower pH = 

9, without the need of extra added NaOH or without using high metal loadings, as it was the 

case for Au. The aim was to try use a cheaper and efficient catalyst, being the chosen total 
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amount of metal only 1 wt. % and being also Pd less expensive than Au. Kinetic studies will 

underscore the impact of Pd in enhancing Au catalytic properties and a HAADF-EDX study 

will provide more information about the AuPd alloy, to find correlations between its presence 

and dramatic increase in FDCA yield.     

5.2 Results and discussion 

5.2.1 Preparation of a Mg/Al = 3 hydrotalcite  

Hydrotalcites were synthesised using the alkali-free co-precipitation method of 

Cantrell and co-workers23, with some modifications, from diluted metal nitrate solutions, 

exactly as described in Chapter 2.2.1. 

5.2.2 Typical preparation of AuPd/hydrotalcite catalysts  

The deposition-precipitation method24, 25 described in Chapter 2.1.4 was used to 

prepare a series of AuPd/HT catalysts. The total amount of metal was chosen to be 1 wt. %, 

while the desired molar ratios were Au95Pd5, Au90Pd10, Au80Pd20, Au70Pd30 and Au60Pd40.   

5.2.3 Characterisation of different AuPd loading on hydrotalcite 

Bulk elemental analysis was performed to determine the actual AuPd content. 

Structural properties of materials were examined by powder X-ray diffraction (XRD) and N2 

porosimetry; IR was also performed to investigate any changes in HT structure after the 

deposition-precipitation and following reduction of AuPd nanoparticles. HAADF-STEM was 

used to measure the average AuPd particle size and EDX to accurately map the AuPd alloy.  

5.2.3.1 Elemental analysis 

EDX and ICP analyses were conducted on AuPd/HTs to quantify Au and Pd bulk and 

surface compositions. Gold and palladium loadings, obtained via EDX analysis, mapping 

accurately 100 single nanoparticles for each catalyst, are reported in Table 5.1, together with 

ICP bulk analysis for comparison. A slight discrepancy between nominal and determined 

AuPd ratio was found, nevertheless, all the catalysts have shown to be in a trend, as 

predicted; such discrepancy was observed also by Venezia and co-authors26. 
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Table 5.1: elemental analysis of AuPd/HTs by EDX and by ICP.  

Nominal 

 AuPd  

loading /  

atomic % 

Au /  

atomic % 

(EDX) 

Pd /  

atomic % 

(EDX) 

Alloy / 

atomic % 

(EDX) 

Au /  

atomic % 

(ICP) 

Pd / 

atomic % 

(ICP) 

Au95Pd5 82 18 41 93 7 

Au90Pd10 80 20 55 91 9 

Au80Pd20 75 25 64 84 16 

Au70Pd30 72 28 68 72 28 

Au60Pd40 70 30 59 66 34 

 

ICP bulk analysis allowed finding the exact molar ratio in the catalysts, so they were 

labelled as Au93Pd7, Au91Pd9, Au84Pd16, Au72Pd28, and Au66Pd34. Figure 5.1 shows an 

example of co-existence of Au and Pd in a single metal particle obtained for Au72Pd28:  
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Figure 5.1: top – HR-TEM image of a single AuPd NP in Au Au72Pd28 and HAADF detail of 

Au and Pd mapping, bottom – EDX analysis showing Au – LA and Pd – KA spectral lines.  

Figure 5.2 shows, instead, the Au and Pd average bulk distribution for all the 

catalysts, being the alloy itself a fraction of the total metal loading. Nishimura and co-

authors27 prepared protected Au/Pd-PVP supported on HT materials and declared a 

homogeneous alloy phase, but no accurate characterisation was done; in this thesis work, 

instead, the deposition-precipitation yielded a mixture of pure Au, pure Pd and AuPd alloy 

NPs, accurately mapped by EDX. No evidence of any core-shell structure was observed in 

the analysed particles, but pure Au, pure Pd or Au/Pd alloy were clearly detected.  
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Figure 5.2: left parts – elemental analysis showing a broad distribution of pure Au, pure Pd 

and AuPd alloy in AuPd catalysts a) Au93Pd7, b) Au91Pd9, c) Au84Pd16, d) Au72Pd28, e) 

Au66Pd34. Right parts – insets show distributions of the Pd atomic % in the alloy. 

XPS analysis was particularly difficult, as gold and palladium lines always overlap. 

