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Thesis Summary 
 
Age-related macular degeneration (AMD) is the most common cause of severe visual 
impairment affecting older adults in the developed world. The pathogenesis of AMD is not 
fully understood. 
 
This study sought to investigate the association between macular pigment optical density 
(MPOD) and glare recovery time (GRT) with a selection of other confirmed and putative 
AMD risk factors (RF): age, gender, body mass index (BMI), calculated percentage body fat 
(%BF), iris colour, family history (FH) of AMD, and ocular vascular perfusion (OVP) RF: 
migraine, Raynaud's phenomenon (Rph) and vascular dysregulation (VDys). Interocular 
comparison was assessed for MPOD and GRT. The effect of ocular dominance on MPOD 
and GRT, and GRT repeatability was also examined. The use of GRT as a surrogate 
measure for MPOD was assessed. 
 
In this healthy, mixed-gender, White population no significant association was found 
between MPOD measured by heterochromatic flicker photometry (HFP) at 0.5° eccentricity 
and any AMD or OVP RF assessed by this study. No significant interocular difference in 
MPOD was found. No significant association was found between MPOD and ocular 
dominance. 
 
GRT after 30-second duration bleach using the direct ophthalmoscope was significantly and 
positively associated with age. No significant association was found for any other AMD or 
OVP RF examined, after correction for age. No significant interocular difference was found. 
No significant association was found with ocular dominance. GRT intra-session 
repeatability was good and inter-session repeatability was moderate. This method of GRT 
was not found to be a good surrogate measure for MPOD. 
 
This study generated three new theories: the possible association between the OVP RF 
migraine, Rph and VDys and AMD risk, the Müller cell (Mc) / neuroglial cell hypothesis for 
macular pigment, and the retinal theory for Meares-Irlen syndrome (MIS) also known as 
Visual Stress. 
 
 
 
 
 
 
 
 
Keywords: cone-specific visual cycle, direct ophthalmoscope, intrinsically photosensitive 
retinal ganglion cells, MPS screener, and Müller cells. 
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Chapter 1 Introduction 

 

The following chapter will provide background information about age-related macular 

degeneration (AMD) including its epidemiology, pathogenic features, classification, risk 

factors (RF), including the macular pigments (MP) lutein (L) and zeaxanthin (Z), pathogenic 

mechanisms and visual consequences, including glare recovery time (GRT). Sections 

covering MP and glare recovery time (GRT) in greater detail are included. This information 

will be used to support the two experimental chapters and their conclusions. 

 

1.1 Epidemiology of AMD 

 

In epidemiological studies AMD is categorised as either "early", by the presence of soft 

indistinct or reticular drusen; any soft drusen type with retinal pigment epithelium (RPE) 

depigmentation or with increased retinal pigmentation, although the exact criteria is 

dependent on the classification system used by each study, or "late" if geographic atrophy 

(GA) or neovascular AMD (nAMD) is present. The subtypes of AMD will be discussed in 

greater detail in section 1.2. 

 

1.1.1 Prevalence and incidence 

A recent Bayesian meta-analysis of 31 population studies from Europe, North America and 

Australia with a combined population of 57,173, has estimated the prevalence and 

incidence of late AMD in the UK population aged 50 year and over.[1] The overall 

prevalence of late AMD was 2.4% (95% credible interval (Crl) 1.7% to 3.3%), equivalent to 

513,000 cases (95% Crl 363,000 to 699,000). Approximately 52% of late AMD cases were 

GA. The estimated number of prevalent cases of late AMD were 314,000 for women and 

192,000 for men. Incidence was estimated from age-specific prevalence data. 71,000 new 

cases of late AMD were estimated per year (table 1.1).[1] 

 

Table 1.1 Estimated UK late AMD prevalence and incidence in those ≥ 50 years of age 

  indicating the variation in AMD with age and gender 

 

The prevalence of early and late AMD is variable within populations of similar and different 

ethnicity, however several general patterns are visible from the data displayed in tables 1.2 

and 1.3. The prevalence of early AMD is greatest in Hispanic and White individuals and 

least in Asian and Black individuals.[2] Differences in AMD grading scales make inter-study 
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comparison of early AMD prevalence difficult.[3] The definition of late AMD is subject to less 

variability between grading scales than early AMD. Late AMD prevalence is greatest in 

Asian and White individuals and least in Black and Hispanic individuals. Higher levels of 

choroidal melanin associated with darker skin and iris colouration has been hypothesised to 

have a protective effect on the RPE, Bruch's membrane and the photoreceptors (PR).[4] 

The protective effect of choroidal melanin may be a combination of light / heat absorption; 

melanin has a broad absorption spectrum spanning ultraviolet (UV), visible and near infra-

red (NIR),[5] and heavy metal ion and other chemical binding, free radical scavenging and 

antioxidant effects.[6, 7] Choroidal melanin exhibits an age-related decline throughout the 

retina after 40 years of age. In the macular region, RPE cells show a 35% reduction in 

melanin granules between the early and late decades of life.[8] The consequence of 

reduced melanin with age is a lower level of retinal and RPE protection. 

 

The ratio of GA to nAMD is also variable within and between ethnicities; Asian (0-40% GA), 

Black (11-100% GA), Hispanic (0-69%), Indian (0-94% GA) and White (21-83% GA). The 

variability is in part due to the small numbers of late AMD detected, despite the large size of 

the study populations. The prevalence of early and late AMD from studies of Northern and 

Western European populations and the global prevalence of AMD from selected sources 

are summarised in tables 1.2 and 1.3. 

 

Table 1.2 The prevalence of AMD from Northern and Western European studies 
Study, Country 
(Date) Grading System, 
Digital Photography 

Subjects 
Age (years) 

Study 
Duration 

Prevalence of Early AMD, % 
(95% CI) 

Prevalence of Late AMD, 
% (95% CI) 
% of late AMD = GA 

GHS, Germany[3] 
(2014) IC, DP 

4,340 
35-74 

2007-2008 1a: 2.1 (1.7-2.6) 
1b: 8.0 (7.2-8.8) 
2a: 1.0 (0.7-1.3) 
2b: 0.5 (0.3-0.7) 
3: 0.3 (0.2-0.6) 

GA: 0.1 (0.0-0.2) 
nAMD: 0.1 (0.0-0.2) 
%GA: 50% 

TES, Norway[9] 
(2012) IC, DP 

2,631 
65-87 

2007-2008 ID: 34.9 (33.1-36.8) 
SD: 24.1 (22.5-25.8) 

GA: 1.0 (0.6-1.4) 
nAMD: 2.5 (1.9-3.1) 
%GA: 28% 

SES, United Kingdom[10] 
(2011) IC 

934 
64-79 (men) 

1979-1997 1: 42.8 (n/a) 
2: 7.7 (n/a) 
3: 1.5 (n/a) 
Total 9.2 (7.4-11.4) 

0.5 (0.2-1.2) 
%GA: n/a 

AGES, Iceland[11] 
(2011) mWARMGS, DP 

5,272 
66-91 

2002-2006 SDD: 38.1 (36.8-39.5) 
HypoP: 11.2 (10.3-12.1) 
HyperP: 20.3 (19.2-21.4) 
Total 21.3 (20.1-22.5) 

GA: 2.4 (2.0-2.8) 
nAMD: 3.3 (2.8-3.8) 
%GA: 42% 

OMS, Norway[12] 
(2006) IC, DP 

459 
 

2002 ID: 26.6 (n/a) 
SDD: 2.8 (n/a) 
SID: 13.5 (n/a) 
HypoP: 12.6 (n/a) 
HyperP: 44.4 (n/a) 

2.8 (n/a) 
%GA: 54% 

RES, Iceland[13] 
(2003) IC 

1,045 1996 ID: 9.9 (n/a) 
SDD: 4.9 (n/a) 
SID: 4.9 (n/a) 
HypoP: 5.1 (n/a) 
HyperP: 3.0 (n/a 

GA: 3.2 (n/a) 
nAMD: 0.7 (n/a) 
%GA: 83% 

RS, The Netherlands[14] 
(1995) WARMGS 

6,251 
55+ 

1990-1993 ID: 33.9 (1-9 drusen) 
ID: 5.5 (10+ drusen) 
LD: 6.8 (1-9 drusen) 
LD: 2.0 (10+ drusen) 

1.7 (n/a) 
%GA: 35% 

CCES, Denmark[15] 
(1995) WARMGS 

946 
60-79 

1986-1988 - 12.2 (n/a) 
%GA: 21% 

Laatikainen et al.[16] 
Finland (1995) IC 

500 
70+ 

1991 31 (n/a) 6.2 (n/a) 
%GA: 61% 



	   16	  

Abbreviations: GHS: Gutenberg Health Study, IC: International Classification System for age-related maculopathy (ARM), DP: 
digital photography used to record retinal image, TES: Tromsø Eye Study, SES: Speedwell Eye Study, AGES: Age, Gene / 
Environment Susceptibility Study, mWARMGS: modified Wisconsin Age-Related  maculopathy Grading System, OMS: Oslo 
Macular Study, RES: Reykjavik Eye Study, RS: Rotterdam Study, WARMGS: Wisconsin Age-Related  maculopathy Grading 
System, CCES: Copenhagen City Eye Study, ID: intermediate drusen (63-125 µm), SD: soft drusen (> 125 µm), SDD: soft 
distinct drusen (> 125 µm), SID: soft indistinct drusen (> 125 µm), HypoP: hypopigmentation, HyperP: hyperpigmentation, LD: 
large drusen (≥ 125 µm), AMCW: macular changes without visual impairment. Early AMD definition. GHS: 1a: only soft distinct 
drusen (≤ 63 µm), 1b: only pigmentary abnormalities, 2a: only soft indistinct drusen (≥ 125 µm) or reticular drusen, 2b: soft 
distinct drusen (≥ 63 µm) with pigmentary abnormalities, 3: soft indistinct drusen (≥ 125 µm) or reticular drusen with 
pigmentary abnormalities, SES: IC, grade 1: soft distinct drusen or pigmentary irregularities, grade 2: soft indistinct or reticular 
drusen without pigmentary irregularities, or soft distinct drusen with pigmentary irregularities, grade 3: soft indistinct or reticular 
drusen with pigmentary irregularities. Where available age-standardised prevalence values are quoted. 
 
 
Table 1.3 Global prevalence of AMD (ancestry presented alphabetically) 
 

Study, Country 
(Date) Grading System, 
Digital Photography 

Subjects 
Age 
(years) 

Ancestry Prevalence of Early AMD 
% (95% Crl / CI) 

Prevalence of Late AMD 
% (95% Crl / CI) 
% of late AMD = GA 

KNHANES, Korea[17] 
(2014) IC, DP 

14.352 
40+ 

Korean 6.02 (5.56-6.48)* 0.60 (0.45-0.75)*, %GA: 20% 

SEEDS, Singapore[18] 
(2014) mWARMGS, DP 

10,033 
40-85 

Indian 
Singaporean- 
Chinese 
Malaysian 

4.5 (3.8-5.4)* 
5.7 (5.8-7.8)* 
 
3.7 (3.0-4.6)* 

0.3 (0.2-0.7)*, %GA: 0% 
0.6 (0.4-2.7)*, %GA: 20% 
 
0.3 (0.2-0.9)*, %GA: 38% 

NS, Japan[19] 
(2013) sAREDS, DP 

5,595 
50+ 

Japanese 
 

22.8 (21.7-24.0)* 
 

0.58 (0.36-0.80)*, %GA: n/a 

Kulkarni et al., India[20] 
(2013) IC 

19,140 
50+ 

Indian 1.14 (0.99-1.29)* 0.24 (2.1-2.4)*, %GA: 48% 

Mathenge et al., 
Kenya[21] 
(2013) IC, DP 

4,414 
50+ 

Kenyan 11.4 (n/a) 1.3 (n/a), %GA: 36% 

Moon et al., Korea[22] 
(2012) IC, DP 

10,449 
50+ 

Korean 3.08% (n/a) - 

HES, China[23] 
(2011) mWARMGS, DP 

6,581 
30+ 

Chinese 3.0 (2.6-3.5)* 0.1 (0.0-0.12)*, %GA: 0% 

Jenchitr et al., 
Thailand[24] 
(2011) IC, DP 

10,788 
50-98 

Thai 2.7 (n/a) 0.3 (n/a), %GA: 26% 

NHANES05-08, USA[25] 
(2011) mWARMGS, DP 
Prevalence values for 
participants ≥ 60 years 
of age 

7081 
40+ 

Mexican- 
American 
Non-Hispanic- 
Black 
Non-Hispanic-
White 

 
12.9 (2.0)** 
 
5.0 (1.3)** 
 
11.6 (1.1)** 

 
0.4 (0.4)**, %GA: 0% 
 
0.3 (0.3)**, %GA: 100% 
 
2.6 (0.5)**, %GA: 62% 

CIEMS, India[26] 
(2011) WARMGS, DP 

4,542 
30+ 

Indian 4.7 (4.1-5.4)* 0.18 (0.07-0.29)*, %GA: 44% 

SEE, Spain[27] 
(2011) IC, DP 

2,132 
65-74 

Spanish 10.3 (8.7-11.8)* 3.4 (2.5-4.3)*, %GA: 44% 

BOSS, USA[28] 
(2010) mWARMGS, DP 

2,810 
48-92 

European 3.4 (2.7-4.0)* No late AMD detected 

SMES, Singapore[29] 
(2008) mWARMGS, DP 

3,265 
40-80 

Malaysian 3.5 (2.9-4.1)* 0.34 (0.29-0.34)*, %GA: 40% 

EUREYE, Estonia, 
France, Greece, Italy, 
Norway, Spain, UK[30] 
(2006) IC, DP 

4,753 
65+ 

European ARM grade 
1: 36.5 (32.7-40.3)* 
2: 10.1 (8.9-11.4)* 
3: 2.5 (1.8-3.1)* 

3.32 (2.52-4.13)*, %GA: 36% 

BeiES, China[31] 
(2006) WARMGS, DP 

4,377 
40+ 

Chinese 2.9 (2.5-3.3)* 
 

0.3 (0.1-0.4)*, %GA: 42% 
Corrected 2008 values 

MESA, USA[32] 
(2006) mWARMGS, DP 

6,176 
45-85 

Black 
Chinese 
Hispanic 
White 

2.1 (n/a) 
3.6 (n/a) 
4.0 (n/a) 
4.8 (n/a) 

0.3 (n/a), %GA: n/a 
1.0 (n/a), %GA: 14% 
0.2 (n/a), %GA: n/a 
0.6 (n/a), %GA: 78% 

APEDS, India[33] 
(2005) IC 

3,723 
40-102 

Indian - 1.82 (1.39-2.25)*, %GA: 94% 

Proyecto VER, USA[34] 
(2005) mWARMGS 

3,178 
50+ 

Hispanic 
 

27.9 (26.2-29.6)* 0.50 (0.3-0.8)*, %GA: 69% 

LALES, USA[35] 
(2004) mWARMGS 

5,875 
40+ 

Latino 9.4 (8.6-10.1)* 0.43 (0.26-0.60)*, %GA: 35% 

CHS, USA[36] 
(2003) mWARMGS 

2,361 
69-97 

Black 
White 

8.8 (5.9-11.7)* 
16.7 (15.1-18.4)* 

0.3 (0.1-1.5)*, %GA: n/a 
1.5 (0.9-2.0)*, %GA: n/a 

VIP, Australia[37] 
(2000) IC 

4,345 
40+ 

European 15.1 (13.7-16.4)* 0.68 (0.3-1.00)* %GA: 41% 



	   17	  

NHANESIII, USA[38] 
(1999) WARMGS 

8,270 
40+ 

Mexican- 
American 
Non-Hispanic 
Black 
Non-Hispanic 
White 

 
7.54 (n/a) 
 
8.27 (n/a) 
 
9.1 (n/a) 

 
0.06 (0.0-0.1)*, %GA: 24% 
 
0.13 (0.0-0.4)*, %GA: 49% 
 
0.50 (0.3-0.7)*, %GA: 63% 

ARIC, USA[39] 
(1999) mWARMGS 

11,532 
48-72 

Black 
White 

3.7 (n/a) 
5.4 (n/a) 

0 (n/a), %GA: n/a 
0.2 (n/a), %GA: n/a 

BaltES, USA[40] 
(1999) IC 

5,308 
40+ 

Black 
White 

19.91 (n/a) 
22.53 (n/a) 

0.19 (n/a), %GA: 50% 
1.91 (n/a), %GA: 57% 

BMES, Australia[41] 
(1995) mWARMGS 

3,654 
49+ 

European 7.2 (7.0-7.4)* 1.9 (1.5-2.4)*, %GA: 33% 

BES, West Indies[42] 
(1995) IC 

3,444 
40-84 

Black 23.5 (22.8-24.2)* 0.57 (0.55-0.59)*, %GA: 11% 

BDES, USA[43] 
(1992) WARMGS 

4,771 
43-86 

European 15.6 (n/a) 1.6 (n/a), %GA: 28% 

Abbreviations: KNHANES: Korean National Health and Nutrition Survey, IC: International Classification System for ARM, DP: 
digital photography used to record retinal image, SEEDS: Singapore Epidemiology of Eye Disease Study, NS: Nagahama 
Study, mWARMGS: modified Wisconsin Age-Related maculopathy Grading System, WARMGS: Wisconsin Age-Related 
maculopathy Grading System, sAREDS: simplified Age-Related Eye Disease Study grading system, NKS: Nakuru Kenya 
Study, HES: Handan Eye Study, NHANES05-08: National Health and Nutrition Examination Survey 05-08, CIEMS: Central 
India Eye and Medical Study, SEE: Spanish Eyes Epidemiological Study, BOSS: Beaver Dam Offspring Study, SMES: 
Singapore Malay Eye Study, EUREYE: European Eye Study, BeiES: Beijing Eye Study, MESA: Multi-Ethnic Study of 
Atherosclerosis, APEDS: Andhra Pradesh Eye Disease Study, Proyecto VER: Proyecto Vision and Eye Research, LALES: 
Los Angeles Latino Eye Study, CHS: Cardiovascular Health Study, VIP: Visual Impairment Project, NHANESIII: third National 
Health and Nutrition Examination Survey, ARIC: Atherosclerosis Risk in Communities Study, BaltES: Baltimore Eye Survey, 
BDES: Beaver Dam Eye Study, BES: Barbados Eye Study, CBWS: Chesapeake Bay Waterman Study, CrI: credible interval, 
CI: confidence interval, GA: geographic atrophy. Search criteria: January 1992-March 2014, study population ≥ 2,000 included 
participants and international AMD grading system. Where available age-standardised prevalence values are quoted. 
* 95% CI, ** standard error. 
 

1.1.2 Projected increase in AMD over time 

Wong et al. reported a worldwide prevalence of AMD of 8.69% (95% Crl 4.26 to 17.40) and 

projected that by 2020 approximately 196 million people will be affected by this disease. 

Asia accounts for 60% of the world population and will consequently have the largest 

projected number of AMD cases, despite the low AMD prevalence in this population. 

Europe represents 11% of the world population, but has the highest AMD and the second 

highest projected number of AMD cases.[2] Owen et al. estimated that the number of cases 

of late AMD in the UK would increase by 30.6% to 679,000 (approximately 52% GA) by 

2020.[1] Similar estimates were reported by Minassian et al., 24.3% increase in AMD cases 

to 755,867 (31.8% GA) in the UK by 2020.[44] The results from recent studies estimating 

future AMD prevalence are given in table 1.4. 

 

Contrary to the increase in AMD prevalence with time forecast by predictive studies, real 

data from the 2005 to 2008 National Health and Nutrition Examination Survey (NHANES 

2005-2008) indicated a reduction in the prevalence of all AMD compared to the third 

NHANES (NHANESIII) study reporting data from 1988 to 1994. The reduction in AMD 

prevalence in the USA between these studies may indicate improvements in public health 

(reduced smoking and blood pressure, improved diet and increased exercise), although 

differences in study method should also be considered.[25] Rudnicka et al. however, 

reporting from a large systematic review and meta-analysis (n = 57,173) of populations with 

European ancestry found no evidence of an alteration of late AMD prevalence with time.[45] 

Despite the increase in population numbers, new treatments for nAMD and possibly GA are 

likely to reduce future AMD prevalence, suggesting a more positive outlook for the ocular 
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health of individuals and the resources of health care agencies than that suggested by 

predictive studies. 

 

Table 1.4 Estimated future increase in AMD 
Study Early AMD Late AMD 

Date Actual Number 
or Millions 

% 
increase 

Date Actual Number 
or Millions 

% 
increase 

Worseley et al. (2015)[46] 
New Zealand 

2014 
2026 

167,500 
189,200 

- 
13.0% 

2014 
2026 

7,600 
8,600 

- 
13% 

Wong et al. (2014)[2] 
Africa 
 
 
 
Asia 
 
 
 
Europe 
 
 
 
Latin America & Caribbean 
 
 
Northern America 
 
 
 
Oceana 
 
 

 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 

Millions 
15.36 
18.47 
35.53 
 
55.51 
66.29 
105.76 
 
47.81 
50.87 
58.65 
 
19.87 
23.59 
36.95 
 
14.77 
16.70 
21.30 
 
1.21 
1.43 
2.07 

 
- 

20.0% 
131.3% 
 

- 
19.4% 
90.5% 

 
- 

6.4% 
22.7% 

 
- 

18.7% 
86.0% 

 
- 

13.1% 
44.2% 

 
- 

18.2% 
71.1% 

 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 
 
2014 
2020 
2040 

Millions 
0.77 
0.93 
1.80 
 
4.59 
5.52 
9.92 
 
2.57 
2.79 
3.69 
 
0.86 
1.02 
1.61 
 
0.76 
0.90 
1.36 
 
0.09 
0.11 
0.19 

 
- 

20.8% 
133.8% 
 

- 
20.3% 
116.1% 

 
- 

8.6% 
43.6% 

 
- 

18.6% 
87.2% 

 
- 

18.4% 
78.9% 

 
- 

22.2% 
111.1% 

Lindekleiv et al. (2013)[47] 
Scandinavia 

2012 
2020 
2040 

 
- 

 
- 

2012 
2020 
2040 

187,000 
212,000 
328,000 

- 
13.3% 
75.4% 

Owen et al. (2012)[1] 
UK 

 
2020 

 
- 

 
- 

 
2020 

 
670,000 

 
30.6% 

Minassian et al. (2010)[44] 
UK 

2010 
2020 

- - 2010 
2020 

608,213 
755,867 

- 
24.3% 

 

1.1.3 Limitations of studies examining AMD prevalence and incidence 

Bayesian meta-regression analyses indicated that 50% of the variance between studies in 

late AMD prevalence was attributable to study design, whereas 20% was attributable to 

differing age profiles between studies.[45] The prevalence and incidence of AMD are 

significantly associated with age, therefore values should be age-corrected. Gender is not 

generally thought to be associated with AMD, however greater female longevity will bias the 

results towards higher female AMD rates in the older age range.[1] Classification systems 

for AMD grading have evolved over time, making it difficult to compare AMD stages 

between studies using different grading systems. The inclusion of studies with AMD grading 

systems other than the International Classification (IC) and the Wisconsin Age-Related 

Maculopathy (WARM) grading systems, and variable inclusion of fundus imaging in a 

systematic review / meta-analysis will lead to variability in late AMD prevalence values and 

contribute to increased levels of heterogeneity.[2, 45] The different AMD grading systems are 

summarised in section 1.2. 

 

Optical coherence tomography (OCT) may be used to differentiate nAMD from retinal 

neovascularisation associated with PCV, however, this has not been used in the majority of 
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studies to date. Reliance on photographic grading may lead to an overestimation of early 

AMD and nAMD prevalence and higher ratios of nAMD to GA for Asians.[48] New treatments 

for AMD released during the course of the study period will reduce AMD prevalence, as it 

would be unethical to withhold more effective treatments from longitudinal study 

participants.[48] Blindness certification rates in the UK due to nAMD have fallen since the 

introduction of vascular endothelial growth factor (VEGF) inhibitors from 2006 onwards.[49] 

 

1.2 Lesions and pathogenic features of AMD 

 

1.2.1 Features of early AMD 

Early AMD is characterised by the presence of drusen and / or RPE pigment abnormalities. 

These features, depending on their severity are considered to increase the risk of an 

individual developing late AMD. Subretinal drusenoid deposits are less visible using colour 

photographic methods, but also represent an increased risk of progression to late AMD.[50] 

 

1.2.1.1  Drusen  

Drusen are sub-RPE and subretinal deposits containing esterified cholesterol and 

phosphatidylcholine (40% of drusen contents).[51] The constituents of drusen vary with age, 

drusen size and retinal location. Drusen were reported to contain; opsins derived from 

photoreceptor outer segment phagocytosis, dendritic cells, proteins, lipids, sugar-containing 

molecules, non-fibrillar amyloid-β, the main constituent of amyloid plaques in Alzheimer 

disease (AD), N-retinylidene-N-retinylethanolamine (A2E), a lipofuscin chromophore that 

produces singlet oxygen in response to photo-excitation with visible light wavelengths, 

advanced glycation end products suggesting oxidative stress and inflammatory mediators, 

including vitronectin, amyloid A, C5 and C5b-9 terminal complexes, HLA-DR, fibrinogen, 

factor X, prothrombin, glial fibrillary acidic protein (GFAP) a sensitive marker for retinal 

stress and Müller cell (Mc) activation, and in some cases immunoglobulin.[52-55] 

 

Drusen are a hallmark feature of AMD, assumed to develop in association with risk 

polymorphisms in the complement factor H (CFH) gene, but they are not exclusive to 

AMD.[54, 56] Drusen also develop as a consequence of normal ageing. Comparative analysis 

of drusen taken from normal and AMD donors revealed higher levels of crystallin and 

oxidative protein modifications including; cross-linked species of tissue metalloproteinase 

inhibitor 3 and vitronectin, carboxymethyl lysine and carboxyethyl pyrrole protein adducts 

(uniquely generated from the oxidation of lipids containing the docosahexaenoic acid (DHA) 

derivative, docosahexaenoate). These differences suggest that oxidative injury leading to 

oxidative protein modifications may be involved in drusen formation associated with 

AMD.[57]   

 

Drusen are observed ophthalmoscopically in 15-30% of all individuals, increasing to 80% of  
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those aged over 60 years, but are rare in individuals below 40 years of age.[56] There is a 

great individual variety in the appearance of drusen, which may be described in terms of; 

number, size (small < 63 µm, medium 63 µm to 125 µm and large > 125 µm), margins 

(distinct or indistinct), and texture (soft or hard).[54] Table 1.5 contains a summary of drusen 

types. 

 

Table 1.5 Classification of drusen 
Hard (nodular) drusen Small, well-defined yellow deposits, usually < 50 µm. Visible ophthalmoscopically. Minimal risk 

of soft drusen occurrence and / or progression to late AMD unless large numbers (> 8) are 
present.[58] Located sub-RPE.[56] 

Soft (exudative) drusen Larger and ill defined yellow deposits. Visible ophthalmoscopically. Higher risk of progression 
to late AMD. Located sub-RPE.[56] 

Basal linear deposits 
(diffuse) drusen 
Soft laminar drusen may 
also be described as 
diffuse drusen 

Extensive deposits between the basement membrane of the RPE and the inner collagenous 
zone of Bruch's membrane. Visible in histological sections. The presence of choroidal filling 
delays with fluorescein angiography (FA) indicates the presence of diffuse drusen. When 
associated with early AMD with soft drusen, eyes with diffuse drusen tend to develop GA 
rather than nAMD.[59] 

Cuticular drusen 
(formerly basal laminar 
drusen) 

Small, round, multiple, densely packed, yellow-white deposits. Contain the same constituents 
as soft drusen. Visible ophthalmoscopically, but better visualised by their hyperfluorescence 
with FA ("starry-sky" fundus).[60] Common in individuals with mis-sense mutations in fibulin-5 
and those with high-risk Y402H alleles in CFH.[61] Located sub-RPE. 

Subretinal drusenoid 
deposits (formerly 
reticular pseudodrusen,  
reticular drusen)  

Yellow interlacing networks. Not always visible ophthalmoscopically. Better visualised using 
blue or IR wavelengths or spectral domain OCT. Reticular pseudodrusen are a stronger 
predictor for progression to late AMD than classical drusen. Located subretinally (like vitelliform 
lesions) not sub-RPE.[50] 

 

The examination of drusen over time has revealed a variety of spontaneous changes that 

may occur. Hard drusen may enlarge and progress to soft drusen ("drusen softening"). Soft 

drusen may enlarge and become confluent, leading to pigment epithelium detachment 

(PED). Drusen may exhibit spontaneous regression, as drusen material is phagocytosed by 

macrophages and cleared from the sub-RPE space. Drusen material that is not removed 

becomes calcified, appearing ophthalmoscopically as refractile, crystalline structures 

containing cholesterol crystals.[56, 62] 

 

Several case reports from non peer-reviewed publications have suggested that MP 

supplements may lead to drusen resolution.[63-65] While there may be biologically plausible 

arguments for supplement-induced drusen resolution, these results need to be controlled 

for spontaneous drusen resolution, reported to occur in 20% of cases over seven years.[66] 

Another study found that soft drusen resolved spontaneously in 3.5% of cases over 5.9 

years.[67] Analysis by drusen size revealed a 10-year regression for small (< 63 µm) drusen 

of 48.9%, for medium drusen (≥ 63 µm to < 125 µm) of 17.8%, and for larger drusen (≥ 125 

µm to < 250 µm) and (≥ 250 µm) of 30.4% and 30.8% respectively.[58] The later stages of 

drusenoid pigment epithelium detachment (DPED) life cycle may involve varying degrees of 

drusen collapse and regression associated with RPE degeneration, clinically observed as 

hypopigmentary change.[68] 

 

1.2.1.2  Pigmentary abnormalities 

Hypo- and hyperpigmentation of the RPE is another ophthalmoscopically visible indicator of 

early AMD. Pigmentary changes are due to deposits between the inner collagenous layer of 
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Bruch's membrane and the basement membrane of the RPE. Hypopigmented areas may 

also result from RPE cell death and hyperpigmented areas reflect proliferating 

(hypertrophic) RPE cells or RPE cells containing phagocytosed pigmented material from 

neighbouring cells that have been lost.[69] 

 

1.2.1.3  Subretinal drusenoid deposits 

Subretinal drusenoid deposits (SDD) are located subretinally, rather than sub-RPE. They 

form a yellow interlacing network visible in some patients ophthalmoscopically or using 

colour fundus photography, but are better visualised using blue or IR wavelengths, fundus 

autofluorescence (FAF) or spectral domain OCT.[54] The constituents of SDD are similar to 

soft drusen, but do not contain lectin-binding disaccharide bridges and opsins associated 

with photoreceptors, GFAP and cellular retinal-binding proteins (CRALBP) associated with 

Mc, and CRALBP associated with the RPE.[70, 71] Subretinal drusenoid deposits are more 

likely to be observed in the perifovea (90.1% of a sample of 20 eyes with AMD) compared 

to the fovea (9.9%). Photoreceptor changes (outer segment (OS) shortening or loss and 

inner segment (IS) deflection or absence, and choroidal alterations (choriocapillary ghosts, 

choroidal thinning, loss of large vessels and hyalinisation of the macular stroma were also 

associated with SDD.[54] 

 

1.2.1.4  Risk of progression from early to late AMD 

The presence of large (> 125 µm) drusen is considered an important marker for progression 

to nAMD and GA. Focal RPE hyperpigmentation may indicate impending nAMD.[72] The first 

Age-Related Eye Disease Study (AREDS) report number 18 described a simple way to 

assess the 5-year risk of developing late AMD by grading the presence of the early AMD 

signs; large drusen and any pigmentary changes in one or both eyes (one point for either 

sign per eye). The scores and risk of progression to late AMD were simplified to; 0, 0.5%; 1, 

3%; 2, 12%; 3, 25%; 4, 50%. 

 

Although SDD are not included within the International Classification of AMD, they are 

strong predictors for progression to nAMD and GA.[54] Hogg et al. reported that SDD are 

associated with the development of nAMD in the fellow eye of individuals with unilateral 

nAMD, after correction for age and gender; odds ratio (OR) 5.5 (95% CI 1.1-28.8) and all 

eyes that developed GA during follow-up had visible SDD at baseline. Subretinal drusenoid 

deposits appear to be a stronger predictor for progression to late AMD than classical 

drusen.[50] The prevalence of SDD and consequently their importance to AMD risk have 

been under-estimated in older studies due to the reliance on colour photography for grading 

AMD features.  

 

1.2.2 Pathogenic features of GA 

Geographic atrophy is characterised by the loss of RPE, PR and choriocapillaris.[73] It has 
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 been suggested that GA may represent the end stage of the drusen life cycle in eyes with 

AMD,[74] however, to reach this stage eyes would have to avoid the competing risk of 

nAMD, which normally obscures the process of drusen regression and GA formation.[75] 

Klein et al. reported that the site of the initial appearance of GA was previously occupied by 

large drusen in 96% of cases, very large drusen (≥ 250 µm) in 83% of eyes and confluent 

drusen. Geographic atrophy was nearly always preceded by hyperpigmentation overlying 

drusen, followed by regression of the drusen and pigment and the appearance of 

hypopigmentation, occasionally accompanied by refractile deposits (23% of cases) 

representing residual material not removed by macrophages. The average time for GA to 

develop in individuals with large or confluent drusen was approximately 5-6 years, whereas 

GA developed an average of 2.5 years in the presence of hypopigmentation.[75] Less 

frequently, GA may develop after drusenoid PED (50% risk after seven years),[76] 

regression of nAMD following treatment with VEGF inhibitors (72% of eyes),[77] or following 

RPE rupture.[78] 

 

Histopathological studies suggest that RPE cells are the primary target in GA and their 

death results in choriocapillaris atrophy. Bruch's membrane, a five-layered structure which 

includes the RPE basement membrane, calcifies and doubles in thickness due to deposits 

of collagen, lipids and debris, leading to reduced fluid permeability and nutrient transport, 

while the choriocapillaris and choroidal thickness is halved with age.[79] Lipofuscin 

accumulation within RPE cells combined with lipid peroxidation products resulting from 

oxidative stress is thought to cause dysfunction and ultimately GA,[73] although a cause and 

effect relationship between RPE lipofuscin accumulation and AMD has not been 

established.[80] 

 

Lipofuscin levels within RPE cells increase with age, increasing from 12% to 19% in the 

macular retina between the ages of 50 and 90 years.[81] At the GA perimeter (junctional 

zone) the lysosomal compartment of RPE cells may contain much higher levels of 

lipofuscin, leading to the characteristic hyperfluorescence observed with FAF (figure 1.1).[82, 

83] Higher levels of autofluorescence in the rim area bordering the area of GA (normally 

devoid of autofluorescence) was associated with faster lesion progression.[84] Using OCT, 

fast progression was associated with a marked separation between the RPE / Bruch's 

membrane complex, possibly correlated with basal laminar deposits which may to promote 

RPE cell death.[85] 

 

Geographic atrophy is also associated with dysfunction of PR, with rods affected before 

cones.[86] The loss of PR appears to be secondary to changes of, and beneath the RPE, 

however PR loss may be evident outside the area of GA over normal appearing RPE 

cells.[87] Activation of Mc, microglia and macrophage activity are also features of GA.[73] 

Individuals with GA have significantly lower choroidal blood flow. Choroidal malperfusion 
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has been implicated as a potential cause of SDD, considered to be a greater predictor for 

GA than classical drusen.[50, 73] 

 

Figure 1.1 Fundus photograph and fundus FAF images of GA 

 

1.2.3 Pathogenic features of nAMD 

Wound repair in most tissues is associated with new blood vessel growth 

(neovascularisation). New vessels sprout from existing vessels to repair or replace 

damaged vasculature. In the retina neovascularisation is counterproductive, leading to 

more damage rather than less.[88] Subretinal neovascularisation associated with nAMD 

originates from choroidal neovascularisation (CNV), which sprout from choroidal vessels 

and extend through Bruch's membrane and the RPE to reach the subretinal space. A 

second source of subretinal neovascularisation may also be observed in cases with nAMD; 

retinal angiomatous proliferation (RAP) originating from the deep capillary bed located in 

the inner nuclear layer of the retina, grow through the photoreceptor layer to reach the 

subretinal space.[88] Choroidal neovascularisation may remain beneath the RPE, leading in 

some cases to the development of vascularised PED. Polypoidal choroidal vasculopathy 

(PCV), a condition characterised by aneurysmal or polypoidal dilations of the inner 

choroidal vasculature is also associated with choroidal neovascularisation. The clinical 

appearance of PCV is often difficult to distinguish from nAMD and may represent a subtype 

of nAMD.[89] 

 

New vessels, whether retinal or choroidal in origin are deficient in tight junctions compared 

to normal retinal vessels and therefore leak plasma (fluid) in to the surrounding tissue. New  

vessels are also more fragile leading to the formation of haemorrhages.[88] 

 

Neovascular AMD represents one of two possible end points in the progression of AMD. 

The factors that determine whether an eye develops nAMD or GA have not been fully 
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elucidated, however, certain conditions are known to predispose an eye to 

neovascularisation. Examination of Bruch's membrane from eyes with nAMD revealed 

higher levels of calcification and fragmentation compared to eyes with non-exudative 

AMD.[90] Breaks in Bruch's membrane, whether secondary to pathological processes (e.g. 

angioid streaks) are associated with CNV.[91] 

 

The major clinical features of active nAMD include; subretinal haemorrhage and / or fluid, 

sub-RPE haemorrhage and / or fluid (from vascularised or serous PED), RPE pigment 

alterations and hard exudates. Chronic nAMD is characterised by subretinal fibrosis, with or 

without the features of active nAMD listed (figure 1.2).[92] A study using SD-OCT has 

described five signs preceding the development of new-onset nAMD by at least one month; 

new RPE defects, new PR defects, drusen touching the PR layer and the external limiting 

membrane (ELM), and hyper-reflective spots possibly representing new growing vessels.[93] 

 

Figure 1.2 Photographic and spectral-domain OCT images of active CNV attributed to

   nAMD 

  

1.2.4 Classification of AMD 

The terminology used to describe AMD has evolved over the years.[94, 95] The lack of a 

standard agreement on the definition of specific AMD lesions and an accepted method of 

AMD classification has led to the development of several AMD classification schemes used 

predominantly for the assessment of AMD prevalence and progression risk in 

epidemiological studies, but later simplified for use in the clinical setting. 

 

The Wisconsin Age-Related Maculopathy Grading System (WARMGS) published in 1991, 

was the first AMD grading scheme designed specifically for use in epidemiological studies 

and clinical trials.[96] Early and late features of AMD, termed early and late age-related 

maculopathy (ARM) were based on the presence and severity of 13 features including; 

centrally located drusen, pigmentary abnormalities, GA and nAMD assessed from retinal  
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photographs. 

 

The complexity and number of scales used in WARMGS led to a consensus group meeting 

in the mid-nineties and the development of the International Classification System for Age-

related Maculopathy (IC),[94] also referred to as a modified version of WARMGS 

(mWARMGS).[23] This photographic-based system attempted to distinguish early features of 

AMD; drusen and pigmentary abnormalities (termed ARM) from late features of AMD; GA 

and nAMD (termed AMD).[97] The WARMGS and IC systems have been modified to simpler 

forms in many studies (tables 1.2 and 1.3). 

 

The first Age-Related Eye Disease Study, a four-stage, photographic grading system was 

designed to examine the benefit of nutritional supplementation in individuals with no or early 

AMD in either eye and individuals with late AMD in one eye.[98] The AREDS grading system 

introduced the term "advanced AMD" to describe GA and nAMD. This was simplified to a 

clinically achievable, four-stage classification system from which an AMD progression risk 

algorithm was developed (sAREDS).[99] Another clinically-based AMD grading scheme; the 

Clinical Age-Related Maculopathy Staging System (CARMS) has been used in several 

studies. This scheme used a five-point scale to differentiate "early AMD" and "intermediate 

AMD" (grades 1-3) from "late AMD" (grade 4: GA and grade 5: nAMD or PED).[100] 

 

The latest clinical AMD classification system resulted from a Delphi review of the current 

AMD classification criteria. The term "AMD" was preferred to other terms such as "ARM" 

and "ARMD" (a longer abbreviation of age-related macular degeneration). The confusing 

term "dry AMD", previously used to describe early AMD and GA was limited to the 

description of GA only. The term "drupelets" (the small units of aggregate fruit found in 

raspberries or blackberries) was introduced to describe small drusen (< 63 µm), not 

considered to increase risk of AMD progression, in order to differentiate these from 

intermediate and larger drusen that are associated with significant risk of progression. This 

five-stage clinical AMD classification system was the first to differentiate normal ageing 

changes, not classified as AMD, from early AMD.[101] A summary of the main AMD 

classification systems and their modified / simplified forms is given in table 1.6. 

 

Table 1.6 Summary of the main AMD grading schemes 
AMD Classification system 
Tables 1.2 and 1.3 list studies that used these systems 

Early and late AMD grading 
 

WARMGS[96] 
Used by longitudinal epidemiological studies to predict 
progression to late AMD. Not suitable for clinical purposes. 
Subclinical lesions easily overlooked by ophthalmoscopy 
are graded. 
 
AMD features graded using a set of standard circles of 
varying diameter (C0 = 1/24 DD, 63µm, C1 = 1/12 DD, 
125µm, C2 = 1/6 DD, 250µm, I1 = 1.6% of inner subfield, 
I2 = 6.3% of inner subfield, O1 = 1.6% of outer subfield, 
O2 = 6.3% of outer subfield) on a transparent sheet, from 
stereoscopic transparencies (slides) viewed using a 

Early AMD: drusen are graded by size (0-8), type (0-8), area 
(0-8), confluence (0 - ≥50% per subfield), RPE degeneration 
(0 - ≥50% per subfield), subretinal gray / black pigment (0 - ≥ 
circle C2). 
 
Late AMD: GA area ≥ circle I1 (0 - ≥50% of subfield), 
subretinal or sub-RPE haemorrhages (absent or present, 
graded as one lesion per subfield), subretinal and sub-RPE 
detachment (mostly subretinal, mostly sub-RPE or both), 
subretinal fibrous scar (absent to ≥50% per subfield). 
 
Drusen confluence was graded. 
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fluorescent viewing box at x15 magnification. A grid 
consisting of three concentric circles with diameters; 2/3 
DD (1000µm), 2 DD (3000µm) and 4 DD (6000µm) similar 
to that used by ETDRS and divided into nine subfields is 
superimposed onto one of the stereo images, centred on 
the fovea. 

No differentiation between hyper and hypopigmentation. 

IC[94] (a modified version of WARMGS) 
Used by longitudinal epidemiological studies to predict 
progression to late AMD. Not suitable for clinical purposes. 
Subclinical lesions easily overlooked by ophthalmoscopy 
are graded. 
 
AMD features graded using a set of standard circles of 
varying diameter (C0 = 1/24 DD, 63µm, C1 = 1/12 DD, 
125µm, C2 = 1/8.6 DD, 175µm, C3 = 1/6 DD, 250µm, C4 = 
1/3 DD, 500µm) on a transparent sheet, from stereoscopic 
transparencies (slides) viewed using a fluorescent viewing 
box at x15 magnification. The same grid used in 
WARMGS is superimposed onto one of the stereo images, 
centred on the fovea. 

Early AMD: drusen are graded by morphology (0-8), 
prominent drusen type within outer circle (0-8), number of 
drusen (0-8), size of drusen (1-8), main location of drusen 
(1-8), area covered by drusen (1-8 per subfield), 
hyperpigmentation (0-8), hypopigmentation (0-8), main 
location of hyper / hypopigmentation (1-8). 
 
Late AMD: GA: presence (0-8), location (1-8), area covered 
(1-8), nAMD: presence (0-8), typifying features (1-8), 
location (1-8), area covered (1-8). 
 
Drusen confluence was graded as soft indistinct drusen. 
Differentiation between hyper and hypopigmentation. 
Reticular drusen not graded. 

AREDS[98] (a modified version of WARMGS) 
Used by longitudinal epidemiological studies to predict 
progression to late AMD. Not suitable for clinical purposes. 
Subclinical lesions easily overlooked by ophthalmoscopy 
are graded. 
 
AMD features graded using a set of standard circles of 
varying diameter (C-0: 0.042 (1/24) DD, 63µm, C-1: 0.083 
(1/12) DD, 125µm, C-2: 0.167  (1/6) DD, 250µm, I-1: 0.120 
DD, I-2: 0.241 DD, O-1: 0.219 DD, O-2: 0.439 DD) on a 
transparent sheet, from stereoscopic transparencies 
(slides) viewed using a fluorescent viewing box at x15 
magnification. The same grid used in WARMGS is 
superimposed onto one of the stereo images, centred on 
the fovea. 
 
Central zone = central and four inner subfields. 
 

Early AMD: drusen graded separately within grid, centre and 
inner subfields and centre subfield, presence and maximum 
size (0-8), type (0-8), area (0-8), presence outside grid (0-8), 
reticular drusen (0-8), calcified drusen (0-8), 
hyperpigmentation (0-8), hypopigmentation (0-8). 
Early AMD grades: 
Grade 1: drusen size <63µm, total area <125µm. 
Grade 2: drusen size ≥63µm, <125µm, total area ≥125µm 
and RPE abnormalities in the central or inner subfields. 
Grade 3: one or more of the following; drusen size >125µm,  
soft indistinct drusen size ≥63µm, total area > circle I2. 
soft distinct drusen size ≥63µm, total area > circle O2. 
GA within the grid, but not at the central macula. 
 
Late AMD: GA: graded separately within grid, centre and 
inner subfields and centre subfield (0-8), retinal elevation: 
presence or absence graded by subfield, drusenoid PED (0-
8), fibrovascular / serous PED (0-8), serous / haemorrhagic 
sensory retinal detachment (0-8), hard exudates (0-8), 
subretinal / sub-RPE haemorrhage (0-8), subretinal fibrous 
tissue / fibrin (0-8), photocoagulation for AMD (0-8). 
Grade 4: late AMD (GA and nAMD). 

sAREDS[99] 
Suitable for clinical use. Graded within 2DD of the fovea. 
Five-year risk of developing advanced AMD in one or both 
eyes without advanced AMD in either eye (unbracketed 
percentages) and with advanced AMD in one eye 
(bracketed percentages). 
The diameter of the normal retinal vein at the optic disc 
margin is approximately 125µm. 

Graded 0-2 for each eye: large drusen (= ≥125µm): no = 0, 
yes = 1, pigmentation, no = 0, yes = 1. 
Five year risk of advanced AMD: 
Grade 0: 0.4% 
Grade 1: 3.1% 
Grade 2: 11.8% (14.8%) 
Grade 3: 25.9% (35.4%) 
Grade 4: 47.3% (53.1%) 

CARMS[102] (a modified version of AREDS) 
Suitable for clinical use. Graded within a 3000µm radius 
centred on the foveal centre. 

Early AMD: 
Grade 1: no signs associated with grades 2 to 5. 
Grade 2: extensive (≥15) small drusen (<63µm), non-
extensive (<20) intermediate drusen (≥63µm, <125µm) or 
pigment abnormalities associated with AMD. 
Grade 3: extensive intermediate or large (≥125µm) drusen. 
Late AMD: 
Grade 4: GA. 
Grade 5: PED or CNV. 

Ferris III et al. (2013)[101] 
Suitable for clinical use. Graded within 2DD of the fovea 
for patients aged over 55 years. 
 

Early AMD: 
Grade 1: No age changes: no drusen and no AMD 
pigmentary abnormalities. 
Grade 2: Normal age changes: only drupelets (small drusen 
≤63µm) and no AMD pigmentary abnormalities. 
Grade 3: Early AMD: medium drusen (>63µm, ≤125µm) and 
no AMD pigmentary abnormalities. 
Grade 4: Intermediate AMD: large drusen (>125µm) and / or 
any AMD pigmentary abnormalities. 
Late AMD: 
Grade 5: GA or nAMD. 

WARMGS: Wisconsin Age-Related Maculopathy Grading System, DD: disc diameters, ETDRS: Early Treatment Diabetic 
Retinopathy Study, IC: International Classification and Grading System for Age-related Maculopathy (ARM) and AMD, 
AREDS: Age-Related Eye Disease Study Research Group Severity Scale for AMD, sAREDS: simplified Age-Related Eye 
Disease Study Research Group Severity Scale for AMD, CARMS: Clinical Age-Related Maculopathy Staging System. C1-3: in 
this context refers to central 1-3, not to be confused with complement components 1-3. All classification system information 
reproduced with permission.  
 

Inter-observer agreement (κ-statistic) for four of the major AMD grading systems; 

WARMGS, IC, AREDS and CARMS suggested moderate to substantial agreement for most 



	   27	  

features of AMD.[100] Comparison between studies using different grading schemes is more 

problematic, however, due to differences in definitions of AMD stages, terminology, image 

quality and treatment of the data (e.g. correction for age and gender).[103] 

 

An attempt has been made to harmonise AMD classification between several of the major 

epidemiological studies; Beaver Dam Eye Study (BDES), Blue Mountains Eye Study 

(BMES), Los Angeles Latino Eye Study (LALES), and Rotterdam Study (RS), all of which 

used WARMGS or a modified version of WARMGS (mWARMGS). Grading of the same 60 

images by the four respective centres revealed a variation in the exact agreement of AMD 

severity of between 61% and 84%, with weighted kappa scores ranging from 0.66 to 0.86 

indicating moderate to substantial levels of agreement. Applying a correction for age and 

gender increased the prevalence of early AMD in all four studies, but did not affect the 

prevalence of late AMD. The authors concluded that despite harmonisation, it was difficult 

to correct for systematic differences in grading.[103] Comparisons between WARMGS and IC 

revealed no evidence of a difference in the definition of late AMD.[45] 

 

Digital photography (DP) has been used with the current AMD grading systems developed 

for use with non-digital images, in papers published since 2006 (tables 1.2 and 1.3). Bartlett 

et al. reported that DP can be used with the commonly used AMD grading systems 

(WARMGS, IC and AREDS).[100] van Leeuwen et al. reported that digital imaging was as 

good as 35-mm film for grading AMD in epidemiological studies. The weighted κ value for 

between-technique agreement (a quantitative measure of the magnitude of agreement 

between observers) ranged from 0.41 (fair agreement) for number of drusen < 63 µm to 

0.79 (substantial agreement) for drusen type and area occupied by drusen. The weighted κ 

values for GA (0.87) and nAMD (0.94) showed almost perfect agreement.[104] 

 

The use of DP has allowed the development of automated methods of AMD classification. 

Kankanahalli et al. reported a high level of accuracy (92.3% to 98.0%) between manual 

grading by expert graders and automated retinal image analysis (ARIA) of AMD using the 

AREDS grading scheme, graded from 1 to 4. Accuracy was calculated in this study by 

dividing the sum of true positives and true negatives by the sum of true positives, false 

positives, true negatives and false negatives.[105] Future development of machine learning 

models in the area of ARIA may combine clinical signs with patient characteristics using 

"white box" methods (logistic regression and decision trees) and "black box" methods 

(support vector machines, random forests and AdaBoost).[106] This may allow real-time 

assessment of AMD grading for epidemiological studies without the need to send images to 

off-site grading centres, as well as affording practitioners a more detailed assessment of the 

stage of AMD, and allowing the development of more complex algorithms to predict AMD 

progression and outcome in the  clinical setting. 
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1.3 Risk factors for AMD 

 

Studies have revealed many clinical RF associated with increased or decreased risk of 

AMD development and progression. Seventy three RF were identified of which 16 factors 

considered to be readily measured in a non-specialist setting, were investigated in a 

systematic review of 18 cross-sectional and prospective, and six case control studies by 

Chakravarthy et al.[107] Risk factor associations with AMD were ranked as; strong and 

consistent, moderate and consistent and weaker and inconsistent (table 1.7). The list of RF 

discussed in this section is not exhaustive. Other putative AMD RF include; socio-economic 

status, refractive error, cup / disc ratio, chlamydia pneumoniae infection, reproductive and 

related factors, and alcohol consumption. 

 

Table 1.7 Summary of RF (excluding age) associated with late AMD 
AMD Risk Factors 
 

Cross-Sectional Studies 
Studies (n): OR (95% CI) 

Case Control Studies 
Studies (n): OR (95% CI) 

Prospective Cohort Studies 
Studies (n): RR (95% CI) 

Strong and consistent: 
Current cigarette smoking 

 
7:  3.58 (2.68-4.79) 

 
5:  1.78 (1.52-2.09) 

 
6:  1.86 (1.27-2.73) 

Previous cataract surgery 5:  1.59 (1.08-2.34) 2:  1.54 (1.24-1.91) 3:  3.05 (2.05-4.55) 
Family history of AMD 1:  3.95 (1.35-11.54) 2:  6.18 (0.98-38.9)* 0:  - 
Moderate and consistent: 
Higher BMI 

 
6:  1.21 (0.97-1.53)* 

 
2:  1.52 (1.15-2.00) 

 
7:  1.28 (0.98-1.67)* 

Cardiovascular disease 7:  1.12 (0.86-1.47)* 4:  2.20 (1.49-3.26) 5:  1.22 (0.92-1.63)* 
Hypertension 7:  1.15 (0.88-1.51)* 3:  1.48 (1.22-1.78) 5:  1.02 (0.77-1.35)* 
High plasma fibrinogen 2:  1.45 (1.22-1.73) 0:  - 1:  1.03 (0.81-1.32)* 
Weaker and inconsistent: 
Gender (female) 

 
2:  1.06 (0.78-1.44)* 

 
2:  1.00 (0.83-1.21)* 

 
2:  1.01 (0.89-1.16)* 

Ethnicity (White vs. other) 2:  1.09 (0.09-13.56)* 1:  4.20 (2.23-8.00) 2:  0.91 (0.49-1.69)* 
Diabetes 3:  1.09 (0.61-1.92)* 1:  0.55 (0.06-4.87)* 3:  1.66 (1.05-2.63) 
Iris colour (brown vs. blue) 1:  0.88 (0.65-1.17)* 2:  0.60 (0.12-2.98)* 3:  0.98 (0.72-1.32)* 
Cerebrovascular disease 6:  1.10 (0.69-1.75)* 0:  - 3:  1.54 (0.82-2.90)* 
Serum total cholesterol level 6:  0.94 (0.84-1.04)* 1:  4.66 (1.35-16.11) 5:  0.99 (0.95-1.03)* 
Serum HDL cholesterol level 6:  1.06 (0.80-1.39)* 1:  3.35 (0.92-12.23)* 5:  1.00 (0.97-1.02)* 
Serum triglyceride level 3:  1.08 (0.89-1.30)* 1:  0.90 (0.25-3.24)* 2:  1.03 (0.81-1.32)* 

Abbreviations: OR: odds ratio, RR: relative risk, CS: cross-sectional, CC: case control, PC: prospective cohort, BMI: body 
mass index, HDL: high-density lipoprotein. 
* Indicates a non-significant association. Adapted from Chakravarthy et al. (2010) (Open Access). 
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1.3.1 Strong and consistent late AMD RF 

Age, current cigarette smoking, previous cataract surgery and potentially (as the OR 

derived from the case control studies was not significant) family history (FH) of AMD were 

ranked as strong and consistent RF for AMD. Sections summarising AMD risk genes and 

fellow eye involvement are included after AMD FH. 

 

Table 1.8 Strong and consistent late AMD RF 
Age 
All studies reviewed by Chakravarthy et al. concluded that increasing age was a strong and consistent RF for AMD. The 
prevalence of AMD increased with age; 50-59 years (approximately 0.3%), 60-69 years (approximately 0.5%), 70-79 years 
(approximately 2.5%) and ≥ 80 years (approximately 9%).[107] A recent systematic review of populations with a European 
ancestry confirmed this association (table 1.1).[1] Age is the most important risk factor for AMD. For all forms of AMD, 
prevalence, incidence and progression escalate rapidly with increasing age.[107] Physiological changes associated with 
ageing are mirrored in AMD pathophysiology (section 1.4).[108] AMD is closely associated with age, however this condition 
is not inevitable with increasing age. Approximately 88% of those aged 80 years and over are unaffected by advanced 
AMD.[1] 
 
Smoking 
Smoking is the most consistently documented personal RF after age, and is therefore the strongest modifiable RF for all 
types of AMD,[109-112] reported to account for 32% of the risk for the development of AMD.[113] Smoking is classed as a 
personal RF, however passive smoking may be described as an environmental RF. Smoking may facilitate AMD onset and 
progression through retinal oxidative stress, reduced choroidal blood flow, increased ischaemia, hypoxia and micro-
infarctions, provocation of CNV and reduction of serum antioxidants.[114] 
 
Previous cataract surgery 
Chakravarthy et al. reported a significant association between AMD and previous cataract surgery from the combined 
results of cross-sectional, case control and prospective cohort studies,[107] however, the association between cataract 
extraction and subsequent development of AMD is controversial.[97] BDES concluded that late, but not early AMD was 
strongly associated with previous cataract surgery (OR 1.93, 95% CI 1.28 to 2.9). This association was retained after 
controlling for high-risk genetic status (CFH Y402H and age-related maculopathy susceptibility 2; ARMS2) and other 
RF.[115] The 10-year results from the BMES also concluded that cataract surgery eyes had a higher risk of developing late 
AMD (OR 3.3, 95% CI 1.1 to 9.9).[116]  
 
AMD FH 
The BMES study reported an increase in AMD risk associated with a family history of AMD. After adjustment for age, 
gender and current smoking status the following OR were reported; no AMD (OR 1.0 (index)), early AMD (OR 2.17, 95% CI 
1.04 to 4.55), late AMD (OR 3.92, 95% CI 1.34 to 11.46). When analysed separately, nAMD was significantly and positively 
associated with AMD FH (OR 4.30, 95% CI 1.37 to 13.45).[117] Combined data from two case control studies was not 
significantly associated with AMD risk,[107] however each study reported a significant association. Hyman et al. reported a 
significant association between AMD and a self-reported history of AMD in brothers and sisters (OR 2.9, 95% CI 1.4 to 5.9) 
and sisters only (OR 2.4, 95% CI 1.2 to 8.9), but not brothers only (OR 2.4, 95% CI 0.9 to 6.9).[118] Klaver et al. found a 
significant association, independent of other RF between early (OR 4.8, 95% CI 1.8 to 12.2) and late AMD (OR 19.8, 95% 
CI 3.1 to 126.0), confirmed photographically and a FH of AMD in first-degree relatives.[119] Concordance of AMD was 90% 
for monozygous twin pairs compared to 70% for spouses of the twins in another study (chi-square test, p = 0.028).[120] 
 
AMD risk genes 
Complement factor H (function: inflammation and immune system) and ARMS2 (function: inflammation, immune system 
and extracellular matrix) gene polymorphisms account for over 50% of the risk of developing AMD.[121] Many other genes 
are reported to associate with AMD including those related to inflammation and immunity (e.g. C2, C3, CFB, CFI), 
extracellular matrix and cell adhesion (e.g. ACE, COL8A1, TIMP3), lipid / protein metabolism and transport (e.g. ABCA1, 
ABCA4, APOE, ELOVL4, LIPC), angiogenesis (e.g. HTRA1, IL8, VEGFA) and cellular stress and toxicity (e.g. ABCA4, 
ACE, APOE).[122] 
 
There is evidence that the stage of AMD development is influenced by particular gene polymorphisms; ABCA1 was 
associated with lower risk of intermediate and large drusen, and nAMD and GA. ARMS2 / HTRA1 was linked to late AMD 
development and increased nAMD lesion size. LIPC single nucleotide polymorphisms (SNPs) were also associated with 
nAMD.[123, 124] 
 
Fellow eye risk 
Although not investigated by Chakravarthy et al. in their systematic review, individuals with unilateral nAMD have a 4-12% 
per year cumulative risk of developing nAMD in their fellow eye.[125] Slower recovery from glare was reported to be an 
independent RF for CNV in fellow eyes of patients with unilateral nAMD.[126] 

Abbreviations. C3: complement factor 3, CFI: complement factor I, ACE: angiotensin 1 converting enzyme, COL8A1: collagen 
type VIII α 1, TIMP3: tissue inhibitor of metalloproteinase 3, ABCA1: ATP-binding cassette subfamily A (ABC1) member 1, 
ABCA4: ATP-binding cassette subfamily A member 4, APOE: apolipoprotein E, ELOVL4: ELOVL fatty acid elongase 4, LIPC: 
hepatic lipase, HTRA1: HtrA serine peptidase 1 high temperature requirement factor 1, IL8: interleukin 8, VEGFA: vascular 
endothelial growth factor A. 
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1.3.2  Moderate and consistent late AMD RF  

Moderate and consistent RF for advanced AMD include; higher BMI, cardiovascular 

disease, hypertension and raised plasma fibrinogen levels. 

 

Table 1.9 Moderate and consistent late AMD RF 
Raised BMI 
The results from Chakravarthy et al. were not conclusive. The combined data from two case control studies (AREDS no. 3 
and Hogg et al., 2008)[127, 128] revealed a significant association between raised BMI and AMD (OR 1.52, 95% CI 1.15 to 
2.00), however, the association of the combined results from seven prospective cohort and from six cross-section studies 
did not reach significance. The authors offered the caveat that the association may be due to shared RF (e.g. 
hypertension) or unmeasured confounders (e.g. nutritional status). One of the most common consequences of obesity is 
dyslipidemia (increase in low-density lipoprotein, LDL and reduced HDL cholesterol).[129] 
 
Cardiovascular disease 
After correction for confounding variables such as age and gender; coronary heart disease, stroke and cardiovascular 
mortality were associated with AMD in some,[128, 130, 131] but not all studies.[110, 132] Combined the results from five 
prospective cohort (RR 1.22, 95% CI 0.92 to 1.63), seven cross-sectional (OR 1.12, 95% CI 0.86 to 1.47) and four case 
control studies (OR 2.20, 95% CI 1.48 to 3.26), returned a significant association for the case control studies only, with 
approximately twice the odds of late AMD in those with cardiovascular disease.[107]  
 
Hypertension 
Other population based, cross-sectional studies reported no association with AMD. Blue Mountains Eye Study, corrected 
for age, gender, current smoking and FH of AMD found no association with early or late AMD, and the Atherosclerosis Risk 
in Communities study (ARIC), adjusted for age and gender found no significant association (at p = 0.001 level) with early 
AMD.[133] Combined data from three case controlled studies identified a significant association between hypertension and 
late AMD (OR 1.48, 95% CI 1.22 to 1.78), although the combined results from seven cross-sectional and from five 
prospective cohort studies did not achieve significance.[107] 
 
Raised plasma fibrinogen levels 
Fibrinogen is an inactive protein involved in blood coagulation via its conversion to fibrin. Plasma fibrinogen levels were 
positively associated with late but not early AMD in BMES.[133] Combined results from two cross-sectional studies revealed 
a significant association between higher fibrinogen levels and late AMD (OR 1.45, 95% CI 1.22 to 1.73), however a single 
prospective cohort study (BMES) did not produce a significant result.[134] 
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1.3.3 Weaker and inconsistent late AMD RF 

Weaker and inconsistent RF for AMD include; female gender, White ethnicity, diabetes, 

lighter iris colour, cerebrovascular disease, raised total and HDL cholesterol levels and 

raised plasma triglyceride levels. 

 

Table 1.10 Weaker and inconsistent late AMD RF 
Female gender 
Chakravarthy et al. reported no significant association between female gender and late AMD from the combined results 
from two prospective studies (RR 1.01, 95% CI 0.89 to 1.16), two cross-sectional studies (OR 1.06, 95% CI 0.78 to 1.44) 
and two case control studies (OR 1.00, 95% CI 0.83 to 1.12).[107] A recent meta-analysis with combined data from 57,173 
participants of European ancestry found that late AMD was slightly more common in women than men (OR 1.13, 95% Crl 
1.01 to 1.28), gender differences were not significant for GA (OR 0.99, 95% Crl 0.78 to 1.26) or nAMD (OR 1.24, 95% Crl 
0.99 to 1.54) when analysed separately.[45] 
 
White ethnicity 
Several studies have reported that AMD is more common among Whites than Blacks.  Klein et al. reported late AMD 
prevalence for Blacks, Hispanics, Chinese and Whites as 0.3%, 0.2%, 1.0% and 0.6% respectively. These differences 
were maintained despite correction for age, gender, pupil size, BMI, smoking, alcohol consumption, diabetes and 
hypertension status.[32] Chakravarthy et al. reported a significant, positive association between White ethnicity and late 
AMD in one case control study (AREDS),[127] although the combined results from two cross-sectional studies (the third 
National Health and Nutrition Examination Survey, NHANES III and LALES) and two prospective cohort studies (the Multi-
Ethnic Study of Atherosclerosis, MESA and the Cardiovascular Health Study, CHS) were not significant.[107] 
 
Europeans tend to have a higher prevalence of GA, compared to Africans, Asians and Hispanics, whereas, Asians 
generally have a higher prevalence of nAMD compared to other ethnicities.[2] The higher prevalence of nAMD in Asians is 
thought to be a consequence of polypoidal choroidal vasculopathy (PCV) being more common in these individuals. 
Approximately 25% of all late AMD detected in Asians from photographic grading may be PCV.[135]  
 
Diabetes 
The combined results from three prospective cohort studies (BDES, the Barbados Eye Study, BES and BMES) revealed a 
significant, positive association between the presence of diabetes and late AMD (RR 1.66, 95% CI 1.05-2.63), however the 
results from one case control study and the combined results from three cross-sectional studies were not significant.[107] 
The latest results from BMES indicated that fasting plasma glucose ≥ 5.6 mmol/L, or previous diagnosis or specific 
treatment for Type 2 diabetes was significantly associated with late AMD (p = 0.003), but not early AMD in White 
individuals aged 70 years and under.[136] The European Eye Study (EUREYE) reported a significant, positive association 
with diabetes and nAMD (OR 1.81, 95% CI 1.10 to 2.98), but not GA, suggesting a difference in pathogenesis for the two 
advanced forms of AMD.[137] Tromsø Eye Study, however, found no association between diabetes and GA (OR 1.92, 95% 
CI 0.70 to 5.28) or nAMD (OR 0.93, 95% CI 0.41 to 2.13).[138] 
 
Lighter iris colour 
A recent meta-analysis including the combined data from prospective cohort (RR 0.98, 95% CI 0.72 to 1.32), cross-
sectional (OR 0.88, 95% CI 0.65 to 1.17) and case-control (OR 0.60, 95% CI 0.12 to 2.98) studies found no significant 
protective effect of brown versus blue irides.[107] A similar conclusion was reached by the Irish Nun Eye Study (INES). 
Comparing brown to blue irides for risk of any AMD revealed; unadjusted analysis (OR 0.73, 95% CI 0.44 to 1.22) and after 
correction for age, BMI, mean arterial blood pressure and refraction (OR 0.74, 95% CI 0.44 to 1.24). For late AMD the 
results were; unadjusted (OR 0.35, 95% CI 0.20 to 1.77) and adjusted for age, BMI, mean arterial blood pressure and 
refraction (OR 0.61, 95% CI 0.20 to 1.86). This study also reported no association between iris colour and retinal vessel 
caliber, and AMD status and retinal vessel caliber, after correction for age, BMI mean arterial blood pressure and 
refraction.[139] 
 
Cerebrovascular disease 
Cerebrovascular disease is a group of conditions that includes; stroke, transient ischaemic attack (TIA), carotid stenosis, 
subarachnoid haemorrhage and vascular dementia. Shared RF for cerebrovascular disease and AMD include age, 
hypertension, smoking and possibly AD.[140-143] Stroke, especially resulting from intracerebral haemorrhage, has been 
associated with nAMD.[144-147] Ocular ischaemic syndrome is associated with subfoveal choroidal thinning indicating 
impaired choroidal circulation.[148]  
 
Serum total cholesterol, HDL cholesterol and triglycerides 
There is some evidence to suggest that dietary fat consumption, especially saturated fat and cholesterol is associated with 
an increased risk of atherosclerosis and it is plausible that this may result in an increased risk of AMD, particularly 
nAMD.[109] Hogg et al. reported a significant association between nAMD and total, but not HDL cholesterol.[128] The Eye 
Disease Case-Control Study (EDCCS) found that compared to low (≤ 4.888 mmol / L) levels of total cholesterol, those with 
medium (4.889 to 6.748 mmol / L) and high (≥ 6.749 mmol / L) levels were associated with an increased risk of nAMD, (OR 
2.2, 95% CI 1.3 to 3.4) and (OR 4.1, 95% CI 2.3 to 7.3) respectively, after controlling for other factors.[110] Combined data 
from BMES, BDES and RS also reported an inverse association between total cholesterol and nAMD (OR 0.92 per 10 mg / 
dL, 95% CI 0.88 to 0.99).[36] The latest results from BMES indicated that high serum triglyceride level (≥ 1.7 mmol/L) was 
associated with early (p = 0.009) and late AMD (p = 0.047),  in a White population aged 70 years or younger. Low levels of 
serum HDL cholesterol (< 1.03 mmol/L in men and < 1.29 mmol/L in women) was, however, not associated with early or 
late AMD.[136] 
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1.3.4 Other relevant AMD RF 

Other AMD RF relevant to this thesis include; sunlight exposure, ocular dominance, dietary 

MP and conditions associated with reduced or altered choroidal circulation. 

 

Table 1.11 Other relevant AMD RF 
Sunlight exposure 
The Chesapeake Bay Waterman Study (CBWS) examined the association between exposure to visible and UV light over the 
preceding 20 years, with several ocular conditions including AMD. Pterygia and climatic droplet keratopathy, but not cataract 
were associated with increased ocular exposure to blue or visible radiation. Advanced AMD (GA or nAMD) was associated 
with higher exposure to blue or visible light (OR 1.36, 95% CI 1.00 to 1.85). No relationship was found between AMD and UV-
A or UV-B.[149] The BMES reported an increased risk of GA in participants with very fair skin.[150] Fletcher reported that there is 
weak evidence for an association between sunlight exposure and AMD.[151] The EDCCS found no association between 
sunlight exposure and AMD.[110] 
 
Klein et al. reported that the incidence of large drusen (≥ 125 µm) and early AMD was higher for individuals with high sun 
exposure in their thirties (hazard ratio HR 1.38, p = 0.03) and (HR 1.25, p = 0.02), respectively, however neither was 
significant after adjustment for multiple comparisons. Sun exposure was not significantly associated with late AMD.[152] 
 
Ocular dominance 
Ocular dominance is not normally cited as a RF for AMD, however the dominant eye is likely to be exposed to a greater 
lifetime retinal light exposure as it has been reported that the non-dominant eye is closed to reduce glare when exposed to 
sunlight.[153] The right eye is more likely to be dominant with 65% to 71% of right eyes exhibiting ocular dominance compared 
to left eyes, despite the use of a variety of ocular dominance tests.[154-156] 
 
Pterygia are more likely to develop in the dominant eye.[153, 157] As with AMD, there is no consensus regarding the 
pathogenesis of pterygia,[158] but UV radiation from sunlight is thought to be a major factor in their development.[159] 
Conversely, results from the Salisbury Eye Examination (SEE) estimated that only 13% of attributable risk of cortical cataract 
was due to UV exposure.[160] Pterygia and pinguecula have been used as surrogate markers for prolonged sunlight 
exposure.[161] Pterygia were associated with a two to three-fold increase risk of early and late AMD.[162] Weak support was 
reported by BMES for an association between pinguecula and cortical cataract.[161, 163] 
 
Dietary MP 
Humans are unable to synthesise L, Z therefore serum levels are dependent on dietary intake.[164] Serum levels of L and Z 
may be increased by consuming greater amounts of dietary MP, [165, 166] or by taking MP supplements.[167] 
 
Seddon et al. reported from EDCCS that after controlling for known AMD confounders, the highest quintile of carotenoid intake 
was associated with a 43% reduction in risk for AMD compared to the lowest quintile (OR 0.57, 95% CI 0.35 to 0.92). The MP 
L and Z were most strongly associated with a reduced risk for AMD (p = 0.001).[168] Mares-Perlman et al. (NHANESIII) 
reported significantly less pigmentary abnormalities for non-Hispanic Whites, aged 40-59 years for those with the highest 
levels of dietary (but not serum levels) of L and Z, after correction for known confounders. No significant associations were 
found for other ethnicities (Mexican Americans or non-Hispanic Blacks) or any other age range (60-79 years and ≥ 80 
years).[169] 
 
Gale et al. reported from a UK study that low plasma levels of Z was associated with AMD (early and late combined) (OR 2.0, 
95% CI 1.0 to 4.1), whereas plasma levels of MP or L alone were not significantly associated with AMD.[170] Delcourt et al. 
(POLA) reported that early AMD was inversely associated with higher plasma levels of MP (OR 0.21, 95% CI 0.05 to 0.79), 
however, higher plasma levels of Z were associated with a lower risk of developing early AMD (OR 0.07, 95% CI 0.01 to 
0.58).[171]  Snellen et al. reported significantly higher prevalence of nAMD in individuals with the lowest dietary intake of L and 
Z (OR 5.3, 95% CI 1.5 to 18.4), after correction for known confounders.[172] 
 
Macular pigment optical density (MPOD) 
Lutein serum concentrations are correlated with MP levels in the retina.[173] Macular pigment levels can be increased by 
consuming greater amounts of dietary L and Z,[166, 173] or by taking MP in supplemental form.[167, 174]  
Bone et al. analysed L and Z levels from three concentric parafoveal regions (0° to 5°, 5° to 19° and 19° to 38°), from donor 
retinas taken from 56 eyes with AMD and 56 controls, using high performance liquid chromatography (HPLC). L and Z levels 
were lower in all regions for the AMD eyes. The central and paracentral MP deficit may have been partly attributable to the 
disease and therefore a comparison using the peripheral region was considered more reliable. In this region the highest 
quartile of L and Z had an 82% lower risk of AMD compared with the lowest quartile, corrected for age and gender (OR 0.18, 
95% CI 0.05 to 0.64). These results suggested an inverse association between AMD risk and retinal L and Z, rather than a 
loss of retinal L and Z due to the destructive effects of AMD.[175] 
 
Migraine 
Migraine is a multifactorial (both biological and psychological) biobehavioural disorder,[176] and one of the most common 
primary headaches with a one-year prevalence of about 12%. Prevalence is three times higher in women than men and peaks 
in the 30 to 39 year age range.[177] Migraine with aura accounts for one third of migraine cases.[178] Interictal migraine is 
associated with foveal choroidal thinning thought to be associated with chronic ischaemic insult.[179] During the ictal period of 
the migraine the choroid has been variously described as significantly thinner,[180, 181] and significantly thicker,[182, 183] compared 
to interictal measurements. The reason for this inconsistency is unclear but may be an indication of ischaemia / reperfusion. 
 
Migraine is not known to be associated with AMD directly, but there is increasing evidence suggesting that migraine, 
especially migraine with aura, is a RF for stroke and possibly other cardiovascular disease events.[178, 184] Stroke, especially 
resulting from intracerebral haemorrhage, has been associated with nAMD.[144-147] Other shared RF for migraine and AMD 
include; increased body weight, hypercholesterolaemia, coronary heart disease, high homocysteine levels, increased levels of 
C-reactive protein (CRP) and oxidative stress.[185] 
 
It has been proposed that migraine attacks are characterised by ictal dopamine release in an individual with dopamine 
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receptor hypersensitivity due to a chronic dopaminergic deficit.[186, 187] In addition to operating as an antioxidant and 
neuroprotectact,[188-191] dopamine, along with melatonin may play an important role in PR OS disc shedding and phagocytosis. 
Shedding and phagocytosis of rod PR OS discs follows a circadian pattern with melatonin activating and dopamine inhibiting 
disc shedding. Melatonin-mediated rod PR OS shedding occurs primarily in the morning and is mostly completed within one 
and a half hours after light-onset (cone PR OS shedding occurs at light-offset in the evening). For the remainder of the day 
shedding and phagocytosis are suppressed by dopamine.[192] Low retinal dopamine may fail to adequately suppress rod PR 
OS shedding and phagocytosis, leading to an increased potential for the formation of drusen and RPD. 
 
