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Thesis summary 

Intraocular pressure measurement is a routine clinical examination performed in 
ophthalmic practice. It is vital in clinical monitoring, diagnosis and management of 
certain eye diseases. There are many types of tonometers currently available to 
measure the intraocular pressure (IOP). These tonometers employ different 
technologies compared to the standard Goldman applanation tonometer (GAT). 
Studies often report inter-tonometry agreement and bias of new tonometers against 
GAT. However, only a minority have studied the proportionate bias and factors that 
influence the inter-tonometry bias of a new tonometer. The inter-tonometry agreement 
is vulnerable to the influence of corneal physical and mechanical properties. The 
information on reliability and agreement between different tonometers is very important 
in the management of ocular diseases.  

The aim of this thesis was to examine the inter-tonometry agreement between five 
different tonometers. The influence on IOP of demographic and ocular factors was 
investigated. This thesis investigates the biomechanical characteristics of the cornea of 
normal, glaucomatous and keratoconus subjects and the factors that influence 
biomechanical parameters. The tonometers employed were found to have a good 
agreement with GAT but the tonometry values were not interchangeable. The bias of 
each tonometer was influenced differently by central corneal thickness (CCT), specific 
corneal biomechanical parameters and age. Clinicians should be cautious when 
examining glaucoma and keratoconus patients with different tonometers, as most 
demonstrate significant proportionate bias. The corneal biomechanical parameters in 
subjects with different ocular diagnoses revealed variable significance and was 
influenced by age, CCT and corneal curvature. Future research to identify unique 
corneal parameters in different ocular conditions may be of importance especially in 
screening and diagnosis. 

Keywords: Inter-tonometry agreement, tonometry bias, corneal biomechanics, corneal 
hysteresis 
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CHAPTER 1: INTRODUCTION 

Intraocular pressure (IOP) is the primary risk factor for the development and progression 

of glaucoma, and is presently the only modifiable risk factor. Guidelines from the 

National Institute for Clinical Excellence (NICE) CG85 for Glaucoma (NICE Guidelines 

2009) and the Royal College of Ophthalmologists recommended that ophthalmic 

clinicians refer patients to the ophthalmology referral centre when the IOP is higher than 

21mmHg, regardless of any glaucomatous change[1, 2]. A recent report suggested a 

refinement of the NICE guideline to avoid unnecessary referrals that involved repeated 

applanation tonometry by local accredited optometrists[3]. This has resulted in reduction 

in the number of referrals to the hospital eye service and is significantly cost-effective[4].   

The advent of new tonometers aims towards enhancing the accuracy of IOP 

measurements. However, the choice of tonometers in each screening centre may be 

different and can depend on the suitability of patients. The purpose of this study was to 

highlight the tonometry agreement amongst healthy, glaucomatous and keratoconus 

patients against the standard applanation tonometer. This study shall report factors that 

can influence the agreement and provide recommendations to ensure suitable tonometer 

for IOP measurement. Additionally, corneal biomechanical characteristics of these 

patients are explored. In vivo corneal biomechanical instruments are used to enable 

further understanding of the interesting properties of the human cornea in glaucoma and 

keratoconic eyes. It is hoped that this shall aid in screening and monitoring of disease.  
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1.1 Intraocular Pressure 

The intraocular pressure (IOP) is the pressure exerted by the equilibrium of intraocular 

fluid production and drainage that causes tension to the ocular wall. In principle, there 

are two method of measuring an internal pressure, either internal pressure measurement 

by invasively entering the pressured space (manometry) or relatively by measuring the 

wall tension aided by mathematical formulae. Even though manometry is the most 

accurate method for measuring the IOP, it is an invasive procedure and inappropriate for 

routine clinical practice. Today, all current commercially available tonometers measure 

relative values of IOP. 

1.1.1 Tonometer 

In the early years of the development of tonometry, indentation techniques were 

primarily involved. The technique measured how easily the globe was compressed. In 

the early 1900s, the common type of indention tonometry, Schiotz tonometry, was first 

used to measure the IOP. Since then, significant amounts of research and improvements 

were ongoing to explore on ocular rigidity and IOP [5]. By the mid 1950s, the advent of 

Goldmann applanation tonometry (GAT) had dominated Schiotz tonometry and it 

became quickly out of favour[6]. The applanation tonometer had become the preferred 

method to measure intraocular pressure. The GAT was claimed to be far less affected by 

ocular rigidity than Schiotz tonometry. The GAT applanates an area of the anterior 

corneal surface and is based on the principles of the Imbert-Fick formula.  

The GAT was initially designed to decrease the effect of ocular rigidity on IOP 

measurement. The Imbert-Fick principle determines the value of the force that is needed 

to applanates the ocular wall, which is usually the cornea. The Imbert-Fick principle 

states that the IOP can be indirectly measured  via quantifying the pressure required to 

flatten a known area of the cornea[7]. The principle assumed that the cornea is dry, 

perfectly elastic, infinitely thin and spherical, which is in actuality, is not. This ‘law’ was 

challenged as the model eye features are not true to normal eyes[8]. Thus, Goldmann 

calibrated his invention against manometric tonometry to evaluate the appropriate area 

of applanation to enable ‘precise’ tonometry by GAT[6]. It is assumed that the pressure 

from inside the eyeball that resists the external applanation of tonometry probe was 

equal and opposite to the attractive capillary forces of the tear film. This is achieved at 

the applanation area of 3.06mm2 in eyes with a mean central corneal thickness of 

approximately 520µm. The calibration was done against a small group of eyes (with 
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mean central corneal thickness of 520 µm) that may be different to other patient 

population with different corneal thickness and tear film properties.   

It is known that the central corneal thickness (CCT) can influence GAT readings [9-11]. 

The formula for IOP adjustment was introduced based on the well-known effect of IOP 

overestimation of thicker corneas and underestimation of thinner ones. However, other 

studies have shown that individuals also demonstrate wide variations in corneal 

biomechanical properties [12-14]. The GAT may be less prone to biomechanical 

influence but it is not entirely independent [15, 16]. It has even been suggested that the 

biomechanical properties of the eye (e.g. elasticity and rigidity) may be a stronger factor 

than CCT on applanation tonometry readings and that CCT is just a poor estimation of 

biomechanical properties [17]. Researchers have proposed specific formulae to calculate 

the influence of CCT on IOP measurement, but there is no consensus in practice[16, 18]. 

However, clinicians are aware that the IOP may be over or underestimated because of 

these ocular and corneal properties [18]. Nonetheless GAT is still regarded as the gold 

standard for tonometry. All comparisons of the different types of tonometers will be 

based on GAT in this thesis. 

The tonometers that require corneal contact are TonoPen XL® (Tonopen(Bio-Rad, 

Glendale, California) and iCare® (Icare(Tiolat Oy, Helsinki, Finland). The Tonopen is an 

electronic hand-held tonometric device that is based on the Mackay-Marg principle. The 

Tonopen enables tonometry in both supine and sitting position. The Icare is an electronic 

hand-held tonometer that is based on a rebound principle and is ideal for children as it 

requires no anaesthesia. The non-contact tonometers are mostly popular for eye care 

practitioners for screening purposes as they are less operator dependant. In this study, 

two air-puff tonometers are included; the Corvis® ST (CST)(Oculus Optikgeräte GmbH, 

Wetzlar, Germany) and Ocular Response Analyzer® (ORA)(Reichert Ophthalmic 

Instruments, Buffalo, New York). Other than tonometry, the ORA (used since 2006) and 

CST (launched in September 2011) are non-contact tonometers that are able to 

measure both IOP and corneal physical parameters that are related to ocular 

biomechanics [19, 20]. These tonometers are described in section 2.4.  

1.1.2 Agreement of Tonometers  

It is challenging for all eye care practitioners to use a single tonometry method in their 

clinical practice as a patient’s ocular or physical condition may render them unsuitable 

for standard applanation tonometry. The current standard of tonometry is GAT, which is 
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not flawless, but is much preferred due to its low maintenance and historical precedence 

[18, 21].  

In 2012, Cook et al. reported a large meta-analysis of 109 studies on tonometer 

agreement with GAT [21]. The authors highlighted the sizable variability of agreement 

[21]. According to that study, amongst the tonometers employed, the non-contact 

tonometer (including ORA) and the handheld applanation tonometer (Perkins’s handheld 

tonometer) have the closest agreement to GAT. However, the analysis reported that the 

measurements both within and between studies have a substantial variability. The 

authors suggested significant inter and intra-observer variability for all 7 tonometers 

included in the analysis. The repeatability of tonometry measurements of the GATwas 

also significantly different amongst the studies included in the meta-analysis. This would 

explain the scale of heterogeneity of the cohorts observed to some extent. However, the 

author did not report on factors that influenced the inter-method agreement between the 

tonometers [21].  

 

A recent review noted that the Bland-Altman method is the most popular used in 

agreement research [22]. The review discussed the lack of standardisation in analysis 

and reporting in the method comparison studies of medical instruments published in the 

literature. The authors highlighted that almost 10% of method comparison studies of 

medically related instruments were analysed inappropriately and may have led to 

erroneous results [22]. This was supported by two review articles that noted that many 

agreement studies did not have adequate samples and reported the use of improper 

statistical measure [21, 23]. Many tonometry agreement studies recruited subjects with 

variable ocular conditions that could influence agreement [21]. 

 

1.2 Corneal Biomechanics  

Biomechanics is the science concerned with the internal and external forces acting on 

the human body and the effects produced by these forces. It has  become a subject of 

high interest since scholars acknowledged that each structure of the human body has its 

own anatomical, physiological as well as physical properties to enable its function. Many 

clinical and laboratory studies have shown that the cornea is not a mechanically inert 

structure [24].   
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Early evidence mainly from the results of incisional refractive surgery has highlighted the 

importance of corneal biomechanics in the outcome of the treatment [25-27]. The 

influence on the cornea of its biomechanical properties has received little attention, due 

to the lack of feasible and adequate measurement techniques. However, in the past 

decade, particular attention in corneal biomechanical properties has developed in 

glaucoma management. This has generated much interest in finding the real corneal 

biomechanical parameters and their correlation with ocular diseases and tonometry. 

Increasing interest has also arisen in corneal biomechanics with regard to diagnosis and 

therapy, e.g. collagen crosslinking (CXL) of keratoconus. 

1.2.1 Physical Properties of the Cornea 

The foundation of corneal biomechanics is the microanatomy of the cornea. Collagen is 

the primary structural component and the ground substance of both the cornea and 

sclera. It has a high tensile strength and provides a resilient, protective coat to the globe. 

Anisotropy in fibril packing across the cornea has potential implications for the 

transparency and refractive index of the tissue. Biomechanically, it is possible that the 

higher packing density of stress-bearing collagen fibrils of the stromal tissue in the pre-

pupillary cornea is necessary for maintaining corneal strength, and hence curvature, in a 

region of reduced tissue thickness [28]. 

A laboratory study using an X-ray diffraction and femtosecond laser highlighted this 

difference in the collagen fibrils orientation in the cornea [29]. Collagen fibrils at different 

depths throughout the entire thickness of the human cornea have different distribution 

pattern and predominant orientations. Arrangement of the collagen fibrils of orthogonal 

orientation in the mid and posterior stroma may help to distribute strain in the cornea by 

allowing it to withstand the pull of the extra ocular muscles, whereas the more isotropic 

arrangement in the anterior cornea may play an important role in the biomechanics of 

the cornea by resisting intraocular pressure while at the same time maintaining corneal 

curvature [30]. Out of the five anatomic layers of the cornea, the epithelium and 

endothelium contributes least to the biomechanical behaviour of the cornea [31, 32]. 

With the understanding of the unique corneal microstructure and its contribution to 

corneal biomechanics, there are many corneal models proposed to demonstrate different 

corneal properties such as after collagen cross linking treatment [33, 34], photorefractive 

keratectomy (PRK) and limbal relaxing incisions [35]. Surgical parameters were 

considered in PRK and laser-assisted in situ keratomileusis (LASIK) to assess 
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quantitatively the effect of each parameter on the optical outcome, all in the pursuit of 

successful surgical outcomes. 

1.2.2 Biomechanical Properties of the Cornea 

Corneal biomechanical properties characterise the response of corneal tissue to an 

applied force. The cornea is said to be a viscoelastic structure as it is able to return to its 

initial state after removal of mechanical force. 

Elasticity refers to the response and deformation of a material towards an external 

stress. The stress-strain relationship can be plotted graphically and an elastic material is 

one that regains its original form in a completely reversible displacement direction along 

the stress-strain pathway when the imposed stress is removed (Figure 1.1). The 

measurement of the slope from a representative portion of the graph is termed the 

modulus of elasticity (Young’s modulus). A high modulus indicates a stiffer material.  

Ex-vivo studies have shown that the cornea exhibits nonlinear elastic behaviour, such 

that Young’s modulus increases with increasing tissue stress [36, 37]. Moreover, the 

cornea’s elastic modulus varies directionally and regionally, such that a high modulus is 

exhibited meridionally at the centre and paracentral areas, and circumferentially at the 

limbus, due to the specific arrangement of collagen fibrils described earlier[38]. Although 

the normal range of in vivo values of human cornea Young’s modulus remains unknown, 

mathematical modelling has predicted that it varies with IOP, such that a stiffer cornea is 

manifested at higher levels of IOP[39]. 

 



Introduction 

Page 26 

 

 

Figure 1.1   The stress/strain curve for an elastic and viscoelastic material 

 

The water content and large molecular components of the cornea will determined its 

viscosity [40]. Molecules in highly viscous or gel-like substances are strongly connected 

to each other and are not very flexible. The content of glycosaminoglycans  (GaGs) and 

structure of proteoglycans (PGs) in the ground substance is the basis of viscosity. This 

ground substance contributes significantly to the mechanical properties of the tissue [41]. 

It was observed that the viscoelastic behaviour decreases with removal of 

prostaglandins [42].  Furthermore, the ground substance is important not only as a stress 

absorber, but also in determining the damping capacity of a tissue [43]. Viscous 

materials flow when an external stress is applied and, unlike materials with elastic 

properties, do not regain their original shape when the stress is removed.  

As a viscoelastic material, the cornea has elements of both viscosity and elasticity and 

as a result, energy is dissipated when a stress is applied. Hysteresis refers to the energy 

lost during the stress-strain cycle. The physical concept of corneal hysteresis is the 

result of the viscous damping within corneal tissues that is created by the viscosity of 

GaGs [44] and PGs, as well as by a collagen matrix interaction [45, 46]. 
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1.2.3 In-Vivo Corneal Biomechanical Measurement Devices 

The understanding of the importance of the physics of the cornea as a biomaterial and 

its influence on clinical findings has led to the exploration of other devices in order to 

investigate the mystery of biomechanics. Until almost a decade ago, only invasive 

techniques were available to characterise the biomechanical properties of the cornea, 

which made measurements in a living eye impossible.  