The analysis of Au 4d and Pd 3d spectra has shown clear spectral contributions from both Au 

and Pd. As described by Hutchings and co-authors25, an accurate analysis of the alloy and of 

eventual Pd/PdO species was difficult to achieve and, in order to estimate Au and Pd surface 

composition, the spectral envelope was deconstructed into its respective Pd 3d and Au 4d 

components. Au and Pd standard spectra were used and Pd contribution was subtracted, to 

allow find the composition shown in Table 5.2. 
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Table 5.2: bulk (ICP) vs. surface (XPS) composition of AuPd/HT series. 

Nominal 

 AuPd  

loading /  

atomic % 

Au /  

atomic % 

(ICP) 

bulk 

Pd / 

atomic % 

(ICP) 

bulk 

Au /  

atomic % 

(XPS) 

surface 

Pd / 

atomic % 

(XPS) 

surface 

Au95Pd5 93 7 94 6 

Au90Pd10 91 9 88 12 

Au80Pd20 84 16 86 14 

Au70Pd30 72 28 76 24 

Au60Pd40 66 34 74 26 

 

 To summarise, Figure 5.3 shows good agreement between these different bulk and 

surface averaging analytical methods. 

 

Figure 5.3: nominal vs. measured Au and Pd atomic %. 

5.2.3.2 XRD  

Ex situ powder XRD were run at room temperature on the parent HT and on AuPd/HT 

catalysts. The parent HT exhibited reflections at 11.2° (d 003), 22.4° (d 006), 34.2° (d 009), 

38.3° (d 015), 44.6° (d 018), 60.1° (d 110), 61.3° (d 113) and 64.7° (d 116) (Figure 5.4), 

consistent with literature values28-30 for this material and as already discussed in Chapter 3 

and Chapter 4.  
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Volume-averaged crystallite sizes for hydrotalcite were determined as 7.4 nm from 

the 11.2° peak, applying the Scherrer equation31. These small crystallite sizes indicate that the 

extended porous network arises from agglomeration or fusion of these nanocrystalline 

platelets. The intensity of Au peaks32, 33 are usually visible at 38° (d 111), 44° (d 200), 65° (d 

220) and 78° (d 311), while the Pd ones34-36 are visible at 40° (d 111), 46° (d 200), 68° (d 

220) and 81° (d 311); nevertheless, these peaks overlap with HT ones and are not visible for 

low gold-palladium loadings, because of their weak intensity.  

 

Figure 5.4: X-ray diffractograms of AuPd/HT catalysts, Au positions are marked with * and 

Pd ones with ○. 

Due to HT and AuPd peaks overlapping, it was not possible to observe at room 

temperature any peak broadening at 38-40°, reported to be an indication of AuPd alloy 

formation by Venezia and co-authors26. For this reason, in order to follow any changes in the 

alloy composition with the temperature and to remove the contribute of HT structure, an in 

situ XRD experiment (Figure 5.5) was carried out on a HAuCl4 + PdCl2 precursor of 

Au72Pd28/HT, as this catalyst has shown the highest FDCA yield, (see Chapter 5.2.4.1 and 

5.2.4.2). Spectra were acquired as a function of calcination temperature, under O2 

atmosphere, between room temperature and 600 °C.  

                        *○ *○           *○ *○ 

                        *○ *○           *○ *○ 

                        *○ *○           *○ *○ 

                        *○ *○           *○ *○ 

                        *○ *○           *○ *○ 

Parent HT 

Au93Pd7 

Au91Pd9 

Au84Pd16 

Au72Pd28 

Au66Pd34 
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Figure 5.5: in-situ XRD patterns for HAuCl4 + PdCl2 deposited on HT as a function of 

calcination temperature. 

As already explained in Chapter 4.2.3.1, the signals relative to characteristic 

hydrotalcite reflections37, 38 became weaker at above 144 °C, although the HT structure is 

maintained until 200-250 °C, therefore Au and Pd peaks became visible and background 

subtractable, being a signal/noise distinction possible, only after 300 °C. Peaks at 38-40°, 

which resulted very broad confirming observations made by Venezia and co-authors26, were 

fitted and deconvoluted to obtain an estimation of Au and Pd particle growth, as shown in 

Figure 5.6.  
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Figure 5.6: left - XRD patterns of Au70Pd30/CHT after subtraction of HT component as a 

function of calcination temperature; right – evolution of Au/Pd particle size with loading. 

Au average particle size increased with the calcination temperature, as expected, 

because a similar trend was already observed in Chapter 4.2.3.1. Minor changes were 

observed for Pd, instead, and a similar result was already reported: Pd clusters are more 

highly dispersed for a given coverage and are known to be more sinter-resistant than Au 

ones39. Nevertheless, it is worth to remember that, at such low concentration and for their 

small dimensions, Pd particles were near to the limit detectable by XRD. 