No previous studies examining HFP-derived MPOD in migraine sufferers was found, however migraine sufferers were 
reported to have significantly higher MPOD measurements using FAF (0.34 SD 0.15), compared to controls (0.20 SD 0.13, p 
= 0.006).[193] 
 
Raynaud's phenomenon (Rph) 
The pathogenesis of Rph is still not completely understood,[194] but has been divided into three broad pathophysiological 
mechanisms; vascular (nitric oxide, endothelin-1 (ET-1), angiotensin), neural (impaired vasodilation, increased 
vasoconstriction) and intravascular (platelet activation, fibrinolysis and reactive oxygen species, ROS).[195] 
 
Despite the acknowledgement of Rph as a cause of reduced ocular perfusion pressure and ischaemia,[196] the author is 
unaware of any studies examining the association between Rph and AMD, MPOD or GRT. Shared RF for Rph and AMD 
include a lack of exercise, smoking, oxidative stress and raised serum homocysteine levels,[197-202] although the effects of 
controlling these RF on Rph have not been confirmed by randomised controlled trials.[203, 204] 
 
Vascular dysregulation (VDys) 
Vascular dysregulation may be classified as primary (pVDys) or secondary (sVDys). Patients with pVDys, formerly known as 
vasospastic syndrome, have an inborn difference in their response of their vascular system to cold temperature and, 
mechanical and physical stress.[205, 206] The prevalence of pVDys was reported to be 10% for women and 3% for men in a 
Swiss population, however population differences are likely.[207] Cold extremities were more commonly reported in a Swiss 
population; 31% of women and 7% of men.[208] 
 
Patients with pVDys tend to be female, with symptoms manifesting at puberty and reducing with age.[208] Sufferers also tend to 
have low blood pressure, especially at night.[209, 210] They exhibit less desire to drink due to the anti-dipsogenic effects of 
prostaglandin E2 on the hypothalamus, secondary to slightly raised levels of ET-1.[211, 212] Sleep onset is often delayed and 
sleep interrupted, especially if the feet are cold.[213] Systemic drug sensitivity is abnormal with pVDys cases requiring a 
reduced dose of some drugs (beta-blockers and calcium channel blockers) and possibly higher doses of others (e.g. 
painkillers).[212] 
 
The pathogenesis of pVDys is not fully understood, but it is known that the autonomic nervous system and the endothelium of 
un-innervated retinal vessels are involved. Mitochondria are also involved, but it is unclear whether their influence is primary 
or secondary. An imbalance of ET-1 and nitric oxide (NO) is likely. Primary vascular dysregulation is associated with glial 
activation demonstrated by increased GFAP staining (a potent marker of retinal Mc and astrocyte activation). Retinal glial 
activation is a sign of retinal inflammation. Activated astrocytes are visible in red-free images by their increased light 
scattering, but are not visible in colour photos.[205] Activated astrocytes (resident retinal macrophages) may also be visible as 
one of the causes of hyper-reflective spots in SD-OCT images.[214]  
 
Secondary VDys may result from a large number of diseases, especially those with an inflammatory aetiology,[205, 212] and 
results from a significant increase in circulating ET-1, which constricts vessels resulting in reduced blood flow to the eye and 
the kidney.[215, 216] Circulating ET-1 has little effect on the retina as long as the blood-retina barrier is intact. If the blood-retina 
barrier is breached ET-1 has direct access to smooth muscle cells or pericytes, leading to vasoconstriction. Central serous 
chorioretinopathy (CSC) characterised by accumulation of subretinal fluid secondary to a defect in the outer blood-retina 
barrier, is thought to be more common in individuals with pVDys.[205] No barrier exists for the choroid, therefore increased ET-
1 causes reduced choroidal blood flow. Diffusion of ET-1 from the choroid to the optic nerve head (ONH) is possible in view of 
a "physiological barrier defect" leading to reduced ONH blood flow.[205] Abnormal communication between choroid and retina 
via the ONH may predispose to serous detachment and oedema of the macular retina.[217] 
 
Dietary intervention recommended for VDys is similar to that recommended for AMD and includes plenty of fresh fruit and 
vegetables, especially those rich in antioxidants such as anthocyanosides or flavonoids. Black currant anthocyanins have 
been shown to normalise levels of ET-1 in glaucoma patients. Cocoa and other foods rich in flavonols may improve 
endothelial function. Omega-3 fatty acids improve vascular regulation. Magnesium may reduce the vasoconstrictive effects or 
ET-1. Ginkgo biloba may protect mitochondrial inner membranes against oxidative damage, an area not reachable by 
antioxidant vitamins.[205] 
 
Individuals with early AMD were found to have systemic and retinal vascular alterations. Chronic inflammation, implicated in 
the pathogenesis of AMD, is tightly linked to diseases associated with vascular endothelial dysfunction.[218, 219] The presence 
of numerous positive feedback (“vicious”) cycles has been noted in the development of AMD and these also appear to feature 
in the potential risk of migraine, Rph and VDys for AMD (fig. 1.3 and 1.5). Feigl et al. reported that the post-receptoral retinal 
cell layers, particularly the inner nuclear layer are located in a watershed zone between the retinal and choroidal blood 
supplies, making these layers preferentially vulnerable to ischaemia. The authors propose that retinal ischaemia could trigger 
RPE dysfunction leading to the cascade of changes associated with AMD.[220] 
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Figure 1.3 Possible role of migraine, Rph and VDys in AMD development 

 

 
 

Abbreviations: FAZ: foveal avascular zone, HZ, homozygous, ET-1, endothelin-1, BM, Bruch's membrane. 
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1.4 Potential pathogenic mechanisms of AMD 

 

1.4.1 Normal age-related changes 

Normal changes associated with ageing may be observed in the outer retina, RPE, Bruch's 

membrane and choriocapillaris, which are difficult to differentiate from those seen in AMD. 

Changes include; a reduction in the number of RPE cells, increased RPE lipofuscin 

(containing A2E) and decreased RPE melanin pigment granules, increased thickness, lipid 

content and calcification of Bruch's membrane leading to reduced nutrient transport,  

incorrect cellular adhesion and apoptosis, extracellular deposits around Bruch's membrane 

leading to chronic inflammation (release of inflammatory cytokines, angiogenic factors and 

immune complexes and reduced choroid and choriocapillaris thickness.[221] 

 

1.4.2 Oxidative stress 

A growing body of evidence suggests that cumulative oxidative stress contributes to the 

pathophysiology of AMD.[222] The macula is particularly prone to oxidative stress for a 

number of reasons. Foveal metabolism is one of the highest in the body.[223] Foveal cones 

have 10 times the number of mitochondria per unit volume compared to rods, producing 

considerable levels of ROS.[224] Diurnal patterns of photoreceptor OS phagocytosis are 

known to generate ROS.[225, 226]  

 

Phagocytosis leads to a life-long accumulation of lipofuscin, which among other 

fluorophores contains A2E.[227, 228] Abnormal lipofuscin accumulation leads to the 

development of drusen in early and intermediate stages of AMD.[222, 229] A2E is toxic to the 

RPE by stimulating the production of free radical and superoxide generation upon exposure 

to light.[230, 231]  

 

Proteins, lipids and deoxyribonucleic acid (DNA) can undergo lipid peroxidation under 

constant exposure to light or oxidative stress.[222] Docosahexaenoic acid located in the OS 

disc membranes of PR is particularly prone to lipid peroxidation.[228] 

 

Free radicals are chemical particles that contain one or more unpaired electrons causing 

these particles to become highly reactive. Free radicals can be derived from: (a) UV light, x-

ray or gamma ray exposure, (b) reactions catalysed by metals, (c) pollutants in the air, (d) 

neutrophils and macrophages during inflammation, (e) by-products of the mitochondrial 

respiratory chain, and (f) ischaemia / reperfusion-mediated tissue injury.[232, 233] Free 

radicals are essential for the normal function of many bodily processes.[234, 235] If the levels 

of free radicals overwhelm the ability of the body to regulate them, resulting from insufficient 

antioxidant protection or excess free radical production, damage to the body may result. 

This is termed oxidative stress.[235]  
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The retina / RPE / choroid (R/RPE/C) tissue uses a complex array of antioxidant measures 

to combat the various sources of oxidative stress to which it is exposed.[228, 236, 237] Some 

components of the R/RPE/C antioxidant system diminish with age (e.g. melanin and 

melatonin,[238, 239] whereas others, such as glutathione S-transferase (GST) activity increase 

with age. [240] Other antioxidants, including macular pigment (MP), may exhibit a complex or 

non-linear relationship with age.[241-244] Pro-oxidants (e.g. lipofuscin) increase with age.[245, 

246] These changes result in an age-related shift in R/RPE/C reduction / oxidation (redox) 

state in favour of pro-oxidant activity.[235] Chronic inflammation is associated with increased 

levels of free radicals and will shift redox balance further towards pro-oxidant activity.[247] 

(See appendix A2.1 for a summary of the R/RPE/C antioxidant system). 

 

1.4.3 Lipofuscin accumulation 

AMD is characterised by an accumulation of intracellular lipofuscin and extracellular 

drusen.[230, 248] The efficiency of the RPE to recycle products of phagocytosis is reduced by 

oxidative stress,[230, 249, 250] resulting in increased levels of undegradable, intracellular 

lipofuscin,[248] and higher amounts of incompletely degraded material outside the RPE as 

drusen.[251] RPE lipofuscin accumulation in AMD has been compared with lipofuscin-like 

deposits that occur with other neurodegenerative diseases, such as AD (β-amyloid or τ-

protein), Huntington disease (huntingtin protein), Parkinson's disease (Lewy bodies) and 

amyotrophic lateral sclerosis (non-amyloid aggregates).[248, 252, 253] 

 

Increased levels of RPE lipofuscin result from lipid peroxidation secondary to increased 

oxidative stress,[248] and lipofuscin may itself induce oxidative damage in the RPE and 

surrounding tissues,[108] therefore it is feasible that a self-perpetuating positive-feedback 

cycle may result with oxidative stress increasing RPE lipofuscin and vice versa. The 

development of drusen is likely to be influenced by genetic predisposition or environmental 

stressors, which would explain the absence of drusen in some elderly patients.[254] 

 

1.4.4 Inflammation 

Early / intermediate AMD is associated with activation of resident immune cells in the retina 

(RPE, Mc, microglia and macrophages) and choroid (peri-capillary macrophages and giant 

cells).[222, 255] The complement system forms part of the non-adaptive, innate immune 

system, although it can be recruited by the adaptive immune system. The complement 

system consists of a group of three primitive enzymatic cascades (classical, lectin and 

alternative), with a shared final pathway forming the membrane attack complex (MAC) 

leading to increased capillary permeability, cell lysis and inflammation by cytokine 

release.[222, 229, 248, 256] 

 

In the eye, the complement system is continually activated at low levels and is regulated by 

intraocular complement regulatory proteins (CD35, CD46 and CFH).[257] Complement factor 
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H is a natural inhibitor of complement component 3 (C3) convertase and impedes activation 

of the alternative complement pathway.[229] 

 

Oxidative stress in the RPE can activate the complement pathway.[258] In the presence of 

detrimental complement gene polymorphisms including; CFH, complement factor B (CFB), 

complement component 2 (C2) and complement component 1 (C1),[229] this may lead to a 

failure to modulate complement response leading to the formation of MAC and other pro-

inflammatory responses related to AMD progression.[222] Complement factor H 

polymorphisms account for approximately 50% of AMD cases in the United States. This 

finding supports the involvement of inflammation and complement activation in AMD 

pathogenesis.[256]  

 

The inner and outer blood-retinal barriers contribute to the retinal status as an immune  

privileged site.[259, 260] The privileged status is preserved by local active mechanisms with an  

immuno-modulatory role that suppress responses to antigens.[259, 261] Abnormal chronic 

inflammation is thought to contribute to AMD development and progression.[257, 259] The 

source of this abnormality may include the loss of immune privilege due to increased 

capillary leakage and the presence of detrimental complement polymorphisms. 

 

Para-inflammation represents an intermediate stage between basal and robust levels of 

inflammation, indicating an attempt by the affected tissue to maintain homeostasis. Para-

inflammation is associated with increased expression of the anti-inflammatory cytokine, 

interleukin-10 (IL-10) and shifts in the polarity of the macrophage population from the pro-

inflammatory (M1) to the anti-inflammatory (M2) subtype.[221] Drusen contain plasma 

proteins that are up-regulated during an inflammatory response.[57] Patients with Dercum's 

disease, as well as those with obesity were also found to exhibit a low-grade inflammatory 

response associated with an increased density of macrophages.[262] (See fig. 1.4). 

 

1.4.5 Mitochondrial function 

Mitochondria contribute to the ageing process by their accumulation of mitochondrial DNA 

(mtDNA) mutations and net production of ROS.[252] The level of mtDNA damage in RPE 

tissue preceding significant AMD changes was greater than that found for normal ageing, 

suggesting a role of mtDNA damage in AMD pathophysiology.[263] Mitochondrial dysfunction 

due to mtDNA lesions is evident as severe disruptions to mitochondrial cristae structure and 

a decrease in the number of mitochondria in donor RPE tissue from AMD cases.[264] 

Potential mechanisms causing increased mtDNA damage associated with AMD include; 

oxidative stress from ROS, reduced mtDNA repair and decreased mitochondrial autophagy. 

Autophagy is the mechanism for lysosomal elimination of damaged cellular components.[263] 
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Figure 1.4 Suspected lipid-laden macrophages indicated by hyper-reflective spots in a  

  case of confirmed nAMD using spectral domain OCT (SD-OCT) 

 
HRS: hyper-reflective spots (hyper-reflective spots appear hypo-reflective in reverse-contrast), SRF: subretinal 
fluid, CNV: choroidal neovascularisation. Heidelberg Spectralis SD-OCT image in reverse-contrast. (© Everett, 
2014). 
 

1.4.6 Lipid-related factors 

 

Apolipoprotein E (ApoE) is a multifunctional glycoprotein constituent of very low-density 

lipoprotein (VLDL) involved in cholesterol transportation by facilitating the binding of 

lipoproteins to LDL receptors.[256] In the eye, ApoE immunoreactivity is associated with 

RPE, photoreceptor OS, Bruch membrane, Mc and the retinal ganglion cell layer, and is a 

ubiquitous component of all types of drusen.[265] 

 

Apolipoprotein E exists in three major allelic variants (ε2, ε3 and ε4). ε2 is associated with 

increased risk of AMD, whereas ε4 may confer some protection by suppressing expression 

of VEGF and the chemokine (C-C motif) ligand 2 (CCL2).[256, 266] Apolipoprotein E 

polymorphism is associated with circulating CRP, a marker for infection and inflammation. 

CRP levels were higher for ε2 variations and lower for ε4 variations, although this was not 

considered to be related to inflammation.[267] The high-density lipoprotein pathway is also 

associated with AMD, with variants in the hepatic triglyceride lipase (LIPC) gene conferring 

a protective effect against intermediate and large drusen as well as advanced AMD.[256, 268] 

 

1.4.7 Müller cell dysfunction 

Müller cell dysfunction leads to a reduction in their supportive and protective role in the 

retina and may lead to or exacerbate changes resulting in AMD.[269, 270] (See section 1.2 for 

the main Mc functions). Müller cells overlying and immediately adjacent to drusen showed 

increased immunoreactivity to GFAP and vimentin.[271] Amphibian studies have shown that 

targeted disruption of Mc metabolism led to dysmorphogenesis of photoreceptor OS 

membranes.[272] In murine studies Mc changes also preceded photoreceptor 

degeneration.[273] 
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Pseudocysts commonly associated with GA in humans may be caused by Mc 

degeneration.[274] Müller cell activation is associated with increased levels of retinal 

glutamate leading to retinal excitotoxicity.[269, 275, 276] Activation of Mc is also associated with 

a reduction in reduced L-glutathione (GSH) production, which reduces retinal protection 

against oxidative stress,[269, 276] and increased levels of proangiogenic factors and 

proinflammatory factors contributing to neovascular and inflammatory triggers.[270] Muller 

cells are sensitive to damage by light in animal studies,[277-279] and are susceptible to lipid 

peroxidation.[280] 

 

1.4.8 Early AMD 

Retinal pigment epithelial cells are phagocytically the most active cells in the body, 

phagocytosing up to 10% of PR OS length each day in a process termed heterophagy. 

Each RPE cell services 30-40 PR and is therefore an enormous challenge for the RPE 

endolysosomal system required to degrade ingested PR OS. Cell death of RPE cells puts 

additional strain on neighbouring RPE cells, leading to an age-related accumulation of 

lipofuscin in RPE cells, RPE dysfunction and possibly further cell death. The following is 

known about the mechanism involved in PR OS heterophagy; The integrin ITGAV-ITGB5 is 

needed to bind OS, MERTK triggers their ingestion, protein tyrosine kinase 2 links signals 

between ITGAV-ITGB5 and MERTK, MFGE8 regulates circadian rhythm of heterophagy 

(rods in the daytime and cones at night). An age-related decrease in ITGAV-ITGB5 leads to 

RPE lipofuscin accumulation and reduced retinal adhesion.[281] It is plausible that 

dysfunctional heterophagy is responsible for SDD observed subretinally. 

 

Drusen are thought to develop as a result of lysosomal dysfunction leading to the 

accumulation of higher than age-normal levels of lipofuscin (containing oxidised low-density 

lipoproteins and lipid peroxidation end products) within RPE cells. Once formed, lipofuscin 

cannot be degraded by proteasomal or lysosomal enzymes, or become transported into the 

extracellular space. Lipofuscin accumulation and mitochondrial damage lead eventually to 

RPE degeneration. Reduced levels of autophagy (specifically macroautophagy), which 

involves the formation of autophagosomes (double membrane vesicles), which combine 

with lysosomes and degrade their contents with several acid hydrolases, is a consequence 

of age and has been implicated in AMD pathogenesis. Reactive oxygen species produced 

by light-stimulation of A2E were reported to have a detrimental effect on autophagosome 

creation.[282] 

 

The RPE lysosomal component βA3/A1-crystallin has been found in human drusen material 

and may regulate autophagy and heterophagy. Nuc1 rats (a mutation associated with Mc 

activation and suppression of programmed cell death in the developing retina) with a 

spontaneous mutation in the Cryba1 gene (which codes for βA3/A1-crystallin) develop 

deposits between the basal lamina of the RPE and the inner collagenous layer of Bruch's 
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membrane during normal ageing. This is a possible mechanism for the development of 

drusen.[281] Drusen contain many pro-inflammatory factors (e.g. Apo-E, coagulation and 

acute phase proteins, IgG, complement components and activators), which in the presence 

of gene polymorphisms governing immune regulation (e.g. CFH) leads to chronic 

inflammation and oxidative stress. If the ocular redox state is insufficient to deal with this, 

development or progression of AMD may result. 

 

Thompson et al. have proposed a novel mechanism for the growth and possibly the 

formation of sub-RPE drusenoid deposits. Cholesterol-containing lipid droplets, a few 

micrometers across located beneath the RPE in Bruch's membrane become coated in 

insoluble hydroxyapatite (HAP) (a form of calcium phosphate and the most abundant form 

of calcium in the human skeleton). These hollow HAP spherules then act as the initial 

binding site for more protein and lipids including; CFH, vitronectin and β-amyloid. 

Thousands of these microscopic HAP spherules (0.5-20 µm in diameter) were found in 

large drusen regardless of their retinal location (macular or peripheral retina). These HAP 

spherules were also found outside the sub-RPE deposits, ready to bind with proteins at the 

RPE-choroid interface. These calcium deposits were distinct in form and location from the 

well known age-related calcification of the elastin layer of Bruch's membrane.[283] 

 

Microscopic hydroxyapatite crystals are also found in the joints of individuals with 

hydroxyapatite crystal deposition disease, characterised by chronic joint inflammation and 

joint pain.[284] Hydroxyapatite crystals have also been implicated in the aetiology of carpel 

tunnel syndrome.[285] If there is an association between ocular and joint HAP deposits this 

may, in part, explain the weak association between hand grip strength and AMD in men.[286] 

 

Focal hypopigmentation can occur independently of drusen and represent either loss of 

RPE cells or reduced intracellular melanin granules. Focal hyperpigmentation represents 

changes at RPE level, due to either; increased melanin content and / or proliferation of RPE 

cells, or migration of pigment-containing cells (RPE, macrophages and Mc that have 

phagocytosed melanin) into the neurosensory retina.[56, 287] Melanin scavenges free 

radicals, works as a weak antioxidant (against iron and copper ions) and protects against 

iron ion-induced lipid peroxidation (although ability reduces with age). Melanin's redox cycle 

is regenerated with ascorbic acid (vitamin C). Melanin levels reduce significantly with age. 

Photo-degradation of melanosomes resulted in a loss of antioxidant properties, while their 

ability to deactivate cationic photosensitisers was preserved.[238] 

 

Age-related macular degeneration has been associated with impaired iron metabolism 

leading to an accumulation of iron within the RPE. The RPE cells of individuals with AMD 

have approximately five times the concentration of total iron compared to age-matched 
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normal RPE cells. It is plausible that age-related changes in melanosomes may contribute 

to RPE dysfunction and AMD development.[238] 

 

Decreased choriocapillaris density was observed in early AMD. Biesemeier et al. noted a 

27% loss of choriocapillaris in areas of intact RPE in early AMD.[288] Choriocapillaris ghost 

vessels (acellular choroidal capillaries) were associated with basal linear deposits (diffuse 

drusen) and SDD.[70] Whitmore et al. reported a direct relationship between choriocapillaris 

ghost vessels indicating lower vascular density and overlying drusen, with the former likely 

to be the cause of the latter.[61] 

 

1.4.9 Geographic atrophy 

Death of RPE cells is accompanied by a loss of overlying PR, atrophy of the choriocapillaris 

and hypopigmentation. Geographic atrophy may occur after the collapse of PED, with 

drusen regression and in areas of hypo- and hyperpigmentation. It is assumed that RPE 

death is the driving force behind the progression of GA, but PR loss and choriocapillaris 

thinning have been observed outside the atrophic area (see previous section). The factors 

leading to RPE dysfunction and death were described in the previous section, but 

essentially are thought to be a consequence of excessive lipofuscin accumulation, hypoxia 

and oxidative stress, partly from photo-oxidation of A2E, causing an inflammatory response 

that overwhelms the RPE, causing eventually, apoptosis. 

 

The death of RPE cells places an additional metabolic load on neighbouring RPE cells, 

which may also be dysfunctional and subsequently, result in their death also. This 

progressive loss of RPE cells in an outward, "slow-burn" manner is characteristic of the 

progression of GA. The amount of FAF (which represents the amount of lipofuscin) 

bordering the area of GA has been reported to correlate with the speed of progression of 

GA, with a greater amount of rim area focal hyperfluorescence being positively correlated 

with speed of progression.[84, 289] 

 

It is plausible that cells with more lipofuscin would be under greater stress and more likely 

to become dysfunctional and apoptotic more quickly. Hwang et al. reported that the 

predictive value of increased FAF for progression of GA was little different to that expected 

by chance.[290] Hopkins et al. have expressed caution regarding the use of FAF as a non-

invasive marker for GA progression because of the lack of confirmation of a causal 

relationship between RPE lipofuscin accumulation and AMD. The authors have 

recommended harmonisation of FAF terminology and image acquisition methods, as well 

as, the development of a disease database, a universal classification system and 

algorithms for the correct interpretation of FAF patterns.[291] 
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In contrast with nAMD, which is associated with inflammatory cells, GA has not been 

associated with a marked recruitment of leukocytes from the circulation (because the blood-

retina barrier is preserved). Geographic atrophy has been associated with activation of cells 

already present in the retina including; microglia, Mc, RPE cells and occasional 

macrophages. Choroidal cells associated with GA include; peripheral immune cells mainly 

pericapillary macrophages, giant cells and mast cells.[73] 

 

Different end stages of AMD exhibit different rates of loss of RPE and choriocapillaris. 

Choriocapillaris was thin but viable despite RPE loss in GA, whereas, a loss of 

choriocapillaris endothelial cells was observed beneath the intact RPE in cases of nAMD.[61] 

 

1.4.10 Neovascular AMD 

Neovascular AMD is characterised by defects in Bruch's membrane and / or the outer 

blood-retina barrier, while RPE cells are maintained. The direct pathological contact 

between RPE and vascular endothelial cells can enhance the pro-angiogenic potential of 

the endothelial cells to proliferate and migrate, similar to the process induced by 

hypoxia.[282] The two major pathways by which VEGF (VEGF-A) is produced and secreted 

in RPE cells are; in response to complement, and as a result of oxidative stress. If the 

complement system is not properly regulated (e.g. gene polymorphisms in complement 

regulators such as CFH), then activation of complement proteins can damage host tissue 

and recruit immune cells to the affected tissue. 

 

Macrophages (resident microglia and migratory choroidal monocytes) are thought to be 

involved in nAMD pathogenesis, indicated by the presence of hyper-reflective spots on SD-

OCT images of nAMD and by higher serum levels of CRP and the cytokine interleukin-6 (IL-

6) in individuals with nAMD.[292] Infiltration of migratory macrophages signifies a break down 

of immune privilege, leading to a more extreme inflammatory response than the eye is 

equipped to deal with. Chronic inflammation or para-inflammation are features of several 

AMD risk factors; age, smoking and obesity. Oxidative stress results from a state of para-

inflammation.[293] The effect of oxidative stress is additive to the effects of complement 

activation.[248]  

 

In humans, reactive Mc are known to extend processes through gaps in Bruch's membrane, 

along which retinal neurons migrate out of the retina and into the choroid,[294] it is therefore 

feasible that activated Mc may be an additional source of VEGF and other pro-angiogenic 

factors leading to CNV in the choroid and RAP in the retina.[295] Reactive Mc may also 

contribute to retinal oedema[294] and reduced blood-retina barrier integrity,[276] other 

characteristics of nAMD. 
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Laser induction leading to fragmentation of Bruch's membrane in animal studies,[296, 297] 

including primate,[298, 299] is known to trigger the formation of CNV. The neovascular 

response to laser induction of Bruch's membrane was reported to be greater in the macular 

area, with little response from nasal or peripheral locations.[298] Invasion and secretion of 

VEGF by neutrophils was cited as a possible mechanism for laser-induced CNV.[297] 

Remodeled processes of reactive Mc that extend through gaps in Bruch's membrane in 

human subjects with AMD are another possible source of angiogenic factors.[294] 

 

Defects in adhesion between RPE and Bruch's membrane due to lipid accumulation in 

Bruch's, with normal RPE junctions PR OS  to RPE adhesion leads to early sub-RPE CNV. 

Reduced PR OS to RPE, or RPE to RPE adhesion secondary to inflammation (despite 

normal adhesion between RPE basement membrane and Bruch's) leads to early subretinal 

CNV. Simultaneous reduction in RPE to RPE epithelial binding and RPE to Bruch's 

adhesion may lead to either subretinal or sub-RPE CNV, which often progresses to a 

combined pattern of CNV. Small holes in Bruch's membrane and normal epithelial junctions 

and cellular attachments were not associated with the development of CNV.[300] 

 

The link between pathological changes in the RPE and the development of choroidal new 

vessels is the result of a multifactorial interplay between oxidative stress, hypoxia and 

autophagy in nAMD pathogenesis. Positive feedback ("vicious") cycles represent 

mechanisms or processes that once started and allowed to reach a critical level may 

escalate beyond the ability of the eye to control them, leading eventually to changes 

associated with AMD. These mechanisms, including the presence of positive feedback 

cycles between them have been summarised in fig. 1.5. Further positive feedback cycles 

were illustrated in fig. 1.3. 

 

Although a full explanation of the cause of AMD is lacking, current evidence suggests that 

AMD has a multifactorial aetiology, affected by ocular redox state, multiple genes as well as 

environmental factors. There is evidence that AMD stages may be selectively influenced by 

different environmental and genetic RF. 

 

Smoking increases early AMD risk, whereas expression of the ABCA1 (HDL) gene is 

associated with lower risk of intermediate and large drusen. Late AMD is positively 

associated with detrimental complement and ARMS2 / HTRA1 gene polymorphisms, 

cardiovascular disease and raised cholesterol. 

 

Past and current smoking and LIPC SNPs were associated with nAMD. ARMS2 / HTRA1 

was associated with the size of the neovascular lesion. Obesity was associated with 

increased risk of conversion from large drusen to GA.[123, 124] 
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Figure 1.5 Summary of normal ageing and possible AMD pathogenesis 

 

 
 
 
Abbreviations: A2E: N-retinylidene-N-retinylethanolamine, OX: oxidative stress, AC: antioxidant capacity, M1 & M2: pro- and 
anti-inflammatory macrophage subtypes, CFH, CFB and CFI: complement factors H, B and I, C2 and C3: complement 
components 2 and 3, mDNA: mitochondrial DNA, MAC: membrane attack complex, ECM: extracellular matrix, MDA: 
malondialdehyde, ALE: advanced lipid peroxidation end products, SDD: subretinal drusenoid deposits, BM: Bruch's 
membrane, CC: choriocapillaris, BRB: blood-retina barrier, 1st: primary, 2nd: secondary, FA: fluorescein angiography, RD: 
retinal detachment. 
Major references used for this summary: Zarbin (2004),[108] Stefánsson et al. (2011),[301] Bhutto et al. (2012),[257] Ardeljan et al. 
(2013),[221] Shin et al. (2013),[256] Kaarniranta et al. (2013),[281] van Lookeren et al. (2014)[222] and Kaarniranta et al. (2015).[302] 
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The identification of positive feedback ("vicious") cycles between mechanisms provocative 

for AMD development may determine the progression to early and advanced stages of 

AMD, rather than changes associated with simple ageing. The effect of epigenetics must be 

considered as the genetic risk of progression to late AMD associated with CFH Y402H may  

be multiplicatively increased by non-genetic factors such as smoking.[303, 304] 

 

1.5 Visual consequences of AMD 

 

In order to understand the visual consequences of AMD it is important to comprehend how 

AMD affects the many different components that make up the visual experience. The 

following references were major sources of information for this section; Sunness,[305] Ivers 

et al,[306] Lovie-Kitchin and Feigl,[307] Hogg et al,[95] and Neelam et al.[308] 

 

Table 1.12 The visual consequences of AMD 
Visual acuity 
Early AMD (hard / soft drusen plus pigmentary changes or soft indistinct drusen) was associated with a significant drop in 
LogMAR distance visual acuity (VA) of two or less letters, compared to individuals without AMD.[309] This result is not, 
however, clinically meaningful as a test for early AMD or reliable as test-retest variability (limit of agreement, LoA) with 
LogMAR testing is 1-2 lines of letters.[310] 
 
Late AMD was associated with a drop in VA of 6-8 lines depending on the absence or presence of central cataract, but only 
when late AMD was located in the centre or inner subfields of the WARMGS macular grid.[309] Geographic atrophy progresses 
slowly and VA gradually worsens over time. Visual acuity is a poor indicator of GA severity because it is unrelated to the 
extent of the atrophic area and the amount of functional deficit.[308] Visual acuity was found to be a poor predictor for 
conversion to nAMD.[311] Hogg et al. reported that most of the variation in VA in individuals with nAMD was associated with the 
following changes; fibrosis, atrophy, exudates and blood, with foveally-located fibrosis particularly affecting VA.[312] Visual 
acuity is a poor measure of AMD because it specifically assesses the fovea, whereas AMD is a condition that is characterised 
by foveal sparing, at least until the late stage of the disease. 
 
Metamorphopsia 
Early AMD may present as subtle distortion on the Amsler grid in the absence of spontaneously reported distortion being 
reported as a symptom, but Amsler distortion is not a reliable indicator of early AMD. Geographic atrophy may present as a 
loss of vision affecting the retinal location affected by the lesion, but not in every case. Neovascular AMD characteristically 
presents as a sudden loss of vision or sudden onset of, or increase in distortion, which is usually detectable on the Amsler 
grid. Individuals with nAMD were 3.65 times more likely to report metamorphopsia than those with dry AMD (it was not clear 
whether the authors are referring to GA and early AMD, or just GA) and was more likely to be centrally-located.[313] 
Metamorphopsia is also detectable by observing any straight line, e.g. a window frame.[314] 
 
Visual fields 
The results of studies examining early and late AMD with perimetry have produced mixed results. Several studies have 
detected parafoveal defects,[315-317] whereas another reported no significant difference compared to age-matched eyes.[318] 
Midena et al. reported that visual field sensitivity was not significantly decreased with hard drusen or fine pigmentary changes 
(this retinal appearance may now be classified as normal ageing changes rather than early AMD),[318] whereas, Tolentino et 
al. found a significant association between visual field sensitivity and area of RPE atrophy, but not with the area of drusen.[319] 
 
Dark adaptation 
The majority of studies have reported that AMD is associated with prolonged dark adaptation (DA), specifically; cone-
mediated DA,[320-322] rod-mediated DA,[320, 322] and generally.[323, 324] One study found no significant difference in DA between 
individuals with AMD and those without.[325] This study used the Scotopic Sensitivity Tester-1 (SST-1) which uses full-field 
stimulation, therefore it is possible that macular dysfunction was masked by the influence of the peripheral retina. 
 
In monocular nAMD cases with fellow eyes exhibiting high-risk features for progression (large drusen, more than minimal 
drusen confluence and focal hyperpigmentation), prolonged, foveal photopic DA (cone PR) combined with colour matching 
abnormalities was the most effective predictor for subsequent development of nAMD, although neither measure alone was 
significantly predictive.[321] Ioannis et al. confirmed that DA was prolonged in eyes with nAMD and their fellow eyes with dry 
changes ranging from early AMD to GA.[326] Abnormal DA (> 45 min) after > 95% retinal bleach was also found in 90% of 
fellows eyes (with drusen only) of monocular cases of serous PED or RPE tear, compared to 60% of nAMD without PED, 60% 
of drusen only and 9% normal eyes. Dark adaptation was significantly longer for fellow eyes of monocular serous PED or RPE 
tear, but not for the other two groups, compared to normal eyes.[327] 
 
Overall, DA was significantly prolonged with AMD and in fellow eyes of unilateral nAMD or, serous PED or RPE tear, but was 
also prolonged in a proportion of normal eyes. Significantly prolonged DA may be a marker for RPE / PR separation, an 
indication of reduced cellular adhesion, a consequence of Bruch's membrane hydrophobicity due to lipid deposits or abnormal 
choroidal perfusion.[327] The significance of prolonged DA in normal eyes for progression to AMD requires more data from 
longitudinal studies, but may be a particular risk for the nAMD phenotype. 
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GRT 
GRT may be used to differentiate macular or retinal disease, associated with longer recovery times, from neural or optic nerve 
disease in patients with reduced VA of unknown cause.[328, 329] When compared to other markers of retinal function such as 
static and dynamic contrast sensitivity, and mean central (10°) retinal sensitivity, GRT appeared to be the most sensitive 
indicator of retinal damage.[315] 
 
Equilibrium bleach GRT caused by the continuous exposure of light for a short period of time (usually between 5-s and 2-min 
depending on the study) is associated with longer GRT in individuals with AMD in the majority of studies (table 1.13). The 
results for photo-flash GRT, resulting from a very brief exposure to a high luminance light source are less consistent for AMD. 
The reason for this is likely to be that equilibrium bleach places a greater stress on the RPE whereas, photoflash bleach 
recovery is more greatly influenced by the cone-specific Mc visual cycle.[330] 
 
Sandberg et al. reported that longer equilibrium bleach GRT (RR 1.30, 95% CI 1.10 to 1.54) and the extent of visible macular 
abnormalities (RR 1.62, 95% CI 1.06 to 2.59) were independent RF for the development of nAMD in fellow eyes of those with 
nAMD.[126]  
Spatial contrast sensitivity 
Spatial contrast sensitivity (SCS) may be measured in clinical practice using the Pelli-Robson chart. Spatial contrast sensitivity 
function reduces with age over a wide range of luminances, for medium and high spatial frequencies, with peak sensitivity 
shifting towards low spatial frequencies.[331] Spatial contrast sensitivity, especially at high spatial frequencies was reduced in 
the presence of confluent drusen and, focal hyperpigmentation and atrophy of the RPE.[315] It was not considered that SCS 
has any predictive value for the future development of nAMD.[315, 332] Compared to normal individuals, those with AMD 
demonstrated a relative loss of SCS function at photopic and mesopic luminances compared to scotopic luminances, which 
was attributed to compromised adaptation.[333] Adaptation is thought to be mediated via blue light stimulation of intrinsically 
photosensitive retinal ganglion cells (ipRGC).[334-336] 
 
High spatial frequencies are reduced with age and with fixation away from the fovea and will therefore be affected by centrally-
located macular lesions and eccentric fixation. Reduced SCS may reflect AMD progression, but is not predictive for future 
change in AMD. Reduced SCS may, however, reflect difficulties with day to day living, reading, facial recognition and driving 
that may be less apparent with VA testing.[308] 
 
Temporal contrast sensitivity 
Flicker sensitivity may be a particularly suitable test for individuals with AMD because temporal resolution is relatively 
unaffected by age or optical blur.[337, 338] The opponent (chromatic) and non-opponent (luminance) systems detect flicker at 
high and low temporal frequencies, respectively.[311] Functional changes in individuals with AMD may be detected earlier with 
flickering compared to static stimuli, as a consequence of neurovascular coupling.[339] Flickering lights induce parallel 
increases in neural activity and in retinal blood flow (by 30% in the case of monochromatic flicker).[340] Choroidal blood flow 
may be particularly reduced in AMD.[341] As a consequence of this, the metabolic demand imposed by flicker on neural tissue 
in the outer retina may not be matched by the choroidal circulation. It is also plausible that increased retinal circulation 
resulting from neurovascular coupling may further reduce choroidal blood flow, exacerbating the functional deficit in AMD. 
 
Colour vision 
Early AMD was associated with defective colour vision in most, but not all studies.[308] Colour defects associated with early 
AMD tended to be blue-yellow (tritan) defects, consistent with Kollner's rule that lesions at the level of the receptors or in the 
pre-retinal media, are more commonly associated with tritan defects. There is an enormous loss in the ability to recognise 
tritan optotypes in early AMD and this was related (Spearman's rank order correlation) to the severity of morphological retinal 
changes in AMD,[342] and colour contrast sensitivity along tritan, but not protan or deutan confusion lines worsened in 
individuals who developed late AMD over a 2-year follow-up period.[343] Abnormal colour matching (combined with slow DA) at 
detecting high-risk fellow eyes of monocular nAMD cases.[324] 
 
In AMD the S-cone system appears to be the most vulnerable to damage for several reasons: photoreceptor density is less for 
S-cones, compared to M- and L-cones, S-cone receptive fields do not overlap, S-cones are more sensitive to RPE changes as 
photopigment recycling requires a longer diffusion distance compared to M- and L- cones and are responsible for absorbing 
lower light frequencies that are more actinic, and therefore potentially more damaging than that absorbed by the two other 
cone types.[308] 
 
Blindness and visual impairment 
Age-related macular degeneration is the most frequent cause of severe, irreversible visual impairment in the developed 
world,[43] and the third most frequent cause of visual impairment and blindness, globally, after cataract and glaucoma 
(excluding refractive error).[344] In 2010, it was estimated that there were 32.4 million blind individuals (VA < 3/60) and 191 
million vision-impaired individuals (VA < 6/18, ≥ 3/60). 2.1 million (95% uncertainty interval, UI 1.9 to 2.7) individuals were 
blind and 6.0 million (95% UI 5.2 to 8.1) were vision-impaired due to macular diseases. Between 1990 and 2010 the number 
of individuals who were blind or vision-impaired due to macular diseases increased by 36% and 81%, respectively, whereas, 
the global population increased by 30%.[345] 
 

1.5.9 Consequences of visual loss 

Early AMD may be visually asymptomatic or there may be reduced VA, distortion, loss of 

colour perception, prolonged dark DA and reduced sensitivity to high spatial frequencies. 

Geographic atrophy produces a paracentral scotoma initially in most cases that slowly 

enlarges to include foveal vision. There is no current medical treatment for GA. Vision loss 

and distortion associated with nAMD is sudden-onset and rapidly progressive, but is 

treatable and to a degree reversible in most cases with intravitreal VEGF inhibitors. Central 

visual loss may be associated with eccentric viewing, using a less or unaffected, para- 
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Table 1.13 The association between AMD and GRT 
Condition or  
Environmental 
Factor 

Reference GRT 
Method 

Effect on GRT Notes 

AMD Chilaris et al. (1962)[346] 
Severin et al. (1963)[347] 
Forsius et al. (1963)[348] 
Glaser et al. (1977)[349] 
Smiddy et al. (1984)[350] 
Brown et al. (1986)[320] 
Collins et al. (1989)[351] 
Wu et al. (1990)[352] 
Cheng et al. (1993)[317] 
Sandberg et al. (1995)[353] 
Midena et al. (1997)[315] 
Phipps et al. (2003)[354] 
Binns et al. (2007)[355] 
Dhalla et al. (2007)[356] 
Dimitrov et al. (2011)[357] 
Schmitt et al. (2003)[358] 
Bartlett et al. (2004)[359] 
Wolffsohn et al. (2006)[360] 
Newsome et al. (2009)[361] 

Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Photo-flash 
Photo-flash 
Photo-flash 
Photo-flash 

Longer 
Longer (+fellow) 
None 
Longer 
None (drusen) 
Longer 
Longer 
Longer 
Longer 
Longer (fellow) 
Longer 
Longer 
Longer 
Longer 
Longer 
None 
Longer 
None 
Longer 
(GA & nAMD) 

Equilibrium bleach GRT was prolonged 
in 13 out of 15 studies examining 
subjects with AMD. Forsius et al. found 
no increase in GRT with AMD, except in 
one case with CNV, using the Keeler 
direct ophthalmoscope. This may be due 
to the long working distance (30 cm) and 
short glare duration (15 s) used by this 
study. Significant positive associations 
were found between equilibrium GRT 
and RPE pigment changes,[315, 317] and 
drusen number and confluence,[315] 
however, Smiddy et al. reported no 
association for drusen severity.[350] 
Longer GRT was an independent RF for 
the development of nAMD in fellow eyes 
of unilateral nAMD cases.[126, 353] The 
association between photo-flash GRT 
and AMD is controversial. 

 

foveal retinal location in an attempt to improve vision. Visual tasks require a complex 

combination of many ocular and cortical parameters. Tasks commonly affected by vision 

loss due to AMD have been listed below. 

 

Table 1.14 Summary of the consequences of visual loss 
Facial and expression recognition 
Facial recognition is a complex resolution task involving sensory input from visual, non-visual and memory cues. 
Expression recognition may be considered to be a relatively less complex and more visual task. Facial and expression 
recognition were significantly associated with distance and reading VA, but not contrast sensitivity or colour vision.[362, 363] 
The importance of higher spatial frequencies for facial recognition has been reported,[364, 365] however the reduction in high 
spatial frequencies associated with AMD does not appear to affect facial recognition significantly.[364, 365] 
 
Driving 
Sengupta et al. reported that 80% of individuals with AMD (bilateral drusen, GA or nAMD, 47% had GA and 53% had 
central foveal scarring from nAMD in the better seeing eye, and VA ≤ 6/9.5 in both eyes or < 6/60 in one eye) continued to 
drive at 2-year follow-up. Twenty five percent of individuals with central vision loss due to AMD ceased driving completely. 
Driving cessation was significantly associated with reduced VA in the better seeing eye (OR 1.5, per 0.1 LogMAR reduction 
in VA; 95% confidence interval, CI 1.2 to 1.9) and reduced SCS (OR 1.4, for each 0.1 decrement in log SCS; 95% CI 1.1 to 
1.7), although only VA was significantly associated with driving cessation in a multivariate model. The type of AMD (nAMD 
vs. non-nAMD was not associated with driving cessation.[366] 
 
Reading difficulty 
It has been reported that central visual loss associated with AMD, and to some extent cataract is associated with a 
relatively more detrimental effect on reading and other near tasks, compared to the more peripheral visual loss associated 
with chronic open-angle glaucoma which has greater impact on balance, walking and driving.[367] Ivers et al. reported that 
although a reduction in best corrected VA (per 2-line / 10-letter reduction) was significantly associated with difficulty reading 
the newspaper (OR 2.8, 95% CI 2.4 to 3.4), distance tasks were similarly affected by reduced best corrected VA; difficulty 
seeing a friend across the street (OR 3.1 95% CI 2.5 to 3.7), difficulty recognising detail on television (OR 2.5, 95% CI 2.1 
to 2.9), and trouble driving at night (OR 1.9, 95% CI 1.6 to 2.4).[306] 
 
Reading is rated as "extremely important" for those with and without vision loss.[368] This is not surprising as reading 
encompasses much more than just reading for pleasure. Reading is also essential for many other essential daily tasks 
such as shopping, finances, cooking and navigation.[368] 
 
Reduced mobility and falls 
Falls are one of the major causes of mortality and morbidity in older adults. It was estimated that every year 30-40% of 
individuals over 65 years of age will fall at least once.[369] Central (OR 2.36, 95% CI 1.02 to 5.45) and peripheral (OR 1.42, 
95% CI 1.06 to 1.91) field loss were independently associated with increased risk of falls.[370] Visual impairment adversely 
affects balance and the ability to avoid obstacles. Two thirds of individuals with AMD were reported to have balance and 
visuomotor deficits leading to an increased risk of falls.[371] Impaired VA (worse than or equal to 6/7.5) was associated with 
increased risk of falls, two or more falls in the past year (OR 2.02, 95% CI 1.13 to 3.63) in BDES.[372] In addition to reduced 
VA (OR 4.23, 95% CI 2.34 to 7.64), reduced near vision (OR 5.00, OR 95% CI 2.28 to 10.94) and reduced contrast 
sensitivity (OR 2.40, 95% CI 1.16 to 3.92) all in the better eye, and reduced binocular vision (OR 3.20, 95% CI 1.85 to 
5.56) were significantly associated with increased chance of nursing home placement in a multivariate model in BDES.[372] 
Mobility on foot appeared more limited for those with significant peripheral field loss (e.g. glaucoma), whereas mobility in or 
on a vehicle may be more severely affected by central visual loss (e.g. AMD). 
 
Depression and anxiety 
The prevalence of depression (major and minor depression combined) among community-dwelling older American 
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individuals is approximately 12%.[373] Pooled results from 12 studies comparing rates of depression in individuals with and 
without visual impairment (various causes) revealed a two-fold increase in depression associated with visual impairment 
(OR 1.94, 95% CI 1.68 to 2.25).[374] Dawson et al. reviewed 16 studies examining depression and anxiety related to visual 
impairment specifically due to AMD. Prevalence estimates for depression associated with AMD ranged from 15.7-44% and 
was significantly higher than that for controls.[375] Two studies found that increasing AMD severity was associated with an 
increase in depressive symptoms,[376, 377] although one study reported no difference in depression between early and late 
AMD.[378] Depression rates were significantly greater than controls for nAMD, despite the condition being treatable.[379, 380] 
 
The high prevalence of depression in AMD and benefits of behavioral treatment suggests that health professionals in 
primary care should offer referral to not only those requiring ophthalmological treatment, but also those that may benefit 
from other forms of support. 
 
Charles Bonnet syndrome 
The prevalence of visual hallucinations in individuals with visual impairment was estimated to be 0.5-40%,[381, 382] with 
complex hallucinations experienced by 11-15%.[383] A survey of Macular Society members (n = 1254) regarding CBS 
revealed the following types of hallucinations; patterns (63% of individuals), faces (39%), objects (39%), figures (36%) and 
animals (32%). Typical hallucinations short-lived, lasting either minutes (44%) or seconds (34%). When at their worst 
hallucinations occurred; monthly (21%), weekly (30%), daily (22%) or constantly (13%). At the onset of CBS symptoms, 
38% reported that the hallucinations were "fear-inducing", reducing to 8% at the time of the questionnaire. Hallucinations 
related to CBS had an effect on the daily activities of 46% of respondents.[384] 
 
Longitudinal studies have estimated that 28% of individuals with CBS recover at one year,[385] and that the average 
duration of CBS symptoms in 18 months,[386] however, in the Macular Society survey 75% of respondents reported that 
CBS symptoms continued for five years or more.[384] 
 
Quality of life 
The impact of AMD on QoL was associated with reading, watching television, driving and emotional well-being.[387] 
Compared to individuals with equivalent visual loss and no hallucinations, those with CBS also have reduced measures of 
QoL and functional ability.[388] Early AMD, despite the presence of good VA may be associated with near vision, night 
driving and glare-related difficulties.[389] Lamoureux et al. assessed 219 AMD cases using the IVI 28-item instrument with 
data fitted to the Rasch model (assumes that the probability of an individual selecting a response category for any item is a 
logistic function of the relative distance between the item level of difficulty and the individual's level of ability). The authors 
reported that IVI was able to discriminate between individuals with differing levels of visual impairment; mild (< 6/12 to 
6/18), moderate (< 6/18 to 6/60) and severe (< 6/60), ANOVA;F(2,216) = 23.4, p < 0.001, with restriction of participation 
mean logit values of; 1.06, 0.11 and -0.73 for mild, moderate and severe visual impairment, respectively.[387] 
 
It is clear that the visual loss associated with AMD leads to a dramatic alteration in an individual's lifestyle, requiring 
adaptation of daily tasks, resulting in visual hallucinations that may be prolonged and frightening in some cases, leading to 
increased risk of reduced social engagement and independence, all increasing the risk of isolation and depression.  It was 
reported that the QoL experienced by individuals with AMD is equivalent to those suffering from conditions such as 
melanoma, bone marrow transplant and acquired immune deficiency syndrome (AIDS).[390] A holistic approach to support 
is essential for the individual to cope with the consequences of visual loss. 

 

 

1.6 Macular pigment 

 

Macular pigment (MP), macular carotenoid or macular xanthophyll is a collective term for 

the dietary carotenoids; L and Z which are selectively absorbed into the retina, particularly 

the foveal retina, at much higher concentrations than that found in other tissues. A third MP, 

meso-zeaxanthin (MZ) is though to be produced in the retina from L. 

 

1.6.1 The Macular pigment spatial profile 

The macula lutea is a yellowish region centred on the fovea with a diameter of 4.5 to 6 mm, 

or 2.5 disc diameters, responsible for the central 15° to 20° of vision.[391, 392] The MP spatial 

profile typically exhibits a central peak at the foveola with an approximately exponential 

decline, reducing 100-fold within a few millimeters (6° to 8° of eccentricity), where the level 

of MP becomes optically undetectable.[244, 393] Dramatic intersubject variation in the precise 

shape of the spatial profile has been reported.[394] MP is located in the fibres of Henle (cone 

axons) at the fovea and in the inner and outer plexiform layers parafoveally.[395, 396] In the 

periphery MP is associated with rod OS membranes.[397, 398] MP may also be present in 

cone OS.[399] Müller cells may act as a reservoir for MP (fig. 1.6).[400] 
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Figure 1.6 Foveal cross-section showing the yellow MP 

 

The centrally peaked MPOD spatial profile seen in most healthy individuals, measured 

using resonance Raman spectroscopy (RRS). About 12% of the population were reported 

to have a central "dip" in their MPOD profile at 0.25° retinal eccentricity, which was 

associated with tobacco use and increasing age, and hypothesised to relate to a deficit of 

MZ.[401] Beirne confirmed that 12% of participants had a central "dip" at 0.25° in the spatial 

profile using HFP.[402] 

 

Nieto et al. reported that a higher percentage of patients with AMD (42%) and those with a 

primary FH of AMD (37%) had a lower MPOD level at 0.17° compared to 0.5° retinal 

eccentricity. A central "dip" in MPOD was present in only 31% of normal cases.[403] Hogg et 

al. reported that deposition of MP at the central location of the MPOD spatial profile is 

greatly influenced genetics.[404] The combination of homozygous risk alleles at CFH and 

ARMS2 loci was associated with significantly lower MPOD at 0.5° and 1.0° retinal 

eccentricity, but not at 0.25°,[405] where the central "dip" would be expected. 

 

1.6.2 The discovery of MP 

Wald identified MP as members of the xanthophyll family in 1945. The first separation of the 

carotenoids from the macula was made by Bone et al. in 1985, whom established that MP 

was composed of two components: L and Z. Handelman et al. confirmed this in 1988. The 

poly-isoprenoids, L and Z are isomers (i.e. have the same chemical formula: C40 H56 O2), 

but are not stereoisomers.[406] In 1993, it was established that retinal zeaxanthin is 

composed of two main stereoisomers: (3R,3'R)-zeaxanthin (Z) and (3R,3'S)-zeaxanthin 

(MZ) along with small amounts of (3S,3'S)-zeaxanthin and trace amounts of 3'-epileutin, 

lactucaxanthin, 3'-dehydrolutein and ε,ε-carotene-3,3'-dione (fig.1.7).[391, 407] The history of 

MP was reviewed by Davies and Morland. [408] 

 

1.6.3 Dietary sources of MP 

More than 700 naturally occurring carotenoids have been discovered,[409] of which up to 50 

may be found in the Western diet.[410], 21 carotenoids (including 14 cis-isomers) are found 

in the serum, but only the following are variably found in significant quantities: α-carotene,  
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Figure 1.7 The structures of the three main components of MP 

 

 

β-carotene, β-cryptoxanthin (all pre-cursors of vitamin A), lycopene, L, Z, canthaxanthin and 

astaxanthin.[411-413] Dietary sources of macular carotenoids with a very high (> 2 mg / 100 g) 

content of L include: kale, spinach, broccoli and yellow / green peppers, and of Z: orange / 

red peppers and Chinese Wolfberry.[414, 415] Dietary sources of MZ are more controversial 

but may include certain species of fish, shrimp and sea turtle, and eggs from countries such 

as Mexico, where hens are fed with MZ-enriched feed.[416-418] 

 

1.6.4 Absorption of MP 

The role of the stomach in the absorption of lipid-soluble carotenoids is to initiate their 

transfer from the food matrix to the lipid portion of the meal, by gastric mixing to form a lipid 

emulsion.[419] The lipid-carotenoid emulsion then enters the duodenum leading to a fat-

induced secretion of bile acids from the gall bladder and lipases from the pancreas, 

resulting in the solubilisation of the carotenoids and dietary fat in the form of micelles.[419] 

Solubilisation is required for the micelles to enter the unstirred water layer surrounding the 

microvilli of the enterocytes.[420]  

 

Once considered to be a purely passive process, enterocyte cytosol uptake of carotenoids 

is now known to involve active transport via several apical membrane protein transporters 

including: scavenger receptor class B member 1 (SR-BI or SRB1), cluster determinant 36 

(CD36) and Niemann-Pick C1-Like 1 (NPC1L1).[421] Carotenoids and lipids are formed into 

chylomicrons in the Golgi apparatus of the enterocytes and released via the lymphatic 

system in to the bloodstream.[419] 
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1.6.5 Transport of MP 

Chylomicrons in the bloodstream are rapidly degraded and transformed to chylomicron 

remnants by the lipoprotein lipase. Most carotenoid-bearing chylomicron remnants are 

stored in the liver, from where some are re-secreted into the bloodstream where as a 

consequence of their polar nature, xanthophylls are evenly distributed between HDL and 

LDL. L and Z are primarily carried by HDL.[422]  

 

Extrahepatic tissues take up carotenoids released from lipoproteins, especially LDL. [420] L 

and Z are found in many mammalian tissues other than the liver: kidney, lung, pancreas, 

spleen, heart, thyroid, testes, prostate, breast (and breast milk, especially colostrum), 

ovary, and brain tissue, as well as skin, blood serum and adipose tissue.[169, 423-432] By far 

the highest concentration of MP is found in ocular tissue at the macula, however the three 

main macular xanthophylls (L, Z and MZ) and their by-products are also found in the retina, 

RPE / choroid, ciliary body and the lens.[433] 

 

1.6.6 Storage of MP 

The liver is the major storage site for carotenoids because of its large size and abundance 

of carotenoid binding proteins, including SR-BI.[419, 434] The large volume of adipose tissue in 

the body is also a major storage site for carotenoids.[419] In women, and with obesity (both 

genders), adipose tissue is considered to compete with the macula for L and Z in the 

serum.[164, 424, 435, 436] 

 

The macula has the highest concentration of xanthophylls of any tissue, concentrating L 

and Z almost exclusively.[437] Central macular levels of L and Z are 1,000 to 10,000 times 

higher compared to serum levels, suggesting a mechanism resulting in selective 

absorption.[438-440] Evidence of macular storage of MP may be inferred from the 

maintenance of raised MPOD levels 70 to 80 days after supplementation had ceased.[441] 

The strong anchoring of xanthophylls by their polar hydroxyl groups is thought to enhance L 

and Z stability within cell membranes.[442] Gass hypothesised that the Müller cell cone (Mcc) 

may act as a storage site for macular xanthophylls (fig. 1.8).[400] 

 

Macular pigment has been observed in epiretinal membranes and pseudo-operculae, both 

of which contain Mc.[443, 444] 

 

1.6.7 Bioavailability of MP 

The absorption and transport of MP is affected by a number of factors such as: the food 

matrix nature (food type or supplements), dietary fat (aids carotenoid solubilisation), 

phospholipids (crude lipid mixture > glyco > phospho > neutral), dietary fibre, carotenoid 

nature (free-form > esterified), and other factors such as inflammation and gender.[445-448] 

The highest levels of L and Z are found in selected leafy green vegetables, however MP  
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Figure 1.8 Drawing of the anatomy of the fovea centralis showing the Mcc 

bioavailability has been reported to be higher for certain fruits (e.g. orange, kiwi and 

grapefruit) and egg yolk.[165, 449] 

 

It is possible that when several carotenoids are consumed together, one carotenoid may 

have an inhibitory effect on the absorption, metabolism and transport of another. In some 

studies, supplementary β-carotene is suspected to competitively reduce absorption of L.[450-

452] However when considering food-derived carotenoids, the biological significance of these 

interactions is controversial.[419] For a more detailed account of carotenoid absorption, 

transport and storage please refer to the following references.[419, 440, 453, 454] 

 

1.6.8 Lutein and zeaxanthin retinal transport and capture 

Retinal uptake and capture of L and Z is not fully understood. Snodderley et al. reported 

that retinal xanthophyll is concentrated in the inner part of the foveola and perifoveolar area, 

located in the cone photoreceptor axons, known as the Henle fibre layer (HFL) and the 

inner plexiform layer.[395] Gass hypothesised that as there is minimal nerve fibre layer in the 

foveolar region, it is probable that most of the xanthophyll is located within the Mc.[400] 

 

High-density lipoprotein deficiency in Wisconsin HypoAlpha Mutant (WHAM) chicks was 

associated with a deficiency of L and Z in the tissues, especially the retina. High L diet 

increased the L content of some tissues via LDL and VLDL transport, but retinal L remained 

very low. This supported the primary role of HDL as the specific transporter of L and Z into 

the retina.[455]  

 

Apolipoprotein E is involved in the efflux of lipids from the RPE into Bruch's membrane.[456] 

Apolipoprotein E, which is produced by Mc and the RPE is also known to have a role in lipid 

transportation and binding of lipoproteins to target sites within the central nervous system 

(CNS), and in targeted uptake of the lipoproteins carrying L and Z.[457] Therefore it is 
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plausible that the ApoE profile might influence the transport, capture and stabilisation of L 

and Z at the macula.[440] The ε4 allele of the ApoE gene has a higher affinity to bind HDL 

and may confer protection against the development of AMD.[266, 458] 

 

It has been shown that interphotoreceptor retinoid binding protein (IRBP) thought to 

chaperone the exchange of 11-cis-retinal, 11-cis-retinol and all-trans-retinol between 

photoreceptor OS, the RPE and Mc, showed a similar affinity to bind carotenoids and to a 

lesser degree fatty acids. It was suggested that IRBP might have a role in binding L and Z 

in the interphotoreceptor matrix (IPM).[459]   

 

Immunoreactive labeling for steroidogenic acute regulatory domain protein (StARD3) 

identified as a L-binding protein in the primate retina, was found especially strong for cone 

inner segments (IS) and their axons in the HFL and in all nuclear layers (outer, inner and 

ganglion cell layers). Labeling for StARD3 did not however co-localise with glutamine 

synthetase, a glial / Mc marker. [460] It has been noted that although ApoE is synthesised 

and secreted by Mc, receptors for ApoE are found on retinal ganglion cells.[461] The Pi 

isoform of glutathione S-transferase (GSTP1) is the xanthophyll-binding protein for Z and 

MZ, with a weaker affinity for L.[462] L and Z were also reported to bind to the non-specific 

xanthophyll-binding protein, tubulin.[463] 

 

1.6.9 Macular pigment functions 

The three main macular xanthophylls are isomers (L and Z) or stereoisomers (Z and MZ), 

however their ability to block blue light as well as their antioxidant and free radical 

scavenging performance are different (table 1.15). Further information about MP functions 

may be found in the following references.[408, 464, 465] 

 

Table 1.15 Summary of L, Z and MZ retinal functions 
Function L Z MZ 
Peak absorbance [439, 466] 445 to 452 nm* 451 to 463 nm* 463 nm 
Approx. range [439, 466] 390 - 520 nm 390 - 530 nm  390 - 530 nm 
Ratio of L, Z and MZ: 
Serum[467] 
Foveola (< 0.25 mm)[468] 
Fovea[467, 469, 470] 
Periphery (9 to 12 mm)[468] 
Whole retina[467] 

 
3 to 5 

1 
1 
2 
2 

 
1 

2.4 
1 to 2 

1 
1 

 
0 

n/a 
1 
0 

0.5 
Primary function Rod protection Cone protection Cone protection 
Orientation to membrane                                    
[471-474] 

Parallel and / or 
perpendicular 

Perpendicular Perpendicular 

Primary attribute[471, 475] [476] Better blue light filter than 
Z 

Better lipid peroxidation 
than MZ 

Better O2- scavenger 
than Z 

Special feature[471, 477] Dual orientation**  Pure antioxidant*** 
Binding protein[460, 462] StARD3 GSTP1 GSTP1 
Source[448, 478] Diet Diet Retinal L**** 

* The small difference in peak absorption between L and Z is due to the interaction of the double bonds in the β-ionone 
rings(s) with the polyene chain.[479] Peak absorption depends on the medium in which the carotenoid is measured.[480] ** The 
ability to orientate parallel to and perpendicular to cellular membranes in unique to L, and probably relates to the entire ε ring 
to rotate with respect to the rigid, conjugated double bond chain of the molecule.[471] *** Pure antioxidant = little or no pro-
oxidant behavior at high carotenoid concentration and high oxygen tension.[477] **** L is oxidised to MZ in the central retina via 
double-bond isomerisation, although whether this process is the sole source of retinal MZ has recently been disputed.[407, 418, 

478, 481] O2- : superoxide radical. 
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1.6.10 Macular pigment hypotheses 

 

A number of theories have been proposed for how MP may benefit the visual system. 

These hypotheses are based on the assumption that greater levels of MP are beneficial. 

These are summarised in appendix A2.3. Figure 1.9 illustrates the specific blue light 

absorbance of MP. Two references were used as the main source of information for this 

section.[465, 482] Details of the Mc / neuroglial cell hypothesis, a new hypothesis for MP 

proposed by the author are given in section 4.3 of the final discussion of this thesis.  

 

Figure 1.9 Foveal cross-section showing the absorption of blue light by MP 

 

 

1.6.11 Macular pigment measurement (in vivo) 

Methods of MPOD measurement are divided into subjective and objective techniques. 

Subjective (psychophysical) methods include: colour matching using a tristimulus 

colorimeter,[483] motion or flicker minimisation using either motion photometry,[484] or 

HFP.[485, 486] Objective techniques include: fundus reflectometry using spectral analysis of 

light reflected from the retina,[487, 488] one- or two-wavelength FAF (1-WFAF or 2-WFAF) 

which relies on the fluorescence of lipofuscin,[404, 489, 490] and Raman spectroscopy which 

relies on the small portion of light that is back-scattered from MP, at longer or shorter 

wavelengths (inelastic scattering) than the monochromatic light source.[491] 

 

1.6.11.1 Heterochromatic flicker photometry 

Heterochromatic flicker photometry is the most widespread method of MPOD assessment  

in clinical practice,[492, 493] and was the method used in this study, therefore this method will 

be discussed in greater detail. 
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Macular pigment optical density measurement by HFP is accomplished by the observation 

of a small, typically 1° diameter (retinal eccentricity 0.5°) circular stimulus that alternates 

between a test wavelength absorbed by MP (blue light, typically 460 nm) and a reference 

wavelength not absorbed by MP (green light, typically 540 nm). While observing the circular 

stimulus, the observer adjusts the intensity of the test wavelength to a null point indicated 

by minimal or no perceived flicker. At the null point the adjusted test wavelength and the 

reference wavelength are perceived as having equal or close to equal intensity, the ratio of 

test to reference wavelengths being dependent on the amount of MP. More blue light is 

required to achieve the null point with higher levels of MP. This process is then repeated for 

a peripheral target (typically 7° or 8°), where MP is minimal.[485] 

 

Macular pigment optical density at the test wavelength is calculated from the equation 

 

     log (Ic / Ip),      (Eq 1.1) 

 

where Ic = intensity of blue light for the central target and Ip = intensity of blue light for the 

peripheral target.  

 

This results in a unit-free value for MPOD described as optical density units or density units, 

abbreviated to DU. Because MPOD is by definition unit-free, this author has followed the 

convention of many authors of recent publications not to add DU to any values of MPOD 

reported in this thesis. 

 

1.6.11.2 Tinsley Macular Pigment Screener 

The instrument used in this study was the Tinsley Macular Pigment Screener 1000 (MPS 

1000, Tinsley Precision Instruments Ltd, Essex, UK), also known as M/POD in the UK and 

QuantifEYE in the USA. This instrument uses a novel method for setting flicker thresholds 

designed to be less demanding for naïve and elderly observers.[486] Rather than adjusting 

the blue light intensity to obtain the null point indicated by minimal or no flicker, the observer 

views the target for a series of blue / green light intensity ratios, while the flicker rate is 

gradually reduced from above the critical fusion frequency (CFF) and responds by pressing 

a button at the first appearance of flicker. 

 

The intensity of the blue and green lights is reciprocally-yoked, so there is no overall 

change in luminance for each preset ratio.[486] The testing sequence continues for a series 

of blue / green luminance ratios until a V-shaped function is obtained for the central target 

(0.5° eccentricity), (fig. 1.10). The minimum of the V-shaped function corresponds to the 

equalisation of the blue and green luminance. This process is repeated for the peripheral 

target (an 8° target of 1.75° diameter, giving a minimum eccentricity of approximately 

7°).[486] 
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Figure 1.10 Central and peripheral V-shaped functions from MPS 1000 
 

 

With the MPS 1000 / 9000 screener MPOD is calculated from the equation 

 

     k log (Lbc / Lbp),     (Eq 1.2) 

 

where Lbc and Lbp are the luminance of the blue light at the point of minimum flicker (i.e. at 

the minima of the V-shaped functions), for the central and peripheral targets respectively. A 

correction factor, k = 1.2 was added to account for three factors: (a) the overlap of the 

wavelength spectra of the green light with the MP absorbance spectrum, (b) the overlap of 

the spectra of the blue (465 nm) and green (530 nm) light-emitting diodes (LED) used and 

(c) maximum absorbance (λmax) of the MP, as defined by Wyszecki and Stiles in 1982 (fig. 

1.11).[486, 494] 

 

Figure 1.11 Macular pigment absorbance spectra from three different authors 

 

 

1.6.12 Repeatability and reliability of HFP measurements 

Other groups using the MPS 9000 (Tinsley Precision Instruments Ltd, Essex, UK), a later 

version of the HFP instrument used in this study, have assessed repeatability. Bartlett et al. 

calculated the coefficient of repeatability (CoR) for 40 participants by multiplying the SD of 

the mean difference between repeated measurements by two, reported 0.28 and 0.33 for 

repeatability and, 0.25 and 0.26 for reproducibility for two different operators.[499] Van der 

Veen et al. reported a mean test-retest variability of 0.0195 (SD 0.047) resulting in a lower 

CoR of 0.09, however only 11 participants were assessed.[486] Abell et al. reported a high 



	   57	  

level of test-retest reliability for MPS 9000 MPOD measurements recorded one week apart, 

with an intra-class correlation coefficient (a composite measure of intra-observer and inter-

observer variability) of 0.98 (95% CI 0.97 to 0.98) for right eyes and 0.99 (95% CI 0.99 to 

0.99) for left eyes, for 201 participants. The SD of the mean difference between repeated 

measurements was not reported and therefore it was not possible to compare the CoR with 

that of Bartlett et al. and van der Veen et al.[500]  

 

1.6.13 The neurophysiological mechanism of HFP 

The neurophysiological substrate of heterochromatic flicker photometry has been identified 

as the phasic, magnocellular system of the primate visual pathway,[501] which under the 

conditions of fast flicker (> 15 Hz) and high luminance (> 1000 Trolands, abbreviated to Td) 

will favour contributions from medium and long wavelength cones,[486] while rods and short 

wavelength cones are strongly suppressed.[502] 

 

1.6.13.1 Prevention of rod and S-cone intrusion 

Rod and S-cone distribution is not constant across the retina, both receptors are present in 

greater numbers paracentrally and in the periphery, but are absent from the fovea.[503, 504] S-

cone density (primate) was reported to exhibit a large within-group variation.[505] In an 

attempt to equalise spectral sensitivity at different eccentricities, rod and S-cone 

contribution to HFP measurements is reduced by using a flicker frequency above 12 Hz to 

15 Hz and, depending on the HFP instrument, by a broad-spectrum, bright white 

background to enhance photopic vision and therefore rod suppression,[441, 486, 502] or a blue-

coloured background designed to reduce both rod and S cone intrusion by spectral 

adaptation.[502, 506-508] The background illumination of the MPS-1000 instrument used in this 

study appeared white overall, but spectral analysis indicated a significant peak in the blue 

region (444 nm) of the visible spectrum (fig. 1.12). 

 

Figure 1.12 Spectral radiance graph for MPS 1000 background illumination 

 
Measurement obtained by the author during the MPS 1000 testing mode, using the PR-650 SpectraScan 
SpectraColorimeter (Photo Research Inc.). © Everett, 2014. 
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1.6.14 Factors affecting in vivo measurement of MPOD 

Factors affecting the in vivo measurement of HFP MPOD can be related to instrument 

design (e.g. central target size, peripheral target location and fixed or variable flicker 

frequency), physiological (e.g. presence of cataract or IOL, macular thickness, pupil size, 

flicker and cone sensitivity differences and state of adaptation), instrument noise affecting 

repeatability and reproducibility, and ocular disease (e.g. changes in retinal structure or 

function, or disorders affecting MP uptake or transport). Factors known to affect in vivo 

MPOD measurements have been listed in appendix A2.4, together with how they are 

affected by age. Figure 1.13 shows MP present in an epiretinal membrane (ERM). 

 

Figure 1.13 OCT and surgical photographical images of ERM containing MP 

 

 
1.7 Glare recovery time 

 

1.7.1 The visual cycles 

In addition to the canonical (classical) retinoid visual cycle in which chromophore are 

recycled through the retinal pigment epithelium (RPE), two further visual cycles have been 

described. The cone-specific visual cycle and intrinsically photosensitive retinal ganglion 

cell (ipRGC) visual cycle. Each visual cycle has aspects that are important to the subjects 

discussed in this thesis and have therefore been summarised below.  

 

1.7.1.1  Canonical (classical or Wald's) retinoid visual cycle 

Photoreception takes place in the OS of rod and cone photoreceptors when a molecule of 

visual pigment absorbs a photon. Visual pigment is a G protein-coupled receptor consisting 

of a protein (opsin) covalently bonded to a vitamin A-derived chromophore (11-cis-

retinal).[509] 11-cis-retinal undergoes a light-triggered isomerisation to all-trans-retinal, which 

in turn induces changes in the pigment producing its physiologically active state 

(metarhodopsin II).[510] 
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The activated visual pigment molecule triggers a transduction cascade resulting in the rapid 

closure of cyclic guanosine monophosphate (cGMP) gated cation channels in the OS 

membrane, photoreceptor hyperpolarisation leading to suppression of the circulating dark 

current and signalling of second-order neurons, and a reduction in the release of the 

neurotransmitter glutamate from its synapse.[509-511] 

 

Efficient photopigment regeneration is essential for proper photoreceptor functioning.[510] 

The chromophore all-trans-retinal is reduced to all-trans-retinol (vitamin A) within rod and 

cone OS by a set of retinal dehydrogenases (RDH).[512] All-trans-retinol is then exported 

from the photoreceptor OS and chaperoned to the adjacent RPE by an interphotoreceptor 

retinoid-binding protein (IRBP), the identity and mechanism of which remains 

controversial.[513-516] At the RPE all-trans-retinol is converted to 11-cis-retinol and finally 

oxidised to 11-cis-retinal by another set of RDH.[510, 512] Unbound retinoids in the 

interphotoreceptor matrix (IPM) situated between the photoreceptor OS and RPE plasma 

membrane, are prone to degredation and are cytotoxic.[517] Transport of 11-cis-retinal back 

to the rod and cone OS completes the canonical retinoid visual cycle.[518] 

 

Rods depend entirely on the output of 11-cis-retinal from adjacent RPE cells, whereas 

cones can use 11-cis-retinal from the RPE and 11-cis-retinol from adjacent Müller glial 

cells. This additional source of recycled photopigment is known as the cone-specific visual 

cycle.[519] 

 

1.7.1.2  Cone-specific visual cycle 

The maintenance of continuous, cone-mediated vision in bright daylight appears to be at 

odds with the rate of visual pigment recycling reported for the canonical visual cycle.[520-522] 

The first evidence supporting the involvement of retinal Müller glial cells in a non-RPE, 

cone-specific visual cycle came from the observation that cultured Mc derived from cone-

rich chicken retinas were able to synthesise 11-cis-retinoids from all-trans-retinol in 

isolation, suggesting that they exhibit isomerase and retinyl ester synthase (RES) 

activity.[523] 

 

Mata et al. proposed that Mc were responsible for chromophore recycling and subsequent 

supply of 11-cis-retinol to cone photoreceptors.[522] Cones are able to utilise 11-cis-retinol, 

whereas rods are not, restricting the use of Mc recycled chromophore to cones. [520] Muniz 

et al. confirmed that RES activity in chicken is an acyl coenzyme A (CoA): retinol O-

acyltransferase (ARAT).[524]  

 

Subsequent studies have demonstrated Mc-mediated, cone-specific visual cycles in 

animals with rod-rich retinas such as rodents and primates, including humans.[521, 525] The 

Mc to cone ratio in the primate fovea is 1:1, falling to 2:1 at an eccentricity of 30° [526-528] 
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suggesting a close relationship between Mc and cone function and increased foveal cone 

vulnerability associated with disorders leading to Mc pathology.[520, 526] 

 

The additional source of 11-cis-retinal available to cones may explain in part how human 

cone circulating current is fully recovered after just 100 ms from a steady bleach of 

approximately 90% of photopigment, whereas rods take at least 20 minutes (min) to 

recover fully.[529] The continuous and open structure of the cone OS facilitates rapid 

phototransduction and metabolism, and allows for fast metabolite exchange between cones 

and IPM, affording a higher rate of photopigment recycling than the canonical route.[520, 522, 

525, 530, 531]  This may also contribute to the greater vulnerability of cones to lipid peroxidation 

secondary to oxidative stress and their subsequent need for increased antioxidant 

protection.[228, 532] (See A2.2 for a summary of Mc functions in additional to cone 

photopigment recycling). 

 

1.7.1.3  Intrinsically photosensitive retinal ganglion cell visual cycle 

While the detrimental effect of blue light exposure on retinal physiology has been widely 

reported,[250, 533] the benefits of retinal blue light exposure have received less attention in the 

literature.[534-539] 

Melanopsin-containing ipRGC were first identified in 2002 as a third type of photoreceptor 

with an integral role in several non-visual functions.[540] ipRGC express the photopigment 

melanopsin (Opn4) diffusely along their dendrites and within the stroma.[541] In humans, the 

majority of non-visual function responses are maximally sensitive to blue light stimulation 

(circa 480 nm).[540-542] 

 

It is currently believed that phototransduction in ipRGC is closely related to that found in 

invertebrate rhabdomeric photoreceptors,[543, 544] and that Opn4 activates a Gq class of G-

proteins followed by stimulation by phospholipase C, which leads to the opening of cation-

selective transient receptor potential channels (TRPC).[541] Unlike the canonical and cone-

specific visual cycles which require complex cascades to regenerate photopigment after 

light-triggered isomerisation, it has been hypothesised that Opn4 functions as a bi-stable 

pigment, able to regenerate its own light-activated chromophore by absorbing a second 

wavelength of light at 587 nm, although this is controversial.[541, 545-547] 

 

1.7.1.3.1 Intrinsically photosensitive retinal ganglion cell functions 

The human retina contains approximately 3000 ipRGC, representing 0.2% of the total 

number of retinal ganglion cells.[548] Current evidence from rodent data suggests that there 

are five distinct subtypes of ipRGC (termed M1 to M5) differentiated by dendritic 

morphology and axonal projections within the inner plexiform layer.[540] Two of these ipRGC 

subtypes (M1 and M2, not to be confused with the macrophage anti-inflammatory 
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subtypes), form an overlapping mosaic (photoreceptive network) covering the whole retina, 

whereas a third subtype does not contribute to this mosaic.[549, 550] The photoreceptive 

network extends to within the macula region in human and macaque, with a small number 

of processes crossing the foveal pit.[540] 

 

Intrinsically photosensitive retinal ganglion cells of the subtype M1 are predominantly 

responsible, with additional input from rods and cones, for circadian photoentrainment via 

the retinohypothalamic tract to the suprachiasmatic nuclei (SCN) and the intergeniculate 

leaflet (IGL), and the pupillary light reflex (PLR) via the olivary pretectal nuclei (OPN).[551-555] 

Melanopsin is also involved in the regulation of the sleep-wake cycle, temperature 

regulation, cognitive function and alertness, as a result of light-activated suppression of 

melatonin from the pineal gland and cortisol secretion via activation of the adrenocortical 

axis.[535-538, 556-558] 

 

There is evidence from murine data that retrograde signalling from ipRGC influence the  

level of adaptation via dopaminergic A18 amacrine cells.[334-336] Retinal dopamine release 

varies diurnally in vertebrates, increasing during the day and decreasing at night.[559] 

Melatonin can acutely inhibit retinal dopamine release.[560]  

 

Flickering lights are the most effective stimulant for dopamine release in the primate 

retina.[561] In mammals dopamine is believed to modulate the spatial extent of the horizontal 

cell (HC) syncytium by uncoupling HC gap junctions.[562] Dopamine agonists were found to 

suppress the retinal flicker response, however maximal hyperpolarisation of HC with a 

bright white light was able to partially restore the initially suppressed flickering response 

components.[562] Light aversion (photophobia) under non-pathological conditions is 

considered to be mediated by ipRGC, whereas pathological causes of photophobia are 

thought to be ipRGC-independent, modulated instead by rod and cone photoreceptors.[540] 

 

Migraine is associated with increased photophobia in approximately 80% of cases.[563, 564] 

The mechanism underlying the deficiency of habituation in migraine, causing increased 

retinal light sensitivity has not been fully explained, but recent evidence suggests that it may 

result from thalamo-cortical dysrhythmia.[565, 566] Photophobia, especially that resulting from 

migraine is preferentially triggered by blue light exposure,[567-569] suggesting that ipRGC 

could be involved in this condition. 