Until nearly a decade ago, there were only invasive methods of measuring corneal 

biomechanical properties which made measurement in a living eye almost impossible. 

Since the introduction of the Ocular Response Analyser (ORA) in 2005, studies on 

corneal behaviour in vivo and in many different corneal conditions was made feasible. 

The development of new in vivo technology to measure the corneal dynamics during 

deformation using high performing cameras led to the introduction of the Corvis ST in 

September 2011. 

1.2.3.1 CorVis ST 

The Corvis© ST (CST) (Oculus Optikgerate GmbH, Germany) is a dynamic Scheimpflug 

corneal imaging analyser. The CST combines a non-contact tonometer with a high-

speed camera to capture a series of horizontal Scheimpflug images, at a rate of 4,300 

frames per second, during corneal deformation with an air puff jet. In addition to the 

deformation response, the CST is also able to measure the IOP and the corneal 

thickness simultaneously. The corneal image analysis by CST produces nine dynamic 

corneal parameters that represent different phase of corneal deformation. It has been 

commercially available since September 2011. Details of its measurement principles and 

techniques are described more in Section 2.3. 

1.2.3.2 Ocular Response Analyser (ORA) 

The ORA is a non-contact applanation tonometer that can provide a measure of 

intraocular pressure (IOPcc) that was claimed to be independent of corneal factors. This 

device not only provides an assessment of intraocular pressure (IOPcc), but also 

provides a corrected intraocular pressure (IOPg). Corneal hysteresis measured with the 

Ocular Response Analyzer, reflects viscous damping in the cornea, which is the capacity 

of corneal tissue to recover to its shape following the application of external forces.[19] 
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The ORA releases a precisely metered air pulse that causes the cornea to move inward, 

successively passing through inward and the outward (as it recovers its shape) 

applanation phases. On both phases, the intraocular pressure is recorded and the 

difference in IOP values corresponding to inner and outer applanation phases is corneal 

hysteresis. Thus, hysteresis reflects resistance to ocular deformation due to the 

combined effect of the parameters such as corneal thickness, corneal viscoelastic 

properties and ocular rigidity [47]. Details on the principles and measurement techniques 

of ORA are provided in section 2.3. 

1.2.4 Factors Affecting Corneal Biomechanical Parameters 

1.2.4.1 Age  

Alterations in the biomechanical properties of the cornea occur with age. Physically, the 

cross-sectional area of fibrils grows because of the continual deposition of collagen [48] 

and the accumulation of on-going physiological age-related collagen CXL. Moreover, the 

gradual degradation of the PGs and GAGs of the viscous ground substance increases 

corneal stiffness[49]. These changes supported  an earlier finding that stiffness of the 

cornea increase with age[50]. 

This observation is supported by ex vivo studies on donor corneas. A study that used 

radial shearing speckle pattern interferometry showed that the stiffness of the human 

donor cornea increases by a factor of approximately two between the ages of 20 and 

100 years [51]. Other laboratory evidence supports the finding that the cornea stiffens 

with age because of increases in the modulus of elasticity [52], the ocular rigidity 

coefficient,[53, 54] and cohesive tensile strength [55]. Clinically, a quantitative evaluation 

by using dynamic image analysis during non-contact tonometry has also showed an 

increase in corneal viscosity with age[56].  

These findings, however, contradict those of clinical studies that have used the ORA to 

measure biomechanics in vivo. The ORA produces two biomechanical parameters 

namely corneal hysteresis (CH) and corneal resistance factor (CRF). With increasing 

age, a reduction in CH [57-65], CRF (45, 68, 73–75) and CCT [66, 67] were noted. 

Interestingly, some studies using the ORA have also found that CH has no dependence 

on age[68]. These mixed findings may reflect the different participation of viscous and 

elastic elements in biomechanics between the cadaveric cornea and live corneal 

tissue[65, 69]. The cadaveric cornea, a swollen cornea that is deprived of corneal 
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endothelium pump action, may have larger corneal volume, thereby reducing the 

viscosity of the ground substance. This inference may be supported by a laboratory 

study conducted by Daxer et al. [48], which found that the orientation and dimension of 

collagen fibrils changed with age and thus caused the supposed increase of the corneal 

strength to be actually reversed. This finding may explain the variation in the 

biomechanical correlation showed by ex vivo studies with the age of the corneal tissue 

donor. 

There was limited reference related with CST. A recent study with the CST on patients  

younger than 40 year old showed a positive association between age and highest 

concavity time (HC-time). The authors postulated that the HC-time inversely represents 

the viscoelasticity profile in patients as a result of physiological cross-linkage of the 

corneal stoma collagen fibrils in ageing eyes [70]. 

1.2.4.2 Central Corneal Thickness  

The influence of CCT on Goldmann applanation tonometry (GAT) readings was 

confirmed by previous studies [10, 11, 17]. The adjustment of the GAT IOP was 

introduced due to the well-known effect of IOP overestimation by thicker corneas and 

underestimation by thin corneas [14]. It was suggested that biomechanical properties of 

the eye such as elasticity/rigidity are possibly as important as CCT. 

The corneal biomechanical metrics provided by ORA produced an outcome-significant 

IOP adjustment in at least one quarter of glaucomatous and normal eyes [71]. However, 

the IOPcc, unlike GAT-IOP, was not significantly correlated with corneal thickness [72, 

73]. Furthermore, the differences between GAT-IOP and IOPcc were significantly related 

to CCT in healthy eyes. On the other hand, the study in glaucoma patients found both 

pressure measurements provided by the ORA (IOPcc and IOPg) to be positively 

correlated with CCT [74].  

Previous studies have reported that a thinner CCT is an independent risk factor for open-

angle glaucoma in patients with ocular hypertension (OHT)[75-79]. A study by Shah et 

al. [80] found positive relationships between ORA parameters; CH versus CCT, CRF 

versus CCT and CRF versus CH in normal eyes. In both glaucoma and normal subjects, 

CCT is positively correlated with CH [81-83]. As the cornea contains more collagen 

fibres and ground substances, resistance against deformation and damping capacity 

rises. Thus, the faster the cornea regains its original condition following deformation, the 
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higher the rigidity of the cornea. The IOP represents a supplementary force that restores 

the cornea to its original position [84]. 

Many studies noted that the IOPcc was inversely correlated with CH [65, 68, 85-87]. 

Kamiya et al. found that eyes with thinner CCT as well as higher IOP values are more 

predisposed to having lower CH [68]. The CRF increases with rising IOP indicating that 

resistance against the deformation of the cornea is higher in eyes with higher IOP 

values. The confounding effects of IOP and CCT on ORA biomechanical parameters 

was investigated by Galletti et al. leading to new values termed “transformed CH” 

(CHcorr) and “transformed CRF” (CRFcorr)[88]. These values are not in frequent use 

now. 

1.2.4.3 Corneal Curvature 

Corneal curvature significantly affects CH in patients using orthokeratology contact 

lenses. The CH and CRF correlated negatively with corneal curvature, with longer radii 

of curvature (flatter corneas) associated with lower CH and CRF values [89]. Chen et al. 

had successfully induced lower CH and CRF values by the flattening the cornea by using 

reverse geometrical lenses [90]. A lower CH value (1 mmHg per 6 D) was also 

measured in the flattened corneas of young myopias [91]. The  CRF was also  

significantly higher in myopic patients using contact lenses compared with those that did 

not regardless of the duration of usage [92]. Despite these studies, much needs to be 

learned about the biomechanical patterns in healthy eyes in relation to corneal curvature 

as an influence on ORA readings. 

1.2.4.4 Gender, Axial Length and Myopia 

The recent large population-based study of British adults by Foster et al. found a 

significant positive association between IOP and the axial length of the eye [93]. The 

study also identified that longer axial length was significantly associated with lower CH 

and higher IOP, which is in agreement with the findings of a large population-based 

study among myopic Chinese children [94]. In support of these findings, higher CH was 

observed among nanopthalmic subjects [95]. It is believed that the sclera as the 

outermost ocular wall that contributes to axial length; has its own biomechanical 

properties. This may be related to the differences in the biomechanical properties of the 

cornea. In the study by Fowler et.al, the IOPg, but not IOPcc, is higher in women than in 

men [93]. Other studies also showed highly significant associations between both CRF 
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and CH as well as with age and gender in which mean CRF and CH declined with age 

and were higher in women than in men [58, 63, 96, 97]. 

1.2.4.5 Diurnal Differences  

Studies have shown that IOP seems to be independent of any variation in hysteresis or 

CCT [98, 99]. The CCT and CH is generally constant throughout the day [100]. However, 

highest IOP readings were recorded in the morning and lowest in the afternoon 

regardless of the change in these corneal properties. Other studies have found no 

differences in the diurnal variability of corneal biomechanical parameters during daytime 

or over 24 hours [98, 99, 101, 102]. 

1.2.4.6 Topical Anaesthesia and Topical Prostaglandin Analogue Therapy 

Topical corneal anaesthesia and dry eye does not influence measurements of CH and 

CRF [103, 104]. A study by Agarwal et al. demonstrated that CH is influenced by IOP 

[105]. The baseline CH is reported to be a strong predictor and independently associated 

with the magnitude of IOP reduction with prostaglandin analogue eyedrop. The study 

also noted that newly treated glaucoma subjects with lower baseline IOP experienced a 

higher reduction in IOP compared to those in the highest CH quartile [105]. 

1.2.5 Acquired biomechanical changes of the cornea 

Acquired changes in corneal biomechanics can be categorized by corneal modifications 

that are treatment related, i.e. corneal collagen crosslinking (CXL) and post-refractice 

surgery; and those resulting from ocular or systemic pathology, i.e. keratoconus, Fuch’s 

endothelial dystrophy, and diabetes mellitus. 

1.2.5.1 Laser Refractive Surgery  

The corneal biomechanical integrity may reduce after PRK and LASIK [106-110]. A one 

dioptre correction of myopia with depth of flap excision (ablation depth, ~16 µm) results 

in a reduction in CH (0.25 mmHg) and CRF (0.37 mmHg) [111]. Additionally, studies 

have shown that the corneal flap preparation prior to surgery itself can cause a reduction 

in CH (1 mmHg) and CRF (0.8 mmHg) [107, 112]. Even though studies have shown a 

reduction of CH and CRF after LASIK, few longitudinal studies showed that no further 

corneal biomechanical parameter changes occurred after 6-months post treatment [106, 
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113]. This is in contrast to keratoconus subjects that noted significant changes occurs 

with disease progression [114].  

The use of ORA as a screening tool to determine the mechanical integrity of the cornea 

has been recognized to help minimize the risk of keratectasia after LASIK. In a patient 

with normal corneal thickness and topography, a “pre-ectatic” condition of the cornea 

may be suspected when there is a low (<8 mmHg) CH and a positive difference between 

CH and CRF (CH − CRF > 0, which means a low P2 value) , which is an important 

consideration in therapeutic management [115].   

1.2.5.2 Primary Corneal Ectasia  

Clinically, biomechanical changes of the cornea can manifest as corneal shape changes, 

shape instability over time and increased sensitivity to any physiological or surgical 

stimuli. The mechanical properties of the cornea and its constituent materials are 

essential to relate its geometrical and optical properties with its mechanical behaviour. 

Keratoconus is a prime example of corneal ectasia which lead to corneal deformation 

and thinning. It affects dramatically the mechanical behaviour, and several treatments for 

these diseases attempt at modulating its biomechanical response. 

In keratoconus, the CRF and CH values are reduced and a positive difference of CH − 

CRF was noted. This is especially detected in patients with increasing severity of 

keratoconus [47, 116-120]. These changes are postulated to be due to the alteration of 

the ground substance of the keratoconic eye which lead to lower lamellar adhesion and 

a lower shear modulus [88, 121, 122]. In advanced keratoconus with corneal scarring, 

CH and CRF values may be higher due to stiffness inflicted by the fibrous scar tissue 

[88]. There are no observed differences between CH and CRF values in keratoconus, 

but in comparison to the pellucid marginal degeneration patients, the first peak of the 

ORA signal was noted to be higher [123]. The significance of this observation is 

unknown as there is limited information on the corneal biomechanical properties of the 

latter diagnosis. Zhang et al. have suggested with the use of  updated ORA software, 

new parameters derived from area under the corneal hysteresis waveform can also 

significantly differentiate keratoconus severity [124]. 
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1.2.5.3 Corneal Cross-linking  

Corneal cross-linking therapy (CXL) is a minimally invasive surgical procedure that 

involves an application of riboflavin solution to the eye for corneal ectasia such as 

keratoconus. The CXL aims to increase the rigidity of the corneal tissue, thus preventing 

progression of corneal ectasia. However, an interesting observation by many studies 

showed that the ORA measurements before and after riboflavin/UVA crosslinking 

showed no significant differences in CH and CRF up to 1 year after treatment [125-128]. 

Even though the CH was noted to reduce in the initial several weeks after CXL 

procedures, the effect subsided with time. This may be due to the effect of oedema and 

corneal matrix reorganization that occurred immediately after CXL therapy. The absence 

of corneal biomechanical parameter changes post CXL therapy may be inferred as the 

limitation of both ORA parameters to display the overall mechanical inertia and viscous 

properties of the cornea (ground substance, collagen matrix interaction). Other research 

suggested the use of a static contact method to provide better detection of the effect of 

CXL on the cornea [129, 130]. Additional calculations were suggested in an updated 

ORA software version (version 3.0 and above) by assessing the area under the second 

peak of the ORA signal. It was claimed to be more sensitive to detect changes [125, 

131]. 

1.2.5.4 Corneal Oedema and Corneal Swelling  

Corneal oedema is one of the recognised immediate postoperative changes that occurs 

following cataract surgery and vitrectomy and causes increase of the corneal thickness. 

Even though corneal thickness increases, corneal hysteresis decreases due to the 

increased hydration of the cornea [63, 132-134]. The higher water content leads to the 

dilution of the corneal ground substance and thus, resulted in reduced viscosity. It 

reflected in reduced corneal damping capacity in these patients. Similar findings were 

noted as the corneal thickness also increases with corneal swelling in bullous 

keratopathy or Fuch’s corneal dystrophy [19, 135]. However, cataract surgery did not 

cause any significant permanent change in corneal biomechanics [133, 136, 137]. In 

post penetrating keratoplasty patients, reduced CH and CRF was noted in patients with 

thicker corneas due to the altered corneal structure following surgery [138]. Studies 

looking at normal subjects with induced corneal oedema by contact lens usage , did not 

show any significant changes with CH [139, 140]. In conclusion, CH does not appear to 

usefully quantify biomechanical changes induced by corneal swelling compared to 

CRF.[140] 
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Studies comparing corneal changes during menstrual cycle showed conflicting results. 