The in situ XRD experiment in this thesis work was compared with a previous work 

published by Lee, Lambert and co-authors22, to underline differences between two 

preparation methods for AuPd alloy NPs having two different kind of structures. In Lee and 

Lambert’s work, well-defined Au core – Pd shell structured NPs were prepared and then 

thermally treated during an in situ XRD experiment. Results described show an evolution of 

the Au core – Pd shell structure to a AuPd alloy as a function of annealing temperature and 

this was proved by an observed immediate decrease in measured lattice parameters, from 

4.082 to 4.043 (± 20 %) in the interval between room temperature and 300 °C. After this 

temperature, relatively little change occurred, indicating that Pd/Au intermixing was 

essentially complete by 300 °C. Conversely, during this alloying phase, the particle diameter 

remained constant (5 nm) up to 300 °C, while it increased rapidly to 30 nm at 600 °C. 

In this thesis work, instead, an almost constant lattice parameter of 4.085 ± 0.05 Å 

was observed, which is similar to 4.079 Å, the reported value in the JCPDS database40 for 
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bulk fcc Au; for comparison, the reported value in the JCPDS database41 for bulk fcc Pd is 

instead 3.890 Å. EDX analysis has shown, indeed, that the alloy is only a fraction of the 

catalyst, made of pure Au, pure Pd and AuPd particles. Changes in the alloy composition 

were observed by Lambert and co-authors22 in the exact range of temperatures in which, in 

this thesis work, HT peaks overlaps with Au and Pd ones, therefore no changes could be 

detected during the AuPd formation and almost constant lattice parameters vs. temperature 

were found, as visible in Figure 5.7. 

 

Figure 5.7: lattice parameters as a function of calcination temperature. 
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5.2.3.3 N2 Porosimetry  

N2 adsorption-desorption isotherms42, 43 for the parent hydrotalcite and Au/HTs are 

shown in Figure 5.8. The isotherms have been offset for clarity.  

 

Figure 5.8: N2 adsorption-desorption isotherms for AuPd/HTs. 

The parent hydrotalcite exhibits a type II H3 isotherm, that is retained in all the 

Au/HTs, and is consistent with microporous crystallites with interplatelet mesoporous voids 

and slit type pores44, as already discussed in Chapter 3.2.3.3. Following AuPd deposition 

and 200 °C calcination the Au/HTs exhibit smaller hysteresis loops than the parent HT. A 

reduction in the hysteresis may suggest that pores are more accessible45 after calcination at 

200 °C, due to an expansion of interplatelet mesoporous voids and a removal of water from 

interlayers46, 47. Table 5.3 reports BET surface areas for the parent hydrotalcite and Au/HTs, 

with values in accordance with the literature48. 
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Table 5.3: Surface areas of HT and Au/HTs determined by N2 porosimetry. 

 BET surface area / m2g-1 

Parent HT 152 ± 15.2  

Au93Pd7 149 ± 14.9 

Au91Pd9 138 ± 13.8 

Au84Pd16 143 ± 14.3 

Au72Pd28 141 ± 14.1  

Au66Pd34 140 ± 14.0 

 

 

5.2.3.3 Ex situ DRIFT spectra  

Ex situ DRIFT spectra (Figure 5.9) compare the uncalcined parent hydrotalcite and 

different AuPd/HT catalysts, calcined at 200 °C under oxygen and reduced under hydrogen at 

the same temperature; the peak assignment was made according to what reported by Meliàn-

Cabrera and co-authors49 and Davis and co-authors47. At 3800-2500 cm-1 the OH stretching is 

clearly visible for the parent hydrotalcite and the AuPd/HT as a broad band. The shoulder at 

3080 cm-1 is characteristic of layered HTs, arising from hydrogen bonding between water 

molecules and CO3
2- groups within the interlayer region. The OH bend of physisorbed water 

is visible at 1590 cm-1 for parent HT, as expected and as already described in Chapter 3 and 

Chapter 4, while the two bands at 1497 cm-1 and 1331 cm-1 are due to the stretching of CO3
2- 

in the interlayer region. 