 

1.7.2 Glare recovery time (or test) 

Glare recovery time, also known as photostress recovery time (PSRT) and in the older 

literature, the macular dazzling test (MDT) or nyctometry, refers to the time taken for retinal 

sensitivity (visual acuity (VA) or contrast sensitivity), to return to a predefined level after 
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being exposed to a controlled, intense centrally directed light source for a predetermined 

length of time.[308] 

 

The concept of GRT was introduced by Bailliart in 1954.[570] This method involved dazzling 

the macula with an ordinary ophthalmoscope and recording the time taken for visual 

recovery.[571] Other methods of GRT assessment have included the use of infrared 

pupillometry,[572] Maxwellian view optical system,[573] electroretinography,[330] visually 

evoked responses,[574] scanning laser ophthalmoscopy,[575] nyctometry[576] automated 

perimetry,[328, 356] and light sources including; indirect ophthalmoscopes,[352] pen torches,[573] 

flood lighting,[577] and car headlights.[578] 

 

Margrain and Thomson examined the causes of variability in GRT testing. Their conclusion 

was that the bleaching method was the primary source of GRT variability.[573] Compared to 

their laboratory GRT set-up, a Maxwellian view optical system designed to constantly 

bleach approximately 96% of cone photopigment, the ideal clinical method of GRT would 

be required to produce a retinal illuminance of 5.5 log Td for 30 seconds (s) or more.[573] 

The direct ophthalmoscope held close to the eye with a pupil size ≥ 2 mm to approximate 

Maxwellian viewing, for 30 s was able to fulfill this criterion. A random selection of 

ophthalmoscopes was found to bleach between 98% and 99.6% of cone photopigment 

under these conditions.[573] 

 

Margrain et al. are currently working on a retinal densitometer designed to objectively 

measure rod and cone DA simultaneously. The densitometer accurately measures the 

change in colour of photopigments as they recover after the bleach (fig. 1.14). Early tests 

revealed a high ability to discriminate between AMD and non-AMD groups (T. Margrain, 

personal communication, December 10th, 2013). 

 

Figure 1.14 Functional retinal imaging "map" produced by the retinal densitometer 
 
Retinal image of early AMD Functional retinal image "map" 
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The source of illumination used for GRT testing produces an intentional, temporary central 

scotoma due to the higher than normal degree of photopigment bleaching, [579] and can 

therefore be considered as an, albeit rather unnatural, form of DA and a dynamic 

assessment of macular function.[329] The recovery of visual function after exposure to the 

light source used in GRT is believed to be largely the result of cone photopigment 

regeneration.[308, 349, 580] The kinetics of cone photopigment recovery may be different 

depending on the duration of light exposure used. Photo-flash sources result in a recovery 

time that is dependent on the percentage of photopigment bleached, whereas the recovery 

time associated with equilibrium (longer duration) exposure is not correlated with the 

percentage of photopigment bleached.[581] 

 

Visual recovery after GRT was attributed to pigment regeneration via the canonical visual 

cycle,[580] however the more rapidly recovering, cone-specific visual cycle is likely to make a 

significant contribution to cone pigment regeneration after the bleach.[521, 522, 531] The relative 

contributions of the canonical and cone-specific visual cycles to visual recovery after retinal 

bleaching are unknown,[525] but it is likely that equilibrium bleaching will deplete local stores 

of 11-cis-retinal, placing a greater burden on the RPE for pigment regeneration in 

comparison to photo-flash bleaching.[330, 582] It is also important to consider, but difficult to 

quantify the contribution of neural adaptation mediated by ipRGC to the recovery time,[329, 

583, 584] which may be expected to affect equilibrium bleach to a greater degree than photo-

flash bleach.[585] 

 

1.7.2.1  Glare recovery time in ocular disease and other factors 

The association between AMD and GRT was discussed in section 1.5. Other factors known 

to affect GRT are summarised in appendix A2.5.  

 

1.8 Study aims 

 

The aims of this study were as follows: 

 

To investigate the effect of the order of measurement (first eye vs. second eye) on MPOD 

values and the effect of ocular dominance on MPOD and GRT values. To investigate the 

association of the confirmed and putative AMD and ocular vascular perfusion (OVP) RF; 

age, gender, BMI, percentage body fat (%BF), iris colour, AMD FH, migraine, Rph and 

VDys, with MPOD and GRT. To investigate whether GRT is a suitable surrogate measure 

for MPOD. To investigate the inter- and intra-session repeatability for the GRT method used 

in this study (table 1.16). 
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Table 1.16 The study hypotheses 

The order of eye measurement 
Consensus among researchers is that in the absence of pathology there is generally good 
interocular agreement for MPOD measurements.[586, 587] Many studies investigating HFP MPOD 
values for both eyes have made sequential measurements from the right and then the left eye.[586, 

588-590] While in many research studies means of multiple readings are taken from each eye, in 
clinical practice it is more likely that only a single measurement would be taken from each eye and 
that the right eye would precede the left eye measurement.  
 
The author has noted a trend for higher threshold values on visual field testing for the second eye 
tested compared to the first. Measurement of MPOD using HFP similarly involves the occlusion of 
the second eye during first eye testing and (unlike field testing) the exposure of the first eye to a 
prolonged high-luminance background light source. It is therefore feasible that if the second eye is 
measured immediately after the first, the MPOD results could be affected by the difference in 
conditions experienced by each eye if only a single measurement is taken. In this study the order of 
right and left eye measurements were randomised in an attempt to reduce bias (learning / fatiguing 
effect) due to sequential right then left eye measurement. 
 
Ocular dominance 
There is some weak evidence to suggest that dominant eyes receive a greater lifetime light exposure 
compared to non-dominant eyes and therefore may be at greater risk of developing AMD (see 
section 1.3.4.2). In order to assess whether ocular dominance affects HFP MPOD and GRT 
readings, it is first essential to exclude any learning or fatiguing effect due to the order of eye 
measurement. One study reported no significant association between MPOD and eye dominance, 
but the order of eye measurement was not reported.[591] Another study reported a bias towards 
longer GRT in the dominant eye, however the results are likely to have been biased by a learning 
effect.[329] In this study first eye (randomised right or left eye) measurements of MPOD and GRT 
were compared with ocular dominance in an attempt to reduce bias due to learning / fatiguing 
effects. 
 
AMD RF 
The confirmed or putative RF for AMD; age, gender, BMI, iris colour and FH of AMD were selected 
because of the ease of measurement in an optometric practice setting. Percentage body fat was 
calculated from BMI, age and gender. 
 
Age-related macular degeneration has been associated with reduced MP in some,[175, 592] but not all 
studies.[593, 594] No major protective effect of MPOD was seen with early AMD,[595] although higher 
dietary MP,[168] and supplemental MP in the presence of poor dietary intake of MP,[452] were 
associated with a lower risk of developing late AMD. The results from studies examining the 
association between MP and AMD RF have also been controversial to date; age (no significant 
association[166, 402] vs. age-related decline[596, 597] vs. peak in middle age range[598]), gender (no 
significant difference[166] vs. lower in females[599]), BMI (no significant association[591] vs. lower for 
higher BMI[166]), male %BF (lower for higher %BF[600]), female %BF (no significant difference[600] vs. 
lower for higher %BF[436]), iris colour (no significant difference[597] vs. lower for lighter iris colour[601]), 
FH of AMD (no significant difference[401] vs. higher[594] vs. lower[597] for FH of AMD). 
 
Age-related macular degeneration has been associated with longer GRT, although the association 
appears more consistent for equilibrium compared to photo-flash bleach methods.[308] The 
association between GRT and AMD RF is controversial; age (no significant association[352, 358] vs. 
longer GRT[571, 573]), gender (no significant association[361] vs. longer for females[602]), iris colour (no 
significant association[329]), AMD FH (non-significant trend towards longer GRT[603]). The author is 
unaware of any studies reporting the association of BMI or %BF with GRT. 
 
Calculated %BF 
Body mass index measurements are easily and non-invasively obtained in the clinical setting and 
generally correlate strongly with %BF (r = 0.60 to 0.82),[604] however BMI does not directly measure 
adiposity,[600] differentiate between adipose tissue mass and muscle tissue mass or allow for 
differences related to gender or age.[605] For the same BMI, women typically have approximately 
10% higher body fat compared to men.[606, 607] In this study %BF was calculated from BMI, age and 
gender according to the (CUN-BAE) algorithm derived by Gomez-Ambrozi et al.[608] (See section 
2.2). This %BF algorithm was selected over other %BF algorithms because it was based on a 
predominantly White European population. 
 
Inclusion of OVP RF 
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Conditions that lead to reduced retinal vascular perfusion, e.g. reduced diastolic blood pressure and 
ocular ischaemic syndrome are associated with longer GRT.[609-612] Ocular ischaemic syndrome is 
associated with subfoveal choroidal thinning representing impaired choroidal circulation.[148] 
Choroidal perfusion and ischaemia (choroidal and arguably retinal) are inversely associated with 
AMD risk.[613-615] The OVP RF migraine, Rph and VDys were included in this study because they are 
also associated with reduced or unstable OVP and ischaemia.[196, 205, 616] 
 
The OVP RF; migraine, Rph and VDys are not currently considered to be RF for AMD, however they 
are associated with reduced or dysfunctional retinal and choroidal blood flow,[617-619] and in the case 
of VDys signs of retinal inflammation.[205] (See section 1.3 and fig. 1.3). Frandsen et al. reported 
higher objectively-measured MPOD for individuals with migraine.[193] The author is unaware of any 
studies examining MPOD for individuals with Rph or VDys, or GRT with migraine, Rph or VDys. 
 
GRT as a surrogate measure of MPOD 
The idea to investigate the use of GRT as a surrogate measure for MPOD was suggested by one of 
the study supervisors (Dr Hannah Bartlett). Previous studies have shown a significant inverse 
correlation between 5-s bleach time GRT using a high blue light content glare source and MPOD.[620-
623] 
 
The decision to use the Keeler Specialist direct ophthalmoscope as the glare source was made by 
the author for two reasons. Firstly, the 30-second bleach method using this light source was reported 
to bleach in excess of 95% of retinal photopigment,[573] and it was hoped that this would improve the 
high level of inter-subject variation inherent with GRT measurements.[620, 624] Schmitt et al. and 
Bartlett et al. concluded that longer duration bleach than that afforded by photo-flash methods might 
lead to less variation in GRT results.[358, 359] A later study confirmed that equilibrium bleach GRT was 
considerably more repeatable than photo-flash bleach GRT when examining the same population. 
Coefficient of repeatability was 85 s for equilibrium bleach GRT and 184 s for photo-flash bleach 
GRT for 23 individuals of mixed gender, ranging in age from 21 to 70 years.[330] 
 
Secondly, the direct ophthalmoscope and letter chart needed to measure GRT using the method 
described by this study would already be used by the vast majority of optometrists in practice, 
therefore negating any additional expenditure for specialised equipment. If GRT measured with the 
direct ophthalmoscope could be successfully used as a surrogate measure for MPOD, this would 
significantly reduce the financial pressure on optometrists to sell supplements to cover the cost of 
equipment used and clinic time required to measure MPOD.  
 
GRT repeatability 
The method of GRT used in this study (30-second equilibrium bleach with the direct ophthalmoscope 
held as close as possible to the subjects eye) was reported to be the best clinical technique in 
2002,[573] however, the author is unaware of any repeatability studies for this technique. For this 
reason inter- and intra-session repeatability was included in this study. The learning effect or bias of 
using the same test chart letters compared to different letters for repeated measures of GRT was 
also assessed. Some optometrists use test charts with a fixed set of letters, whereas others use a 
computer-driven test chart that allows the letters to be changed to prevent patients from learning 
them. 
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Chapter 2 Macular pigment optical density study (Experiment 1) 

 

2.1 Brief introduction 

 

The aim of this practice-based, cross-sectional study was two-fold. (a) To investigate the 

effect of sequential versus randomised order of measurement on the interocular 

comparison of MPOD measurements and the effect of ocular dominance on MPOD 

measurements. (b) To investigate the relationship between MPOD with confirmed and 

putative AMD RF (age, gender, BMI, %BF, iris colour and AMD FH), and OVP RF 

(migraine, Rph and VDys). Risk factors were limited to those easily measureable in 

optometric practice. Background information about MPOD and its association with selected 

AMD RF was discussed in the introduction to this thesis (sections 1.3 and 1.6) and is 

summarised below in the brief introduction to this chapter. 

 

Table 2.1 Summary of investigations (MPOD) 
Interocular comparison The interocular difference in MPOD has been examined in many studies. Consensus among 

researchers is that in the absence of pathology there is generally good interocular agreement.[586, 

587] The author is unaware of any studies examining the effects of eye order (randomised; right 
vs. second eye and sequential; first vs. second eye) on HFP-derived MPOD measurements. 

Ocular dominance In MPOD research it is usual to obtain results from the right eye only. Right eye dominant 
outnumber left eye dominant cases by approximately 2-1. It is plausible that dominant eyes are 
exposed to greater lifetime retinal light levels compared to non-dominant eyes and therefore may 
be at greater risk of developing AMD. One study reported a trend towards higher MPOD for 
dominant eyes, but this did not reach significance.[591] 

Age Age is the strongest, established RF for AMD,[14, 41, 43, 625] whereas the role of MPOD in AMD risk 
has been described as putative.[626] It has been argued that a significant decline in MPOD level 
with age may result in higher levels of retinal oxidative stress and therefore lead to increased risk 
of AMD.[596, 597] The association between MPOD derived by psychophysical methods and age has 
remained controversial for many years.[439] 

Gender Gender has not been consistently reported to be a RF for AMD. The Beaver Dam Eye Study and 
BMES suggested that women might have a higher risk of developing AMD.[625, 627] The higher 
prevalence of late AMD in women compared to men has been explained in part by the larger 
number of women in the older age range. [1], [45] Higher body fat levels in women may lead to 
competition with retinal carotenoid uptake, resulting in lower female MPOD levels.[164] 

BMI Higher than normal BMI was associated with increased risk of both early and late AMD.[133, 628] 
Another large study found no association between BMI and AMD.[39] MPOD was found to be 
inversely associated with BMI-defined obesity in both genders,[436] or only male gender.[600] BMI 
may not accurately reflect adiposity level, represented by percentage of body fat (%BF) however. 
[604, 629] For any value of BMI, female %BF is higher than male %BF.[600] 

%BF Higher levels of abdominal fat (waist / hip ratio), but not BMI or %BF was associated with 
increased risk of AMD in men, whereas all three anthropometric measures were related to 
increased AMD risk in women.[630] %BF was inversely correlated with MPOD in both genders,[600] 
or only male gender.[432] In the present study %BF was estimated from BMI, age and gender 
using the CUN-BAE (Clinica Universidad de Navarra - Body Adiposity Estimator) algorithm. 

Iris colour Light iris colour was associated with significantly greater light transmission and reduced 
choroidal melanin compared to darker irides.[631, 632] Significantly more cases of AMD have been 
reported for individuals with light compared to dark irides,[633] however BDES found no 
association between iris colour and AMD incidence and progression,[634] but did report an 
association between lighter iris colour and the development of RPE pigmentary abnormalities 
(ARM).[635] The relationship between MPOD and iris colour is also controversial; Two studies 
have reported significantly lower MPOD associated with lighter iris colour,[601, 636] while another 
study found no significant association.[637] 

FH of AMD Family history of AMD is a confirmed RF for the development of AMD. The Blue Mountains Eye 
Study found that AMD FH was significantly associated with both early ARM (OR  2.17 95% CI 
1.04 - 4.05) and late AMD (OR 3.92 95% CI 1.34 - 11.46). [117] Family history of AMD was 
associated with a higher risk of MPOD profile with a central depression at 10 min eccentricity.[403] 
Peak MPOD measurements were confirmed to be largely genetically determined.[404]  

OVP RF Vasospasm has been reported to play a central role in the pathogenesis of migraine, Rph and 
VDys.[194, 619, 638] Vasospasm was reported to affect choroidal and ciliary vessels more than retinal 
vessels.[619]  Reduced choroidal blood flow was reported in individuals with non-nAMD using 
colour Doppler imaging,[639] laser Doppler flowmetry[640] and indocyanine green angiography.[641] 
Fellow eye risk for developing nAMD was inversely associated with choroidal perfusion.[642] Age-
related macular degeneration RF including age, gender and iris colour, were associated with a 
reduction in choroidal blood flow.[643] 

Migraine Participants were classified as self-reported migraine or non-migraine sufferers. For simplicity in 
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this practice-based study migraine sufferers were classified as with or without aura according to 
the third edition of the International Classification of Headache Disorders, ICHD-3, June 2013.[644] 
Migraine classification is considerably more complex than this and individuals with migraine can 
be classified with more than one migraine subtype. The reported presence or absence of light-
trigger for migraine was not included in the headache classification cited above, but was added 
because higher levels of MP are associated with lower retinal blue light exposure. Therefore it 
was considered plausible that higher MPOD could reduce the light-trigger for migraine. A later 
study reported that MPOD measured objectively using FAF was significantly higher in 
participants with migraine, however the authors did not further classify individuals with migraine 
by subtype.[193] 

Rph Participants were classified as having Rph if they reported that their fingers turned white in cold 
temperatures, indicating a restriction of blood flow to the affected area. Raynaud's phenomenon 
may be described as primary or secondary.[194, 645] No distinction between types was made in this 
study, but all cases were aged over 30 years indicating that all were secondary Rph (sRph). In 
addition to the effect on the choroidal circulation, Rph is associated with a reduction in retinal 
capillary blood flow, which could result in ischaemia leading to retinal dysfunction.[646] 

VDys Vascular dysregulation may also be described as primary or secondary VDys (sVDys is 
associated with other, usually auto-immune disorders).[647, 648] No distinction was made between 
types in this study, but the age range would suggest that both types were represented. Primary 
VDys occurs more frequently in young, slim, adult females and is associated with a history of 
cold hands (and sometimes feet) unrelated to ambient temperature.[648] Individuals with pVDys 
have disturbed autoregulation, leading to instability in ocular blood flow leading to repeated, mild 
reperfusion injury and oxidative stress.[647]  

Difficulty with HFP It is assumed that participant difficulty with HFP increases with age. The author is unaware of 
any systematic analysis of the relationship between age, MPOD value and GRT with difficulty 
obtaining results using HFP methods to assess MPOD. 

 

2.1.1 Research objectives 

The aim of this research was to contribute to the body of knowledge that has been collected 

for the relationship between MPOD and the following AMD RF: age, gender, BMI, iris colour 

and AMD FH. In an attempt to make an original contribution to the literature, the association 

between MPOD and the following OVP RF: migraine, Rph and VDys, and the effect of eye 

order and calculated %BF on MPOD measurement were also investigated. There have 

been no previous studies of MPOD levels in the type of sample investigated here.  

 

2.2 Materials and methods 

 

2.2.1 Subjects 

 

A priori sample size estimation 

Calculating an a priori sample size estimation allows the recruitment of sufficient 

participants to reduce the risk of an underpowered (false-negative) result. There are four 

possible explanations for a non-significant result in a trial; the study was appropriately 

powered and the result was genuinely non-significant, the study was appropriately powered 

but the non-significant result occurred by chance (1 in 20 chance at p = 0.05), there was a 

significant difference, but the study was underpowered (sample size too small), or one or 

more aspects of the trial were biased in favour of the control group. There are ethical 

consequences of conducting underpowered studies.[649] 

 

We calculated that a sample size of 150 will provide 80% power at α = 0.05 for a moderate 

Pearson correlation of 0.2. An acceptable ratio of participants to predictor variables when 

using multiple regression analysis was reported to be between 10:1 and 40:1. The original 

incarnation of this study had seven predictor variables; age, gender, BMI, iris colour, AMD 
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FH, migraine and Rph. Percentage body fat and VDys were not included because it was 

anticipated that %BF and VDys would share a significant degree of variance with BMI and 

Rph, respectively. According to this the minimum acceptable number of participants would 

be 70. Recruitment of 150 participants provided a ratio of 21:1 and represented a good 

compromise between the limits reported above (10: 1 and 40:1). 

 

Tabachnick and Fidell reported a formula for calculating the sample size required when 

undertaking multiple regression analysis, taking into account the number of independent 

variables and assuming a medium-sized relationship between the independent variables 

and the dependent variable (α = 0.05 and β = 0.20).[650] 

 

    n ≥ 50 + (7 x m) = 99 participants,   (Eq 2.1) 

 

Where n = sample size and m = 7 (number of independent variables). 

 

Post hoc sample size estimation 

Sample size for the comparison between two means for MPOD was calculated 

retrospectively from the data collected for age, gender, mixed-gender BMI, iris colour and 

AMD FH from other studies (table 2.2), assuming 80% power (1 - β) at the 5% significance 

level (table 2.3). Effect sizes (d) were obtained from the mean of at least two other studies 

(if available). Similarly sized studies with White participants were included preferentially. 

The sample sizes were corrected for unequal numbers in each group (i.e. allocation ratio, r 

= larger group number / smaller group number). Sample size estimation was not performed 

for calculated %BF because this was derived from the BMI, age and gender data. 

 

The author is unaware of any studies examining the association between HFP-derived 

MPOD and difficulty with HFP, migraine, Rph and VDys. In this case the effect size may be 

determined by logical assertion and conjecture,[651] or by calculation. G*power statistical 

software was used to calculate the effect size (from the mean and SD from each of the 

MPOD groups, for each RF). The calculated effect size was then used to the calculate 

sample size using the formulae in table 2.3. 

 



	   69	  

Table 2.2 Independent variable effect size for MPOD extracted from the literature 
Independent variable Study Reference n Effect size (d) 
Age Nolan (2004) 

Neelam (2005) 
Lam (2005) 

[600] 
[652] 
[653] 

100 
118 
92 

0.17 
0.06 
0.16 
Mean = 0.13 

Gender Mellerio (2002) 
Nolan (2004) 
Iannaconne (2007) 

[508] 
[600] 
[654] 

124 
100 
183 

0.12 
0.02 
0.03 
Mean = 0.06 

Mixed-gender BMI Hammond (2002) 
Nolan (2004) 
 

[436] 
[600] 

400 
100 
 

0.05 
0.12 (male) 
0.17 (female) 
Mean = 0.12 

Iris colour Hammond (2000) 
Mellerio (2002) 
Ciulla (2004) 

[599] 
[508] 
[655] 

128 
124 
280 

0.05 
0.13 
0.04 
Mean = 0.07 

AMD FH Nolan (2007) 
FH early AMD 
FH GA 
FH nAMD 

[597]  
41 
55 
79 

 
0.09 
0.11 
0.12 
Mean = 0.10 

Migraine / Rph / VDys No previous studies   n/a 

 
Table 2.3 Post hoc sample size estimates for the MPOD study 

AMD RF data Age 
≤ 50 vs 
> 50 years 

Gender 
male vs female 

BMI 
≤ 25 vs. 
> 25 

Iris colour 
light vs dark 

AMD FH 
FH vs no 
FH 

Mean difference (MPOD) 
Standard deviation (S) 
Effect size (d) 

0.06 
0.17 
0.13 

0.01 
0.17 
0.06 

0.02 
0.16 
0.12 

0.04 
0.16 
0.07 

0.01 
0.17 
0.10 

n per group (2-sided) 
16/(d/S)2  
Power = 80%, α = 5% 
Assuming r = 1 

 
 
 
27 

 
 
 
128 

 
 
 
29 

 
 
 
84 

 
 
 
46 

Sample size (M) 54 256 58 168 92 
Allocation ratio (r) 
Number in smaller group (M1) 
(1 / (1 + r)) x M 
Number in larger group (M2) 
(r / (1 + r)) x M 

1.3 
 
23 
 
31 

2.7 
 
69 
 
187 

1.1 
 
28 
 
30 

1.6 
 
65 
 
103 

4.8 
 
16 
 
76 

Corrected value for M1 (M1c) 
M1c = r + (1/2r x M) [656] 

 
37 

 
348 

 
33 

 
136 

 
226 

Corrected sample size (Mc) 
M1c + M2 

 
68 

 
535 

 
63 

 
239 

 
302 

      
OVP RF and miscellaneous (bold 
border) data 

Migraine 
yes vs no 

Rph 
yes vs no 

VDys 
yes vs no 

Ocular 
dominance 

D vs ND 

Difficulty 
with HFP 
yes vs no 

Mean difference (MPOD) 
Standard deviation (S) 
Effect size (d) 

0.001 
0.16 
0.08* 

0.002 
0.15 
0.14* 

0.01 
0.15 
0.04* 

0.07 
0.17 
0.18 

0.02 
0.17 
0.06 

n per group (2-sided) 
16/(d/S)2  
Power = 80%, α = 5% 
Assuming r = 1 

 
 
 
64 

 
 
 
19 

 
 
 
225 

 
 
 

14 

 
 
 

128 
Sample size (M) 128 38 450 28 257 
Allocation ratio (r) 
Number in smaller group (M1) 
(1 / (1 + r)) x M 
Number in larger group (M2) 
(r / (1 + r)) x M 

4.9 
 
22 
 
106 

2.7 
 
10 
 
28 

2.5 
 
129 
 
321 

1 
 
- 
 
- 

4.1 
 

50 
 

207 
Corrected value for M1 (M1c) 
M1c = r + (1/2r x M) [656] 

 
318 

 
54 

 
565 

 
- 

 
531 

Corrected sample size (Mc) 
M1c + M2 

 
424 

 
82 

 
886 

 
28 

 
738 

*Effect size calculated from MPOD values of mean and SD using G*Power assuming equal group size. Effect 
size convention: d = 0.2 small, d = 0.5, medium, d = 0.8 large. vs = versus. D: dominant eye, ND: non-dominant 
eye 
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2.2.2 Recruitment 

This study was undertaken at the Bath Road practice of Norville Opticians in Cheltenham. 

The study required the recruitment of non-smokers aged 20 years and above with no eye 

disease. Data was collected for 150 participants over a 14-month period from the 4th of 

August 2010 to the 12th of October 2011, outside normal clinic hours. See appendix 4 for 

information sheets and poster. 

 

Initially patients whom appeared to meet the requirements above were sent an invitation to 

participate with the reminder letter for their next routine eye examination. The reminders 

were computer generated based on the time since their last eye test. Over a period of one 

month 100 invitations were sent out. Response was very poor, with only one respondent, 

who was excluded as a smoker. 

 

Posters and information sheets were displayed at four Cheltenham practices. Colleagues 

were emailed with information about the study and were invited to refer any suitable 

patients. The author presented a talk about MP at the Norville Opticians annual 

professional staff meeting, where recruitment information was disseminated to colleagues. 

Suitable patients were invited by the author to participate in the study during their routine 

eye examination. This proved to be the most effective method of recruitment. 

 

2.2.3 Inclusion / exclusion criteria 

 

Table 2.4 Inclusion / exclusion criteria for both MPOD and GRT studies 
Inclusion criteria 
 
Gender: all genders  
Age: ≥ 20 years 
BMI: ≥20 and <30  
Corrected LogMAR visual acuity ≤ 0.1 (6/7.5 equivalent Snellen acuity) 
Healthy macula appearance 
No Amsler distortion 
Normal reported cholesterol levels 
Willingness and ability to give written, informed consent and willingness and ability to comply with the study requirements 
Participants with BMI ≥ 30 were examined as a separate group 
 
Exclusion criteria 
 
Age: <20 years 
BMI: <20 or ≥30 
Corrected LogMAR visual acuity > 0.1 
Amsler distortion 
Abnormal macular appearance or drusen 
History of macular disease 
Reported raised cholesterol level 
Current pregnancy 
Current smoker 
Alcohol consumption within two hours 
Diabetes 
Glaucoma 
Reported poor night vision 
Dietary absorption disorders (e.g. Crohn’s) 
Current use, or use within six months, of medications that are known to affect macular function 
Inability to give informed consent 
Refusal to give written, informed consent and / or refusal to comply with the study requirements 
 
Removal of a participant during the study 
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Pupils too small to allow macular view 
Inability to fixate ophthalmoscope light (e.g. eccentric fixation, nystagmus) 
Inability to provide results for any of the ophthalmic tests performed 

 

2.2.4 Justification for inclusion / exclusion criteria for MPOD study 

 

Table 2.5 Justification for inclusion / exclusion (MPOD study) 
Factor Justification for inclusion / exclusion 
Age Patients under 20 years of age were excluded because data collection was undertaken on a school / 

college day (Wednesday) and those under 16 years old would require a parent or guardian to be present. 
A separate MPOD study had been planned at Aston for teenagers. The lower age cut-off (< 20 years) 
was intended to reduce study non-attendance due to the higher fail to attend rates associated with the 16 
to 19 year age group. 
At the time of the study protocol and ethics submission to Aston University, it was not certain whether an 
additional NHS ethics submission would have to be completed. We received advice that studies involving 
minors (those under the age of legal competence) would most likely require additional NHS ethics 
approval. 
Candidates were also advised that obtaining NHS ethics approval could take more than a year. This 
would have left insufficient time to complete the study within the original time frame. All patients aged 16 
and under, and the majority of those aged under 20 years of age would have been NHS patients in full-
time education. Excluding participants specifically because of their NHS status would have been 
unethical and an additional source of bias, therefore, in addition to the reasons given two paragraphs 
above the decision was made by the author to set the lower age limit for this study at 20 years.  
Suitable participants aged 20 years of age and above were included regardless of their NHS status. The 
author would argue if approached by a representative of the local NHS ethics committee, that their NHS 
status was not in any way related to their selection, therefore making additional NHS ethics approval 
unnecessary, after ethics approval from Aston University had been granted. 

BMI The lower limit of 20 Kg / m2 was chosen to exclude participants with subnormal BMI due to athletic and 
weight loss programs and eating disorders. Obesity (BMI ≥ 30 Kg / m2) has been reported to associate 
with lower levels of fat-soluble MP due to competitive absorption by adipose tissue.[164, 436] 

VA Although evidence for the acuity hypothesis for MPOD was not supportive,[657] reduced VA may indicate 
macular disease, which was associated with lower MPOD measurements in some,[596, 658] but not all 
studies.[593, 594, 655, 659] Eccentric fixation may lead to an underestimation of HFP-derived MPOD due to off-
centre, central measurement. 

Reported 
cholesterol 
status 

Raised cholesterol may be related to lower serum HDL levels. Serum L levels were significantly 
associated with serum HDL, but not LDL.[660] Other sources have reported that L and Z are equally 
distributed between HDL and VLDL / LDL lipoprotein fractions.[454, 661] Participants were included if they 
reported that their doctor had advised that their total cholesterol level was currently normal, regardless of 
whether or not they were receiving any medical or dietary treatment for cholesterol. No time scale was 
defined for the term "currently". For this study total cholesterol was not defined in numerical terms 
because values are widely known to vary with factors such as age, gender and body weight, and the 
values defined as "normal" or "abnormal" may vary with the presence of concurrent medical conditions, 
the requirement for preventative therapy in high risk groups or genetic propensity for raised cholesterol. 
No participant asked for a numerical definition for normal or high total cholesterol. Participants unaware 
of their cholesterol status were recorded as "unknown". Therefore the included group contained 
participants with either "reported normal" or "unknown", rather than "confirmed normal" cholesterol levels. 
Reported raised cholesterol was significantly associated with lower MPOD levels in one study.[597] 

Pregnancy Pregnancy was associated with a 100% increase in serum L and a 50% increase in serum Z, which 
returned to normal levels by one-month post-partum.[662] Recorded as "yes", "no" or "unknown". 
Participants reporting "unknown" were included. 

Smoking Smoking is the most significant environmental RF for AMD development,[114] associated with two to three 
times AMD risk compared to non-smokers.[663] Smoking was associated with lower MPOD levels,[664] 
specifically at the central part of the MPOD spatial profile.[401] 

Diabetes Type 2 diabetics with or without retinopathy had reduced MPOD compared to non-diabetics.[665] 
Recorded as "yes", "no" or "unknown". Participants reporting "unknown" were included. 

Intestinal 
malabsorption 
syndromes 

Dietary absorption disorders such as Crohn's, ulcerative colitis, irritable bowel and participants with a 
history of bowel surgery were excluded. L and Z are taken up by mucosal cells, in the duodenum (first 
part of the small intestine) after bile-mediated emulsification into micelles.[440] Macular carotenoid 
absorption was enhanced by higher levels of co-consumed lipid and ascorbic acid,[666, 667] but may be 
reduced by β-carotene co-consumption.[450, 451, 668] Intestinal malabsorption syndromes such as coeliac 
and Crohn's disease are known to cause deficiencies in lipid-soluble nutrients and were associated with 
37% lower MPOD compared to non-affected participants.[669] Recorded as "yes", "no" or "unknown". 
Participants reporting "unknown" were included. 

 

2.2.5 Ethical approval / informed consent 

This study was approved by the Aston University, Audiology / Optometry Research Ethics 

Committee (AOREC) on the 12th of May 2010. (Reference number AO2010.15 HB) and 

adhered to the tenets of the Declaration of Helsinki, (sixth revision, October 2008).[670] See 

appendix 5 for the confirmation of ethics clearance forms. 

 



	   72	  

2.2.6 Instrumentation 

MPOD measurements were obtained using the MPS 1000 screener, software version 0.42 

(Tinsley Precision Instruments Ltd, Croydon, Essex). This method of MPOD testing was 

selected because it is easier for naïve and elderly subjects and was the least expensive 

method available when the study protocol was submitted. 

 

LogMAR VA was assessed using a computer monitor running test chart software from 

Thompson Software Solutions (Test Chart 2000 Pro version 2.4.01). Test chart illuminance 

was 55 Lux (30 cm from screen) and consulting room ambient illumination was 82 Lux, 

measured in the position and direction of gaze of the participant (Sinometer LX1010BS 

Digital Lux Meter). Weight and height were measured using the WeightWatchers precision 

electronic scale, model 8965U and a stadiometer respectively.  

 

Pupil size was measured to the nearest millimeter using a ruler with a millimeter scale in 

ambient room lighting. 

 

2.2.7 Methods 

 

2.2.7.1  Explanation for randomising the order of eye measurements for MPOD 

In many studies examining the interocular difference in HFP-derived MPOD the order of 

right and left eye measurement is not reported. Several studies have examined the right 

eye first and then the left eye, a protocol that may result in a learning or fatiguing effect on 

the left eye result.[507, 586, 590] Heterochromatic flicker photometry is a psychophysical method 

characterised by a high level of background illumination and often performed, especially in 

a clinical setting, with no period of adaptation between successive measurements. 

Snodderley et al. reported that for female participants measured in the eye order right then 

left, mean MPOD was consistently and significantly lower in the left eye at two different 

visits separated by a week; p < 0.001 for visit 1 and p < 0.05 for visit 2.[507] 

 

The protocol adopted by Liew et al. was to alternate the first eye measured for each 

subsequent twin pair tested (e.g. right then left for the first twin pair, left then right for the 

second twin pair etc.).[588] 

 

In the present study the decision was made to randomise the order of right and left eye 

measurements in order to prevent any selection bias. A comparison could then be made at 

a single visit between right and left eye measurements, reducing the influence of any 

learning or fatigue effects that may have occurred as a consequence of the order that the 

eyes were measured.  
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2.2.7.2  Body mass index 

Body mass index may be calculated by dividing participant height in metres by the square 

of their weight in kilograms. For this study participants were classified as normal weight (20 

to 24.9), overweight (25 to 29.9) and obese (≥ 30) according to their BMI value.[671, 672] 

Other sources define a BMI value of 18.5 as the lower limit for normal weight individuals.[673] 

For the BMI and %BF comparisons, data were included for those participants with BMI 

values < 20 and ≥ 30. It is generally accepted that BMI increases with age.[674] 

 

Body mass index was calculated fro the equation 

 

   BMI (Kg / m2) = weight (Kg) / height (m)2,   (Eq 2.2) 

 

2.2.7.3  Estimation of %BF from BMI, age and gender 

Percentage body fat may be measured with skin calipers, bioelectrical impedance, 

hydrostatic weighing, dual-energy x-ray absorptiometry (DEXA) and air-displacement 

plethysmography. Measurement with skin calipers and bioelectrical impedance require the 

removal of clothing by the subject, whereas the latter three methods require expensive 

equipment. For these reasons an alternative method of estimating %BF was sought. 

 

In the optometric practice setting percentage body fat may be estimated from BMI, and 

other factors such as age and gender by the use of one of several predictive algorithms.[607, 

608, 675] The Clínica Universidad de Navarra - Body Adiposity Estimator (CUN-BAE) 

algorithm (see below) from Gomez-Ambrozi et al. was chosen for this study because their 

data was derived from a population of similar (Spanish) ethnicity.[608] Percentage body fat 

calculated using the CUN-BAE algorithm was highly correlated (r = 0.89, p < 0.0001) with 

actual %BF measured using air displacement plethysmography.[608] 

 

Percentage body fat (CUN-BAE) was estimated according to the equation 
 
 %BF = -44.988 + (0.503 x A) + (10.689 x G) + (3.172 x BMI)  
 - (0.026 x BMI2) + (0.181 x BMI x G) - (0.02 x BMI x A)  
  - (0.005 x BMI2 x G) + (0.00021 x BMI2 x A)    (Eq 2.3) 
 

Where A = age (years), G = gender (male = 0, female = 1) 

 

For this study participants were classified as normal weight (male ≤ 20%, female ≤ 30%), 

overweight (male 20.1 to 25%, female 30.1 to 35%) and obese (male > 25.1%, female > 

35.1%) according to their CUN-BAE %BF value.[676]  
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2.2.7.4  LoA and 95% CI calculations and log10 back-transformation for Bland- 

  Altman plots 

 

Limits of agreement (LoA) 

Bland and Altman reported that for a normal distribution, 95% of the differences (i.e. LoA) 

would lie between 

 

     d +/- 1.96s,      (Eq 2.4) 

 

Where d and s are the mean difference and SD of the mean difference between the two 

data sets.[677] 

 

Carstensen reported that using 2s, rather than 1.96s compensates partly for the omission of 

the 1/n term in the LoA equation and partly for ignoring the estimation of the variance.[678] 

 

The correct multiplier for s used to derive the LoA is also dependent on the sample size 

 

  1.96s is appropriate if n > 668. < 2s, if n > 85 and 2.08s, if n = 30,[678] (Eq 2.5) 

 

Where n = the sample size. 

 

For this study 2s was used for n > 80, and 2.08s was used for n ≤ 30. 

 

95% confidence intervals on each LoA 

LoA are only estimates and therefore CI should be calculated and reported. The 95% CI on 

each LoA was calculated according to McAlinden et al.[679] 

 

The CI on each LoA may be calculated according to 

 

   LoA +/- t0.05 for (n-1)df  x  standard error,   (Eq 2.6) 

 

Where t0.05 for (n-1)df represents the t distribution critical value (two-tailed) for α = 0.05, for n 

– 1 degrees of freedom. The t-values were retrieved from a t-distribution critical values table 

and the standard error (SE) was calculated from 

 

     SE = √ (3s2 / n),    (Eq 2.7) 

 

Where s = SD of the mean difference between the two data sets and n = number of data. 
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2.2.7.5  Iris colour 

For this study participants were categorised according to six different iris colours (blue, 

grey, green, hazel, brown, black) as reported by Hammond et al,[636] by visual inspection by 

the author and confirmation by the participant. Any disagreement would be settled by a third 

party, by observation of the iris under natural daylight (if available at the time of the 

appointment) or normal room illumination if not. The designated iris colour was not disputed 

by any participant. No participants had black irides and so this category was removed, 

leaving five colour categories. Blue, grey and green irides were classed as light, and hazel 

and brown irides were classed as dark.  

 

In order to increase group sizes for the investigation of MPOD and iris colour with gender, 

grey blue and green iris colours were classified as "light" and brown iris colours (hazel and 

brown) were classed as "dark" according to Murray et al. and Kirby et al.[401, 680] 

 

2.2.7.6  Comparison of relative retinal illuminance for different iris colours (blue and 

  brown) and pupil sizes. 

The pupil area is 16 times less (50.27 mm / 3.14 mm  = 16) for a 2 mm compared to an 8 

mm pupil. This would equate to 16 times (93.8%) lower retinal illuminance for the 2 mm 

pupil, ignoring the effect of light transmission through the iris (table 2.10, results section). 

 

It is accepted that some light will pass through the iris pigment epithelium. Watts reported 

that for humans, brown irides transmit 5.5% (SD 2.8%) and blue irides transmit 14% (SD 

6.3%) of incident light.[681] 

 
 
The following equations were used to calculate the data in table 2.10 

 

   Pupil area calculated using π.r2,    (Eq 2.8) 

  Iris area calculated from π.r2 (iris) - π.r2 (pupil),   (Eq 2.9) 

 

Where r is the pupil or iris radius in mm. 

 

Retinal illuminance is calculated from 

 

     T = LS      (Eq 2.10) 

 

Where L is the luminance of the stimulus  in cd/m2 and S is the pupil area in mm2. 
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Object luminance being equal, relative retinal illuminance for different pupil sizes may be 

calculated for the effect of pupil size only, and for the combined effect of pupil size and blue 

and brown irides 

 

 Retinal illuminance (pupil only, excluding iris) = pupil area x 0.945,  (Eq 2.11) 

Retinal illuminance (blue iris)  =  ((iris area x 0.14) + pupil area) x 0.945,  (Eq 2.12) 

Retinal illuminance (brown iris)  =  ((iris area x 0.055) + pupil area) x 0.945, (Eq 2.13) 

 

Assuming 5.5% loss due to Stiles-Crawford effect. 

 

2.2.7.7  Group analysis of MPOD with age (the 50-year cut-off) 

In order to perform an independent-samples t-test to compare MPOD scores with age, it 

was necessary to create one categorical independent variable (age) with two different 

levels (younger and older) from the continuous data. The statistical software (SPSS) 

provides a function termed "visual binning" which allows the user to divide continuous data 

into two or more discrete groups of approximately equal number of data. A second option 

would be to review the literature and select age ranges reported by other authors. 

Comparing HFP-derived MPOD and age, Murrey et al. reported MPOD for subjects under 

and over 60 years of age[680] and Demirel et al. reported MPOD for subjects under and over 

50 years of age.[682] 

 

Many visual parameters (e.g. contrast sensitivity and visual evoked potential latency) in 

normal populations exhibit a biphasic relationship with age, characterised by functional 

stability up to approximately 50 years of age, after which an abrupt age-related decline in 

function is observed.[683] This decline is thought to be caused by changes in the neural 

system rather than the effects of media opacification or pupil miosis.[684] 

 

For the group analysis of MPOD with age in this study, participants were categorised as 

younger (≤ 50 years) and older (> 50 years) because it is feasible that the results obtained 

from HFP, a psychophysical method of testing, may also be affected by the decline of 

function in those over 50 years of age. In addition, selecting a 50-year rather than a 60-year 

cut-off created groups that were more equal in size. 

 

2.2.7.8  Categorisation of ocular vascular risk factors 

In this practice-based study the author did not have access to equipment required to 

measure ocular blood flow directly, therefore the conditions associated with vasospasm; 

migraine, Rph and VDys were selected as markers for abnormal ocular perfusion. These 

conditions were selected as they present with symptoms that are readily assessed in an 

Optometric practice setting. 
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Participants were asked whether or not they experienced migraines. Individuals reporting 

that they experienced migraines were also asked whether or not their migraines were 

associated with aura and whether or not they were light-triggered. 

 

Participants were classified as individuals with Rph if they answered positively to the 

question; "Do your hands and / or feet go white or blue when they get cold?" 

 

There is no criterion standard for the diagnosis of VDys.[205] Participants were classified as 

individuals with VDys if they answered positively to the question; "Do you get cold hands 

and / or feet whatever the temperature of environment?" 

 

2.2.7.9  Measurement of ocular dominance 

Ocular dominance was categorised using the Porta test variant of the Miles test described 

by Roth et al.[685] This test was selected as it is easy to perform and uses equipment 

available in all optometric consulting rooms. Participants were asked extend one arm and 

align their index finger on this arm with a single letter on the test chart six metres away, with 

both eyes open. The author alternately covered each of the participants' eyes with an 

occluder and the participants reported which eye when occluded caused the largest 

alignment change of the target. The dominant eye was recorded as the eye that when 

covered caused the largest change in alignment. If the change of alignment was judged to 

be equal for both eyes, the participant was classified as equi-dominant. 

 

2.2.8 Procedure 

Procedure for data collection 

Subjects were pre-adapted to normal room illumination for 10 min, during which time the 

consent forms were read and signed. 

 

Table 2.6 Procedure for first session data collection (MPOD) 
Sequence Procedure 
1 Pre-measurement exclusion factors were reviewed. 
2 LogMAR VA and distance fixation, pupil size measurements were recorded for both eyes. Gender, date of 

birth and iris colour were also recorded. 
3 Maculae were examined with direct ophthalmoscope, through non-dilated pupils for visible signs of 

pathology. 
4 Medication and nutritional supplements were recorded. 
5 The order of eye measurement was determined by the pseudo-random method of coin toss. 
6 Participants reporting a history of migraine or epilepsy were warned about the risk of light-triggered 

symptoms. 
7 A single central and peripheral MPOD measurement was obtained for both eyes, under normal room 

illumination. The non-tested eye was occluded with an opaque eye patch. Distance glasses (non-tinted) were 
worn for MPOD measurement. If none were available or if contact lenses were worn these were removed 
and the equivalent distance prescription in a trial frame was substituted. 

8 Participants' weight and height were measured. BMI was calculated from Eq 2.2. 
9 Exclusion factors were reviewed after the measurements above were recorded. 
10 Percentage body mass was calculated after data collection was complete, from the BMI, age and gender 

data using the Clinica Universidad de Navarra-Body Adipose Estimator (CUN-BAE) algorithm.[608] 
11 Eye dominance data measured by finger pointing and alternate occlusion, a variation of the Miles test,[685] 

was collected retrospectively for 42 subjects, at their subsequent routine eye appointments.  
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2.2.8.1  Time scale for data collection 

Data was collected from participants on days when no clinic was running, every 

Wednesday or every other Wednesday, depending on room usage in this single consulting 

room practice. 

 

Data for the first session (MPOD and GRT measurements) were collected from the 4th of 

August 2010 to the 12th of October 2011.  

 

The examination time required for each participant in the first session was approximately 50 

min; therefore appointments were scheduled at one-hour intervals. This limited the number 

of participants seen to a maximum of 16 to 32 each month, depending on room availability. 

 

Table 2.7 First session procedure for MPOD measurement (up to 23 min per subject) 
Informed consent, 
exclusion criteria and 
explanation of MPOD 
procedure 

MPOD MPOD discussion of 
MPOD results 
and procedure 
for GRT 

1st eye 2nd eye 

10 min 5 min 5 min 3 min 
Glare recovery time was measured for each eye at a minimum of eight and 18 s after MPOD measurements for each eye (see 
table 3.6 in the following chapter). 
 

2.2.9 Randomisation / masking 

The order of eye measurement was decided by coin toss, heads = right eye first, tails = left 

eye first. A different coin was used each day to avoid bias to one side of the coin. No 

masking was used in this study. 

 

2.2.10 Statistical analysis 

Statistical analyses were performed using SPSS 22 statistical software (IBM Corporation). 

Data were examined for normality using histograms, normal Q-Q plots, Shapiro-Wilk tests 

and corrected Kolmogorov-Smirnov tests. Pearson product-moment correlation coefficient 

was calculated between MPOD and each of the independent variables. Student's t-test and 

one-way ANOVA were used to compare the within-group differences in the independent 

variables with MPOD. Non-parametric tests were used where normality was not 

demonstrated or where group sizes where smaller than 25. Significance testing was two-

tailed unless otherwise stated. 

 

2.2.11 Study design 

The cross-sectional study design was deemed the most suitable for this practice-based 

project. This type of study design is rated low on the traditional hierarchy of evidence, 

according evidence-based medicine,[686] having strengths and weaknesses compared to 

other study designs. Strengths include: being quick and easy to conduct, data is only 

collected once, prevalence may be measured, multiple exposures may be studied and the 

design is good for descriptive analysis and hypothesis generation. Weaknesses include: the 
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inability to demonstrate cause and effect, the inability to measure incidence, associations 

may be difficult to interpret and this study design is susceptible to bias due to low response 

and misclassification due to recall bias.[687] 

 

2.3 Results 

Data from 100 White participants, naïve to previous MPOD measurement were included in 

this study. Mean MPOD for the first eye measured was 0.39 (SD 0.16). Mean age was 50.3 

years (SD 10.4 years), ranging from 24.2 to 75.8 years. The number of male and female 

participants was 27 (27%) and 73 (73%), respectively. Unless otherwise stated, MPOD 

results are presented for the first eye measured, derived from 44 right eye and 56 left eye 

measurements.  

 

To obtain a fuller understanding of the relationship with BMI and %BF, participants 

excluded for low (n = 4) and high (n = 12) BMI were re-included for these analyses only. 

These re-included participants had no additional reasons for exclusion other than reported 

raised cholesterol, which is associated with raised BMI. The mean age for the 116 White 

participants was 51.0 years (SD 11.0 years), ranging from 24.2 to 75.8 years. The number 

of male and female participants was 32 (28%) and 84 (72%), respectively. Expressed as a 

percentage of the population examined, normal weight participants represented 48.3%, 

median age 45.6 (IQR 12.1), overweight 41.4%, 51.9 (IQR 17.0) and obese 10.3%, 60.7 

(IQR 20.0).  

 

Ocular dominance was recorded retrospectively for 49 cases. Four equidominant cases 

were excluded. Data was missing for one eye in one case. Ocular dominance was 

confirmed for 30 right (68.2%) and 14 left (31.8%) eyes. Median MPOD values for 

dominant, non-dominant and equidominant eyes were; 0.41 (interquartile range, IQR 0.21), 

0.46 (IQR 0.28) and 0.53 (IQR 0.20), respectively. Participants mean age was 50.0 years 

(SD 11.4 years), ranging from 24.2 to 75.8 years. The number of male and female 

participants was 14 (32%) and 30 (68%), respectively. 

 

This section is limited to results that are significant, approaching significance or have not 

been reported previously. For a full summary of the results for this chapter please refer to 

appendix (A1.1). The "A" prefix indicates that the figure or table referred to may be found in 

the appendix. 
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2.3.1 Demographics for first eye MPOD measurements 

 
Table 2.8 Summary of results for first eye MPOD 

Variable Subcategory Number of data 
n 

Mean MPOD 
Median MPOD 

SD 
IQR 

Age (years) Full age range 
≤ 50 
> 50 

100 
57 
43 

0.39 
0.37 
0.43 

0.16 
0.16 
0.17 

Gender Male 
Female 

27 
73 

0.40 
0.39 

0.18 
0.16 

BMI (both genders) 
(n = 116) 

Slim 
Normal 
Over-weight 
Obese 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
52 
48 
12 

0.46 
0.40 
0.41 
0.29 

0.12 
0.24 
0.23 
0.23 

BMI (male) 
(n = 32) 

Slim 
Normal 
Over-weight 
Obese 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

0 
7 
20 
5 

- 
0.41 
0.39 
0.34 

- 
0.39 
0.26 
0.31 

BMI (female) 
(n = 84) 

Slim 
Normal 
Over-weight 
Obese 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
45 
28 
7 

0.46 
0.38 
0.42 
0.26 

0.12 
0.24 
0.20 
0.19 

Male %BF (CUN-BAE) 
(n = 32) 

Lean 
Over-weight 
Obese 

≤ 20% 
> 20 to 25% 
> 25% 

2 
6 
24 

0.48 
0.45 
0.36 

- 
0.29 
0.27 

Female %BF (CUN-BAE) 
(n = 84) 

Lean 
Over-weight 
Obese 

≤ 30% 
> 30 to 35% 
> 35% 

7 
25 
52 

0.46 
0.36 
0.41 

0.14 
0.24 
0.22 

Iris colour 
 

Grey 
Blue 
Green 
Hazel 
Brown 
Black 

12 
33 
15 
16 
24 
0 

0.42 
0.41 
0.36 
0.37 
0.46 
- 

0.23 
0.22 
0.28 
0.24 
0.38 
- 

Reported AMD FH First and second degree 
First degree only 
Second degree only 
None 
Unknown (adopted) 

17 
11 
6 
82 
1 

0.36 
0.36 
0.34 
0.41 
0.46 

0.22 
0.24 
0.16 
0.27 
- 

Reported migraine Yes 
Light-triggered 
Non-light-triggered 
Aura 
No aura 
No migraine 

17 
6 
11 
10 
7 
83 

0.36 
0.43 
0.31 
0.41 
0.31 
0.41 

0.22 
0.31 
0.20 
0.26 
0.20 
0.26 

Reported Rph Yes 
No 
Unknown 

27 
72 
1 

0.41 
0.39 
0.12 

0.14 
0.17 
- 

Reported VDys Yes 
No 
Unknown 

28 
69 
3 

0.39 
0.39 
0.46 

0.15 
0.17 
0.21 

Pupil size ≤ 3.9mm 
≥ 4mm 
Unknown 

40 
49 
11 

0.38 
0.41 
0.37 

0.17 
0.16 
0.15 

Difficulty with MPOD 
measurement 

Yes 
No 

21 
79 

0.41 
0.41 

0.25 
0.24 

Abbreviations. IQR: interquartile range, CUN-BAE: Clínica Universidad de Navarra - Body Adiposity Estimator. Median and 
IQR (in grey) are shown rather than mean and SD for groups with less than 25 cases, unless these groups were excluded 
from analysis. Non-parametric testing was used for the analysis of groups containing < 25 cases.[688] 
 
Fifty of the 150 participants were excluded from this study. Please refer to tables A1 and A2 
in Appendix A1 for a summary of the reasons for exclusion and frequency analysis of those 
excluded.  
 

2.3.2 Interocular comparison of MPOD 

 

2.3.2.1  First versus second eye sequential MPOD measurements 

Data was missing for one eye in three cases. No significant difference between first and 

second eye MPOD was found, with (p = 0.49) or without (p = 0.61) a single outlier. The 

relationship between first and second eye MPOD was investigated using Pearson product-
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moment correlation coefficient. Preliminary analyses were performed to ensure no violation 

of the assumptions of normality, linearity and homoscedasticity. There was a large, positive 

correlation between first and second eye MPOD measurements (r = 0.79, n = 97, p < 

0.001), which remained significant after the removal of one outlier (r = 0.81, n = 96, p < 

0.001). See fig. 2.1 for the Bland-Altman plot. 

 

Figure 2.1 Bland-Altman plot for first versus second eye MPOD 

 
Mean (first and second eye MPOD) = 0.39 (SD 0.15). 

Mean difference = 0.02 (SD 0.11). 

Limit of agreement (n = 97) = 0.21 (95% CI 0.04). 

After removing one outlier, LoA (n = 96) = 0.20 (95% CI 0.04). 

 

2.3.2.2  Right versus left eye randomised MPOD measurements 

Data was missing for one eye in three cases. No significant difference between right and left 

eye MPOD was found, with (p = 0.47) or without (p = 0.58) one outlier. There was a large, 

positive correlation between first and second eye MPOD measurements (r = 0.79, n = 97, p < 

0.001), which remained significant after the removal of a single outlier (r = 0.81, n = 96, p < 

0.001). See fig. 2.2 for the Bland-Altman plot. 

 

Figure 2.2 Bland-Altman plot for right versus left eye MPOD 

 
Mean (right and left eye MPOD) = 0.39 (SD 0.15). 

Mean difference = -0.02 (SD 0.11). 
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Limit of agreement (n = 97) = 0.21 (95% CI 0.04). 

After removing one outlier, LoA (n = 96) = 0.20 (95% CI 0.04). 

 

2.3.2.3  Dominant versus non-dominant eye randomised MPOD measurements 

No significant difference between dominant eye and non-dominant eye MPOD was found, 

with (p = 0.68) or without (p = 0.87) one outlier. There was a large, positive correlation 

between dominant and non-dominant eye MPOD measurements (r = 0.77, n = 44, p < 

0.001), which remained significant after the removal of outliers (r = 0.82, n = 43, p < 0.001). 

See fig. 2.3 for the Bland-Altman plot. 

 

Figure 2.3 Bland-Altman plot for dominant versus non-dominant eye MPOD 

 
Mean (dominant and non-dominant eye MPOD) = 0.43 (SD 0.17). 

Mean difference = -0.02 (SD 0.12). 

Limit of agreement (n = 44) = 0.24 (95% CI 0.06). 

After removing one outlier, LoA (n = 43) = 0.21 (95% CI 0.06). 

 

2.3.2.4  The effect of age on the difference between dominant and non-dominant eye 

  MPOD measurements 

In an attempt to assess whether MPOD levels in the dominant eye were reduced compared 

to the non-dominant eye as a consequence of increased light exposure over the duration of 

life, the difference between dominant and non-dominant eye MPOD and the difference 

between right and left eye MPOD (randomised) for the same cases (n = 44) was plotted 

against age. Fig. 2.4. Pearson correlation was r = -0.32, r2 = 10.4% p = 0.03 and r = -0.23, 

r2 = 5.1%, p = 0.14 for the difference between dominant and non-dominant eye, and 

randomised right and left eye MPOD measurements, with age respectively. The larger 

correlation in the ocular dominance group was retained after the removal of one outlier (-

0.41) from both groups (n = 43), however, the relationship was no longer significant; r = -

0.21, r2 = 4.2%, p = 0.19 and r = 0.09, r2 = 0.8%, p = 0.57, respectively. 
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Figure 2.4 Difference between dominant and non-dominant eye MPOD with age 

 
 

2.3.2.5  Calculation for sequential bias 

Sequential bias was calculated by performing an independent samples t-test on the 

difference between sequential (first minus second eye) and randomised (right minus left 

eye) MPOD measurements. No significant bias was detected with or without outliers. 

 

2.3.2.6  Calculation for bias due to ocular dominance 

Bias due to ocular dominance was calculated by performing an independent samples t-test 

on the difference between eye dominance (dominant minus non-dominant eye) and 

randomised (right minus left eye) MPOD measurements. No significant bias was detected 

with or without outliers. 

 

2.3.3 MPOD and AMD risk factors 

The relationship between MPOD and the AMD RF was investigated using Pearson product-

moment correlation coefficient. Preliminary analyses were performed to ensure no violation 

of the assumptions of normality, linearity and homoscedasticity 

 

No significant correlation with MPOD was found for age, male age, female age, Total BMI, 

male BMI, female BMI, male %BF, female %BF or pupil size, with or without outliers. Small 

correlations with MPOD were found for several variables, but the failure to reach 

significance despite a large sample size (in most cases) suggests that the level of 

confidence that these results are genuine is likely to be small. 

 

Group analysis revealed significantly higher MPOD in the ≥ 50 to < 60 years age range. 
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Table 2.9 Significant associations between MPOD and age 
Variable 
 

n MPOD mean & SD 
(or Median and IQR 
shown in grey) 

Statistic P-value 
 

Size effect 
(if significant) 

Age 
4 age groups (years) 

< 45 
≥ 45 to < 50 
≥ 50 to > 60 
≥ 60 

32 
25 
24 
19 

0.37 (0.24) 
0.31 (0.20) 
0.46 (0.13) 
0.41 (0.24) 

 
 
 
8.066* 

 
 
 
0.045 

 
 
 
- 

Post-hoc tests 
Two follow-up Mann-
Whitney U tests 
α level = 0.025 

≥ 45 to < 50 
≥ 50 to > 60 

25 
24 

0.31 (0.20) 
0.46 (0.13) 

U = 155.5 
Z = -2.907** 

 
0.004 

 
0.291 

≥ 50 to > 60 
≥ 60 

24 
19 

0.46 (0.13) 
0.41 (0.24) 

U = 166.5 
Z = -1.516** 

 
0.130 

 
- 

*Kruskal-Wallis test, ** Mann-Whitney U test. Size effect for Mann-Whitney U test: small = 0.1, medium = 0.3, large = 0.5. 
 

No significant associations were observed for gender, total BMI, male BMI, female BMI, 

male %BF, female %BF, mixed-gender iris colour, male iris colour, female iris colour, AMD 

FH and pupil size, with or without outliers. Fig. 2.5 shows a scatter plot of MPOD and age. 

The possible outlier with an MPOD value of 0.94 was retained as this was within what 

would be considered the normal range of MPOD values. Removal of this case did not alter 

the direction or significance of the correlation between MPOD and age. 

 

Figure 2.5 Scatter plot for MPOD and age 

 
Pearson r = 0.14, r2 = 2.1%, p = 0.15. 

Pearson r (0.94 MPOD value case removed) = 0.13, r2 = 1.7%, p = 0.20. 

 
 
2.3.3.1  Results for the comparison of relative retinal illuminance for different iris  

  colours and pupil sizes. 

 

Table 2.10 shows the results for the estimated values for the difference in retinal 

illuminance for different iris colours (blue vs. brown) across a range of pupil sizes (2-8 mm), 

calculated from Eq 2.8 to Eq 2.13 in the methods section. 
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Table 2.10 Relative retinal illuminance for blue and brown irides with pupil size  
 Pupil size (mm) 
 2 3 4 5 6 7 8 
Pupil & Iris Area (mm2)        
Pupil area 3.14 7.07 12.57 19.64 28.27 38.49 50.27 
Iris area 109.96 106.03 100.53 93.46 84.82 74.61 62.83 
        
Relative Retinal 
illuminance (Td) 

       

For pupil size only, 
excluding the effect of 
iris transmission 

 
2.97 

 
6.68 

 
11.88 

 
18.56 

 
26.72 

 
36.37 

 
47.51 

Difference in retinal 
illuminance for pupil size 
compared to 2 mm pupil 
size 

 
x 1 

 
x 2.25 

 
x 4 

 
x 6.25 

 
x 9 

 
x 12.25 

 
x 16 

        
For eyes with blue 
irides, including the 
effect of pupil 
transmission 

 
17.52 

 
20.70 

 
25.27 

 
30.92 

 
37.94 

 
46.24 

 
55.91 

For eyes with brown 
irides, including the 
effect of pupil 
transmission 

 
8.68 

 
12.19 

 
17.10 

 
23.42 

 
31.13 

 
40.25 

 
50.77 

Difference in retinal 
illuminance for iris colour 
(blue vs brown) 

x 2.02 
higher for 
blue eyes 

x 1.70 
higher for 
blue eyes 

x 1.48 
higher for 
blue eyes 

x 1.32 
higher for 
blue eyes 

x 1.22 
higher for 
blue eyes 

x 1.15 
higher for 
blue eyes 

x 1.10 
higher for 
blue eyes 

Assumptions: Retinal illuminance was calculated using Eq 2.10 with a luminance value of 1 cd/m2. 100% transmission 
through the pupil, 14% through blue iris and 5.5% through brown iris. Iris light transmission is uniform across pupil and iris 
area. Pupil size was assumed to be equal for blue and brown irides. No light absorption by ocular media. Scleral transmission 
was ignored for this calculation, but is likely to be greater for those with blue irides. Pupil and iris are spherical. Iris diameter = 
12mm. The reduction (5.5%) in retinal illuminance due to the Stiles-Crawford effect was equal for all pupil sizes. 
 

2.3.3.2  MPOD and pupil size 

A non-significant, small positive correlation was found between MPOD and undilated pupil 

size measured in ambient illumination. After the removal of two outliers and correction for 

age using partial correlation a small positive correlation was revealed (r = 0.22, p = 0.049). 

 

2.3.3.3  Macular pigment optical density and OVP RF 

Group analysis revealed no significant differences between MPOD and presence / absence 

of migraine, migraineous aura, light trigger for migraine, Rph and VDys, with or without 

outliers. 

 

2.3.4 Difficulty with the HFP task 

All 100 participants were naïve to previous MPOD measurement. Overall 21 (21%) of the 

participants, 6 male and 15 female, ranging in age from 31.5 to 72.5 years (median 53.9 

years), experienced some difficulty with this method of MPOD measurement for one or both 

eyes. 21 subjects repeated the peripheral test and 4 subjects repeated the central test. The 

remaining 79 participants ranged in age from 24.2 to 75.8 years (median 47.9 years). Age 

estimated central results were obtained for 6 of the 21 subjects, who were unable to obtain 

a peripheral result after three attempts. Group analysis using the Mann-Whitney U-test for 

difficulty with MPOD measurement with MPOD (p = 0.56), age (p = 0.38) and GRT (p = 

0.25) revealed no significant association with any variable. 
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2.3.5 Other interesting findings 

 

Strabismus / eccentric fixation 

Two participants had unilateral strabismus. MPOD measurements from the strabismus and 

non-strabismus eyes were 0.02, 0.07 and 0.22, 0.26, respectively. 

 

Poor fixation of peripheral target 

One participant was unable to fixate the peripheral target without gaze returning to the 

central target. MPOD measurement was 0. 

 

Central floater 

One participant had a large floater affecting central vision in one eye. MPOD values were 

0.02 for the affected eye and 0.46 for the unaffected eye. 

 

Coloboma 

One participant presented with unilateral coloboma. MPOD values were 0.07 for the 

affected eye and 0.22 for the unaffected eye. 

 

2.4 Discussion 

The key results and how they compare to those of other studies are discussed below. 

Unless otherwise stated comparison was limited to studies using HFP with a central target 

eccentricity of 0.5° and a population consisting of White or predominantly White ethnicity. 

 

A literature search was performed using Web of Science, Science Direct, PubMed Central 

(PMC) and Google Scholar for the following search terms: glare recovery and photostress 

recovery combined with interocular, ocular dominance, age, gender, body mass index, 

percentage body fat, iris colour, pupil size, AMD family history, migraine, Raynaud's and 

vascular dysregulation. Wildcard symbols were used to search for variations in spelling. 

Further references were retrieved from the papers revealed by the literature search. 

 

2.4.1 Interocular comparison  

The mean MPOD value for this 100% White, UK population was 0.38 (SD 0.17) and 0.40 

(SD 0.16) for the right and left eyes respectively (n = 97, three monocular cases excluded). 

The mean difference in randomized MPOD measurements (-0.02 SD 0.11) was not 

significant with or without one outlier. 

 

These results were higher than those reported by studies using the MPS 9000, a later 

version of the MPS 1000, with mean values ranging from 0.32 to 0.35,[499, 689, 690] but 

comparable with the range of mean MPOD values obtained by HFP with a peripheral target 

eccentricity of more than 6° (0.34 to 0.42).[507, 654, 691] Variation in mean values obtained from 
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the same MPOD measurement technique may be explained by differences in macular 

carotenoid dietary intake between studies and other population differences such as age or 

BMI. 

 

The LoA (CI 95%) was 0.21 (0.20 with one outlier removed), suggesting that an interocular 

difference outside this value may be regarded as abnormal. The normal range of values 

reported by this study for the right eye (0.18 to 0.58) was slightly greater at the higher 

MPOD range than that reported by the MP Consensus Panel (0.20 to 0.50).[439] This may 

be reflection of population differences in macular carotenoid intake and method of MPOD 

measurement (single measurement compared to means of multiple measurements). 

 

Kanis et al. reported a Pearson correlation of 0.93 (p < 0.001) and an intra-class correlation 

coefficient (for absolute agreement) of 0.91 (p > 0.001) for an objective method of MPOD 

measurement (Foveal Reflection Analyzer). The authors reported that an interocular 

difference in MPOD of 34% might indicate of pathology.[586] The slightly smaller normal 

range of MPOD reported by Kanis et al. is likely to be a consequence of differences in 

measurement methods between the two studies. 

 

The present study used HFP (MPS 1000) for which same-eye repeatability (using the later 

version; MPS 9000, also known as QuantifEye in the USA) has been reported by three 

other studies for healthy subjects. de Kinkelder et al. reported the mean difference in 

MPOD for repeat measures of the right eye was -0.02, with LoA of 0.18 and a mean relative 

difference of 18.1%.[492] Bartlett et al. reported coefficients or repeatability for right eye data 

(or left eye if right eye was excluded) of 0.33 and 0.28, respectively for two operators, on 

average values derived from four sets of readings performed after an initial practice 

reading. Coefficient of repeatability was calculated by multiplying the SD of the mean 

differences by 1.96. No learning or fatigue effect was reported using ANOVA (F = 1.463, p 

= 0.240).[499] Loughman et al. assessed inter-session repeatability for the eye with the best 

VA (or the dominant eye if VA was equal for each eye). Values for the coefficient of 

repeatability were 0.18 (visit 1-visit 2), 0.21 (visit 2-visit 3) and 0.18 (visit 1-visit 3). No 

learning or fatigue effect between repeat measures of MPOD was detected, indicated by a 

non-significant result for Mauchley's test of sphericity.[690] 

 

Berendschot and van Norren also used the FRS method of MPOD measurement, for which 

the mean within subject variation was reported to be 2.5% to 5% for their more recent setup 

which allows for the determination of the directional component of fundus reflectance.[487] 

Hammond et al. reported high levels of interocular correlation (using the intra-class 

correlation coefficient for absolute agreement), for HFP (instrument not reported) (r = 0.76, 

p not available) and 2-WFAF (r = 0.96, p not available).[692] 
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Although this study found that mean MPOD was slightly lower in the right eye, this 

difference was not significant. Seven other studies, including one of non-White ethnicity 

also reported lower or a trend toward lower HFP-derived MPOD values for the right eye.[500, 

586, 590, 596, 597, 652, 693] Four studies (Murray et al. included Whites and Asians) reported higher 

values, or a trend towards higher values for the right eye,[507, 587, 637, 680] and three 

studies,[591] (two from the same twin study population),[588, 589] reported equal right and left 

MPOD values. 

 

Interocular correlation was high; Pearson r = 0.79, p < 0.001 (without outlier; r = 0.81, p < 

0.001). The level of interocular correlation was higher than that reported by Hagen et al., 

comparing a single value of MPOD for each eye using the MacuScope screener 

(Macuvision Europe Ltd., Solihull, UK). Pearson r = 0.43, p < 0.014 (visit 1), Pearson r = 

0.43, p < 0.038 (visit 2) and Pearson r = 0.58, p < 0.003 (visit 3). Between visit variability 

demonstrated by the coefficient of variance for all three measurements was 36.1% for all 

the right eyes and 23% for all the left eyes.[590] The results obtained for the present study 

were similar to other studies comparing a single value of MPOD for each eye using MPS 

9000. Abell et al. a high level of interocular agreement (coefficient not specified) of r = 

0.893, p < 0.01.[500] Murray et al. used age-estimated centre-only readings, reporting a 

Pearson correlation for right and left eyes of r = 0.7, p< 0.001.[680] 

 

The results from the present study also compared favourably to studies comparing the 

means of multiple MPOD values. Snodderly et al. reported a high level of interocular 

correlation of MPOD values based on five readings per target, measured at two separate 

visits using the macular densitometer (Macular Metrics Corp., Rehoboth, MA); Pearson r = 

0.79 (visit 1) and r = 0.80 (visit 2), p values not available.[507] Beatty et al. reported good 

interocular agreement from the means of three to six readings of HFP-derived MPOD 

values using simple regression; r = 0.866, p < 0.001.[596] Iannaccone et al. used the macular 

densitometer with a modified protocol limited to three readings per MPOD measurement. 

The level of interocular correlation was high; Pearson correlation, r = 0.82, p < 0.0001.[654] 

 

It was unexpected that the level of interocular correlation obtained by this study for naïve 

subjects and single central and peripheral readings would be comparable to that from 

studies comparing means of multiple MPOD readings. It is possible that this was a 

consequence of the stringent exclusion criteria imposed by this study, the randomised order 

of the right and left eye measurements, designed to limit the effect of learning and fatigue 

and the use of flicker detection rather than minimisation, designed to be easier for naïve 

subjects. 

 

The results for interocular comparison from studies using objective methods of MPOD 

assessment (2-WFAF, FR and RRS) indicated a higher correlation compared to that from 
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HFP studies. Hammond et al. reported an interocular intra-class correlation (for absolute 

agreement) of r = 0.96 for MPOD measurements using 2-WFAF.[692] Liew et al. reported an 

intra-class correlation (for absolute agreement) for right and left eyes of 0.96 with 2-

WFAF.[588] Liew et al. reported in a later study that intra-class correlations (for absolute 

agreement) ranging from 0.91 to 0.97 for interocular MPOD measurements using 2-WFAF 

measured at retinal eccentricities of 0° (fovea), half-degree, 1° and 2°.[589] Kanis et al. used 

the Foveal Reflection Analyzer, a method of FR used previously by Berendschot and van 

Norren,[694] to measure MPOD from both eyes. The authors (Kanis et al.) reported a 

significant linear relation between interocular measurements, Pearson r = 0.93, p < 0.001 

and an intra-class correlation coefficient (for absolute agreement) of 0.91, p < 0.001.[586] 

Two studies using RRS have reported interocular comparisons for MPOD. Neelam et al. 

reported good interocular agreement in MPOD levels. The mean difference in Raman 

scores was 2.37 ± 324.94, with a maximum interocular difference of 804 (Wilcoxon signed 

rank test, p = 0.669).[652] Gellerman et al. reported that MPOD levels correlated well 

between right and left eyes in normal subjects aged from 21 to 84 years. The authors did 

not provide correlation coefficients for the interocular comparison.[695] 

 

Objective methods were associated with higher levels of interocular correlation compared to 

HFP. This is likely to be the result of lower instrument bias associated with objective 

methods. 

 

It is a testament to the changes made to the design of the MPS screener to simplify the 

HFP task for naïve and elderly participants. These results support the protocol for taking a 

single central and peripheral MPOD reading with the MPS screener, rather than multiple 

readings in the practice setting. If time is not limited it has been recommended that multiple 

readings should be taken.[690] 

 

Non-pathological causes of uniocular reduction in MPOD revealed by this study included;  

eccentric fixation secondary to strabismus, poor fixation of the peripheral target, vitreous 

floaters affecting central vision and coloboma. 

 

No significant interocular difference in MPOD was detected by this study. This is in 

agreement with the consensus drawn from the literature on this subject for healthy eyes, 

suggesting minimal interocular differences.[680] Although the two eyes are treated as 

independent for statistical purposes,[696] MPOD levels would be expected to be similar in 

healthy eyes as they share dietary, circulatory, environmental, systemic pathological and 

genetic factors that may influence MPOD levels. 

 

If the interocular difference, whether significant or not significant, falls within the noise level 

for the instrument used to measure MPOD, the results should be viewed with caution. In 
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this scenario it would not be clear whether the interocular difference represented a genuine 

difference or was simply the consequence of instrument noise. Bartlett et al. assessed the 

later version of this instrument (MPS 9000) for two operators, reporting coefficients of 

repeatability of 0.28 and 0.33, respectively.[499] Ideally, the present study would have 

assessed the repeatability of MPOD measurements for this operator and population, 

however time constraints on data collection in this practice-based study prevented this. 

 

The results suggest that it would be acceptable in practice to measure MPOD from one eye 

because in the absence of any pathological or physiological reason for low MPOD in either 

eye, the MPOD values should be similar. 

 

2.4.2 Investigation of sequential bias 

The mean MPOD values for the first and second eye tested sequentially (n = 97, three 

monocular cases excluded) were 0.40 (SD 0.17) and 0.38 (SD 0.16). The first eye 

measurement was higher than the second eye measurement. The mean difference in 

sequential MPOD measurements, +0.02, (SD 0.011) was not significant with or without one 

outlier however. The difference may be a consequence of learning or fatigue however the 

effect of second eye occlusion (about five min), during first eye testing could not be 

discounted. 

 

Sequential bias was calculated by performing an independent t-test of the interocular 

difference in MPOD values measured randomly and sequentially. With randomized 

measurements as the reference, the mean difference between measurements was 

significant; -0.03 (95% CI -0.06 to 0.04), p = 0.03, eta2 = 0.02 (small effect). Eta2 represents 

the effect size calculated for the independent samples t-test. The value of eta2 is classified 

as small (≤ 0.01), medium (≤ 0.06) and large (≥ 0.14). Eta2 expressed as a percentage 

(multiplied by 100) indicated that in this case the effects of sequential bias explained 2% of 

the variance in MPOD. After the removal of one outlier, no significant bias due to sequential 

measurement of MPOD was found (p = 0.08). 

 

Sequential and randomised MPOD measurements did not reveal any significant 

differences, however the bias between these two measurements was significant (and was 

close to significance after the removal of a single outlier from the MPOD data). These 

results suggest that the measurement of each eye in quick succession (no rest period 

between measurements) will contribute to the variability in MPOD measurements due to 

machine and operator bias. The LoA on HFP MPOD measurements is large, often larger 

than the change in MPOD that is expected after dietary or supplementary MP modification. 

Because HFP MPOD measurement is a psychophysical test it involving a bright 

background it would make sense to allow a resting period similar to that suggested between 

GRT measurements (e.g. 10 min) to allow cone recovery. This may reduce variability in 
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MPOD measurements, however it would make repeated measurements (recommended for 

HFP) less attractive in the clinical setting. 

 

2.4.3 Investigation of bias due to ocular dominance 

Approximately 67% of the general population exhibits right eye dominance.[154-156, 697]   The 

non-dominant eye is closed to reduce glare when exposed to sunlight,[153] exposing the 

dominant eye to an increased level of sunlight exposure compared to the non-dominant 

eye. It may therefore be plausible that ocular dominance could represent a surrogate 

marker for ocular light exposure, with the dominant eye exhibiting signs of ocular light 

damage earlier the non-dominant eye.[153, 157] 

 

Neelam et al. reported a trend for higher MPOD in the dominant eye (0.312) compared to 

the non-dominant eye (0.303), however the association did not reach significance, p = 

0.234.[591] This study and the study reported in this thesis used the same method of 

categorising ocular dominance; a variation of the Miles test described by Roth et al.[685] 

 

The relationship between ocular dominance and MPOD was investigated in order to 

establish whether the potential for increased light exposure could explain the lower MPOD 

values reported for the right eye (two thirds of which would show ocular dominance) in this 

and other studies.  

 

The percentage of right eye dominant participants from the small sample (n = 46) used in 

this study was 63%, including four cases that appeared to exhibit equi-dominance. When 

the equi-dominant cases were excluded, the right eye dominant percentage increased to 

69%. These results are similar to the findings from other studies of ocular dominance. 