Goldich et al. [141] found that the CCT and biomechanical parameters significantly 

varied during the menstrual cycle. The CH and CRF were temporarily decreased at 

ovulation and this correlates with reduced corneal thickness during this phase. The study 

suggested that such corneal changes may be important to consider during screening of 

candidates for laser refractive surgery [141]. However, a study by Seymenoglu et al. 

[142]  suggested no biomechanical changes occurred. Both studies had a small study 

cohort which affected the power of the research and may explain the different results. 

1.2.5.5 Eye Rubbing and Eye Massage  

Intensive (20 seconds duration) eye rubbing, i.e. directly over the cornea, leads to a 

reduction in the viscosity of the PGs and GaGs of the ground substance and, 

consequently, reduces CH and CRF values [43].  As the ground substance behaves like 

a thixotropic substance, the pressure and movement forces induced by eye rubbing 

cause the corneal tissue to be reduced of its viscosity. Eye massage through the upper 

eyelid also leads to changes in CH and CRF. In this situation, IOPcc decreases, 

whereas, the CH increases whilst the CRF decreases [143]. These changes are caused 

by IOP alterations, not by structural modifications, as is the case with eye (cornea) 

rubbing. After correction for IOP, changes in CH and CRF are no longer observed [143]. 

1.3 Glaucoma 

Glaucoma is one of the leading causes of blindness in the world [144-146]. It is defined 

as an acquired optic neuropathy which leads to destruction of ganglion cells and fibres 

and eventually causes irreversible visual field loss. The disturbance of the outflow of 

aqueous humour, a natural clear nourishing intraocular fluid, resulted in increase of the 

IOP. 

The IOP is recognised as the most important modifiable risk factor in glaucoma 

treatment. If high IOP left untreated, it can lead to optic nerve damage resulting in 

progressive, permanent vision loss and then eventually blindness. 
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1.3.1 Types of glaucoma 

In general, glaucoma can be divided into several categories. Namely, primary and 

secondary glaucoma or open angle and close angle glaucoma. In this region, the most 

common type is open angle glaucoma. Primary open angle glaucoma (POAG) and 

normal tension glaucoma (NTG) are the most common glaucoma diagnoses in a 

glaucoma clinic. 

“Open-angle” glaucoma occurs when the drainage of the aqueous out of the eye is not in 

balance with its production. Clinically, the angle of the anterior chamber of the eye , 

where the iris meets the cornea is as wide and open as it should be. The obstruction or 

resistance of the aqueous is caused by the slow clogging of the drainage canals, 

resulting in increased eye pressure.  

Patients with POAG present at an eye clinic with high intraocular pressure and impaired 

visual function. Patients usually have an ocular finding that is related with optic nerve 

head damage due to the persistent high pressure. NTG is also called low-tension or 

normal-pressure glaucoma. In NTG, the optic nerve is damaged even though the eye 

pressure is within normal values. It is not yet fully understood why some people’s optic 

nerves are damaged even though they have almost normal pressure levels. Ocular 

hypertension (OHT) is not a glaucomatous condition but rather an ocular condition that is 

diagnosed due to recurrent high intraocular pressure without any ocular or visual 

function anomaly.  

Angle-closure glaucoma is a less common type of glaucoma. It can be caused by 

blocked drainage canals, resulting in a sudden rise in intraocular pressure or a closure or 

narrowing of the angle between the iris and cornea. It develops rapidly in acute cases 

and has very aggressive symptoms such as severe headache, loss of vision and severe 

nausea. In most acute cases the effect can be reversible if treated urgently. For chronic 

cases, the damage can be progressive and irreversible. 

1.3.2 Glaucoma and IOP 

Epidemiological studies have demonstrated that even a mild reduction in IOP (up to 1 

mmHg) can considerably decrease the risk of worsening of glaucoma [75, 147, 148]. 

Therefore, an accurate IOP measurement is of paramount importance in the 

management of glaucoma patients.[149] The evaluation of IOP is used to assess 

disease control and treatment response, and lowering IOP has resulted in reducing the 
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rates of disease progression over 5 years [30, 150]. The IOP can be decreased through 

topical and oral medications, laser procedures and/or other surgical interventions.  

1.3.3 Glaucoma and Corneal Biomechanics 

While the relationship between glaucoma susceptibility and corneal biomechanical 

variables (beyond their effects on IOP measurement) has been previously studied, 

substantial efforts are also being directed towards answering questions about how 

biomechanical factors in the posterior segment might be related to those in the anterior 

segment [9]. 

Many studies that have utilised the ORA have found that the CH and CRF values of the 

glaucomatous eyes are lower compared to normal and OHT. This lead to an assumption 

of possible structural relationship between the cornea and the connective tissue of the 

optic nerve head (ONH) [81, 116, 151, 152]. An association between the biomechanics 

of the cornea and functional behaviour of the lamina cribrosa was reported [153]. In 

laboratory-based studies, the surface compliance of the lamina cribrosa has been found 

to decrease and the cornea to become more rigid with increasing age [75, 154]. Wells et 

al. found that in glaucoma patients, CH was correlated with the mean cup depth of the 

ONH and that higher CH values were strongly correlated with the higher deformability of 

the ONH [155]. Mansouri et al. found a weak association between CH/CRF and 

structural as well as functional aspects of glaucoma severity [57].  

Several studies had looked into the corneal biomechanical properties of OHT, NTG and 

POAG patients and found that corneal resistance factor (CRF) was significantly less in 

NTG and maximum in POAG and OHT [12, 151, 156]. Studies have also shown that low 

corneal hysteresis is associated with glaucoma damage[17, 153, 157]. Previous studies 

showed that CH and CRF [158] are linked to glaucoma severity [9, 155] and 

progression[159], and may result in GAT producing lower IOP readings than non-contact 

tonometers[160]. 

1.3.4 Ocular Biomechanics and the Risk for Glaucoma 

A study suggested that glaucoma risk assessment may be possible based on 

biomechanical properties [17]. After the correction of corneal thickness and IOP, patients 

undergoing ocular hypertension treatment (OHT) had higher CH (corrected CH) and 

CRF values than healthy subjects, although the difference between these values was not 

statistically significantly [161]. Corrected CH is lower in patients with glaucoma and 
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normal pressure glaucoma than in healthy subjects, perhaps indicative of a lower tissue-

damping capacity in glaucoma [161]. A low CH may be considered an independent 

indicator of the presence and progression of glaucoma. Even after the reduction of IOP, 

the CH is lower in glaucomatous eyes than in normal eyes [162, 163]. 

Conversely, a high CH value might represent a beneficial element in halting the 

glaucoma progression [17]. Some OHT patients seem to possess a higher corneal-

damping capacity, which may be extrapolated to the biomechanics of the ONH [164]. 

Moreover, there is no significant difference in corrected CH between normal-tension 

glaucoma and primary open-angle glaucoma. The often cited difference in uncorrected 

CH between these must thus be ascribed to significant differences in IOP [165]. For 

example, mean CH is significantly lower in subjects diagnosed with glaucoma compared 

with glaucoma suspects (ocular hypertensive and normal patients), while CRF is useful 

for differentiating between subjects with ocular hypertension and glaucoma [75]. When 

combined, the early evidence suggests that corneal biomechanical factors hold 

considerable promise in providing IOP-independent predictive variables for glaucoma 

development or progression. One study had reported that significantly lower CH is seen 

in subjects with congenital glaucoma when compared with age-matched control 

subjects,[12] while another study showed that patients with the glaucoma-induced pits of 

the optic nerve have lower CH than glaucoma patients without these changes [153]. 

Congdon et al. reported the impact of CCT and CH on various glaucoma damage tests. 

Both parameters were found to be independently associated with glaucoma damage 

changes such as a progressive increase of cup-to-disc ratio and visual field defects. The 

authors concluded that thinner corneas provide lower IOP readings that can affect the 

decision by practitioners towards applying a wrong target intraocular pressure and 

withholding adequate IOP-lowering therapy. The study on OHT subjects suggested that 

CCT as the strongest predictor of conversion from ocular hypertension to primary open-

angle glaucoma[17]. Other studies have also observed that the worsening of the visual 

fields assessment is more likely to occur in eyes with lower CH [17, 165-167]. The 

biomechanical properties may be more predictive of glaucoma development and 

progression than IOP level.  
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1.4 Keratoconus 

Keratoconus is an acquired ocular disease and the most common primary corneal 

ectasia. It is a corneal degenerative disease which is characterised by localised corneal 

thinning that leads to conical deformation and subsequent distortion of vision.  It is a 

bilateral ocular disease with asymmetrical presentation [168-170]. The most common 

location of corneal thinning is inferior temporal followed by central and superior [171-

173]. The changes often manifest as a change of shape (geometry) or corneal ectasia 

which affected its mechanical and optical properties. The ectatic changes usually 

manifest during teenage life during the growth hormone surge [170, 174]. Even though it 

was thought that the disease stabilizes after the second decade of life, it may progress 

for the next few decades [174]. Keratoconus can present unilaterally. However the other 

presumed normal eye may develop the condition later [175]. This acquired corneal 

ectasia affects both genders. However a higher prevalence is seen in males [175]. 

Though it may affect any ethnicity, Asians are predisposed to this condition in 

comparison to Caucasians [176, 177]. 

Keratoconus can present with variable ocular symptoms and signs which depend on 

disease severity. The aetiology and pathogenesis of this disease is still poorly 

understood despite much clinical and laboratory research. However, researchers have 

proposed genetic, environmental and biochemical factors as possible causes for 

keratoconus [170, 174]. 

1.4.1 Classification of Keratoconus 

There are many suggested methods for classifying of keratoconus. Several methods 

have been described in the literature to both evaluate and document progression in 

keratoconus, but there is no consistent or clear definition of ectasia progression. The 

Amsler-Krumeich (AK) classification system (Table 1.1) is amongst the oldest and still 

the most widely used. In the AK system, the severity of keratoconus is graded from 

stage 1 to 4 using spectacle refraction, central keratometry, presence or absence of 

scarring, and central corneal thickness [178, 179]. There are other types of 

classifications that are based on morphology, evolution of clinical signs and index-based 

assessment (Table 1.2). The AK scale was used in present study. 
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Table 1.1 Classification based on mean K-readings on the anterior curvature sagittal 
map, thickness at the thinnest location, and the refractive error of the patient 

Stage Findings 

1 Eccentric steepening 
Myopia, induced astigmatism, or both <5.00 D 
Mean central K readings <48 D 

2 Myopia, induced astigmatism, or both from 5.00 to 8.00 D 
Mean central K readings <53.00 D 
Absence of scarring 
Corneal thickness >400 micron 

3 Myopia, induced astigmatism, or both from 8.00 to 10.00 D 
Mean central K readings >53.00 D 
Absence of scarring 
Corneal thickness 300 – 400 micron 

4 Refraction not measurable 
Mean central K readings >55.00 D 
Central corneal scarring 
Corneal thickness < 200 micron 
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Table 1.2 The list of keratoconus classifications based on three different methods. 

Keratoconus classification based on morphology. [174] 

Nipple Diameter of the corneal cone≤5mm, located more commonly infero-

nasal quadrant, can be central or paracentral. Refractive error easily 

correctable with contact lens. 

Oval Diameter of the corneal cone≥5mm, located more peripheral but 

commonly in the infero-temporal corneal quadrant. More difficult 

contact lens correction. 

Keratoglobus More than 75% of the cornea is ectatic. Very difficult contact lens 

correction. 

Keratoconus classification with index-based systems. 

Author Index Cut of    

point  

Description 

Rabinowitz [174] K value 

S value 

47.2 

1.4 

Diagnosis is based on central 

keratometry and inferior-superior 

asymmetry in keratometric power 

Maeda [180] KPI 

KCI% 

0.23 

0% 

The KPI value is derived from eight 

quantitative videokeratography 

indexes  

Smolek/Klyce [181] KSI 0.25 An artificial intelligent system is 

employed to detect and assess the 

severity of keratoconus. 

 

1.4.2 Keratoconus and IOP 

The morphological changes associated with keratoconus have been shown to cause 

errors in applanation tonometer [182]. Underestimates in IOP may occur due to altered 

corneal parameters such as central corneal thickness and corneal biomechanical 

changes [183-186]. Mollan et al. suggested Dynamic Corneal Tonometry (DCT) and 

ORA as suitable tonometric devices for keratoconus due to their relative independence 

from the central corneal thickness and corneal biomechanics [187]. The DCT is an 

electronic slit-lamp mounted device which has a probe that applanates the whole corneal 

surface for tonometry. However, studies reported that DCT gave higher IOP readings 

than GAT [187, 188]. Even though the DCT measurement in the keratoconic cornea was 
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found to have no association with corneal thickness and curvature, it may be influenced 

by other biomechanics properties of the cornea [188, 189].  

1.5 Aims of study 

Previous studies showed that ORA provide higher IOP measurements compared to GAT 

[74, 157].  However both tonometers are particularly useful to ascertain a more accurate 

IOP value especially amongst patients with keratoconus and those presenting after 

refractive surgery patients. Studies have reported that the most consistent confounding 

factor of IOP measurements by different tonometers is the variation in corneal 

biomechanical parameters, namely corneal hysteresis (CH) and corneal resistance 

factor (CRF) [18, 157, 187, 190]. Although the result may slightly vary in terms of the 

size of the effect, CCT also affected tonometry agreement [157, 191]. Despite much 

published literature on tonometry agreement, only a few explored the factors that 

influence the agreement [157, 192].  

This study aim to investigate the agreement of four different tonometers compared to 

GAT. Additionally the pattern of tonometry bias will be investigated to evaluate any 

proportionate bias with IOP change in eyes with different diagnoses. Subjects with OHT, 

NTG and POAG have regular corneal surface that seem ‘similar’ to normal cornea. 

Keratoconic eyes have abnormal corneal curvature that may ‘distort’ the tonometry 

measurement. This study hypothesizes that there are differences in tonometry 

agreement between the different ocular diagnoses. This study will investigate the effect 

of several demographic variables such (age, gender and ethnicity) on tonometer 

agreement. The variability of agreement between the instruments employed may be due 

to corneal physical properties(corneal biomechanics and corneal thickness) . This 

current study follows the guideline on reporting reliability and agreement studies as 

suggested in previous literature [193]. 