Deposition-precipitation24 of AuPd on HT, followed by calcination and final 

reduction, caused interlayer water removal and a carbonate rearrangement, evidenced by the 

absence of the previous shoulder in the OH region at 3080 cm-1 and the 1590 cm-1 bend, and 

emergence of two new peaks corresponding to C=O at 1508 cm-1 and to C-O at 1338 cm-1 in 

Figure 5.9. No significant changes were seen as a function of AuPd loading and after 

following reduction under H2. 
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Figure 5.9: DRIFT spectra of parent uncalcined HT and of Au93Pd7/HT, Au91Pd9/HT, 

Au84Pd16/HT, Au72Pd28/HT, and Au66Pd34/HT, catalysts calcined at 200 °C under O2, then 

reduced under H2 at the same temperature. 
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5.2.3.4 TEM and AuPd particle size distribution 

Dark/bright field (S)TEM images of the Au/HT series are shown in Figure 5.10: 

 

Figure 5.10: Dark and bright field (S)TEM images of 1 wt. % AuPd/HT catalysts a) Au93Pd7, 

b) Au91Pd9, c) Au84Pd16, d) Au72Pd28 and e) Au66Pd34. 

ImageJ software was used to measure the particle size distribution for each material, 

and results are shown in Figure 5.11. Particles appear to be very well dispersed, small and of 

uniform size and shape for all the loadings, showing a narrow range of size between 2 and 6 

nm, in agreement with XRD data fitting.  

a)                                           b)                                            c) 

d)                                           e)                                       
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Figure 5.11: particle size distributions for AuPd/HT catalysts, 100 NPs counted for each 

sample. 

5.2.4 Detailed studies on the aerobic selective oxidation of HMF 

5.2.4.1 The effect of different AuPd atomic ratios on the aerobic selox of HMF  

A series of different AuPd catalysts, respectively Au93Pd7, Au91Pd9, Au84Pd16, 

Au72Pd28 and Au66Pd34 were supported on HT at 200 °C and activated under H2, following 

the previously described deposition-precipitation procedure24 (see Chapter 5.2.2) and being 

1 wt. % the total amount of metal; reactions were carried out with or without extra added 

NaOH, following a protocol, here described, and named standard reaction conditions: 25 mg 

of catalyst, 0.1 mmol of HMF, T = 90 °C, V = 6 ml H2O, 500 rpm and  O2 = 15 ml/min. 

When required, NaOH 1 M (6 mmol, pH = 14) was added for high pH reactions. 

No reaction occurred when 1 wt. % Pd/HT catalyst was used as a control test in H2O, 

with or without NaOH. The raw and complete reaction profiles without extra added base at 

pH = 9 are shown in Figure 5.12 below: 
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Figure 5.12: reaction profiles for the aerobic selox of HMF, using different 1 wt. % 

AuPd/HT catalysts and without extra added base at pH = 9. a) 1 wt. % Au, b) Au93Pd7, c) 

Au91Pd9, d) Au84Pd16, e) Au72Pd28 and f) Au66Pd34. Standard reaction conditions followed.  

As the amount of palladium in the catalyst increases, conversion and FDCA yields 

appear to increase, showing a maximum in FDCA yield for Au72Pd28. Reactions were then 

repeated in the presence of 6 mmol of NaOH (pH = 14) and all the raw complete reaction 

profiles are shown in Figure 5.13.  
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Figure 5.13: reaction profiles for the aerobic selox of HMF, using different 1 wt. % 

AuPd/HT catalysts at pH = 14 a) 1 wt. % Au, b) Au93Pd7, c) Au91Pd9, d) Au84Pd16, e) 

Au72Pd28 and f) Au66Pd34. Reaction were performed under standard conditions + NaOH = 6 

mmol, 1M. 

Based on these experimental results, it appears that AuPd/HT are high efficient 

catalysts for the selox of HMF to FDCA even in the absence of NaOH, showing minor pH 

dependence that what observed in Chapter 3.2.4.2 for pure Au.  

A systematic kinetic study to follow the exact impact of NaOH on the conversion of 

HMF as the palladium loading increases was then carried out using an excess of HMF (0.5 

mmol instead of 0.1 mmol), in order to slow down the rapid oxidation of HMF to HMFCA. 

Results are shown in Figure 5.14, being Au93Pd7 the most active catalyst per Pd atomic % in 

the absence of NaOH 1M; high catalytic performances were achieved even when a minor 

amount of Pd was added to Au, as shown plotting normalised reaction rates per gram of gold 

vs. Pd atomic %.  
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Figure 5.14: left – mass normalised rates of HMF selox as a function of Au loading without 

(in red, right axis) and with NaOH (in blue, left axis); right – mass normalised rates of HMF 

selox per g Au as a function of Pd atomic % without (in red, right axis) and with NaOH 

addition (in blue, left axis). Reaction conditions: 0.2 mmol of HMF for Au/HT catalyst, 0.5 

mmol of HMF for AuPd/HT ones, all the rest identical to standard conditions. When added, 

NaOH = 6 mmol (pH = 14). 