 

The mean MPOD values for dominant and non-dominant eyes (n = 44, after the removal of 

four equidominant cases and a further case for whom MPOD data were missing for one 

eye) were 0.42 (SD 0.18) and 0.44 (SD 0.17). The mean difference in MPOD 

measurements categorised by ocular dominance -0.02 (SD 0.12) was not significant with or 

without a single outlier. 

 

The bias due to ocular dominance was calculated by performing an independent t-test on 

the difference between randomised right versus left eye MPOD measurements and 

dominant versus non-dominant eye MPOD measurements from the same sample. 

Randomised right and left eye measurements represented the reference for comparison 

with the ocular dominance data. This reference was not ideal because the sample 

contained a higher proportion of dominant right eyes (approximately two thirds). The perfect 

reference would include 50% right eye and 50% left eye dominant cases, randomised to 

exclude any effects of bias due to ocular dominance. 
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The mean difference between randomised right versus left eye and dominant versus non-

dominant eye MPOD measurements was -0.01 (95% CI -0.06 to 0.04), p = 0.75. No 

significant interocular bias due to ocular dominance was found. The author is unaware of 

any studies examining the bias in HFP-derived MPOD due to sequential measurement and 

ocular dominance. 

 

The difference between dominant and non-dominant eye MPOD was plotted against age in 

an attempt to reveal any evidence of progressive reduction in MPOD in the dominant eye 

compared to the non-dominant eye, that may relate to increased retinal light exposure to 

the dominant eye with age (see fig. 2.4). The Pearson correlation was small, negative and 

significant (r = -0.32, p = 0.03), although the removal of a single outlier resulted in a non-

significant correlation (r = -0.21, p = 0.19). No significant correlation was found for the 

difference between randomised right and left eye MPOD measurements with age with or 

without a single outlier in the MPOD data. This association is interesting and warrants 

further study. 

 

Demirel et al. reported significantly lower MPOD values in age-matched patients who had 

undergone cataract surgery (p = 0.039) and a significant inverse correlation (r = -0.66, p = 

0.005) between HFP-derived MPOD and the postoperative period measured up to 10 years 

after cataract surgery. No correlation was demonstrated between MPOD and age. The 

authors excluded other factors reported to influence MPOD levels such as smoking status, 

ethnicity, iris colour, micronutrition supplementation and ocular disease.[682] Although it is 

tempting to associate the reduction in MPOD to increased retinal light exposure in patients 

who have undergone cataract extraction, the cross-sectional study design prevents any 

conclusion of cause and effect. It is also possible that these results were caused by other 

factors not assessed by the authors such as; altered PO2 gradients due to the removal of 

one oxygen consumer (the lens), changes in long-term adaptation secondary to the 

increased luminance and altered chromatic balance of light incident on the retina (MPOD 

was measured psychophysically), altered inflammatory status secondary to the operation 

and post-operative changes in diet, lifestyle and exercise level due to the improvement in 

VA.  

 

Nolan et al. reported no significant difference in HFP-derived MPOD measured one week 

before and after, and one year after cataract extraction and implantation with clear (UV-

blocking) IOLs. Participants implanted with yellow-tinted (and UV-blocking) IOLs 

demonstrated a significant increase in MPOD one year after cataract extraction, but no 

difference one week before and after surgery.[698] The authors concluded that yellow-tinted 

IOLs that filter blue light are associated with raised levels of MPOD in the absence of any 

increase in serum L and Z. An alternative explanation for the authors' findings could be that 
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differences in long-term adaptation (designed to maintain colour constancy), have 

differentially affected the psychophysically derived MPOD results for the two IOL types. 

 

Obana et al. reported objective measurements of MPOD (RRS) in patients who had 

undergone cataract extraction and implantation with either clear or yellow-tinted intraocular 

lenses (IOLs). Macular pigment optical density was assessed post-operatively on days; 1, 

4, 7 and 14, and months; 1, 2, 3, 4, 6, 12, 18 and 24. No difference in MPOD was detected 

between patients with the clear or yellow-tinted IOLs up to six months after surgery, 

however, from one year onward, MPOD levels were significantly higher in the yellow-tinted 

IOL group compared to the clear IOL group. The authors concluded that the results from 

this longitudinal study supported observations that excessive light exposure was inversely 

associated with MPOD.[699] 

 

Conversely Ciulla et al. reported no significant difference in HFP-MPOD before and at a 

mean of 8.1 weeks (SD 4.7 weeks) after cataract surgery,[700] and Jongenelen et al. found 

no significant relationship between retinal stray light and MPOD measured 

psychophysically, after correction for age and axial length.[701] 

 

The studies of Nolan et al.[698] and Obana et al.[699] have highlighted two important points; 1) 

There was no significant difference in MPOD values before or one week after cataract 

extraction, for either clear or yellow-tinted IOLs. This supports the conclusion that MPOD 

values for the MPOD methods used by these authors (macular densitometer and RSS, 

respectively) are unaffected by clinically significant cataract. 2) The augmentation of MPOD 

that is purported to be associated with differential retinal light exposure is not evident until 

at least one year after cataract extraction. 

 

The non-dominant eye is closed to reduce glare when exposed to sunlight,[153] and pterygia 

are more likely to develop in the dominant eye.[153, 157] Pterygia and pinguecula have been 

used as surrogate markers for prolonged sunlight exposure. Pterygia were associated with 

a two to three-fold increase risk of early and late AMD.[162] It is therefore plausible that the 

dominant eye is at a greater risk of developing AMD than the non-dominant eye and the 

trend for lower MPOD found in the dominant eye may indicate a higher level of chronic 

retinal light damage. The higher incidence of AMD after cataract extraction may be 

coincidental as cataract development is also associated with a higher level of chronic light 

damage. 

 

While no significant difference was found between dominant and non-dominant eye MPOD 

and no bias was found compared to randomised eye MPOD measurements, the significant 

negative correlation with age for dominant eye minus non-dominant eye MPOD with age 

was interesting. This could suggest a relative decrease in dominant eye or increase in non-
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dominant eye MPOD with age and may support the greater light exposure theory for the 

dominant eye theory. When eye order was randomised, right minus left eye MPOD did not 

show a significant correlation with age (fig. 2.4). These results warrant further research. 

 

The corrected sample size required to detect a difference in MPOD of 0.07 assuming 80% 

power at 5% significance was estimated to be 28. This study had sufficient power to detect 

a significant difference. 

 

2.4.4 Age 

This study found no significant correlation for mixed gender MPOD and age. Group analysis 

revealed that MPOD was significantly higher in the ≥ 50 to < 60 years age range compared 

to the ≥ 45 to < 50 years age range. 

 

A review of the literature examining the relationship between MPOD measured using HFP, 

with a 0.5° (or 0.48°) [596] central target and age, revealed 19 papers from White and 

predominantly White populations and three papers from non-White populations reporting no 

significant age association.[166, 393, 401, 402, 486, 502, 508, 588, 598, 601, 637, 654, 655, 680, 682, 693, 702-707] 

 

Eleven papers for White or predominantly White and one paper for non-White populations 

indicated an age-related decline in MPOD.[394, 500, 591, 596, 597, 599, 600, 652, 653, 694, 706, 708] Results 

from seven of the 12 studies reporting an age-related decline were derived from the same 

predominantly White regional population, one of which returned no age association after 

adjustment for outliers and ethnicity.[394] The largest sample from the same population also 

reported no age association.[704]  

 

The latter two studies by Nolan et al. used customized flicker frequencies. Eight out of the 

12 studies reporting an age-related decline utilized fixed or pre-set flicker frequencies.[500, 

591, 596, 597, 599, 600, 652, 694] A comparison between MPOD measurements of 121 healthy 

subjects using the Eyemet Maculometer (fixed flicker) and the Macular Metrics 

Densitometer (variable flicker) was conducted. A trend towards a negative correlation (r = -

0.12, p = 0.21) between MPOD and age was found for the Maculometer, but no correlation 

(r = 0.01, p = 0.89) with age was reported for the Densitometer.[691] 

 

The MPS 1000 instrument used in the present study allows the flicker frequency to be 

individually set for each participant as part of the initial flicker detection sequence prior to 

MPOD measurement. This instrument should immune to the effects of smaller pupil size 

and the age-related decline in flicker sensitivity. The bright background used by HFP to 

minimise rod and blue cone contribution is also likely to minimise any age-related 

differential in pupil size. 
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O’Brian et al. reported that HFP requires the target to be presented at or near the ideal 

frequency of flicker for each subject. If the frequency is too low fusion (reduced or absent 

flicker) never occurs, making the task difficult for naïve subjects. If the frequency is too high 

fusion occurs at a wide range of values and measurement error is high.[709] 

 

In addition to the inability to customize the flicker frequency, the observation that the MPOD 

profile may broaden with age,[710] and that a peripheral target positioned at a less eccentric 

location may lead to an under-estimation of MPOD in the elderly,[468, 694] may all contribute 

to the explanation of the age-related decline reported in these studies.[691] 

 

Population differences have been offered as one explanation for the controversy reported 

for the relationship between MPOD and age.[408] An alternative explanation was reported by 

Berendschot et al. who assessed MPOD using seven different methods in the same 

population. An age-related decline in MPOD was observed with HFP and one of five 

methods of FR, whereas no decline in MPOD with age was reported for the other four FR 

methods and 2-WFAF.[694] 

 

Olmedilla-Alonso et al. reported results for HFP MPOD following multivariate regression 

controlling for age, gender, dietary and serum L and Z levels and serum HDL and LDL. 

They concluded that MPOD is significantly lower in older age range (45 to 65 years) 

compared to the younger age range (20 to 35 years), despite dietary intake and serum L 

and Z being higher. In the younger age range MPOD was influenced by serum L, whereas 

in the older age range the presence of serum L and Z in relation to circulating lipids (L and 

Z / cholesterol and triglycerides) was a determining factor.[706] 

 

Multiple regression analysis was not performed due to the lack of significant findings in this 

study. Burke et al. found no difference in MPOD between age groups, after adjustment for 

BMI, dietary carotenoids or serum carotenoid concentrations,[166] and Nolan et al. reported 

that controlling for BMI reduced the correlation between MPOD and age for both 

genders.[600] Yu et al. reported a bivariate correlation between MPOD and age at 0.25° 

eccentricity for a non-White population  (r = -0.17, p = 0.01, r2 = 0.03).[693] Their multivariate 

analysis model, which also included BMI, gender, smoking status and light exposure 

returned a higher value for the variance shared between MPOD and age (r2 = 0.06), 

indicating 6% shared variance between MPOD and age. 

 

Abell et al. reported a significant decline in MPOD with age using the MPS 9000 (r = 0.22, p 

n/a), which increased slightly (r = 0.27, p n/a) after correction for gender, iris colour and 

smoking status. Despite the increase in correlation after correction for other factors, a 

shared variance of only 7% was achieved between MPOD and age.[500] 
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The present study found that mixed-gender MPOD was significantly higher (α level = 0.025) 

in the ≥ 50 to < 60 year age range, compared to the ≥ 45 to < 50 year age range (p = 

0.004), although group sizes were small and this result may have occurred by chance. 

Results from five medium-sized studies (three White, two non-White, n = 71 to 280) and 

one large study (n = 5,581) have also suggested a trend towards higher MPOD levels in 

middle age compared to younger and older age groups.[166, 486, 598, 601, 653, 705] 

 

This suggests that the relationship between MPOD and age may not be linear in these 

samples. Lima et al. have also suggested a peak in MPOD values at 50 years of age, using 

2-WAF at retinal eccentricities of 0.5°, 1.0° and 2.0°.[244] The consequence of non-linearity 

combined with the very large inter-subject variation reported for MPOD,[497, 599, 601, 711, 712] 

may lead to ambiguity (under-estimation of the degree of correlation) in the results from 

correlation analysis and multiple regression based on linear correlation (see fig. 2.5). 

 

Table 2.11 The relationship between MPOD and age for all in vivo methods  
 
In vivo 
MPOD 
measurement 

Association between MPOD and age 
Positive  
(p < 0.05) 

Trend towards 
positive 
(p ≥ 0.05) 

No 
association 
 

Trend 
towards 
inverse 
(p ≥ 0.05) 

Inverse 
(p < 0.05) 

Biphasic 
relationship 

HFP target 
Eccentricity 
10' arc 
0.25° 
0.35° 
0.48° 
0.5° 
 
 
 
 
 
0.75° 
1.0° 
 
1.75° 
 
2.0° 
3.0° 
5.0° 

- 
 
- 
- 

1[506] 
- 

1[713] 
 
 
 
 
 
- 
- 
 

1[402] 
 

- 
- 
- 

- 
 
- 
- 
- 
- 

1[703] 
 

 
 
 
 
- 
- 
 
- 
 
- 
- 
- 

- 
 

2[166, 598] 
3[394, 401, 402] 

- 
- 

25[166, 393, 394, 
401, 402, 486, 500, 

502, 508, 588, 598, 
601, 637, 654, 655, 
680, 682, 693, 702, 
704, 705, 707, 714] 

- 
7[166, 394, 401, 
402, 598, 693, 705] 
8[394, 401, 693, 

705] 
2[166, 598] 
1[394] 
1[394] 

- 
 
- 
- 
- 
- 
- 
 
 
 
 
 

1[715] 
1[653] 
 

- 
 
- 
- 
- 

- 
 
- 

5[693, 705] 
- 

1[596] 
9[591, 597, 599, 
600, 652, 694, 705, 

706, 708] 
 
 
 
- 

3[705] 
 

- 
 

- 
- 
- 

6[166, 486, 598, 
601, 653, 705] 

- 
- 
- 
- 
- 
 
 
 
 
 
- 
- 
 
- 
 
- 
- 
- 

FAF 3[244, 588, 716] 1[489] 4[404, 694, 717, 
718] 

- 1[659] 1[244] 

FR 1[593] 2[489, 710] 9[432, 487, 694, 

703, 719, 720] 
1[694] 2[717, 721] - 

RRS - - - - 7[652, 658, 695, 
713, 715, 722, 723] 

- 

CM 2[724, 725] - - 1[483] - - 
Total = 107 9 4 62 4 28 - 

CM: colour matching. All results were included where studies reported MPOD for each eccentricity. All results 
were included where studies reported MPOD for more than one method of MPOD measurement. The number 
allocation was not scaled to correct for differences in sample size between studies. 
 

In view of the controversy surrounding the relationship between MPOD and age, the author 

has compiled two tables. Table 2.11 shows the association between MPOD and age for the 

different in vivo methods of MPOD measurement. Two ex vivo studies were also found. 

These employed high performance liquid chromatography (HPLC) to assess MP levels 
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reported no significant association with age.[468, 726] A2.4 lists the factors affecting the 

association between HFP MPOD and age. 

 

Overall the majority of studies (including all in vivo methods of measurement) reported no 

significant association between MPOD and age. The results from a proportion of the HFP 

MPOD studies that reported an inverse association may have been a due to equipment 

design (i.e. less eccentric peripheral target and fixed-flicker). Fundus autofluorescence and 

FR tended not to show a significant association with age, whereas all studies using RRS 

reported a significant, inverse association between MPOD and age. 

 

It is reasonable to question whether the biphasic relationship between MPOD and age  

reported by six HFP studies,[166, 486, 598, 601, 653, 705] is a consequence of the design of the HFP 

instrumentation, or an age-related difference in response to the psychophysical methods 

used. To counter this argument, a biphasic relationship with the highest MPOD levels in the 

middle age range, was also demonstrated using 2-WFAF.[244] Further research would be 

sensible to confirm this relationship using objective methods of MPOD measurement. 

 

Delori et al. reported that 2-WFAF and FR correlated highly with MPOD determined by 

HFP. After correction for differences in test field diameter, 2-WFAF MPOD was larger than 

HFP MPOD by approximately 0.23, especially at low values of MPOD. Fundus reflectance 

MPOD values were generally much lower than HFP MPOD, except at low values of 

MPOD.[489] 

 

The results of Berendschot et al.[694] are interesting. An age-related decline in MPOD was 

not observed for all of objective methods, despite being found for HFP for the same 

population. Measurement of MPOD by HFP was performed with undilated pupils in the 

study reported by Berendschot et al. Pupil size reduces with age, but this study found no 

association between MPOD and pupil size. Measurement of MPOD using commercial 

methods such as the MPS 1000 used in the present study is performed under free-viewing 

conditions, where the effects of pupil size are not corrected. Caruso-Avery compared 

Maxwellian view (pupil size effects are excluded) vs. free-view measurement of MPOD for 

30 experienced subjects with natural, undilated pupils, concluding that pupil size did not 

significantly affect MPOD measurements.[727] 

 

Another factor not normally reported for HFP-measured MPOD is that a learning effect 

leading to higher measured values of MPOD may occur with experienced subjects. Ten 

days of perceptual learning was reported to increase critical flicker fusion threshold by 30% 

using the Densitometer.[728] It was reported that age leads to a decline in the stability of 

visual perceptual learning.[729] While this effect may bias MP longitudinal and supplement 

studies where multiple repeated measures of MPOD are requisite, it would not have 
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affected the present study in which single measurements were obtained form naïve 

participants. 

 

Age summary 

Age is the strongest, established RF for AMD. Advancing age is associated with an 

increase in AMD prevalence, incidence and progression.[14, 41, 43, 625] The three largest 

studies to date (n = 1,698 to 5,581) and the majority of bivariate analyses have suggested 

that there is no significant relationship between HFP-derived MPOD and age.[166, 393, 401, 486, 

502, 508, 588, 598, 601, 637, 654, 655, 693, 702-705] 

 

Results from this study revealed a trend for MPOD being highest in late middle age. Six 

other studies found that HFP-derived MPOD peaked in middle age.[166, 486, 598, 601, 653, 705] This 

biphasic relationship with age was also demonstrated using 2-WFAF.[244] This may be the 

result of improved eating habits leading to higher macular carotenoid consumption in middle 

age, combined with reduced food intake, lower macular carotenoid absorption and / or 

transport and the greater likelihood of MP depletion due to retinal damage in older 

subjects.[594, 598, 730, 731] 

 

The possible lack of linearity in the association between MPOD and age suggests that 

group analysis is a more appropriate statistical tool than correlation. The controversy 

surrounding this relationship may be explained wholly or partly by a combination of 

population differences, age-related and gender-related differences in macular carotenoid 

dietary intake, absorption and retinal transport, questionable relationship linearity, changes 

in MPOD profile width with age and gender, and differences in instrument design.[408, 468, 497, 

598, 599, 601, 691, 694, 710-712, 731] 

 

The corrected sample size required to detect a difference in MPOD of 0.06 assuming 80%  

power at 5% significance was estimated to be 68. This study had sufficient power to detect  

a significant difference. 

 

Cross-sectional MPOD studies should include sufficient numbers to allow group analysis 

between several age ranges, and should be corrected for macular carotenoid dietary intake 

and %BF in addition to other known co-variants. Many researchers have recommended 

further longitudinal studies to investigate the effects of MPOD over time.[506, 593, 594, 621, 626, 659, 

716] 

 

2.4.5 Gender 

This study revealed a trend for higher male MPOD compared to female MPOD, but this was 

not significant. A review of the literature revealed 12 studies (including three non-White) 

reporting either significantly lower MPOD in females,[432, 508, 597, 599, 693, 732] or a non-significant 
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trend towards lower female MPOD.[486, 591, 601, 705, 733, 734] Five studies found either 

significantly higher MPOD in females,[704] or a trend towards higher female MPOD.[166, 394, 

654, 718] Three studies reported no significant gender difference,[680] but male and female 

MPOD data were not available in two of the studies.[401, 500] 

 

Van der Veen et al. reported from the largest MPOD study to date (unselected data from 48 

USA Optometric practices using the MPS 9000, n = 5581), that the gender difference in 

MPOD was age-related, with male MPOD being higher up to the age of 59 and female 

MPOD exceeding male values in participants aged 60 years and over. The authors 

concluded that the higher MPOD values in females over 60 years of age resulted from their 

greater likelihood to have consumed L and Z supplements.[486] The third National Health 

and Nutrition Examination Survey (NHANES III) reported that in addition to increased 

supplement use in both genders from the time periods (1988 to 1994) to (2003 to 2006), 

females are consistently more likely to use general nutritional supplements than males.[735] 

Olmedilla-Alonso et al. reported that the literature concerning gender differences in dietary 

intake of L and Z is inconsistent.[706] 

 

The observation that women may have lower MPOD levels, particularly in the lower age 

range compared to men,[486] or equal levels despite higher L and Z consumption,[599, 732] has 

been attributed to higher female adiposity. Adipose tissue is the major storage site for the 

lipid-soluble macular carotenoids, and it has been suggested that this may lead to 

competition with the retina for serum L and Z.[164, 424, 435] Olmedilla-Alonso et al. reported 

significantly lower HFP MPOD for women compared to men in the older age range (45 to 

65 years), but not the total age range (20 to 65 years). Dietary intake of L and Z, and levels 

of circulating lipids (L and Z / cholesterol / triglycerides) were significantly higher in the older 

age range, but did not correlate with gender after controlling for other factors.[706] 

 

Alterations in serum levels of L and Z have been reported for the different phases of 

menstruation,[736, 737] which in humans, appears to be a consequence of variable utilization 

of predominantly LDL cholesterol from the serum for luteal steroidogenesis in the corpus 

luteum.[738-740] Significant alterations in serum L and Z were also noted for pregnancy[662] 

and lactation. [428] These observations may suggest gender-specific, competitive differences 

between serum and adipose tissue for these carotenoids.[164] 

 

The width of the MPOD spatial profile was found to increase as a response to MP 

supplementation.[689] Yu et al. also reported that the MPOD profile was wider for Chinese 

females.[693] If this trend is evident across ethnicities, this could explain some of the lower 

female MPOD values in studies using HFP method with a less eccentric peripheral 

reference. Gender differences in the variability of retinal thickness were reported, but 
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MPOD was found to be positively associated with foveal width, regardless of gender and 

ethnicity, but not retinal thickness.[394, 741] 

 

The number of male participants in this study was less than half that for females. This was 

due to difficulties with male recruitment, an issue also reported by another study.[588] 

 

Overall no significant difference in MPOD was reported for male and female gender when 

all in vivo methods of MPOD assessment were considered (table 2.12). 

 

The HFP studies that reported lower MPOD for females may be explained by the use of 

older HFP equipment with smaller peripheral target eccentricity,[508, 597, 599, 727, 732, 733] wider 

female MPOD spatial profile,[716] which may be associated with age and / or increased 

supplement use, correction for the effect of other influencing factors[598] and a variable 

relationship for MPOD and age between genders.[598, 653] Only one study out of 12  

 

Table 2.12 The relationship between MPOD and gender for all in vivo methods 
 
In vivo 
MPOD 
measurement 

Association between MPOD and gender (male vs female) 
Positive  
female MPOD 
higher 
(p < 0.05) 

Trend 
towards 
positive 
(p ≥ 0.05) 

No 
association 
 

Trend 
towards 
inverse 
(p ≥ 0.05) 

Inverse 
female MPOD 
lower 
(p < 0.05) 

Association 
variable with 
age 

HFP target 
Eccentricity 
10' arc 
0.25° 
 
0.5° 
 
 
1.0° 
 
 
1.75° 
 
2.0° 
3.0° 

- 
 
- 
- 
 
- 
 
 
- 
 
 
- 
 
- 
- 

- 
 
- 
- 
 
- 
 
 
- 
 
 
- 
 
- 
- 

- 
 

1[166] 
11[394, 401, 653, 
693, 705, 734] 
17[166, 394, 401, 
486, 500, 601, 652-
654, 680, 705, 734] 
14[166, 394, 401, 

598, 652, 653, 693, 
705, 734] 
11[394, 401, 598, 
693, 705, 734] 
4[166, 653] 
1[394] 

- 
 
- 
- 

 
1[733] 
 
 

- 
 
 
- 
 
- 
- 

- 
 
1[598] 
4[598, 653, 705] 
 
10[508, 597, 599, 653, 
693, 704, 706, 732] 
2[653, 705] 
 
 

- 
 
1[653] 

- 

3[598, 653] 
 

- 
- 
 
- 
 
 
- 
 
 
- 
 
- 
- 

2-WFAF - - 4[489, 717, 718] - - - 
FR - - 3[489, 593, 717] - 1[432] - 
RRS - - 3[658, 722, 723] - - - 
Total = 89 0 0 69 1 19 - 

All results were included where studies reported MPOD for each eccentricity. All results were included where 
studies reported MPOD for more than one method of MPOD measurement. The number allocation was not 
scaled to correct for differences in sample size between studies. 
 

comparing objectively measured MPOD for each gender reported a significant 

difference.[432] 

 

The risk of advanced AMD is similar for men and women, however nAMD is more common 

in women than men. Increased AMD in women may be associated with a decline of 

oestrogen (antioxidant and anti-inflammatory agent) during the menopause.[302] Oestrogen 

deficiency also increases bone calcium turnover during the menopause. Increased free 
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calcium may act as a "seed" in the early development of macular drusen.[283] The author is 

unaware of any studies examining oestrogen levels and MPOD. 
 

Gender summary 

Gender is a weak and inconsistent RF for AMD. There is inconsistency in the literature 

regarding the association between gender and AMD prevalence.[1, 45, 627] This study 

revealed a non-significant trend for lower female MPOD. Despite the majority of cross-

sectional studies reporting lower MPOD for females,[432, 486, 508, 597, 599, 601, 693, 705, 732-734] gender 

has not been consistently reported to be a RF for AMD. Beaver Dam Eye Study and BMES 

suggested that women might have a higher risk of developing AMD.[625, 627] The higher 

prevalence of late AMD in women compared to men, has been explained in part by the 

larger number of women in the older age range.[1, 45] Another recent study reported no 

gender differences in AMD risk.[9] 

 

Gender differences in MPOD appear to associate with age and adiposity.[164, 424, 435, 486] 

HFP-derived gender differences may also relate to variations in both MP supplementation 

and the MPOD spatial profile width.[689, 693] In order to systematically assess the relationship 

between MPOD and gender, any study would need to be sufficiently powered to allow 

gender comparisons at a number of different, regularly spaced age groups, and correct for 

adiposity and dietary carotenoid intake, in addition to other known co-variables. 

 

The corrected sample size required to detect a difference in MPOD of 0.01 assuming 80% 

power at 5% significance was estimated to be 535. This study did not have sufficient power 

to detect a significant difference. Objective methods of MPOD assessment (e.g. FAF or FR) 

would remove any uncertainty about the possible effect of gender on peripheral target 

measurements using on HFP-derived MPOD.  

 

2.4.6 Body mass index 

This study found no significant association between MPOD and mixed-gender or separate-

gender BMI. 

 

Ten other studies examined the association between mixed-gender BMI and HFP-derived 

MPOD. Three studies reported a significant correlation between MPOD and BMI,[401, 436, 597] 

and three reported no significant correlation.[166, 591, 601] Four predominantly White studies 

using group analysis revealed significantly or almost significantly (Burke et al., p = 0.06), 
[742] lower MPOD with higher BMI; > 25,  [394] > 27,[166] > 29,[436] and > 30,[704] whereas two 

non-White studies (South-Indian and Chinese) reported no significant difference between 

groups.[693, 734] These results may indicate ethnic differences in the relationship between 

MPOD and BMI. 
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The percentage of obese subjects is lower than that reported for the UK in 2002 (male 23% 

and female 25%), and estimated by projection for 2012 (35% for non-manual and 45% for 

manual social class).[743] Although the participants were drawn from a population thought to 

contain higher numbers of non-manual and more highly educated participants, factors 

known to be associated with lower levels of obesity,[744] selection bias (against those visibly 

obese) is likely to explain the low percentage of obesity reported by this study. 

 

Overall studies examining White or predominantly White participants were controversial, 

although the majority reported a decrease in MPOD with higher BMI, with a tendency for 

this to affect males more than females. Three studies examining non-White participants; 

Chinese,[693] South Indian,[734] and Asian,[723] reported no significant association between 

MPOD and BMI at any eccentricity tested (table 2.13). 

 

Two studies reported correlations for each gender,[436, 600] both reported significant inverse 

correlations for males, but only one of these studies was significant for females.[436] 

Broekmans et al. using spectral fundus reflectance also reported a significant correlation for  

 

Table 2.13 The relationship between MPOD and BMI for all in vivo methods 
 
In vivo 
MPOD 
measurement 

Association between MPOD and BMI (lower vs higher) 
Positive  
(p < 0.05) 

Trend towards 
positive 
(p ≥ 0.05) 

No association 
 

Trend towards 
inverse 
(p ≥ 0.05) 

Inverse 
(p < 0.05) 

HFP target 
Eccentricity 
10' arc 
0.25° 
0.5° mixed 
0.5° male 
0.5° female 
1.0° 
1.75° 
2.0° 

 
 
- 
- 
- 
- 
- 
- 
- 
- 

 
 
- 
- 
- 
- 
- 
- 
- 
- 

 
 
1[742] 
2[693, 734] 
5[166, 591, 601, 693, 734] 

- 
1[600] 
2[693, 734] 
3[401, 693, 734] 

- 

 
 

- 
- 

1[742] 
- 
- 
- 
- 
- 

 
 

- 
1[401] 
6[394, 401, 436, 597, 637, 704] 
2[436, 600] 
1[436] 
2[401, 742] 

- 
1[742] 

2-WFAF 
2-WFAF 0.5° 
2-WFAF 2.0° 

- 
- 
- 

- 
- 
- 

1[718] 
1[716] 

- 

- 
- 
- 

- 
- 

1[716] 
FR male 
FR female 

- 
- 

- 
- 

- 
1[432] 

- 
- 

1[432] 
- 

RRS - - 1[723] - - 
Mixed = 29 0 0 17 1 12 
Male = 2 0 0 0 0 2 
Female = 2 0 0 1 0 1 

All results were included where studies reported MPOD for each eccentricity. All results were included where 
studies reported MPOD for more than one method of MPOD measurement. The number allocation was not 
scaled to correct for differences in sample size between studies. 
 

males only.[432] Mares et al. reported a significant reduction in MPOD with increasing BMI in 

a female population.[637] 

 

Body mass index summary 

Higher BMI is a moderate and consistent RF for AMD. Body mass index is also positively 

correlated with age. The trends revealed by this study, although not significant were in 
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agreement with the majority of other White or predominantly White studies. MPOD was 

lower, especially in the obese groups for mixed-gender analysis and particularly in obese 

males for separate-gender analyses.[166, 394, 401, 436, 597, 600, 704] The lack of an association 

between MPOD and BMI in the two non-White studies examined may suggest ethnic 

differences in this relationship.[693, 734] 

 

Discrepancies in MPOD levels between genders have been attributed to different amounts 

and location of body fat.[745-747] Ethnic differences may be associated with alterations in 

body fat acquisition and differing responses to metabolic syndrome.[745, 748-750] Whites were 

found to be more prone to dyslipidaemia (high cholesterol), whereas African Americans 

tended to express dysregulation of glucose metabolism.[751] 

 

Lutein and Z are distributed equally between LDL and HDL in the plasma, with a 

progressive decrease in L and Z from light to dense LDL.[752, 753] HDL cholesterol was also 

reported to be important for the delivery of L to the retina.[754] The reduction in HDL 

associated with obesity predominantly seen in White ethnicity is consistent with the 

possibility of ethnicity-specific differences in transport and / or retinal capture of 

carotenoids.[755] The positive relationship between obesity and age is well known.[756, 757] 

 

The association between BMI and MPOD is controversial, but consensus appears to 

support the trend revealed by this study, for lower MPOD in White or predominantly White 

populations associated with mid- to upper-range overweight or obese levels of BMI. An 

inverse association between MPOD and BMI was more likely for male participants. 

 

The corrected sample size required to detect a difference in MPOD of  0.02, assuming 80% 

power at 5% significance was estimated to be 63. This number would be required for each 

gender. A trend towards lower MPOD with higher BMI was revealed by this study for both 

mixed-gender and separate-gender analyses. This study had sufficient power to detect a 

significant difference for mixed gender, but not separate gender associations. 

 

Although BMI does not directly measure adiposity,[600] it is simple to measure in clinical 

practice. Interpretation of the resulting measurement is confounded by age, gender and 

ethnicity as well as the inability to distinguish adipose tissue form muscle mass.[605-607] 

Studies examining BMI as a RF for AMD or MPOD should correct for gender, age and 

ethnicity in addition to other known co-variables. 

 

2.4.7 Percentage body fat 

A trend was noted for lower MPOD in the obese group for males, but not females however 

the association was not significant. 
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Two studies reported mixed gender correlations for %BF and MPOD. Both reported a 

significant negative correlation.[600, 758] Two studies analysed genders separately. Nolan et 

al. compared MPOD with total %BF whereas Bovier et al. measured total %BF as well as 

arm, leg and trunk %BF and relative trunk fat (percentage of total body fat in the trunk 

region). These studies used dual-energy X-ray absorptiometry (DEXA) to measure %BF. 

Both studies reported a significant inverse correlation for men only. This agreed with the 

trend reported for this study.[600, 758] 

 

Mixed-gender analysis of %BF was avoided in the present study because male and female 

%BF values are not comparable. Female %BF is approximately 10% higher than that of 

males, thus values categorised as normal for females would be classed as obese for males.  

 

Two studies reported group analyses. Hammond et al. reported a significant difference for 

mixed gender MPOD values for %BF values < 27 compared with > 27. Male and female 

genders analyzed separately were reported to follow a similar trend.[436] When participants 

with a %BF value of < 27 were analyzed alone, no difference across the distribution was 

found. This suggested a non-linear relationship between MPOD and %BF with a drop-off in 

MPOD value only when %BF reached obese levels. Nolan et al. found that the relationship 

approached significance for male (p = 0.06) and female participants (p = 0.053) for %BF 

values < 25 compared to > 25.[600] 

 

The trend most apparent from the literature was that of a reduction in MPOD, most evident 

in males, once %BF reached obese levels. Although this study did not reach significance 

for gender, the same trend was observed. The number of male participants was small and 

therefore caution should be exercised with any interpretation. Gupta et al. found no 

association between MPOD and waist / hip ratio or waist circumference for a South Indian 

population, after correction for age and gender, suggesting that there may be ethnic 

differences in the response of MPOD to obesity.[734] 

 

After converting BMI values to %BF using the CUN-BAE algorithm it was apparent that 

considerably more participants were classified as obese. BMI and %BF percentages for 

normal, overweight and obese were as follows, male: BMI 21.9% / 62.5% / 15.6%, %BF 

6.2% / 18.8% / 75.0%, and female: BMI 58.3% / 33.3% / 8.3%, %BF 8.3% / 29.8% / 61.9%. 

Gómez-Ambrosi et al. concluded that BMI measurement under-estimated the level of 

obesity (and cardiometabolic risk) compared to %BF measurement.[676] 

 

The android fat distribution (centrally deposited adipose tissue e.g. abdominal) typically 

seen in men and the gynoid fat distribution (gluteo-femoral adipose tissue) characteristic of 

the female body shape become more pronounced during puberty.[746, 747] The time after 

menopause is associated with a transition to a more android adipose tissue distribution in 



	   105	  

females.[759] In men, but not women abdominal obesity measured by waist / hip ratio or 

waist circumference was positively associated with AMD prevalence, however BMI was not 

associated with AMD prevalence in either gender.[630] L and Z concentrations were 

consistently higher in abdominal adipose tissue compared to that from gluteal and femoral 

locations.[760]  

 

It has been suggested that adipose tissue generally, and abdominal adipose tissue 

specifically, may act as a "sink" for carotenoids,[164, 760] reducing the availability of serum 

carotenoids for retinal absorption, particularly in obese men. This may explain the results 

reported by van der Veen et al. that in the under 60 year age range male MPOD is higher 

than female (due to higher female total %BF), but above 60 years of age female MPOD is 

higher than male (due to higher levels of L and Z "locked" in male abdominal adipose 

tissue).[486, 758] Increased levels of obesity may also affect both L and Z transport and retinal 

capture, as a result of an associated reduction in HDL cholesterol.[129, 752, 753] 

 

Studies in adults and children have shown an association between the hypo-functional 

seven-repeat allele (7R) of the dopamine-4 receptor gene (DRD4) and increased eating 

behaviour and / or obesity, especially in females.[761, 762] Silveira et al. reported that pre-

school children from both genders, carrying the 7R allele had a less healthy pattern of 

habitual food intake compared to non-carriers.[762] A literature search revealed no previous 

studies examining the association between the hypo-functional 7R allele of the DRD4 gene 

and AMD. Migraine without aura (but not migraine with aura), was found to show a 

significant genetic association with DRD4.[763] 

 

Percentage body fat summary 

The non-significant trends in MPOD levels revealed by this study agreed with the other 

studies published, reporting significant negative correlations for mixed-gender %BF and 

significance for only male %BF in gender-separate comparisons.[600, 758] Studies performing 

group analysis revealed stable MPOD until obese levels of %BF were reached, when 

especially for males MPOD levels were seen to fall.[436, 600] This suggested that the 

relationship between MPOD and %BF might not be linear. MPOD levels appeared to be 

influenced by the amount (especially younger females) and location (especially older 

males) of body fat.[164, 760] Obesity was also associated with lower HDL levels, which may 

affect L and Z transport and retinal capture.[129, 752, 753] 

 

The author did not have access to equipment to measure %BF directly. The use of 

calculated %BF derived from BMI, age and gender values using the CUN-BAE algorithm 

was simple to use in this practice setting and offered the opportunity to assess an estimate 

of %BF for each gender with MPOD.  
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Although the Northern European population investigated by the present study was similar 

ethnically to that from which the CUN-BAE algorithm was derived, it is recommended that 

the use of general predictive algorithms across different ethnic population groups should be 

avoided, without prior testing of their validity.[764] This was not possible for this practice-

based study and therefore the values for estimated %BF should be treated with caution. 

 

Sample size calculation was not performed for %BF as these values were calculated from 

BMI, age and gender rather than measured directly. Studies investigating associations with 

%BF should be corrected for age, gender and ethnicity in addition to other known co-

variables. The lack of a linear relationship between MPOD and %BF would suggest that 

group analysis is preferable to correlation. In view of the inherent limitations of BMI 

measurements and if no direct method of %BF measurement is available, calculated %BF 

measurements might be used in preference to BMI measurements in Optometric 

research.[600, 605-607] 

 

2.4.8 Iris colour 

No significant association was found for mixed gender MPOD and iris colour analysed as 

five separate colour groups (grey, blue, green, hazel and brown) or when categorised as 

either "light" (grey, blue and green) or "dark" (hazel and brown).  

 

The observation that White individuals have a higher risk of developing AMD than Black 

individuals has led researchers to question whether the higher levels of melanin found in 

the eyes of Black individuals is protective for AMD. Consensus is that the association 

between iris colour and AMD is weak at best. Berendschot et al. reported no significant 

difference in either MPOD or melanin optical density in eyes with or without AMD, or 

between various stages of AMD.[593] 

 

Six studies compared HFP MPOD in light and dark irides, three reported significantly higher 

MPOD in darker irides,[508, 599, 680] one reported higher MPOD in darker irides (brown vs. not 

brown irides) in patients with RP,[765] and three (two from the same regional population) 

reported no significant difference between light and dark irides.[401, 402, 597] Seven studies 

assessed MPOD levels for participants divided into three iris colour groups, two reported a 

significant difference between groups 1 (blue or grey) and 3 (brown or black),[601, 636] two 

reported a non-significant trend for higher MPOD with darker irides, [654, 733] and three 

reported no significant difference. [394, 701, 713] 

 

Abell et al. reported that following multivariate regression with correction for age, gender 

and smoking status, MPOD measurements for participants with green iris colour was 

significantly lower than MPOD recorded from participants with blue irides.[500] 
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Although a trend for higher MPOD with darker irides was noted for males and females, this 

was not significant for either gender. Two other studies have examined the effect iris colour 

separately by gender. Broekmans et al. using spectral fundus reflectance noted a trend for 

higher MPOD with darker irides in men, but the opposite trend for women. Numbers for 

some of the groups in this study were small however.[432] Mares et al. reported results from 

a large (n = 1698), female only study noted a trend for lower MPOD in darker irides.[637] 

 

Pigmentation of the RPE is a change associated with early AMD and an indicator for future 

progression to late AMD. Levels of melanin are known to reduce with age and melanin may 

exhibit irreversible oxidation. It is plausible that increased retinal illumination associated 

with lighter pupils combined with reduced antioxidant capacity in older age may lead to 

earlier irreversible melanin pigment changes compared to those with darker pupils. 

 

In this study a higher percentage females had light irides compared to males (63.0% versus 

51.9%), but the difference was not significant. Comparing only blue and brown irides a 

larger gender difference, favouring females with blue irides compared to males was noted 

(65.8% versus 42.1%), but again this was not significant. Vingerling also reported that there 

were no significant gender differences in eye colour distribution.[766] 

 

There is some plausible evidence supporting the potential for gender differences in iris 

colour distribution. Brown irides, or rather faces associated with brown irides make men 

appear significantly more trustworthy to women, but not vice versa,[767] and the blue-eyed 

phenotype may confer some adaptive advantage for women as this may be favoured by 

sexual selection.[768-770] 

 

The variable distribution of iris colour between genders, brown more common for male 

participants and blue more common for female participants and the observation by two 

studies that female MPOD is lower for darker irides,[432], [637] may explain the controversy 

surrounding the results of the mixed-gender studies reported at the start of this section. 

 

No significant association was found for pupil size and MPOD. The pupils of those with blue 

irides were reported to be larger in size in ambient illumination, and to contract less quickly 

and by a reduced degree than those with brown irides.[771-773] A trend for smaller median 

pupil size for brown (3.0 mm, IQR 2.0 mm) compared to blue irides (4.0 mm, IQR 1.0 mm) 

was found, although this was not significant. The difference in pupil size alone between 

brown and blue eyes would equate to 1.77 times higher retinal illuminance for blue eyes. 

Correction for iris colour and the difference in pupil size revealed retinal illuminance values 

2.25 times higher in the lighter irides group, assuming the pupil size difference was 

maintained under MPOD testing.  
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An estimate of combined retinal illuminance (pupil and iris) was calculated for blue and 

brown eyes over a range of pupil sizes (2 mm to 8 mm). Retinal illuminance was higher for 

blue eyes compared to brown eyes for all pupil sizes. The percentage increase in retinal 

illuminance for blue compared to brown eyes increased significantly with smaller pupil size 

(10% greater for 8 mm and 102% greater for 2 mm pupils respectively for blue eyes 

compared to brown eyes). Comparing 8 mm to 2 mm pupils, retinal illuminance was 

estimated to be 3.2 times and 5.8 times greater for blue and brown eyes respectively. Pupil 

size was the main determinant of retinal illumination (see table 2.10).  

 

HFP-derived MPOD has been reported to be higher in several different non-White 

populations (range of means 0.43 to 0.56) compared to most White populations.[653, 693, 705, 

774-776] This has been attributed to the higher proportion of dark irides in non-White 

populations, however other factors such as higher dietary carotenoid intake may also be 

contributory.[705, 776] 

 

Previous studies have combined iris colours into two groups (light: blue, grey, green and 

dark: hazel, brown, black),[401, 402, 597, 599] (light: blue, grey, light brown and dark: mid brown, 

dark brown),[508], three groups (group 1: blue or blue / grey, group 2: green / hazel, group 3: 

brown / black),[394, 601, 636, 654, 733]  (group 1: blue / grey, group 2: green, group 3: brown / 

black),[701] and four groups (blue, green, light brown, dark brown).[637] Broekmans et al. used 

the more complex, 5-grade classification system designed for use in multicentre studies 

such as EDCCS. Iris colour was determined by a combination of iris colour (blue, grey, 

green, brown) modulated by the proportion of total iris area with brown or yellow pigment, 

compared to four standard iris photos [432, 777] 

 

Variability in the classification of iris colour groups between studies may also account for 

some of the inconsistency in the results reported. Attempts have been made to standardise 

iris colour classification.[777, 778] The five iris colour, 3-group (1: blue and grey, 2: green and 

hazel, 3: brown) classification system examined by Muinos Diaz et al. had an inter-observer 

reliability of 0.79 (Cohen's kappa was used as this takes in to account chance agreement 

and is thus a more robust measure than simple percentage agreement), with an agreement 

of 89.6%.[778] This system is simple to implement and would appear appropriate for use in 

Optometric practice. 

 

Overall, including all in vivo studies, the majority reported significantly lower MPOD for 

lighter irides or a trend for the same. Objective studies were more likely to report no 

association between MPOD and iris colour (see table 2.14). 

 

Iris colour summary 

Iris colour is a weak and inconsistent RF for AMD. This study found no significant  
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association between MPOD and iris colour generally, or for light compared to dark irides for 

mixed or separate gender analyses. 

 

The sample size was small for each group, especially for male gender. The observation of 

two other studies that revealed a trend for female MPOD to be lower for darker irides, 

opposing the relationship reported by most mixed gender studies may indicate gender-

specificity in iris colour associations.[432, 637]  

 

Table 2.14 The relationship between MPOD and iris colour for all in vivo methods 
 
In vivo 
MPOD 
measurement 

Association between MPOD and iris colour (dark vs light) 
Positive  
(p < 0.05) 

Trend towards 
positive 
(p ≥ 0.05) 

No association 
 

Trend towards 
inverse 
(p ≥ 0.05) 

Inverse 
(p < 0.05) 

HFP target 
Eccentricity 
0.25° 
0.5° 
 
0.5° female 
1.0° 
1.75° 
3.0° 
5.0° 

 
 
- 
- 
 
- 
- 
- 
- 
- 

 
 

- 
- 

 
1[637] 

- 
- 
- 
- 

 
 
1[401] 
3[597, 701, 713] 
 

- 
- 

1[401] 
- 
- 

 
 
2[394, 402] 
5[394, 402, 654, 733, 776] 

- 
2[394, 402] 
2[394, 402] 
1[394] 
1[394] 

 
 

- 
8[401, 500, 508, 599, 601, 
636, 680, 765] 

- 
1[401] 

- 
- 
- 

2-WFAF 
2.0° 

 
- 

 
- 

 
1[489] 

 
- 

 
- 

FR 
2.0° mixed 
Male 
Female 

- 
- 
- 
- 

- 
- 
- 

1[432] 

- 
1[489] 

- 
- 

- 
- 
- 
- 

- 
- 

1[432] 
- 

RRS - - 2[658, 713] - - 
Total = 33 0 2 8 13 10 

All results were included where studies reported MPOD for each eccentricity. All results were included where 
studies reported MPOD for more than one method of MPOD measurement. The number allocation was not 
scaled to correct for differences in sample size between studies. 
 

Retinal illuminance estimates calculated for this study suggested that retinal illumination is 

predominantly governed by pupil size (ignoring absorption by the ocular media), and that 

increased differential light transmission between light and dark irides is positively related to 

smaller pupil size (see table 2.10). Pupil size measured in ambient illumination before 

MPOD testing was not significantly associated with HFP MPOD, after correction for age. 

Stringham et al. reported a small, albeit non-significant positive correlation between MPOD 

and natural pupil size.[622] 

 

It has been reported that the tissue of lighter irides transmits about three times the amount 

of light compared to that of dark irides, due to differences in stromal absorption,[681] and this 

light transmission differential may be compounded by larger pupil size and slower 

constriction speed reported for light irides.[771, 773] Iris pigment epithelium and RPE melanin 

concentration is thought to be equal for different iris colour and race,[4, 779] however 

choroidal melanin levels are lower for light irides suggesting reduced retro-retinal 

antioxidant and free radical-quenching potential which may adversely affect the RPE.[6-8, 631, 

632] 
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Studies examining iris colour as a RF for AMD or MPOD should correct for gender, pupil 

size, and light exposure in addition to other known co-variables. The association between 

iris colour and both AMD risk and MPOD level is controversial. Correction for the additional 

variables reported above may improve the validity of iris colour associations. 

 

The corrected sample size required to detect a difference in MPOD of 0.04 assuming 80% 

power at 5% significance was estimated to be 239. This number would be required for each 

gender. Although a trend towards lower MPOD with lighter irides was revealed by this 

study, it lacked the power to detect a significant difference. 

 

2.4.9 Family history of AMD 

Liew et al. reported from a classical twin study (monozygotic, MZyg: 100% genetic similarity 

versus dizygotic, DZyg: average of 50% genetic similarity), that genetics are an important 

determinant of MPOD with heritability estimates of 67% for HFP and 85% for 2-WFAF.[588] 

 

Twin studies have also firmly established the genetic predisposition to AMD,[780-782] with an 

estimated heritability of between 46% and 71%.[782] Unlike most complex traits, where 

<10% of genetic variance is explained by common variants,[783] AMD is unique in that 

relatively few allelic variants explain a large amount of the genetic risk.[784, 785] Risk variants 

at two major AMD susceptibility loci, CFH at 1q31 and ARMS2 / HTRA1 at 10q26 are 

thought to account for over 50% of AMD cases.[786-790] 

 

A trend for lower MPOD was observed in cases of reported primary and secondary AMD 

FH compared to those with no reported AMD FH, however this was not significant. Group 

sizes for AMD FH were small. 

 

Five studies have examined the relationship between confirmed or reported FH of AMD and 

MPOD measured at 0.5° eccentricity, in White or predominantly White populations. One 

study reported significantly lower MPOD in those with a confirmed AMD FH, which 

remained significant after controlling for confounding variables.[597] Two reported 

significantly higher MPOD measurements for those with AMD FH.[594, 704] Two reported no 

significant difference. Kirby et al. also reported no significant difference at 0.25°, 1.0° and 

1.75° eccentricity.[401, 601] Nieto et al. reported that 42% of AMD, 37% of first-degree 

relatives of AMD and 31% of normals exhibited a central depression in their MPOD profile 

measureable at 0.17°, but not evident at 0.5° eccentricity.[403] Hogg et al. confirmed that the 

centrally located peak MPOD is highly heritable, whereas MPOD measured at a paracentral 

location determined by the width of the spatial profile at half peak was influenced more by 

environmental factors than genetics.[404] 
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The identification of the CFH gene on chromosome 1q31 as the first major AMD 

susceptibility gene resulted from the first ever genome-wide association study (GWAS) to 

successfully identify a risk variant for a complex disease by an undirected, genome-wide 

search.[788] The discovery of CFH and the subsequently identified modifiers CFB, C3 and 

CFI strongly suggested a major role of the alternative complement pathway and therefore 

inflammation in AMD pathogenesis.[786] 

 

The alternative complement pathway is continuously activated ("tick-over") by spontaneous 

hydrolysis of the internal thioester bond in C3 to form C3(H2O).[791, 792] The inhibitory 

regulators (CFH, CFI and CFB) are therefore required to prevent inappropriate over-

activation and tissue damage.[792] Drusen contain almost all complement pathway proteins, 

including C3 and CFH, as well as other inflammatory mediators such as fibrinogen, 

vitronectin and CRP.[53, 793, 794] The presence of activation products in circulating blood 

suggests that AMD-related inflammation is not limited to the retina, but is systemic.[792] 

Serum levels of the inflammatory marker CRP are raised in those with, and at future risk of 

AMD.[795-797] 

 

The modulated inflammatory response (immune privilege) normally exhibited by the macula 

may be bypassed and up-regulated (especially in those with pro-AMD complement gene 

polymorphisms) by a sufficiently strong systemic immune response.[798] This may induce a 

low grade, pro-inflammatory macrophage response and eventually subretinal 

neovascularisation.[292] It is interesting that significantly lower AMD incidence was observed 

for those taking long-term anti-inflammatory medication.[799, 800] 

 

Although the Carotenoids in Age-Related Eye Disease Study (CAREDS) reported that for 

females, variations in 13 SNPs from 10 genes affecting carotenoid transport, uptake and 

metabolism accounted for 5.1% of the variability in MPOD.[801]  

 

ApoE encodes Apolipoprotein E, a protein that has a central role in lipid transport and 

distribution in the central nervous system. The ε2 allele is associated with increased AMD 

risk whereas the ε4 allele confers reduced AMD risk.[802-805] Those with at least one ε4 allele 

were reported to have higher MPOD.[806] 

 

ABCA4, also known as ABCR or STGD1 encodes a photoreceptor-specific ATP-binding 

cassette transporter of retinaldehyde. ABCA4 is defective in autosomal recessive forms of 

Stargardt disease, cone-rod dystrophy and RP.[807] MPOD at 0.2° and 0.5° was significantly 

lower in those with ABCA4 mutations, and was strongly influenced by disease stage 

(abnormality of foveal architecture). Serum levels of L, Z, but not β-carotene were also 

significantly lower in affected individuals.[808] 
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Healthy individuals with gene variants of β-carotene 15,15'-monooxygenase (BCMO1) that 

have "high" compared to "low" β-carotene conversion efficiency in the plasma, were 

significantly associated with higher levels and lower levels of MPOD measured using HFP. 

No significant difference in MPOD was demonstrated for different BCMO1 variants in 

individuals with AMD.[809] 

 

It has been reported that genes associated with the HDL pathway (LIPC and ABCA1) are 

associated with early stages of AMD, whereas ARMS2 / HTRA1 and the complement 

pathway genes (CFH, C3 and C2) are associated with the advanced stages.[268] The 

association between high-risk CFH genotypes and early AMD was found to increase with 

age from an OR of 0.37 to 0.48 (< 55 years of age) to an OR of 1.87 to 2.80 (>75 years of 

age).[810] 

 

A full dietary assessment was not completed, however, participants were asked about 

current use of MP and fish oil supplements. Only one participant reported current use of MP 

supplements, which precluded any meaningful analysis. Twenty one participants reported 

current use of fish oil supplements. A non-significant trend for higher median MPOD was 

revealed for the fish oil supplement group. The omega-3 fatty acid DHA not only associates 

with rhodopsin and L in rod OS membranes, it also is thought to assist in retinal absorption 

of MP. 

 

Family history of AMD summary 

Family history of AMD is a strong and consistent RF for AMD. The use of reported FH of AMD 

in this practice-based Optometric study was convenient as the data was easy to acquire and 

avoided the practical and ethical difficulties and cost involved in obtaining and analysing 

participant samples for AMD risk genes. The usefulness of associating AMD FH with MPOD is 

limited, for confirmed as well as for reported AMD FH because the two main genes associated 

with the highest risk of AMD (CFH and ARMS2) were not individually found to associate with 

lower MPOD. Individuals homozygous for risk alleles of both CFH and ARMS2, however, had 

significantly lower MPOD measured at 0.5° eccentricity.[405] 

 

The lack of a significant association between MPOD and AMD FH found by this and other 

studies,[401, 601] may be explained by the observation that AMD risk genes influence them 

differently. AMD FH is associated with CFH genes,[405] whereas HFP-derived MPOD in 

females measured at 0.5° eccentricity, is associated with specific genes affecting 

xanthophyll binding, carotenoid cleavage, retinoid recycling, lipid and carotenoid transport 

and metabolism, HDL or cholesterol status, long-chain fatty acid synthesis or metabolism 

and the gene associated with Sjögren-Larrson syndrome.[801]  
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The higher MPOD associated with those with a FH of AMD may have resulted from their 

being more likely to receive advice about AMD prevention or supplement usage.[594, 704]  The 

0.5° target size used in this study may also have been too large to detect genetic 

differences in MPOD, found to be strongest at the spatial profile peak, within 0.17° (10') 

eccentricity.[403, 404] 

 

A limitation of any study examining AMD family history, whether reported or confirmed, is 

the requirement to control for factors other than genetic that may have increased the risk of 

developing AMD in the affected relative. This study excluded smokers from taking part, but 

participants were not questioned about smoking or other risk-increasing lifestyle habits or 

environmental exposure of their AMD affected relatives.  

 

The production of a commercial genetic test to predict those individuals from the general 

population that will develop AMD has been hampered by the challenge that remains in 

developing a unifying genetic susceptibility hypothesis.[785, 811] The Royal College of 

Ophthalmologists in the UK and the American Academy of Ophthalmology have concluded 

that routine genetic testing for AMD should be avoided until it can be shown from clinical 

trials that treatment would benefit those with specific disease-associated genotypes.[812, 813] 

 

Development of the Macula Risk PGx test assessing 15 nucleotide polymorphisms in 12 

AMD risk genes and the publication of two recent papers, have lead to an NHS technology 

alert suggesting that the components of supplements recommended to AMD patients at 

high risk of progression may be genetically tailored in the near future.[124, 814]  

 

Awh et al. reported that patients with no CFH risk alleles and with one or two ARMS2 risk 

alleles derived maximum benefit from zinc-only supplementation. Conversely patients with 

one or two CFH risk alleles and no ARMS2 risk alleles derived maximum benefit from 

antioxidant-only supplementation. The outcome measure used in the study was the rate of 

progression from moderate to advanced AMD.[814] Feigle et al. reported that MPOD was 

significantly affected by specific BCMO1 gene variants (the level of β-carotene conversion 

efficiency was positively associated with MPOD), and that BCMO1 SNPs should be 

determined when assessing the effects of carotenoid supplementation.[809]  

 

McKay et al. reported that five SNPs in the scavenger receptor class B, member 1 

(SCARB1 or SR-BI) gene were significantly associated with serum L concentration and one 

SNP in SCARB1 was significantly associated with MPOD (p < 0.01). No evidence of a 

gender-specific interaction between serum L, MPOD or SCARB1 SNPs was found. This 

study performed multiple regression analysis with correction for age, BMI, gender, HDL, 

LDL, triglycerides, smoking and dietary L and Z levels.[815] The protein encoded by this 
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gene mediates cholesterol transfer to and from HDL.[816] It is possible that genetic variants 

within SCARB1 up- or down-regulate endothelial function or inflammatory pathways.[815] 

 

Yanova-Doing et al. confirmed the association between BCMO1 and SCARB1 with baseline 

levels of serum L. The authors also reported four gene variants that were associated with 

MPOD response to supplementation with 18 mg L and 2.4 mg Z, for six months. Single 

nucleotide polymorphisms on RPE65 and FADS1 were positively correlated with MPOD 

level, whereas SNPs on ABCA1 and SCARB1 were negatively correlated with MPOD level 

after supplementation.[817] 

 

Until targeted treatment for risk genes is proven effective the best advice for AMD 

prevention, especially for those at high genetic risk, and those with early AMD is modulation 

of environmental and lifestyle RF.[97, 799, 818]  The second Age-Related Eye Disease Study 

(AREDS2) supplementation (with L and Z, but without β-carotene) may be offered to those 

with bilateral large drusen, or large drusen in one eye and advanced AMD in the other 

eye.[452, 819] 

 

Many UK Ophthalmologists feel however, that in view of the high nutritional content of the 

Western diet, a large proportion of qualifying patients would not benefit from AREDS or 

AREDS2 supplements. The AREDS2 study confirmed that there was no benefit from L and 

Z supplementation to those who consumed ≥ 1.03 mg per day of L and Z in their diet. 

However, participants with a low dietary intake of L and Z at the start of the study (≤ 0.82 

mg per day), who took the AREDS formulation with L and Z for the duration of the study, 

were 25% less likely to develop advanced AMD compared to participants with an equivalent 

dietary intake of L and Z who did not receive L and Z supplementation.[452, 820] 

 

The corrected sample size required to detect a difference in MPOD of 0.01 assuming 80% 

power at 5% significance was estimated to be 302. Although a trend towards lower MPOD 

with AMD FH was revealed by this study, it lacked the power to detect a significant 

difference. 

 

2.4.10 Migraine 

A non-significant trend for lower MPOD for individuals reporting migraine was noted. Trends 

for higher MPOD for light-triggered and lower MPOD for non-light-triggered and non-aura 

migraine were noted. Numbers of migraine cases were small for all comparisons. 

 

One study using an objective method of MPOD measurement (FAF) found significantly 

higher MPOD levels in migraineurs compared to controls.[193] 

Cortical hyperexcitability / hyper-responsivity has been proposed as the cause of migraine 

symptoms,[821-823] however, gastric symptoms have been reported to originate from 
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peripheral dopamine receptors in the gut.[824, 825] It is plausible that peripheral dopamine 

receptors in the retina may contribute to light sensitivity in migraine, although this is not 

certain.[826-828] 

 

The mechanism underlying migraineous aura is not considered to be retinal in origin, but 

due cortical spreading depression, which is an intense depolarisation of neuronal and glial 

membranes with loss of resistance and cessation of synaptic activity that spreads across 

the cortex at about three mm / min,[829] and an associated reduction in cerebral 

neurovascular coupling.[617] 

 

Flicker has been implicated as a significant trigger for migraine.[830, 831] It is accepted that 

the perception of flicker is mediated through the geniculo-cortical pathway with a photopic 

spectral sensitivity which peaks at 560nm (yellow).[832] Photophobia and the flicker aversion 

response may involve a subcortical pathway derived from the population of Opn4-

containing ipRGC with peak sensitivity at 480nm (blue), although this remains 

controversial.[826-828, 832] 

 

Retinal adaptation is thought to be related to sustained activity from ipRGC to A18 

dopaminergic amacrine cells which are likely to be responsible for dopaminergic signalling 

in steady illumination,[334] and HC coupling mediated by the direct effect of dopamine on HC 

gap junctions.[833] Dopamine levels are low interictally but increase during a migraine 

attack.[186, 834] Dopamine receptors are thought to be hypersensitive in migraineurs as a 

consequence of low dopamine in the interictal phase.[835-837]  

 

Higher MPOD levels have been associated with reduced visual discomfort and fatigue, 

especially that derived from blue light,[567, 622, 838, 839] which may help to modulate symptoms 

of photophobia in migraineurs interictally, and in other conditions such as Meares-Irlen 

syndrome (MIS), also known as Visual Stress, characterised by an inability to adapt 

(habituate) to a steady, bright background.[840, 841] This symptom may be observed with 

dyslexia, but it is also present in the non-dyslexic population. 

 

In light-triggered migraine however, the inability to habituate to flicker, rather than uniform 

brightness is of greater importance in triggering the ictal phase of migraine.[830, 842] Higher 

MPOD levels have been associated with increased visual performance, glare recovery and 

flicker sensitivity (critical flicker, or fusion frequency, CFF),[579, 621, 702, 843] whereas CFF for 

migraine sufferers with and without aura was significantly lower compared to controls.[831, 

844] 

 

MPOD reduces blue light exposure to cones located in the outer retina by approximately 

40%,[845] but is less likely to affect ipRGC located in the inner retina. The geniculo-cortical 
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and ipRGC pathways are neither tightly coupled, nor operate in isolation,[334, 335, 846] 

therefore any intervention (e.g. MP) that modulates one of these pathways unilaterally, has 

the potential to correct in imbalance between these two pathways or conversely, trigger 

migraine symptoms by creating an imbalance, especially in those whose ability to habituate 

is already reduced or absent.[847-849] 

 

Choroidal thinning is a feature of age and AMD. Inter-ictal migraine is associated with 

foveolar choroidal thinning and chronic ischaemia. In the ictal phase of migraine choroidal 

thickness was reported to be variously thinner or thicker than average, possibly suggesting 

ischaemia / reperfusion, which is associated with an inflammatory response. Reduced 

neurovascular coupling may lead to retinal ischaemia and the combination of retinal and 

choroidal ischaemia may induce a retinal watershed zone affecting bipolar cells in the inner 

nuclear and inner plexiform layers. Retinal ischaemia has the potential to activate Mc 

leading to further inflammatory changes and down-regulating antioxidant capacity. The 

effect of reduced retinal habituation (adaptation) may lead to larger pupil size and increased 

retinal illuminance under high luminance conditions and dopamine-related dysfunction in 

disc shedding and phagocytosis which have the potential to affect deposition of supra-RPE 

reticular pseudodrusen and sub-RPE drusen respectively (section 1.3 and fig. 1.3).  

 

A legitimate criticism of this theory is that while migraine generally exhibits a reduction in 

frequency and severity with age, AMD risk clearly increases with age. The R/RPE/C 

antioxidant system (see A2.1) is more effective in younger individuals when the circulatory 

and inflammatory effects of migraine are at their greatest. There is evidence that the risk of 

developing early AMD associated with several CFH polymorphisms was actually lower than 

normal for individuals less than 55 years of age (OR 0.37 to 0.48), whereas the same CFH 

polymorphisms were associated with increased AMD risk for those aged over 75 years (OR 

1.87 to 2.80).[810] It is of course plausible that choroidal thinning may remain after migraine 

headaches have ceased with age, and that any migraine-related retinal / choroidal damage 

at an early age may have an accumulative effect on AMD risk in older age. 

 

Migraine summary 

The author has suggested a plausible mechanism (fig. 1.3) for migraine to be considered as 

a RF for AMD. This study found a nonsignificant trend for lower MPOD with migraine. A 

positive significant association between objectively-measured MPOD and migraine was 

reported by Frandsen.[193] A trend for higher than normal HFP-derived MPOD in light-

triggered migraine and lower than normal for individuals with migraine generally, and in 

non-light-triggered migraine and migraine without aura was revealed.  

 

The relationship between MPOD and light trigger for migraine requires further investigation 

for two important reasons. 
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1 If this association is confirmed, it is important to establish whether the relationship 

 is causal, i.e. does more MP lead to a greater risk of light-triggered migraine? 

 

2 If a causal relationship between MPOD and the light trigger for migraine were 

 confirmed, it would suggest that caution should be exercised when increasing 

 MPOD levels in migraine sufferers because the risk of light-triggered migraine may 

 be increased.   

 

Dopamine is significantly involved in the pathophysiology of migraine, as well as in other 

conditions associated with light-sensitivity such as attention deficit hyperactivity disorder 

(ADHD).[186, 835, 850] Pharmacological downregulation of over-responsive dopamine receptors 

using dopamine agonists may be used for migraine prevention.[186, 836] 

 

It is plausible that a reduction in light-triggered migraine may also be achieved by adopting 

a high dopamine diet; increasing intake of oily fish,[851] bananas[852] and anecdotally 

almonds, eggs and kale,[853, 854] whilst avoiding sugar and saturated fat.[855, 856] Exercise and 

obesity avoidance will also normalise dopamine levels,[857, 858] although the pattern of 

habitual food consumption, healthy or otherwise may be genetically determined.[762] This 

advice is remarkably similar to that recommended for AMD prevention. 

 

Dietary (nutritional) therapy is an established treatment for phenylketonuria (PKU),[859-861] a 

rare metabolic disorder caused by a deficiency in the production of the hepatic enzyme 

phenylalanine hydroxylase (PAH), causing elevated levels of phenylalanine.[862] L-

phenylalanine is converted to the amino acid L-tyrosine by PAH and tyrosine undergoes 

further enzymatic conversion to form dopamine.[862, 863] Patients with PKU with a dietary 

insufficiency of tyrosine will develop symptoms associated with low dopamine levels.[864, 865] 

Therefore there is precedence for dietary modification leading to increased levels of 

dopamine. 

 

The corrected sample size required to detect a difference in MPOD of 0.001 assuming 80% 

power at 5% significance was estimated to be 424. This study lacked the power to detect a 

significant difference. 

 

2.4.11 Raynaud's phenomenon 

A non-significant trend for higher MPOD was noted for individuals reporting symptoms of 

Rph. The author is unaware of any previous studies examining the association between 

MPOD and Rph. 

It is likely that individuals with both subtypes of Rph, primary and secondary were 

represented in this study. Under normal conditions primary Rph (pRph) is characterised by 

normal nail-fold capillaries, whereas sRph sufferers have tortuous and dilated capillaries 
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and areas of vessel dropout.[866] In Optometric practice nail-fold capillaries may be 

examined through an oil drop using a direct ophthalmoscope set at 40 diopters.[194] 

 

Oxidative stress resulting from ROS secondary to ischaemia and reperfusion is involved in 

the pathogenesis of Rph.[194] N-acetylcysteine, a drug with antioxidant properties, primarily 

used as a mucolytic agent and Probucol, the cholesterol lowering and antioxidant drug, 

were both found to significantly lower frequency and severity of Rph episodes.[867, 868] 

Conversely, treatment with micronutrient antioxidants; selenium, β-carotene, vitamin C, 

vitamin E and methionine did not significantly improve Rph secondary to limited cutaneous 

systemic sclerosis.[869] While calcium channel blockers remain the most widely used drugs 

to treat Rph, other treatments are available and have been reviewed in detail by several 

authors.[194, 203, 204, 870] 

 

The higher prevalence of Rph, like other vascular disorders such as migraine in women,[194] 

especially between menarche and menopause, suggests that hormones are involved with 

its pathogenesis.[871] Epidemiological studies have suggested that oestrogen is associated 

with Rph, possibly acting as a vasodilator associated with nitric oxide (NO) production and 

cytochrome P450 activity.[872, 873] In section 2.4.5 the association between lower oestrogen 

and increased AMD risk was discussed. The author is unaware of any studies associating 

Rph with MPOD or with increased AMD risk, despite a number of shared RF between Rph 

and AMD (table 1.11). A plausible theory for the involvement of Rph in AMD risk was 

proposed in the introduction to this thesis (fig. 1.3). 

 

It is plausible that MPOD deposition in the retina may be adversely affected reduced or 

dysfunctional OVP, however retinal MP levels were reported to be relatively stable despite 

variations in dietary and serum L and Z, and saturable implying that above a certain MPOD 

level no more MP will be absorbed. The implication of these observations is that MPOD 

levels may not be affected by local variations in OVP. 

 

Raynaud's phenomenon (pRph and sRph), like migraine, is associated with reduced retinal 

habituation and has the potential to lead to increased levels of ischaemia / reperfusion, 

oxidative stress and inflammation. These factors in the present of detrimental complement 

pathway gene polymorphisms have the potential activate changes that may result in AMD. 

 

A higher prevalence of migraine in patients with primary Rph was also found by another 

study. This association was even greater for those with a family history of Rph.[874] Whole 

genome linkage analysis has identified three candidate genes for Rph; beta subunit of the 

muscle acetylcholine receptor and the serotonin 1B and 1E receptors.[875] 

 

Raynaud's phenomenon summary 
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MPOD levels of patients with reported Rph were not significantly different from normal. The 

association between Rph and migraine suggests that they are part of a more widespread 

disorder of vascular tone with a genetic predisposition.[194, 876] 

 

Oxidative stress is involved with Rph pathogenesis,[194] with catalase being reported as a 

reliable marker of the severity of oxidative stress in this condition.[877] Both ilaprost and 

probucol have been considered for the treatment of Rph.[877, 878] Both have antioxidant 

activity, and probucol was also found to down-regulate glial reactivity, induce ApoE 

production and improve HDL function,[879, 880] all of which may also benefit AMD risk and 

progression.  

 

The corrected sample size required to detect a difference in MPOD of 0.002 assuming 80% 

power at 5% significance was estimated to be 82. This study had  sufficient power to detect 

a significant difference. 

 

2.4.12 Vascular dysregulation 

No significant difference in MPOD was found for those participants with and without self-

reported VDys. When calculated to three decimal places, median MPOD was 0.002 lower 

for individuals reporting symptoms of VDys compared to those without. The author is 

unaware of any previous studies examining the association between MPOD and VDys. 

 

No distinction was made between primary vascular dysregulation (pVDys) and secondary 

vascular dysregulation (sVDys) in this study, but based on the age range of the sample it is 

likely that both types were represented. 

 

Those with pVDys are more likely to suffer from migraine, but the two conditions are 

principally independent, however like migraine, pVDys may be associated with reduced 

neurovascular coupling in response to flickering light.[618] In this study 41% of participants 

with migraine also reported symptoms of VDys. 

 

As a consequence of deficient autoregulation choroidal blood flow was reported to be 

higher than normal in subjects with pVDys, possibly in an attempt to maintain constant 

ocular temperature, despite reduced peripheral blood flow.[881, 882] However, in glaucoma  

patients with pVDys, choroidal blood flow was lower than those without pVDys.[205] 

 

Glial activation of retinal astrocytes and Mc results from hypoxia in VDys. [883] The resultant 

changes in function and morphology of these cells leads to a reduction in antioxidant 

capacity by lowering GSH levels,[294, 884, 885] and can trigger an inflammatory response in this 

immune privileged tissue.[269, 798, 886] Macrophages are visible on OCT as hyper-reflective 
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spots in some patients with VDys, glaucoma, AMD, diabetes and vein occlusions.[205, 887, 888] 

Light-triggered glial activation is also a component of AMD pathophysiology.[278, 295, 889] 

 

Like migraine, pVDys is associated with dysfunctional neurovascular coupling in response 

to flickering light. Vascular dysregulation is considered to affect ocular blood flow to a 

greater degree than Rph.[205] No studies were found comparing VDys with AMD, MPOD or 

GRT. Shared RF for VDys and AMD include; reduced choroidal blood flow, oxidative stress, 

inflammation, retinal glial activation, blood-retina barrier defects and lack of exercise.[205, 228, 

257, 613, 614, 890, 891] The author has proposed a possible association between VDys and AMD 

risk (fig. 1.3). 

 

In animal models exposed to retinal ischaemia / reperfusion injury, L was found to decrease 

Mc gliosis by inhibiting GFAP, thus exerting an anti-inflammatory effect by suppressing 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and resultant 

production of pro-inflammatory markers interleukin-1 beta (IL-1β) and cyclooxygenase-2 

(Cox-2) in Mc.[892-894] (See section 4.3). 

 

Vascular dysregulation summary 

The author has suggested a plausible mechanism (fig. 1.3) for Rph and VDys to be 

considered as RF for AMD. The OVP RF Rph and VDys may potentially be more important 

factors in AMD risk than migraine because they are more likely to persist until later in life 

than migraine. The alteration in choroidal circulation secondary to VDys did not significantly 

affect levels of MPOD. This analysis would have benefitted from a larger sample size, 

differentiation between pVDys and sVDys and controlling for age, gender and other factors 

thought to affect both variables. 

 

Vascular dysregulation, especially sVDys, which is known to be associated with reduced 

choroidal blood flow, should be considered as a putative RF for AMD. Those with pVDys 

combined with harmful complement gene polymorphisms and / or reduced antioxidant 

capacity may also have increased risk of AMD. 

 

Dietary advice designed to improve ocular circulation and reduce oxidative stress in 

VDys,[895] is likely to benefit those at risk of AMD with reduced choroidal circulation.  Foods 

containing omega-3 (oily fish and linseed / flax seed), polyphenols (green tea, red wine, 

dark chocolate), lycopene (tomatoes) and anthocyanines (blueberries and bilberries) should 

be added to normal dietary recommendations for AMD. If the anti-inflammatory effects of L 

reported in animal studies can be replicated in humans, this may also be recommended in 

dietary or supplement form for those with VDys. 

 

The corrected sample size required to detect a difference in MPOD of 0.01 assuming  
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80% power at 5% significance was estimated to be 886. This study did not have sufficient  

power to detect a significant difference. 

 

2.4.13 Difficulty with HFP task 

It was observed that older individuals and those with advanced stages of ocular disease 

experience more difficulty with the HFP task, especially with detection of flicker in the 

peripheral target.[507, 680] An inappropriate flicker rate for the HFP target was also reported to 

increase difficulty with the HFP task.[709] The author is unaware of any study comparing 

age, MPOD or GRT with participants experiencing difficulty with the HFP task and those 

without difficulty. 

 

Crossland et al. reported no significant relationship between age and fixation stability.[896] 

The presence of reduced VA, and / or central scotoma secondary to ocular disease are 

likely reduce the ability to fixate a steady target. The likelihood of reduced VA and the 

presence of central scotoma increase with age. Reduced VA was associated with lower 

MPOD measurements in some,[596, 658] but not all studies.[593, 594, 655, 659]  

 

The Baltimore Study of Ageing reported that distance VA was reduced with age in healthy 

individuals and those with ocular disease.[897] In the present study participants were 

excluded if LogMAR VA was less than 0.1, if any macular disease was visible with the 

direct ophthalmoscope or if they reported any history of macular disease. 

 

Group analysis revealed no significant difference in MPOD values for participants who 

experienced some difficulty with HFP MPOD measurements requiring the measurements to 

be repeated, compared to those who found no difficulty with this technique. Twenty one  

(21%) of the 100 participants, six male and 15 female were required to repeat MPOD 

measurements. The median age of those experiencing difficulty was 53.9 years (IQR 25.5 

years) compared to 47.9 years (IQR 11.8 years) for those without difficulty. A Mann-

Whitney U test revealed no significant difference between the ages of the two groups.  

 

To test whether there was an association between GRT and difficulty with HFP task, a 

Mann-Whitney U test was performed. Although those experiencing difficulty had longer 

GRT (41 s, IQR 28 s) compared to those without difficulty, (40 s, IQR 24 s) the difference 

was not significant. 

 

This study did not include any participants with ocular disease. The results suggest that 

difficulty with the HFP task may be more greatly affected by ocular disease (which 

increases with age) than age. 
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The corrected sample size required to detect a difference in MPOD of 0.02 assuming 80% 

power at 5% significance was estimated to be 738. This study did not have sufficient power 

to detect a significant difference. 

 

2.5 Chapter conclusion 

This study examined the relationship between MPOD measured at 0.5° eccentricity using 

heterochromatic flicker photometry (HFP) and ocular dominance and difficulty with HFP 

task. The association between MPOD and six confirmed or putative RF for AMD; age, 

gender, BMI, %BF, iris colour and AMD FH, and three OVP RF; migraine, Rph and VDys 

was also investigated. 

 

No significant differences were found between right and left eye, first and second eye or 

dominant and non-dominant eye MPOD, however, there was a significant bias between 

dominant minus non-dominant eye and right minus left eye MPOD (both with eye order 

measured randomly), although this did not survive the removal of a single outlier from the 

MPOD data. A small negative correlation was found for the difference between dominant 

and non-dominant eye MPOD, and age that warrants further study. No significant difference 

in MPOD, age or GRT was found between those experiencing and not experiencing 

difficulty with the HFP task. This result differs from the observations reported by other 

authors, who reported that difficulty with MPOD was associated with increasing age. 