The ORA parameters may give further insight into the relationship between corneal 

biomechanics and IOP measurement in eyes affected by ocular hypertension (OHT), 

different types of glaucoma, corneal pathologies and normal eyes. The advent of the 

CST instrument with additional corneal biomechanical parameters may demonstrate 

further association between these parameters with glaucoma and keratoconus 

diagnoses. The evaluation of corneal dynamic response parameters by the CST 

amongst eyes with different clinical diagnosis is still lacking. Thus, this study aims to 

evaluate the clinical impact of these new and exciting parameters. This study will also 
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explore the agreement of corneal biomechanical properties by ORA and Corvis ST and 

investigate factors that influence these parameters. 

In summary, this study investigates agreement between GAT, indentation, rebound and 

non-contact tonometers in different eye diseases and ethnicities. This study relates 

findings to the corneal biomechanical parameters as determined by ORA and the newer 

Corvis ST. It will give a better insight into the agreement of IOP measurement between 

different tonometers and GAT. Additionally, the corneal properties influencing IOP 

measurements are investigated. The study will explore the choice of tonometry which will 

be suited to diagnosis and will help improve patients' standard of care. 
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 CHAPTER 2: METHODOLOGY AND INSTRUMENTS 

This study aim to examine the agreement between intraocular pressure and the 

corneal biomechanics in normal, glaucomatous and keratoconic eyes, as described in 

the section 1.5. This chapter describes the method of comparing measurements of IOP 

using GAT, Tonopen, iCare, ORA and CST.  

2.1 Study Design 

This was a prospective cross sectional study. The glaucomatous and keratoconus 

subjects were recruited from glaucoma and cornea outpatient clinics at the Birmingham 

and Midland Eye Centre, City Hospital, Birmingham. The healthy subjects were 

volunteer healthy patients, NHS employees, students and staff of Aston University, 

Birmingham.     

2.1.1 Criteria of selection 

The subjects were selected based on the inclusion criteria listed below: 

a. Age between 18-85 years old 

b. Subjects able to give informed consent  

c. Patients with eyes  that enable measurement by the instruments 

 

The exclusion criteria employed was: 

a. Patients with corneal diseases or eye conditions that prevented valid 

measurement by the instruments. For example:  

i. central corneal scar 

ii. severe corneal oedema  

iii. severe dry eyes  

iv. ocular surface diseases 

b. Patients who had underwent ocular surgery that may affect scleral and corneal 

rigidity. For example: 

i. post vitrectomy/scleral buckle surgery 

ii. post sclerectomy surgery 

iii. post corneal transplant surgery 

iv. post corneal cross-linking treatment 



Methodology and Instruments 

Page 44 

2.1.2 Study Flow 

An information leaflet on the research project was provided to the patients prior to thei 

arrival to the eye clinic. On the examination day, the researcher further explained the 

purpose of the study and all questions were answered. The participants then signed an 

informed consent form(see appendix A for information leaflet and informed consent 

form).The study flow is summarised in Figure 2.1.  

Information on the current medications, other medical illness and patient’s ethnicity was 

collected. Subjects were advised to abstain from wearing contact lens at least 24 hours 

prior to eye examination. All eyes were anaesthetised with the instillation of one drop of 

Minims Proxymetacaine Hydrochloride topically.  

Initially, examination was performed on each eye with Tono-pen, Icare, Corvis ST and 

ORA, in a randomised order. The randomisation was based on free research sample 

randomisation software that was downloaded from http://www.randomizer.org. Two 

repeated measurements were taken with each tonometer.For ORA, the mean IOP of 

Tonopen and Icare were chosen based on the reliability indicated on the display 

screen. An IOP measurement with reliability index of 5% or less was recorded as the 

IOP value. 

A pause of approximately 30 seconds was allowed between each measurement taken 

with the same tonometer and a minimum duration of 5 minutes was allowed between 

the different tonometer measurements. All the measurements were taken by the 

researcher (WH) who is an experienced ophthalmologist and trained to operate the 

non-contact tonometers. The final examination was with GAT by different masked 

observers. The masked observer was not fixed. However, all observers are 

ophthalmologists with at least five years of experience in clinical ophthalmology. All 

subjects were examined by slit lamp examination at the end of each study session to 

ensure no adverse effect on the cornea. 
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Figure 2.1 Flowchart of the study 

 

2.1.3 Steps to reduce bias in repeated tonometry  

In a normal physiological condition tonometry can be influenced by the body’s regular 

physiological process such as cardiac and respiratory pulses. Thus, for non-contact 

tonometry the IOP value must be taken multiple times to obtain a mean value of the 

readings. Most studies of IOP measurement take at least 3 readings for each 

instrument [79]. For GAT, this is not a problem as the reading is taken at mid-point 

between the systolic and diastolic IOP. Repeated measurements from a non-contact 

tonometer are acceptable, as the readings are completed almost within seconds. Thus, 

the effect of physiological change during the IOP reading is minimised. These repeated 

IOP measurements for non-contact tonometry in immediate sequence have been 

shown not to cause reduction of the IOP readings. Studies have investigated the effect 

of repeated measurements using different sequences between a non-contact 

tonometer and GAT [194, 195]. Although the intersession result between groups of 

tonometers was not conclusive, due to the design of the study, it confirmed that there 

was no significant reduction of IOP measurements between two non-contact 

tonometers which was taken consecutively in the same session/setting [194, 195]. 

The order in which the tonometers are used may affect the accuracy and reliability of 

the GAT more than non-contact tonometer. Studies have reported that higher IOP 

value by GAT compared to non-contact tonometry when the GAT was used later to 

Patient selection and 
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obtained

Sequence A

1) Non contact 
tonometry 

2) Contact  tonometry

Sequence B

1) Contact tonometry
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measure the IOP [192, 196, 197]. Therefore, the order of IOP assessment was 

randomised between non-contact tonometry and GAT in this study (Figure 2.1) 

As the non-contact tonometers do not have an aqueous massage effect it follows that 

IOP assessments made with GAT would always be accurate while assessments made 

with non-contact tonometry would be accurate only when measured before GAT. This 

would bias for a lower IOP with the non-contact compared with the GAT and because 

many non-contact tonometers read up to 3mmHg higher that the GAT (in subjects with 

IOPs up to 21mmHg), it may lead to the conclusion of a better agreement (between 

any non-contact and the GAT) than actually exists. However, a recent study showed 

significantly higher IOP readings compared to GAT and the study employed a 

randomised sequence for IOP readings [187]. Non-randomisation of the sequence of 

tonometer examination would introduce a systematic bias into such an experimental 

design. If the measurements were made too close in time, the between-method 

differences between GAT and non-contact tonometer may return higher than GAT 

readings. Thus it would be underestimated and vice-versa for non-contact tonometers 

that return lower-than-GAT readings. Thus, for this study, a duration of at least 2 

minutes gap between each measurement and 5 minutes gap between each tonometry 

with randomisation of the sequence of tonometer (except GAT), would reduce any 

ocular massage effect (due to the repeated tonometer applanation on the surface of 

the cornea) and minimise any bias of IOP measurements.  

The inert-observer variability during applanation tonometry was known to affect the 

accuracy and repeatability of GAT measurement. This study acknowledged that this 

may affect the outcome in the agreement analysis. In order to reduce this bias, the 

operators must have at least 5 years of clinical experience in applanation tonometry. 

This is described in item 2.1.2. Additionally, this study performed repeatability analysis 

of each tonometer to ensure high reliability and repeatability of tonometry (details in 

item 2.4.2).  

It is well known that following a repeated applanation of the cornea during IOP 

measurement with Goldmann IOP reading is reduced. The reduction in IOP 

subsequent to indentation or applanation is probably due to a decreased anterior 

chamber volume due to increased aqueous outflow or to the negative feedback loop 

proposed by Stocker et al., which causes a reduction in aqueous production [198]. This  

postulation was based on a laboratory-based research and was supported by another 

study[199].  
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An average of IOP measurements is important for contact tonometers. For example, 

Goldmann tonometer requires at least a two minutes interval [200] before repeating 

IOP measurements. This would give the cornea time to regain its proper anatomical 

and biomechanical properties and reduce bias. In this study, the intra-operator 

repeatability of all tonometers was assessed by taking two repeated measurements. 

The repeated measurements were done after two minutes duration. The repeatability 

performance was analysed and all tonometers showed high to excellent repeatability. 

The analysis is presented in section 3.2.1. Following that, this study concluded that to 

reduce repeated tonometry bias, further examination would involve one measurement 

of GAT (which is principally measured at a balance between a diastolic and systolic 

pulse pressure), one completed Icare and Tonopen (with standard deviation 5% and 

less), two CST measurements and one complete ORA examination (consisting of 4 

repeated air-puff measurements).  

2.2 Study Instruments 

In order to reduce bias and ensure valid measurements of the tonometers all 

instruments was calibrated, checked and cleaned prior to the start of the study and 

periodically as suggested in the instruments' manuals. This study is aimed to examine 

the agreement of IOP measurements between these tonometers: 

1. Corvis® ST (CST); Oculus Optikgeräte GmbH, Wetzlar, Germany 

2. TonoPen XL® (Tonopen); Bio-Rad, Glendale, California 

3. iCare® (Icare); Tiolat Oy, Helsinki, Finland 

4. Ocular Response Analyzer® (ORA); Reichert Ophthalmic Instruments, Buffalo, New 
York 

5. Goldman applanation tonometer (GAT); Haag-Streit, Bern, Switzerland 

2.2.1 Goldmann Applanation Tonometry 

Currently, the gold standard for measuring IOP is the Goldmann applanation tonometer 

(GAT) which is employed in glaucoma clinics worldwide. This technique is operator 

dependant. It requires a skilled operator as well as contact of the instrument to the 

patient’s eye. Fluorescein and topical anaesthetic drops must be used. Its 

measurements are also influenced by the tear film and the physical properties of the 

cornea (i.e. thickness, rigidity, curvature, and hysteresis)[15]. The corneal 
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biomechanical influence on applanation tonometry is a subject of high interest. With the 

knowledge of these limitations, new tonometers have been developed over the past 

decades in order to improve tonometry methods so that IOP values are less affected.   

2.2.2 Tonopen© XL (Reichert) 

The Tonopen XL (Tonopen) is an ‘electronic’ portable applanation tonometer that uses 

a disposable silicone tip cover, and requires anaesthetic drops. It has a small contact 

area compared to GAT (2.36mm2 vs 7.35mm2, respectively) and is recommended for 

tonometry on irregular corneal surface [201, 202]. The device utilises micro strain 

gauge technology and a 1.02 mm transducer tip. Its method is based on Mackay-Marg 

tonometry principle which involved repeated applanation/indentation of the cornea with 

its tip. It is battery operated and measures IOP ranging from 5 to 80mmHg. After the 

cornea is anaesthetised, the operator touches the covered tip of the Tonopen to the 

centre of the cornea several times. Each corneal indentation will be stored and 

analysed by the device. The average measurements of several good readings are 

analysed. Then the digital display on the Tonopen will give the IOP with an estimate of 

the variability between readings [203]. The mean IOP and the standard deviation of the 

measurements will be shown on the display screen. Tonometry values with less than 

5% standard deviation will be recorded for the study.  

The IOP readings by Tonopen are quite consistent and accurate when compared with 

GAT findings [187, 204]. The Tonopen may be more “user friendly” in the presence of 

corneal pathology as it applanates a smaller area of the cornea [205]. It has clear 

advantages in portability, and measuring IOP in different postures.  There is evidence 

that Tonopen measurements are also affected by CCT [192]. In addition, it has a 

tendency to overestimate IOP, and therefore its measurements need to be correlated 

with other clinical findings [206]. It is one of the more popular tonometer used by 

ophthalmologists and optometrists worldwide.  

2.2.3 iCare © 

The rebound tonometer iCare® (Icare)(Tiolat Oy, Helsinki, Finland) utilises a small 

plastic probe which bounces back after touching the corneal surface. It has been  

commercially available since 2003.The corneal surface contact made by Icare is very 

minimal and extremely rapid and therefore topical anaesthesia is not required. The 

deceleration of the probe after the corneal surface contact is measured 
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electromagnetically and the device produces IOP value on its electronic display panel. 

With the aid of inbuilt software, it takes the average of 4 out of 6 most probable 

readings and discards the two outliers. Due to its portability, ease of use, multi-position 

tonometry, good reliability and freedom from anaesthesia, the Icare is increasingly 

used in eye clinics worldwide, particularly in those patients who do not tolerate GAT 

(such as children) [207, 208].  This device may offer a reasonable estimate of IOP in 

patients with known or suspected glaucoma where IOP cannot otherwise be obtained 

in clinic [209]. In selected children with glaucoma, home tonometry by Icare rebound 

tonometry was reliable, easily performed by caregivers, well tolerated and offered 

valuable IOP information for clinical management [210]. 

2.2.4 Corvis ST 

The Corvis© ST (CST) (Oculus Optikgeräte GmbH, Wetzlar, Germany) is a dynamic 

Scheimpflug corneal imaging and analyser. The CST combines a non-contact 

tonometer with a high-speed camera to capture a series of horizontal Scheimpflug 

images during corneal deformation with an air puff jet.  

A high speed Scheimpflug camera records the deformation with full corneal cross-

sections, which are then displayed in slow motion on a control panel (Figure 2.2); the 

camera records 4330 images/s with 8.5 mm horizontal coverage. The image resolution 

is as much as 640 × 480 pixels [211]. A representative output is shown in Figure 2.3, 

with several parameters related to the deformation process. During the deformation 

response, a precisely metered air pulse causes the cornea to applanate the first 

applanation. The cornea continues to move inward until reaching a point of highest 

concavity. Since the cornea is viscoelastic, it rebounds from this concavity to another 

point of applanation (the second applanation) and then to its normal convex curvature.  