All the AuPd catalysts have shown a similar NaOH enhancement for HMF selox (6-

20 folds, in the range of the experimental error), that is significantly lower compared to the 

143 folds obtained for 1 wt. % Au (having the same wt. % metal amount of the AuPd/HT 

series), suggesting that Pd is capable to enhance Au catalytic activity even at pH = 9. It is 

interesting to observe in Figure 5.15 that NaOH addition has shown a minor impact on 

Au93Pd7 and Au66Pd34 (6 and 8 folds, respectively) than on Au91Pd9, Au84Pd16 and Au72Pd28 

(17, 20 and 18, respectively) for the oxidation of R-CHO.  
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Figure 5.15: comparative NaOH rate enhancements for the aerobic selective oxidation of 

HMF, using 1 wt. % Au or different AuPd loadings. Standard reaction conditions followed, 

but 0.2 mmol of HMF for Au and 0.5 mmol for AuPd catalysts. When added, NaOH = 6 

mmol, 1M, pH = 14.    

5.2.4.2 The effect of different AuPd atomic ratios on the aerobic selox of HMFCA  

In order to better decouple the influence of palladium contribute in enhancing gold 

performances on the selective oxidation of the aldehyde from the alcohol function in HMF, 

reactions were carried out on HMFCA with or without extra added NaOH, following a 

protocol, here described, and named standard reaction conditions: 25 mg of catalyst, 0.1 

mmol of HMFCA, T = 90 °C, V = 6 ml H2O, 500 rpm and  O2 = 15 ml/min. When required, 

NaOH 1 M (6 mmol, pH = 14) was added for high pH reactions. Raw and complete reaction 

profiles are shown in Figure 5.16. 
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Figure 5.16: reaction profiles for the aerobic selox of HMFCA, using different 1 wt. % 

AuPd/HT catalysts at pH = 9 a) 1 wt. % Au, b) Au93Pd7, c) Au91Pd9, d) Au84Pd16, e) Au72Pd28 

and f) Au66Pd34. Standard reaction conditions followed. 

Also for HMFCA, as the amount of palladium increases, conversion and FDCA yields 

appear to increase, showing a maximum in FDCA yields for Au72Pd28. The reactions were 

then repeated in the presence of 6 mmol of NaOH at pH = 14 and all the raw complete 

reaction profiles are shown in Figure 5.17. 

 

 



251 

 

 

 

Figure 5.17: reaction profiles for the aerobic selox of HMFCA, using 1 wt. % Au/HT or 1 

wt. % AuPd/HT catalysts at pH = 14 a) 1 wt. % Au, b) Au93Pd7, c) Au91Pd9, d) Au84Pd16, e) 

Au72Pd28 and f) Au66Pd34. Standard reaction conditions followed + NaOH = 6 mmol, 1M. 
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A systematic kinetic study to follow the impact of NaOH on the conversion of 

HMFCA as the palladium loading increases was then carried out. Results are shown in 

Figure 5.18 - right, being Au72Pd28 the most active catalyst per Pd atomic % in the absence 

of NaOH 1M and underlining the effect of Pd in enhancing gold rates and catalytic 

properties; also, the effect and the importance of Pd are more evident for R-OH than for R-

CHO. It is interesting to observe that such AuPd ratio was found to be the optimal also for the 

synthesis of H2O2 by Hutchings and co-authors25.  Figure 5.18 – left shows the same reaction 

using different wt. % Au/HT, for comparison (see Chapter 3.2.4.4). 

 

Figure 5.18: left – mass normalised rates of HMFCA selox as a function of Au loading 

without (in red) and with NaOH (in blue) as comparison; right – mass normalised rates of 

HMFCA selox per g Au as a function of Pd at.% without (in red, left axis) and with NaOH 

addition (in blue, right axis). Reaction conditions: 0.1 mmol of HMFCA for both the 

catalysts, all the other parameters identical to standard conditions. When added, NaOH = 6 

mmol (pH = 14).  

Rates of reaction for the selox of the alcohol were at least 10-20 times faster on AuPd 

than on pure Au. All the AuPd/HT catalysts (being 1 wt % the total amount of metal) and 

also 1 wt. % Au/HT have shown a similar NaOH enhancement for HMFCA selox (1-2 folds), 

in the range of the experimental error, as shown in Figure 5.19. 
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Figure 5.19: comparative NaOH rate enhancements for the selective aerobic oxidation of 

HMFCA using 1 wt. % Au or different AuPd loadings. Reaction conditions: 25 mg of 

catalyst, 0.1 mmol of HMFCA for Au/HT and for AuPd/HT catalysts, T = 90 °C, V = 6 ml 

H2O and  O2 = 15 ml/min, NaOH = 6 mmol, 1M at pH = 14. 