 

No significant differences in MPOD levels were found for any of the AMD RF examined, 

although the trends followed the results reported by the majority of other studies. Sample 

size calculations were based on MPOD differences reported from similar studies using 

HFP-derived MPOD values, or calculated using G*Power statistical software if previous 

data was not available. 

 

It is evident that physiological conditions such as vitreomacular traction resulting in pseudo-

operculae, strabismus, floaters and coloboma and a variety of pathological conditions will 

adversely affect MPOD measurements. Other causes of variation in MPOD with age are 

listed in appendix A2.4. 

 

Spectral domain OCT macular scans may be used to exclude the majority of these 

conditions and should be included in any MPOD study. Objective measurement of the 

MPOD spatial profile would control against individual variability in MPOD measurement due 

to irregular MP deposition, inevitable if MPOD is only recorded for one eccentricity. 

 

The greater question of whether a lack of MPOD is associated with an increased risk of 

AMD development or progression through early stages of AMD remains open. AREDS2 
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reported that MP supplementation reduced progression to advanced AMD, but only in 

participants with a low dietary intake of L and Z.[898]  

 

It is a concern for those promoting the ocular protection theory for MP that there appears to 

be no significant association between MPOD and age. Previous studies finding an inverse 

correlation between HFP-MPOD and age may have been affected by instrument design 

characteristics that lead to an underestimation of MPOD in the elderly. Age is the most 

important RF for AMD development and progression and the protection theory ought to 

predict that MPOD levels would be lower for participants with AMD. The majority of studies 

to date have not reported a significant difference in MPOD levels between participants with 

early AMD and without AMD.[404] 

 

A further concern is that repeatability (CoR) for this method of HFP MPOD measurement is 

greater than the expected increase in MPOD after improved dietary intake or 

supplementation of macular xanthophylls. Results from this study suggest that a period of 

rest between HFP MPOD measurements may be beneficial and has the potential to 

improve repeatability. 

 

The relationship between MPOD and age may not be accurately described by linear 

statistical methods. The peak in MPOD level in the middle age range followed by a drop in 

MPOD in older participants reported by several studies and revealed as a trend in this 

study, would not be apparent using bivariate correlation. 

 

There are arguments against the protection theory for MP. Werner and Beirne have 

independently concluded that their results do not support the protection theory for MP, due 

to the lack of an association with age.[506, 899] 

 

The bias on repeated MPOD measurements, particularly with HFP, is considerably greater 

than the expected increase in MPOD after supplementation. Bartlett et al. reported a 

coefficient of repeatability for two users of 0.33 and 0.28, for the MPS 9000 screener,[499] 

whereas the mean increase in MPOD derived from 36 studies of healthy eyes and eyes 

with AMD, after MP supplementation was 0.16 (SD 0.34).[900] Excluding results from five 

studies examining patients with AMD, the present author has calculated a mean increase of 

only 0.08 (SD 0.05) for the remaining 31 studies of healthy eyes from the data reported in 

the previous paper. It is therefore difficult to be confident that a "low" value is really low, 

unless the test is repeated on another occasion (unlikely in a commercial clinical setting) or 

that any post-supplement increase in MPOD is genuinely caused by MP supplementation. 

 

The sample size was corrected for unequal size groups (allocation ratio). Assuming 80% 

power (1 - β) at 5% significance level, the sample size was sufficiently large to be confident 
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that there was no significant difference for ocular dominance, age, BMI (mixed-gender), and 

Rph. This study was underpowered to detect a significant difference for difficulty with HFP 

task, gender, iris colour, AMD FH, migraine and VDys. Participant numbers were small, 

especially for migraine however, and so these results should be interpreted with caution. 

 

The mean MPOD value for this healthy, White UK population was 0.38 (SD 0.17) and 0.40 

(SD 0.16) for the right and left eyes respectively, with eye order randomised (n = 97, three 

monocular cases removed). The LoA (CI 95%) for this sample was 0.21, suggesting a 

normal range of first eye MPOD values from 0.17 to 0.59. 

 

What is currently known: 

1) There is no interocular difference in MPOD between healthy eyes. 

2) Although controversial, the majority of studies using subjective and objective 

 methods of MPOD measurement show no significant association with AMD RF. 

3) In some HFP studies the age association may have been caused by instrument 

 design. 

5) Migraine is associated with higher objectively measured MPOD. 

4) Difficulty with HFP measurement of MPOD is age-related. 

 

What this study has found: 

1) A possible bias between sequential interocular measurements of HFP MPOD. 

2) The difference between dominant and non-dominant eye MPOD increases with age. 

3) No association between HFP-derived MPOD and any of the AMD or OVP RF, 

 although several of the comparisons lacked sufficient power. 

4) Difficulty with this method of HFP-derived MPOD is unrelated to age, MPOD or 

 GRT. 

 

Chapter summary 

This chapter examined two aspects of MPOD. The effect of sequential versus randomised 

measurement and ocular dominance on MPOD measurements and the relationship 

between MPOD and selected AMD and OVP RF. The next chapter will investigate four 

different aspects of GRT. An interocular comparison of GRT and the effect of ocular 

dominance on GRT, the relationship between GRT and selected AMD and OVP RF, the 

suitability of GRT as a surrogate measure for MPOD and GRT repeatability.  
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Chapter 3 Glare recovery time study (Experiment 2) 

 

3.1 Brief introduction 

The aim of this practice-based, cross-sectional study was four-fold. (a) To perform an 

interocular comparison for, and to investigate the effect of ocular dominance on this method 

of GRT. (b) To investigate the relationship between GRT and selected confirmed and 

putative AMD RF (age, gender, BMI, calculated %BF, iris colour and AMD FH), and OVP 

RF (migraine, Rph and VDys). Risk factors were limited to those easily measureable in 

optometric practice. (c) Assess the suitability of this method of GRT as a surrogate 

measure for MPOD. (d) To investigate intra-session and inter-session repeatability, and the 

effect of using the same vs. different test chart letters for repeated measures of GRT. 

Background information about GRT and its association with selected AMD RF was 

discussed in the introduction to this thesis (sections 1.5 and 1.7) and is summarised below 

in the brief introduction to this chapter. 

 

Table 3.1 Summary of investigations (GRT) 
Interocular comparison A high level of interocular agreement is important if GRT has any value as a baseline measure 

prior to the onset or progression of AMD, where ocular involvement may not be symmetrical. 
Ocular dominance One study using a photo-flash method of GRT reported a bias towards longer GRT in the non-

dominant eye.[329] 
Age Age is the strongest, established RF for AMD.[14, 41, 43, 625] The relationship between age and 

GRT has been reported to be controversial.[308] 
Gender Gender has not been consistently reported to be a RF for AMD. The Beaver Dam and BMES 

suggested that women might have a higher risk of developing AMD.[625, 627] The higher 
prevalence of late AMD in women compared to men, has been explained in part by the larger 
number of women in the older age range.[1, 45] The relationship between GRT and gender has 
not been consistent.[361, 602] 

BMI Higher than normal BMI was associated with increased risk of both early and late AMD.[133, 628] 
Another large study found no association between BMI and AMD.[39] No previous studies were 
found comparing GRT and BMI. 

%BF Higher levels of abdominal fat (waist / hip ratio), but not BMI or %BF was associated with 
increased risk of AMD in men, whereas all three anthropometric measures were related to 
increased AMD risk in women.[630] The author is unaware of any studies comparing GRT and 
%BF. 

Iris colour Light iris colour was associated with significantly greater light transmission and reduced 
choroidal melanin compared to darker irides.[631, 632] Significantly more cases of AMD have 
been reported for individuals with light compared to dark irides,[633] however BDES found no 
association between iris colour and AMD incidence and progression,[634] but did report an 
association between lighter iris colour and the development of RPE pigmentary abnormalities 
(ARM).[635] No association between GRT and iris colour was reported by one study.[329] 

OVP Vasospasm has been reported to play a central role in the pathogenesis of migraine, Rph and 
VDys.[194, 619, 638] Vasospasm was reported to affect choroidal and ciliary vessels more than 
retinal vessels.[619] Age-related macular degeneration RF including age, gender and iris colour, 
were associated with a reduction in choroidal blood flow.[643] The author is unaware of any 
studies examining the association between GRT and the following OVP RF. 

Migraine Participants were classified as self-reported migraine or non-migraine sufferers. Migraineurs 
were further divided into self-reported aura / non-aura and light-triggered or non light-triggered 
groups. 

Rph Raynaud's phenomenon is a cold-triggered, episodic vasospasm of the arteries in the 
extremities, causing pallor followed by cyanosis and / or redness of the fingers or toes.[203] 
Raynaud's phenomenon is classified as primary (pRph) when ideopathic, with age of onset < 
30 years and as secondary (sRph) when caused by another condition (e.g. connective tissue 
disorders), with age of onset > 30 years.[194, 645] Prevalence is reported to vary from 3.4% to 
20% for women and from 3% to 12.5% for men,[194, 203] with pRph accounting for 81% to 89% of 
cases.[901, 902] Raynaud's phenomenon was associated with a reduction in retinal capillary blood 
flow, which could result in ischaemia resulting in retinal dysfunction.[646] 

VDys Vascular dysregulation may be classified as primary or secondary. The exact prevalence of 
pVDys is unknown. Krauchi et al. reported from a Swiss population, that 31% of women and 
7% of men complained of cold extremities,[903] however, Gasser et al. reported that only about 
10% of women and 3% of men exhibit classic symptoms of pVDys.[207] 
Primary VDys, formerly known as vasospastic syndrome, cases have an inborn difference in 
their response of their vascular system to cold temperature, mechanical and physical 
stress.[205, 206] Primary VDys occurs more frequently in young, slim, adult females, with 
symptoms manifesting at puberty and reducing with age,[208] and is associated with a history of 
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cold hands (and sometimes feet) unrelated to ambient temperature.[648] Sufferers also tend to 
have low blood pressure, especially at night.[209, 210] They exhibit less desire to drink due to the 
anti-dipsogenic effects of prostaglandin E2 on the hypothalamus, secondary to slightly raised 
levels of ET-1.[211, 212] Sleep onset is often delayed and sleep interrupted, especially if the feet 
are cold.[213] Systemic drug sensitivity is abnormal with pVDys cases requiring a reduced dose 
of some drugs (beta-blockers and calcium channel blockers) and possibly higher doses of 
others (e.g. painkillers).[212] Individuals with pVDys have disturbed autoregulation, leading to 
instability in ocular blood flow leading to repeated, mild reperfusion injury and oxidative 
stress.[647]  
Secondary VDys (sVDys) may result from a large number of especially inflammatory and / or 
auto-immune diseases,[205, 212, 647, 648] and results from a significant increase in circulating ET-1, 
which constricts vessels resulting in reduced blood flow to both the eye and the kidney.[215, 216] 

MPOD as a surrogate 
for GRT 

The predictive effective of MPOD levels for AMD is controversial,[175, 904] A significant, inverse 
correlation was reported between GRT and MPOD by several authors,[622, 623, 905] however 
another study found no significant association between these variables.[906] 

GRT repeatability Intra-session and inter-session repeatability was assessed for this method of GRT. Two 
studies examining inter-session repeatability for equilibrium bleach GRT were located.[330, 907] A 
literature search revealed intra-session repeatability studies for photo-flash GRT only.[329, 359, 361] 

Bias from same vs. 
different test chart letters 

Bias in GRT measurement related to prior knowledge of the test chart letters was assessed by 
comparing repeat measures using the same letters vs. different letters. 

 

3.1.1 Research objectives 

The aim of this research was to contribute to the body of knowledge that has been collected 

for the relationship between GRT and the following AMD RF; age, gender, BMI, iris colour 

and AMD FH, and to assess the utility of GRT as a surrogate measure for MPOD 

measurement. GRT repeatability was assessed. In an attempt to make an original 

contribution to the literature, the association between GRT and the following AMD and OVP 

RF; BMI and calculated %BF, migraine, Rph and VDys on GRT measurement were also 

investigated. Intra-session and inter-session repeatability and interocular comparison have 

not been assessed for this method of GRT prior to this study. There have been no previous 

studies of GRT levels in this population. 

 

3.2 Materials and methods 

 

3.2.1 Subjects 

For the a priori sample size estimation see section 2.2.1. 

 

Post hoc sample size estimation 

Sample size for the comparison between two means for GRT was calculated retrospectively 

from the data for age and gender from other studies collected (table 3.2), assuming 80% 

power (1 - β) at the 5% significance level (table 3.3). Effect sizes were obtained from the 

mean of at least two other studies. Similarly sized studies with White participants were 

included preferentially. The sample sizes were corrected for unequal numbers in each 

group (i.e. allocation ratio, r = larger group number / smaller group number). 

 

No previous studies were found for the association between the method of equilibrium-

bleach GRT used in this study and ocular dominance, mixed-gender BMI, iris colour, AMD 

FH, migraine, Rph, VDys and MPOD. In this case the effect size may be determined by 

logical assertion and conjecture,[651] or by calculation. G*power statistical software was 

used to calculate the effect size (from the mean and SD from each of the MPOD groups). 
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The calculated effect size was then used to the calculate sample size using the formulae in 

table 3.3. Sample size estimation was not performed for calculated %BF because this was 

derived from the BMI, age and gender data. 

 

Table 3.2 Independent variable effect size for GRT extracted from the literature 
Independent variable Study / Bleach time Ref. n Effect size (d) 
Age Malik (1971) / 30 s 

Collins (1989) / 10 s 

[571] 
[577] 

60 
65 

≤ 40: > 40 = 29.2 
≤ 55: > 55 = 27.6 
Mean = 28.4 

Gender Malik (1971) / 30 s 
Torkelson (1941) 40 s 

[571] 
[907] 

60 
150 

3.3 
9.0 
Mean = 6.2 

The author is unaware of any studies comparing equilibrium-bleach GRT with mixed-gender BMI, iris colour, 
AMD FH, migraine, Rph or VDys..  
 
Table 3.3 Post hoc sample size estimates for the GRT study 

AMD RF data Age 
≤ 50 vs 
> 50 years 

Gender 
male vs 
female 

BMI mixed-
gender 
≤ 25 vs > 25 
Kg / m2 

Iris colour 
light vs dark 

AMD FH 
FH vs no FH 

Mean difference (GRT) s 
Standard deviation (S) s 
Effect size (d) 

5.1 
14.7 
28.4 

3.6 
14.2 
6.2 

-0.07 
0.17 
0.39* 

-0.01 
0.16 
0.03* 

-0.06 
0.16 
0.38* 

n per group (2-sided) 
16/(d/S)2  
Power = 80%, α = 5% 
Assuming r = 1 

 
 
 
4 

 
 
 
84 

 
 
 
3 

 
 
 
455 

 
 
 
3 

Sample size (M) 8 168 6 910 6 
Allocation ratio (r) 
Number in smaller group (M1) 
(1 / (1 + r)) x M 
Number in larger group (M2) 
(r / (1 + r)) x M 

1.47 
 
3 
 
5 

2.62 
 
46 
 
122 

1.09 
 
3 
 
3 

1.61 
 
349 
 
561 

4.80 
 
1 
 
5 

Corrected value for M1 (M1c) 
M1c = r + (1/2r x M) [656] 

 
6 

 
220 

 
4 

 
734 

 
19 

Corrected sample size (Mc) 
M1c + M2 

 
11 

 
342 

 
7 

 
1,295 

 
24 

      
OVP RF and miscellaneous (bold 
border) data 

Migraine 
yes vs no 

Rph 
yes vs no 

VDys 
yes vs no 

Ocular 
dominance 

D vs ND 

MPOD 
≤ 3.8 vs > 3.8 

Mean difference (GRT) s 
Standard deviation (S) s 
Effect size (d) 

-0.02 
0.16 
0.11* 

-0.01 
0.17 
0.06* 

0.01 
0.16 
0.03* 

-0.01 
0.19 
0.03* 

0.01 
0.16 
0.03* 

n per group (2-sided) 
16/(d/S)2  
Power = 80%, α = 5% 
Assuming r = 1 

 
 
 
34 

 
 
 
128 

 
 
 
455 

 
 
 

642 

 
 
 

455 
Sample size (M) 68 256 910 1,284 910 
Allocation ratio (r) 
Number in smaller group (M1) 
(1 / (1 + r)) x M 
Number in larger group (M2) 
(r / (1 + r)) x M 

5.27 
 
11 
 
57 

2.72 
 
69 
 
187 

2.37 
 
270 
 
640 

1 
 
- 
 
- 

1.1 
 

433 
 

477 
Corrected value for M1 (M1c) 
M1c = r + (1/2r x M) [656] 

 
184 

 
351 

 
1,081 

 
- 

 
502 

Corrected sample size (Mc) 
M1c + M2 

 
241 

 
538 

 
1,721 

 
1,284 

 
979 

* Effect size calculated from Log10 GRT values of mean and SD using G*Power assuming equal group size. Effect size 
convention: d = 0.2 small, d = 0.5, medium, d = 0.8 large. vs = versus. Previous GRT studies have not performed Log10 
transformation, therefore in order to meaningfully compare these results with the data obtained for age and gender in this 
study, the mean and SD were transformed back to non-logarithmic values. Back-transformation of the SD from the Log10 
GRT values produced an asymmetrical back-transformed range (BTR), therefore the mean of half of the values of the BTR 
were used as an estimate of the SD (s) for this calculation. D: dominant eye, ND: non-dominant eye. 
 

The opportunity for data collection was limited to 1-2 days per fortnight, dependent on 

whether the consulting room was in use on the author's day off. This allowed for data to be 

collected from a maximum of between 16 and 32 participants each month. 
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3.2.2 Recruitment 

This study was undertaken at the Bath Road practice of Norville Opticians in Cheltenham. 

The study required the recruitment of non-smokers aged 20 years and above with no eye 

disease. Data was collected for 150 participants over a 14-month period from the 4th of 

August 2010 to the 12th of October 2011, outside normal clinic hours. See appendix 4 for 

consent form, information sheets and practice poster. 

 

Initially patients whom appeared to meet the inclusion requirements were sent an invitation 

to participate with the reminder letter for their next routine eye examination. The reminders 

were computer generated based on the time since their last eye test. Over a period of one 

month 100 invitations were sent out. Response was very poor, with only one respondent, 

who was excluded as a smoker. Posters and information sheets were displayed at four 

Cheltenham practices. Colleagues were emailed with information about the study and were 

invited to refer any suitable patients.  

 

The author presented a talk about MP at the Norville Opticians annual professional staff 

meeting, where recruitment information was disseminated to colleagues. Suitable patients 

were invited by the author to participate in the study during their routine eye examination. 

This proved to be the most effective method of recruitment. 

 

3.2.3 Inclusion / exclusion criteria for both MPOD and GRT studies. Please refer to 

section 2.2.3 in the previous chapter. Inclusion / exclusion Information relevant to GRT is 

listed below. 

 

3.2.4 Justification for inclusion / exclusion criteria for GRT study 

 

3.2.5 Ethical approval / informed consent 

This study was approved by the Aston University, Audiology / Optometry Research Ethics 

Committee (AOREC) on the 12th of May 2010. (Reference number AO2010.15 HB) and 

adhered to the tenets of the Declaration of Helsinki, (sixth revision, October 2008).[670] 

 

An ethics amendment was approved by AOREC on the 22nd of September 2011, for the 

collection of additional data for the GRT repeatability study. See appendix 5 for the 

confirmation of ethics clearance forms. 

 

3.2.6 Instrumentation 

GRT was assessed after a 30-second (s) macular bleach using the macular stop on the 

Keeler Specialist direct ophthalmoscope set to the highest intensity setting and held 

approximately two cm from the eye of the participant. The ophthalmoscope was fully  
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Table 3.4 Justification for inclusion / exclusion (GRT study) 
VA Visual acuity was inversely correlated with GRT,[353] however no relationship between VA and GRT 

was evident for eyes with LogMAR VA of 0.12 and better.[573] Eyes with LogMAR VA of worse than 0.1 
were therefore excluded. 

Macular disease Glare recovery time is increased in many macular diseases such as AMD, CSC and CMO.[908-910] 
Alcohol 
consumption 

Alcohol was found to induce increased GRT that was dose-related. GRT values peaked one to two 
hours after alcohol consumption and fell to pre-drink levels after approximately six hr.[911] Participants 
were asked if they had consumed any alcohol that day. 

Marijuana use Marijuana was reported to produce a dose-related increase in GRT, evident for at least two hours after 
ingestion.[912] For ethical reasons participants were not asked about marijuana use. 

Diabetes Glare recovery time was prolonged in 55% of diabetics without retinopathy and if significantly 
increased, was predictive for those at a high risk of developing retinopathy.[624] Recorded as "yes", 
"no" or "unknown". Participants reporting "unknown" were included. 

Glaucoma Glare recovery time was significantly delayed in patients with chronic open angle glaucoma compared 
to normals (p < 0.001).[913] GRT measured at extrafoveal retinal locations was also increased in 
patients with primary open angle glaucoma.[914] Recorded as "yes", "no" or "unknown". Participants 
reporting "unknown" were included. 

Poor night vision Poor night vision may be caused by a variety of conditions such as chronic bowel disease,[308] RP,[915] 
subclinical vitamin A deficiency,[916] certain medications and disorders affecting photopigment 
regeneration, which could adversely affect GRT. Participants reporting this symptom were therefore 
excluded. 

Medication known 
to affect macular 
function 

Participants were excluded if they reported taking any of the following medications commonly known 
to affect macular function: The quinoline antimalarials; Chloroquine or Hydroxychloroquine,  the 
phenothiazine-derived antipsychotics; Chlorpromazine or Thioridazine, the oestrogen receptor 
antagonist Tamoxifen and the acne medication Isotretinoin.[917-920] Recorded as "yes", "no" or 
"unknown". Participants reporting "unknown" were included. 

Intestinal 
malabsorption 
disorders 

Micronutrient deficiency (including vitamin A) was reported to be quite common in patients with 
Crohn's disease and other chronic gastrointestinal diseases. [921] Recorded as "yes", "no" or 
"unknown". Participants reporting "unknown" were included. 

 

charged prior to each GRT measurement confirmed by the charge indicator on the charger 

base. The same rechargeable ophthalmoscope battery and bulb were used for all GRT 

measurements. The method of GRT assessment used in this study was selected because it 

utilised instrumentation readily available to most practicing optometrists, represented what 

is considered to be the most reliable method of photostress testing estimated to bleach 

more than 98% of visual pigment,[360, 573] and as a consequence of long duration of bleach 

and approximation of the requirements of a Maxwellian viewing system was relatively 

insensitive to pupil size differences.[573] 

 

The 30 s bleach was timed using a GymBoss interval timer / stop watch (gymboss.com). 

The interval timer was set to count down from 30 s, after which the stopwatch started 

automatically. This timer may be worn on the sleeve of the examiner, allowing the count 

down to commence at the same time as the start of the GRT bleach. The stopwatch was 

stopped when the subject was able to read all five letters on the line above that recorded as 

their VA. See the previous chapter for details of the other instrumentation used in this study. 

 

3.2.7 Methods 

See sections 2.2.7 for details regarding the measurement of BMI, %BF, LoA and 95% CI on 

LoA, iris colour categorisation, reasons for the 50-year cut-off in age group analysis, 

categorisation of OVP RF and measurement of ocular dominance. 

 

3.2.7.1  Manufacturer information for the spectral output of the direct  

  ophthalmoscope bulb. 
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The 3.5 Volt halogen / xenon ophthalmoscope bulb used in this study was free from any 

manufacturer markings or engravings. A spare 3.5 Volt ophthalmoscope bulb purchased at 

the same time as that used in this study was marked with the identification code; 1011-P-

5065. This is different from the 3.5 Volt halogen / xenon bulb used in the current incarnation 

of the Keeler Specialist ophthalmoscope (Keeler Ltd, Windsor, UK), which is identified by 

the marking; 1011-P-7034. Spectral emission data for the older bulb (5065) was obtained 

from the manufacturer after data collection had been completed. 

 

Figure 3.1 Manufacturer spectral emission data for the direct ophthalmoscope  

 

 
3.2.7.2  Back-transformation of the log10 transformed LoA  

 

Back-transformation of the log10 transformed LoA such that they may be represented on 

the non-log10-transformed Bland-Altman plots was achieved using methods described by 

Euser et al.[922] 

 

   Back-transformed LoA = 2x(10a - 1) / (10a + 1)  (Eq 3.1) 

 

Where a = Log10 derived LoA value and x = mean difference non-log10 data 

 

Back-transformation of the 95% CI on each LoA was not covered Euser et al., but may be 

achieved by substituting the value of the LoA with the upper and lower value of the CI for 

each LoA. 

 

When constructing the Bland-Altman plots the relevant mean difference value must be 

added to the LoA and CI values. 

 

3.2.8 Procedure 

 

3.2.8.1  Procedure for data collection 

Subjects were pre-adapted to normal room illumination for 10 min, during which time the 

consent forms were read and signed. Macular pigment optical density was measured prior  
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to GRT in the first session, but not in the second session. 

 

Table 3.5 Procedure for first session data collection (GRT) 
Sequence Procedure 
1 Pre-measurement exclusion factors were reviewed. 
2 LogMAR VA and distance fixation, pupil size measurements were recorded for both eyes. Gender, date of birth 

and iris colour were also recorded. 
3 Maculae were examined with direct ophthalmoscope, through non-dilated pupils for visible signs of pathology. 
4 Medication and nutritional supplements were recorded. 
5 The order of eye measurement was determined by the pseudo-random method of coin toss. 
6 Participants reporting a history of migraine or epilepsy were warned about the risk of light-triggered symptoms. 
7 A single central and peripheral MPOD measurement was obtained for both eyes, under normal room 

illumination. The non-tested eye was occluded with an opaque eye patch. Distance glasses (non-tinted) were 
worn for MPOD measurement. If none were available or if contact lenses were worn these were removed and 
the equivalent distance prescription in a trial frame was substituted. 

8 The first set of GRT measurements were obtained from both eyes, maintaining the same eye order as for the 
MPOD measurements. Glare recovery time measurements were recorded approximately eight minutes after 
MPOD measurements for each eye. 

9 Participants' weight and height were measured. BMI was calculated from the Eq 2.2. 
10 Exclusion factors were reviewed after the measurements above were recorded. 
11 Percentage body mass was calculated after data collection was complete, from the BMI, age and gender data 

using the Clinica Universidad de Navarra-Body Adipose Estimator (CUN-BAE) algorithm.[608] 
12 Eye dominance data measured by finger pointing and alternate occlusion, a variation of the Miles test,[685] was 

collected retrospectively for 44 subjects, at their subsequent routine eye appointments. 
13 The intra-session repeatability measurements of GRT were taken for both eyes, maintaining the same eye order, 

10 minutes after the initial GRT measurements and approximately 18 min after MPOD measurements for each 
eye.  

 

3.2.8.2  Time scale for data collection 

As data collection during clinics was not possible, data was collected from participants on 

days when no clinic was running, every Wednesday or every other Wednesday, depending 

on whether the consulting room was free, in this single consulting room practice. 

 

Data for the first session (MPOD and GRT measurements) were collected from the 4th of 

August 2010 to the 12th of October 2011. Data for the second session (GRT repeatability) 

were collected for 30 participants from the 31st of August 2011 to the 8th of November 

2011. The difference in time between repeat measures of GRT ranged from two weeks to 

nine months. Repeat measures were performed within six weeks for 18 participants and 

between three and nine months for the remaining 12 participants. 

 

Table 3.6 Time scale for MPOD and GRT procedure (up to one hour per subject) 
Informed 
consent, 
exclusion 
criteria and 
explanation of 
MPOD 
procedure 

MPOD MPOD discussion 
of MPOD 
results and 
procedure 
for GRT 

E1 GRT1 E2 GRT1 Weight 
and height 
for BMI 
pupil size 
and iris 
colour 

E1 GRT2 E2 GRT2 
1st eye 2nd eye 1st eye 2nd eye 1st eye 2nd eye 

10 min 5 min 5 min 3 min 1-4 min 1-4 min 10 min 1-4 min 1-4 min 
 

Table 3.7 Second session procedure for GRT (up to 31 min per subject) 
Adaptation 
to room 

GRT1 GRT1 Adaptation 
to room 

GRT2 GRT2 
1st eye 2nd eye 1st eye 2nd eye 

5 min 1-4 min 1-4 min 10 min 1-4 min 1-4 min 
Eye order from session 1 was maintained in session 2 
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The examination time required for each participant in the first session was approximately 50 

min; therefore appointments were scheduled at one-hour intervals. The examination time 

required for the second session performed on a different day to the first session was 

shorter, requiring approximately half an hour per participant. Subjects remained in the 

consulting room for the entire duration of each session and eye order was randomised by 

coin toss. 

 

3.2.9 Randomisation / masking 

See section 2.2.9 

 
3.2.10  

Statistical analyses were performed using SPSS 22 statistical software (IBM Corporation). 

Data were examined for normality using histograms, normal Q-Q plots, Shapiro-Wilk tests 

and corrected Kolmogorov-Smirnov tests. Non-parametric tests were used where normality 

was not demonstrated or where group size was smaller than 25 participants. A significant 

level of positive skew was demonstrated for the GRT data, therefore log10 transformation 

was used to create log-normal data allowing the use of Bland-Altman plots and Pearson 

correlations. Partial correlation was used to control for the effect of the other independent 

variables. Significance testing was two-tailed unless otherwise stated. 

 

3.2.11 Study design 

The cross-sectional study design was deemed the most suitable for this practice-based 

project. This type of study design is rated low on the traditional hierarchy of evidence, 

according evidence-based medicine,[686] having strengths and weaknesses compared to 

other study designs. Strengths include; quick and easy to conduct, data is only collected 

once, prevalence may be measured, multiple exposures may be studied and the design is 

good for descriptive analysis and hypothesis generation. Weaknesses include; inability to 

demonstrate cause and effect, inability to measure incidence, associations may be difficult 

to interpret and this study design is susceptible to bias due to low response and 

misclassification due to recall bias.[687] 

 

3.3 Results 

Data from 100 White participants were included in this study. Median GRT was 40 s (IQR 

25 s). Mean age was 50.3 years (SD 10.4 years), ranging from 24.2 to 75.8 years. The 

number of male and female participants was 27 (27%) and 73 (73%), respectively. Unless 

otherwise stated, GRT results are presented for the second set of measurements from the 

first eye data (Eye 1, GRT2), derived from 44 right eye and 56 left eye measurements. 

 

To obtain a fuller understanding of the relationship with BMI and %BF, participants 

excluded for low (n = 4) and high (n = 12) BMI were re-included for these analyses only. 
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These re-included participants had no additional reasons for exclusion other than reported 

raised cholesterol, which is associated with high BMI values. The mean age for these 116 

White participants was 51.0 (SD 11.0), ranging from 24.2 to 75.8 years. The number of 

male and female participants was 32 (28%) and 84 (72%), respectively. 

 

Ocular dominance was recorded retrospectively for 49 cases. Four equidominant cases 

were excluded. Data was missing for one eye in one case. Ocular dominance was 

confirmed for 30 right (68.2%) and 14 left (31.8%) eyes. Median GRT values for dominant, 

non-dominant and equidominant eyes were; 35.5 s (IQR 26.0 s), 34.5 s (IQR 26.0 s) and 

50.0 s (IQR 48.0 s), respectively. Participants mean age was 50.0 years (SD 11.4 years), 

ranging from 24.2 to 75.8 years. The number of male and female participants was 14 (32%) 

and 30 (68%), respectively. 

 

Intra-session repeatability measurements of GRT were taken from both eyes of 30 

participants. Participants mean age was 49.1 years (SD 8.5 years), ranging from 36.4 to 

71.6 years. The number of male and female participants was 9 (30%) and 21 (70%), 

respectively. 

 

As a consequence of the large number of results generated for this chapter, the following 

section is limited to results that are significant, approaching significance or have not been 

reported previously. For a full summary of the demographics and reasons for exclusion for 

this chapter please refer to the appendix section A1. The "A" prefix indicates that the 

associated figure or table may be found in the appendix. 

 

3.3.1 Demographics for first eye GRT 

The first GRT results for both eyes, from the initial session (GRT1) were likely to have been 

adversely affected by MPOD testing performed eight min before. For this reason the 

following statistical analyses were performed using the second set of GRT values (GRT2) 

for the first eye measured 10 min after GRT1 and 18 min after MPOD testing. 

 

The second GRT session (Rep. GRT) was conducted 2-5 weeks after the first session for 

18 of the 30 participants and 3-12 months after the first session for the remaining 12 

participants. 
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3.3.2 Summary of results 

 

Table 3.8 Summary of results for GRT 
Variable Subcategory Number of data 

(n) 
Median GRT 
(s) 

Interquartile 
range (IQR) (s) 

Age (years) Full age range 
≤ 50 years 
> 50 years 

100 
57 
43 

40 
35 
45 

25 
20 
26 

Gender Male 
Female 

27 
73 

41 
39 

25 
23 

BMI (both genders) 
(n = 116) 

Slim 
Normal 
Over-weight 
Obese 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
52 
48 
12 

30 
35 
43 
34.5 

40 
20 
27 
23 

BMI (male) 
(n = 32) 

Slim 
Normal 
Over-weight 
Obese 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

0 
7 
20 
5 

- 
40 
43 
32 

- 
34 
25 
17 

BMI (female) 
(n = 84) 

Slim 
Normal 
Over-weight 
Obese 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
45 
28 
7 

30 
35 
43 
35 

40 
19 
39 
25 

Male %BF (CUN-BAE) 
(n = 32) 

Lean 
Over-weight 
Obese 

≤ 20% 
> 20 to 25% 
> 25% 

2 
6 
24 

44.5 
34.5 
43 

- 
14 
25 

Female %BF (CUN-BAE) 
(n = 84) 

Lean 
Over-weight 
Obese 

≤ 30% 
> 30 to 35% 
> 35% 

7 
25 
52 

31 
35 
41 

15 
20 
26 

Iris colour Grey 
Blue 
Green 
Hazel 
Brown 
Black 

12 
33 
15 
16 
24 
0 

38 
38 
47 
37 
37.5 
- 

18 
16 
27 
31 
26 
- 

Reported AMD FH First and second degree 
First degree only 
Second degree only 
None 
Unknown (adopted) 

17 
11 
6 
82 
1 

45 
50 
43.5 
38.5 
20 

26 
39 
23 
23 
- 

Reported migraine Yes 
Light-triggered 
Non-light-triggered 
Aura 
No aura 
No migraine 

17 
6 
11 
10 
7 
83 

33 
33 
33 
32 
51 
41 

29 
24 
35 
18 
29 
24 

Reported Rph Yes 
No 
Unknown 

27 
72 
1 

41 
40 
25 

26 
22 
- 

Reported VDys Yes 
No 
Unknown 

28 
69 
3 

40.5 
41 
33 

26 
25 
- 

MPOD ≤ 0.39 
> 0.39 

48 
52 

38.5 
42.5 

23 
28 

Pupil size < 4 mm 
≥ 4 mm 
Unknown 

40 
49 
11 

40.5 
40 
38 

28 
25 
23 

Abbreviations. CUN-BAE: Clínica Universidad de Navarra - Body Adiposity Estimator. 
 

Fifty of the 150 participants were excluded from this study. Monocular GRT results were 

obtained from one participant. Therefore the total number of participants included in the 

GRT study was 100 for the association with AMD and OVP RF, and 99 for the interocular 

comparison of GRT. Please refer to the appendix section A1 for a summary of the reasons 

for exclusion and frequency analysis for those excluded. 
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3.3.3 Interocular comparison of GRT 

 

Table 3.9 Bivariate correlation between first and second eye log10 GRT 
GRT Number of 

data (n) 
Age mean (SD) 

years 
GRT median (IQR) 

s 
Statistic 
Pearson r 

Shared 
variance 

P-value 

1st Eye GRT 
2nd Eye GRT 

99 
99 

50.2 (10.4) 
50.2 (10.4) 

40 (25) 
36 (24) 

 
0.76 

 
57.2% 

 
< 0.001 

1st Eye GRT* 
2nd Eye GRT* 

96 
96 

50.3 (10.3) 
50.3 (10.3) 

39.5 (25) 
35.5 (22) 

 
0.85 

 
71.9% 

 
< 0.001 

Abbreviations. IQR: interquartile range. Strength of correlation: r = 0.10 to 0.29 (small), r = 0.30 to 0.49 (medium), r = 0.50 to 
1.0 (large). Probability values (p-values) < 0.05 are shown in bold. * excluding three outliers (ID: 31, 58 and 117). 
Limits of agreement (LoA) are only estimates and therefore 95% CI have been calculated 

for each LoA according to McAlinden et al.[679] (Methods section chapter 2) 

 

Log10 values of GRT were used in the statistical analysis of repeatability because the GRT 

data were positively skewed. This allowed the generation of Bland-Altman plots. The log10 

GRT data were transformed back to linear values (back-transformed) and presented on a 

Bland-Altman plot of the non-log10 data in order to facilitate their clinical interpretation 

according to Euser et al.[922] (See the methods section of this chapter). 

 

No significant difference was found between consecutively measured first and second eye 

GRT from the second set of GRT measurements (GRT2). For the explanation of the value 

of the multiplier used to calculate the LoA, the calculation of the 95% CI on each LoA and 

the method of back-transforming the Log10-derived LoA to the non-Log10 data. 

 

Figure 3.2 Bland-Altman plot showing interocular comparison for log10 GRT 

 
 

From the log10 GRT data: 

Mean first and second eye GRT = 1.59 (SD 0.16). 

Difference between the means = 0.02 (SD 0.12). 

LoA = 2 x 0.12 = 0.25 (95% CI 0.04). 

After removing three obvious outliers LoA = 0.19 (95% CI 0.03). 
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Figure 3.3 Bland-Altman plot showing interocular comparison for GRT 

 
 

From the non-log10 GRT data: 

Mean first and second eye GRT = 42.7 s (SD 17.3 s). 

Difference between the means = 1.8 s (SD 15.6). 

 

   Back-transformed LoA = 0.56x + 1.8    (Eq 3.2) 

 

where x = mean of first and second eye GRT2 (s) 

 

Limit of agreement for mean value of GRT of 42.7 s = 25.7 s (95% CI of 3.6 s). 

 

Removal of three obvious outliers from the data above resulted in a log10 GRT LoA of 0.19 

and a back-transformed LoA = 0.43x + 2.5, which for a mean GRT value of 41.9 s resulted 

in an LoA of 20.5 s (95% CI 2.8 s). 

 

A Mann-Whitney U test performed on the non-log10 GRT data revealed no significant 

difference between the first and second eye GRT values, indicating no significant bias 

between the two GRT measurements. 

 

3.3.4 Glare recovery time and ocular dominance 

 

Table 3.10 Bivariate correlation between dominant and non-dominant eye log10 GRT 
Log10 GRT Number of 

data (n) 
Age median (IQR) 

years 
GRT median (IQR) 

s 
Statistic 
Pearson r 

Shared 
variance 

P-value 

Dominant eye 
Non-dominant eye 

44 
44 

50.0 (11.4) 
50.0 (11.4) 

35.5 (26) 
34.5 (26) 

 
0.83 

 
69.4% 

 
< 0.001 

Abbreviations. IQR: interquartile range. 

 

A Mann-Whitney U-test was conducted to compare GRT for dominant and non-dominant 

eyes. Median scores were not significantly different for dominant eyes; 35.5 s (IQR 26 s) 

compared to non-dominant eyes, mean = 34.5 s (IQR 26 s), p = 0.76, two-tailed). 
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3.3.5 Glare recovery time and AMD risk factors 

The relationship between GRT and the AMD RF was investigated using Pearson product-

moment correlation coefficient. Preliminary analyses revealed a violation of the 

assumptions of normality, linearity and homoscedasticity. Kolmogorov-Smirnov (with 

Lilliefors significance correction) and Shapiro-Wilk tests for normality may reach 

significance for larger sample (n = 100), therefore scatter and Q-Q plots were also 

inspected. Non-parametric methods were used to assess the difference between groups. 

Log10 transformation was performed on the GRT data to allow the use of Pearson 

correlation and partial correlation corrected for age. 

 

Table 3.11 Significant bivariate correlations for log10 GRT comparisons 
Variable No. of data 

n 
Pearson r Shared 

variance 
P-value 
(2-tailed) 

Age 100 0.329 10.8% 0.001 
Female %BF  84 0.306 9.4% 0.005 

 

The small positive, partial correlation between GRT and age was retained after controlling 

for BMI (r = 0.29, n = 100, p = 0.003). An inspection of the zero order correlation (r = 0.33) 

suggested that controlling for BMI had very little effect on the strength of the relationship 

between GRT and age. The small positive, Pearson correlation between GRT and female 

%BF was similarly age-related. After controlling for age female %BF (r = 0.11, n = 84, p = 

0.31). The medium-sized, positive zero order correlation (r = 0.31) suggested that 

controlling for age had a significant effect on the strength of the relationship between GRT 

and female %BF. 

 

Group analysis of the association between GRT and age, with age divided into two groups 

(≤ 50 years and > 50 years) was significant (p = 0.01). 

 

Group analysis using the Kruskal-Wallis test between GRT and age, with age divided into 

four age ranges (< 45 years, ≥ 45 to < 50 years, ≥ 50 to < 60 years and ≥ 60 years), was 

significant (p = 0.03). Two follow-up Mann-Whitney U tests revealed a significant (at p = 

0.025) difference between the ≥ 45 to < 50 year and the ≥ 60 year groups (p = 0.02), but 

not between the ≥ 45 to < 50 year and the ≥ 50 to < 60 year groups (p = 0.50). 
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Figure 3.4 Scatter plot for GRT and age 

 
Figure 3.5 Box plot showing median GRT against age 

 
3.3.6 Glare recovery time and OVP RF 

No significant associations were found between GRT and migraine, Rph or VDys. 

 

3.3.7 Glare recovery time as a surrogate test for MPOD 

 

Table 3.12  Significant bivariate correlations between log10 GRT and MPOD 
GRT Number of 

data (n) 
Pearson r Shared 

variance 
P-value 
(2-tailed) 

MPOD (full age range) 100 0.218 4.8% 0.029 
MPOD (> 0.39) 52 0.310 9.6% 0.025 

 
 
Table 3.13  Significant partial correlation between log10 GRT and MPOD corrected for
  age 

GRT Number of 
data (n) 

Partial 
correlation 

Shared 
variance 

P-value 
(2-tailed) 

MPOD (> 0.39) 52 0.309 9.5% 0.027 
 

Partial correlation was used to investigate the relationship between GRT and MPOD, 

controlling for age. There was a small, positive significant Pearson correlation between 

GRT and MPOD (full age range), and for above average MPOD values (> 0.39). After 

controlling for age a significant positive correlation was retained for above average MPOD 

values only, although the association with MPOD (full age range) approached significance 
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(p = 0.071). These results suggest that controlling for age had very little affect on the 

strength of the relationship between these two variables. 

 

3.3.8 Glare recovery time repeatability studies 

 

Table 3.14 Key for GRT abbreviations 
GRT abbreviation Explanation 
First session GRT performed 8-min (GRT1) and 18-min (GRT2) after HFP MPOD measurements 
E1 GRT1 
E2 GRT1 
E1 GRT2 
E2 GRT2 

First GRT measurement for the first eye 
First GRT measurement for the second eye 
Second GRT measurement for the first eye (10 min after GRT1) 
Second GRT measurement for the second eye (10 min after GRT1) 

Second session Different day. GRT2 performed 10-min after GRT1, no prior MPOD measurements 
Rep. E1 GRT1 
Rep. E2 GRT1 
Rep. E1 GRT2 
Rep. E2 GRT2 

Repeated E1 GRT1 
Repeated E2 GRT1 
Repeated E1 GRT2 
Repeated E1 GRT2 

 

Carstensen et al. reported that the correct factor required to derive the LoA is dependent on 

the number of data in the study. He advised that 2.08SD should be used if n = 30.  In view 

of the small sample size 2.08SD was used to calculate the LoA in this repeatability 

study.[923] 

 

Wilcoxon signed rank tests performed on the non-log10 transformed data revealed a 

significant difference in intra-session measurements of GRT from both eyes, in the first 

session. These GRT measurements were taken eight min (GRT1) and 18 min (GRT2) after 

MPOD testing. This level of bias would not be expected from repeated measures using the 

same method of GRT measurement and was likely to have been a consequence of prior 

MPOD testing affecting the first set of GRT (GRT1) values.[677] 

 

Table 3.15 Significant results from GRT repeatability group analysis 
GRT 
Intra-session 

Number of 
data (n) 

GRT median 
(IQR) s 

Statistic P-value 
p 

Size effect 

E1 GRT1 vs.  
E1 GRT2 

100 
100 

45 (27) 
40 (25) 

 
Z = -5.573* 

 
< 0.001 

 
0.72 (large) 

E2 GRT1 vs.  
E2 GRT2 

99 
99 

40 (27) 
36 (24) 

 
Z = -5.901* 

 
< 0.001 

 
0.76 (large) 

E2 GRT2 vs.  
Rep. E2 GRT2 

30 
30 

33.5 (20) 
40.5 (20) 

 
Z = -2.608* 

 
0.009 

 
0.34 (medium) 

Abbreviations. IQR: interquartile range. *Wilcoxon signed rank test. Size effect: 0.1 (small), 0.3 (medium), 0.5 (large). 

 

As a consequence of bias between first and second eye, GRT1 and GRT2 in the first GRT 

session due to prior MPOD testing, intra-session comparisons were made between first eye 

Rep. GRT1 and Rep. GRT2 in the second GRT session, and inter-session comparisons 

were made between first eye GRT2 in the first GRT session and first eye Rep. GRT2 in the 

second GRT session. Examination of the data using Wilcoxon signed rank tests revealed 

no significant difference between these groups. 
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3.3.8.1  Intra-session repeatability 

No significant difference in GRT was found between repeat measures of the same eye 

recorded 10 min apart. 

 

Figure 3.6 Bland-Altman plot for intra-session repeatability (Log10 data) 

 
From the log10 GRT data: 

Mean first eye GRT2 and Rep. GRT2 = 1.62 (SD 0.18). 

Difference between the means = 0.01 (SD 0.09). 

LoA = 2.08 x 0.09 = 0.18 (95% CI 0.06). 

 

Figure 3.7 Bland-Altman plot for intra-session repeatability (LoA back-transformed) 

 
From the non-log10 data: 

Mean first and second eye GRT = 46.4 s (SD 24.6 s) 

Difference between the means = 1.7 s (SD 12.01 s) 

 

   Back-transformed LoA = 0.41x + 1.7    (Eq 3.3)

  

Where x = mean rep. GRT1 and GRT2 (s) 

 

Coefficient of repeatability for mean value of GRT (46.4 s) = 20.8 s (95% CI 5.7 s). 
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A Wilcoxon signed rank test revealed no significant difference between repeat measures of 

the same eye, within one session. The size effect was negligible, indicating no bias 

between the two GRT measurements. 

 

3.3.8.2  Inter-session repeatability 

No significant difference in GRT was found between repeat measures of the same eye 

between sessions two weeks or more apart. 

 

Figure 3.8 Bland-Altman plot for inter-session repeatability (Log10 data) 

 
From the log10 data: 

Mean first eye GRT2 and Rep. GRT2 = 1.60 (SD 0.14). 

Difference between the means = -0.03 (SD 0.18). 

LoA = 2.08 x 0.18 = 0.37 (95% CI 0.12). 

 

Figure 3.9 Bland-Altman plot for inter-session repeatability (LoA back-transformed) 

 
From the non-log10 data: 

Mean first and second eye GRT = 43.2 s (SD 14.6 s) 

Difference between the means = -4.5 s (SD 23.4 s) 
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   Back-transformed LoA = 0.80x + -4.5   (Eq 3.4)

  

Where x = mean of GRT2 and rep. GRT2 (s) 

 

Coefficient of repeatability for mean value of GRT (43.2 s) = 30.4 s (95% CI 10.6 s). 

 

A Wilcoxon signed rank test revealed no significant difference between repeat measures of 

the same eye, within one session. The size effect was negligible, indicating no bias 

between the two GRT measurements. 

 

Inspection of the back-transformed LoA for the intra-session measurements indicated a 

higher level of repeatability than inter-session measurements of GRT. 

 

In view of the variation in time between repeat measures of GRT in the inter-session 

repeatability study (two weeks to 11 months), the data were re-analysed for participants in 

whom GRT was repeated within five weeks (n = 18). 

 

From the log10 data: 

Mean first eye GRT2 and Rep. GRT2 = 1.60 (SD 0.15). 

Difference between the means = -0.04 (SD 0.16). 

LoA = 2.08 x 0.16 = 0.33 (95% CI 0.14). 

 

From the non-log10 data: 

Mean first and second eye GRT =  42.6 s (SD 15.3 s) 

Difference between the means = -6.1 s (SD 22.8 s) 

 

   Back-transformed LoA = 0.73x + -6.1   (Eq 3.5)

  

Where x = mean of GRT2 and rep. GRT2 (s) 

 

Coefficient of repeatability for mean value of GRT (42.6 s) = 25.0 s (95% CI 11.0 s). 

 

3.3.8.3  Analysis of bias due to learning effect of unchanged letters on test chart 

The same test chart letters were used as a target to assess first eye GRT1 and GRT2 in the 

second GRT session, whereas different letters were used for each GRT measurement for 

the second eye in the same session. In order to assess whether there was a learning effect 

from using the same letters for both GRT measurements for the first eye, an independent t-

test was conducted for the mean difference between GRT1 and GRT2 for each eye. No 

significant difference was found between the variables, which indicated that using the same 
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letters for successive GRT measurements did not introduce any significant bias compared 

to changing the letters for successive GRT measurements. 

 

3.3.9 Spectral analysis of the illumination sources used in this study 

The spectral emission from the direct ophthalmoscope bulb (unmarked) used to determine 

GRT was measured. Four measurements were taken, all of which resembled the profile 

illustrated below (fig. 3.10). The emission spectrum shows very little blue light (450 - 495 

nm) emission. This was comparable with spectral emission data (fig. 3.1) provided by the 

ophthalmoscope manufacturer (S. Church, personal communication, March 10, 2015). 

 

Figure 3.10 Spectral emission measured for the Keeler Specialist direct ophthalmoscope 

 
(© Everett, 2014). 

 
Spectral measurements were also taken from the MPS 1000 screener background during 

the testing phase when background brightness was higher. Four results were recorded, all 

of which were similar. The results showed a significant peak at 444 nm. 

 

An average of four measurements of total illuminance were taken from the direct 

ophthalmoscope and the MPS 1000 screener background during the testing phase using a 

light meter (Eurisem Technics EP628 Digital Lux Meter). The average illuminance 

measurements were surprisingly similar at 125 Lux for the direct ophthalmoscope and 109 

Lux for the MPS 1000 screener background. 

 

Margrain and Thomson reported that the retinal illuminance from a random selection of five 

direct ophthalmoscopes ranged from 6.18 to 6.86 log Td.[573] 

 

Measurements in Lux may be converted to log Td using the formula 

 

   Log Td = log (measurement in Lux / 0.0035)   (Eq 3.6) 

 

Where 1 Td = 0.0035 lm / m2, Td = troland, lm = lumens 
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The ophthalmoscope used in this study was found to produce 4.55 log Td. Assuming a 

5.5% reduction in retinal illuminance due to Stiles-Crawford effect,[330, 355] results in a value 

of 4.53 log Td retinal illuminance. This would equate to a photopigment bleach of 

approximately 50% at equilibrium.[581] Comparison between the GRT found by this study 

and that of the various methods used by Margrain and Thompson would suggest that a 

higher percentage bleach was obtained and that the light meter had underestimated the 

light output of the direct ophthalmoscope used in this study.[573] 

 

In view of the lower measurement compared to Margrain and Thomson, the average 

illuminance of the ophthalmoscope was remeasured using a different light meter (Sinometer 

LX1010BS Digital Lux Meter). A similar average of 120 Lux was obtained at a distance of 2 

cm. It was clear however that the circle of illumination from the ophthalmoscope did not 

cover the full area of the light sensor of either light meter. The ophthalmoscope light output 

was remeasured at a distance (11 cm) that ensured full light coverage of the lux meter 

sensor and the inverse square law was used to calculate the effective retinal illuminance at 

2 cm (D. Thomson, personal communication, April 28, 2014). 

 

Inverse square law   

 

     E1 / E2 = D2
2 / D1

2    (Eq 3.7) 

 

Where E = illumination at centre, D =  distance from light 

 

The lux meter recorded 71 Lux at 11 cm, which after applying the inverse square law gave 

2,239 Lux at 2 cm. After correction for Stiles-Crawford effect this is equal to 5.78 Log Td. 

This equates to a cone photopigment equilibrium bleach of approximately 95%. This is 

higher than the minimum 5.5 Log Td required for an ideal bleach and considerably closer in 

value to the 98% to 99.6% reported by Margrain and Thomson for a random selection of 

ophthalmoscopes.[573] 

 

3.4 Discussion 

The key results and how they compare to those of other studies are discussed below. 

Unless otherwise stated comparison was limited to studies using the direct ophthalmoscope 

as the source of illumination and populations consisting of White, or predominantly White 

ethnicity. In the absence of such studies, other methods of equilibrium bleach were 

considered before photo-flash bleach methods. 

 

A literature search was performed using Web of Science, Science Direct, PubMed Central 

(PMC) and Google Scholar for the following search terms: glare recovery and photostress 

recovery combined with interocular, ocular dominance, age, gender, body mass index, 
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percentage body fat, iris colour, pupil size, AMD family history, migraine, Raynaud's and 

vascular dysregulation. Wildcard symbols were used to search for variations in spelling. 

Further references were retrieved from the papers revealed by the literature search. 

 

3.4.1 Normal and abnormal GRT values 

The median GRT for this 100% healthy White, UK population was 40.0 s (IQR 25 s). The 

mean age of this population was 50.3 years (SD 10.4 years), ranging from 24.2 years to 

75.8 years.  

 

Comparison of these results with those of Margrain and Thomson using the same method 

of GRT (mean GRT 50.2 s, SD 13 s, mean age 44.7 years, SD 15.3 years),[573] revealed 

lower values of GRT for the present study. This discrepancy did not appear to be age-

related, but may be due to differences in retinal illumination secondary to ophthalmoscope 

bulb output or working distance, or population differences. 

 

A of GRT greater than 68.4 s (42.7 s + 25.7 s) would be considered abnormal for this 

population. This compared well with the equivalent value of 76 s (50.2 s + (2 x 13 s)) 

derived from the data of Margrain and Thomson.[573] 

 

3.4.2 Interocular comparison 

The difference between the means for the two sets of raw GRT data was 1.8 s (SD 15.6 s). 

Interocular LoA for the mean value of GRT (42.7 s, SD 17.3 s) was 25.7 s, or 60.2% 

represented as a percentage of the mean GRT value. After the removal of three outliers 

from the GRT data, the LoA was reduced to 20.5 s, representing 48.9% of the mean GRT 

value. For other values of GRT, interocular LoA may be calculated using equation 3.2. 

 

Consulting the back-transformed Bland-Altman plot (fig. 3.3) confirmed that the interocular 

LoA was positively correlated with the value of GRT. A Mann-Whitney U test revealed no 

significant difference in GRT between the first and second eye measurements of GRT, 

suggesting no bias or learning effect. Pearson correlation revealed a large positive inter-eye 

correlation between first and second eye measurements taken 18 min after MPOD testing 

in the first session. 

 

The measurement of GRT from the first eye five minutes before GRT measurement in the 

second eye did not significantly affect the second eye measurements. For repeat 

measurements of the same eye 10 minutes were left between measurements to allow 

sufficient time for cone recovery. 

 

Inspection of the Bland-Altman plot with back-transformed LoA indicated that although the 

interocular LoA increased with increasing GRT, generally the interocular agreement was 
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good with 72% of the subjects showing a between eye difference of 10 s or less, and 52% 

of subjects showing a between eye difference of five s or less. 

 

Five of 99 (5%) participants had an interocular difference in GRT of ≥ 25 s, indicating a 

difference that would be considered abnormal. All were free from glare-related symptoms or 

ocular disease. No explanation found for the large interocular difference measured from 

these participants. The appearance of sporadic abnormal interocular differences in GRT in 

this healthy population would suggest repetition of abnormal measurements to confirm any 

difference. 

 

Interocular comparison of GRT has been reported by seven studies. High levels of 

interocular correlation were reported by two studies (both photo-flash). Sloan et al. and 

Pratt et al. found an interocular correlation of r = 0.83, p n/a and r = 0.73, p n/a, 

respectively.[905, 924] Four studies (one equilibrium and three photo-flash bleach GRT) 

reported no significant interocular difference for right and left sequential GRT 

measurements.[361, 925-927] A learning or training effect was noted with sequential 

measurements in two studies (one equilibrium and one photo-flash), leading to lower GRT 

values for the second eye tested, although the differences were not significant.[924, 925] 

 

Interocular comparison summary 

Consensus suggests that there is good interocular agreement for GRT measurements 

taken from healthy subjects. No significant learning effect was found for this method of GRT 

testing despite the absence of a formal period of re-adaptation between measurements 

from each eye. Interocular differences greater than two standard deviations should be 

confirmed by repetition before any conclusion about the significance of their abnormality 

should be reached. Correlation measures the strength of the relationship between two 

variables, but not the agreement between them. For that reason LoA were calculated to 

measure the agreement between interocular GRT values.  

 

3.4.3 Ocular dominance 

A Mann-Whitney U test revealed no significant difference between dominant and non-

dominant eye GRT. 

 

One other study comparing GRT and ocular dominance was found. Loughman et al. 

reported that the non-dominant eye GRT (5.83 s, SD 1.72 s) was significantly longer than 

the dominant eye GRT (5.50 s, SD 1.70 s, p = 0.03).[329] The same method of categorising 

ocular dominance was used in both studies, a variation of the Miles test described by Roth 

et al.[685] 
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Disparity in the results may have caused by differences in GRT method and study design. 

In the study of Loughman et al. four sequential measurements were made, three from the 

dominant eye and a fourth from the non-dominant eye separated by two min intervals. GRT 

measurements were compared from the second dominant eye measurement and the first 

and only non-dominant eye measurement. The first dominant eye measurement (7.37 s, SD 

3.20 s) was longer than the non-dominant eye measurement in their study. 

 

The authors reported a significant learning effect producing shorter GRT with sequential 

measurement of the dominant eye. In the present study the order of the dominant and non-

dominant eye GRT measurements was randomised, in order to reduce sequential bias or 

learning effects. It is accepted that the present study size was smaller (n = 44, compared to 

n = 100 for Loughman et al.). The learning effect for photo-flash methods may be reduced 

in clinical practice by increasing the adaptation period between sequential measurements of 

GRT to 5-10 min.[924, 925] This will of course increase the time required to obtain repeated 

measurements of GRT, making this approach less attractive in the clinical setting. 

 

It is plausible that as the non-dominant eye tends to be closed under conditions of bright 

light or glare, the dominant eye may receive a greater lifetime exposure to light. It is 

however, difficult to measure this effect. Glare recovery time may be expected to be longer 

in dominant eyes if the increased retinal light exposure produced light-related retinal 

damage or increased Mc activation, adversely affecting the cone-specific visual cycle. 

Conversely, GRT may be expected to be shorter for dominant eyes if the increased light 

exposure had influenced retinal or cortical adaptation. 

 

Ocular dominance summary 

No significant difference in GRT was found for ocular dominance. Differences in GRT 

method and experiment design would explain the difference in results between this study 

and that of Loughman et al. In the previous chapter it was seen that a trend for lower 

MPOD in the dominant eye (0.40, SD 0.16) compared to the non-dominant eye (0.43, SD 

0.17), although the difference did not reach significance (p = 0.56). 

 

The corrected sample size required to detect a difference in MPOD of 0.6 s assuming 80% 

power at 5% significance was estimated to be 1,284. This study lacked sufficient power to 

detect a significant difference. 

 

3.4.4 Age 

This study of healthy subjects found a medium, significant positive correlation between 

GRT and age. The amount of shared variance between GRT and age was 10.8% (n = 100, 

p < 0.001). Partial correlation was used to control for BMI. A significant positive correlation 

was maintained (p < 0.001) after controlling for BMI, with a shared variance of 8.6%. 
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The degree of correlation was higher between GRT and age for those over 50 years of age 

(r = 0.28, n = 43) compared to those up to 50 years of age (r = 0.08, n = 57), although 

neither correlation reached significance, suggesting a trend for the progressive increase in 

GRT after the age of 50 years. 

 

Group analysis between GRT and age, with age divided into two groups (≤ 50 years, n = 57 

and > 50 years, n = 43) and four groups (< 45 years, n = 32, ≥ 45 to < 50 years, n = 25, ≥ 

50 to < 60 years, n = 24 and > 60 years, n = 19), was significant (p = 0.01 and p = 0.03, 

respectively. Post hoc testing revealed a significant difference between ≥ 45 to < 50 

compared to ≥ 60 years age groups. A trend was found for a steady increase in GRT with 

age for those up to middle age (approximately 50 to 60 years of age) and a steeper 

increase in GRT with age for those above the middle age range. 

 

The correlation and group analysis data suggest that the relationship between GRT and 

age is biphasic rather than linear. The increase in GRT with age was greater for those aged 

over 50 years compared to that for those aged up to 50 years (see figs. 3.4 and 3.5). 

 

All other studies including healthy subjects, examining the relationship between GRT 

assessed by equilibrium bleach, and age reported an increase in GRT with age.[330, 348, 571, 

573, 574, 577, 928-931] Studies cited by other authors reporting no association with age included 

subjects with retinal disease.[349, 350, 352, 358] 

 

The relationship between GRT assessed by photo-flash methods, and age is more 

controversial. Three studies reported a significant increase with age,[684, 926, 927] Bartlett et al. 

study reported a significant correlation for those aged 50 years and under only,[359] 

Newsome and Negreiro reported a significant correlation for those aged 55 years and over 

only,[361] Sloan et al. reported a normal curve relationship between GRT and age,[924] and 

Wood et al. reported a negative trend between GRT and age.[330] 

 

Wood et al. examined the association between GRT and age for equilibrium and photo-

flash methods. They concluded that equilibrium bleaching is likely to deplete local stores of 

11-cis-retinal available to cone photoreceptors from Mc, placing a greater emphasis on the 

RPE for cone pigment regeneration, whereas in photo-flash methods 11-cis-retinal is likely 

to be available from Mc and the RPE for cone photopigment regeneration.[330] The 

variability in the association between photo-flash GRT and age may be a consequence of a 

differential contribution from these two sources of 11-cis-retinal for cone pigment 

regeneration. 

 

Rushton and Henry compared the amount of cone pigment bleached and recovery time for 

equilibrium and photo-flash methods. They used a value of light energy for each method 
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calculated to result in a similar percentage of total photopigment bleach: 94% (equilibrium, 

5.5 Log Td for 210 s) and 95% (three different exposure times for photo-flash, 7.5 x 106 Td 

s for 1.5 s, 0.75 s and 0.083 s). They reported that the equilibrium method bleached 94% of 

total cone photopigment. The photo-flash methods only bleached approximately 60% of 

total cone photopigment and full recovery was complete in about half the time required for 

the equilibrium method.[582] Differences in neural adaptation are also likely between 

equilibrium and photo-flash bleach methods. 

 

Media opacification was not found to influence GRT.[581] Pupil size is recognised to reduce 

as a function of age.[932] No significant correlation was found in this study between GRT and 

pupil size. Sloan et al. reported no significant association between pupil size and GRT.[924] 

Three studies have reported that pupil mydriasis did not influence GRT,[909, 927, 933] however 

the effect of pupil miosis on GRT is controversial with one study (photo-flash GRT) 

reporting a significant reduction in GRT with pupil miosis,[927] and one study (photo-flash 

GRT) reporting no significant effect.[684] VA is known to deteriorate after the age of about 50 

years,[684] however only subjects with good VA (0.1 LogMAR VA or better) were included in 

this study. 

 

The biphasic or quadratic relationship between GRT and age in healthy subjects revealed 

by this study has also been reported by four other studies.[361, 577, 684, 928] Visual function and 

subject response variability were reported to decline from 50 years of age. [308, 934] Many 

visual parameters (e.g. age, CS and visually-evoked potential latency) in normal 

populations exhibit a biphasic relationship with age, characterised by functional stability up 

to approximately 50 years of age (up to 60 years for VA), after which an abrupt age-related 

decline in function is observed. It is thought that this decline in visual function is caused by 

changes in the neural system rather than the effects of media opacification or pupil 

miosis.[684]  

 

Equilibrium bleach GRT places a greater stress on the RPE than photo-flash GRT. It is also 

possible that increased GRT in healthy elderly individuals is an indication of subclinical 

levels of RPE dysfunction.  

 

Low levels of fruit and vegetable consumption is associated with increased risk of AMD,[168, 

935] The negative correlation between GRT and MPOD reported by several researchers 

suggests that the age-related increase in GRT may be reduced in those with a poor diet, 

with the intervention of a healthy diet containing nutrients beneficial for retinal function and 

preservation.[620, 622, 623, 905] Richer et al. reported an improvement in GRT in AMD patients 

after supplementation with L for 12 months, which was significant for AREDS retinal stages 

2 and 4, but not stage 3.[936]  
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Age summary 

Age is the strongest, established RF for AMD. Advancing age is associated with an  

increase in AMD prevalence, incidence and progression.[14, 41, 43, 625] AMD was associated 

with longer GRT in the majority of studies (12 out of 14) reviewed by Neelam et al.[308] All of 

the equilibrium bleach methods reported longer GRT with AMD. The two studies showing 

no relationship used photo-flash bleaching methods.[358, 360] 

 

The increase in GRT in healthy individuals with age is less controversial with equilibrium 

compared to photo-flash bleach methods. The relationship between equilibrium bleach-

derived GRT and age is best described as biphasic or quadratic, increasing more steeply 

with age in healthy subjects, after the age of 50 to 60 years old. The age-related increase in 

GRT is likely to have a neural origin rather than being a consequence of media 

opacification or pupil miosis. 

 

The corrected sample size required to detect a difference in GRT of 5.1 s assuming 80% 

power at 5% significance was estimated to be 11. This study had sufficient power to detect 

a significant difference. 

 

3.4.5 Gender 

No significant difference in GRT was found between genders. 

 

Three early studies (all equilibrium) reported significantly longer GRT for females compared 

to males. Torkelson reported longer female GRT across the entire age range,[907] whereas 

Forsius et al. and Malik et al. reported a significant difference only for young to middle-aged 

subjects.[571, 602] Four more recent studies (two equilibrium and two photo-flash), revealed 

no significant difference in GRT with gender,[328, 361, 927, 937] although a trend for longer 

female GRT was noted by two of the studies.[328, 927] 

 

In the previous chapter it was reported that female populations tend to have a greater 

proportion of blue irides than male populations, and that blue irides tend to associate with 

larger pupil size and slower pupil reactions to light. These factors were not significant, and 

did not influence the results in this study.  

 

Females are known to have 10% higher %BF than males. This study revealed a significant 

correlation between female %BF and GRT, whereas no significant correlation was obtained 

for males. This correlation did not survive correction for age. 

 

Females have a greater prevalence of migraine, Rph and VDys, conditions associated with 

reduced OVP, retinal ischaemia and dysfunctional adaptation and neurovascular coupling. 

No significant association was revealed between GRT and any of the OVP RF. 
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During the menopause (40-55 years of age) females experience a drop in oestrogen levels. 

Oestrogen is known to act as an antioxidant and anti-inflammatory agent.[302] It is possible 

that lower oestrogen levels, if not compensated by other antioxidant and anti-inflammatory 

pathways may increase retinal oxidative load and contribute to RPE dysfunction. If RPE 

function is compromised to a greater degree in females with lower oestrogen, this could 

explain longer GRT in females at or past the menopause. Inter-gender comparison of GRT 

for those under and over 40 years of age, with the exclusion of other factors known to affect 

GRT (see table A2.5) and measurement of serum oestrogen levels would allow the effect of 

oestrogen on GRT to be studied. 

 

Gender summary 

The increase in AMD risk associated with female gender is considered to be weak and 

inconsistent. No significant difference in GRT was noted for gender by this study, or any of 

the most recent studies. It is not clear why the significant gender differences reported by 

earlier studies were not replicated by later studies, despite similar methods of GRT 

assessment, although it is possible that the lack of correction for age may explain the 

earlier results. After correction for confounding factors such as age it is unlikely that a 

gender difference in GRT will be detected. 

 

The corrected sample size required to detect a difference in GRT of 3.6 s assuming 80% 

power at 5% significance was estimated to be 342. This study lacked sufficient power to 

detect a significant difference. 

 

3.4.6 Body mass index 

The examination between BMI and %BF with GRT included subjects with BMI values < 20 

and ≥ 30 (n = 116) excluded from the other comparisons. 

 

No significant association was found for mixed- or separate-gender BMI with GRT, before 

or after correction for age. The author is unaware of any previous studies examining the 

association between GRT and BMI. 

 

The percentage of obese subjects is lower than that reported for the UK in 2002 (male 23% 

and female 25%), and estimated by projection for 2012 (35% for non-manual and 45% for 

manual social class).[743] Although the participants were drawn from a population thought to 

contain higher numbers of non-manual and more highly educated participants, factors 

known to be associated with lower levels of obesity,[744] selection bias (against those visibly 

obese) is likely to explain the low percentage of obesity reported by this study. 

 

Obesity is characterised by a dominance of M1 (classically-activated) macrophages over 

M2 (alternatively-activated) macrophages in insulin-dependent adipose tissue, leading to 
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increased inflammation and insulin resistance.[938] Increased M1 macrophage dominance is 

also a feature of AMD pathogenesis, but not normal age-related change, which is 

associated with M2 macrophage dominance (fig. 1.4).  

 

Obesity is also associated with increased hypertension and dyslipidaemia. It is possible that 

hypertension is associated with increased AMD risk due to its affect on choroidal circulation 

and lipid deposition in Bruch's membrane.[39, 127, 939] Hogg et al. reported a significant 

association between nAMD and total, but not HDL cholesterol.[128]  

 

It is therefore plausible that obesity may lead to inflammation-related RPE changes 

resulting in longer GRT, particularly in those with inflammation-related AMD risk gene 

polymorphisms. Positive associations were reported between BMI and plasma complement 

components (CFH, CFB and C3) and activation fragments (C3a and iC3b).[940] 

 

Body mass index summary 

Higher BMI is a moderate and consistent RF for AMD.[107, 109] Body mass index is also 

positively correlated with age. After correction for age, no significant correlation was found 

for mixed gender, male or female BMI with GRT. 

 

The corrected (for unequal size groups) sample size required to detect a difference in GRT 

of 6.0 s assuming 80% power at 5% significance was estimated to be 7. This study had 

sufficient power to detect a significant difference. 

 

Some subjects classed as non-obese based on their BMI value will actually be obese 

based on their %BF levels.[676] For this reason the results BMI were converted to %BF 

values.  

 

3.4.7 Percentage body fat 

The Clinica Universidad Navarra - Body Adiposity Estimator (CUN-BAE) algorithm 

estimates %BF by correcting BMI for age and gender.[608] 

 

Female %BF was significantly and positively correlated with GRT, however, after controlling 

for age the correlation was not significant. The shared variance was 9.4% and 1.3% before 

and after controlling for age. 

 

Group analysis for female %BF using the Kruskal-Wallis test revealed a significant increase 

in GRT between the three %BF groups (≤ 30%, > 30% to 35%, > 35%, representing 

normal, overweight and obese groups). Follow-up Mann-Whitney U tests (α = 0.025) 

revealed significantly higher GRT for obese compared to normal weight subjects (p = 0.02) 

and a trend approaching significance for higher %BF in obese compared to overweight 



	   153	  

subjects (p = 0.08). Although it is tempting to speculate whether increased retinal 

inflammation associated with obesity may lead to longer GRT, it is more likely that age 

differences between the three %BF groups are the cause the differences observed. The 

median ages for the three groups (normal, over-weight and obese) were 40.1 (IQR 9.5) 

years, 45.1 (IQR 7.1) years and 51.2 (IQR 15.6) years respectively. Male %BF was not 

significantly correlated with GRT. This may be a consequence of the smaller sample size 

for male %BF (n = 31). 

 

It was clear that after converting the BMI values of participants to %BF values using the 

CUN-BAE algorithm, many more participants were classed as obese. BMI and %BF 

percentages for normal, overweight and obese were as follows, male: BMI 21.9% / 62.5% / 

15.6%, %BF 6.2% / 18.8% / 75.0%, and female: BMI 58.3% / 33.3% / 8.3%, %BF 8.3% / 

29.8% / 61.9%. Gómez-Ambrosi et al. concluded that BMI measurement under-estimated 

the level of obesity (and cardiometabolic risk) compared to %BF measurement.[676] 

 

In the MPOD study (chapt.2) non-significant inverse trends were seen between MPOD and 

%BF that were stronger for males than females. It has been suggested that abdominal 

adipose tissue in males acted as a competitive storage site for serum-bound MP compared 

to gluteo-femoral adipose tissue in females. 

 

The results for the association of GRT with %BF for each gender are contrary to the results 

from the MPOD study. Although the correlations were not significant (after correction for 

age), males had an inverse trend, whereas females exhibited a positive trend between GRT 

and %BF. For GRT, the difference in location or carotenoid absorbing properties of adipose 

tissue is not likely to influence the results. It is more likely that the total level of body fat 

(10% higher in females) explains the difference in the direction of the trends for each 

gender. Higher body may signify greater inflammation and therefore greater risk of RPE 

dysfunction leading to longer GRT. The possibility of a chance result would need to be 

excluded before this can be confirmed. 

 

Percentage body fat summary 

No significant correlation was found between GRT and male or female %BF, after 

correction for age. A positive correlation between GRT and %BF may be expected in view 

of the physiological changes thought to be associated with obesity (changes in the 

lipoprotein profile, and increased oxidative stress and inflammation),[941] the negative 

correlation between %BF and MPOD,[600, 758] and the negative correlation reported between 

GRT and MPOD.[622, 623, 905] 

 

The author did not have access to equipment to measure %BF directly. The use of 

calculated %BF derived from BMI, age and gender values using the CUN-BAE algorithm 
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was simple to use in this practice setting and offered the opportunity to assess an estimate 

of %BF for each gender with MPOD.  

 

Although the Northern European population investigated by the present study was similar 

ethnically to that from which the CUN-BAE algorithm was derived, it is recommended that 

the use of general predictive algorithms across different ethnic population groups should be 

avoided, without prior testing of their validity.[764] This was not possible for this practice-

based study and therefore the values for estimated %BF should be treated with caution. 

 

Sample size calculation was not performed for %BF as these values were calculated from 

BMI, rather than measured directly. 

 

3.4.8 Iris colour 

Group analysis for iris colour divided into five groups as recorded in this study (grey, blue, 

green, hazel and brown) and two groups (light: grey, blue and green, and dark: hazel and 

brown) according to Murray et al. and Kirby et al,[401, 680] revealed no significant 

associations. 

 

In this study a higher percentage of females had lighter irides compared to males (63.0% 

versus 51.9%), but the difference was not significant. Reasons for this trend were 

discussed in the iris colour section in the previous chapter. 

 

A non-significant trend for smaller mean pupil size for dark (3.0 mm, IQR 1.0 mm) 

compared to light irides (4.0 mm, IQR 2.0 mm) was revealed (p = 0.21). The mean ages of 

the two groups were similar at 49.1 years (SD 9.4 years) for dark and 52.3 years (SD 11.6 

years) for light irides respectively. 

 

Although the pupil size difference was not significant, the difference in pupil size alone 

between brown and blue eyes would equate to 1.77 times higher retinal illuminance for blue 

eyes. Correction for iris colour and the difference in pupil size revealed retinal illuminance 

values 2.25 times higher in the lighter irides group, assuming the pupil size difference was 

maintained under GRT testing.  The pupils of those with blue irides were reported to be 

larger in size in ambient illumination, and constrict less quickly and by a reduced degree 

than those with brown irides.[771-773] 

 

Equilibrium bleach GRT is strongly correlated with age (see the section on age above and 

therefore age must be considered when comparing GRT and iris colour. It would also be 

beneficial to correct for pupil size, whilst under GRT conditions, but this was not possible for 

the GRT method used in this practice-based study. Stringham et al. used an infrared 

camera to monitor pupil size under glare conditions in their lab-based study.[622] The close 
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proximity of the glare source to the participant, for the GRT method used in the present 

study would have precluded the use of this method of pupil size measurement. 

 

Margrain and Thomson have demonstrated that quite large variations in retinal illuminance 

(5.5 log Td versus 6.0 log Td) produce only small differences (6%) in the amount of 

photopigment bleached when the retinal illuminance is high, whereas for lower levels of 

retinal illuminance (4.5 log Td versus 5.0 log Td) the difference in retinal bleach is much 

greater (27%).[573] The method of obtaining GRT used in this study is a high retinal 

illuminance method (approximately 6.2 log Td from the data of Margrain and Thomson), 

thought to bleach > 98% of retinal photopigment. Although this high level of bleach was 

chosen to improve repeatability (see repeatability section below), the very nature of this 

bleach method may negate the effect of any variation in retinal illuminance related to 

differences in iris colour. In order to assess the effect of differences in retinal illuminance 

due to iris colour differences using GRT, a lower percentage retinal bleach may be 

preferable. 