The CST records throughout the deformation process and therefore gains information 

concerning the cornea’s viscoelastic properties and stiffness, as well as recording 

standard tonometry and pachymetry data . Table 2.1 lists the corneal biomechanical 

parameters derived from the CST measurement. Specifically, the CST corneal 

biomechanical outputs are time from the initiation of the air puff (time0) until the first 

applanation and second applanation (A-time1 and A-time2), length of the flattened 

cornea at the first applanation and second applanation (AL1, A-L2), corneal velocity 

during the first and second applanation moments (AV1, AV2), time from the start until 

the highest concavity of the cornea is reached; highest concavity time (HcT)), central 
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curvature radius at the highest concavity; highest concavity curvature (HcR), distance 

of the two surrounding “knees” at the highest concavity (peak distance) as seen in 

cross-section (HpD), and maximum deformation amplitude (DA), from start to the 

highest concavity at the corneal apex [212]. In addition to the deformation response, 

the CST is also able to measure the IOP and the corneal thickness simultaneously. It 

was commercially available since September 2011. Figure 2.3 shows the highly 

detailed dynamics of the cornea during its deformation displayed on the screen both 

objectively on graphs and subjectively on its dynamic video. This tonometer will be 

unique to this study as at the present time this protocol of this study is written, there are 

less than ten research papers in the literature on the Corvis ST. 

  Table 2.1. The parameters derived from the Corvis ST. 

Parameters Definition 

IOP  Non-contact IOP bases on first applanation response  

CCT Central corneal thickness based on optical image analysis 

A1T Time from start to first applanation 

A1L Cord length of the cornea during first cornea applanation 

A1V Speed of the cornea during first cornea applanation 

A2T Time from start to second applanation response 

A2L Cord length of the cornea during second applanation 
response 

A2V Speed of the cornea during second applanation response 

DA Amplitude of the corneal movement at highest concavity 
deformation  

HcR Radius of corneal curvature at maximum concavity 
deformation 

HpD Distance of the most anterior point of the anterior corneal 
surface during highest concavity deformation 

HcT Time from start to maximum concavity  
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Figure 2.2 The Corvis ST (left) is able to produce detailed images of the cornea during 
air puff deformation. The instrument is also a validated tonometer and pachymeter. 

2.2.4.1 Validity and Reliability of CST 

The CST was said to be a valid and reliable alternative for non-contact tonometry but 

the IOP value is not to be used interchangeably with GAT [211]. However, the study 

was done with a small and mixed cohort of glaucomatous and normal eyes. In another 

study of glaucoma suspects and glaucoma patients, corneal deformation amplitude 

influenced GAT readings more than CCT did [213]. The deformation amplitude was 

noted as one of the most reliable and accurate indicators of corneal biomechanical 

properties in these study populations [212, 213].  

Huseynova et al. examined the correlation of the biomechanical parameters of ORA 

and CST among normal subjects in a refractive surgery centre [20]. In the study, the 

corneal biomechanical parameters of both devices were found to be influenced by the 

central corneal thickness and IOP.  A repeatability and reliability study of the corneal 

dynamic response parameters of the CST revealed variable repeatability and 

reproducibility of CST parameters in normal subjects [214]. The authors used a 

different software version that produced 17 parameters compared to 12 parameters in 

the present study. The sample size was small (29 subjects of not more than 30 year old 

and 19 subjects older than 65 years)[214].  
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Figure 2.3 Left image: Cornea shape pre-applanation by air puff on the display screen 
of Corvis ST. Right image: A. First applanation of the cornea surface by air puff, B. 
Second applanation that resulted in further corneal deflection, C. Corneal deflection at 
its maximum. 

2.2.5 Ocular Response Analyzer (ORA) 

The ORA (Reichert Ophthalmic Instruments, Depew, NY, USA) is a non-contact 

tonometer that uses rapid air pulse to indent the cornea. It has an advance recording 

system to capture two applanation pressure measurements, one while the cornea 

moves inward and the other as the cornea moves outward [19].   

Two different pressure values were captured as the cornea resists the pressure from 

the air puff, causing delays in the inward and outward movement of the cornea. The 

first inward applanation pressure is called “P1,” the second outward applanation 

pressure is called “P2.” The air pressure increases up to a maximum level Pmax, the 

air pressure is decreased gradually until the second applanation is detected at 

pressure P2 [215]. 

The ORA produced an IOP reading called the Goldmann-correlated IOP (IOPg) which 

is the average of P1 and P2 (Figure 2.4). The difference between these two pressure 

values is termed corneal hysteresis (CH = P1 − P2), which is termed as a corneal 

biomechanical parameter. CH, which is claimed to be the result of the viscous damping 

within corneal tissues, provides a basis for two additional new parameters; corneal-

compensated IOP (IOPcc) and corneal resistance factor (CRF). The IOPcc is an 

empirical IOP measurement derived from pre and post-LASIK clinical data, which is 

intended to be less affected by corneal properties than Goldmann applanation 

tonometry (GAT). CRF appears to be an indicator of the overall “resistance” of the 

cornea [216], and is expressed by the equation: CRF = k1 × (P1 − 0.7 × P2) + k2. (k1 

A 
B 

C 



Methodology and Instruments 

Page 53 

and k2 are constants). Despite many studies exploring these parameters, the precise 

meaning of them is not completely understood.  

 

Figure 2.4 Measurement of ocular hysteresis by the Ocular Response Analyzer (ORA). 
1, convex cornea; 2, flat cornea (P1); 3, concave cornea; 4, flat cornea (P2) ; 5, convex 
cornea 

 

CH is a measure of the cornea’s viscous damping capacity contrasted to its stiffness, 

elasticity, or rigidity [46]. There is  no  evidence  for  an  association  between  CH  and 

CRF (ORA parameters) and the standard mechanical properties (Young’s modulus, 

rigidity) used to describe elastic materials[156].The CH and CRF are entirely empirical 

parameters, each of which characterizes the cornea’s response to deformation by an 

air impulse. According to the definitions of CH and CRF, differences in CH and CRF 

values correlate negatively with the value obtained for P2. 

The cornea contains collagen fibres and ground substance, resulting in a high 

resistance against deformation and a higher damping capacity. The stronger the 

corneal tension, the faster the cornea regains its original position following deformation. 

Studies found that higher IOPcc values were associated with lower CH values [65, 68, 

85-87]. Therefore, IOP represents an additional force that restores the cornea to its 

original position (like a slingshot) [84]. In contrast, CRF increases with rising IOP, 

indicating that resistance against deformation of the cornea is higher in eyes with 

higher IOP values. The simple ORA measurements of CH and CRF have presumably 
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characterized the biomechanical state of the cornea, since corneal thickness alone is 

insufficient to fully achieve this. 

2.2.5.1 Measurement Signal 

Other than CH and CRF values, the ORA measurement signal has more information 

about the biomechanical condition of the cornea. Interpretation of results should 

consider the undulation of the signal as well as the elevation of the first and second 

peak [217, 218]. The latest version of ORA software (version 3.0) has a keratoconus 

score in addition as well as waveform parameter. 

The tear film has an important effect on ORA measurements. Single measurements 

should be obtained quickly (within 20s), so as to avoid alterations of the tear film layer 

resulting from reflections of the infra-red light. A dry cornea leads to overestimated CH 

values. Sufficiently frequent blinking and adequate fixation are, therefore, essential 

preconditions. Thus, ORA results in children and patients with nystagmus must be 

analysed cautiously [219]. 

Although hysteresis has been considered an important aspect of corneal 

biomechanical behaviour, there have been conflicting reports concerning hysteresis 

measurement in some clinical situations [220]. In particular, CH has been shown to 

decrease during ageing [59], when the cornea tissue is known to stiffen with increasing 

age [52]. Such reports showed that there is a further need of understanding of the 

significance of hysteresis as a metric of corneal viscoelasticity and would require 

development of models, which could help in determining whether the viscous or elastic 

components are stronger predictors than hysteresis alone for the behaviour of the 

cornea in various pathological conditions. 

2.2.5.2 Reproducibility of ORA measurements 

The accuracy, reliability and reproducibility of ORA has been investigated in many 

studies [131, 221, 222]. The degree of consistency calculated using the intraclass 

correlation coefficient (ICC) for intra-session repeatability revealed ICCs of 0.731 and 

0.881 for CH and CRF, respectively, during a single test series (227).  
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For reproducibility of measurements between two examinations , an ICC of 0.799 was 

found, indicating highly consistent measurements during a series of repeated tests 

[161]. Other studies detected similar values, (0.78 and 0.93) for intra and inter-observer 

ICCs respectively [221, 222]. A unique feature of the latest software is the ‘waveform 

score,’ a parameter intended to facilitate reliability of the measured signal. Signals with 

waveform scores ≤3.5 should be considered with caution [223]. 

2.3 Statistics 

2.3.1 Justification for analysis of data from one or both eyes. 

The choice of analytic approach for this study was made on the basis of research 

objectives and the inter-ocular correlation of the study variables. For the agreement of 

IOP measurement between tonometers, the specific eye variables were not of interest, 

therefore, the most appropriate statistical analysis is at the level of each individual eye 

[224, 225].  Thus, in this study both eyes have been included in the analysis of inter-

method agreement between the tonometers employed.The diseased eyes in this study 

cohort were mostly asymmetrical. McAlinden et al. reported that in population with 

asymmetric eye disease, such as in glaucoma and keratoconus, it is acceptable to use 

data from both eyes [23]. Glynn et al. has demonstrated in their paper that, treating all 

eyes as the unit of analysis is the best approach for analysis especially with current 

regression models employed in the analysis of vision research [226]. This study had 

recruited satisfactory amount of sample to yield a strong power of analysis. The 

number of sample of each diagnosis is also adequate for a valid regression analysis.  

Amstrong had suggested an algorithm in making decision for including one or both 

eyes in ocular studies[225]. In accordance to the algorithm recommended by 

Armstrong ,  strong inter-ocular correlation are manifested by high interclass correlation 

(ICC) analysis with 95% confidence interval (95%CI). In this study, preliminary analysis 

of  the inter-ocular correlation of all was performed. In summary, the inter-ocular ICC of 

paired eyes was very weak to moderate (ICC less than 0.75) and the highest ICC for 

healthy eyes, glaucomatous and keratoconus eyes cohorts in this study were only 0.55 

(range of 0.45, 0.64). These indicated that the ICC of paired eyes were weak to 

moderate[227]. Thus, in this thesis, all eyes that fulfilled the selection criteria were 

included in this thesis. 
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2.3.2 Sample size and power calculation  

2.3.2.1 Sample size for tonometry agreement study 

The total sample size suggested for the agreement study was approximately 185 

subjects. In this study, calculation was also done using a formula [228] for sample size 

calculation for research in assessing agreement of different clinical methods.  Based on 

previous studies on tonometer agreements [187], the standard deviation (S.D.) of the 

differences (s) was estimated to be 2.0 mmHg. These will produce a sample size of 

approximately185 eyes. 

1.96ඨ
ଶݏ3

݊
ൌ  ሻܣܱܮሺݐ݊݁݉݁݁ݎ݃ܽ	݂	ݐ݈݅݉݅	݂	݈ܽݒݎ݁ݐ݊݅	݂݁ܿ݊݁݀݅݊ܿ

When s=2.0 and confidence interval of LOA,   

1.96ඨ
3ሺ2ሻଶ

݊
	 ൌ 0.5 

 

݊ ൌ 		
12

ቀ 0.51.96ቁ
ଶ ൌ 184.39 

2.3.2.2 Sample size calculation for repeatability study 

The repeatability analysis with which we can estimate within-subject standard deviation 

(Sw) depends on both the number of eyes (n) and the number of observations per 

subject, m. The width of the 95% confidence interval for the population within-subject 

standard deviation isൌ 1.96 ൈ
ௌ௪

√ଶሺିଵሻ
. Therefore, for a Sw of 15% and m of 2, the 

estimated sample size needed was 85 eyes. 
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2.4 Statistical analysis 

2.4.1 Data distribution 

Statistical analyses were performed using SPSS v21.0 (SPSS IBM Inc, Chicago, 

United States of America). The IOP values were normally distributed for each group of 

subjects (Shapiro-Wilk test, p>0.05). The Shapiro-Wilk (SW) test is chosen as it is a 

more sensitive and robust test to detect normality for almost all sample size [229]. In 

large datasets, the test of normality (SW) is very sensitive to small changes in data. 

Therefore, even though the normality test can be significant for non-normality, the 

sample distribution may still demonstrate a non-parametric distribution [230]. Hair et al. 

have described the effects of large sample size on reducing the undesirable effect of 

non-normality [231].The authors suggested that for sample sizes of more than 200, 

when non-parametric test is employed eg ANOVA, any unfavourable effect of non-

normality may be cancelled out [231]. 

This study has a total of 389 healthy eyes, 264 glaucomatous eyes and 113 

keratoconus eyes. Assumptions of normality were fulfilled for all parameters measured 

in this study except for HpD, A1L and A2L. However, statistically, non-normality does 

not affect Type I error rate substantially and parametric tests can be considered robust 

to non-normality [230, 231]. Where necessary and appropriate, non-parametric test can 

be used in the analysis of this research data.  

In order to reduce statistical test bias, the robust method of analysis is chosen. This is 

an option available in SPSS software. It is chosen by selecting the bootstrap option 

before executing the test. Bootstrapping estimates the properties of the sampling 

distribution from the sample data [232]. By bootstrapping, the analysis is done based 

on 1000 estimated distributions of samples when possible. In SPSS, it produced 

confidence intervals of the estimates, either in percentage (95% CI) or a method that is 

slightly more accurate known as BcA (bias corrected and accelerated confidence 

interval) [232].  

2.4.2 Repeatability Study 

Repeatability of measurements is defined as the variation in repeat measurements 

made on a particular subject under similar conditions i.e. by the same observer and 

within short duration [233]. In method agreement or comparison studies, the 
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comparison of the repeatability of each method is important because the repeatability 

of each method can possibly limit its agreement with others.  

For ORA, the manufacturer had suggested that the values from the signal with the best 

waveform score, is most representative. These measures are automatically chosen by 

ORA after completing four air-puff measurements. We were unable to do repeat 

measurement for ORA, due to the fact that the cornea would be subjected to at least 

eight air-puff measurements in a very short duration. This can expose the cornea to 

increase chance of air applanation and ocular massage, and reduce the reliability of 

ORA measurements. This study proceeded with analysis of the ORA based on one 

best waveform signal. 

This study analysed two repeated measurements of GAT, Icare, Tonopen and CST 

from 85 healthy eyes. For each method, the measurements were done almost 

consecutively separated by at least 5 minutes between each instruments.  