An attempt to rationalise results for the selox of HMF, since the true active site in this 

reaction is not known yet, was made either plotting FDCA yields vs. the amount of Pd atomic 

% in the catalysts or vs. the amount of bulk average AuPd/(Au+Pd) alloy composition, as 

determined by EDX analysis (Figure 5.20). A linear correlation, in the range of experimental 

error, was found between FDCA yields after 7 hours and the bulk average AuPd/(Au+Pd) 

composition, so the alloy was proposed as responsible to enhance catalytic properties and as 

the active species for HMF selox. It is worth remembering from EDX analysis, that also pure 

Au NPs are present in the catalysts, playing a role in the selective oxidation of both the 

alcohol and the aldehyde function, as already widely discussed in Chapter 3. 
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Figure 5.20: left – raw FDCA yields vs. Pd atomic %, showing a volcano plot and right – a 

linear correlation between raw FDCA yields and normalised AuPd/(Au+Pd) alloy atomic %. 

Standard reaction conditions for HMF selox. 

5.2.4.3 Proposed explanation for AuPd alloys in enhancing the selox of HMF 

For Au shell – Pd core NPs, our previous group’s works10 and also Hsu and co-

authors ones34, concluded that both Au-induced Pd ensembles’ geometric effects, yielding 

disruption of continuous Pd ensembles by Au sites, and electronic effects are responsible for 

the enhanced catalytic activity of Au after Pd addition for a single well-defined bimetallic 

catalyst50. When an Au-Pd alloy was formed after thermal treating of Au shell – Pd core NPs, 

the Au-rich structure benefitted from dramatic enhancements in the rate of selective oxidation 

for the selox of crotyl alcohol, both for the activity and the selectivity. Pd intermixing with 

Au was proposed to yield stronger O2 adatom adsorption, and so higher O2 coverage and 

availability over AuPd alloy, rather than over pure Au. 

Rebelli and co-authors21 prepared higher AuPd metal loadings (above 2 wt. %) and 

were able to monitor Au 4f7/2 and Pd 3d3/2 XPS peaks. They observed a negative shift, from 

83 eV to 82.3 eV, with decreasing Au loading that was most likely due to electronic 

interactions51 and not to particle size, with a net transfer of electron density from Pd to Au. 

Nevertheless, this net charge transfer must be small for the electro neutrality required by 

metallic systems, according to the charge-compensation model52, 53.  

Prati and co-authors observed, as in this thesis work, that the nature of the metal and 

the Au–Pd ratio play the main role in determining the catalytic activity. The addition of 
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NaOH enhanced the activity of all the catalysts, the effect on Pd and Pd-rich catalyst being 

considerably lower than that for gold and gold-rich composition. It has been reported that in a 

AuPd catalyst, Au acted as promoter to isolate Pd monomer54 and that AuPd could create 

bifunctional sites55. Different effects of the base on different AuPd ratios were observed also 

in this thesis work, being minor for the richest catalyst in AuPd alloy and when the alloy was 

richer in Pd content. As observed in both Prati’s works and here, it can be stated that different 

alloy composition works differently, with the following difference: in this thesis work 

catalysts resulted made of Au and AuPd alloy. In the gold-rich composition a gold-type 

mechanism is observed, where the rate determining step is represented by the H abstraction 

(highest effect of NaOH) whereas in the palladium-rich composition the rate determining step 

is represented by the H transfer from Pd–H species (negligible effect of the NaOH). 

Nevertheless, it is not clear or there are not definitive proves if the effect of Au in alloys 

isolates Pd sites, which act as PdO species13 for alcohol oxidation to aldehyde and then gold 

oxidises the aldehyde to acid. 

5.3 Conclusions 

Hydrotalcites having Mg/Al = 3 molar ratio were prepared using an alkali-free 

method via co-precipitation route. A series of different AuPd catalysts were supported on 

HTs using the deposition-precipitation method and calcined at 200 °C.   

Catalysts were tested for the aerobic selective oxidation of HMF to FDCA before or 

after the addition of an excess of NaOH 1M solution. Our previous conclusions have shown 

that hydroxide ions facilitate both the activation of the aldehyde function and the initial 

deprotonation of alcohols on Au, which are well-known to be weak acids (pKa = 14–18), 

since a gold catalyst, by itself, cannot deprotonate the hydroxyl group of alcohols. Herein, the 

addition of Pd to Au was an excellent alternative route of increasing Au catalytic properties, 

already at pH = 9 provided by HT surface, yielding a maximum of FDCA above 75 % and 

without the need of extra added NaOH. 