 

A literature search revealed one other study where the effect of iris colour on GRT was 

examined.[329] This method used the MDD-2 device which is a high-intensity, photo-flash 

bleach method producing a peak irradiance at the cornea of 4.5 Watts / cm2 for a duration 

of 0.2 ms, equivalent to approximately 5.2 Log Td (this author's estimation) retinal 

illuminance[361] Loughman et al. reported that there was no significant association between 

iris colour on GRT. The high level of retinal bleach achieved with this method may explain 

both the lack of any difference in GRT due to iris colour and the high levels of repeatability 

reported for this instrument compared to other photo-flash methods.[329, 361] 

 

Melanin in the RPE may play a role in AMD development by biochemically protecting the 

neural retina against ROS.[7, 942] The effect of the age-related reduction of RPE melanin,[8, 

633, 943, 944] possibly secondary to constant exposure to high levels of oxygen and light, may 

reduce the capacity for melanin to act as an antioxidant and may even lead to pro-oxidant 

behavior.[6, 945-949] Eumelanin, the main melanin pigment found in the pigment epithelia 

including the RPE, is less photoreactive than pheomelanin.[950, 951] 

 

The relationship between iris colour and AMD is controversial. Hyman et al. reported an 

increased frequency of blue irides (OR 3.5, 95% CI 1.7 - 6.6) compared to brown irides 

among AMD cases compared to controls.[118] Other authors have also reported a significant 

association or a non-significant trend between light iris colour and AMD,[633, 766, 952, 953] The 

BMES concluded that blue iris colour was associated with an increased risk of both early 

and late AMD (OR 1.45 and 1.69 respectively), however 5-year, longitudinal results from 

the same group did not detect any significant relationship.[150, 954] The BDES did not find any 

association between iris colour and AMD incidence and progression,[634] but did report an 
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association between lighter iris colour and the development of RPE pigmentary 

abnormalities (ARM).[635] 

 

Iris colour summary 

Lighter iris colour is a weak and inconsistent RF for AMD. Iris colour is predominantly 

determined by the variation in the structure and composition of the melanosomes within the 

melanocytes of the iris stroma rather than melanin in the iris pigment epithelium. [779, 955, 956] 

Light iris colour is associated with significantly greater light transmission and reduced 

choroidal melanin compared to darker irides.[631, 632] RPE melanin was found to decrease by 

50% over a lifetime.[81] Because melanin is able to act as an antioxidant this reduction may 

adversely affect the retinal / RPE / choroidal antioxidant system. Lifetime exposure to light 

is difficult to quantify. 

 

No significant association was found between GRT and iris colour, however the nature of 

the GRT method used in this study may have prevented the detection of an association. A 

shorter duration, lower intensity bleach may produce a significant result for different iris 

colours. The effect of iris colour may be influenced by pupil size and gender. The differential 

light transmission between light and dark iris colours is greatly affected by pupil size, and by 

inference age (see table 2.10). Lower amounts of choroidal and RPE pigment associated 

with lighter iris colours may have an additive effect to any potential light-mediated tissue 

damage. 

 

The corrected sample size required to detect a difference in GRT of 0.4 s assuming 80% 

power at 5% significance was estimated to be 1,295. This study lacked sufficient power to 

detect a significant difference. 

 

2.4.9 Family history of AMD 

Macular pigment optical density was assessed for participants with and without reported 

AMD FH in order to assess whether this test may be used as a possible marker for the 

future development of AMD.  

 

A trend for longer GRT was found for those with a reported FH of AMD (45 s, IQR 26 s) 

compared to those without (38.5 s, IQR 23 s), however, the difference was not significant. 

The median ages of the two groups were similar; FH of AMD (49.5 years, IQR 18.3 years) 

and no FH of AMD (48.0 years, IQR 12.8 years). 

 

A trend towards longer GRT for those with a positive reported FH of AMD was found by this 

and another study.[603] The lack of significance would preclude the use of this method of 

GRT as a surrogate test to predict AMD FH. For cases of early AMD a high percentage 

photoreceptor equilibrium bleach, likely to maximally stress the RPE would be the most 



	   157	  

appropriate GRT test to perform,[330] however for those without evidence of AMD, where 

RPE function is likely to be normal a shorter duration, lower percentage photopigment 

bleach, placing a greater relative stress on retinal Mc may give more productive results. 

 

Dimitrov et al. examined the utility of GRT measured with a modified technique proposed by 

Phipps et al.,[354] for the detection of early AMD. Glare recovery time after a 45-sec (> 95% 

photopigment) bleach using the detection of a centrally-fixated, 2° spot flickering at 5 Hz, for 

five diminishing contrast levels detected 71% of early AMD cases. The same study reported 

that VA alone detected only 7% of early AMD cases.[357]  

 

Visual acuity is a poor marker for early AMD. The BDES recorded a two letter loss in 

LogMAR VA associated with early AMD,[309] however the one to two line variability of 

LogMAR VA testing would mask this subtle change.[957] Foveal cones are spared in early 

AMD, with photoreceptor loss being limited to parafoveal rods and cones.[958] 

 

Rod recovery rate in DA using a 2° stimulus size at an eccentricity of 3.5° may be used to 

monitor those individuals at high risk of developing AMD due to FH or known genetic risk. 
[357] This method was able to detect functional loss in 87% of abnormal cases but it is 

difficult to perform in routine optometric practice. Testing rod function is an extremely 

arduous process, with an average difficulty score of 9.7, compared to a maximum score of 

10.[357]  

 

In a clinical practice setting it would be quicker and easier to measure time taken to reach 

the rod-cone break, the time at which rod photoreceptors become more sensitive than 

cones (approximately eight min). Time to rod-cone break and the rod intercept (the time at 

which visual sensitivity recovers to a criterion level of 0.005 cd / m2) may be measured 

psychophysically using the AdaptDx dark adaptometer (MacuLogix, Hummelstown, PA, 

USA).[959] 

 

Prolonged GRT in the fellow eye of those with unilateral nAMD was found to be an 

independent RF for nAMD development in the fellow eye.[126, 960] Evidence for GRT as a 

marker for future AMD development is sparse. Pratt et al. reported a non-significant trend 

for longer GRT measured by photo-flash bleaching method (Eger Macular Stressometer, 

EMS) in participants with a positive FH of AMD compared to those without.[603] 

 

There are several mechanisms involved in AMD pathogenesis that may adversely influence 

GRT. AMD risk gene polymorphisms influencing inflammation and immunity (e.g. C2, C3, 

CFB, CFI) have the potential to disturb RPE and Mc photopigment recycling. Genes 

governing extracellular matrix and cell adhesion (e.g. ACE, COL8A1, TIMP3) may increase 

the risk of sub-retinal or sub-RPE fluid. Fluid separation is a recognised cause of increased 
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GRT (e.g. CSC). Genes controlling lipid / protein metabolism and transport (e.g. ABCA1, 

ABCA4, APOE, ELOVL4, LIPC) may influence levels of DHA and fat-soluble L in the rod 

(and possibly cone) OS membranes. Rhodopsin is known to co-localise with DHA and L in 

rod OS, and the absence of either or both will affect the efficiency of photopigment 

recycling. In the absence of DHA, DPA (docosapentaenoic acid) is substituted with a 

measureable reduction in function. Genes regulating angiogenesis (e.g. HTRA1, IL8, 

VEGFA) and cellular stress and toxicity (e.g. ABCA4, ACE, APOE) may also be up-

regulated leading to down-regulation of normal cellular function.[122] 

 

It is possible that the changes above are insufficient on their own to lead to a significant 

increase in GRT. Sufficient age and early retinal / RPE changes associated with AMD may 

also be required for GRT to be affected significantly. The lack of significance for the 

association between GRT and AMD FH, but the presence of significant association for 

fellow eyes of those with nAMD would appear to confirm this. 

 

A full dietary assessment was not completed, however, participants were asked about 

current use of MP and fish oil supplements. Only one participant reported current use of MP 

supplements, which precluded any meaningful analysis. Twenty one participants reported 

current use of fish oil supplements. A non-significant trend for longer median GRT was 

revealed for the fish oil supplement group, which may be explained median age being more 

than 10-years older than the non-fish oil supplement group. The omega-3 fatty acid DHA 

not only associates with rhodopsin and L in rod OS membranes, it also is thought to assist 

in retinal absorption of MP. An age-matched comparison of GRT between groups would 

give more meaningful results. 

 

Because of the close association between DHA and rhodopsin in rod OS membranes, 

absolute dietary reduction in omega-3 is likely to significantly increase GRT, however a 

relative dietary reduction may not significantly influence the results because humans have a 

limited ability to synthesise DHA from dietary alpha linolenic acid (ALA),[961] and are able to 

maintain retinal levels of DHA by very efficient recycling.[962] 

 

The absence of benefit derived from dietary supplements prior to the onset of AMD may 

reflect retinal ability to recycle some of the nutrients required for normal function. Age-

related macular degeneration is associated with retinal and RPE cell dysfunction, therefore 

nutrient recycling may be reduced or absence, signalling the time when a benefit from 

dietary supplements may be reached. 

 

Family history of AMD summary 

Family history of AMD is a strong and consistent RF for AMD. No significant difference in 

GRT was found for individuals with and without a primary or secondary FH of AMD. This  



	   159	  

study and that of Pratt et al. reported a trend towards longer GRT with AMD FH.  

 

Prolonged GRT associated with AMD may be related to multiple gene polymorphisms 

governing the following functions; inflammation and immunity, extracellular matrix and cell 

adhesion, lipid / protein metabolism and transport, angiogenesis and cellular stress and 

toxicity. 

 

The corrected sample size required to detect a difference in GRT of 5.7 s assuming 80% 

power at 5% significance was estimated to be 24. This study had sufficient power to detect 

a significant difference. 

 

3.4.10 Migraine 

No significant associations were observed for individuals reporting migraine, light-trigger vs. 

no light-trigger or aura vs. no aura, compared to those without migraines. The author is 

unaware of any previous studies examining the effect of migraine on GRT. The results 

should be viewed with caution in view of the small sample size of the migraine groups. 

 

It is plausible that the symptom described as light-induced amaurosis reported in cases of 

ocular ischaemic syndrome secondary to carotid occlusive disease,[612, 963-965] may actually 

represent longer GRT secondary to ocular vascular insufficiency.  

 

Migraine is associated with a reduced ability to habituate to repetitive, stressful stimuli,[966] 

and (in the acute phase) reduced neurovascular coupling in response to flickering light.[617] 

Barbanti et al. postulated that migraine attacks are characterised by an ictal dopamine 

release in subjects with inter-ictal dopamine receptor hypersensitivity due to a chronic 

dopaminergic deficit synergistic to serotoninergic impairment.[186] 

 

Plausible pathways that may lead to increased GRT in individuals with migraine include; 

lower or irregular retinal blood flow secondary to reduced neurovascular coupling, reduced 

or irregular choroidal blood flow secondary to vasospasm, which is associated with 

migraine and reduced adaptation secondary to the effects of reduced dopamine and 

hypersensitive dopamine receptors. This may affect adaptation directly by preventing 

ipRGC and A18 amacrine cell influence on light-related HC uncoupling, or indirectly by 

affecting the efficiency of OS phagocytosis by the RPE. 

 

A summary of the mechanisms that may be associated with increased AMD with migraine, 

Rph and VDys are presented in fig.1.3. 

 

Migraine summary 
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The author has proposed a plausible mechanism (fig. 1.3) for the consideration of migraine 

as an AMD RF. No significant difference in GRT was found for participants with a reported 

history of migraine compared to those who reported no migraines. The trend towards 

shorter GRT for those with and without light-trigger compared to non-migraineurs, and 

shorter GRT for those with aura, but longer GRT for those without aura, compared to non-

migraineurs was interesting. This comparison should be repeated for a larger sample size. 

The minimal blue content in the GRT light source may have lead to a lack of significant 

association due to minimal ipRGC stimulation. 

 

It is plausible that the generalised lack of dopamine (an antioxidant), reduced habituation 

(adaptation) in response to sustained retinal illumination and irregularities in vascular 

perfusion, leading to the possibility of increased retinal inflammation may contribute over 

time to AMD risk. 

 

The corrected sample size required to detect a difference in GRT of 1.7 s assuming 80% 

power at 5% significance was estimated to be 241. This study lacked sufficient power to 

detect a significant difference. 

 

3.4.11 Raynaud's phenomenon 

No significant difference in GRT was found between individuals reporting a history of Rph 

and those reporting no Rph. No distinction between Rph subtypes was made in this study, 

but it was likely that pRph and sRph were represented. 

 

Raynaud's phenomenon is associated with a reduced ability to habituate to repetitive, stressful 

stimuli.[967] Plausible pathways leading to longer GRT in individuals with Rph are similar to 

those reported for migraine (see previous section). 

 

A literature search revealed no previous studies comparing GRT and Rph. It was 

speculated that GRT may be increased in participants with a reported history of Rph. 

Raynaud's phenomenon was associated with a reduction in retinal capillary blood flow, 

which could result in ischaemia leading to retinal dysfunction.[646] Oxidative stress is also 

involved with Rph pathogenesis.[194] These factors would suggest that Rph might be 

considered to be a plausible RF for AMD (fig. 1.3). 

 

Raynaud's phenomenon summary 

GRT was not significantly different for participants with a reported history of Rph compared 

to those without a history of Rph. Inclusion of pRph cases as a separate group may 

increase the possibility of finding a significant association with GRT. If ethically tenable, 

repeating the experiment for those with active symptoms of Rph produced by cold 

provocation may increase the chance of finding a significant result. 
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The corrected sample size required to detect a difference in GRT of 0.9 s assuming 80% 

power at 5% significance was estimated to be 538. This study lacked sufficient power to 

detect a significant difference. 

 

3.4.12 Vascular dysregulation 

Glare recovery time was not significantly different for individuals reporting a history of VDys 

compared to those without VDys. 78% of the VDys cases were female. No distinction 

between types was made in this study, but the age range would suggest both types were 

represented. 

 

Primary VDys is associated with reduced neurovascular coupling in response to flickering 

light.[618] Primary VDys is associated with unstable blood flow.[205] This cyclic variation in 

OVP can lead to oxidative stress, secondary to reperfusion injury.[647] As a consequence of 

their young age, the majority of pVDys cases can cope with this level of oxidative stress 

and do not develop tissue damage.[205] In glaucoma, oxidative stress occurs mainly in the 

mitochondria of retinal ganglion cells and their axons. [205] 

 

It is plausible that oxidative stress secondary pVDys could also affect mitochondria in other 

cell types implicated in AMD development, such as photoreceptors, Mc and the RPE, and 

may compound the effect of other AMD RF. Vascular dysregulation, especially sVDys is 

associated with a relatively constant reduction choroidal blood flow.[205, 212] Vascular 

dysregulation is often associated with low systemic blood pressure,[205] and pharmaceutical 

reduction in systemic blood pressure is associated with a significant increase in GRT.[610] 

 

Vascular dysregulation, especially pVDys may be associated with retinal inflammation 

indicated by the presence of hyper-reflective spots (HRS) on OCT. These changes in 

addition to dysregulation of ocular perfusion, reported to be worse than that associated with 

Rph, suggest that VDys may represent a RF for AMD. Vascular dysregulation is 

significantly more common in females and thus may represent an AMD risk that is biased 

towards this gender. 

 

Vascular dysregulation summary 

The author has proposed a plausible mechanism (fig. 1.3) for the consideration of Rph and 

VDys as AMD RF. The OVP RF Rph and VDys may potentially be more important factors in 

AMD risk than migraine because they are more likely to persist until later in life than 

migraine. No significant difference in GRT was found for participants with a reported history 

of VDys compared to those with no history of VDys. The inclusion of participants with 

confirmed pVDys and sVDys as separate groups may lead to an improved association 

between VDys and GRT. If ethically tenable, assessing GRT after cold-provocation may 
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also increase the chance of finding a significant result for GRT. An investigation into the 

accumulative effect of VDys with other AMD RF on AMD risk would be worthwhile. 

 

The development of OCT modules designed to image retinal and choroidal blood flow in 

real time opens up the possibility of correlating GRT with ocular blood flow, differentiating 

the effect on GRT of retinal and choroidal blood flow and allowing for the effects the ocular 

effects of "cold provocation" to be directly measured. Because the variation in ocular blood 

flow associated with all of the OVP RF examined in this study is likely to be dynamic and 

transient, dynamic assessment of ocular blood flow may reveal more than GRT 

measurement, which relies on a functional deficit to reveal an abnormal result.  

 

The discovery of HRS in OCT images of patients with pVDys, indicating the presence of 

retinal inflammation (lipid-filled macrophages), offers direct evidence that this condition has 

an adverse effect on retinal health and could be associated with increased risk of AMD 

under conditions where the ability of the eye to down-regulate inflammation (e.g. CFH gene 

polymorphisms) are compromised. The ability of the eye to maintain immune privilege is 

reliant on its isolation from systemic circulatory inflammatory factors. Chronic ischaemia / 

reperfusion injury is likely to lead to a break down in the eye's immune privilege. 

 

The author is unaware of any reports of HRS recorded for individuals with migraine or Rph, 

however, it is likely that they are also present in these conditions as the effects on ocular 

perfusion are similar for all three conditions. Migraine is also associated with low retinal 

dopamine, which may compromise adaptation and photoreceptor outer segment 

phagocytosis. 

 

In addition to the small sample size, the lack of significance for the association between 

GRT and any of the OVP RF (migraine, Rph or VDys) examined in this study may be 

related to the method of GRT used (high percentage bleach equilibrium method). This 

method places maximum stress on the RPE and Mc, and results in longer GRT when these 

cells are dysfunctional. It is possible that even in the face of additional stress from OVP RF, 

the healthy retina and RPE are able to regenerate photopigment normally as a result of an 

interconnected and complex series of antioxidant and anti-inflammatory mechanisms 

(A2.1). 

 

The corrected sample size required to detect a difference in GRT of 0.5 s assuming 80% 

power at 5% significance was estimated to be 1,721. This study lacked sufficient power to 

detect a significant difference. 

 

3.4.13 Glare recovery time as a surrogate measure for MPOD 

This study aimed to assess whether GRT using the direct ophthalmoscope, an instrument  
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owned by the majority of optometrists could be used as a surrogate test, or measure for 

MPOD measurement. When the analysis included the full age range, there was a significant 

positive Pearson correlation between GRT and MPOD (p = 0.03), however the correlation 

was not significant after controlling for age using partial correlation (r = 0.18, n = 100, p = 

0.07). The direction of this correlation was positive across this large age range (24.2 to 75.8 

years), unlike the negative correlation reported by four papers in the table below, which 

examined ages ranging from 18-41 years only. 

 

The correlation between GRT and MPOD was assessed for those aged up to 50 and over 

50 years of age separately in view of the age range (all < 50 years of age) investigated by 

other studies. A non-significant trend towards a positive correlation was observed for both 

age groups, larger in the younger age range. The results obtained by the methods used in 

this study do not support the hypothesis that GRT is shorter with higher levels of MPOD in 

the younger or older age range. 

 

A significant positive correlation was found between GRT and participants with higher 

MPOD values (> 3.9), (r = 0.31, p = 0.03, n = 44), which survived correction for age (r = 

0.31, p = 0.03). No significant difference in GRT was found for participants with lower 

MPOD values ≤ 3.9 (n = 48), with or without correction for age, although the direction of the 

trend was negative. These results are interesting and hint that the direction of the 

correlation between GRT and MPOD may be influenced by the level of MPOD, no or 

inverse correlation for low MPOD and positive for higher MPOD levels. A similar effect was 

seen in the AREDS2 study where MP supplementation was only significant if dietary intake 

of MP was poor. 

 

This study found that the variation of GRT was biphasic with age. This study revealed a 

trend for a biphasic relationship for MPOD with age, and six others found that MPOD 

measurements were higher for those in the middle age range compared to those aged 

younger and older.[244, 497, 599, 601, 711, 712] This study and four others found a greater increase 

in GRT with age for those aged over 50 to 60 years of age, compared to younger 

subjects.[361, 577, 684, 928] 

 

Several studies reported a significant negative correlation between GRT and MPOD, using 

photo-flash or short duration (5-s) equilibrium bleach methods.[620, 622, 623, 905] Stringham and 

Hammond reported a linear inverse relationship between GRT and increased MPOD levels 

measured at one, two, four and six months post supplementation with 10 mg L and 2 mg 

Z.[621] However, Nolan et al. reported no association between GRT and increased MPOD 

levels measured at three, 6-12 months post supplementation with 12 mg L and 1 mg Z in a 

placebo-controlled study.[968] It is noteworthy that none of these studies examined subjects 

aged over 50 years. 
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One study using a 30-s equilibrium bleach, found no association between GRT and 

MPOD.[906] The light sources used for retinal bleach by Loughman et al., by Nolan et al. 

above and by this study (fig. 3.10), contained very little blue light component in their 

spectral emission, compared to those studies reporting a negative correlation between GRT 

and MPOD. At normal MPOD levels between 20% and 40% of blue light (at 460 nm) is 

absorbed at the macula, rising to as much as 90% blue light absorption for high MPOD 

levels.[969] The author accepts that differences in receptoral absorption and neural 

adaptation, as a consequence of the longer duration bleach may also have influenced these 

results (table 3.16). 

 

Table 3.16 Summary of the literature for the association between GRT and MPOD 
Source 

(Country of Study) 

No. of 

Data 

(n) 

Age 

Range 

(years) 

GRT Light Source, 

Duration of Exposure and 

Blue Light Content (s) 

Reported Direction of GRT vs. MPOD 

 

Inverse 

 

None 

 

Positive 

Stringham, 2007 (USA)[620] 36 18 - 41 Xenon arc, 5 s, high ✓   

Stringham, 2008 (USA)[621] 40 17 - 41 Xenon arc, 5 s, high ✓   

Loughman, 2010 (Ire)[906] 142 18 - 41 60 Watt bulb, 30 s, low  ✓  

Stringham, 2011 (USA)[622] 26 23 - 50 White LED, 5 s, high ✓   

Nolan, 2011 (Ire)[968] 121 18 - 41 Tungsten lamp, 5 s, low  ✓  

Hammond, 2013 (USA)[623] 150 20 - 40 Xenon arc, 5 s, high ✓   

Abbreviations: Ire, Ireland, LED, light emitting diode. 

 

The lack of a negative correlation between GRT and MPOD is also likely to have been 

affected by the longer duration of the equilibrium bleach used in this study and that of 

Loughman et al. In humans short duration, high intensity photo-flash bleach was reported to 

bleach approximately half the amount of cone photopigment and lead to a GRT of about 

half of that compared to longer duration equilibrium bleach.[582] 

 

Unlike photo-flash bleaches, Equilibrium bleaches are also likely to deplete local stores of 

11-cis-retinol from Mc, placing a greater burden on the RPE for cone photopigment 

regeneration.[330] High percentage equilibrium bleach GRT is minimally affected by slight 

variations in the exposure time of the bleaching light source.[573] It is therefore likely that this 

method of GRT will be minimally affected by variations in blue light absorption due to 

variable levels of MP. 

 

The author is unaware of any studies using a longer duration retinal bleach with a light 

source utilising a high spectral component of blue light. The contribution of neural 

adaptation to GRT may be different for photo-flash bleach compared to equilibrium bleach. 

Older papers have reported that neural adaptation accounts for the first 15 s of visual 

recovery after exposure to a bright light source, where after photoreceptor pigment 

regeneration takes over from neural factors.[924, 925] These papers were written before it was 
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established that the cone-specific, Mc visual cycle might be responsible for the earliest 

stage of visual recovery after bleach.[308, 349, 529, 580] 

 

Contrary to the shorter duration bleach GRT required as a surrogate measure for MPOD, a 

longer duration, high percentage photopigment bleach GRT would be favoured as a marker 

for eye diseases such as AMD.[330, 357, 970] 

 

Wood et al. found that GRT following equilibrium bleach was positively correlated with age,  

whereas photo-flash bleach was negatively correlated with age, after testing both GRT 

methods on the same population.[330] It is therefore essential to correct for age when 

comparing GRT and MPOD, as depending on the methods of assessment used, both 

variables may be biphasic with age. 

 

From the scatter plots for GRT and MPOD with age it may be seen that both variables are 

characterised by high levels of intersubject variation. Other authors have noted this for 

GRT,[620, 624] and for MPOD.[497, 599, 601, 711, 712] 

 

Previous studies examining the association between GRT and MPOD have only included 

participants aged 50 years or less. The logic behind this decision is based on the 

assumption that MPOD is stable with increasing age in healthy subjects, whereas GRT is 

known to increase significantly in subjects over the age of approximately 50 years. Glare 

recovery time particularly, is associated with increased variability with increasing age.[308, 330, 

577] Older patients are more likely to have general or ocular pathology that that may 

confound one or both measurements. Age-related conditions such as AMD, type 2 diabetes 

and glaucoma are known to interact with both measurement principles, such that they no 

longer offer "optimum" conditions for measurement. 

 

The effect of cataract on MPOD readings is dependent on the method of measurement. It 

would be expected that cataract would affect results from objective methods of MPOD 

measurement, as media opacification would modulate incident light directed onto and 

reflected light from the retina. Macular pigment optical density measurements based on 

HFP, however, appear to be immune to the effects of clinically significant cataract.[698] 

Wood et al. have demonstrated that the association between GRT and age is not consistent 

for different bleach methods, equilibrium versus photo-flash, which differ in the percentage 

of photopigment bleached.[330] It is also likely that the effect of cataract on GRT will differ 

depending on the method of GRT used. Margrain and Thomson reported that GRT resulting 

from higher percentage bleaches are less affected by a variation in exposure time than 

lower percentage bleaches.[573] This would suggest that cataract might affect the results 

from photo-flash bleach GRT to a greater degree than equilibrium bleach methods. Eye 
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disease is also associated with a greater level of intersubject variation in GRT compared to 

healthy cases.[624] 

 

Glare recovery time as a surrogate measure for MPOD summary 

The efficacy of a biological marker is inversely dependent upon the variability of the 

measurement within a given chronological age group.[932] Both GRT and MPOD are highly 

variable with age. It was also clear that equilibrium bleach GRT using a light source with a 

low blue light component did not produce a significant correlation with MPOD after 

correction for age and for the biphasic nature of both variables. Therefore GRT using the 

direct ophthalmoscope as the glare source was not found to be a suitable surrogate 

measure for MPOD. 

 

A shorter duration, low-intensity bleach method (e.g.  5-s equilibrium bleach) using a blue 

light source with a peak absorbance matching that of MP (445 to 463 nm),[439, 466] would 

represent a better surrogate measure for MPOD. It may be possible to reduce the effects of 

intersubject variation and pathological differences in GRT by performing a second GRT test 

at least 10 min after the first measurement,[577] with a retinal luminance-matched light 

source with no blue light component. The ratio of these two GRT results (blue light and 

blue-free) may be represented as a single number in much the same way as HFP-derived 

MPOD measurements. 

 

The measurement of MPOD in clinical (and especially commercial) optometric practice is 

associated with certain difficulties depending on the method of measurement selected. 

Subjective methods (e.g. HFP) are relatively inexpensive to purchase, but are conceptually 

difficult for some naïve and / or elderly patients, and may be time-consuming, particularly if 

means of multiple readings or readings from multiple eccentricities are required. Objective 

methods (e.g. 2-WFAF, RRS and FR) are quick to perform (although pupil dilation may be 

required) and provide additional information about the MPOD spatial profile, not available 

from a single eccentricity measurement using HFP. Objective methods are however more 

expensive to purchase and maintain, in the case of the 2-WFAF module added to the cost 

of OCT instrumentation, considerably more so. 

 

A commercial model of MPOD measurement in clinical practice is based on generating 

revenue to off-set instrument and clinic time costs by selling MP supplements to patients 

with, or perceived to be at risk of developing AMD and / or patients with "low" MPOD 

readings. There is currently no evidence that MP supplements can prevent or delay the 

onset of AMD and only a specific subset of AMD patients (defined latterly by the AREDS2 

study) may benefit from MP supplementation. The AREDS2 vitamin supplement formulation 

(which includes 10 mg of L and 2 mg of Z) lowered the risk of developing advanced AMD in 

patients aged between 50 and 85 years, with bilateral large drusen or large drusen in one 
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eye and advanced AMD in the fellow eye, whom also had a low dietary intake of MP (≤ 

0.832 mg per day), by 25%.[452] 

 

The idea behind this experiment was to assess whether GRT using the direct 

ophthalmoscope, an instrument already owned by most optometrists could be used to 

gauge MPOD levels in a practice setting. This would allow MPOD to be assessed rapidly 

and without the need to purchase expensive equipment. Supplement sales would not be 

required to fund this model of MPOD assessment. 

 

The corrected sample size required to detect a difference in GRT of 0.4 s assuming 80% 

power at 5% significance was estimated to be 979. This study lacked sufficient power to 

detect a significant difference. 

 

3.4.14 Glare recovery time repeatability 

In the first session, GRT time was performed eight min and 18 min after completing MPOD 

measurements in both eyes. Prior MPOD testing appeared to significantly increase GRT 

eight min after MPOD testing, compared to 18 min after MPOD testing for both eyes (p < 

0.01). This was considered to be an adaptive rather than a learning affect because it was 

not replicated in the second session for either eye, when MPOD testing was not performed 

prior to GRT measurements. For this reason GRT intra-session repeatability was assessed 

using the first eye data from the second session, and inter-session repeatability was 

assessed using the first eye data from the second set of GRT measurements from both 

sessions. Limits of agreement were calculated using the log transformed GRT data and 

then back-transformed in order to produce clinically meaningful values. Limits of agreement 

were calculated for repeated measures of GRT (i.e. coefficient of repeatability, CoR). 

 

Intra-session repeatability 

The difference between the means for the two sets of raw GRT data was 1.7 s (SD 12.1 s). 

Intra-session repeatability for the mean value of GRT (46.4 s, SD 24.6 s) was 20.8 s, or 

45% represented as a percentage of the mean GRT value. For other values of GRT, intra-

session repeatability may be calculated using equation 3.3. 

 

It is clear from the back-transformed Bland-Altman plot that the repeatability will worsen (i.e. 

the LoA will increase in size) as the GRT value increases. A Wilcoxon signed rank test 

revealed no significant difference in intra-session GRT measurements of the first eye 

indicating no bias or learning effect. Overall intra-session repeatability was good with a high 

level of intra-session correlation (r = 0.89, n = 30, p < 0.001) and, 77% and 57% of subjects 

showing a repeatability of ≤ 10 s and ≤ five s respectively. 

 

Two out of 30 (7%) normal participants had intra-session difference in repeated 
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measurements of GRT that was abnormal (greater than the value of the LoA). All were free 

from glare-related symptoms or ocular disease. No explanation found for the large 

interocular difference measured from these participants.  

 

A Literature search did not reveal another study reporting intra-session repeatability for 

GRT derived from equilibrium bleach methods, however three studies were found that used 

the photo-flash method. 

 

Bartlett et al. reported a significant intra-session difference between results taken one hour 

apart for one examiner (mean difference = 0.93 s, coefficient of repeatability, CoR = 4.98 s), 

but not the other (mean difference = 0.95 s, CoR = 6.19 s).[359] Newsome and Negreiro 

found no significant difference between right and left eye results repeated after five min.[361] 

 

Loughman et al. reported that the third GRT measurement for the dominant eye, recorded 

two min after the second (ignoring the first measurement) was significantly shorter (mean 

difference = 0.39 s, CoR = 2.61 s). Although the 2-min interval between GRT 

measurements was determined to be sufficient in a pilot study, this may have contributed to 

the significant (p < 0.001) and progressive shortening of GRT for the three successive 

dominant eye measurements, although Mauchley's test of sphericity was not significant 

suggesting that this was not a learning effect.[329] Repeatability data for photo-flash GRT 

methods cannot be compared to the present study in view of the difference in method of 

GRT used. 

 

Inter-session repeatability 

The difference between the means for the two sets of raw GRT data was -4.5 s (SD 23.4 s). 

Inter-session repeatability for the mean value of GRT (43.2 s, SD 14.6 s) was 30.4 s, or 

70% represented as a percentage of the mean GRT value. For other values of GRT, inter-

session repeatability may be calculated using equation 3.4. 

 

Three out of 30 (10%) normal participants had inter-session difference in repeated 

measurements of GRT that was abnormal (greater than the value of the LoA). All were free 

from glare-related symptoms or ocular disease. No pathological explanation was found for 

the large interocular difference measured from these participants. 

 

The participants in this study were vetted for any causes of abnormal GRT known to the 

author (see table 3.4 and appendix A2.5). Participants were excluded if any reason for 

abnormal GRT was reported by the participant or detected by the author. 

 

7-10% of participants were found to have differences in repeated measures of GRT, which 

were considered to be abnormal. These differences may have occurred by chance and 
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therefore the results should be repeated before the conclusion of abnormality is confirmed. 

Owsley et al. reported that 22% of normal subjects had abnormal DA time to rod-cone 

break measured psychophysically using the AdaptDx dark adaptometer.[959]  

 

In the present study greater differences between repeated GRT measurements appeared to 

be associated with longer GRT measurements (and by association with age). The difficulty 

with this observation is that the age group of interest (the elderly for AMD risk) is also the 

age group that experiences the largest risk of abnormal results in normal participants. In the 

clinical setting the usefulness of a test would be reduced if a high percentage of abnormal 

results were obtained for normal patients. 

 

Consulting the back-transformed Bland-Altman plot again confirmed that the repeatability 

was positively correlated with the value of GRT. A Wilcoxon signed rank test revealed no 

significant difference in intra-session GRT measurements of the first eye, indicating no bias 

or learning effect. Overall repeatability was not as good as intra-session, with a moderate 

level of inter-session correlation (r = 0.41, n = 30, p = 0.02) and, 73% and 40% of subjects 

showing a repeatability of ≤ 10 s and ≤ five s respectively.  

 

Three other studies have examined inter-session repeatability, one using equilibrium 

bleach, one using photo-flash bleach and one comparing both methods of GRT. 

 

Torkelson et al. reported a Pearson correlation of 0.77 (p not available) for repeat measures 

of GRT (40 s equilibrium bleach) separated by one week.[907] Elliot and Whitaker reported a 

test-retest correlation coefficient of 0.82 (p not available) and noted a small training effect 

leading to lower photo-flash GRT values two weeks after the initial readings.[684] 

 

Wood et al. compared electroretinogram  (ERG) GRT repeatability after four weeks for a  

two min equilibrium bleach and a 6.6 ms photo-flash bleach on the same population. 

Coefficient of repeatability (CoR), calculated from 1.96 x SD of the mean of the difference 

between the two sessions, were calculated as these give a better idea of agreement than 

correlation coefficients used by earlier GRT papers.[677] Inter-session CoR for GRT following 

a two min equilibrium bleach was found to be 85 s, whereas CoR following photo-flash 

bleach was significantly longer at 184 s. The authors concluded that on their population (n = 

23) equilibrium bleach GRT was more repeatable than photo-flash bleach GRT.[330] 

 

The lower level of inter-session correlation found by this study compared to the others, is 

likely to be a consequence of the difference in time between repeated measures of GRT for 

some of the subjects, resulting from the addition of the repeatability study close to 

completion of the data collection process. The second set of GRT data was collected 2-5 
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weeks after the initial set for 18 subjects, but 3-11 months after the initial GRT data for the 

remaining 12 subjects. 

 

When the analysis was repeated for the 18 subjects retested within five weeks a higher 

level of inter-session correlation was achieved (r = 0.58, p = 0.002). The difference between 

the means for the two sets of raw GRT data was still larger than that for intra-session GRT; 

-6.1 s (SD 22.8 s). Inter-session repeatability for the mean value of GRT (42.6 s, SD 15.3 s) 

was 25.0 s, or 59% represented as a percentage of the mean GRT value. 83% and 33% of 

subjects showing a repeatability of ≤ 10 s and ≤ five s respectively. 

 

Inter-session repeatability for this method (25-30 s) was worse than intra-session 

repeatability (20 s), and was associated with a greater mean difference between readings 

(6 s vs. 2 s) indicating a greater bias between inter-session GRT values. Ideally the mean 

difference should be zero, but this rarely happens in practice. If the mean difference is 

significantly different from zero then an assessment of repeatability is not possible.[677] 

Wilcoxon signed rank test revealed no significant difference between the means of intra- or 

inter-session repeated measures of GRT. The longer first GRT measurement for inter-

session repeatability may have been due to HFP MPOD measurement 18 min before. The 

shorter second GRT may have been a training or learning effect. 

 

Bias from using the same test chart letters 

The same test chart letters were used for the first and second eye GRT measurements in  

first session. In the second session, the second eye GRT measurements (GRT1 and 

GRT2) were assessed using different test chart letters, whereas the first eye GRT 

measurements (GRT1 and GRT2) were assessed using the same set of test chart letters. 

To assess whether using the same letters lead to any learning effect in the first eye GRT 

measurements (GRT1 and GRT2), an independent t-test was performed on the difference 

between GRT1 and GRT2 for the first eye (same letters), and the difference between GRT1 

and GRT2 for the second eye (different letters). The results revealed that using the same 

letters for the two first eye GRT measurements, taken 10 min apart did not significantly 

affect the results compared to changing the test chart letters between GRT1 and GRT2 for 

the second eye (p = 0.12). Optometrists should be able to perform repeated measurements 

of this method of GRT using the same test chart letters for each GRT measurement without 

fear of a learning effect in the results. 

 

Glare recovery time repeatability summary 

Intra-session repeatability of this method of GRT was high, however the high percentage 

(7-10%) of cases exhibiting an abnormal difference in repeated measures was a concern if 

this method was to be used in a clinical setting. Repetition of abnormal measurements 

would be sensible before any conclusion is made about the result. Inter-session GRT was 
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moderate, even after the removal of participants measured at a time interval of greater than 

five weeks. 

 

Schmitt et al. and Bartlett et al. concluded that a longer duration bleach than that afforded 

by photo-flash methods may lead to less variation in GRT results.[358, 359] This was 

confirmed by Wood et al. who reported that equilibrium bleach GRT coefficient of 

repeatability (85 s) was less than half of that for photo-flash bleach GRT (185 s) after 

testing both GRT methods on the same population.[330] 

 

It is possible that the low percentage of photopigment bleach may have contributed to the 

higher variability reported for one method of photo-flash GRT measurement (EMS).[359, 360] 

Higher levels of repeatability have been reported for a more recent photo-flash-based 

commercial GRT instrument (MDD-2).[329, 361] 

 

An increase in recovery time for the second of two GRT performed sequentially on the 

same eye, in quick succession, may be a marker for eye disease compared to healthy 

eyes.[329, 361] Sufficient time should be allowed between successive bleaches to reduce the 

risk of any learning or adaptation effects. 

 

3.5 Chapter conclusion 

This study of healthy subjects found a significant, positive correlation between equilibrium 

bleach GRT and age, in agreement with all other equilibrium bleach studies of healthy 

populations. The relationship between photo-flash bleach GRT and age is controversial 

however. The association between GRT and age appeared to be biphasic, increasing more 

rapidly after 50 to 60 years of age. After correction for age no other AMD or OVP RF tested 

had a significant association with GRT.  

 

Interocular comparison and intra-session repeatability of GRT were found to be good and 

inter-session repeatability was moderate, which didn't appear to be significantly affected by 

the lack of a constant time interval for repeated measures. The difference between the 

means was greater for inter-session GRT values. (although in practice this is never zero, it 

should be as low as possible in order to make a reasonable assessment of repeatability). 

Glare recovery time was not significantly affected by ocular dominance. This method of 

GRT was not a suitable surrogate measure for MPOD measurement due to the lack of blue 

light emission (expected for an instrument designed for ocular examination) and the high 

photopigment percentage, long duration bleach method.  

 

Insufficient rest period between GRT measurements may lead to a learning effect between 

successive measurements, although this effect may be exploited in the investigation of 



	   172	  

ocular disease. Many older papers report a long period of adaptation before measurements 

of GRT are made. Most modern papers report little or no period of adaptation.  

 

The high level of intersubject variability, also noted by other studies, complicates 

interpretation of GRT results in the clinical setting and will challenge the adoption of any 

GRT method as a criterion standard. GRT may have greater use as baseline criteria for 

future change. It is clear that the duration, intensity and spectral emission of the GRT light 

source is likely to affect the association with AMD RF such as MPOD, AMD FH and iris 

colour and OVP RF such as migraine. This knowledge may be used to tailor the GRT 

characteristics to suit the variable under investigation. 

 

Glare recovery time is regarded to be a measure cone photoreceptor recovery and is 

influenced by factors affecting classical (RPE) and cone-specific (Mc) photopigment 

recycling, adaptation (via ipRGC and dopamine-specific A11 amacrine cells) and cortical 

factors. 

 

Glare recovery time testing with different coloured lights or even combinations of colours in 

centre / surround orientation may be used to isolate cone function (red centre, blue 

surround) and ipRGC (calculated from the difference between the cone condition above 

and a luminance matched blue target and a blue surround) function. Repeated GRT 

performed a short time after the initial GRT may aid the detection of ocular pathology. GRT 

measurements, like MPOD measurements show very high levels of inter-individual variation 

across the entire age range, making inter-individual comparison difficult. For this reason 

comparison between baseline and successive measurements would be more appropriate 

than comparison of the GRT value of an individual with a population mean GRT. 

 

It is clear that mechanism underlying GRT is more complex than a simple differentiation 

between retinal and optic nerve disease. That GRT is affected by a reduction in OVP 

associated with ocular ischaemic syndrome was the inspiration to investigate OVP RF with 

the AMD RF and the development of the theory that migraine, Rph and VDys could 

contribute to AMD risk (fig. 1.3). 

 

Glare recovery time may be longer in individuals with AMD, but it is by no means diagnostic 

for AMD. Prolongation of GRT due to ocular disease or medication may result from retinal / 

RPE tissue loss, degeneration or pigmentation (e.g. AMD, glaucoma, RP and quinoline 

antimalarials), retinal separation from the RPE (retinal detachment or CSC), reduced ocular 

perfusion (e.g. blood pressure reduction and reduced retinal perfusion pressure), 

medications that interfere with photopigment regeneration, and one of several causes of 

CMO (DMO, Irvine-Gass syndrome or CMO secondary to one of several medications listed 
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in appendix A2.5). Further information on GRT is also provided in section 1.7 of this 

introduction. 

 

The usefulness of a GRT method (equilibrium) that places considerable strain on the RPE, 

for the assessment of AMD RF, before there is any RPE dysfunction may be limited. 

Although exhibiting reduced repeatability, photo-flash methods may be more appropriate to 

investigate subclinical RPE and Mc dysfunction.  

 

Some patients with MIS report seeing centrally-located coloured blobs which track fixation, 

after viewing bright white backgrounds such as interactive white boards. The current 

explanation for these cases is cortical hyper-excitability, for which there is compelling 

evidence.[971, 972] The author has proposed a retinal explanation for MIS that may 

complement cortical hyper-excitability and represent an alternative explanation in some 

cases (see appendix 3). 

 

The author is unaware of any studies examining GRT and / or AMD FH in cases of MIS, 

although DA was reported to be longer for dyslexia, and scotopic sensitivity syndrome, an 

older name for MIS (appendix A2.5). If GRT is found to be increased in MIS, this could 

represent a childhood marker for increased lipofuscin accumulation and AMD development. 

Further research is required, particularly to assess any relationship between GRT, MIS, 

AMD FH, AMD risk and MPOD non-responsivity. 

 

Sample size calculations were based on MPOD differences reported from similar studies 

using HFP-derived MPOD values, or calculated using G*Power statistical software if 

previous data was not available. The sample size was corrected for unequal size groups 

(allocation ratio). Assuming 80% power (1 - β) at 5% significance level, the sample size was 

sufficiently large to be confident that there was no significant difference for age, BMI (mixed 

gender), and AMD FH. This study was underpowered to detect a significant difference for 

ocular dominance, gender, iris colour, migraine, Rph, VDys and MPOD. 

 

What is currently known: 

1) Interocular agreement in equilibrium-bleach GRT for healthy eyes is good. 

2) Insufficient resting time between interocular GRT measurements may produce 

 learning or fatiguing effects. 

3) There is a significant increase in equilibrium-bleach GRT with age for healthy eyes, 

 with some studies reporting a higher rate of increase after middle age. 

4) Although few studies have examined GRT and other AMD RF. The majority of those 

 studies reported no significant association. The author is not aware of any examining 

 GRT and OVP RF. 
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5) Repeatability for GRT is moderate to high, with the equilibrium method reported to be 

 higher than the photo-flash method. 

 

What this study has found: 

1) Confirmed the high level of interocular agreement for equilibrium-bleach GRT. 

2) No difference between dominant and non-dominant eye GRT was found. 

3) Equilibrium-bleach GRT was positively and significantly associated with age, and the 

 higher rate of increase in GRT with age after middle age was confirmed. 

4) No other AMD or OVP RF was associated with GRT after correcting for age. 

5) Intra-session repeatability was good and inter-session repeatability was moderate. 

6) No significant bias in repeated GRT measurements was found between using the 

 same or different test chart letters for recording recovery after photostress. 

7) This method of GRT was not found to be a surrogate measure of MPOD for the 

 under 50 year or over 50-year age range. 

 

Chapter summary 

This chapter examined four different aspects of GRT. An interocular comparison for, and 

the effect of ocular dominance on GRT, the relationship between GRT and selected AMD 

and OVP RF, the suitability of GRT as a surrogate measure for MPOD and GRT 

repeatability. The next chapter will bring together the main outcomes from both 

experimental chapters and highlight the limitations and confounding variables associated 

with this study. Improvements in the study design will be discussed. 
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Chapter 4 Discussion 

 

4.1 Main outcomes 

No significant association was found between MPOD measured by HFP at 0.5° eccentricity 

and any of the AMD or OVP RF assessed by this study, for this healthy White, mixed-

gender population. Interocular agreement was good with a non-significant trend towards 

sequential bias between first and second eye consecutive measurements after the removal 

of a single outlier from the MPOD data. MPOD was not significantly associated with ocular 

dominance, although an interesting trend for a greater reduction in MPOD for dominant 

eyes with age was noted. Difficulty with the HFP task was not significantly associated with 

age, MPOD or GRT. 

 

Glare recovery time after a 30-s bleach using the direct ophthalmoscope was significantly 

and positively associated with age. No significant association was found for any other AMD 

or OVP RF examined in this study, after correction for age. 

 

Interocular agreement and intra-session repeatability were good. Inter-session repeatability 

was moderate, requiring the remeasurement of abnormal values to confirm abnormal 

status. GRT was not significantly associated with ocular dominance. The LoA on interocular 

and repeated measures of GRT increased as a function of mean GRT (and by association, 

with age), requiring the use of a formula to determine abnormality. This would limit the use 

of this method of GRT in a clinical setting, particularly if participants were from a different 

population, requiring a population-specific algorithm to be calculated. This method of GRT 

was not found to be a good surrogate measure for MPOD.  

 

Measurement of MPOD is likely to be a more reliable marker for factors affecting AMD risk 

compared to GRT, because it is relatively stable with age for each individual, although 

MPOD and GRT measurements exhibit considerable inter-subject variation. Measurements 

of MPOD obtained by HFP are less likely to be affected by functional retinal changes and 

media opacities because they are recorded as ratios of central and peripheral values 

(unless central only values are used with age-estimation software). Objective methods of 

MPOD are unaffected by retinal function but are affected pupil size and media opacification. 

Glare recovery time on the other hand is reliant on there being a functional retinal change to 

detect a significant finding and these are unlikely to be present in individuals with AMD RF 

before the age of 50 because AMD is rare before that age. 

 

Because photo-flash GRT places less stress on the RPE, this method may be more 

suitable to detect subtle changes in GRT related to OVP or retinal ischaemia / Mc 

dysfunction compared to equilibrium methods, however photo-flash GRT has been reported 

to be less repeatable. 
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The lack of association between MPOD and GRT with all of the AMD and OVP RF (apart 

from GRT with age), suggests that either there is no association, the association was too 

small to be detected using these methods or the sample size was too small. This result 

could have occurred by chance, but this is unlikely. 

 

4.2 New findings 

 

4.2.1 Macular pigment optical density study 

The potential for bias between sequential interocular MPOD measurements with no resting 

period between measurements. This may have ramifications for the recommendation to 

record means of multiple MPOD values from the same eye in a clinical setting, as it is likely 

that no resting period between measurements will be given. 

 

The trend towards a reduction in MPOD measured from the dominant eye relative to the 

non-dominant eye with age has not been reported previously and warrants further 

investigation. This measurement may be a marker for ocular light exposure and has the 

potential to be predictive for future ocular disease. 

 

This is the first study to examine the association between HFP-derived MPOD and 

migraine, and the association between any method of MPOD measurement and calculated 

%BF, Rph and VDys. 

 

Older age was reported to be a factor in the difficulty experienced with the use of HFP.[507, 

689, 973] This study revealed no statistically significant difference between the ages of naïve 

participants reporting no difficulty compared to those reporting difficulty. More than twice as 

many female participants reported difficulty compared to male participants. This may be a 

consequence of the gender ratio of the study population (73% female). There was a trend 

for longer glare recovery time for those reporting difficulty with the MPOD task, despite 

there being no significant difference in the mean age of the two groups. 

 

The relative retinal illuminance for blue and brown irides was calculated for a range of pupil 

sizes was calculated (table 2.10). The observation that the difference in retinal illuminance 

for brown and blue iris colour is largely dependent on pupil size has not been reported 

before. 

 

The author is unaware of any previous reports of reduced MPOD in a subject with 

coloboma. Results were derived from a single case and therefore analysis of further cases 

would be needed to confirm this association. 
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4.2.2 Glare recovery time study 

This is the first study to log10 transform the GRT data to correct for positive skew and to 

present the repeatability and interocular comparison of the GRT results as Bland-Altman 

plots with back-transformed LoA and 95% CI. 

 

This is the first study to examine the association between GRT and BMI, calculated %BF, 

migraine, Rph and VDys. The association between this method of GRT with iris colour and 

AMD FH has not been examined before. 

No prior study has assessed the association between MPOD and this method of GRT. 

 

No prior study has assessed interocular comparison and repeatability for this method of 

GRT. 

 

The use of the same test chart letters for repeated measures of GRT did not bias the 

results compared to changing the letters. This suggests that optometrists with fixed-letter 

test charts can use the same letters for repeated GRT measurements. 

 

The author believes that this is the first study to propose that the high level of percentage 

bleach during GRT, in addition to the previously reported lack of blue light content in the 

GRT light source, may explain the absence of a negative correlation between GRT and 

MPOD. 

 

4.3 New theories generated by this study 

One of the strengths of the cross-sectional study design is that it is good for the generation 

of new hypotheses.[687] The following theories were formulated during the course of this 

study. The Müller cell / neuroglial cell hypothesis for macular xanthophylls is described 

below, a plausible argument for the OVP RF migraine, Rph and VDys to be considered as 

AMD RF is presented in section 1.3 and fig. 1.3, and a plausible retinal theory for symptoms 

suggestive of MIS is described in appendix 3. 

 

4.3.1 The Müller cell / neuroglial cell hypothesis for macular xanthophylls 

This hypothesis suggests that MP preserves the functional capability of Mc, particularly 

those associated with cone photoreceptors in the fovea, and neuroglia in the brain by 

modulating glial activation (reactivity),[892, 893] and Mc de-differentiation caused by 

exogenous stressors (e.g. blue-light),[277-279] and endogenous stressors (e.g. oxidative 

stress).[974] Müller cell functions in addition to cone photopigment recycling were reviewed in 

appendix A2.2 of this thesis. Müller cells are crucial for the survival of photoreceptors,[273, 

975, 976] and neurons.[977] Neuroglia also protect brain neurons.[978] Müller cells become 

activated in response to virtually all pathogenic stimuli,[269] and Mc activation is a feature of 
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many retinal disorders including; photic damage, retinal detachment, glaucoma, diabetic 

retinopathy and AMD.[270] 

 

4.3.1.1  Glial reactivity in ocular and neurological disease 

Neuroglial reactivity was reported as a pathogenic mechanism of AD and other 

neurodegenerative disorders.[978] Down-regulation of normal Mc function as a result of 

activation or de-differentiation causes many changes associated with AMD 

pathophysiology; reduced antioxidant production, neurotransmitter recycling, blood-retina 

barrier maintenance, neuroprotection and increased secretion of inflammatory and 

angiogenic factors. It is not certain whether Mc changes represent a primary or secondary 

factor in AMD pathogenesis. Photoreceptor degeneration followed Mc ablation with 

tamoxifen.[979] Müller cell activation (GFAP up-regulation) and photoreceptor degeneration 

were also reported after RPE ablation using tamoxifen.[980] 

 

Macular telengiectasia type 2 is associated with a central depletion rather than a 

paracentral displacement of MP.[981] Müller cell loss or dysfunction is a critical component of 

MacTel type 2 and the area of MP depletion corresponds to the region of Mc loss.[982] 

Supplementation with L and Z resulted in an increase in MP in areas where MP was 

detected at baseline, but no increase where MP was absent.[983] This suggests that Mc may 

be involved in storage, trafficking and / or regeneration of MP,[981, 984] but this remains to be 

confirmed. In view of the ability for a subset of Mc to act as stem cells,[270] it would be 

beneficial to encourage the preservation of these cells for their potential as a target for 

therapeutic regeneration.[985]  

 

Initial changes associated with AMD usually affect rods in the parafoveal retinal location.[958, 

986] The spatial distribution of lipofuscin deposition generally matches that of rods.[246] 

Human data have shown that the retinal location where MP is most densely deposited 

(central fovea) is also the most resistant to degenerative change.[987, 988] These observations 

are cited by proponents of the protection hypothesis as evidence for the cone-protective 

role of MP.[987, 988] 

 

4.3.1.2  Müller cells contain MP? 

The majority of MP is located within cone axons in the Henle fibre layer at the foveola and 

within the inner plexiform layer at the edge of the foveal depression.[989] Müller cells, like 

cone axons, follow an outward-curving path in the foveal region.[395] An alternative theory 

proposed by Gass was that Mc could act as a reservoir for MP.[400] This theory was not 

favoured by Snodderly et al. in view of the similarity in appearance between MP and oil 

droplets occurring in cones, but not Mc of non-primate vertebrates.[395, 989] It was also 

reported that the antibody (N-62 StAR) for StARD3, the human retinal L-binding protein 

localised to cone inner segments and axons, but not with glutamine synthetase, a Mc 
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marker.[460] Gass et al. reported yellow-coloured scotoma caused by pseudo-operculae,[444] 

which are mainly composed of Mc and astrocytes.[990] Epiretinal membranes contain a 

variety cell types, including Mc, but not photoreceptors and their axons.[991] Epiretinal 

membranes were also found to contain MP.[443] Lutein and / or Z may be used as selective 

stains to improve visualisation of the ILM, which is composed of the end feet of Mc and 

astrocytes.[992, 993]  

 

4.3.1.3  Müller cell dysfunction may increase the metabolic load on the RPE 

The MP spatial profile peaks (in most normal cases) at the foveola and reduces 

exponentially to almost unmeasurable levels at 6-8° eccentricity.[244, 393] It is likely that this 

spatial profile affords the fovea greater protection from blue light than the parafovea. Early 

parafoveal involvement may also be a consequence of greater oxygen demand and higher 

photoreceptor to RPE cell ratio in the parafovea compared to the fovea. The mean ratio of 

photoreceptors to RPE cells in human eyes was higher at the macula than at the 

paramacula or periphery.[994] Data from humans and non-human primates indicated that the 

ratio of photoreceptors to RPE cells was lower at the fovea compared to the parafovea.[995] 

Photoreceptor and RPE cell numbers reduce with age, although the rate of loss with age is 

higher for RPE cells, leading to a greater ratio of photoreceptors to RPE cells with age.[994]  

 

Data from primate studies has indicated that the parafovea, not the fovea has the highest 

oxygen demand in both light- and dark-adapted conditions and that oxygen consumption 

was greater at both locations by 16-36% when dark-adapted. This reflects the thinner 

retina, lack of inner retinal neurons and absence of retinal circulation at the fovea. Foveal 

oxygen is received almost entirely from the choroidal circulation under dark- and light-

adaptation (with a minor contribution from the vitreous humor). Under light-adaptation the 

parafovea also receives 100% of its oxygen from the choroid, but when dark-adapted this 

changes to 90% from the choroid and 10% from the retinal circulation.[996, 997] The greater 

number of photoreceptors per RPE cell and greater oxygen demand reported for parafoveal 

compared to foveal retinal locations suggest a greater phagocytic load on the RPE 

paracentrally, leading to a greater accumulation of lipofuscin within the RPE and eventually 

the development of drusen in this region.[994] In Whites, photoreceptor loss significantly 

correlated (p < 0.0001) with lipofuscin in the adjacent RPE, but was, however, unrelated to 

age.[994] Photoreceptor degeneration and Mc activation were observed in human donor 

retinal tissue overlying hard and soft drusen.[271] 

 

The central fovea of primates has a Mc to cone ratio of 1:1.[526] This changes to 2:1 at an 

eccentricity of approximately 30° from the fovea, reflecting lower cone numbers although 

each Mc will also serve numerous rods.[528, 998] Müller cells provide an additional source of 

all-trans retinol to cones but not rods, independent to that from the RPE.[521] Within cone OS 

this is oxidised to all-trans retinal.[525] This additional source of photopigment from Mc may 
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explain why cone recovery is considerably quicker than rods (ms vs. min) from a sustained 

bleach,[529] and may also contribute to the reduction in phagocytic load on the RPE at the 

fovea, supporting to the observation of greater parafoveal damage in AMD as well as in 

other retinal degenerations such as chloroquine / hydroxychloroquine retinopathy where 

cones appear to be spared in the early stages of the disease.  

 

Because the secondary source of photopigment recycled via Mc is likely to relieve 

metabolic stress on the RPE, any situation where Mc are compromised would likely 

increase stress on the RPE. Although Mc are strikingly resistant to ischaemia, anoxia and 

hypoglycaemia compared to photoreceptors,[294] they become activated (reactive) or de-

differentiated in response to pathogenic stimuli including blue-light exposure (in rats).[278, 279] 

Activation of Mc results in down-regulation of many essential functions including; glutamate 

recycling, GSH production, water transport and cone photopigment recycling.[269, 270] 

 

4.3.1.4  Müller cell activation (reactivity) and down-regulation of activation by MP 

Glial fibrillary acidic protein is the most sensitive, non-specific response to retinal disease 

and injury and is a recognised cellular marker for Mc activation.[270, 999] Measurements from 

the sera of patients with nAMD revealed up-regulation of GFAP.[1000] Murine models 

indicated that L has an inhibitory effect on GFAP expression in Mc.[893] Treatment with L 

also lowered levels of Mc gliosis in ischaemia / reperfusion injury and reduced nuclear 

levels of NF-κB, IL-1β and COX-2 after hypoxic injury in cultured murine Mc.[892] The NF-κB 

family of transcription factors has an essential role in inflammation and innate immunity.[1001] 

The association between the innate immune system and AMD is well known.[1002] The pro-

inflammatory cytokine IL-1β is an important mediator of the inflammatory response and is 

involved in a variety of cellular activities, including cell proliferation, differentiation and 

apoptosis. Interleukin-1β was reported to significantly increase CNV in response to light 

damage, independent of the effect of VEGF in mouse and rat models.[1003] Cytochrome c 

oxidase (COX), also known as prostaglandin endoperoxide synthase (PTGS). Murine data 

suggested that COX-2 down-regulates VEGF expression in CNV.[1004] 

 

Support for the beneficial effects of dietary or supplemental L and Z in the prevention of, or 

reduction in the progression of AMD has been demonstrated. The Blue Mountains Eye 

Study and EDCCS confirmed a lower risk of developing AMD in participants with the 

highest dietary intake of L and Z.[168, 1005] Results from AREDS2 revealed that L and Z 

supplementation reduced the rate of progression to advanced AMD in participants with a 

poor dietary intake of macular xanthophylls.[452] 

 

Lutein and Z have been found in the brain of humans,[430, 1006] at levels that correspond to 

retinal levels of MP.[1006] Higher levels of MPOD were associated with improved cognitive 

function,[1007] and temporal processing speeds.[702, 843, 1008] The neural efficiency hypothesis 
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proposed by Renzi et al. states that L and Z located in the retina and in the brain improve 

neural function by enhancing gap junction communication. The authors cite Stahl et al. to 

support their hypothesis, however this group examined the effects of several non-vitamin A 

carotenoids including lycopene and canthaxanthin on gap junction communication, but not 

L and Z.[1009] 

 

The Mc / neuroglial cell hypothesis may offer an alternative explanation for the beneficial 

effects of L and Z on brain function, as it is possible that these carotenoids also modulate 

neuroglial reactivity. The Mc / neuroglial cell and neural efficiency hypotheses may be 

complimentary if glial reactivity also alters gap junction communication between Mc / 

neuroglia and neurons. Glial cell dysregulation leading to impaired neural function was 

reported as a pathogenic mechanism in AD and other progressive neurodegenerative 

disorders.[1010] 

 

Similarities have been drawn between AMD and AD pathogenesis.[253] A lower risk of AD 

mortality was associated with higher serum levels of L, Z and lycopene.[1011] Macular 

pigment optical density was more strongly related to measures of cognition (mini mental 

state examination score, visual-spatial and constructional abilities, language ability, 

attention and the total scale on the Repeatable Battery for the Assessment of 

Neuropsychological Status) in participants with established cognitive decline[1012]. 

Supplementation with L, Z and MZ resulted in improved contrast sensitivity in participants 

with AD, as well as in unaffected controls.[1013] 

 

It is also plausible that the Mc / glial cell hypothesis may contribute to the explanation for 

the MP hypotheses relating to improved visual parameters (VA, CS, glare reduction) and 

GRT. Two double-masked, placebo-controlled studies reported a significant improvement in 

VA after supplementation with L alone or combined with antioxidants / nutrients.[936, 1014] 

Retinal oedema secondary to disturbed fluid transport may occur after Mc activation.[1015] It 

is plausible that MP may reduce glare associated with clinical and subclinical levels of 

retinal oedema by reducing Mc activation. 

 

4.3.1.5  Müller cells as light guides and spectral filters 

Guinea pig Müller cells were, in view of their radial orientation within the retina, reported to 

act as optical fibres transmitting light from the inner to outer retina with reduced 

distortion.[1016] Müller cells from the same animal were also reported to spectrally filter red 

and green light to cones and blue and purple light to rods.[1017] The blue-light-blocking 

properties of MP make it a possible candidate for involvement in this spectral filtering. At 

the fovea, the retina is thinner with the potential for increased outer retinal light exposure. 

Foveal Mc follow an outward arc with cone axons rather than the usual radial orientation 

seen in the non-foveal retina. It is therefore logical that MP would be denser in the foveal 
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region in the absence of radial Mc to guide and spectrally filter light to foveal cones and to 

afford greater protection to the exposed lateral aspect of Mc. It is no coincidence that blue 

cones are absent from the foveola where blue-blocking MP is at its most concentrated. 

 

4.3.1.6  Glare recovery time shortened by MP 

Glare recovery time, thought to be a measure of cone photoreceptor recovery was shorter 

for participants with higher levels of MP in four studies using a light source with a high blue-

light content.[620-623] Lower light exposure resulting from the blue-blocking properties of MP 

was cited as an explanation for these findings.[622] It is also plausible that Mc photopigment 

recycling is better preserved in those with higher MPOD levels because MP reduces Mc 

activation, thus protecting Mc function. Three studies (including the present study) did not 

find an association between MPOD and GRT.[906, 968] These used light sources without a 

significant blue-light content. Two of these studies, the present study and that of Loughman 

et al.[906] used a longer glare source exposure time. It is possible that the longer exposure 

time resulted in complete depletion of Mc photopigment stores, thus negating any potential 

difference in GRT due to MP, as GRT would be more dependent on RPE recycling.[330] 

Nolan et al. used a shorter duration, minimal blue light glare source.[968] The lack of 

association between MPOD and GRT reported by this study may be a consequence 

minimal Mc activation due to the low blue-light content in the glare source. 

 

Contrary to the damaging effect of blue light, pre-conditioning with red light (670 nm) was 

reported to ameliorate light-induced Mc specific markers for structure, retinal stress, 

metabolism and inflammation in rats, by enhancing the activity of COX, the rate-limiting 

enzyme involved in the mitochondrial respiratory electron transport chain that produces 

ATP.[1018]	  

 

4.3.1.7  Summary 

Modulation of Mc and neuroglial reactivity and Mc de-differentiation by MP is offered as one 

explanation for the high levels of macular xanthophylls found in the eye and the brain. The 

effects of higher levels of MP on Mc and neuroglia would benefit individuals below 

reproductive age and therefore confer an evolutionary advantage to those individuals. The 

central peak of the MPOD spatial profile was found to be strongly heritable.[404] The Mc / 

neuroglial cell hypothesis may offer an alternative explanation to the neural efficiency 

hypothesis for the beneficial effects of high MP levels in the eye and L and Z in the brain.  

 

The Mc / neuroglial cell hypothesis is a plausible optical and / or biological explanation for 

the association between MPOD, VA, CS, glare reduction and GRT reported by several 

studies.[482] If these affects can be replicated in humans (or non-human primates) this would 

suggest an anti-inflammatory, neuroprotective and visual function enhancing role, as well 

as a role in improving cognitive function for L, Z and possibly MZ achieved by modulation of 
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Mc and neuroglial cell activation. Visual function may also be enhanced by the optical fibre 

and spectral filtration properties of Mc. 

 

4.4 Limitations 

This practice-based study was limited by the small number of participants recruited (n = 

150), the high number of excluded participants prior to data analysis (n = 50) and the long 

duration of time over which data was collected. Increasing the number of participants 

recruited to compensate for the high exclusion rate was discussed with the study 

supervisor, but the decision was made to adhere to the original number of recruits. The 

author collected data on days when there was no clinic running. This varied from one day a 

week to one day every two weeks. Data collection for each participant took one hour, 

limiting the number of participants examined to a maximum of eight to 16 every two weeks. 

Data collection was completed after 14 months, including the re-examination of 30 

participants for the assessment of GRT inter-session repeatability. 

 

Sample size estimates assuming 80% power, at 5% significance level were calculated from 

data derived from previous, similar studies or calculated using G*Power statistical software 

if no previous studies were available. This study was sufficiently powered to detect a true 

positive result for ocular dominance, age, BMI (mixed gender) and Rph in the MPOD study, 

and for age, BMI (mixed gender) and AMD FH in the GRT study. Data collection would 

have had to continue for several years to obtain sufficient data for some of the other 

variables. The time required to obtain sufficient data is a clear limitation of any sole-

practitioner working full-time in a practice-based study. 

 

The method of MPOD assessment used in this study only measured the level of MPOD at 

0.5° eccentricity. The central "dip" at 0.25° eccentricity present in 12% of participants would 

not be detected using 0.5° eccentricity. The central part of the MPOD spatial profile was 

found to be irregularly-shaped and asymmetric. Measurement at a single point in the spatial 

profile may therefore increase intra-ocular and intra-subject MPOD measurement variability. 

 

It is clear that a variety of physiological and pathological processes have the potential to 

adversely affect MPOD and GRT measurements. See sections 1.2 and 1.3 for further 

information. The use of SD-OCT would allow the exclusion of such cases and may lead to 

an improvement in the variability in both of these measurements. 

 

All study participants were naïve to MPOD measurement and only a single measurement of 

MPOD was taken for each eye. Each MPOD measurement is derived from the results of 

several blue / green comparisons. The first eye MPOD measurements were used for data 

analysis. 
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This method of MPOD testing incorporates a pre-test flicker sensitivity routine prior to 

measurement to ensure consistency and each MPOD result is based on the minimum of a 

v-shaped function produced after presenting a series of blue-green luminance ratios.[486] 

 

The first eye MPOD values were found to correlate well with the second eye values, r = 

0.78 (p < 0.01) to 0.83 (p < 0.01), with and without outliers respectively. 

 

This level of interocular correlation was comparable with other studies where MPOD values 

were based on multiple readings (r = 0.79 to 0.87),[507, 589, 596, 654] suggesting that it was 

reasonable to use the first MPOD values in this analysis. It is assumed that right and left 

eye MPOD measurements are the same for healthy participants, although interocular 

comparison is no substitute for repeatability, as right and left eye measurements are 

considered to be independent for the purpose of statistical analysis.[1019, 1020] Constraints on 

the examination time for each participant also meant that GRT values were based on a 

single result for each eye in all sessions. 

 

Several of the variables were reported rather than confirmed. These variables were: FH of 

AMD, migraine, migraineous aura and light-trigger, Rph and VDys. For the purpose the 

inclusion / exclusion criteria participants were asked about the presence of normal 

cholesterol, dietary absorption disorders, pregnancy, diabetes, glaucoma and medication 

affecting macular function. These were recorded as "yes", "no" or "unknown". "Unknowns" 

were included as there was no evidence to exclude them. It is likely that a proportion of the 

"unknowns" would have been excluded if the answer to these questions had been known. 

 

Poor fixation, variation in battery charge and difference in bulb type have been reported as 

limitations for the use of the direct ophthalmoscope for GRT measurement.[329, 924] 

 

4.5 Confounding variables 

Dietary analysis was not performed. Some studies, but not others reported a seasonal 

variation in diet.[1021-1023] It could be argued that seasonal variation may have affected the 

results of this study. Nolan et al. reported no statistically significant seasonal variation in 

MPOD[1024] The author is unaware of any studies examining the effect of seasonal variation 

on GRT. 

 

Light intensity and physical activity are significantly higher in the summer and spring, 

whereas sedentary behavior and time spent in bed are significantly greater in the 

winter.[1022, 1023] Variation in daylight intensity could have influenced levels of long-term 

adaptation potentially affecting GRT and pupil size measurements. The seasonal variation 

in physical activity and weight are likely to have affected BMI and %BF measurements. 
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The results were not corrected for VA. In this study participants with LogMAR VA worse 

than 0.1 were excluded. The association between MPOD and VA is controversial. Several 

studies have reported a significant positive association between these variables,[906, 936, 1014, 

1025] whereas several others found no significant association.[500, 657, 1026, 1027] Margrain and 

Thomson reported no significant association between VA and GRT for participants with a 

LogMAR VA of 0.12 or better.[573] Any effect of VA on MPOD and GRT was minimised by 

the exclusion of participants with a level of LogMAR VA worse than 0.1. 

 

Refractive status and axial length were not recorded. No significant association was 

observed between MPOD and refractive status in healthy adults and Chinese, school-aged 

children.[591, 1028] Neelam et al. found no significant association between MPOD 

measurements using HFP and axial length.[591] Obana et al. reported a small, significant 

inverse association between FFS MPOD measurements and axial length.[723] Margrain and 

Thomson reported that GRT was not affected by the presence of myopia.[573] The effect of 

refractive status was considered to be minimal. 

 

4.6 Improvements 

It would have been beneficial to use the mean of at least three MPOD readings for each 

eye, however the time constraints on the duration of the examination prevented this. Three 

recent studies,[590] (two of which used the MPS 9000 screener),[500, 680] appear to have used 

single readings rather than means of multiple readings for their analysis. In clinical practice 

it is unlikely that more than one MPOD measurement per eye would be taken. 

 

It would also have been beneficial to measure MPOD at multiple retinal eccentricities. 

There is evidence that genetic and environmental influence on retinal MP deposition varies 

with retinal eccentricity.[404] It is possible to modify the MPS screener with eccentric fixation 

targets in order that MPOD may be measured at retinal eccentricities greater than 0.5°, 

however, this would have significantly increased the examination time.[494] 

 

Performing a repeatability study for MPOD would have been useful, in order to assess the 

level of instrument bias for the MPS 1000 for this operator and population. Unfortunately 

time constraints imposed by the practice setting of this study did not allow this. 

 

The use of an objective method of MPOD measurement (FAF or FR) would have been 

preferable to HFP. These methods allow MPOD data to be collected for the entire MPOD 

spatial profile in a short period of time, however the higher cost of these methods precluded 

their use in this study. It is likely that participants with migraine would not have tolerated the 

level of flicker associated with MPOD measurement using FAF. 
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It was not anticipated that MPOD testing would adversely affect the first GRT values for 

each eye in the first session. Had this been anticipated, a longer time interval between 

MPOD testing, and GRT would have been planned. This would have increased the time 

taken to collect the data needed for this study. 

 

During the photostress phase of GRT, fixation was monitored by direct observation of the 

fovea through the ophthalmoscope and therefore the effects of poor fixation were 

minimised. The use of a larger size stop during photostress would further minimise fixation 

errors, but would also increase rod photoreceptor bleach and possibly increased levels of 

lateral inhibition. The effect of ophthalmoscope battery charge variability was controlled by 

fully charging the battery, indicated by the absence of a flashing light on the charger base 

station between measurements for each participant. The same ophthalmoscope battery and 

bulb were used for all participants. 

 

Glare recovery time endpoint was achieved when the participants had read all letters on the 

line above that representing their corrected VA according to Fingeret et al.[1029] Test chart 

letters were used as they are available to all optometrists in their practice. LogMAR letters 

were used rather than Snellen letters in view of their equal logarithmic progression of letter 

size.[573] The author noted differences in the letter reading speed and confidence of some 

participants, which may relate to personality type. Personality type was not assessed or 

corrected for in this study. In the laboratory setting the correct identification of the 

orientation of Gabor patches may be used as an alternative end point for GRT.[622] In 

Optometric practice this could be adapted to the identification of single letter Landolt C or 

Illiterate E orientation. 

 

In this study iris colour was designated by mutual agreement between the author and each 

participant. It was planned that any difference in opinion would be settled by observation of 

the irides of the participant in natural daylight, by a third party. This was not required for any 

participants. The use of a standardised and validated iris grading system such as that 

described by Muinos Diaz et al. would allow for enhanced inter-study comparison.[778]  

 

The addition of the assessment of habitual diet would have benefited this study. This may 

be assessed in Optometric practice-based research by the use of a food frequency 

questionnaire (FFQ) or a diet diary.[1030, 1031] 

 

Pupil size was measured as an average over a few seconds by eye to the nearest 

millimeter using a ruler. In lab-based studies pupil size may be measured more accurately 

using an infrared pupillometer. Meeker et al. found that the median error in manual pupil 

size measurements (0.55 mm) was twice that of a pupillometer (0.23 mm).[1032] Portable 

infrared pupillometers are commercially available, but were not used in view of the cost.[1033] 
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The methods of MPOD and GRT measurement used in this study would have made 

simultaneous pupil size measurement very difficult. 

 

Inter-session repeatability was adversely affected by the lack of a constant time interval 

between repeat measures for some of the participants. This would be remedied by 

examining all of the participants in block sessions, however this was not possible for a 

practitioner working full-time in a busy practice setting. 

 

For variables dependent on participant reporting: FH of AMD, migraine, migraineous aura 

and light-trigger, Rph and VDys, confirmation could have been obtained. AMD FH may be 

confirmed by obtaining a signed letter from the treating Ophthalmologist for that relative, 

with their consent, although obtaining confirmation for deceased relatives would be more 

difficult. AMD FH may not be an accurate marker for future risk of AMD development 

however as the affected relative may have had increased exposure to high-risk 

environmental factors such as smoking or obesity, rather than a heritable genetic 

predisposition to develop AMD. The general practitioner may confirm the presence of 

migraine for each affected participant, with consent from the participant. Cold provocation 

testing may be used to confirm Rph and VDys. GRT testing during or just after cold 

provocation may be preferable. 

 

The use of SD-OCT to exclude anomalous MPOD and GRT due to physiological and 

pathological conditions would have benefitted this study. This was not available at the 

location where the data was collected. 

 

4.7 Future work 

 

4.7.1 Objective measurement of MPOD and AMD / OVP RF 

The use of an objective measure of MPOD such as 2W-FAF would allow not only a quicker 

and more accurate estimation of retinal MP levels, but would also allow examination of the 

MP spatial profile, known to be centrally deficient in certain AMD RF; age (0.25° 

eccentricity), current and previous smokers (0.25°), FH of AMD (0.17°, but not 0.5°) and 

AMD risk genes, CFH and ARMS2 (0.5° and 1.0°, but not 0.25°). The association between 

dominant and non-dominant eye MPOD difference and age may be investigated in greater 

detail. The Heidelberg Spectralis (Heidelberg Engineering Ltd, Hertfordshire, UK) HD-OCT 

2W-FAF MPOD commercial module is currently being developed. The benefit of using this 

system is that retinal structure and thickness may also be examined by HD-OCT and 

physiological and pathological causes of anomalous MPOD values may be recorded. 

Heidelberg is developing an OCT angiography module for the Spectralis that will measure 

retinal and choroidal blood flow without the need for an injectable dye. This would be 

particularly useful for assessing ocular blood flow in individuals with AMD RF and those 
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with migraine, Rph and VDys. Ocular blood flow for the OVP RF could be assessed with the 

Spectralis OCT, with and without cold provocation. 

 

4.7.2 Objective measurement of GRT and AMD / OVP RF 

Glare recovery time, like MPOD is prone to a high degree of between and within subject 

variability and the lack of a criterion standard method of measurement. The retinal 

densitometer being developed at the Department of Optometry and Vision Sciences at 

Cardiff University, allows the objective measurement (by the change in photopigment colour 

after bleach) of rod and cone DA (T. Margrain, personal communication, December 10th, 

2013). A range of different percentage bleaches could be implemented to assess the 

relative contribution of the Mc and RPE visual cycles, and to reduce the risk of missing 

subtle differences in GRT related to AMD / OVP RF due to the very high percentage bleach 

used in the present study. If the Cardiff University Densitometer is not available DA time to 

rod-cone break may be measured psychophysically in the clinical setting using the AdaptDx 

dark adaptometer. 

 

4.7.3 The relationship between glial activation and MPOD 

Increased GFAP is a recognised marker for glial and Mc activation. Serum levels of GFAP 

were significantly raised in individuals with intracranial haemorrhage in acute stroke.[1034, 

1035] As retinal levels of MP are associated with cortical MP levels, serum GFAP may also 

be compared with objective MPOD measurements in order to investigate whether higher 

MPOD levels are associated with lower cortical glial reactivity. This study would be of 

interest to those studying AMD and neurodegenerative disorders such as AD. Comparing 

MPOD with Mc activation is more difficult in vivo. The antioxidant glutathione is released in 

the retina by Mc and HC. Light-induced activation of Mc leads to an increase in GFAP and 

a reduction in glutathione production. Levels of reduced GSH and total GSH were 

significantly and positively correlated with MPOD.[1036] By comparing MPOD with serum 

GFAP and GSH before and after photostress, as a marker for retinal levels of these 

compounds, it may be possible to associate MPOD with Mc reactivity. 