There are many ways to report repeatability of measurement of continuous variables in 

method comparison studies [193, 233, 234]. One way is by reporting the standard 

deviation (SD) of the measurement errors, which is similar to an estimate of the within-

subject SD (Sw). Other way is to report the SD of the differences between repeated 

measurements, which is equal to √2	 ൈ  Another alternative is to .ܦܵ	ݐ݆ܾܿ݁ݑݏ	݄݊݅ݐ݅ݓ

report the repeatability coefficient, which is defined by			1.96	 ൈ	√2	 ൈ  .ܦܵ	ݐ݆ܾܿ݁ݑݏ	݄݊݅ݐ݅ݓ

Bartlett et al. suggested that the absolute difference between the repeated 

measurements on a subject must not differ more than the repeatability coefficient 95% 

of the time [233]. The repeatability coefficient is an estimate. Therefore, it is important 

to calculate the confidence interval for it to indicate how precisely it has been estimated 

(CI for CR =1.96	 ൈ 	√2	 ൈ                                                   .(	ܦܵ	ݐ݆ܾܿ݁ݑݏ	݄݊݅ݐ݅ݓ	݂	ܫܥ√

Repeatability (test-retest variability) of the first and second tonometer measurement 

was quantified as the coefficient of variation (CV), repeatability coefficient (RC) and 

Intraclass correlation coefficient (ICC) [233]. The definitions of the statistical values 

above are:  

1. Coefficient of variation (CV) 

The CV aims to describe the dispersion of the measurement by a method in a way that 

does not depend on the measurement unit. The higher the CV, the greater the 

dispersion in the variable, thus the repeatability of measurement is low. CV is defined 
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as 100 x within-subject standard deviation (Sw) / overall mean and described in 

percentage (%). 

2. Repeatability coefficient (RC)  

RC is defined as an estimated average of measurement variability within a group of 

subjects. Low RC indicates low test-retest variability. The mean difference between two 

repeated measurements must be normally distributed. The formula for RC is, 2.77 ൈ

݄݊݅ݐ݅ݓ	 െ  Sw is derived from a one-way random .(Sw) ݊݅ݐܽ݅ݒ݁݀	݀ݎܽ݀݊ܽݐݏ	ݐ݆ܾܿ݁ݑݏ

effect model, which is defined as the square root of the within-subject mean square of 

error (the unbiased estimator of the component of variance due to random error).  

RC is an estimate value, thus, a confidence interval (CI) must be calculated for it to 

indicate how precisely it has been estimated. For SPSS, the CI of RC is calculated 

byඥܫܥ	ሺ݂	݄݁ݐ	݄݊݅ݐ݅ݓ	ݐ݆ܾܿ݁ݑݏ	݁ܿ݊ܽ݅ݎܽݒሻమ   .2√ݔ1.96ݔ

3. Intra-class correlation coefficient (ICC) 

In this study, the reliability of measurements by a single observer (intra-operator) was 

tested. The ICC calculated for this analysis was a two-way mixed type for absolute 

agreement of the measurements. For clinical measures, ICC was interpreted as 

follows: less than 0.75 represents poor to moderate reliability; 0.75 to 0.90 represents 

good reliability; greater than 0.90 represents excellent reliability [227]. 

This study adopted the assumptions suggested by Bartlett et al. [233]. This study 

assumed that any bias between methods is constant and the measurement errors 

variances of methods are equal in the glaucoma and keratoconus cohorts.  

2.4.3 Agreement Study 

Chapter 3, 4 and 5 of this thesis explore the agreement of IOP measurement by 

different tonometers within different study groups. The Bland-Altman method of inter-

method agreement is employed in this study [228, 234].The GAT is the reference 

chosen for the inter-method IOP measurement comparison due to its status as being 

the current accepted “gold” standard of tonometry in ophthalmology clinics worldwide. 

In accordance with the 4th World Glaucoma Consensus, the Goldmann applanation 

tonometry is reported to have lowest measurement variability compared to other 

methods of tonometry [206]. One measurement by GAT, Tonopen and Icare was 
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sufficient to fulfill the criteria recommended for comparison of tonometers used. For 

Corvis ST, an average value of 2 measurements is included in this study.  

Firstly, a ‘two-tailed paired t test’ was used to explore mean difference (mean bias) and 

the standard deviation (SD) of the differences measured the random fluctuations 

around the mean. With reference to a meta-analysis study and glaucoma consensus, 

the limit of an acceptable mean difference between tonometers is set at 2 mmHg [21, 

235]. 

Secondly, the limit of agreement (LOA) of the measurements between the tonometers 

was set at 95% (mean difference ± 1.96 SD), which highlighted how far apart 

measurements by two (2) methods were more likely to be for 95% of individuals. It was 

suggested that the ideal range of limit of agreement should not exceed 8mmHg (LOA ± 

4.0mmHg), based on the historical inter-observer agreement of GAT [236]. 

Thirdly, the bias is plotted against the mean value of the measurements of the 

compared instruments. Horizontal lines that represent the mean difference and the 

value of LOA are drawn on the plot. A scatter plot of average values against bias was 

suggested by Bland and Altman and is known as Bland-Altman (BA) plot [228]. The BA 

plot is used to illustrate the agreement between IOP measurements obtained by the 

different tonometers against GAT. The difference values in the inter-method agreement 

plot should be within the limit of agreement line with equal distribution along the mean 

of the total difference. An example of BA plot with uniform variability can be seen in 

Figure 3.2a in section 3.2.2. 

Further, the BA plot may demonstrate non-uniform variability in the measurement 

difference between the paired tonometers. An example of the BA plot showing this 

variability can be seen in Figure 3.2e in section 3.2.2. The distribution of the inter-

tonometry bias should be along the line of mean bias in the BA plot and this supports 

the assumption that the LOA is not dependant on the average tonometry 

measurement. An inconsistency in the pattern of the distribution and presence of a 

gradient may indicate a proportional bias. According to Bland and Altman, a log-

transformation of the measurements of the tonometers can overcome this problem 

[234]. If the pattern of inconsistency persists in the transformed plot, a proportionate 

bias is present. Any significant gradient in the BA plot can be further evaluated by 

assessing for a correlation between the bias and mean or by performing a linear 

regression for the difference (bias) model as a function of the average measurement of 

paired tonometers. Further, a more appropriate estimate of the limit of agreement and 
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mean bias is calculated according to the changing mean tonometry value. In this study, 

we performed agreement analysis as suggested by Bland and Altman [228, 234]. 

2.4.4 Analysis of mean 

2.4.4.1 Comparing means  

This study compares two similar means of two different groups by performing paired t-

tests. For three mean values or more, a one-way ANOVA was performed to explore 

any significant difference of the variables. For example, comparing means amongst 

different demographic and categorical characteristics namely ethnicities, gender, ocular 

diagnoses and age. A Bonferroni correction is made when the categories tested is 

more than 3. The post-hoc analysis shall be highlighted to demonstrate group with the 

significant difference, where necessary.  

Pearson correlations measure the existence (given by a p-value) and strength (given 

by the coefficient r between -1 and +1) of a linear relationship between two variables 

either from the same parameter or from a different one, for example ORA and CST 

parameters. A significant outcome indicates that a correlation exists with p<0.05. An 

absolute value of r of 0.1 is classified as small/weak, one of 0.3 is classified as 

medium/moderate and one of 0.5 is classified as large/strong [237].  

2.4.4.2 Linear regression analysis 

Multivariate regression analysis was alsocarried out to investigate factors affecting 

tonometry agreement and corneal biomechanical parameters. There are many 

variables involved in the analysis such as age, IOP and CCT on the corneal 

biomechanics parameters of each study cohort. Categorical data such as gender and 

ocular laterality is also involved.  

The assumptions of standard regression analysis are outlined below: 

1. Linear relationship was established by screening of the scatterplot of the variable 

against the tonometry bias. 

2. There are no outliers. 

3. The number of cases should be at least five times the number of cells. 
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3. All cells for two-way interactions should be greater than one and 80% should be 

greater than five. 

4. The residuals are approximately normally distributed.  

 

Robust regression analysis and the block entry method was chosen to calculate the 

effect of significant variables/factors on the variability of the inter-method agreement 

and the variability of each corneal biomechanical parameter [230]. In this study, not all 

variables investigated conform to the assumptions and follow the non-parametric 

distribution. However, this study proceeded with the robust method of analysis as 

described in item 2.4.1. 

In the analysis, the CCTus was chosen to represent the measurement for central 

corneal thickness as the ultrasonic method of pachymetry is considered the gold-

standard for pachymetry [238, 239]. In the analysis of the corneal biomechanical 

parameters, the influence of CCT, IOPcc, age and gender was investigated using the 

‘enter’ method. According to Foster et al. age and gender was a significant influencing 

factor on the corneal biomechanical parameters in a cohort of British population in 

Norfolk, United Kingdom [65]. The significant effect of CCT and IOP was discussed in 

detail in 1.2.4.2 and 1.3.3. The IOPcc was chosen to represent the IOP factor in the 

regression analysis of the inter-tonometry bias. This is in accordance with previous 

reports that claimed IOPcc is suitable to represent the corneal-compensated IOP 

value[20, 157].  

In the analysis of factors affecting inter-method bias, this study had chosen linear 

regression with the enter method. The continuous variables analysed are age, CCTus 

and all the biomechanical parameters. The dichotomous categorical variable is gender. 

The effect of CCT and CRF was controlled in the first block. This is in reference to 

previous studies that showed the significance of these variables as confounding factors 

that affect the inter-method bias between Icare, ORA and CST with GAT ([157, 202, 

211], respectively). The demographic variables (gender and age) and other 

biomechanical parameters were included in the second block of variables of this 

analysis.  

The effect size of the variables/predictors were calculated and presented as: 
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1. Adjusted R2 values represented the variance of the inter-method bias affected by the 

variables. The significance of this model is assessed by ANOVA with p value <0.05. 

The F value reported the number of significant predictors and residual predictors.  

2. B (the unstandardized coefficient) for each predictor variable shows the predicted 

increase in the value of the criterion (inter-method measurement bias) for a 1 unit 

increase in that predictor. The effect of the variable is assessed with p value <0.05. 

2. Beta (β) (the standardised coefficient) gives a measure of the contribution of the 

variable to the model in terms of standard deviation. The B and beta value are reported 

in tables where applicable.  

The robust regression analysis was run by choosing the bootstrapping option in the 

statistical software, SPSS. The value estimates are stated in the result wherever 

possible, either by BCa (best corrected accelerated) or percentile method (95%CI). At 

the end of each model analysis, the histogram, normality plot and the scatterplot were 

examined to ensure a valid and accurate model. All significant models of the regression 

analysis for inter-method bias and corneal biomechanical parameters are presented in 

the result sections. 
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CHAPTER 3: TONOMETRY AGREEMENT AND CORNEAL BIOMECHANICAL 

PROPERTIES IN NORMAL EYES 

This chapter presents data collected from a cohort of healthy eyes. The first section 

(section 3.1) describes the demographics of the subjects and the mean value of the 

variables measured. Section 3.2 reported the inter-tonometry agreement with GAT and 

repeatability analysis for each tonometers. Influences of demographic variables, CCT 

and biomechanical parameters on inter-tonometry agreement are also presented and 

discussed. Section 3.3 then examines corneal biomechanical parameters in healthy 

eyes by the ORA and CST.  

3.1 Demographic 

The study recruited three hundred eighty nine (389) normal eyes from a total of 204 

healthy volunteers. The mean age of all subjects was 38.1 ± 21.0 years (median; 26 

years, max; 86 years, min; 18 years). The subjects consist of 262 female (67.4%) and 

127 male (32.6%).  

                  

Figure 3.1 The ethnic distribution of healthy subjects. 

The mean IOP showed a statistically significant difference amongst the different 

tonometers. The Tonopen recorded the highest IOP values and the Icare was the 
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lowest (one-way ANOVA with post-hoc Tukey’s test, F=7.82, p<0.00). The mean 

corneal biomechanical parameters and central corneal thickness for the study 

population are presented in Table 3.1.  

Table 3.1 Mean IOP values, corneal biomechanical parameters and corneal thickness 
of healthy eyes. 
 

 Mean ± SD Minimum Maximum 

GAT (mmHg) 14.55 ± 2.63 7.0 21.0 

Tonopen (mmHg) 16.58 ± 2.64 9.0 23.0 

Icare (mmHg) 13.94 ± 2.90 8.0 22.0 

ORA_IOPg (mmHg) 14.38 ± 2.87 7.3 23.4 

ORA_IOPcc (mmHg) 15.10 ± 2.86 7.6 23.3 

CST_IOP (mmHg) 15.27 ± 1.66 11.0 21.5 

CH 10.23 ± 1.55 6.00 14.50 

CRF 9.92 ± 1.59 5.70  14.40 

A1T (ms) 7.81 ± 0.24 6.97 8.80 

A1L (mm) 1.76 ± 0.11 1.29 2.18 

A1V (m/s) 0.16 ± 0.02 0.07 0.24 

A2T (ms) 22.68 ± 0.38 21.24 23.71 

A2L (mm) 1.75 ± 0.27 0.91 2.56 

A2V (m/s) -0.37 ± 0.06 -0.59 -0.23 

HcT (ms) 16.47 ± 0.41 14.78 17.79 

HpD (mm) 3.41 ± 1.03 1.11 6.01 

HcR (mm) 6.78 ± 0.64 4.84 9.38 

DA (mm) 1.17 ± 0.10 0.87 1.49 

CCTus (µm) 537.47 ± 35.57 436.2 651.00 
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3.2 Agreement between tonometers in healthy eyes 

The information on reliability and agreement of the IOP measurements of other 

tonometers to GAT is very important to clinicians. The IOP measurements by 

tonometers available are vulnerable to the influence of corneal physical and 

mechanical properties. These influencing factors may affect the inter-tonometer 

measurement bias. This study also explores the demographic and physical factors that 

may influence the inter-tonometry bias. The instruments employed in this study were 

detailed in section 2.2. 

3.2.1 Repeatability of measurements 

The repeatability performance of all tonometers except ORA was analysed in this 

section. The calculation formula for these and the definition of all statistical measures 

was discussed in section 2.4.2. 

The distribution of the mean difference for A1L, HpD and HcR does not fulfil the 

assumptions of normality and parametric distribution. Therefore, the RC analysis is not 

calculated for these parameters. However, the ICC and CV were calculated for these 

parameters. Table 3.2 listed the RC, ICC and CV of the tonometry values by all the 

tonometers employed in this study. 

Table 3.2 The repeatability of tonometers in healthy eyes. 