Based on kinetic studies’ results, this chapter proposes and claims, as well, benefits of 

bulk average alloy as responsible of the observed enhancements for the selective oxidation of 

both the R-CHO and the R-OH function of HMF, without furan-ring opening or other side 

reactions, such as Cannizzaro disproportion. To the best of our knowledge, AuPd alloy might 

promote the oxidation of alcohol to aldehyde, deprotonating the alcohol, the crucial rate 
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determining step; while Au NPs, also present in the prepared catalysts, can drive the selox of 

aldehyde to carboxylic acid at pH 9, as discussed in Chapter 3. 

As a further explanation, geometric and electronic effects52 were previously proposed 

to be important to explain the enhanced performances: Au is the most electronegative 

metallic element, so after alloying with Pd, a charge transfer21 from the Pd site to the Au site 

is expected. Further investigations via operando XAS56 might help to clarify what is the true 

active site, if there are any changes in the AuPd alloy with the reaction on-going, to 

definitively understand the synergic effect of these two metals in enhancing the selox of R-

CHO and R-OH.  
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6.1 Conclusions 

The overarching goals at the beginning of this thesis project were to investigate the 

use of Au NPs, supported on hydrotalcite as the heterogeneous catalyst, for the selective 

oxidation of HMF to FDCA; to understand if this catalytic system1 is really heterogeneous or 

partially homo- and partially heterogeneous, to study what the true1-3 Au active site is, what is 

the effect of a solid base as the support4 and the pH-dependence of this selox over Au.  

The selox of HMF was found to be pH-sensitive (Figure 6.1 – left, taken from 

Chapter 3) and, in accordance with the literature, which holds that alcohols are oxidised 

more slowly than aldehydes over gold, HMFCA / FFCA (Scheme 6.1, step 2) exhibited the 

slowest rate with/without additional NaOH and the highest activation energy (40 kJ mol-1). 

However, the aldehyde oxidations in steps 1 and 3 surprisingly exhibited the strongest NaOH 

dependencies, equating to 100-fold (HMF / HMFCA) and 66-fold (FFCA / FDCA) rate 

enhancements respectively5. These far exceed the comparatively small four-fold enhancement 

observed for step 2 (HMFCA/FFCA) and appears a general phenomenon for Au catalysed 

aldehyde versus alcohol oxidation. High FDCA yields were found to be achievable either by 

using low concentrations of Au in conjunction with a strong soluble base, or high 

concentrations of Au on a moderate strength solid base5.  

The proposed explanation5 for the loading dependence of these two catalytic regimes 

(soluble base  2 wt. % Au  solid base) is the competitive adsorption between HMF and 

HMFCA. The HMF:surface Au molar ratio approaches 60:1 for the 0.5 wt. % Au/HT 

catalyst, hence it is unlikely that the low concentration of gem-diol formed without NaOH 

can effectively compete for adsorption sites over gold nanoparticles.  
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 NaOH addition promotes and accelerates gem-diol formation2, 6, 7 from HMF in 

solution, displacing the HMF adsorption equilibrium and liberating reactive gold surface site 

for both geminal diol dehydrogenation to HMFCA, and subsequent OH- mediated oxidative 

dehydrogenation of HMFCA to FFCA and FFCA hydration/dehydrogenation to FDCA.  

 

Scheme 6.1: impact of NaOH on kinetics of HMF oxidation over 2 wt. % Au/HT taken from 

Chapter 3. 

 

Figure 6.1: left - influence of pH on the aqueous phase selox of 5-HMF by 2 wt. % Au/HT 

after 7 h, and postulated pH dependent reaction mechanism, from Chapter 3. Right – the 

comparative NaOH rate enhancements for the selective aerobic oxidation of furanic 

aldehydes versus alcohols over a 2 wt. % Au/HT catalyst, from Chapter 3. 

Thermal evolution of the gold precursor was investigated5 by in situ Au LIII X-ray 

absorption near edge spectroscopy (XANES) (Figure 6.2, from Chapter 3). Heating to 65 °C 

under flowing air initiated precursor decomposition and the concomitant appearance of 

Au2O3, which remained stable to ~110 °C before decomposing to metallic Au. Complete 
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decomposition of both the Au(NH3)4(OH)3 precursor and Au2O3 to metallic gold required 

calcination > 170 °C.  