 

For further studies associated with the retinal theory for MIS, see appendix A3.8. 

 

4.8 Conclusions 

This method of GRT was significantly associated with age, however no other AMD or OVP 

RF tested was significantly associated with MPOD or GRT. The relationships between 

MPOD and GRT with age revealed a trend towards being biphasic, therefore linear 

statistics may under-estimate the relationship between these variables. This may account 

for some of the controversy reported in the literature to date. 
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Interocular agreement for MPOD and GRT was good, and repeatability for GRT was good 

for intra-session and moderate for inter-session measurements. This method of GRT, using 

the direct ophthalmoscope as the source of light was not a suitable surrogate measure for 

MPOD. This was likely to be due to the minimal blue light content in the light source used 

and the high percentage level of the bleach. Increasing the percentage bleach level during 

GRT (for equilibrium versus photo-flash bleach) was reported to increase repeatability,[330] 

however this was achieved at the expense of sensitivity to detect subtle changes due to 

differences in iris colour or MPOD level, for which a lower percentage bleach would be 

preferable. GRT may be further enhanced by altering the colour of the light source and by 

performing repeated GRT after short time interval. 

 

The methods used to measure MPOD and GRT in this study were easy and quick for the 

practitioner and were tolerated well by naïve participants. Interpretation of the results is 

more difficult in view of the very large level of inter-subject variation with age observed for 

both tests. An additional difficulty with HFP MPOD testing is that the improvement in MPOD 

expected after improved diet or MP supplementation is likely to be small, smaller than the 

limit of agreement (CoR) on repeat testing. Therefore any improvement in MPOD would be 

difficult to distinguish from instrument noise and a patient with "low" MPOD is still likely to 

have "low" MPOD after supplementation. These factors have adversely affected the 

widespread adoption of either test in clinical practice and have prevented the development 

of "criterion standard" tests. 

 

One commercial model for MPOD testing used by many optometrists in clinical practice is 

profitable because it is linked to the sale of MP supplements. AREDS 1 and 2 have shown 

that antioxidant supplements are not beneficial for AMD prevention or at early stages of 

AMD development. Macular pigment supplements were only found to benefit AMD patients 

qualifying for AREDS supplements, with poor dietary intake of MP. Dietary assessment is 

not generally performed with MPOD testing in clinical practice, but perhaps it should be to 

gauge whether improved diet or dietary supplements are likely to benefit the patient. Even 

so approximately 10% of those with lower MPOD may be "non-responders" to intervention 

with increased MP. 

 

Ideally optometrists could include MPOD (full spatial profile in preference to 0.5° 

eccentricity) testing as part of a dedicated routine for those at risk of developing AMD or 

with early AMD signs, much in the same way that we screen for glaucoma. The 

measurement of MPOD which is regarded as a putative rather than a confirmed RF for 

AMD, alone as a screening test for AMD risk is likely to be as much use as measuring IOP 

alone as a screening test for glaucoma. The difficulty with this plan is that despite the 

increasing year on year cost of AMD management and treatment, there is uncertainty within 

the NHS about whether any form of screening for the presence of AMD is cost effective 
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(although annual screening from 60 years of age is likely to be most beneficial).[1037] It is 

therefore unlikely that the NHS would contribute to the high cost of obtaining and 

maintaining equipment such as OCT and the extra clinic time that would be required for 

additional testing. 

 

This may of course change in the near future if treatments for "dry" AMD prove to be 

successful. Fundus autofluorescence using the OCT is likely to be the measurement of 

choice for monitoring change before and during treatment. 

 

The recommendation to perform repeated measurements of MPOD and GRT in a clinical 

setting would improve repeatability and limit false positive results, however the addition of a 

period of pre-adaptation (both are psychophysical tests) and a 5-10 minute period of rest 

between measurements may limit the use of these tests in routine clinical practice.  

 

Rather than comparing the MPOD and GRT results with a population mean and attempting 

to interpret whether the results are normal or abnormal, it may be more appropriate to use 

these methods to record baseline data to compare with future measurements, in order to 

detect changes over time. Although there has been some success in associating MPOD 

with certain AMD RF (BMI, %BF, iris colour and AMD genetic risk, but not age - the 

greatest AMD RF), the association between this method of GRT and AMD RF appears to 

be limited to age. 
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Appendix 1 
 
A1.1 Macular pigment optical density study results 
 
Table A1 Reasons for exclusion (MPOD and GRT studies) 

Participant ID Reason for exclusion 

Primary Secondary Tertiary 

5 
8 
9 
10 
11 
14 
16 
17 
18 
19 
20 
24 
25 
26 
29 
30 
32 
36 
39 
41 
43 
45 
51 
54 
57 
66 
67 
73 
76 
77 
81 
86 
91 
92 
98 
103 
105 
106 
108 
110 
111 
115 
123 
125 
126 
127 
131 
140 
142 
147 

BMI ≥ 30 
BMI ≥ 30 
High cholesterol 
Irritable bowel syndrome 
Failed to attend 
BMI ≥ 30 
BMI ≥ 30 
St John's wort 
Smoker 
BMI < 20 
BMI ≥ 30 
Coeliac disease 
BMI < 20 
BMI ≥ 30 
Macular drusen (RE) 
VA below 0.1 LogMAR 
BMI < 20 
Unable to complete GRT 
Refused some tests 
Macular drusen (BE) 
BMI ≥ 30 
Tamoxifen 
BMI ≥ 30 
Macular drusen (BE) 
Poor night vision 
Macular drusen (RE) 
Irritable bowel syndrome 
Too unwell to participate 
Diverticulitis / colostomy 
BMI < 20 
BMI ≥ 30 
Cetirizine 
BMI ≥ 30 
BMI ≥ 30 
BMI ≥ 30 
High cholesterol 
Colitis 
BMI ≥ 30 
High cholesterol 
Irritable bowel syndrome 
Malingering 
BMI ≥ 30 
BMI ≥ 30 
Smoker 
High cholesterol 
Refused some tests 
BMI ≥ 30 
Refused all tests 
Poor fixation (BE) 
High cholesterol 

High cholesterol 
St John's wort 
 
 
Reassessment declined 
 
High cholesterol 
 
 
 
 
 
 
 
Poor night vision 
 
 
Photophobic (migraine) 
 
 
 
 
 
 
Dull foveolar reflexes 
Amblyopia (LE) 
Foveal view poor 
Reassessment declined 
 
 
 
 
High cholesterol 
 
 
 
 
Cholesterol level n/a 
 
 
 
 
 
 
Poor night vision 
Poor night vision 
 
High cholesterol 
 
History of solar burn 

Poor night vision 
Poor night vision 
 
 
No data collected 
 
Macular drusen (LE) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Poor night vision 

Total 50 16 4 
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Table A2 Frequency analysis of primary reason for exclusion (MPOD and GRT) 
Primary reason for exclusion Number of data (n) Percentage 
BMI ≥ 30 
High cholesterol 
BMI < 20 
Macular drusen 
Smoker (reported as non-smoker during recruitment) 
Poor fixation 
Poor night vision 
Incomplete data collection 

- Refused all tests except MPOD after giving consent 
- Refused all tests after giving consent 
- Unable to complete GRT, reassessment declined 
- Malingering 
- Unable to assess due to illness, reassessment declined 
- Failed to attend, reassessment declined 

Digestion / absorption disorders 
- Irritable bowel syndrome 
- Diverticulitis / colostomy 
- Colitis 
- Coeliac disease 
- Bowel disorder (unknown) 

VA below 0.1 LogMAR 
Medication or supplement affecting macular function 

- Tamoxifen 
- Cetirizine 
- St John's wort 

16 
5 
4 
4 
2 
1 
1 
 
2 
1 
1 
1 
1 
1 
 
2 
1 
1 
1 
1 
1 
 
1 
1 
1 

32 
10 
8 
8 
4 
2 
2 
 
4 
2 
2 
2 
2 
2 
 
4 
2 
2 
2 
2 
2 
 
2 
2 
2 

Total 50 100 
 

 
Table A3 Tests for normality 

 Kolmogorov-Smirnov 
(with correction) 

Shapiro-Wilk 

Variable Statistic df P-value Statistic df P-value 
Eye 1 MPOD 0.097 100 0.021 0.964 100 0.008 
Eye 2 MPOD 0.067 97 0.200 0.982 97 0.209 

Probability values (p-values) < 0.05 are shown in bold. Significance with normality testing is not unusual for large sample size 
(≥ 100). Sample size in this ace was n = 100. 
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Table A4 Summary of interocular comparison results for MPOD 
Interocular comparison Eye tested Eye tested 
Right versus left (randomized) Right Left 
Mean and SD (n = 97) 0.379 (0.166) 0.396 (0.161) 
Independent t-test ( right vs. left eye MPOD) 
Outlier removed 

t(-0.723), p = 0.471 
t(-0.548), p = 0.584 

 

Mean absolute difference: mean (right - left) -0.017 (0.107)  
Mean relative difference: mean ((right - left) / right) -0.114 (0.394) Right MPOD lower than left 
Correlation (Pearson 2-tailed) 
Outlier removed 

r = 0.786, p < 0.001 
r = 0.814, p < 0.001 

61.8% shared variance 

LoA 2(0107) = 0.214  
LoA (outlier removed) 0.199  
   
First versus second (sequential) First Second 
Mean and SD (n = 97) 0.395 (0.165) 0.379 (0.162) 
Independent t-test (1st vs. 2nd eye MPOD) 
Outlier removed 

t(0.692), p = 0.490 
t(0.517), p = 0.606 

 

Mean absolute difference: mean (1st - 2nd) 0.016 (0.107)  
Mean relative difference: mean ((1st - 2nd) / 1st) 0.011 (0.312) First MPOD higher than 

second 
Correlation (Pearson 2-tailed) 
Outlier removed 

r = 0.786, p < 0.001 
r = 0.812, p < 0.001 

61.8% shared variance 

LoA 2(0.107) = 0.214  
LoA (outlier removed) 0.199  
   
Dominant versus non-dominant (randomized) Dominant Non-dominant 
Mean and SD (n = 44) 0.422 (0.180) 0.437 (0.174) 
Independent t-test (dom vs. non-dom eye MPOD) 
Outlier removed 

t(-0.410), p = 0.683 
t(-0.166), p = 0.869 

 

Mean absolute difference: mean (dom - non-dom) -0.016 (0.120)  
Mean relative difference: mean ((dom - non-dom) / 
dom 

-0.103 (0.375) Dominant MPOD lower than 
non-dominant 

Correlation (Pearson 2-tailed) 
Outlier removed 

r = 0.769, p < 0.001 
r = 0.846, p < 0.001 

59.1% shared variance 

LoA 2(0.120) = 0.240  
LoA (outlier removed) 0.210  
   
Bias calculations:    
Randomised vs sequential (n = 194) 
Outlier removed (n = 192) 

t(-2.161), p = 0.032 
t(-1.739), p = 0.084 

 

Randomised vs ocular dominance (n = 88) 
Outlier removed (n = 86) 

t(-0.325), p = 0.746 
t(-0.354), p = 0.724 

 

Probability values (p-values) < 0.05 are shown in bold. Three monocular cases were removed from the interocular 
comparison data (first / second eye and right / left eye). Ocular dominance data was missing for 51 cases. One uniocular 
and four equidominant cases were removed. Calculations with and without one outlier. 
 
 
Table A5 The difference between dominant and non-dominant eye MPOD with age 

Variable Pearson r Shared 
variance 

n P-value 
(2-tailed) 

Difference between dominant and non-dominant eye MPOD -0.323 10.4% 44 0.033 
Difference between dominant and non-dominant eye MPOD (outlier removed) -0.206 4.2% 43 0.185 
Difference between right and left eye MPOD (randomised) -0.226 5.1% 44 0.140 
Difference between right and left eye MPOD (randomised) (outlier removed) -0.090 0.8% 43 0.568 

Probability values (p-values) < 0.05 are shown in bold. One outlier (-0.41) was removed from both groups. 
 
Table A6 Bivariate correlations for first eye MPOD comparisons 

Variable Pearson r Shared variance n P-value 
(2-tailed) 

Age 0.144 2.1% 100 0.154 
Age ≤ 50 years 0.085 0.7% 57 0.528 
Age > 50 years -0.127 1.6% 43 0.415 
Mixed gender BMI  -0.103 1.1% 116 0.277 
Male BMI  -0.202 4.1% 32 0.267 
Female BMI  -0.081 0.7% 84 0.466 
Male %BF  -0.191 3.6% 32 0.295 
Female %BF  -0.031 0.1% 84 0.776 
Pupil size 0.051 0.3% 89 0.634 

Abbreviations. n: number of data. Correlation size: small r = 0.10 to 0.29, medium r = 0.30 to 0.49, large r = 0.50 to 1.0. 
11 cases missing from pupil data. 
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Table A7 Group analysis for first eye MPOD with AMD and OVP RF 
Variable 
 

n MPOD mean & SD 
(or Median & IQR 
shown in grey) 

Statistic P-value 
 

Size effect 
(if significant) 

Age 
2 age groups (years) 

≤ 50 
> 50 

57 
43 

0.37 (0.16) 
0.43 (0.17) 

 
-1.957* 

 
0.053 

 
- 

Age 
4 age groups (years) 

< 45 
≥ 45 to < 50 
≥ 50 to < 60 
≥ 60 

32 
25 
24 
19 

0.37 (0.24) 
0.31 (0.20) 
0.46 (0.13) 
0.41 (0.24) 

 
 
 
8.066 

 
 
 
0.045 

 
 
 
- 

Post-hoc tests 
Two follow-up Mann-
Whitney U tests 
α level = 0.025 

≥ 45 to < 50 
≥ 50 to < 60 

25 
24 

0.31 (0.20) 
0.46 (0.13) 

U = 155.5 
Z = -2.907*** 

 
0.004 

 
0.291 

≥ 50 to < 60 
≥ 60 

24 
19 

0.46 (0.13) 
0.41 (0.24) 

U = 166.5 
Z = -1.516*** 

 
0.130 

 
- 

Gender Male 
Female 

27 
73 

0.40 (0.18) 
0.39 (0.16) 

 
0.375* 

 
0.709 

 
- 

BMI (both genders) 
(n = 116) 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
52 
48 
12 

0.46 (0.12) 
0.40 (0.24) 
0.41 (0.23) 
0.29 (0.23) 

 
 
 
5.075** 

 
 
 
0.166 

 
 
 
- 

BMI (male) 
(n = 32) 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

0 
7 
20 
5 

- 
0.41 (0.39) 
0.39 (0.26) 
0.34 (0.31) 

 
 
 
1.221** 

 
 
 
0.543 

 
 
 
- 

BMI (female) 
(n = 84) 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
45 
28 
7 

0.46 (0.12) 
0.38 (0.24) 
0.42 (0.20) 
0.26 (0.19) 

 
 
 
4.206** 

 
 
 
0.240 

 
 
 
- 

Male %BF (CUN-BAE) 
(n = 32) 

≤ 20% 
> 20 to 25% 
> 25% 

2 
6 
24 

0.48 (-) 
0.45 (0.29) 
0.36 (0.27) 

 
 
0.565** 

 
 
0.754 

 
 
- 

Female %BF (CUN-BAE) 
(n = 84) 

≤ 30% 
> 30 to 35% 
> 35% 

7 
25 
52 

0.46 (0.14) 
0.36 (0.24) 
0.41 (0.22) 

 
 
1.481** 

 
 
0.477 

 
 
- 

Iris colour 
5 iris colour groups 
Mixed-gender 

Grey 
Blue 
Green 
Hazel 
Brown 

12 
33 
15 
16 
24 

0.42 (0.23) 
0.41 (0.22) 
0.36 (0.28) 
0.37 (0.24) 
0.46 (0.38) 

 
 
 
 
2.297** 

 
 
 
 
0.681 

 
 
 
 
- 

Iris colour (mixed-gender) 
2 iris colour groups 

Light 
Dark 

60 
40 

0.38 (0.14) 
0.42 (0.20) 

 
-1.067* 

 
0.290 

 
- 

Iris colour (male) 
2 iris colour groups 

Light 
Dark 

14 
13 

0.39 (0.23) 
0.41 (0.37) 

U = 83.0 
Z = -0.389*** 

 
0.697 

 
- 

Iris colour (female) 
2 iris colour groups 

Light 
Dark 

46 
27 

0.37 (0.13) 
0.43 (0.20) 

 
-1.620* 

 
0.110 

 
- 

AMD FH 
2-group 

Yes 
No 

17 
82 

0.36 (0.18) 
0.41 (0.27) 

U = 690.5 
Z = -0.061*** 

 
0.952 

 
- 

AMD FH 
3-group 

1st degree 
2nd degree 
No 

11 
6 
82 

0.36 (0.24) 
0.34 (0.16) 
0.41 (0.27) 

 
 
0.004** 

 
 
0.998 

 
 
- 

Migraine Yes 
No 

17 
83 

0.36 (0.22) 
0.41 (0.26) 

U = 701.5 
Z = -0.037*** 

 
0.971 

 
- 

Light-trigger Yes 
No 
No migraine 

6 
11 
83 

0.43 (0.31) 
0.31 (0.20) 
0.41 (0.26) 

 
 
1.287** 

 
 
0.525 

 
 
- 

Aura Yes 
No 
No migraine 

10 
7 
83 

0.41 (0.26) 
0.31 (0.20) 
0.41 (0.26) 

 
 
0.413** 

 
 
0.813 

 
 
- 

Rph Yes 
No 

27 
72 

0.41 (0.14) 
0.39 (0.17) 

 
0.442* 

 
0.660 

 
- 

VDys Yes 
No 

28 
69 

0.39 (0.15) 
0.39 (0.17) 

 
-0.056* 

 
0.955 

 
- 

Pupil size < 4mm 
≥ 4mm 

40 
49 

0.38 (0.17) 
0.41 (0.16) 

 
-0.604* 

 
0.547 

 
- 

Abbreviations. n: number of data, IQR: interquartile range, CUN-BAE: Clínica Universidad de Navarra - Body Adiposity 
Estimator. Non-parametric testing was used for the analysis of groups containing < 25 cases.[688] Missing cases: AMD FH 
(1), Rph (1), VDys (3), pupil size (11). * Independent samples t-test (2-tailed). ** Kruskal-Wallis test.  *** Mann-Whitney U 
test. Size effect for Mann-Whitney U test: small = 0.1, medium = 0.3, large = 0.5. 
 
 
Table A8 Association between pupil size and blue and brown iris colour 

Variable n Age (years) 
median (IQR) 

Pupil size (mm) 
median (IQR) 

Statistic P-value Size effect 

Pupil size 
(mm) 

Blue irides 
Brown irides 

30 
21 

48.0 (9.4) 
49.3 (20.0) 

4.0 (2.0) 
3.0 (1.0) 

U = 252.5 
Z = -1.260* 

 
0.208 

 
- 

Abbreviations. n: number of data, IQR: interquartile range. * Mann-Whitney U test. Pupil size data was missing for six cases. 
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Table A9 Association between iris colour (light and dark) and gender 

 
Gender 

Iris colour  
Total Light Dark 

Male Count 
% within gender 
% within light or dark irides 
% of total 

14 
51.9% 
23.3% 

14% 

13 
48.1% 
32.5% 

13% 

27 
100% 

27% 
27% 

Female Count 
% within gender 
% within light or dark irides 
% of total 

46 
63.0% 
76.7% 

46% 

27 
37.0% 
67.5% 

27% 

73 
100% 

73% 
73% 

Total Count 
% within gender 
% within light or dark irides 
% of total 

60 
60% 

100% 
60% 

40 
40% 

100% 
40% 

100 
100% 
100% 
100% 

0 cells have expected count < 5. Pearson Chi-square test with continuity correction = 0.611, p = 0.434. 
 

Table A10 Association between iris colour (blue and brown) and gender 
 
Gender 

Iris colour  
Total Blue Brown 

Male Count 
% within gender 
% within light or dark irides 
% of total 

8 
42.1% 
24.2% 

14 

11 
57.9% 
45.8% 
19.3% 

19 
100% 

33.3% 
33.3% 

Female Count 
% within gender 
% within light or dark irides 
% of total 

25 
65.8% 
75.8% 
43.9% 

13 
34.2% 
54.2% 
22.8% 

38 
100% 

66.7% 
66.7% 

Total Count 
% within gender 
% within light or dark irides 
% of total 

33 
57.9% 
100% 

57.9% 

24 
42.1% 
100% 

42.1% 

57 
100% 
100% 
100% 

0 cells have expected count < 5. Pearson Chi-square test with continuity correction = 2.024, p = 0.155. 
 

Table A11 Association between MPOD and fish oil supplement use 
Variable n 

 
Age median 
(IQR) years 

MPOD 
Median (IQR) 

Statistic P-value Size effect 

Reported fish oil 
supplement use 

Yes 
No 

21 
79 

57.6 (18.9) 
46.5 (11.7) 

0.46 (0.24) 
0.38 (0.26) 

U = 689.0 
Z = -1.193* 

 
0.233 

 
- 

Abbreviations. n: number of data. * Mann-Whitney U test.  

 
Table A12 Difficulty with HFP MPOD measurement with MPOD, age and GRT 

Variable n MPOD 
Median (IQR) 

Statistic P-value Size effect 

Difficulty with MPOD 
measurement with MPOD 

Yes 
No 

21 
79 

0.41 (0.25) 
0.41 (0.24) 

U = 823.5 
Z = -0.051* 

 
0.959 

 
- 

With age (years) Yes 
No 

21 
79 

53.9 (25.5) 
47.9 (11.8) 

U = 726.0 
Z = -0.876* 

 
0.381 

 
- 

With GRT (s) Yes 
No 

21 
79 

41 (28) 
40 (24) 

U = 694.0 
Z = -1.147* 

 
0.251 

 
- 

Abbreviations. n: number of data. * Mann-Whitney U test.  

 

Table A13 Additional interesting findings from MPOD study 
ID Condition Eye MPOD  Possible explanation 
3 Central floater LE Right 

Left 
0.46 
0.02 

Central target obscured 

145 Bilateral central floaters Right 
Left 

0.17 
0.12 

Central target obscured 

12 Strabismus RE Right 
Left 

0.02 
0.22 

Eccentric fixation 

83 Strabismus LE Right 
Left 

0.26 
0.07 

Eccentric fixation 

142 Poor fixation Right 
Left 

0.07 
0.00 

Unable to keep peripheral target 
fixated? 

22 Macular drusen RE Right 
Left 

0.17 
0.22 

Reduced visual function RE 

29 Macular drusen RE Right 
Left 

0.48 
0.48 

Visual function not affected? 

54 Macular drusen RE Right 
Left 

0.17 
0.31 

Reduced visual function RE 

105 Colitis Right 
Left 

0.07 
0.17 

Reduced carotenoid absorption? 

131 Coloboma RE Right 
Left 

0.07 
0.22 

Reduced visual function RE 
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A1.2 Glare recovery time study results 

 

Table A14 Tests for normality 
 Kolmogorov-Smirnov 

(with correction) 
Shapiro-Wilk 

Variable Statistic df P-value Statistic df P-value 
First eye GRT1 0.146 100 < 0.001 0.820 100 < 0.001 
Second eye GRT1 0.161 99 < 0.001 0.882 99 < 0.001 
First eye GRT2 0.133 100 < 0.001 0.881 100 < 0.001 
Second eye GRT2 0.138 99 < 0.001 0.882 99 < 0.001 
First eye RepGRT1 0.205 30 0.002 0.702 30 < 0.001 
Second eye RepGRT1 0.200 30 0.003 0.876 30 0.002 
First eye RepGRT2 0.148 30 0.093 0.821 30 < 0.001 
Second eye RepGRT2 0.217 30 0.001 0.802 30 < 0.001 

Probability values (p-values) < 0.05 are shown in bold. Data was missing for one case for second eye GRT (ID 2). Glare 
recovery time data was positively skewed (> 1), therefore non-parametric tests were used for AMD and OVP RF analysis. 
 
Table A15 Bivariate correlations for log10 GRT interocular comparisons 

Variable Pearson r Shared variance n 
(per group) 

P-value 
(2-tailed) 

First vs. second eye 0.756 57.2% 99 < 0.001 
First vs. second eye* 0.848 71.9% 96 < 0.001 
Dominant vs. non-dominant eye 0.833 69.4% 44 < 0.001 

Abbreviations. n: number of data. Probability values (p-values) < 0.05 are shown in bold. *Three outliers removed from the 
GRT data (ID; 31, 58 and 117). Correlation size: small r = 0.10 to 0.29, medium r = 0.30 to 0.49, large r = 0.50 to 1.0. 
 
 
Table A16 Group analysis for GRT interocular comparison 

GRT Number of 
data (n) 

Age mean (SD) 
years 

GRT median (IQR) 
s 

Statistic P-value Size effect 

1st Eye GRT 
2nd Eye GRT 

99 
99 

50.2 (10.4) 
50.2 (10.4) 

40 (25) 
36 (24) 

U = 4621.0 
Z = -0.694** 

 
0.488 

 
- 

1st Eye GRT* 
2nd Eye GRT* 

96 
96 

50.3 (10.3) 
50.3 (10.3) 

39.5 (25) 
35.5 (22) 

U = 4297.5 
Z - -0.807** 

 
0.420 

 
- 

Abbreviations. IQR: interquartile range. *Three outliers removed from the GRT data, **Mann-Whitney U test. 
 
 
Table A17 Group analysis for GRT and ocular dominance 

Ocular dominance 
 

Number of 
data (n) 

Age mean (SD) 
years 

GRT median (IQR) 
s 

Statistic P-value Size effect 

Dominant eye 
Non-dominant eye 

44 
44 

50.0 (11.4) 
50.0 (11.4) 

35.5 (26) 
34.5 (26) 

U = 932.0 
Z = -0.301* 

 
0.764 

 
- 

Abbreviations. IQR: interquartile range. *Mann-Whitney U test. 
 
 
Table A18 Bivariate correlations for log10 GRT comparisons 

Variable No. of data 
n 

Pearson r Shared 
variance 

P-value 
(2-tailed) 

Age 100 0.329 10.8% 0.001 
Age (≤ 50 years) 57 0.083 0.7% 0.541 
Age (> 50 years) 43 0.275 7.6% 0.074 
Total BMI  116 0.120 1.4% 0.199 
Male BMI  32 -0.156 2.4% 0.395 
Female BMI  84 0.178 3.4% 0.105 
Male %BF  32 -0.060 0.4% 0.746 
Female %BF  84 0.306 9.4% 0.005 
Pupil size 89 0.029 0.1% 0.788 

Correlation size: small r = 0.10 to 0.29, medium r = 0.30 to 0.49, large r = 0.50 to 1.0. Probability values (p-values) < 0.05 
are shown in bold. For the correlation with BMI and %BF only, 16 additional cases excluded for high (n = 12) or low (n = 4) 
BMI were added to the data. Other than reported raised cholesterol, which is associated with obesity, these cases had no 
addition reasons for exclusion. Data was missing in 11 cases for pupil size. 
 
Table A19 Partial correlations for log10 GRT corrected for age 

Variable Number of 
data (n) 

Partial 
correlation 

Shared 
variance 

P-value 
(2-tailed) 

Age (controlled for BMI (20 to < 30) 100 0.294 8.6% 0.003 
Total BMI  116 0.017 < 0.1% 0.861 
Male BMI  32 -0.213 4.5% 0.249 
Female BMI  84 0.093 0.9% 0.404 
Male %BF  32 -0.184 3.4% 0.321 
Female %BF  84 0.114 1.3% 0.307 
Pupil size 89 0.179 3.2% 0.096 
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Table A20 Group analysis for first eye GRT with AMD and OVP RF 
Variable 
 

n Age mean 
(SD) or 
median 
(IQR) years 

GRT median 
(IQR) s 

Statistic P-value 
p 

Size effect 
(if significant) 

Age 
2 age groups (years) 

≤ 50 
> 50 

57 
43 

43.0 (5.2) 
60.1 (7.0) 

35 (20) 
45 (26) 

U = 869 
Z = -2.483* 

 
0.013 

 
0.25  (small) 

Age 
4 age groups (years) 

< 45 
≥ 45 to < 50 
≥ 50 to < 60 
≥ 60 

32 
25 
24 
19 

41.8 (4.4) 
46.5 (2.6) 
54.9 (4.5) 
67.2 (6.4) 

33 (21) 
35 (21) 
42 (27) 
50 (44) 

 
 
 
8.907** 

 
 
 
0.031 

 
 
 
- 

Post-hoc tests 
Two follow-up Mann-
Whitney U tests 
α level = 0.025 

≥ 45 to < 50 
≥ 50 to < 60 

25 
24 

46.5 (2.6) 
54.9 (4.5) 

35 (21) 
42 (27) 

U = 266.0 
Z = -0.681* 

 
0.496 

 
- 

≥ 45 to < 50 
≥ 60 

25 
19 

46.5 (2.6) 
67.2 (6.4) 

35 (21) 
50 (44) 

U = 141.0 
Z = -2.288* 

 
0.022 

 
0.23 (small) 

Gender Male 
Female 

27 
73 

55.2 (10.5) 
48.5 (9.9) 

41 (25) 
39 (23) 

U = 834.5 
Z = -1.173* 

 
0.241 

 
- 

BMI (both genders) 
(n = 116) 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
52 
48 
12 

43.5 (42.2) 
45.6 (11.4) 
51.9 (17) 
60.7 (20.0) 

30 (40) 
35 (20) 
43 (27) 
34.5 (23) 

 
 
 
4.870** 

 
 
 
0.182 

 
 
 
- 

BMI (male) 
(n = 32) 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

0 
7 
20 
5 

- 
47.9 (23.8) 
54.6 (18.5) 
60.0 (16.3) 

- 
40 (34) 
43 (25) 
32 (17) 

 
 
 
1.760** 

 
 
 
0.415 

 
 
 
- 

BMI (female) 
(n = 84) 

< 20 
20 to < 25 
25 to < 30 
≥ 30 

4 
45 
28 
7 

43.5 (42.2) 
45.4 (11.4) 
48.8 (13.0) 
60.3 (22.1) 

30 (40) 
35 (19) 
43 (39) 
35 (25) 

 
 
 
4.460** 

 
 
 
0.216 

 
 
 
- 

Male %BF 
(CUN-BAE) 
(n = 32) 

≤ 20% 
> 20 to 25% 
> 25% 

2 
6 
24 

46.1 (-) 
44.6 (4.2) 
61.2 (16.2) 

44.5 (-) 
34.5 (14) 
43 (25) 

 
 
1.847** 

 
 
0.397 

 
 
- 

Female %BF 
(CUN-BAE) 
(n = 84) 

≤ 30% 
> 30 to 35% 
> 35% 

7 
25 
52 

40.1 (9.5) 
45.1 (7.1) 
51.2 (15.6) 

31 (15) 
35 (20) 
41 (26) 

 
 
7.484** 

 
 
0.024 

 
 
- 

Post-hoc tests 
Two follow-up Mann-
Whitney U tests 
α level = 0.025 

≤ 30% 
> 35% 

7 
52 

40.1 (9.5) 
51.2 (15.6) 

31 (15) 
41 (26) 

U = 83.0 
Z = -2.322* 

 
0.020 

 
0.23 (small) 

> 30 to 35% 
> 35% 

25 
52 

45.1 (7.1) 
51.2 (15.6) 

35 (20) 
41 (26) 

U = 489.5 
Z = -1.747* 

 
0.081 

 
- 

Iris colour 
Five colour groups 
Mixed-gender 

Grey 
Blue 
Green 
Hazel 
Brown 

12 
33 
15 
16 
24 

50.7 (8.7) 
47.9 (10.5) 
44.9 (19) 
46.9 (16.4) 
51.6 (20.9) 

38 (18) 
38 (16) 
47 (27) 
37 (31) 
37.5 (26) 

 
 
 
 
2.506** 

 
 
 
 
0.644 

 
 
 
 
- 

Iris colour*** 
Two colour groups 

Light 
Dark 

60 
40 

49.1 (9.4) 
52.3 (11.6) 

40.5 (21) 
37 (26) 

U = 1140.0 
Z = -0.422* 

 
0.673 

 
- 

AMD FH 
2-group 

Yes 
No 

17 
82 

49.5 (18.3) 
48.0 (12.8) 

45 (26) 
38.5 (23) 

U = 540.5 
Z = -1.453* 

 
0.146 

 
- 

AMD FH 
3-group 

1st degree 
2nd degree 
No 

11 
6 
82 

57.5 (13.5) 
43.1 (5.9) 
48.0 (12.8) 

50 (39) 
43.5 (23) 
38.5 (23) 

 
 
2.435** 

 
 
0.296 

 
 
- 

Migraine Yes 
No 

17 
83 

45.3 (13.2) 
48.5 (13.4) 

33 (29) 
41 (24) 

U = 636.5 
Z = -0.633* 

 
0.526 

 
- 

Light-trigger Yes 
No 
No migraine 

6 
11 
83 

44.7 (11.2) 
45.4 (16.3) 
48.5 (13.4) 

33 (24) 
33 (35) 
41 (24) 

 
 
0.520** 

 
 
0.771 

 
 
- 

Aura Yes 
No 
No migraine 

10 
7 
83 

46.0 (13.6) 
45.0 (9.3) 
48.5 (13.4) 

32 (18) 
51 (29) 
41 (24) 

 
 
3.003** 

 
 
0.223 

 
 
- 

Rph Yes 
No 

27 
72 

54.0 (9.6) 
49.1 (10.5) 

41 (26) 
40 (22) 

U = 9.595 
Z = -0.098* 

 
0.922 

 
- 

VDys Yes 
No 

28 
69 

50.8 (9.2) 
50.4 (11.1) 

40.5 (26) 
41 (25) 

U = 958.5 
Z = -0.060* 

 
0.952 

 
- 

MPOD 
 

≤ 0.39 
> 0.39 

48 
52 

48.7 (10.9) 
51.9 (9.8) 

38.5 (23) 
42.5 (28) 

U = 1085.5 
Z = -1.122* 

 
0.262 

 
- 

Pupil size < 4mm 
≥ 4mm 

40 
49 

53.9 (10.0) 
48.0 (9.2) 

40.5 (28) 
40 (25) 

U = 922.5 
Z = -0.474 

 
0.635 

 
- 

Abbreviations. n: number of data, IQR: interquartile range. *Mann-Whitney U test, **Kruskal-Wallis test, ***Iris colour divided 
into light (grey, blue and green irides) and dark (hazel and brown irides). 
 
Table A21 Association between GRT and fish oil supplement use 

Variable n 
 

Age median 
(IQR) years 

GRT Median 
(IQR) s 

Statistic P-value Size effect 

Reported fish oil 
supplement use 

Yes 
No 

21 
79 

57.6 (18.9) 
46.5 (11.7) 

43.0 (25) 
39.0 (23) 

U = 672.5 
Z = -1.329* 

 
0.184 

 
- 

Abbreviations. IQR: interquartile range. *Mann-Whitney U test. 
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Table A22 Bivariate correlation between log10 GRT and MPOD 
Variable Number of 

data (n) 
Pearson r Shared 

variance 
P-value 
(2-tailed) 

MPOD (full age range) 100 0.218 4.8% 0.029 
MPOD (≤ 50 years) 57 0.236 5.6% 0.078 
MPOD (> 50 years) 43 0.117 1.4% 0.455 
MPOD (≤ 0.39) 48 -0.064 0.4% 0.666 
MPOD (> 0.39) 52 0.310 9.6% 0.025 

 
 
Table A23 Partial correlation between log10 GRT and MPOD corrected for age 

Variable Number of 
data (n) 

Partial 
correlation 

Shared 
variance 

P-value 
(2-tailed) 

MPOD (full age range) 100 0.183 3.3% 0.071 
MPOD (≤ 50 years) 57 0.221 4.9% 0.102 
MPOD (> 50 years) 43 0.170 2.9% 0.283 
MPOD (≤ 0.39) 48 -0.069 0.5% 0.645 
MPOD (> 0.39) 52 0.309 9.5% 0.027 

 
 
Table A24 Group analysis for GRT intra- and inter-session repeatability 

GRT 
Intra-session 

Number of 
data (n) 

GRT median (IQR) 
s 

Statistic P-value 
p 

Size effect 
(if significant) 

E1 GRT1 vs.  
E1 GRT2 

100 
100 

45 (27) 
40 (25) 

 
Z = -5.573* 

 
< 0.001 

 
0.72 (large) 

E2 GRT1 vs.  
E2 GRT2 

99 
99 

40 (27) 
36 (24) 

 
Z = -5.901* 

 
< 0.001 

 
0.76 (large) 

Rep. E1 GRT1 vs.  
Rep. E1 GRT2 

30 
30 

37 (25) 
41.5 (26) 

 
Z = -0.381* 

 
0.703 

 
- 

Rep. E2 GRT1 vs.  
Rep. E2 GRT2 

30 
30 

36.5 (26) 
40.5 (20) 

 
Z = -1.052* 

 
0.293 

 
- 

Inter-session      
E1 GRT1 vs.  
Rep. E1 GRT1 

30 
30 

48 (28) 
37 (25) 

 
Z = -1.549* 

 
0.121 

 
- 

E2 GRT1 vs.  
Rep. E2 GRT1 

30 
30 

40 (19) 
36.5 (26) 

 
Z = -0.473* 

 
0.636 

 
- 

E1 GRT2 vs.  
Rep. E1 GRT2 

30 
30 

37.5 (16) 
41.5 (26) 

 
Z = -0.536* 

 
0.592 

 
- 

E2 GRT2 vs.  
Rep. E2 GRT2 

30 
30 

33.5 (20) 
40.5 (20) 

 
Z = -2.608* 

 
0.009 

 
0.34 (medium) 

Abbreviations. IQR: interquartile range. *Wilcoxon signed rank test. Size effect: 0.1 (small), 0.3 (medium), 0.5 (large). Data 
was missing for one case for the second eye data in the first session. 
 
 
Table A25 Correlation for intra- and inter-session repeatability 

Variable 
Intra-session 

Number of 
data (n) 

Pearson r Shared 
variance 

P-value 
(2-tailed) 

Log10 Rep. E1 GRT1 30    
Log10 Rep. E1 GRT2 30 0.89 79.2% < 0.001 
Inter-session     
Log10 E1 GRT2 30    
Log10 Rep. E1 GRT2 30 0.41 16.8% 0.024 
Inter-session (repeated within 5-weeks only)     
Log10 E1 GRT2 18    
Log10 Rep. E1 GRT2 18 0.58 33.4% 0.011 

 
 
Table A26 Bias on repeat measures of GRT using same vs. different test chart letters 

Variable n 
 

Age mean 
(SD) years 

GRT mean 
(SD) s 

Statistic P-value Size effect 

Same letters (1st eye rep. GRT1-GRT2) 
Different letters (2nd eye rep. GRT1-GRT2) 

30 
30 

49.1 (8.5) 
49.1 (8.5) 

1.7 (12.0) 
-2.6 (9.4) 

 
1.567* 

 
0.123 

 
- 

Abbreviations. n: number of data. *independent-samples t-test. 
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Appendix 2 

 

A2.1 Summary of the retina / RPE / choroid antioxidant system 
Antioxidant 
Enzyme 

Main target Location Co-factor Recycled by 

CuZn-SOD [228] O2 
- All tissue [236] Cu, Zn 

Melatonin [1038] 
CoQ10 [1039] 

- 

Mn-SOD [228] O2 - RPE mt [236] Mn - 
GPx [228, 1040] Lipid hydroperoxides All tissue [228] CoQ10 [1039] 

Se [1041] 
- 

GR [1040] GSSG recycling All tissue [1040] - - 
CAT [228] H2O2 All tissue [228] Fe [228] 

CoQ10 [1039] 
- 

MsrA [1042] Free radical scavenging 
Neuroprotection 

All tissue [1042] α-crystallins [1042] - 

GSTP1 [1043, 1044] Oxidative stress 
Nitric oxide scavenging 

All tissue, abundant in 
foveal IPL / OPL & 
PR IS ER [1044] 

Flavonoids [1043] - 

(HO)-1 [1043, 1045] Oxidative stress 
⇓ Ischaemia/reperfusion 

RPE [1045, 1046] Flavonoids [1043] 
Anthocyanin 
Astaxanthin [1047] 

- 

NQO1 [1043] Oxidative stress All tissue [1048] 
 

Flavonoids 
Astaxanthin [1047] 

- 

Non-enzyme     
GSH [1040] Oxidative stress 

Lipid peroxidation 
PR OS [228] 
All tissue [1040] 

Melatonin [1038] 
GST pi [1049] 
ALA [1050] 

GR [1040] 
ALA [1051] 

Melanin [5, 238, 1052] Free radical scavenging 
Weak antioxidant 
Lipid peroxidation 
Bind cations (e.g. FE, Cu, 
Zn) 
Visible and infra-red light 
absorption 

RPE / choroid [5] Fe [236] 
Zn [1053] 
 

Vit C [238] 
Photo-degradation 
reduces 
antioxidant 
capability [238] 

Metallothionein [228, 

232, 1054, 1055] 
Free radical scavenging 
Bind cations (e.g. Fe, Zn, 
Cu, Cd) 
Neuroprotection 
Oxidative stress 

All tissues [1056] Zn [1057] Se catalyst [232] 

Dopamine [188-191] Antioxidant 
Neuroprotectact 
Protect PR from light 
damage 
Excess dopamine may 
cause lipid peroxidation 

All tissues? - Light triggers 
dopamine release. 
Dopamine and 
melatonin are 
mutually 
antagonistic [192] 

Melatonin [1038, 1058, 

1059] 
Lipid peroxidation 
Free radical scavenging 

All tissues [1060] - Light blocks 
melatonin release. 
Oxidation may be 
irreversible [239] 

TRX1 [1061, 1062] Oxidative stress 
Cellular redox 

All tissues [1062] CFH [1062] TRXR1 [1062] 

Oestrogen [302] Antioxidant 
Anti-inflammatory 
Regulates AMD signalling 
pathways 

All tissues [302] - Oestrogen 
receptors ERα & 
ERβ bind with and 
inhibit NF-κB 
signalling, 
reducing 
inflammatory IL-6 
production [302] 

Dietary     
Vitamin A [228] 
(Retinol, plus pro-
vitamin A) 

Lipid peroxidation 
Oxidative stress 

PR OS [1063] 
All tissue [228] 

Vit E [1064] Retinol 
dehydrogenase 
[512] 

Vitamin C [1065, 1066] 
(Ascorbate) 

Free radical scavenging 
Ultra-violet (UV) light 
absorption in the cornea 
and anterior chamber 

All tissue [1066] Almond skin 
Flavonoids [1067] 

ALA [1051] 
GSH [1068] 

Vitamin E [228] 
(Tocopherols and 
tocotrienols) 

Free radical scavenging 
Lipid peroxidation 

All tissue [228, 1069] Se [1063] 
Almond skin 
Flavonoids [1067] 

ALA [1051] 
Vit C [1070] 
GSH [1070] 
CoQ10 [1071] 

L, Z and MZ Free radical scavenging PR OS [397, 399] Vit E [1073] Vit C [1074] 
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MP [250, 475, 482, 892, 1072] Singlet O2 quenching 
Lipid peroxidation 
Neuroprotection 
⇓ Ischaemia/reperfusion 
Blue light absorption 

HFL [395] 
PF IPL & OPL [395] 
Mc [400, 443] 

Flavonoids [1067, 1075] Oxidative stress 
Free radical scavenging 
Inhibit nitric oxide 
Inhibit O2- ⇑ enzymes 
Chelate trace elements 
Boost ocular blood flow 
⇓ Ischaemia/reperfusion 
Neuroprotection 

All tissue [1075] 
May deplete from 
tissue rapidly 

- Replenished from 
dietary sources 

ALA / DHLA [1050, 1051] 
(Thioctic acid) 

Oxidative stress 
Free radical scavenging 
Bind cations 

All tissue [1051] NAD(P)H [1076] Self-recycling? 

CoQ10 [1071, 1077] 
(Ubiquinone) 

Oxidative stress 
ROS scavenging 

All tissue [1071] - ALA [1078] 

Taurine [1079] Oxidative stress 
Neuroprotection 
⇓ Glutamate toxicity 
⇓ Inflammation 

All tissues [1080, 1081] Fe [1082] 
Vit B6 [1083] 

Also synthesised 
from methionine 
with CDO [1081, 1083] 

SOD: superoxide dismutase, GPx: glutathione peroxidase, GR: glutathione reductase, CAT: catalase, MsrA: methionine 
sulfoxide reductase, GSTP1: glutathione S-transferase pi isoform, (HO)-1: heme oxygenase, NQO1: NAD(P)H:quinone 
oxidoreductase 1, NAD(P)H: nicotinamide adenine dinucleotide phosphate, TRX1: thioredoxin, NF-κB: nuclear factor kappa 
B, IL-6: interleukin-6, GSH: glutathione, (Bio) Flavonoids: polyphenolic molecules derived from the outer surfaces of grapes, 
berries, tealeaves and some barks. Ocular function depends on the flavonoid examined, L: lutein, Z: zeaxanthin, MZ: meso-
zeaxanthin, ALA: α-lipoic acid, DHLA: dihydrolipoic acid (reduced form of ALA), CoQ10: co-enzyme Q10. O2 - : Superoxide 
anion, GSSG: Glutathione disulphide (oxidised form of glutathione), H2O2: hydrogen peroxide, ROS: reactive oxygen 
species. IPL: inner plexiform layer, OPL: outer plexiform layer, PR IS ER: photoreceptor inner segment ellipsoid region, PR 
OS: photoreceptor outer segments, HFL: Henle fibre layer, PF IPL: parafoveal inner plexiform layer. RPE mt: RPE 
mitochondria. Cu: copper, Zn: zinc, Mn: manganese, Se: selenium, Fe: iron, Cd: cadmium, TRX1: thioredoxin reductase, 
CDO: cysteine dioxygenase. 
 

A2.2 Müller cell functions in addition to photopigment recycling 
Physiological 
Process 

Müller Cell Function 
Protein / Peptide 

Notes 

Metabolic support 
and nutrition of 
neurons 

Delivery of lactate / 
pyruvate 
lactate dehydrogenase 

Müller cells supply retinal cells with nutrients required for their 
oxidative metabolism. In murine models Mc destruction causes 
retinal dysplasia, photoreceptor apoptosis and eventually retinal 
degeneration and RPE proliferation.[1084] 

Storage of glycogen and 
glycogenolysis 
glycogen phosphorylase 

Müller cells are strikingly resistant to ischaemia, hypoxia and 
hypoglycemia. Short periods of glucose deficiency and ischaemia 
may be compensated by glycogen deposits stored in Mc.[1085] 

Water, potassium 
(K+) and carbon 
dioxide (CO2) 
homeostasis 

Dehydration of the inner 
retina 
AQP-4 channel 

Water accumulates in the retina as a by-product of the oxidative 
synthesis of ATP, from retinal blood vessels and as a result of 
intraocular pressure. Excess water is removed from Mc via AQP-4 
channels to the retinal blood vessels. The subretinal space is 
dehydrated by the RPE (AQP-1).[294] 

Transcellular spatial 
buffering of K+ currents 
Kir4.1 channel 

Müller cells buffer extracellular levels of K+ resulting from neuronal 
activity, controlling bi-directional movement of these ions through Kir-
4.1 channels in the Mc plasma membrane.[294] Blue light exposure 
leads to a reduction in Kir4.1 protein in the whole retina and reduced 
K+ conductance in rat Mc.[278] Dysregulation of K+ homeostasis 
causes neuronal hyper-excitability and glutamate toxicity. Human 
data indicated that Kir currents were significantly lower in Mc 
extracted post mortem from subjects aged over 50 years compared 
to younger subjects, whereas calcium currents were approximately 
five times higher in older subjects over 55 years of age.[1086] Co-
localisation of Kir4.1 and AQP-4 channels in the Mc plasma 
membrane may explain the retinal oedema associated with 
pathological alteration in Kir4.1 expression (e.g. inflammation).[1015]  

Carbon dioxide buffering 
carbonic anhydrase 

Retinal neurons (especially photoreceptors in the dark) release high 
levels of CO2, leading to a rapid acidification of Mc. Acidification, if 
not buffered might lead to modulation of glutamate uptake, acid-base 
transport and gap-junction coupling by Mc.[1087]  

Neurotransmitter 
recycling 

Glutamate 
GLAST 

Glutamate is continuously released by photoreceptor terminals in the 
dark, but suppressed by light. ON-bipolar cells release glutamate in 
the light, whereas OFF-bipolars release glutamate in darkness.[276] 
Clearance of synaptic glutamate by Mc is necessary for normal 
functioning of excitatory synapses and to prevent neurotoxicity.[1088] 

GABA 
GAT-3 

Gamma-aminobutyric acid is the main inhibitory neurotransmitter in 
the vertebrate retina. In the outer retina of mammals, GABA uptake 
is almost exclusively performed by Mc, whereas Mc and amacrine 
cells are responsible for GABA uptake in the inner retina.[276] 

Glutamine Glutamate transported in to Mc is amidated to glutamine by the 
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SN 1, SN 2 enzyme glutamine synthetase. Glutamine is released from Mc and 
taken up by neurons where it is used to synthesise glutamate and 
GABA.[276] If glutamate synthetase is pharmacologically blocked in 
Mc, bipolar and ganglion cells become deficient of free glutamate 
and functional blindness results within two minutes.[1088] 

Release of other 
neuroactive 
substances 

Storage and release of 
D-serine 
ATP 

These neuroactive substances are stored or released depending on 
momentary neuronal activity and / or metabolic state. D-serine and 
glutamate control the excitability of neurons and are involved in 
photopigment recycling as they express CRALBP. Adenosine 
triphosphate transports chemical energy within cells for 
metabolism.[294] 

Formation and 
maintenance of the 
blood-retina barrier 

Müller cells support inner 
blood-retinal barrier 
integrity 
VEGF 
PEDF 
TGF-β 
Matrix metalloproteinases 

Under normoxic conditions Mc secrete factors that decrease barrier 
function such as PEDF, which down-regulates expression of VEGF. 
Retinal hypoxia, inflammation and glucose-deprivation are 
associated with increased VEGF secretion from Mc, leading to 
increased vascular permeability. Müller cells also produce matrix 
metalloproteinases which impair barrier function of retinal endothelial 
cells.[1015] Ischaemia / reperfusion causes increased glutamate 
release from neurons and Mc activation leading to reduced K+ 
buffering and glutamate uptake. Excess extracellular glutamate 
causes retinal cell damage. Müller cells are resistant to injury 
resulting from insufficient vascular perfusion, unlike other retinal 
neurons, especially photoreceptors.[294] Impairment of Mc glutamate 
metabolism (down-regulation of glutamine synthetase) was found to 
reduce the integrity of the blood-retina barrier.[276]  

Regulation of retinal 
blood flow 

Müller cells mediate 
neurovascular coupling 
Purinergic, P2Y receptors 

Retinal glia, including Mc respond to neuronal activity by modulating 
retinal blood flow.[1089] Retinal glia communicate with their neighbours 
via increases in intracellular calcium in the form of a calcium wave 
propagated through gap junctions or by releasing ATP.[1090] In rat Mc, 
steady light causes the generation of calcium waves, the frequency 
of which is increased by flickering light.[1091] Calcium responses in Mc 
are mediated by metabotropic purinergic receptors and are triggered 
by ATP released from amacrine and ganglion cells. Vessel pericyte 
constriction and relaxation are stimulated by the release of ATP and 
adenosine, respectively.[1092] Studies conducted on pigeon and rat 
retinae reported that Mc become activated (indicated by increased 
levels of GFAP) when choroidal blood flow is altered or reduced.[1093, 

1094] 
Protection against 
oxidative stress 

Free radical scavenging 
GSH 

Müller cells synthesise GSH from glutamate, cysteine and 
glycine.[885] Glutathione levels in Mc decrease dramatically during 
hypoxia and hypoglycemia. Reduced GSH due to ischaemia may 
increase intraretinal oxygen free radicals. Glutathione levels in Mc 
were significantly lower with age, in guinea pigs,[1095] and under 
pathological conditions including retinal light injury, ischaemia and 
inflammation.[276] Extracellular cystine used to synthesise glutathione 
is transported in to Mc via the cystine-glutamate antiporter, which 
transports glutamine out of Mc in to the extracellular space. 
Excessive extracellular glutamate secondary to oxidative stress may 
inhibit the cystine-glutamate antiporter and lead to lower levels of 
GSH.[276] 

Neuroprotection Secretion of various 
factors involved in 
neuroprotection 
BDNF, CNTF, bFGF, IGF-
1, NGF, neurotrophins-3 
and -4, GDNF, LIF, PEDF, 
Bcl-2 

Under pathological conditions Mc are able to protect photoreceptors 
and retinal neurons from cell death by the secretion of various 
factors; neurotrophic and growth factors, and cytokines. Retinal light 
injury is associated with up-regulation of the following factors; CNTF, 
bFGF, NGF, neurotrophin-3 and Bcl-2.[270] 

Phagocytosis of 
potentially harmful 
substances and particles 
(endogenous and 
exogenous) 

Müller cells phagocytose debris from dead neurons and pigment 
from the RPE, foreign material such as copper particles and latex 
beads.[294] 

Inflammation Recruitment of 
inflammatory cells 
Ccl2 chemokine 

Expression of Ccl2 by Mc promotes the infiltration of monocytes / 
microglia, contributing to the neuroinflammatory response and 
photoreceptor death following retinal light damage in the rat.[1096] 
Treatment with L was observed to inhibit up-regulation of GFAP 
(reduce Mc gliosis) and minimise deterioration of b-wave / a-wave 
ratio and oscillatory potentials in a murine model of retinal ischaemia 
/ reperfusion injury, suggesting an anti-inflammatory role for L.[892] 

Cell membrane 
integrity 

Delivery of DHA to 
photoreceptors 

Müller cells incorporate DHA into phospholipids which are channeled 
to photoreceptors.[1097] Müller cell membrane lipids, like those of 
photoreceptor OS exhibit an age-related susceptibility to lipid 
peroxidation secondary to oxidative stress.[280] 

Circadian protection 
of photoreceptors 

Neuroprotectants 
bFGF 
adenosine 
 
Antioxidants 
vitamin C 

Photoreceptors use 3-4 times more oxygen when light-adapted and 
6-8 times more oxygen when dark-adapted than other neurons in the 
central nervous system. Oxygen is supplied to photoreceptors via the 
choriocapillaris, which is not significantly regulated in response to 
oxygen requirement. The decrease in oxygen consumption from 
dark- to light-adapted states leads to an increase in retinal oxygen 
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vitamin E 
glutathione 

tension during day light hours. Photoreceptors are able survive 
circadian periods of hyperoxia because of retinal neuroprotective 
and antioxidant  agents produced by Mc (e.g. bFGF and 
glutathione).[270] 

Ammonia 
metabolism 

Neutralisation of excess 
ammonia 
Glutamine synthetase 

Glutamine synthetase found in Mc is the only enzyme available in 
the retina for ammonia detoxification. Glutamine synthetase activity 
is regulated by the availability of glutamate and ammonia and is up-
regulated by pathology associated with raised ammonia levels (e.g. 
liver failure). Chronic exposure to high ammonia concentration may 
cause metabolic overload of Mc leading to retinal damage (hepatic 
retinopathy).[294] 

Ionotropic receptors Extracellular pH regulation 
GABAA receptor 
 

Human Müller cells contain GABAA receptors (chloride channels). 
Stimulation with GABA evokes a fast, transient and a sustained 
current, both inward, leading to Mc depolarisation. These receptors 
are also permeable to bicarbonate, therefore they may be involved in 
extracellular pH regulation.[1092] 

Removal of extracellular 
calcium 
P2X7 purinergic receptor 

In human Müller cells extracellular ATP leads to the opening of P2X7 
receptors (calcium channels) causing calcium influx in to Mc, calcium 
release from intracellular stores and activation of big potassium (BK) 
channels, leading to cell depolarisation. Depolarisation is counter 
regulated by hyperpolarisation due to potassium influx through BK 
channels, which in turn increases the driving force for calcium influx. 
The light-induced decrease in extracellular calcium will down-
regulate P2X7 receptors.[1092] 

Protection against 
apoptosis 

Release of factors 
ApoE 
α2-macroglobulin 

Müller cells protect photoreceptors and other retinal neurons from 
apoptosis by the release of ApoE and α2-macroglobulin.[270] 

De-differentiation to 
pluripotent retinal 
progenitor / stem 
cells 

Response to pathological 
stimuli 

In response to pathological stimuli Mc are able to de-differentiate to 
cells exhibiting properties of pluripotent retinal progenitor or stem 
cells; proliferation, migration and transdifferentiation (to neurons and 
photoreceptors). De-differentiation of Mc adversely affects many 
normal functions including; glycosis, glutamate synthetase recycling, 
carbon dioxide siphoning, visual pigment recycling, potassium 
siphoning and water clearance. This contributes to inner retinal 
oedema, neuronal hyper-excitability and glutamate toxicity.[270] 

Retinal Development Scaffold for retinal cell 
orientation 

From early stages of development immature Mc are important for the 
histotypic organisation of the developing retina. They provide 
orientation support for young neurons and their neurites. Reactive 
Mc in humans with AMD extend processes through gaps in Bruch’s 
membrane, along which retinal neurons migrate out of the retina and 
into the choroid.[294] 

Mechanoresponsivity Müller cells respond to 
mechanical stress 
ERK 
c-Fos 
bFGF 

Fifteen minutes after stretch, Mc showed activation of ERK. 
Subscription factor c-Fos and bFGF were upgegulated after one and 
three hours, respectively. Vimentin and GFAP levels remained 
unchanged three hours after stretch.[1098] 

Storage site for 
macular 
xanthophylls? 

Müller cells may store L 
and Z 

Gass suggested that Mc may act as a reservoir for L and Z.[400] 
Macular hole is often accompanied by ERM containing MP.[443] 
Lutein and Z are used to stain the ILM (Mc end feet) during 
surgery.[992, 993] Müller cells were also reported to concentrate 
canthaxanthin, a xanthophyll structurally similar to Z.[1099] 

Image transfer from 
inner to outer retina 

Müller cells act as optical 
fibres and spectral filters 

Müller cells are radially orientated, span the entire retinal thickness, 
have an extended funnel shape and a higher refractive index than 
surrounding tissue. Franze et al. demonstrated that guinea pig Mc 
can act as minimal distortion, low-loss optical fibres, transmitting an 
image through the retina.[1016] Labin et al. reported that guinea pig Mc 
spectrally filter and concentrate green and red light onto cones, 
whereas blue and purple light is leaked onto nearby rods.[1017] 

AQP-4: aquaporin-4, ATP: adenosine 5'-triphosphate, AQP-1: aquaporin-1, Kir4.1: inwardly-rectifying potassium 4.1, 
GLAST: glutamate / aspartate transporter, GABA: Gamma-aminobutyric acid, GAT-3: GABA transporter subtype 3, SN 1: 
system N glutamine transporter 1 (aka SNAT3), SN 2: system N glutamine transporter 2 (aka SNAT5), CRALBP: cellular 
retinaldehyde-binding protein, BDNF: brain-derived neurotrophic factor, CNTF: ciliary neurotrophic factor, bFGF: basic 
fibroblast growth factor, IGF-1: insulin-like growth factor 1, NGF: nerve growth factor, GDNF: glial cell line-derived 
neurotrophic factor, LIF: leukemia inhibitory factor, Bcl-2: B cell lymphoma oncogene protein-2, Ccl2: C-C motif ligand 2. 
ERK: extracellular signal-related kinase, c-Fos: subscription factor c-Fos, Adapted from Bringmann et al. (2006) with 
permission. 
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A2.3 Summary of the current macular pigment hypotheses 
MP Theory Reference Summary of hypothesis 
Protection 
hypothesis 

Kirschfeld (1982)[1100] 
Snodderly et al. (1984a)[989] 
 
Snodderly (1995)[1101] 
Tate et al. (1995)[226] 
Sedden et al. (2005)[782] 
Kim et al. (2008)[1102] 
Youssef et al. (2011)[250] 
Mares et al. (2011)[1103] 
Chew et al. (2013)[452] 

Based on the assumption that oxidative damage is a significant factor 
in the pathogenesis of retinal disease. Macular pigment protects the 
retina from actinic blue light damage,[250] with a retinal distribution 
corresponding to the pattern of intraretinal damage caused by argon 
laser blue (488 nm) photocoagulation damage of the macula.[989] 
Macular pigment also acts as an antioxidant, scavenging and 
quenching free radicals produced by endogenously-triggered (e.g. 
phagocytosis)[226] and exogenously-triggered (e.g. blue light stimulated 
release of ROS from fluorophores such as A2E)[1102] processes. 
Recently AREDS2 reported that the risk of progression to advanced 
AMD was reduced by 18% for participants taking AREDS supplements 
plus L and Z compared to those taking AREDS supplements plus beta 
carotene. Dietary analysis also revealed 25% lower risk of progression 
to advanced AMD for those with a low L and Z diet before the study, 
taking L and Z supplements.[452] There is no evidence that L and Z 
supplementation lowers the risk of AMD development. Opponents of 
this theory have argued that AMD is primarily a genetic disease, 
explaining up to 71% of the variance.[782] Despite this, lifestyle 
alterations including healthy diet, not smoking and exercise were 
associated with a 71% lower risk of developing AMD.[1103] 

Acuity 
hypothesis 

Schultze (1866)[1104] 
 
Wooten et al. (2002)[711] 
Olmedilla et al. (2003)[1014] 
Richer et al. (2004)[936] 
Engles et al. (2007)[657] 
Loughman et al. (2010)[906] 
 
 

Schultze theorised that MP might improve VA by reducing short-
wavelength light prior to absorption by the photoreceptors.[711] 
Approximately 75% of MP is optimally located in the inner retina close 
to where short-wavelength light is focused (i.e. anterior to the 
photoreceptors). Engles et al. measured gap acuity and vernier acuity 
on white (included short-wavelength light) and yellow (excluded short-
wavelength light) backgrounds. Macular pigment optical density did not 
correlate with either acuity measurement or either background. Their 
data did not support the acuity hypothesis.[657] Two double-masked, 
placebo-controlled studies reported a significant improvement in VA 
after supplementation with L alone or combined with antioxidants / 
nutrients.[936, 1014] Loughman et al.  reported a significant association 
between VA and MPOD at all eccentricities measured (0.25, 0.5, 1, 
1.75 and 3°).[906] Although these results are not in agreement with 
those of Engles et al., it is possible that MP improves VA via a 
mechanism unrelated to the reduction of chromatic aberration. 

Glare 
hypothesis 

Stringham et al. (2007)[620] 
 
Ham et al. (1976)[1105] 
Stringham et al. (2003)[567] 
Wenzel et al. (2006)[1106] 
Stringham et al. (2008)[621] 
Snodderly et al. (2010)[838] 
Stringham et al. (2011)[622] 
Hammond & Elliott (2013)[482] 
 

Stringham and Hammond proposed the glare hypothesis in 2007. MP 
was strongly related to improvements in disability glare and GRT, and 
blue light filtering was reported to be the primary mechanism by which 
MP improved both outcomes (figure 1.9).[620-622] Low MP levels in 
subjects with AMD was offered as part of the explanation for their 
prolonged GRT.[482] There is also evidence that higher levels of MP 
may be associated with reduced photophobia.[567, 838] The photophobia 
response is greater for blue light compared to green or red light,[1106] 
The action spectrum for photophobia after correction for MP and ocular 
media absorption, was found to approximate the threshold for retinal 
damage in Rhesus monkeys,[1105] and the action spectrum for 
lipofuscin photoreactivity.[482] Stringham and Hammond commented 
that it is unlikely that the mechanisms governing MP deposition 
evolved to protect the retina from actinic damage (i.e. protection 
hypothesis), as most damage would occur after the reproductive 
period. Factors affecting visual performance, however, affect 
survivability and therefore may be selected in the next generation.[620] 

Visibility 
hypothesis 

Wooten et al. (2002)[711] 
 
Bartlett et al. (2010)[1107] 
Hammond et al. (2012)[1108] 
Hammond & Elliott (2013)[482] 

Proposed by Wooten and Hammond in 2002. An object located far in 
the distance may be obscured by wavelength-dependent scattering of 
light in the atmosphere, making the object appear less visible against 
its surroundings. Atmospheric scattering is greatest for blue light. This 
theory suggests that MP will screen blue-dominant atmospheric scatter 
leading to greater visibility.[482, 711] Wooten and Hammond calculated 
that the visual range (furthest distance at which the target can be 
seen) may be 30% greater for those with very high (1.0) compared to 
those with very low (0.0) MPOD levels.[711] Simulating an increase in 
MPOD of 0.50, using an oil-based carotenoid solution placed in front of 
the eye, resulted in an average contrast threshold improvement of 
25%.[1108] The real-world improvement in visibility is likely to be less 
significant, as the increase in MPOD after supplementation is usually ≤ 
0.1 for healthy and diseased eyes.[1107] It was calculated that an 
increase in MPOD of this size would lead to a 5% increase in visual 
range.[711] 

Contrast 
enhancement 

Walls et al. (1933)[1109] 
 
Wolffsohn et al. (2000)[1110] 
Hammond & Elliott (2013)[482] 
Hammond et al. (2013)[623] 

Walls and Judd proposed that yellow filters enhance contrast in 
1933.[1109] The visibility of a yellow target on a blue background was 
improved by observation through a yellow lens.[1110] Retinex (retina and 
cortex) theory of colour vision suggests that any improvement in edge 
contrast will improve edge detection by the combination of lateral 
inhibition in the retina and simple cells in the visual cortex.[482] MPOD 
was reported to correlate positively and significantly with chromatic 



	   288	  

contrast. Pearson Product-Moment correlations were significant (p < 
0.001) at all eccentricities examined; 0.25, 0.5, 1, and 2°.[623] 

Mesopic acuity Kvansakul et al. (2006)[1111] 
 
Anstis (2002)[1112] 
Pérez et al. (2003)[1113] 
Hwang et al. (2013)[1114] 

Kvansakul et al. proposed that filtering of blue light by MP might 
selectively reduce rod signals under mesopic conditions, improving 
visual performance by increasing the relative contribution from 
cones.[1111] Mesopic vision describes the range of light intensity (10 cd 
m-2 to 0.001 cd m-2) over which both rod and cone photoreceptors 
contribute to vision.[1114] The transition from cone (photopic) to rod 
(scotopic) mediated vision is associated with a Purkinje shift in peak 
sensitivity from 555 nm (yellow-green) to 505 nm (blue green).[1112] The 
use of a yellow filter improved brightness and contrast perception 
under mesopic conditions, in healthy subjects.[1113] Six months 
supplementation with L (10 mg) significantly improved high mesopic (1 
cd m-2 background) contrast acuity thresholds. However, no significant 
association was observed between mesopic contrast acuity and 
MPOD.[1111] Nolan et al. reported no significant improvement in 
mesopic contrast sensitivity after 12 months supplementation with L 
(12 mg) and Z (1 mg).[968] 

Neural 
efficiency 
hypothesis 

Renzi et al. (2010)[843] 
Renzi et al. (2014)[1012] 
 
Stahl and Sies (2001)[1115] 
Johnson et al. (2008)[1007] 
Johnson (2012)[1006] 
Vishwanathan (2013)[430] 

Macular pigment improves neural efficiency in three ways: reducing 
random neural signals unrelated to sensory stimuli (neural noise), 
improving processing speed and reducing the cortical area required for 
a cognitive task. Renzi et al. suggested a possible mechanism 
whereby carotenoids enhance gap junction communication between 
glia and neurons,[843] however the study cited (Stahl and Sies, 
2001),[1115] investigated several non-vitamin A carotenoids listed in the 
footnotes to this table, but not L and Z. Retinal levels of L and Z were 
significantly correlated with levels in the cerebellum, pons, frontal 
cortex and occipital cortex.[430, 1006] Lutein alone, or in combination with 
DHA was related to improved cognitive function in the elderly, although 
confirmation of a causal relationship requires longitudinal studies.[1006, 

1007] 
Compensation 
hypothesis 

Werner et al. (2000)[506] 
 
Werner et al. (1993)[1116] 
Beirne (2013)[899] 

Proposed by Werner et al. in 2000.[506] There is little age-related 
change in the appearance of an achromatic stimulus, despite a 
reduction in short-wavelength light incident on the retina due to 
changes in the ocular media.[1116] The underlying neural mechanism is 
considered to involve a type of multiplicative scaling of receptor 
sensitivity, in proportion to long-term quantal catch (i.e. the light 
absorbed by the three cone types).[506] Thresholds for S-, M- and L-
cone mechanisms increase linearly in the central retina with age. The 
sensitivity difference between 0° and 8° retinal eccentricity for the S-
cone mechanism, but not the M- and L-cone mechanisms, was 
significantly related to peak MPOD, but was unrelated to observer 
age.[506] The results are consistent with the hypothesis that long-term 
changes in S-cones or their post-receptoral pathways, compensate for 
the loss of stimulation due to the presence of MP at the fovea 
(compensation hypothesis). Beirne reported no significant relation 
between MPOD and the rate of change of foveal vs. extrafoveal (12° 
eccentricity) acuity with increasing age.[899] The lack of age 
dependency in these studies does not support the (protection) 
hypothesis that higher MPOD protects S-cone mediated visual function 
in the aging eye. 

In view of the strong correlation between carotenoid consumption and a lower risk of several types of cancer, Stahl and Sies 
investigated the effects of various carotenoids on gap junctional communication on the human Caucasian foetal foreskin 
fibroblast (HFFF2) cell line. Gap junctional communication significantly increased when HFFF2 cells were exposed to; 0.1 
µM retinoic acid, 0.1 µM lycopene, 1.0 µM or 50 µM acyclo-retinoic acid, 1.0 µM 4-oxo-retinoic acid. Three apo-cleavage 
products of canthaxanthin and 0.1 µM acyclo-retinoic acids did not produce significant results. The data indicated that for 
retinoic acid, the presence of four conjugated double bonds in the side chain provided optimal activity. Increasing the 
number of double bonds decreased activity, whereas a lower number of double bonds lead to inactive compounds.[1115] The 
structural difference between retinoic acid and lycopene suggests that their stimulatory effects are unrelated. Lycopene and 
canthaxanthin have 11 and 13 conjugated double bonds respectively. Zeaxanthin and MZ also have 11 conjugated double 
bonds, whereas L only has 10. This suggests that Z and MZ may have a greater effect on gap junctional communication 
than L, although this remains to be demonstrated. 
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A2.4 Factors affecting in vivo MPOD measurements 
Factor Effect of age Effect on 

MPOD 
Explanation 

Optical 
Media opacities 
(central) 
Media opacities 
(para-central) 
 
Cataract extraction 
 
 
 
Clear vs blue-blocking 
IOL 
 
 
 
 
 
 
UV-blocking C/L 
 
 
 
 
Pupil size 

 
Increase 

 
Increase 

 
 

Increase 
 
 
 
- 
 
 
 
 
 
 
 
- 
 
 
 
 

Decrease 

 
Lower 

 
Higher? 

 
 

None 
 
 
 

Equivocal 
 
 
 
 
 
 
 

Higher 
 
 
 
 

Lower? 

 
Inverse relationship between MPOD and lens 
density.[1117] Spatial media changes are not uniform and 
individual variation in lens homogeneity increases with 
age.[689] 
 
No difference in MPOD was reported before and 
between one and eight weeks after cataract surgery.[698, 

700] 
 
MPOD was significantly higher one year after cataract 
surgery for subjects with UV and blue-blocking IOL, in 
the absence of any serum changes in L and Z. MPOD 
for subjects with IOL that blocked UV only remained 
unchanged.[698] A reduction in MPOD six months to two 
years after cataract surgery was found to be greater for 
UV-blocking compared to UV and blue-blocking IOL.[699] 
 
Wearing UV-blocking (no blue light absorption) contact 
lenses for five years was associated with a significant 
increase in MPOD compared to contact lenses with no 
UV-blocking.[1118] 
 
Pupil size decreases linearly with age and is smaller with 
increasing age regardless of luminance level.[932] Pupil 
size is subject to a high degree of intersubject 
variation.[932] MPOD results for a Maxwellian set-up and 
a free-viewing set-up were highly correlated.[733] The 
present study found a small, significant, positive 
correlation between MPOD and pupil size after 
correction for age. Stringham et al. reported a trend 
towards a positive correlation.[622] 

Biometric 
Gender 
 
 
 
 
 
 
 
 
BMI 
 
 
 
 
 
 
Male %BF 
Female %BF 

 
None 

 
 
 
 
 
 
 
 

Increase 
 
 
 
 
 
 

Increase 
Increase 

 
Equivocal 
(lower for 
females?) 

 
 
 
 
 
 

Equivocal 
(BMI is related 
to gender and 

age) 
 
 
 

Lower 
None 

 
The association between MPOD and gender is 
controversial. Approximately two thirds of studies 
examining HFP MPOD and gender reported lower 
MPOD,[432, 508, 597, 599, 693, 732] or a trend towards lower 
MPOD,[486, 591, 601, 705, 733, 734] for females. Gender 
differences in MPOD associate with age and 
adiposity,[164, 424, 435, 486] and differences in MP 
supplement use and MPOD spatial profile width.[689, 693] 
 
It is generally accepted that BMI increases with age.[674] 
The relationship between MPOD and BMI is 
controversial.[166, 401, 436, 591, 597, 601] Participants of male 
gender are more likely to exhibit lower MPOD with 
higher BMI.[600] 
 
 
Female %BF is approximately 10% higher than male 
%BF for the same BMI.[606, 607] Female MPOD may be 
lower than male because of higher female %BF at the 
younger age range. Male MPOD may be reduced in the 
older age range due to increased abdominal adipose 
tissue, which competes with retinal MP.[486, 758] 
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Physiological 
Strabismus / 
eccentric fixation 
 
 
Floaters (central) 
Floaters  
(para-central) 
 
PVD 
 
 
 
 
 
Macular thickness 
Foveal thickness 
 
 
 
 
 
 
 
 

 
- 
 
 
 

Increase 
Increase 

 
 

Increase 
 
 
 
 
 

Decrease? 
None 

 
Lower 

 
 
 

Lower 
Higher 

 
 

Lower? 
 
 
 
 
 

Equivocal 
Equivocal 

 

 
If the central target is not coincident with the foveola, the 
central MP value will be underestimated, resulting in 
lower MPOD.  
 
Snodderly et al. and this study observed that floaters 
affect MPOD measurement.[507] 
 
 
Operculae associated with vitreomacular separation 
have been reported to cast a yellow shadow on the 
retina beneath.[444] Lutein and Z are known to stain ILM 
tissue.[992, 993] Sharifzadeh et al. reported a central loss of 
MP following PVD in a healthy subject.[1119] 
 
Stratus OCT foveal thickness (FRT) was 182 µm (SD 23 
µm) and macular thickness (MRT) was 212 µm (SD 20 
µm).[1120] Foveal thickness is reported to remain relatively 
constant with age, however the change in macular 
thickness with age is controversial.[1121-1124] Macular 
thickness was reported to reduce by 0.26 µm to 0.46 µm 
per year.[1121] The relationship between MPOD and 
macular thickness (FRT and MRT) is also controversial. 
Two studies reported a significant, positive 
association.[589, 1125] Three studies reported no 
association.[394, 500, 586] 

Pathological 
AMD 
 
 
 
 
 
 
 
 
 
 
 
 
Diabetes 
 
 
 
 
 
 
CSC 
 
 
 
 
 
RP / other retinal 
degenerations 
 
 
 
 
Glaucoma 
 
 
 
 
MacTel types 
1,2 and 3 
 
 
 
 
 
 
Sjögren-Larrson 
syndrome (SLS) 
 
 
 
 
VMT and 
Macular hole 
 

 
Increase 

 
 
 
 
 
 
 
 
 
 
 
 

Increase 
 
 
 
 
 
 

Equivocal 
 
 
 
 
 

Increase 
 
 
 
 
 

Increase 
 
 
 
 

Increase 
 
 
 
 
 
 
 

Decrease 
 
 
 
 
 

Increase 
 
 

 
Equivocal 

 
 
 
 
 
 
 
 
 
 
 
 

Lower 
 
 
 
 
 
 

Lower 
 
 
 
 
 

Lower 
 
 
 
 
 

Equivocal 
 
 
 
 

Lower 
(especially 

MacTel type 2) 
 
 
 
 
 

Lower 
 
 
 
 
 

Lower? 
 