 Repeatability Coefficient 
(RC)  (95%CI) 

(mmHg) 

Intra-Class Correlation 
Coefficient (ICC) (95% CI) 

Coefficient of 
Variance (CV) 

(95%CI) 

CST 2.32 (2.07,2.57) 0.89 (0.86, 0.91) 5.64  (5.46,5.82) 

Tonopen 2.61(2.33, 2.89) 0.83 (0.78,0.89) 5.52  (5.32, 5.75) 

GAT 2.35 (2.09, 2.61 0.87 (0.83,0.90) 5.85  (5.67, 6.03) 

Icare 2.5 (2.23, 2.77) 0.92 (0.88,0.95) 6.42  (6.23, 6.61) 

 

From the repeatability analysis presented in Table 3.2, the variability of the tonometers 

employed in this study was less than 3mmHg, with very good to excellent ICC (Table 

3.2). The CV value of less than 10% for these tonometers, indicate low measurement 

variability and small within method measurement error. The IOP value by Icare has the 
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highest variability (RC: 6.42%) amongst the tonometers but with an excellent ICC of 

0.92. The GAT measurement variability (CV 5.85) and high correlation between 

repeated measurements (ICC 0.87) was noted to be comparable to Tonopen and CST 

(CV 5.52, ICC0.83 and CV 5.62, ICC 0.89, respectively).  

3.2.2 Inter-tonometry agreement 

The agreement of the tonometers was evaluated with intraclass correlation coefficients 

(ICC), mean difference values, 95% limits of agreement (LOA) and Bland-Altman plots. 

The GAT was the reference for the inter-method IOP measurement comparison due to 

its status as being the current “gold standard” of tonometry in ophthalmology clinics 

worldwide. Mean measurement difference or ‘bias’ is the difference of mean IOP 

between the tonometer tested against GAT. The LOA of other tonometers with GAT 

were calculated.  

Table 3.3 Mean difference, expected range of agreement and paired correlation 
between GAT and all tonometer. 

Paired tonometry Mean Difference ± 
SD (mmHg) 

LOA (95%CI) ICC (95%CI) 

ICare_GAT -0.69 ± 2.44 -5.57 to 4.19 0.76 0.69, 0.81 

Tonopen _GAT 1.87 ± 2.43 -2.99 to 6.73 0.65 0.23, 0.80 

IOPcc_GAT 0.66 ± 2.94 -5.22 to 6.54 0.63 0.54, 0.70 

IOPg_GAT -0.09 ± 2.61 -5.31 to 5.13 0.73 0.66, 0.78 

CST_GAT 0.69 ± 2.23 -3.87 to 5.15 0.63 0.53, 0.71 

 

 

Table 3.3 showed the mean IOP difference of all paired tonometers with GAT. The 

inter-method mean difference was the highest by Tonopen vs IOP gat with bias of 1.87 

± 2.43mmHg. The mean difference of the Icare, CST and IOPcc was comparable at ± 

0.6-0.7mmHg. The IOPg showed the least different to GAT with the mean inter-method 

difference of -0.09 ± 2.61mmHg. The standard deviations of all inter-tonometry biases 

were within 3mmHg. Figure 3.2(a-e) illustrates the mean difference and LOA for each 

paired tonometers. The widest LOA was between Tonopen and GAT (11.76mmHg) 

and the narrowest was between CST and GAT (9.02 mmHg). 
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Figure 3.2a The Bland-Altman plots of Icare-GAT tonometers. 

 

 

Figure 3.2b The Bland-Altman plots of Tonopen-GAT tonometers. 
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Figure 3.2c The Bland-Altman plots of IOPcc-GAT tonometers. 

 

 

Figure 3.2d The Bland-Altman plots of IOPg-GAT tonometers. 

 



Tonometry agreement and corneal biomechanical properties in normal eyes 

Page 70 

 

Figure 3.2e The Bland-Altman plots of CST-GAT tonometers. 

In Figure 3.2a-e, the average IOP value of paired tonometers against the mean 

difference is plotted and these are called the Bland-Altman plots. The plots revealed 

that, the mean difference for Tonopen-GAT, Icare-GAT, IOPg-GAT and IOPcc-GAT 

were scattered in a constant pattern along the line of average IOP value of the paired 

tonometers. The bias were also mostly within the line of the estimated limit of 

agreement.  

However, for CST–GAT pair, the mean difference was noted to show a proportional 

bias against the mean IOP value of the two tonometers (Figure 3.2e). Therefore, a log 

transformation of the mean difference of the paired method was done and replotted 

again. The log transformation of the scatter plot is one of the method to confirm 

existence of significant proportional bias. The log-transformed Bland-Altman plot of 

IOPct vs GAT in Figure 3. below, showed no difference in the pattern of bias compared 

to the initial plot in Figure 3.2e. Therefore a linear regression analysis was performed to 

calculate the LOA estimates at different CST tonometry values. 
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3.2.3 Inter-tonometry Bias 

This section further investigates the relationship of the demographic variables and 

influence of significant factors on the mean difference (bias) between each paired 

tonometry method. In this analysis, only the CCTus was included to represent the 

measurement for central corneal thickness. 

3.2.3.1 Relationship of inter-tonometry bias with demographic and corneal 

biomechanical parameters 

The bias was compared between gender and ethnic origin with paired t-test (for 

gender) and ANOVA with Bonferroni correction (for ethnicity). For other continuous 

variables such as age, CCT and corneal biomechanical parameter value, Pearson’s 

correlation was performed to investigate any significant relationship.  

In Table 3.5, paired t-test revealed that female subjects showed significantly more 

negative Icare and GAT inter-tonometry bias compared to male subjects (-0.78 ±2.40 

to -0.48 ±2.26 mmHg, p=0.05). Further, analysis of the bias difference amongst 

different ethnicity was performed with ANOVA with Bonferroni correction and post-hoc 

Tukey’s analysis (Table 3.6). The highest inter-tonometry bias for CST and IOPcc 

against GAT was noted to be significant amongst Afro-Caribbean subjects (3.43 ± 2.26 

and 1.12 ± 2.06 mmHg, p<0.05). However, amongst similar ethnicity, the Icare-GAT 

bias was noted to be the lowest (-0.07 ± 2.98mmHg). 

Table 3.5 Inter-tonometry measurement bias between genders in normal subjects 

 Male , N=127         Female, N=262 p† 

Tonopen_ GAT (mmHg) 1.84 ±2.42 1.94 ±2.35 0.24 

Icare_GAT (mmHg)  -0.48 ±2.26 -0.78 ±2.40 0.05 

IOPcc_GAT (mmHg) 1.07 ±3.24 0.43 ±2.64 0.69 

IOPg_GAT (mmHg) 0.02 ±2.91 -0.14 ±2.46 0.79 

CST_GAT (mmHg) 0.73 ±2.45 0.67 ±2.13 0.58 

  †paired t-test, all values in mmHg 
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Table 3.6 Inter-tonometry bias between different ethnicity 

 Caucasian 

(Mean±SD) 

South-Asian 

(Mean±SD) 

Afro-carribean 

 (Mean±SD) 

Oriental 

(Mean±SD) 

Others  

(Mean±SD) 

p† 

Tonopen_GAT (mmHg) 1.44 ± 2.24 2.25 ± 2.43  ** 1.86 ± 2.55 1.95 ± 2.39 2.33 ± 1.97 0.64 

Icare_GAT (mmHg) -0.72 ± 2.53 -0.66 ± 2.20 -0.07 ± 2.98 -1.30 ± 2.08 -0.50 ± 2.14 0.00* 

IOPcc_GAT (mmHg) 0.48 ±2.89 0.51± 2.62 3.43 ± 2.26  ** 0.04 ± 3.66 1.32 ± 3.45 0.04* 

IOPg_GAT (mmHg) -0.18 ± 2.40 -0.28 ± 2.49 2.71 ± 2.66  ** -0.211 ± 3.57 0.42 ± 3.19 0.23 

CST_GAT (mmHg) 0.35 ± 2.19 0.91 ± 2.11 1.12 ± 2.06 0.74 ± 2.95 0.50 ± 3.14 0.00* 

  †ANOVA with Bonferroni correction 

*value of significance <0.05  

 ** post-hoc Tukey, p<0.05 
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Table 3.7 Relationship of the inter-tonometry bias (all unit value in mmHg) with age, CCTus and biomechanical parameters 

 

 

  Age 

 

CCTus 

 

CRF 

 

CH A1T 

 

A1L A1V A2T A2L A2V HcT HpD HcR DA 

IOPicarevsIOPgat -0.09 0.027 0.21** 0.12* 0.10 -0.02 -0.08 -0.10* 0.03 -0.01 -0.011 -0.03 0.06 -0.07 

IOPtono vs IOPgat -0.32** -0.01 0.02 0.07 -0.06 -0.08 0.05 0.16** -0.03 -0.05 -0.01 0.02 -0.11* -0.03 

IOPcc vs IOPgat 0.22** -0.26** -0.32** -0.60** -0.06 -0.003 -0.06 -0.30** -0.16** -0.15** -0.03 0.06 -0.04 -0.004 

IOPg  vs IOPgat 0.19** 0.04 0.19** -0.08 0.17** 0.07 -0.09 -0.38** -0.04 0.01 -0.03 0.03 0.17** -0.15** 

IOPcst vs IOPgat 0.02 -0.05 -0.003 0.11* 0.11* -0.03 0.05 -0.09 -0.12* -0.11* -0.07 -0.001 -0.06 0.02 

Pearson Correlation test, r value                                                                                                   * p< 0.05 level (2-tailed), ** p< 0.01 level (2-tailed) 



Tonometry agreement and corneal biomechanical properties in normal eyes 

Page 75 

3.2.3.2 Factors affecting inter-tonometry bias 

The inter-method bias was known to be influenced by many interactive factors. 

Therefore, a multivariate regression analysis was employed to construct a predictive 

model of the inter-method bias. All regression analysis of the inter-method bias was 

controlled for the effect of CCTus and CRF. These are known confounding factor from 

previous inter-tonometry agreement studies described in 2.4.4.1. The assumptions for 

regression analysis were checked. All assumptions of normality and heteroscedasticity 

for the residual error plot were met for all analysis.  

Multicolinearity of variables can violate the assumptions for a valid regression model. 

For this cohort, the CH was excluded due to its high correlation with CRF (Pearson’s 

correlation, r=0.83, p<0.01). Ethnicity was not included in the multivariate analysis due 

to inadequate sample size in every cell. Simmons et al. suggested that for categorical 

variable, each cell must have at least 20 sample for a valid regression analysis [240]. 

Other than Caucasian and South-Asian ethnicity, other ethnic background has less 

than 20 samples. The ocular laterality effect on all the inter-method bias revealed no 

significant influence and does not affect the final outcome in all multivariate model, with 

p>0.05.   

The effect size of these variables were calculated and presented as Adjusted R2 value, 

B (the unstandardized coefficient), Beta also known as β (the standardised coefficient). 

The value of significance is set at p<0.05. The definition of the outcome measures 

were explained in section 2.4.4.  

3.2.3.2.1 Inter-tonometry bias between Tonopen and GAT  

A multivariate regression analysis established that age and DA could predict 9.1% of 

the explained variability of the inter-method IOP bias between Tonopen and GAT, 

F=3.10, p<0.00. Older subjects and higher DA could cause reduction of bias between 

these tonometers. The effect of age on the variability of the inter-method bias is more 

than DA. (Table 3.8)  
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Table 3.8 Multivariate regression analysis of factors affecting the inter-tonometry 
bias between Tonopen and GAT 

 B coefficient Standard Error B β P 

Age -0.03 0.01 -0.28 0.00 

DA -5.19 2.29 -0.23 0.02 

* value of significance <0.05

 

3.2.3.2.2 Inter-tonometry bias between Icare and GAT 

The adjusted r2 of the model was 0.044, p<0.00. The model showed that age and CRF 

explained less than 5% of the inter-method bias variability. The CRF was noted to be 

the stronger factor that significantly affect the multivariate model with beta coefficients 

of 0.30 (p<0.00) compared to age (beta coefficients of -0.205, p<0.05). Younger 

subjects seemed to have higher inter-tonometry bias compared to older subjects. 

Inversely, subjects with higher CRF could cause an increase in bias. The equation for 

this regression model is y= -0.02(age) + -0.006(CCTus) + 23.52, (where y= Icare vs 

GAT bias). 

3.2.3.2.3 Inter-tonometry bias between ORA (IOPcc) and GAT 

This multivariate regression analysis established that CCTus, IOPcc, CRF, A1T, A2T 

and age significantly accounted for 52.5% of the inter-method IOP bias variability 

between IOPcc and GAT ( p<0.00). The IOPcc has the strongest unique contribution to 

the overall bias (β coefficient = 0.70), whilst age has the least effect (β coefficient = 

0.09). The inter-method bias between IOPcc and GAT could increase with IOP and 

age. The corneal biomechanical parameters could negatively affect the bias between 

these tonometers. The A1T has the highest effect on the bias (β coefficient = - 0.20) 

and was followed A2V and CRF (β coefficient = -0.12 and 0.12, respectively). CCT has 

weak but significant negative effect on the overall variability of the bias (β coefficient = -

0.09). The equation for this regression model is y= -0.65(IOPcc) -0.21(CRF) -2.29(A1T) 

+ -5.52(A2V) + -0.007(CCT) + 0.013 (age) + 12.18, (where y= IOPcc vs GAT bias). 
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3.2.3.2.4 Inter-tonometry bias between ORA (IOPg) and GAT 

A multivariate regression analysis showed that age, IOPcc, CRF, A1T, A2T and A2V 

could statistically predict the inter-method bias between IOPg and GAT. These factors 

accounted for 30.5% of the explained variability of the inter-tonometry bias (F=22.13, 

p<0.00). IOPcc has the highest unique contribution on the variability (β coefficient = 

0.46), whilst age has the least effect (β coefficient = 0.11). The inter-method bias 

increased with age, IOPcc and CRF. Amongst the corneal biomechanical parameters, 

the CRF has the strongest unique contribution compared to A1T, A2T and A2V (β 

coefficient = -0.23, -0.17 and -0.15, respectively). The equation for this regression 

model is y= 0.38 (IOPcc) + 0.52(CRF) -2.32(A1T) + -6.12(A2V) + -1.1(A2T) + 0.014 

(age) + 30.35, (where y= IOPg vs GAT bias). 

3.2.3.2.5 Inter-tonometry bias between CST and GAT 

The multivariate regression analysis established that IOPcc, CRF, A1T, A2T and A2V 

could statistically predict the inter-method IOP bias between Corvis ST and GAT. 