An operando in situ XAS study (Figure 6.3 from Chapter 3) was subsequently 

performed of the thermally processed 2 wt.% Au/HT material, in order to identify the nature 

of the gold active sites during 5-HMF oxidation, in the reaction conditions described in 

Chapter 3, before and after the addition of NaOH. Despite such high pH, the XANES spectra 

remained unperturbed following NaOH or 5-HMF addition confirming that gold remained in 

its metallic form during the selective oxidation of 5-HMF, with no evidence of Au(OH)3 or 

Na-Au intermetallics detected as might arise due to either gold leaching or Na chemisorption 

and alloying5. These results confirm that gold nanoparticles do not sinter or leach even after 

16 h reaction and that NaOH directly promotes oxidation without influencing the electronic 

or structural properties of gold, showing that the active site is Au0. 

 

Figure 6.2: In-situ Au LIII XANES during thermal processing of the HAuCl4/Mg-Al HT 

precursor a) waterfall plot showing thermal evolution of normalised XANES spectra; b) 

representative least squares fitted XANES spectra to reference gold species; c) quantitative 

thermal evolution of fitted Au species, taken from Chapter 3. 
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Figure 6.3: Au LIII edge (11.9 keV) in situ XANES spectra for the aerobic selective 

oxidation of HMF, as a function of reaction conditions. No changes were visible in the Au0 

oxidation state. 

The impact of the calcination temperature of different Au loadings/HT on the base site 

distribution and on the base strength of hydrotalcites were studied, to generate a stronger 

basic support that enhances Au/HT catalytic properties without the need of extra added 

NaOH or high Au loading, being this a waste of expensive precious metal; a comparison 

between different protocols  for calcination and calcination rehydration was carried out. At a 

first instance, 2 wt. % Au was loaded on HT using the DP method, then the materials were 

calcined at different temperatures, respectively 300, 400 and 500 °C, to generate mixed 

Mg3Al oxides. Subsequently, a calcination – rehydration protocol was set up, in order to try 

optimising the calcination temperature and the preparation time: the material Au/HT was 

calcined at 300 or at 450 °C, then the rehydration step was tested in aqueous vapour phase 

using N2, in subcritical water under pressure at 120 °C or in hot water at 100 °C.  

The best catalyst, which has shown highest FDCA yield (100 %), was 2 wt. % 

Au/CHT400 °C without subsequent rehydration. This calcination temperature removes 

carbonates from the HT interlayers, then a rehydration in situ occurs during the reaction, 

either generating –OH ions in water that activate HMF to 1,2 gem-diol or deprotonating easily 

the rate – determining step, the activation of R-OH group, for the selox of HMF and 

HMFCA. TPD analysis, (Figure 6.4 from Chapter 4), has shown this catalytic system 

possesses the strongest basicity and the highest base active sites density, while N2 

porosimetry has also shown the highest surface area. 
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Figure 6.4: left –CO2 TPD spectra, and right - surface base density determined for 2 wt. % 

Au/CHT materials as a function of calcination temperature, from Chapter 4. 

The addition of Pd to Au (Figure 6.5) was an excellent alternative route of increasing 

Au catalytic properties, already at pH = 9 provided by HT surface, yielding a maximum of 

FDCA above 75 % and without the need of extra added NaOH. To the best of our knowledge, 

AuPd alloy might promote the oxidation of alcohol to aldehyde, deprotonating the alcohol, 

the crucial rate-determining step; while Au NPs, also present in the prepared catalysts, can 

drive the selox of aldehyde to carboxylic acid at pH 9. Both geometric and electronic effects 

were proposed and discussed to be responsible of the catalytic enhancement but, to date, the 

true mechanism and active site is not well known yet. 
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Figure 6.5: left – raw FDCA yields vs. Pd atomic %, showing a volcano plot and right – a 

linear correlation between raw FDCA yields and normalised AuPd/(Au+Pd) alloy atomic %. 

Standard reaction conditions for HMF selox. 

Further investigations via operando XAS8 might help to clarify what is the true active 

site, if there are any changes in the AuPd alloy with the reaction on-going, to definitively 

understand the synergic effect of these two metals in enhancing the selox of R-CHO and R-

OH. An attempt to titrate Pd active sites with CO or H2 titration/TPD, followed by in-situ 

DRIFT-IR study might help find the number of Pd active sites and estimate TOF values with 

more accuracy. In-situ NMR might help understand better the reaction mechanism and follow 

the 1,1-gem-diol formation, both for Au/HT and for AuPd/HT catalytic systems, in the 

presence and in the absence of base. 
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