 

 
Comparison of (peripheral) MP between healthy donor 
eyes and donor eyes with AMD using HPLC, suggested 
lower MP levels in eyes with AMD, unrelated to the 
destructive effects of AMD or age-related decline.[175] In 
vivo studies of MPOD have been equivocal. Several 
studies reported lower MPOD for those with or at risk of 
AMD,[592, 596, 722, 904, 1126] several other studies reported no 
significant association.[593, 594, 655, 716, 1127] Two longitudinal 
studies reported no protective effect of MP against AMD 
progression,[452, 595] although AREDS2 did reveal a 
benefit of taking MP supplements in those with a poor 
dietary intake of L and Z.[452] 
 
Lower MPOD was found for those with diabetes, with or 
without retinopathy,[665, 680] and a significant inverse 
correlation between MPOD and HbA1c was 
observed.[665] Topographic mapping revealed that MPOD 
is displaced by intraretinal cysts in DMO.[1128] Diabetes is 
associated with retinal Mc abnormality.[1129] 
 
Central retinal thickness is reduced in chronic CSC.[1130] 
Average MPOD measured within 0.5° of the fovea was 
significantly lower in Japanese eyes with chronic CSC 
and their fellow eyes, and was independent of retinal 
thickness.[1131] 
 
Macular pigment optical density was positively related to 
macular thickness in RP, Usher syndrome and 
choroideraemia.[765, 1132, 1133] Patients with ABCA4-RD 
had significantly lower MPOD at 0.2° and 0.5° 
eccentricity but not at 1° or 2° eccentricity.[808] 
 
Igras et al. reported that MPOD was significantly lower in 
glaucoma patients.[1134] Kanis et al. and Obana et al. 
reported no significant association between MPOD and 
glaucoma.[723, 1135] 
 
MPOD was lower for MacTel types 1, 2 and 3. MacTel 
type 2 was significantly lower than types 1 and 3.[1136] 
MacTel type 2 is characterised by a central depletion of 
MPOD.[981] Müller cell loss or dysfunction is a critical 
component of MacTel type 2, and the area of MP 
depletion was found to correspond to the region of Mc 
loss.[982] 
 
Patients with SLS lack the central peak associated with 
the typical MPOD profile.[1137] The presence of cystic 
changes in the majority of SLS cases may suggest that 
Mc are involved in the retinal changes associated with 
SLS.[457] 
 
Vitreomacular traction may lead to cystic changes, or if 
PVD occurs, a loss of ILM tissue in the form of an 
operculum.[443, 1138] These processes may result in lower 
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Figure 1.13 
 
 
 
 
 
 
Cystic fibrosis 
 
 
 
 
Albinism 
 
 
 
 
 
 
 
 
 
 
 
 
Alzheimer disease 

 
 
 

Increase 
 
 
 
 
 
 
 

Decrease 
 
 
 
 

None 
 
 
 
 
 
 
 
 
 
 
 
 

Increase 

 
 
 

Equivocal 
 
 
 
 
 
 
 

Lower 
 
 
 
 

Lower 
 
 
 
 
 
 
 
 
 
 
 
 

Lower 
 

levels of central MPOD by lateral displacement and by 
tissue loss respectively. 
 
Epiretinal membrane may occur in isolation or may be 
associated with VMT and / or macular holes.[443] ERM 
may appear yellow due to the presence of MP.[443] The 
effect of ERM on HFP-derived MPOD will depend on the 
location of the ERM. If the ERM is foveal MPOD may be 
higher than expected. If the ERM is located at a more 
peripheral location lower MPOD may result. 
 
MPOD was lower at all eccentricities compared to 
controls, although no central depletion was observed. 
Despite severely low serum and retinal MP levels, visual 
function was surprisingly good.[1139] 
 
Low mean levels of MPOD were reported for individuals 
with albinism using objective (mixed sample of tyrosine-
positive and tyrosine-negative oculocutaneous, and 
ocular),[1140] and a single case with oculocutaneous,[1141] 
and subjective (samples included oculocutaneous only) 
methods of MPOD measurement.[408, 1142] Individuals with 
albinism exhibit variable degrees of amblyopia and 
nystagmus that may make subjective MPOD 
measurement difficult. Whether low melanin levels affect 
MPOD deposition is unknown. Ocular effects of albinism 
include an absence of the foveal pit due to the presence 
of persistent inner retinal layers over the fovea.[1143]  
 
Individuals with Alzheimer disease had statistically lower 
MPOD (2W-FAF), serum L and Z, VA and SCS, and a 
higher occurrence of AMD compared to controls.[1144] 
Supplementation with L, Z and MZ resulted in 
significantly higher MPOD, serum L, Z, and MZ, and 
SCS (1.2, 2.4, 9.6 and 15.2 cpd for the Alzheimer group 
and 1.2 and 2.4 cpd for the non-Alzheimer control 
group), in those with and without Alzheimer disease 
compared to those on placebo. Supplementation with 
MP did not affect cognitive function in the Alzheimer 
group or the non-Alzheimer control group.[1013] 

Personal Factors 
Smoking 

 
Peaks in early 

middle age but is 
lower in the 

elderly 

 
Lower 

 
Hammond et al. reported significantly lower MPOD 
(HFP) for smokers compared to controls matched for 
age and other confounders.[664] Current and past 
smokers had statistically lower HFP MPOD compared to 
never smokers.[597] Significantly lower MPOD in smokers 
was confirmed using an objective MPOD method 
(FAF).[1145] A central "dip" in MPOD at 0.25° retinal 
eccentricity was observed to be significantly more 
common in older individuals and current cigarette 
smokers.[401] Central macular thickness was similar for 
smokers and non-smokers, suggesting that low MPOD is 
a consequence of nicotine toxicity rather microstructural 
changes at the fovea.[1145] 

Psychophysical 
VA 
 
 
 
Flicker 
sensitivity 
 
 
 
 
 
 
 
S-cone 
sensitivity 
 
 
 
 
 
 
 
 
 
 
 
GRT 

 
Decrease 

 
 
 

Decrease 
 
 
 
 
 
 
 
 

Increase 
(S-cone 

Threshold) 
 
 
 
 
 
 
 
 
 
 

Increase 

 
Equivocal 

 
 
 

Lower? 
 
 
 
 
 
 
 
 

Equivocal 
 
 
 
 
 
 
 
 
 
 
 
 

Equivocal 

 
Visual acuity was lower with age for healthy subjects and 
those with ocular disease.[897] The relationship between 
MPOD and VA is controversial.[593, 594, 596, 655, 658, 659] 
 
Flicker sensitivity with HFP (not to be confused with 
CFF) is greater for the central, compared to the 
peripheral target location.[507] Flicker sensitivity is 
reduced with age, after correction for differences in 
retinal illuminance.[337, 1146] O'brian et al. reported that 
failure to set an appropriate flicker rate for HFP led to 
difficulty with the HFP task and higher levels of 
measurement error.[709] 
 
Werner reported that the sensitivity difference between 
0° and 8° retinal eccentricity for the S-cone mechanism, 
but not the M- and L-cone mechanisms, was significantly 
related to peak MPOD, but unrelated to observer 
age.[506] Beirne confirmed that under conditions of S-
cone isolation HFP MPOD was not significantly related 
to age and reported that the rate at which foveal acuity 
changed compared to acuity at 12° with increasing age, 
was not significantly related to MPOD levels.[899] Neither 
study supported the hypothesis that higher MPOD levels 
protect S-cone visual function with age (i.e. protection 
hypothesis). 
 
All studies of healthy subjects reported a positive 
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(dependent on 
the blue 

content of the 
light source 
and duration 

of glare) 

correlation between equilibrium bleach GRT and age.[330, 

348, 571, 573, 574, 577, 928-931] The relationship between photo-
flash bleach GRT and age is more controversial.[330, 359, 

361, 684, 924, 926, 927] Four studies reported a significant 
negative correlation between GRT and MPOD.[620, 622, 623, 

905] Loughman et al. and the present study (which 
corrected for the biphasic nature of both variables with 
age) found no significant association.[906] 

Psychological 
Difficulty with HFP task 
 
 
 
 
 
 
 
 
 
Poor fixation 
 
 
Training effect 
 
 
 
 
 
 
Visual attention 

 
Equivocal 

 
 
 
 
 
 
 
 
 

None 
 
 

Increase? 
 
 
 
 
 
 

Decrease 

 
None 

 
 
 
 
 
 
 
 
 

None 
 
 

Equivocal 
(dependent on 

the type of 
HFP 

equipment is 
used) 

 
Equivocal 

 
It was observed that older individuals and those with 
advanced stages of ocular disease experience more 
difficulty with the HFP task, especially with detection of 
flicker in the peripheral target.[507, 680] An inappropriate 
flicker rate for the HFP target was also reported to 
increase difficulty with the HFP task.[709] The present 
study found no significant difference in MPOD, age or 
GRT between healthy subjects experiencing difficulty 
and no difficulty with the HFP task. 
 
Crossland et al. reported no significant relationship 
between age and fixation stability.[896]  
 
Seitz et al. reported that CFF thresholds measured using 
chromatic flicker (MP densitometer) increased by an 
average of 30% after one hour of perceptual learning 
each day for nine days.[728] MPOD results are more likely 
to be affected by using fixed-flicker instrumentation 
rather than variable flicker instrumentation. 
 
Visual attention declines with age.[1147] Increased 
attention may reduce receptive field size.[1148, 1149] smaller 
receptive field size favours spatial resolution and larger 
field size favours temporal resolution.[1150, 1151] Perceptual 
learning may increase temporal resolution (CFF). 

Statistical 
High intersubject 
variation 
 
 
 
 
 
 
 
 
Biphasic 
relationship 
 
 
 
 
 
Correction for 
other factors 
 
 
 
 
Correlation vs 
group analysis 
 

 
None 

 
 
 
 
 
 
 
 
 
- 
 
 
 
 
 
 
- 
 
 
 
 
 
- 

 
Equivocal 

 
 
 
 
 
 
 
 
 

Equivocal 
 
 
 
 
 
 

Equivocal 
 
 
 
 
 

Equivocal 

 
A high level of inter-individual variation across the entire 
age range has been reported for MPOD 
measurements,[497, 599, 601, 711, 712] High degrees of inter-
individual variation also exist for factors leading to 
variation in HFP MPOD: media opacification,[1152] foveal 
thickness,[1120, 1153] pupil size,[932, 1154-1156] M- and L- cone 
photopigment λmax and M- / L- cone ratio.[506] High levels 
of inter-subject variation increase the chance of a 
sporadic positive or inverse correlation. 
 
Six studies examining the relationship between HFP 
MPOD and age have reported levels which peak in 
middle age.[166, 486, 598, 601, 653, 705] Correlation analysis, 
which assumes a linear relationship, may not be 
appropriate in this case. The age range will influence 
bivariate correlation between MPOD and age. 
 
Nolan et al. reported a significant inverse correlation 
between MPOD and age, however after removal of two 
outliers and correction for ethnicity no significant 
correlation was reported.[394] Where possible correction 
for other influencing factors should be made. 
 
Neelam et al. reported a trend towards a small negative 
correlation between MPOD and age (r = -0.181, p = 
0.063), however group analysis revealed no significant 
difference in MPOD between subjects aged < 55 years 
and those aged ≥ 55 years (p = 0.188).[652] 

Instrument design 
Age-estimation (MPS) 
 
 
 
IOL setting 
(MPS) 
 
 
 
Central target 
size 
 
 
 
 
 
 

 
- 
 
 
 

Increase 
 
 
 
 
- 
 
 
 
 
 
 
 

 
Equivocal 

 
 
 

Equivocal 
 
 
 
 

Equivocal 
 
 
 
 
 
 
 

 
Age-estimated central MPOD accounts for 80% to 84% 
of actual MPOD.[680, 689] Higher Intersubject variation in 
MPOD may occur in the older age range. 
 
IOL setting assumes equal lens transmission 
characteristics compared to a 20 year old.[1157] Actual 
IOL light transmission may vary considerably from this 
value.[1158] 
 
Commercial HFP instruments use a 1° central target. 
This target size has the highest test-retest reliability.[507] 
Central "dip" affecting 12% of subjects is associated with 
age and smoking, will not be detected with this target 
size.[401] MPOD derived from the 1° target size will be 
variably influenced by environmental and genetic factors, 
[404] which vary with age.[735, 810] 
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Peripheral target 
location 
 
 
 
 
 
 
Fixed flicker 
 
 
 
 
 
Different HFP 
instruments 
 
 
 
 
 
 
 
 
HFP / objective 
measurement 
 
 
Delori et al.[489] 
Wüstemeyer et al.[717] 
Bernstein et al.[715] 
Liew et al.[588] 
Neelam et al.[652] 
Berendschot et al.[694] 
 
Van der Kraats et al.[703] 
Hogg et al.[713] 

- 
 
 
 
 
 
 
 
- 
 
 
 
 
 
- 
 
 
 
 
 
 
 
 
 
- 

Lower 
 
 
 
 
 
 
 

Lower? 
 
 
 
 
 

See above 
 
 
 
 
 
 
 
 
 

Equivocal 

MP is optically undetectable at 6° to 8° eccentricity.[393] 
Spatial profile width is greater for higher MPOD 
levels,[393] for females,[693] and increases with age,[721] 
and MP supplementation.[689] Greater profile width may 
under-estimate MPOD due to higher peripheral MP 
values, especially for instruments with less eccentric 
peripheral targets. 
 
Flicker detection is reduced with age, after correction for 
variations in retinal illuminance.[337, 1146] Loane et al. 
reported that the use of fixed flicker was associated with 
a greater number of subjects unable to obtain an MPOD 
result.[691] 
 
Comparison of the Eyemet Maculometer (5.5° peripheral 
target location, preset-flicker) and the Macular Metrics 
Densitometer (7° peripheral target location, optimal 
flicker set for each subject), on the same population 
revealed a trend towards a decline in MPOD with age for 
the Maculometer (r = -0.21), but no correlation with age 
for the Densitometer (r = 0.01). The Maculometer also 
underestimated MP in subjects with higher MPOD 
levels[691] 
 
Eight studies have compared the relationship (positive, 
inverse or none) between MPOD and age using different 
methods of measurement. 
 
2-WFAF (positive), FR (positive) 
2-WFAF (none), FR (inverse) 
HFP (trend for inverse), RRS (inverse) 
HFP (none), 2-WFAF (positive) 
HFP (inverse), RRS (inverse) 
HFP (inverse), 1 x FR (inverse) 
4 x FR (none), 2-WFAF (none) 
HFP (trend for positive), FR (none) 
HFP 0.5° (positive), RRS (inverse) 
HFP spatial profile, 0.17°, 0.5°, 1.0°, 2.5° (none) 

Genetic 
APOE 
ABCA4 
BCMO1 
CFH 
ARMS2 
C3 
C2 
Factor B gene (BF) 
 
 

Equivocal Equivocal The association between high-risk CFH genotypes and 
AMD was reported to increase with age.[810] It is 
plausible that the association between genes linked to 
variation in with MPOD levels (APOE, ABCA4 and 
BCMO1) will also vary with age. The effects of nutritional 
supplementation may also be influenced by genetics.[809, 

814] No association was reported for the individual AMD 
risk genes (CFH, ARMS2, C3, C2 and BF) and MPOD. 
The combination of homozygous risk alleles at CFH and 
ARMS2 loci was associated with significantly lower 
MPOD at 0.5° and 1.0° retinal eccentricity.[405] 

Dietary factors 
Dietary intake of MP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MP supplements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Equivocal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Increase? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Equivocal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Increase 
(but the 

increment was 
small) 

 
 
 
 
 
 
 
 
 
 
 

 
The association between dietary intake of MP with age 
and with gender are controversial.[706] Dietary intake of 
MP varies from 0.8 mg to 4.0 mg per day, depending on 
the population and measurement method.[1159] Beatty et 
al. reviewed the association between dietary intake of 
MP and MPOD. Three out of five studies reported a 
positive correlation and two studies reported no 
relationship.[1159] Johnson et al. reported significantly 
higher MPOD at four weeks, but not eight weeks after 
starting a L (spinach) and Z (corn) fortified diet.[164] 
Graydon et al. reported no difference in MPOD after 
eight weeks intake of spinach powder.[1160] Retinal MP 
levels change at a slower rate than serum MP levels in 
response to altered MP dietary intake and will be 
influenced by factors affecting digestion, absorption, 
transport and retinal capture.[1159] 
 
Macular pigment supplements are more likely to be 
taken by older patients,[486] especially those with early 
signs of AMD or a FH of AMD. This is despite evidence 
that antioxidant supplements do not prevent AMD 
development,[1161] or reduce progression in early 
AMD.[1162] AREDS2 reported reduced progression to 
advanced AMD for those taking MP supplements, but 
only if dietary intake of MP was low.[452, 898] NHANESIII 
reported that general supplement use has increased in 
both genders over the last 25 years and that females are 
more likely to take supplements than males.[735] Sabour-
Pickett et al. reviewed the association between MP 
supplement use and MPOD for 34 studies. A mean MP 
supplement intake of 14.7 mg/day of L and 2.5 mg/day 
of Z (approximately 4 to 20 times normal dietary intake 
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Intestinal malabsorption 

 
 
 
 
 
 

Increase? 

 
 
 
 
 
 

Lower 
(Coeliac and 

Crohn's) 

of MP), over a mean period of 20 weeks resulted in a 
small mean increase in MPOD of 0.08 (range 0 to 
0.2.).[900] Bartlett et al. have also commented on the 
small degree of increment in MPOD after MP 
supplementation.[1107] 
 
Physiological changes with age are restricted to altered 
absorption of calcium, and perhaps zinc and 
magnesium. Achlorhydria (low or absent gastric acid) 
can lead to impaired absorption of vitamin B12, folic acid 
and calcium.[1163] Coeliac and Crohn's disease are 
known to cause deficiencies in lipid-soluble nutrients. 
Subjects with a history malabsorption had 37% lower 
MPOD (using RRS) compared to controls with no history 
of malabsorption (P < 0.001). No evidence of early AMD 
was observed in subjects with or without 
malabsorption.[669] 

MPS: Macular Pigment Screener, PVD: posterior vitreous detachment, ABCA4-RD: ABCA4-associated retinal 
degenerations, VMT: vitreomacular traction. NHANESIII: the third National Health and Nutrition Examination Survey, SCS: 
spatial contrast sensitivity, cpd: cycles per degree. Factors affecting MPOD that were unlikely to alter significantly with age 
(e.g. refractive status, axial length and iris colour) or are unpredictable with age (e.g. ocular light exposure and exercise) 
were excluded from this table. 
 
 
A2.5 GRT and its association with ocular and systemic disease, pupil size, medications,

 supplements and method of GRT measurement 
Condition or  
Environmental 
Factor 

Reference GRT 
Method 

Effect on GRT Notes 

AMD See table 1.13    
Diabetic 
retinopathy 

Zingerian et al. (1985)[624] 
Wu et al. (1990)[352] 
Brinchmann-Hansen et al. 
(1992)[576] 
Baptista et al. (2013)[1164] 
Schmitt et al. (2003)[358] 
Newsome et al. (2009)[361] 
Loughman et al. (2014)[1165] 

Equilibrium 
Equilibrium 
Equilibrium 
 
Equilibrium 
Photo-flash 
Photo-flash 
Photo-flash 

Longer (BGR) 
None (BGR) 
None (BGR) 
 
None (NDR) 
None (BGR) 
None (BGR) 
None (BGR) 

Brinchmann-Hansen et al. reported 
significantly shorter and longer 
equilibrium GRT after seven years in 
diabetics with a cumulative mean 
HbA1 of below 10% and above 10% 
respectively. After seven years GRT 
had no predictive value for BGR 
status.[576] Retinal hypoxia for 25 min 
did not affect equilibrium GRT.[1166] 
Pro-inflammatory changes leading to 
prolonged retinal hypoxia and 
accumulative oxidative stress may 
cause diabetic retinopathy.[1167] 

Cystoid macular 
oedema 

Wu et al. (1990)[352] 
Severin (1980)[910] 
Newsome et al. (2009)[361] 

Equilibrium 
Photo-flash 
Photo-flash 

None (DMO) 
Longer (IGS) 
Longer (DMO) 

Wu et al. reported longer GRT for 
DMO compared to normals, but this 
was not significant. 

CSC Forsius et al. (1963)[602] 
Ito et al. (1996)[575] 
Horiguchi et al. (1998)[914] 
 
Natsikos et al. (1980)[909] 
Verma et al.(1990)[1168] 

Equilibrium 
Equilibrium 
Equilibrium 
 
Photo-flash 
Photo-flash 

Longer 
Longer (inCSC) 
Longer (inCSC) 
None (exCSC) 
Longer 
Longer 

Natsikos et al. reported that GRT 
was prolonged for a few weeks after 
the onset of symptoms, but returned 
to normal after six months. Verma 
also reported no prolongation of 
GRT in cases with healed CSC. 

Retinal 
detachment 

Krastel et al. (1980)[1169] Equilibrium Longer (inMac) 
None (noMac) 

Krastel et al. reported GRT 
measurements from a mean of two 
weeks after reparative surgery for 
retinal detachment. 

Retinitis 
pigmentosa /  
Stargardt 
disease 

Sandberg et al. (1999)[1170] Equilibrium 
 

Longer (dRP) Dark adaptation in RP using an 
equilibrium bleach source revealed 
abnormal rod adaptation. Cone 
adaptation prior to rod - cone break 
was normal.[915] Significantly longer 
GRT was observed for dominant RP 
with rhodopsin mutations.[1170] 

Glaucoma Harayama et al. (1981)[1171] 
 
 
 
Sherman et al. (1988)[913] 
Horiguchi et al. (1998)[914] 
 
Kamppeter et al. (2003)[1172] 
Baptista et al. (2013)[1164] 
Schmitt et al. (2003)[358] 

Unknown 
 
 
 
Equilibrium 
Equilibrium 
 
Equilibrium 
 
Equilibrium 
Photo-flash 

None (POAG) 
None (PACG) 
None (SG) 
None (OHT) 
Longer (COAG) 
Longer (inScot) 
None (exScot) 
Longer (COAG) 
 
None (POAG) 
None 

The association between equilibrium 
GRT and glaucoma is unclear. Parisi 
et al. reported that visual evoked 
potential amplitudes recorded after 
equilibrium bleach were significantly 
longer for POAG, but not OHT 
compared to controls. The P100 
latency was significantly greater for 
POAG and OHT compared to 
controls, suggesting reduced 
function of the outer retinal layers in 
these groups.[1173] 
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Cataract Baptista et al. (2013)[1164] 
Elliott et al. (1991)[684] 
Schmitt et al. (2003)[358] 

Equilibrium 
Photo-flash 
Photo-flash 

None 
None 
None 

Cataract did not significantly affect 
GRT. This result is expected 
provided a sufficient level of bleach 
is obtained by the GRT method.[1164] 

MacTel type 2 Jindal et al. (2015)[1174] - - Paracentral greying decreased in 
intensity on exposure to continuous 
light. After 15 min DA grey 
colouration returned. Possible 
photochemical reaction to 
chromophore released from 
abnormal Mc.[1174] 

Müller cell 
gliosis / de-
differentiation to 
progenitor or 
stem stems 

Bringmann et al. (2009)[270] - - De-differentiation of Mc to progenitor 
or stem cells in response to retinal 
stress, is associated with a 
functional uncoupling from neurons, 
leading to down-regulation of 
proteins involved in specific Mc 
functions, including photopigment 
recycling.[270] 

Pupil size: 
Larger 
physiological 
pupil size 
 
Pharmacological 
mydriasis 
 
Pharmacological 
miosis 
 

 
Malik et al. (1971)[571] 
Severin et al. (1963)[1175] 
Elliott et al. (1991)[684] 
 
Henkind et al. (1967)[933] 
Gómez-Ulla et al. (1986)[927] 
 
Natsikos et al. (1980)[909] 
Gómez-Ulla et al. (1986)[927] 
 

 
Equilibrium 
Photo-flash 
Photo-flash 
 
Equilibrium 
Photo-flash 
 
Photo-flash 
Photo-flash 
 

 
None 
Longer 
None 
 
None 
None 
 
None 
Shorter 
 

It is expected that equilibrium bleach 
GRT would be immune pupil size 
variation because pupils will have 
sufficient time to constrict and the 
accumulative nature of the bleach 
would minify the effect of variations 
in illuminance.[573] Photo-flash bleach 
GRT should be corrected for pupil 
size as retinal illuminance is likely to 
reflect the pre-constricted pupil size. 
This may explain the contrary results 
with age and larger intersubject 
variation reported for photo-flash 
compared to equilibrium methods 
reported by Wood et al.[330] 

Yellow-tinted 
IOLs 

Hammond et al. (2009)[1176] 
Hammond et al. (2010)[1177] 

Equilibrium 
Equilibrium 
 

None 
Shorter* 

No significant difference in GRT was 
demonstrated between individuals 
with clear or yellow-tinted (blue light 
blocking) IOLs.[1176] *Hammond et al. 
reported a significantly shorter 
geographic mean difference in GRT 
for yellow-tinted compared to clear 
IOLs, however geographic means 
are normally reserved for 
percentages derived from values 
measured, rather than the values 
themselves.[1177] 

Dyslexia 
 
The author is 
unaware of any 
studies 
examining the 
association 
between 
dyslexia or MIS 
with GRT 

Stordy (1995)[1178] 
Stordy (2000)[1179] 
Greatrex et al. (2000)[1180] 

- 
- 
- 

- 
- 
- 

Individuals with dyslexia exhibited 
significantly reduced DA compared 
to controls with no difference in 
dietary vitamin A dietary intake, 
measured using the Friedmann 
Visual Field Analyser 2 (Clement 
Clarke International, London, 
UK).[1178, 1179] Greatrex et al. reported 
no difference in DA for dyslexic 
individuals.[1180] 

Scotopic 
sensitivity 
syndrome (now 
known as MIS) 

Carroll et al. (1994)[1181] 
 

- 
 

- 
 

Dark adaptation was reported to be 
abnormal in individuals with scotopic 
sensitivity syndrome.[1181] 

Carotid 
occlusive 
disease 
 
 
Light-induced 
amaurosis is a 
symptom of 
ocular 
ischaemic 
syndrome, a 
major RF for 
stroke.[963] 

Furlan et al. (1979)[964] 
Donnan et al. (1982)[1182] 
Ross Russell et al. 
(1983)[1183] 
 
Jacobs et al. (1985)[1184] 
Ross Russell et al. 
(1986)[1185] 
Katz et al. (1986)[611] 
Wiebers et al. (1989)[1186] 
Giroud et al. (1991)[1187] 
Roberts et al. (1992)[612] 
Blum et al. (1994)[965] 
Kaiboriboon et al. (2001)[963] 

- 
- 

Equilibrium 
- 

 
Equilibrium 
Equilibrium 

- 
- 

Equilibrium 
- 

Unknown 
Unknown 

- 

- 
- 

None 
- 

 
Longer 
Longer 

- 
- 

Longer 
- 

Longer 
Longer 

- 

Several case reports have been 
published which describe unilateral 
or bilateral light-induced amaurosis, 
associated with unilateral or bilateral 
carotid occlusive disease. 
Symptoms were fully or partly 
resolved after treatment of carotid 
occlusion with surgery or 
medication.[611, 612, 963, 1186, 1187] The 
pathological mechanism was 
reported to involve delayed 
photopigment regeneration and 
retinal ischaemia secondary to 
reduced choroidal blood flow.[1186, 

1187]  
Ocular vascular 
perfusion 

Lovasik et al. (1989)[609] Equilibrium Longer 
(lower RVPP) 
None 
(higher RVPP) 

Lowering RVPP by scleral 
indentation resulted in a significant 
increase in GRT. The effect of 
increased RVPP resulting from body 
eversion, on GRT was variable, 
showing longer GRT for some 
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individuals and shorter for others. 
These effects were independent of 
IOP, diastolic and systolic brachial 
and ophthalmic artery pressures.[609] 

Low oxygen 
levels 
 
 
 

Brinchmann-Hansen et al. 
al. (1989)[1166] 
Yap et al. (1995)[1188] 
 

Equilibrium 
 
Equilibrium 
 

None 
 
None 
 

Altitudes of sea level, 8,000, 15,000 
and 18,000 feet,[1166] and sea level, 
7,000 and 12,000 feet,[1188] were 
simulated with a hypobaric chamber. 

Drug-induced  
Blood pressure 
reduction: 
 
 
 
 
 
 
 
 

Myhre et al. (1991)[610] 
 
The results from test and 
placebo groups were 
combined prior to analysis. 
Both groups exhibited a 
reduction in blood pressure, 
so it cannot be certain that 
this was the effect of the 
medication in the test group. 

Equilibrium 
 
 
 
 
 
 
 
 
 
 

Longer (mon) 
None (bin) 
 
 
 
 
 
 
 
 

Myhre et al. reported that a 
medically-induced 5% reduction in 
mean brachial artery  pressure was 
associated with a significant 
increase in monocular GRT. No 
significant difference was observed 
for binocular GRT. The same study 
reported that binocular GRT was 
inversely correlated with blood 
pressure. Monocular GRT exhibited 
a trend toward an inverse 
association.[610] 

Drug-induced 
RPE pigment 
changes: 
Quinoline 
antimalarials 
Chloroquine 
Hydroxy- 
chloroquine 
 
 
 
 
Neuroleptic 
agent 
Melperone 
 
 
 
 
Phenothiazine-
derived 
antipsychotics 
Thioridazine and 
Chlorpromazine 
 
 
 
Non-steroidal 
anti-
inflammatory 
agents 
Indomethacin 

 
 
 
Carr et al. (1968)[1189] 
 
Hydroxychloroquine is 
associated with significantly 
less risk of maculopathy. 
 
 
 
 
Bergman et al. (1980)[1190] 
 
 
 
 
 
 
Fornaro et al. (2002)[1191] 
Li et al. (2008)[1192] 
Richa et al. (2010)[1193] 
 
 
 
 
 
Chiou (1999)[1194] 

 
 
 
Equilibrium 
 
 
 
 
 
 
 
 
Photo-flash 
 
 
 
 
 
 

- 
- 
- 
 
 
 
 
 
- 

 
 
 
Longer 
 
 
 
 
 
 
 
 
Longer 
 
 
 
 
 
 

- 
- 
- 
 
 
 
 
 
- 

Carr et al. reported significantly 
longer GRT in patients taking long-
term chloroquine or one of its 
derivatives compared to normal 
subjects. Approximately half of the 
treated sample had macular 
changes consistent with chloroquine 
retinopathy (RPE pigment mottling 
eventually leading to bull's eye 
maculopathy). 
 
 
Melperone was reported to increase 
readaptation time (measured with 
optokinetic nystagmus, OKN  
response) maximal after 2-3 hours, 
depending on the dose lasting for 
seven hours after medicating.[1190] 
 
Macular pigmentary changes can 
develop into a "salt and pepper" 
pattern which may affect DA.[1192, 1193] 
Retinal pigmentary changes may be 
the result of altered dopamine and 
melatonin activity.[1191] 
 
 
Dose-related retinal pigmentary 
changes, the level of which 
determine any DA abnormality. 

Drug-induced 
CMO: 
Several drugs 
are thought to 
be associated 
with CMO and 
affect DA, but 
the author is 
unaware of any 
studies 
examining the 
association with 
GRT 

Rosiglitazone 
Coluccellio (2005)[1195] 
Pioglitazone 
Oshitari et al. (2008)[1196] 
Paclitaxel 
Ham et al. (2012)[1197] 
Kuznetcova et al. (2012)[1198] 
Docetaxel 
Teitelbaum et al. (2003)[1199] 
Tamoxifen 
Makri et al. (2013)[919] 
Niacin (nicotinic acid) 
Courtney et al. (2014)[1200] 
Latanoprost 
Makri et al. (2013)[919] 
Adrenalin (epinephrine) 
Bozkurt et al. (2010)[1201] 

 
- 
 
- 
 
- 
- 
 
- 
 
- 
 
- 
 
- 
 
- 

 
- 
 
- 
 
- 
- 
 
- 
 
- 
 
- 
 
- 
 
- 

Thiazolidinediones, oral antidiabetic 
agents rosiglitazone and 
pioglitazone were associated with 
CMO and decreased DA,[1202] 
however, it is not clear whether this 
association is biased by the 
underlying diabetes.[919] Taxane  and 
niacin CMO are bilateral and 
angiographically silent.[1198] 
Tamoxifen maculopathy is bilateral 
and associated with CMO and 
yellow-white crystals in the 
superficial retina layers of the fovea 
and paramacula.[919] Latanoprost 
and adrenalin may increase CMO 
risk in cases with other CMO RF, 
such as posterior capsule rupture 
after cataract extraction.[919, 1201] 

Drug-induced 
effects on DA: 
Fenretinide 
 
ACU-4429 
 
 
 
 
Isotretinoin (11-

 
 
Caruso et al. (1998)[1203] 
 
Kubota et al. (2012)[1204] 
 
 
 
 
Radu et al. (2003)[1205] 

 
 

- 
 
- 
 
 
 
 
- 

 
 
- 
 
- 
 
 
 
 
- 

Fenretinide resulted in a significant 
delay in the timing of the rod - cone 
break during DA. 
 
ACU-4429 caused a dose-related 
inhibition of the b-wave on 
electroretinograms and reduced 
DA.[1204]  
 
Decreased night vision is a common 
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cis retinoic acid) 
 
 

 
In a murine model of retinal 
degeneration, isotretinoin 
prevented the accumulation 
of A2E in the RPE.[1205] 

adverse effect. Inhibition of 11-cis 
retinol dehydrogenase (enzyme that 
converts 11-cis retinol to 11-cis 
retinal) slows rhodopsin 
regeneration and chromophore 
recycling. Melanopsin regeneration 
may also be delayed.[1206] 

Other drugs: 
Birth control 
medication 
 
 
 
 
 
Benzodiazepine, 
Oxazepam 
 
 

 
Heckenlively et al. 
(1978)[1207] 
 
 
 
 
 
Bergman et al. (1979)[1208] 
 
 
 
 

 
Equilibrium 
 
 
 
 
 
 
Photo-flash 
 
 
 
 

 
Longer > 1 year 
None < 1 year 
 
 
 
 
 
Longer 
 
 
 
 

Subjects taking one of five different 
brands of birth control medication 
exhibited significantly longer GRT 
after 1-2 years, but not up to one 
year. These pills inhibit ovulation 
causing a physiological state of false 
pregnancy.[1207] 
 
Oxazepam was reported to increase 
readaptation time (measured with 
OKN response) maximal after two 
hours, lasting for five hours after 
medicating.[1208] 

Supplements: 
MP (L and Z) 
 
 
 
 
 
 
 
 
 
Omega-3 (DHA) 
Supplementatio
n 
Human 
 
 
Omega-3 (DHA) 
Dietary 
deficiency 
Primates 
 

 
Stringham et al. (2007)[620] 
Stringham et al. (2008)[621] 
Loughman et al. (2010)[906] 
Stringham et al. (2011)[622] 
Nolan et al. (2011)[968] 
Hammond et al. (2013)[623] 
 
 
 
 
Stordy (2000) 
 
 
 
 
 
Jeffrey et al. (2009)[1209] 
 
 
 
 
Neuringer et al. (2005)[1210] 

 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
Equilibrium 
 
 
 
 

- 
 
 
 
 
 
Photo-flash 
 
Photo-flash 
 
 
Photo-flash 
Photo-flash 
 

 
Shorter 
Shorter 
None 
Shorter 
None 
Shorter 
 
 
 
 

- 
 
 
 
 
 
Longer 
(saturation) 
None 
(subsaturation) 
 
Longer (rods) 
None (cones) 

All of the studies reporting an 
inverse association between MPOD 
and GRT used a short 5-second 
exposure using  
significant blue light content sources. 
The two studies reporting no 
association used low blue light 
content sources. All studies 
examined younger participants (< 50 
years of age). 
 
Dark adaptation was significantly 
improved in individuals with dyslexia 
after one month supplementation 
with 480 mg of daily DHA compared 
to controls.[1178] 
 
Omega-3 deficient monkeys showed 
a delay in rod recovery after a 
saturation level flash, but not a 
subsaturation level flash 
stimulus.[1210] Omega-3 deficiency 
affected rod, but not cone recovery 
measured with ERG after 
photostress.[1209] 

Recreational 
drugs: 
Alcohol 
(ethanol) 

 
Adams et al. (1975)[911] 
Sekular et al. (1977)[1211] 
Adams et al. (1978)[912] 

 
Equilibrium 
Equilibrium 
Equilibrium 

 
Longer 
Longer 
Longer 

Prolongation of GRT onset 30 min 
after consumption of a single dose of 
alcohol (0.75 ml / Kg), peaked at 1-2 
hours and returned to pre-
consumption values after six hours. 
Results were significant for a small 
target (10 min arc) but not for a 
larger target (100 min arc).[912] Pupil 
size was unaltered by alcohol.[911, 

1211] 
Tobacco Sobaci et al. (2013a)[1212] 

Sobaci et al. (2013b)[1145] 
Equilibrium 
Equilibrium 

None 
None 

Although GRT was not significantly 
different for chronic heavy smokers 
(≥ 1 box / day for ≥ 5 years), foveal 
threshold value (measured using 
automated perimetry) was 
statistically higher in smokers one 
min after GRT. The results 
suggested increased light adaptation 
as well as altered RPE function 
indicated by significant melanin 
pigment changes (measured by 1-
WFAF) in chronic smokers. Chronic 
smokers had significantly larger 
pupils compared to non-
smokers.[1145, 1212] 

Marijuana Adams et al. (1978)[912] Equilibrium Longer Prolongation of GRT onset 40 min 
after smoking 15 mg of 
tetrahydrocannabinol, peaked at 
approx. one hour and returned to 
pre-ingestion values after five hours. 
Pupil size was significantly smaller 
40 min after marijuana ingestion.[912] 

Method-related 
factors: 
Higher 
illuminance of 

 
 
Severin et al. (1963)[1175] 
Irikura et al. (1999)[1213] 

 
 
Photo-flash 
Both 

 
 
Longer 
Longer 

 
Severin found a linear relationship  
between illuminance (range 86,080 
to 242,100 lux) of the 150 ms glare 
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Abbreviations. +fellow: results of GRT from affected eye and unaffected fellow eye of subjects with unilateral AMD, fellow: 
results of GRT from the fellow eye of subjects with unilateral AMD, BGR: background diabetic retinopathy, NDR: no diabetic 
retinopathy, IGS: cystoid macular oedema secondary to cataract extraction, presumed to be Irvine-Gass syndrome, inCSC: 
measurements taken within the area of retinal detachment, exCSC: measurements taken outside the area of retinal 
detachment, inMac: retinal detachment with macular involvement, noMac: retinal detachment with no macular involvement, 
dRP: dominant RP with rhodopsin mutations, POAG: primary open angle glaucoma, PACG: primary angle closure 
glaucoma, SG: secondary glaucoma, OHT: ocular hypertension, RVPP: retinal vascular perfusion pressure, mon: 
monocular, bin: binocular, inScot: measurements taken within the area of scotoma, exScot: measurements taken within the 
area of scotoma. 
Drusen severity was defined by Smiddy et al. in their longitudinal study by the value of the composite score (higher score = 
more severe) from five drusen characteristics: size (graded from 1-4), number (1-3), distribution (1-3), demarcation (0-1) and 
degree of confluence (0-3).[350] 
 

 

glare source 
 
Longer 
exposure to 
glare source 
 
Brighter 
background 
luminance of 
target 
 
 
 
Equilibrium vs 
photo-flash 
 
The 
percentages 
refer to the 
estimated 
amount of 
photopigment 
bleached by 
each method 
 

 
 
Irikura et al. (1999)[1213] 
 
 
 
Irikura et al. (1999)[1213] 
 
 
 
 
 
 
Wood et al. (2011)[330] 

 
 
Both 
 
 
 
Both 
 
 
 
 
 
 
Both 

 
 
Longer 
 
 
 
Shorter 
 
 
 
 
 
 
None 

source and GRT. 
 
For glare source exposure times of 
0.1 to 1.6 s GRT increased with 
longer exposure time. 
 
For background luminance between 
0.1 and 1.0 cd m-2 GRT was shorter 
for brighter backgrounds for all glare 
exposure times and glare source 
luminances examined.[1213] 
 
 
Wood et al. compared 84% 
equilibrium bleach with 98% photo-
flash bleach. There was no 
significant difference in mean GRT 
between the two methods, although 
a trend for longer GRT with 
equilibrium was observed. Both 
methods deplete local stores of 11-
cis retinal derived from Mc. 
Equilibrium bleach is likely put a 
greater stress on the RPE for cone 
pigment regeneration.[330] 
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Appendix 3 

 

A3.1 The retinal theory for Meares-Irlen syndrome 
Retinal theory for Meares-Irlen syndrome (MIS), its treatment with diet and / or 
supplementation, its association with AMD and ocular vascular perfusion (OVP) RF and 
MIS as a childhood marker for retinal lipofuscin deposition and arguably increased AMD 
risk later in life. 
 
This theory was formulated in response to four observations. 
1) Light-induced amaurosis may result in cases of ocular ischaemic syndrome 
 secondary to carotid occlusive disease. 
2) Migraine, Rph and VDys are also associated with reduced or irregular ocular blood 
 flow, which may induce retinal inflammation leading to functional retinal changes. 
3) Migraine and other conditions associated with low dopamine levels are associated 
 with symptoms described as MIS. 
4) The author has encountered two patients on acne medication; one taking 
 isotretinoin and one taking lymecycline. Both patients reported increased light 
 sensitivity and coloured "blobs" when looking at bright white backgrounds, in the 
 absence of any signs or symptoms suggestive of increased intracranial pressure. 
 The symptoms disappeared in both cases after cessation of treatment. 
 
A3.2 Meares-Irlen syndrome background 
Symptoms of MIS, also described as Visual Stress, include movement, muddling and / or 
breaking up of words, patterns described as "worms", "rivers" or "waterfalls" affecting the 
print or the areas between the print, and blobs of colour moving across the page. Nausea, 
discomfort or pain may be experienced when observing white backgrounds such as books, 
computer screens and white boards. Signs of MIS include excessive blinking, yawning and 
frequently looking away from the bright surface on which the reading material is 
presented.[1214, 1215] Although individuals with dyslexia may experience symptoms 
suggestive of MIS and benefit from reduced background brightness, these conditions are 
not always associated. Dyslexia may be present without MIS and MIS may equally affect 
the non-dyslexic population. 
 
The retinal theory for MIS was formulated after several patients presented to the author with 
symptoms that appeared to be persistent afterimages (multi-coloured blobs) affecting the 
central vision, during and after observing bright white backgrounds (e.g. interactive white 
boards). These afterimages were reduced or prevented by lowering the intensity of the 
white background or by wearing tinted spectacles. 
 
A3.3 Current MIS theory 
The current explanation for MIS is cortical hyper-excitability, for which there is compelling 
evidence.[971, 972] Neuroimaging has revealed significant differences between control and 
MIS groups for impulse response function (IRF) intensity in two brain regions (BA6 and 
postcentral gyrus), and the percentage of active voxels in four regions (BA6, postcentral 
gyrus, BA17 and BA19).[972] Brodmann area 17 (BA17) represents the primary visual cortex 
and BA19 represents the extrastriate visual cortex. Functional magnetic resonance imaging 
(fMRI) differences were found in these regions for those reporting visual distortions 
associated with migraine.[1216] The postcentral gyrus is an area in the somatosensory 
cortex, chosen to reflect the observation that visual stress may be more common in those 
scoring higher on the neuroticism scale, secondary to a neurological system more sensitive 
to external stimuli.[1217] BA6 represents the premotor and supplementary motor cortex, 
selected to test for hyperactivity in cortical areas other than the visual cortex.[972, 1217] 
 
A3.4 Background to retinal theory for MIS 
 
A3.4.1  The cone-specific / Müller cell visual cycle 
Recent research has suggested that the maintenance of vision under photopic conditions is 
mediated by the cone-specific visual cycle,[520-522] and the recovery of visual function after 
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exposure to the light source used in GRT is believed to be largely the result of cone 
photopigment regeneration.[308, 349, 580] Cone photoreceptors are able to access a more rapid 
supply of recycled photopigment from retinal Müller cells (Mc) than is available via RPE 
recycling.[525] The additional source of 11-cis-retinal available to cones may explain in part 
how human cone circulating current is fully recovered after just 100 ms from a steady 
bleach of approximately 90% of photopigment, whereas rods take at least 20 min to recover 
fully.[529] 
 
Many pathogenic stimuli, including light damage and oxidative stress cause Mc 
activation.[269, 278, 279] Müller cell activation results in a down-regulation of normal cellular 
function leading to neuronal hyper-excitability,[269] and is also likely to adversely affect GRT. 
Pathological change in Mc, represented by GFAP expression was prevented by L.[893] 
 
Adolescents with symptoms of vascular dysregulation (VDys) may also report symptoms of 
MIS more regularly than those with no symptoms of VDys. Vascular dysregulation is 
associated with macrophage infiltration into the retina.[205] This inflammatory response is 
likely to be associated with activation of Mc and subsequent down-regulation of their 
contribution to cone visual pigment recycling. 
 
It is plausible that the coloured blobs reported as a symptom of MIS are afterimages 
resulting from low-level equilibrium bleach due to the bright background. Wearing coloured 
filters would reduce the level of bleach, reducing GRT and alleviating the afterimage. 
Movement of print may be explained by a fractional delay in glare recovery combined with 
microsaccadic eye movement and ocular drift. Regional differences in GRT may explain the 
shimmering of print observed by some MIS sufferers. 
It is possible that patients with MIS may lack or exhibit reduced learning or training effect, 
which is reported to result in shorter GRT after repeated exposure to sources of glare.[924, 

925] Patients with MIS may even experience longer GRT after repeated GRT testing, similar 
to that exhibited by patients affected by ocular disease.  An increase in recovery time for 
the second of two GRT performed sequentially on the same eye in quick succession, may 
be a marker for eye disease compared to healthy eyes.[329, 361] This effect could be readily 
tested provided that patients with MIS are able to tolerate the GRT procedure. 
 
A3.4.2  Retinal adaptation 
Multiplicative adaptation mechanisms include the pupil reflex and photopigment depletion, 
adjusting ocular sensitivity by scaling the input intensity by a multiplicative gain factor that 
decreases with increasing light intensity.[1218] There is evidence from human and murine 
data that retrograde signalling from ipRGC and possibly from the suprachiasmatic nucleus, 
may influence the level of adaptation via dopaminergic A18 amacrine cells.[334-336] A18 
amacrine cells are thought to modulate AII (A2) amacrine cell and horizontal cell (HC) gap 
junctions.[335] In mammals dopamine is believed to modulate the spatial extent of the HC 
syncytium by uncoupling HC gap junctions, resulting in down-regulation of light and flicker 
sensitivity.[562]  
 
Dopamine agonists were found to suppress the retinal flicker response, however maximal 
hyperpolarisation of HC with a bright white light was able to partially restore the initially 
suppressed flickering response components.[562] Retinal dopamine release varies diurnally 
in vertebrates, increasing during the day and in the light, and decreasing at night.[559, 833] 
Melatonin can acutely inhibit retinal dopamine release.[560] Flickering lights are the most 
effective stimulant for dopamine release in the primate retina.[561]  
 
A3.4.3  Dopamine and MIS symptoms 
Migraine appears to be more common among patients with MIS. Dopamine has been 
implicated in the pathophysiology of migraine,[186, 187, 834] and other disorders associated with 
increased light-sensitivity such as attention deficit hyperactivity disorder (ADHD).[850] 
Migraine and ADHD are associated with a lack of neural habituation, i.e. the inability to tune 
down sensitivity to external stimuli to comfortable levels.[565, 1219] Dopamine levels are low 
interictally but increase during a migraine attack.[186, 834] Dopamine receptors are thought to 
be hypersensitive in migraineurs as a consequence of low dopamine in the interictal 
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phase.[835-837] Photophobia affects 80% of migraineurs,[564] as well as approximately 50% of 
patients with mild traumatic brain injury.[540] Migraineurs and those with mild brain injury or 
stroke may benefit from precision tinting used to treat MIS.[1220-1222] 
 
As well as light sensitivity migraineurs often report symptoms associated with increased 
dopamine levels such as premonitory yawning.[186] Increased yawning is also observed in 
those with MIS.[1214, 1215] Increased blink rate,[1214, 1215] another MIS symptom has been 
reported as a basic clinical marker for increased dopaminergic activity.[1223] Stringham et al. 
reported that greater discomfort was positively associated with increased pupil constriction 
under glare conditions.[622] Nerve signals associated with the pupil light response are 
relayed through the olivary pretectal nucleus (OPN).[553, 554] The OPN receives light-
mediated input from ipRGC,[1224] which are modulated by dopaminergic A-18 amacrine 
cells.[334-336] This may indicate further evidence of hyperactivity in the ocular response to 
increased retinal or cortical dopamine levels. 
 
A3.4.4  Strategies to increase dopamine levels 
Increasing dopamine levels between migraine attacks may reduce interictal dopamine 
receptor hyper-excitability. This may be achieved by adopting a healthy diet, especially 
bananas[852] and lifestyle together with exercise and obesity reduction / smoking 
cessation.[855, 857, 858, 1225] In some cases the propensity to become obese may be genetically 
determined. An association has been reported between the hypo-functional seven-repeat 
allele (7R) of the dopamine-4 receptor gene (DRD4) and the consumption of a less healthy 
diet in adults, especially females and children.[761, 762] 
 
The difficulty with any placebo-controlled experiment aiming to increase dopamine levels is 
that the placebo response is dopamine-mediated and is associated with a significant 
increase in dopamine levels.[1226, 1227] 
 
A3.4.5  Meares-Irlen syndrome and pupil size 
The author has noted that patients reporting MIS symptoms often have larger than normal 
pupils. The pupil reflex pathway is also mediated via ipRGC and involved in adaptation. The 
larger pupil size in affected patients may indicate a reduced retinal response to light and 
would lead to an increased level of retinal illuminance. Higher retinal light levels may cause 
or exacerbate Mc dysfunction. 
 
Although cortical hyper-excitability / hyper-responsivity has been proposed as the cause of 
migraine symptoms,[821-823] gastric symptoms have been reported to originate from 
peripheral dopamine receptors in the gut,[824, 825] and it is plausible that peripheral dopamine 
receptors in the retina may contribute to light sensitivity in migraine, although this is not 
certain.[826-828] 
 
A3.4.6  Photophobia 
The photopigment contained in ipRGC is melanopsin (Opn4), which has a peak sensitivity  
of about 480 nm (blue).[540-542] It has been hypothesised that Opn4 functions as a bi-stable 
pigment, able to regenerate its own light-activated chromophore by absorbing a second 
wavelength of light at 587 nm (yellow), although this is controversial.[541, 545-547] 
 
It is proposed that retinal dopamine receptor hyper-sensitivity, secondary to low dopamine 
levels, combined with an increase in retinal dopamine triggered by bright white 
backgrounds, combined with the retinal effects of reduced neurovascular coupling and 
reduced neural habituation will lead to a level of ipRGC-mediated adaptation that is 
incompatible with the actual level of illumination incident at the retina. 
 
This may manifest as a delay in photopigment recycling, especially in the cones, 
compounding the effects of Müller cell activation and may contribute to the visual symptoms 
and photophobia reported by patients with MIS and related disorders. 
 
Light aversion (photophobia or photo-allodynia) under non-pathological conditions is 
considered to be mediated by ipRGC, whereas, pathological causes of photophobia are 
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thought to be ipRGC-independent, modulated instead by rod and cone photoreceptors.[540] 
Migraineurs reporting pattern glare were more likely to choose a blue to green coloured 
filter for maximum comfort.[830]  
 
Intrinsically photosensitive RGC are maximally sensitive to blue light and may regenerate 
oxidised Opn4 using yellow light, however these cells can also adapt.[1228] It is feasible that 
the filter providing maximum comfort is that selected with a colour or combination of colours 
that equalises the actual and expected levels of retinal illumination. This may be achieved 
by resolving any incongruity between the contribution of the retino-hypothalamic tract 
(ipRGC) and the retino-geniculo-cortical pathway (cones and rods). Whether this is 
achieved by colour-specific adaptation, stimulation or a mixture of these two actions is not 
known. 
 
Conversely, the photophobia response is greater for blue light compared to green or red 
light.[1106] There is some evidence that higher levels of MP may be associated with reduced 
photophobia by selectively blocking blue light (i.e. operating as a yellow filter).[567, 838] Non-
pathological photophobia is thought to mediated by ipRGC located in the inner retina.[540] 
Their retinal location makes it unlikely the MP will reduce blue light exposure however. It 
may be that MP is able to modulate the photophobia response in ways other than blue light 
reduction, such as the modulation of Mc activation by reducing light-induced oxidative 
stress in the retina. (See Mc hypothesis in the introduction to this thesis, section 1.3). 
 
A3.5 Meares-Irlen syndrome and AMD risk factors 
The author has noticed that many patients reporting MIS symptoms such as coloured 
"blobs" also presented with obesity, parents with a history of smoking, light irides or fussy 
eating habits leading to poor nutritional intake. The similarity with AMD RF was noted. MP 
was found to mitigate photophobia, improve visual performance and reduce visual fatigue 
when proofreading.[567, 839, 1224] It is plausible that increasing retinal levels of MP, by lifestyle 
and dietary modulation, especially for those selecting yellow or orange coloured filters could 
reduce or resolve MIS symptoms. It is not known whether there is an association between 
MP non-responsivity, central "dip" spatial profile (possibly secondary to MZ deficiency) and 
MIS. The central "dip" profile was more commonly observed for those with AMD and AMD 
FH.[403] If MIS is proven to be a marker for low retinal MP, MIS symptoms may also be an 
early-onset, predictive marker for increased risk of AMD in later life. 
 
MIS and associated disorders such as ADHD, chronic fatigue and a subtype of dyslexia in 
which visual recognition is a primary deficit show anomalies in lipid metabolism, including 
low essential fatty acid status and decreased serum cholesterol.[1229] Genetic expression of 
the transporter molecule apolipoprotein B-100 (APOB) has been associated with abnormal 
lipid metabolism, and particularly with cholesterol levels. Cholesterol esters are important 
carriers of essential fatty acids (and possibly MP) into the retina.[455, 1229] A pilot study has 
shown that certain allelic variants of the APOB gene were more common in those 
diagnosed with MIS compared to those without MIS.[1229] 
 
A3.6 Meares-Irlen syndrome and the potential for increased retinal lipofuscin deposition 
Patients with migraine and those with a primary FH of migraine also appear more likely to 
report MIS symptoms and benefit from precision tints.[830, 1230] Migraine is associated with 
reduced or absent habituation to repetitive stimuli,[565, 566, 847-849] and a reduction in 
neurovascular coupling in response to flickering lights.[563, 617, 1231] Other conditions 
associated with reduced OVP such as Rph and VDys also exhibit these adaptation 
deficits,[194, 205, 618, 967] and are associated with migraine,[205] however the author is not aware 
of any studies examining their association with MIS. 
 
It is plausible that the retina / RPE / choroid complex is less able to down-regulate 
metabolic activity in response to increased light levels if retinal adaptation is abnormal.  
Therefore patients with MIS may be more prone to the life-long accumulation of lipofuscin, 
particularly if this is associated with increased levels of Mc activity leading to activation of 
these cells. Visual cycle modulators were found to reduce RPE drusen accumulation in 
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murine models and were associated with reduced GA lesion growth and reduced incidence 
of CNV in one human study.[1232, 1233] 
 
A3.7 Summary 
The retinal theory of MIS combines two factors, which may occur secondary to retinal 
inflammation due to low dopamine or reduced OVP (ischaemia), acting alone or in 
combination. 
 
1) Increased GRT due to Mc activation resulting in the perception of after images reported 
as coloured "blobs". Cortical glial activation may contribute to cortical hyper-excitability. 
 
2) A state of adaptation that is incompatible with the level of retinal illumination, resulting 
from a light-induced increase in retinal dopamine and hypersensitive retinal (and / or 
cortical) dopamine receptors. 
 
The retinal theory for MIS is complementary to the current cortical hyper-excitability theory 
for MIS. MP may modulate the symptoms reported in MIS. Macular pigment optical density 
is a marker for cortical L and Z levels.[430, 1006, 1012] In the absence of any cortical 
explanation, the retinal theory may provide an alternative explanation for MIS symptoms. 
Further research is necessary to confirm this theory. 
 
In addition to offering an explanation for the light sensitivity symptoms reported for MIS, the 
retinal theory may also explain light sensitivity in other disorders associated with low 
dopamine levels, such as migraine and ADHD. This theory may also explain the association 
between MIS and migraine. 
 
MIS may be treatable using diet and lifestyle modulation in cases where these factors are 
sub-optimal and modifiable. 
 
A3.8 Further work relating to MIS  
 
A3.8.1  Do individuals with symptoms of MIS have lower MPOD? 
Higher levels of retinal MP were associated with shorter GRT, as well as reduced 
photophobia and glare.[620] Objective measurement of MPOD would be quicker and more 
informative (spatial profile data) than subjective MPOD testing, which in view of the bright 
background and flicker may not be tolerated. The objective method of choice would be 2-
WFAF using the Spectralis HD-OCT, however the high level of flicker inherent in this 
method may also not be tolerated. Bernstein et al. assessed MPOD in infants and children 
using data derived from blue-light reflectance imaging with a digital video fundus camera 
(RetCam II or RetCam 3, Clarity Medical Systems inc., Pleasanton, CA).[1141] This method 
may be suitable for MIS sufferers but does involve ocular contact. Objective measurement 
of MPOD using the Visucam 200 (Carl Zeiss Meditec AG, Jena, Germany) takes a few 
seconds and is likely to be tolerated by those with MIS, however there are reservations 
about the suitability of this instrument for use in clinical and research settings.[1234, 1235] If 
MIS is associated with significantly lower MPOD, a double-masked, randomised controlled 
trial may establish whether MP supplementation could ameliorate MIS symptoms. It would 
be of interest to establish whether MIS symptoms modulated with a yellow or orange tint is 
associated with lower baseline MP (a yellow-coloured, blue-light-blocking filter) and a 
greater increase in MPOD after supplementation, compared to those modulated with other 
colour tints. 
 
A3.8.2  Do individuals with symptoms of MIS have longer GRT? 
Individuals with MIS report symptoms suggestive of after images after viewing bright white 
backgrounds. These symptoms are often ameliorated by reducing the brightness of the 
background. Subjecting a group of individuals that exhibit increased light sensitivity to 
equilibrium bleach GRT testing would be challenging. Better results may be obtained by 
photo-flash bleach techniques because of the difficulty in tolerating the longer exposure 
time required by the latter (MIS sufferers would close their eyes or look away). Recovery 
from photostress in normal individuals was reported to be shorter for brighter compared to 
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dimmer backgrounds, regardless of the brightness or exposure time of the glare 
source.[1213] A comparison of the recovery time between individuals with MIS to non-MIS 
controls for a range of background brightness may reveal differences in recovery time 
(longer GRT for MIS), particularly longer than normal GRT for higher luminance 
backgrounds. 
 
The author has developed a screening test for glare related to white backgrounds by using 
reading matter illuminated overhead with a dimmable light. Illumination is decreased from 
the full brightness setting and then increased from a low illumination setting to gauge a 
comfortable level of white background brightness. Although this has not been tested 
experimentally, the author has noticed that individuals reporting coloured "blobs" on 
interactive whiteboards tend to prefer much dimmer white background brightness. This 
could be adapted to a portable unit to screen for MIS symptoms. 
 
An alternate experiment would be to present a range of photostress luminances or 
exposure times to MIS and non-MIS controls and measure the recovery objectively using 
the densitometer developed by Margrain et al.  
 
A3.8.3  Intrinsically Photosensitive RGC function in migraine, Rph, VDys and MIS 
Intrinsically photosensitive RGC function may be directly assessed by comparing the 
sustained post-illumination pupil response to blue and blue-free light. Although this was 
designed to assess ipRGC function for glaucoma,[1236] it may also be used to detect ipRGC 
dysfunction in OVP RF and MIS. Multifunctional electroretinogram (mERG) may be used to 
detect delayed implicit time, which may indicate retinal ischaemia secondary to reduced 
choroidal perfusion.[220] 
 
A3.8.4  Investigation of AMD risk genes and MIS 
If it could be established that MIS is wholly or partly a retinal phenomenon, it would be of 
interest to investigate whether individuals with MIS symptoms as youths are at greater risk 
of developing AMD in later years. Genetic testing for risk genes associated with AMD and 
conditions known to cause increased retinal lipofuscin such as adult vitelliform and familial 
dominant drusen may be undertaken. If it was proven that MIS is associated with increased 
risk of AMD and / or other age-related maculopathy, individuals exhibiting symptoms 
suggestive of MIS would represent a "holy grail" in AMD research; a youth onset 
symptomatic marker for an age-related condition. 
 
A3.8.5  How do Vista-Mesh lenses modulate MIS and migraine symptoms 
Vista-Mesh spectacle lenses (Norville Group, Gloucester, UK) combine a very fine aperture 
(0.6 mm) mesh filter with a 90% light transmission factor brown contrast filter and a hard / 
multilayer anti-reflection coating. Anecdotal evidence suggests that these lenses reduce 
glare and improve comfort and visual performance in conditions such as MIS, migraine, 
stroke, keratoconus and glare related to white backgrounds and fluorescent lighting. Vista-
Mesh lenses appear to be effective when used for conditions that also benefit from 
individually-selected coloured overlays and tints. How Vista-Mesh lenses, and indeed 
coloured overlays and tints improve visual performance is not fully understood. 
 
Recent evidence from guinea pig Mc has revealed that they not only act as light guides, 
trafficking light from the inner to outer retina,[1016] they also spectrally filter red and green 
light to cones and, blue and purple light to rods.[1017] Activation of Mc is likely to reduce their 
light guiding and spectral filtering capability. It is possible that the polarising or collimating 
effect of the mesh filter in Vista-Mesh lenses could reduce retinal light scatter, improving 
light transmission through and spectral filtering within the retina. Masking would be difficult 
in a randomised controlled trial of Vista-Mesh lenses against control (tinted lenses without 
the mesh filter), because the mesh is just visible on close inspection. A double-masked lab-
based study, where the examiner and participant are prevented from handling or inspecting 
the lenses, while performing speed of reading and glare sensitivity tests may be more 
appropriate.  
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Appendix 4 

 

A4.1 Recruitment slip enclosed with patient reminders 

 

 

 

Would you like to take part in a practice-based research study? 
 
John Everett will be examining the relationship between the retinal nutrients, lutein and 
zeaxanthin, and the ability to recover from a bright light. 
The relationship between these retinal nutrients and other factors such as age, gender, 
Body Mass Index (BMI), iris colour and family history of macular degeneration will also be 
examined. 
 
It is free to participate and takes about 1 hour to complete the tests. 
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A4.2 Recruitment poster displayed in three Cheltenham practices 
 

ARE YOU EATING ENOUGH 
 

LEAFY GREEN VEG? 
 

IT IS NOW POSSIBLE TO MEASURE THE 
LEVELS OF THE MACULAR PIGMENTS, 

LUTEIN AND ZEAXANTHIN IN THE RETINA 
 

HIGH LEVELS OF THESE RETINAL 
NUTRIENTS, OBTAINED SOLELY FROM YOUR 
DIET, ARE ASSOCIATED WITH A LOWER RISK 

OF DEVELOPING AGE-RELATED MACULAR 
DEGENERATION (AMD) 

 
WE ARE CURRENTLY PERFORMING A STUDY 

OF MACULAR PIGMENT LEVELS IN THE 
CHELTENHAM POPULATION 

 
WE ARE OFFERING THIS TEST, AND 

SEVERAL OTHERS EXAMINING AMD RISK 
FREE OF CHARGE TO ANY ELIGIBLE PATIENT 

THAT IS HAPPY TO ATTEND A SINGLE, 60 
MINUTE APPOINTMENT AT OUR NORVILLES, 

BATH ROAD PRACTICE 
 

PLEASE ASK AT RECEPTION FOR FURTHER 
DETAILS AND ELIGIBILTY REQUIREMENTS 
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A4.3 Information sheet for potential participants 

 
Information sheet for volunteers 

 
Title of Project:  
Glare Recovery Time as a surrogate test for, and the association other factors with, Central Macular 
Pigment Optical Density 
 
Research Venue:  Norville Opticians, 182 Bath Rd, Cheltenham, Glos, GL53 8HR 
 
Name of Investigators:  John Everett & Dr Hannah Bartlett 
 
Invitation 
 
You are being invited to take part in a research study. Before you decide it is important for you to 
understand why the research is being done and what it will involve. Please take time to read the 
following information carefully. 
 
EXPLANATION OF ANY POSSIBLE HAZARDS AND THE PROCEDURES TO BE USED 

 
We are investigating ways of assessing the health of the eyes, in particular the retina. We will be 
measuring the levels of certain nutrients (lutein and zeaxanthin) in the retina, and comparing these 
measurements with how well the retina recovers from a bright light. This study involves one visit that 
lasts for about one hour. 
 
During the visit various measurements will be taken. Most of the measurements will be familiar to 
you from your routine eye examination. You will undergo measurement of your visual acuity, your 
retinal appearance, and a grid chart to screen for distorted vision, your iris colour, your weight and 
height. 
 
Two of the tests are slightly different from what you may have experienced during a normal eye 
examination. The first test measures the level of the retinal nutrients and simply involves looking at a 
small light target for a few seconds, while your chin is resting on a chin rest. The second test 
measures how long it takes for your eye to recover from a bright light and involves looking into a light 
source for a short period of time. 
 
None of these tests will have any lasting effects after the examination. You will be able to drive to 
and from the examination. I would only ask that you refrain from drinking any alcohol on the day of 
the test, before you are examined, as this may affect some of the results. 
 
These tests are not diagnostic and do not constitute a full eye examination. We will however inform 
you if any abnormality is found and we will discuss with you referral to an appropriate professional for 
that abnormality. You are perfectly free to ask any questions about any aspect of the study before 
deciding whether or not to take part. You are also free to leave the study at any time, without giving a 
reason. 
 
You will be informed if any of the tests reveal results that do not fall within "normal" ranges. You will 
be given advice on what type of action, if any you need to take. We will also offer follow-up tests to 
track your progress if necessary. 
 
Explanation of potential hazards 
 
Some light-sensitive individuals may be affected by the bright and flickering lights, presented in the 
study. It is important that you tell us before you are tested, if you are sensitive in this way. 
 
The retinal nutrients test involves being seated, while your chin is resting on a chin rest. Although 
this test is completed quickly (within 5 minutes), you will be able to take any breaks that you need. 
This is important if you suffer from any neck or back conditions. 
 
The light recovery test involves looking into a safe, bright light for 30 seconds. You will experience an 
after-image when the light removed, which is temporary, lasting less than 1 minute in most cases. 
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EXPENSES AND PAYMENTS? 
There are no expenses or payments for taking part in this study, however all examinations related to 
the study will be carried out without charge, and you will have access to a novel eye testing 
instrument, not normally available in a routine eye examination. 
 
CONFIDENTIALITY OF INFORMATION 
 
The confidentiality of personal information and the anonymity of all volunteers involved in this study 
will be preserved by storage of the data in a locked filing cabinet and the use of number codes 
instead of names. This locked cabinet will be accessible only to John Everett. Electronic copies of 
data sheets will be anonymous and held on a personal computer with password protection. 
 
WHO HAS REVIEWED THE STUDY? 
 
This study has been submitted for approval to Aston University’s Ethics Committee. 
 
CONTACT DETAILS OF THE INVESTIGATORS 
 
John Everett   everetdj@aston.ac.uk 
Dr Hannah Bartlett  H.E.Bartlett@aston.ac.uk 
 

 



	   309	  

A4.4 Inclusion / exclusion sheet for participants 

 

Retinal Nutrient Study 
 

Which patients are needed? 
 
If you are not sure whether these apply to you, please contact me and I will advise 
you. 
Telephone  Email  everetdj@aston.ac.uk 
 
Please note that some of these conditions will not be apparent until I can see you in 
person and examine you. 
 
Patients eligible for this study (Inclusion criteria): 
 
• Gender: Male and Female 
• Age:  20 years or older 
• BMI:  20-30 
• Corrected visual acuity of 6/8 or better 
• Healthy macular (back of the eye) appearance 
• No Amsler (Grid chart) distortion 
• Normal reported cholesterol levels 
• Willingness and ability to give written, informed consent and willingness and  
 Ability to comply with the study requirements 
• A family history of macular degeneration. 
• Taking multivitamins and / or supplements. 
 
Patients not needed for this study (Exclusion criteria): 
 
• Age:  <20 years 
• BMI:  <20 or >30 
• Corrected visual acuity less than 6/8 
• Amsler distortion 
• Abnormal macular appearance 
• Current macular disease or history of macular disease 
• Reported raised cholesterol level 
• Current pregnancy 
• Smokers 
• Alcohol consumption within two hours 
• Diabetics 
• Glaucoma 
• Poor night vision 
• Dietary absorption disorders (e.g. Crohn’s) 
• Current use, or previous use of medications that are known to affect macular  
 function 
• Inability to give informed consent 
• Refusal to give written, informed consent and / or refusal to comply with the  
 study requirement.     Please turn over 
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Removal of a participant during the study: 
 
• Inability to perform reliably on any of the ophthalmic tests performed 
• Pupils too small to allow macular view, whilst performing glare recovery test 
• Inability to fixate ophthalmoscope light (eccentric fixation, nystagmus) 
 
If you are not sure if your medication affects macular function, please contact me 
with a list of the tablets that you take. Please note however, that if a tablet lists an 
eye side effect, it does not mean that every patient taking that tablet will experience 
that side effect. Discontinuing any medication without the consultation and 
agreement of your General Practitioner (GP) is not recommended. 
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A4.5 Consent form signed by all participants 

 

Consent Form 
 

Principal Investigator: John Everett, Norville Opticians, Cheltenham 
Research Supervisor: Dr Hannah Bartlett, Aston University 
 
Project Title:  Evaluation of Glare Recovery Time as a surrogate for  

Central Macular Pigment Optical Density. 
Invitation 
 
You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully. 
 
What is the purpose of the study? 
 
The purpose of this study is to determine whether glare recovery time, using the 
direct ophthalmoscope macular stop, may be used as a surrogate test for central 
macular pigment optical density measurement. I want to analyse your results to 
assess whether glare recovery may be used as a cheaper and quicker surrogate, 
screening test for central macular pigment measurement. Your results will also be 
analysed to examine the relationship between central macular pigment optical 
density and your gender, age, BMI, iris colour, eye tested and the time of day 
(number of daylight hours). The relationship between family history of macular 
degeneration will also be compared with macular pigment levels. 
 
Why have I been chosen? 
 
You have been chosen by the practice computer as one of 600 consecutive 
patients, from a set date, due a routine reminder for your next eye examination. 
 
What will happen to me if I take part? 
 
By volunteering to take part you will be giving anybody in the research team 
consent to analyse your results. Other than the examination described above, you 
will not be required to carry out any further tasks. 
 
Are there any potential risks in taking part in the study? 
 
There is a risk of breaching privacy and confidentiality in relation to the data that are 
collected. Keeping your data anonymous at all times will minimize this risk. As your 
optometrist, Mr. Everett will have access to your clinical records. He will be 
responsible for putting your results onto a database and maintaining your privacy 
and confidentiality. Dr Bartlett will only be given access to your data after your 
identity has been concealed. 
Looking into the bright light for 30 seconds may be slightly uncomfortable. 
There is a theoretical risk of triggering a migraine or an epileptic seizure in patients 
who already have these conditions, but have not yet been diagnosed. This effect 
has not been reported in any of the literature revealed by an extensive literature 
search. 
Do I have to take part? 
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No, you do not have to participate if you do not wish to do so. You are free to 
withdraw at any time from the study. No sanctions will be taken against any patient 
who refuses to participate in or withdraws from the study. 
 
Expenses and payments? 
 
There are no expenses or payments for participation in this study. 
 
Will my taking part in this study be kept confidential? 
 
Your data obtained during this study will be recorded such that your identity will 
remain obscured. Access to your data will be limited to Dr Bartlett and John Everett. 
Your data will be erased at the end of the study. 
The patient records for those in any research study must be kept for 15 years after 
the study ends, and therefore your records will be marked accordingly. Privacy and 
confidentiality will be protected vigorously to the extent permissible by law. We 
cannot however guarantee privacy or confidentiality. 
The maintenance of privacy and confidentiality does not protect the participant from 
divulging information about the study themselves, if questioned by other parties. 
 
What will happen to the results of the research study? 
 
We aim to publish the results of this study. Your data will be anonymised. 
 
Who is organizing and funding the research? 
 
John Everett is organizing and funding the study, with supervision from Dr Bartlett. 
 
Who has reviewed the study? 
 
This study has been submitted for approval by Aston University’s Ethics Committee. 
 
Who do I contact if something goes wrong, or I need further information? 
 
Please feel free to contact Dr Hannah Bartlett, (H.E.Bartlett@aston.ac.uk, (01212) 
2044182). 
 
Who do I contact if I wish to make a complaint about the way in which the research 
is conducted? 
 
If you have any concerns about the way in which this study has been conducted, 
then you should contact the Secretary of the University Research Ethics Committee 
on j.g.walter@aston.ac.uk or telephone 0121 204 4665. 
Personal identification number for this study: 
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CONSENT FORM 
 
 
Project Title: Evaluation of Glare Recovery Time as a surrogate marker for  

Macular Pigment Optical Density 
 
 

Research venue:  Norville Opticians, Bath Road, Cheltenham 
 
Principal Investigator: John Everett 
Project Supervisor:  Dr Hannah Bartlett 
 
 
 
 
  Please initial 

box 
1 I confirm that I have read and understood the consent form 

and supporting information, for the above study. I have had 
the opportunity to consider the information, ask questions 
and have had these answered satisfactorily. 

 

2 I understand that my participation is voluntary and that I am 
free to withdraw at any time, without giving any reason, 
and without my Optometric care or legal rights being 
affected. 

 

3 I agree to take part in the above study.  
 
 
 
 
_______________________  __________  _____________ 
Name of research participant  Date   Signature 
 
 
 
_________________________  __________  _____________ 
Name of person taking consent  Date   Signature 
 
 
 
 
 
 
 
 
1 copy for research participant  1 copy for principal investigator 
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A4.6 Data collection sheet 

 

Data collection sheet CMPOD / GRT study Date 
 

Participant identification number for this study: 
 
Excluders:     Delete as applicable 
LogMAR VA LogMAR 0.1 or better  Y / N Patient VA R L 
 
      VA for GRT R L 
 
Amsler distortion     Y / N 
Pupils too small to view macular   Y / N 
Healthy macular appearance   Y / N 
No nystagmus or eccentric fixation   Y / N 
Weight   Kg 
Height   Metres 
BMI   Kg / m2  >20 / <30 Y / N 
Cholesterol reported normal   Y / N / U 
No dietary absorption disorders   Y / N / U 
Pregnancy     Y / N / U / N/A 
Smoker      Y / N 
Alcohol consumption within 2 hours   Y / N 
Diabetes      Y / N / U 
Glaucoma     Y / N / U 
Poor night vision     Y / N / U 
Medication affecting macular function  Y / N / U If Y, record overleaf 
Inability / refusal to give consent   Y / N 
 
Glare-triggered conditions: 
Migraine / epilepsy    Y / N / U Warn if Y or U 
Migraine Aura / Light-Triggered  Raynaud's / Vascular Dysregulation 
 
Study data: 
Gender      M / F / U / Not Disclosed 
Date of birth          /      /  
Age (decimal)     Years  
Iris colour     Grey / Blue / Green / Hazel / Brown 
Time of day     am / pm  
Number of daylight hours    Hours 
Coin toss     Heads = R Tails = L  
Eye tested first     R / L 
 
CMPOD 
R       IOL Y / N 
L       IOL Y / N 
 
GRT   First values   Second values 
R    seconds   seconds 
L    seconds   seconds 
 
GRT Repeated  DATE:  TIME:  RANDOM LETTERS 
   First values   Second values 
R    seconds   seconds 
L    seconds   seconds 
 
MPOD Ease of use No diff. / Diff. with central R or L / Diff. with peripheral R or L 
 
Family history of AMD   Y / N  1st degree / 2nd degree 
Supplements  / vitamins  Y / N  If Y, record overleaf 
Key: Y=Yes, N=No, U=Unknown, N/A=Not Available 
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A4.7 Information summary for all study participants (included and excluded) 

 (To be sent to participants after thesis is accepted) 

 

The association between MPOD and GRT with selected AMD and ocular 

vascular perfusion risk factors 

 

Principal Investigator: John Everett, Norville Opticians, Cheltenham 
Research Supervisor: Dr Hannah Bartlett and Dr Frank Eperjesi 
    Aston University 
 

Study aims: 

The study was designed to investigate the relationship between macular pigment 

optical density (MPOD) and glare recovery time (GRT) with the following age-

related macular degeneration (AMD) risk factors: age, gender, body mass index 

(BMI), calculated percentage body fat (%BF), AMD family history and iris colour, 

and with the following ocular vascular perfusion (eye blood supply) risk factors: 

migraine, Raynaud's phenomenon and vascular dysregulation. 

 

MPOD: This is a measure of the amount of a yellow pigment in your eye,  

  derived from foods such as leafy green vegetables and eggs. 

 

GRT:  This is the time taken for the eye to recover after being dazzled by a  

  bright light. 

 

AMD:  This is the most common cause of visual loss in the elderly. 

 

Study results 

None of the risk factors tested was related to MPOD. 

Right eye MPOD was very similar to left eye MPOD. 

GRT was found to increase significantly with age, but after correction for age none 

of the remaining risk factors tested was related to GRT. 

When GRT was repeated for the same person the results were similar (i.e. the 

results showed good repeatability). 

No relationship was found between MPOD and GRT, therefore this method of GRT 

was not a suitable surrogate test for MPOD testing. 
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A4.8 Poster displayed at BCOVS, Aston University (16.09.11) 
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Appendix 5 
 
A5.1 Confirmation of ethics clearance for project AO2010.15 HB 

 
Note that the title of the study has been altered. 

 
 

 

 

 

 
 
 

Response from AOREC 
12th May 2010 

 

Project title: Glare Recovery Time as a surrogate test for, and the association of other AMD 

risk factors with, Central Macular Pigment Optical Density 

 

Reference Number: AO2010.15 HB 

Researchers: David John Everett, Dr Hannah Bartlett, Dr Frank Eperjesi 

 

I am pleased to inform you that the Audiology / Optometry Research Ethics Committee has approved 

the above named project.  

 

The details of the investigation will be placed on file. You should notify The Committee of any 

difficulties experienced by the volunteer subjects, and any significant changes which may be planned 

for this project in the future.  

 
 
Yours sincerely 
 

 
 
Chair AOREC 
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A5.2 Approval for the amendments to project AO2010.15 HB 

 
Note that the title of the study has been altered. 

 

 