These factors accounted for 19.9% of the explained variability of the inter-tonometry 

bias between CST and GAT, p<0.00. A1T could cause increment on bias between 

these tonometers. Inversely, the increment of IOPcc, A2V and CRF could cause a 

negative effect on the measurement bias. Amongst the variables, the IOPcc has the 

strongest effect on the inter-method bias between CST and GAT. This is consecutively 

followed by A2T, A1T, A2V and CRF. Age, gender, CCTus and other corneal 

biomechanical parameters of CST has no significant contribution to the overall model 

analysis. The equation for this regression model is y= -0.4(IOPcc) -0.19(CRF) -

1.98(A2T) + 2.50(A1T) -5.93(A2V) +34.08, (where y= CST vs GAT bias). 

3.2.4 Discussion 

This study recruited healthy subjects with multi-ethnic background and age distribution. 

The proportion of subjects over 40 years old was less than those below 40 years (less 

than 40 years old, n=250 and 40 year old and more, n =140). In both age groups, 

Caucasian and South Asian ethnicity are dominant which is consistent with the United 

Kingdom National Census 2011 for West Midland area [241]. In the census report, 

residents of Birmingham consisted of more than 80% Caucasian and 8% of South 

Asian (mainly Indian and Pakistani) ethnic origin. 
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3.2.4.1 Repeatability of tonometers 

This repeatability study observed four tonometers that have different levels of IOP 

variability. In general, all tonometers showed very good to excellent correlation 

between repeated measurements with ICC above 0.80. In order to reduce 

measurement bias, prior to the start of our study, all the instruments underwent 

calibration as suggested by the manufacturers. This study also followed the 

measurement technique suggested by the manufacturers. Measurement guideline from 

previous studies was also noted to reduce measurement error (see section 2.4).  

The repeatability coefficient for GAT (CR ±2.35mmHg) in this study was comparable to 

a previous study, (CR ±2.5mmHg) [194]. The GAT measurement variability (CV 5.85) 

and high correlation between repeated measurements (ICC 0.87) was noted to be 

comparable to Tonopen and CST. Unlike other tonometers in this study, the GAT 

tonometry is supposedly more subjective and operator dependant, thus a higher 

variability is expected than other automated devices. Previous studies also noted good 

intra-observer ICC values of 0.81 and 0.79  with a slightly higher variability of 9.0% and 

9.7% ([242, 243],respectively), compared to our study (CV of 5.85, variability of 9.2%).  

There are two possible explanations for this. First, in this study, the GAT operators 

were experienced clinicians that are able to operate the tonometer well for accurate 

tonometry. Secondly, the repeated measurements were taken after at least 2 minutes 

of the first measurement. Thus, the cornea was able to recover well prior to the second 

tonometry. In spite that, the differences of the repeatability indices may result from 

investigator and participant group variability. Nevertheless, this study supported good 

repeatability of GAT tonometry. 

The Icare measured repeated IOP with excellent consistency but it produced the 

highest variability compared to other tonometers. Previous studies investigating the 

intra-observer repeatability of Tonopen and Icare showed high repeatability results as 

for the current study (Tonopen ICC 0.88, CV 5.2 and Icare ICC0.87, CV 5.2) and 

(Tonopen ICC 0.85  and Icare ICC 0.87) [242, 244]. However, the World Glaucoma 

Consensus for acceptable precision for tonometry was set as CR of 2.5mmHg or less 

for GAT intra-observer CV [235]. There is no information regarding the acceptable CV 

for other tonometers. Other tonometers employed in this study complied with the 

precision standard set by the consensus. With regard to Tonopen, this study concludes 

that due to very high repeatability and low variability of CV, despite CR of 2.61mmHg, 

the Tonopen is still considered precise in its intra-observer repeatability.  
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The tonometry and pachymetry measurements by CST were highly repeatable 

(ICC>0.75, CV<10), and this finding was similar to previous studies in healthy eyes 

[245-247]. This study found the corneal biomechanical parameters by the CST; A1T, 

A2T, HcR and DA have high repeatability (ICC>0.70, CV <10) which was similar to a 

previous study [247]. However, previous studies found that only two biomechanical 

parameters, DA and A1T, showed only fair to good repeatability [212, 246]. The 

difference in the CST repeatability performance between previous studies and the 

current study may be related to its software version. The software versions employed in 

earlier studies were V1.x [247, 248] and V2.x [246]. This study employed an updated 

CST software version, V6.07r8.  

In this study, all five tonometers showed very high intra-observer repeatability as the 

CV was always below 10% and ICC were greater than 0.80. Thus, due to the very 

good precision of these tonometers, this study decided to perform single tonometry 

measurement with the GAT (which is a balance between diastolic and systolic pulse 

pressure) for further data collection. The Icare and Tonopen produced a mean value 

with standard deviation the display screen with each completed measurement. 

Therefore, a completed single measurement with standard deviation of less than 5% is 

accepted to represent the tonometry value of both instruments. For CST biomechanical 

parameters, nearly half of these variables showed poor to moderate repeatability. 

Thus, it is decided an average of two measurements of all CST biomechanical 

parameters will be regarded as appropriate to represent its value for further analysis. 

The intra-observer repeatability of repeated measurements by the ORA was not 

analysed. In accordance to the recommendation from manufacturer, the IOPg and 

IOPcc measurements were selected based on the best waveform score (out of four 

repeated air-puff tonometry) for analysis. This study assumed that the repeatability of 

the automated tonometry by ORA was based on previous studies that used similar 

software version (version 3.1) as discussed in section 2.2.5.  

3.2.4.2 Inter-tonometry Agreement  

The GAT is referred as the “gold standard” for tonometry [235]. Despite recognitions of 

it to be affected by many factors [16, 18], the GAT is still recognised as clinical 

standard for IOP measurement by clinicians worldwide. The agreement of tonometry of 

these instruments with GAT is important for clinicians to know its validity of IOP 

measurement against clinical standard. This study has embarked on inter-tonometry 
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agreement analysis between GAT with Tonopen, Icare, ORA and Corvis ST. The 

outcome measures discussed were mean difference which is interchangeable with 

‘bias’, limit of agreement (LOA) and Bland-Altman plots assessment [234].  

3.2.4.2.1 Icare vs GAT 

Icare has not been validated with manometry studies in human eyes. However, studies 

on animal models have shown that Icare Tonolab (rebound tonometry for lab animals) 

provides very good agreement with manometry studies [249, 250]. In this study, the 

results of Icare-GAT comparison in healthy eyes showed slight underestimation of the 

GAT which was in accordance with previous studies [251-253]. The inter-tonometry 

bias is within limits of ± 2.0 mmHg, which is within the acceptable systematic difference 

against GAT [21]. However, other studies reported that Icare was noted to 

overestimate IOP [254-257]. This contrasting result may be due to the differences in 

the cohort of subjects and sample size recruited. The width of LOA for the Icare-GAT in 

this study was narrower than other studies [254-257]. Nevertheless, the range is still 

out of the acceptable LOA limits for it to be considered interchangeable with GAT.  

In terms of proportionate bias, this study noted that the mean difference of Icare 

against GAT was constant across the range of mean IOP. This is in contrast with 

studies that have shown that IOP by Icare was proportionately related to the increase 

of mean IOP [251, 252]. These researchers had recruited less than ideal sample size 

to achieve good statistical power. This indicates that Icare is suitable for screening 

purposes. 

3.2.4.2.2 ORA vs GAT 

The inter-tonometry comparison of ORA to GAT in our study revealed mean difference 

that are within limits of ± 2.0 mmHg, which is the acceptable systematic difference 

between tonometers [21]. The IOPcc was noted to overestimate GAT, whilst the IOPg 

was found to be very much closer to GAT measurements (bias of -0.09mmHg), which 

was similar to a previous study where the bias was nearer to zero [72, 143]. However, 

the difference of IOP bias by ORA was quite obvious between studies. The current 

study noted that IOPg by ORA showed the least difference from GAT compared to 

other tonometer. The inter-tonometry bias was noted to be higher in other studies that 
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recruited sample with multiple diagnosis[157], healthy subjects[258, 259] and sample of 

normal twins [260].  

For this current study cohort, the IOP by ORA is not interchangeable with GAT. The 

95% limit of agreement for IOPg-GAT and IOPcc-GAT in the current study was more 

than 8mmHg. This is in agreement with previous studies that noted the LOA to be more 

than the acceptable limit [156, 157]. This study did not found any proportionate bias in 

the BA plots for both IOPg and IOPcc bias against GAT which is similar with previous 

studies [72, 260]. However, few studies reported increase of proportionate bias with 

higher mean IOP [74, 143] . The difference in bias and LOA may be due to the 

variability of measurement of ORA as a non-contact tonometer. The ORA 

measurements were completed in less than 10ms, thus are susceptible to the influence 

of ocular pulse amplitude [157], corneal tear film and CCT [143, 261]. The difference of 

study cohort and intra-observer bias may also influence the variability.   

3.2.4.2.3 Tonopen vs GAT 

The tendency for Tonopen to overestimate GAT measurement was consistent with 

previous studies in normal subjects with mean difference of 1.0, 0.6 and 0.5 mmHg, 

respectively [187, 262, 263]. A meta-analysis study confirmed that Tonopen 

overestimated  GAT and limit of agreement of Tonopen range were 12mmHg [21]. In 

contrast, Tonopen was reported to underestimate IOP at high IOP [203, 243]. Our 

study revealed LOA range of Tonopen-GAT agreement were approximately 10mmHg. 

This is exceeding the expected standard LOA range of 8mmHg, which was similar to all 

the studies stated earlier. There was no proportionate bias seen in our study which was 

similar with a previous study on normal subjects, though the trend was positively 

affected by CCT [243]. In healthy children, the Tonopen showed higher mean 

difference compared to GAT and the trend is positive with higher IOP and younger age 

[264].  

3.2.4.2.4 CST vs GAT 

The agreement between CST with GAT in this study was noted to be comparable to 

previous studies of normal eyes (mean difference of 0.69 to 1.5 mmHg, respectively) 

[265, 266]. In contrast, a similar agreement study on normal and glaucoma subjects 

revealed that CST underestimates GAT measurement [211]. The limit of agreement of 
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the CST versus GAT was more than 8mmHg range for the current and all the above 

studies. The BA plot revealed a proportionate bias where CST overestimated GAT with 

higher IOP values. CST tonometry of more than 21.6mmHg may increase the bias 

(mean difference between IOPcs vs GAT) by more than 2 mmHg.  

According to a large meta-analysis on tonometry agreement with GAT [21], the most 

challenging facts concerning the inter-tonometry agreement studies are the 

heterogeneity of the results in different study population and the use of improper 

statistics that may lead to different conclusion on the inter-method agreement. This 

study has clearly outlined the appropriate sample size, method and analysis for a valid 

method agreement report. The tonometry agreement studies that were compared 

largely consist of mixed cohorts of glaucoma and healthy eyes. Thus the variability of 

the inter-tonometry bias amongst the different researchers may be likely due to the 

heterogeneity of study subjects.  

3.2.4.3 Factors Affecting Inter-tonometry Agreement 

A major review explored the many within-instrument, physical, physiological, ocular, as 

well as demographic factors that could influence the measurement of IOP by GAT [18]. 

To the best of our knowledge, this is the first study that analysed the influence of CST 

biomechanical variables on the inter-tonometry agreement between Icare, Tonopen, 

ORA and CST, with GAT. We have chosen the IOPcc that was claimed to represent 

the corneal-compensated IOP value, to be included in the regression analysis of the 

inter-tonometry bias [20, 157]. The analysis also included demographic variable i.e.; 

age and gender. The effect of ethnicity was not analysed by regression as the sample 

size in each ethnic group did not fulfil the minimum requirement. The effect of multi-

colinearity between CH and CRF was taken into consideration. CH was excluded from 

this part and CRF was chosen for to represent identifiable corneal biomechanical 

parameters by ORA. The multivariate regression analysis of the inter-method bias was 

corrected against the confounding effect of CCT, IOPcc, CRF and laterality, using 

hierarchical method.  

3.2.4.3.1 Icare vs GAT 

Univariate analysis revealed that inter-method bias between Icare and GAT was 

significantly affected by corneal biomechanical variables; A2T, CH and CRF. However, 

the multivariate analysis in this study revealed that the effect CCT, A2T, CH and CRF 
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were not meaningful when the variables where considered collectively. The CRF and 

age were found to have small but independent unique contribution that caused 

changes to the Icare bias. Similar to Tonopen bias, older subjects tend to cause less 

tonometry bias by Icare. The effect of CCT was confirmed in another study, which 

found that as the CCT increased, Icare considerably overestimate GAT [244]. 

Meanwhile, a study noted that only corneal curvature and not CCT, significantly affect 

the inter-tonometry bias [251]. This study postulated that steeper cornea to decrease 

the Icare probe velocity, thus causing underestimation of GAT. The study cohort 

amongst normal and post-keratoplasty subjects may have different distribution of 

curvature and corneal thickness, thus resulted in the variance of the CCT effect in the 

regression analysis. 

3.2.4.3.2 Tonopen vs GAT 

The inter-method agreement between Tonopen and GAT was noted to be affected by 

age and DA. The effect of these variables was weak but meaningful (r2=0.09, p<0.00). 

In this study, age was affecting the bias more than DA. The effect of age was 

supported previous studies on non-treated subjects attending glaucoma clinics.  that 

showed Tonopen underestimated IOP in older subjects compared to GAT [157]. A 

large cohort study in South Korea which was a population (Korean) based study 

revealed no statistically significant association between IOP bias by Tonopen with age  

[267].  The variable effect of age on the bias may be subjected to the sample size and 

differences of the study cohort. Our study subjects were healthy subjects with wide age 

range and satisfactory sample size.  

Studies with ORA had established a connection between aging cornea and corneal 

biomechanics properties, CH and CRF [268]. Increased rigidity in ageing cornea may 

happen as the result of ultrastructural changes in the collagen fibrils of the corneal 

stroma [48, 49]. Our study found that DA is the only significant biomechanical 

parameters affecting the inter-tonometry bias between Tonopen and GAT. No similar 

studies yet found in the literature. Thus, DA may be a novel measureable parameter 

that represents an element of corneal biomechanics that is not captured by ORA 

parameters. Previous studies have established no significant contribution of CCT in the 

inter-tonometry bias between Tonopen and GAT [65, 192, 202], which was similar with 

our study. Tonopen indents a very small area of surface and, in comparison with 
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applanation tonometry by GAT, the IOP measurement was almost static. Thus, the 

contribution of CCT on the bias may be non-demonstrable.  

3.2.4.3.3 CST vs GAT 

Since the launch of CST in 2012, studies had reported many findings with regards to its 

agreement to GAT but only a few studied the factors affecting the inter-method 

agreement. This study found that the inter-tonometry bias between CST and GAT was 

affected by IOPcc, CRF, A1T, A2T and A2V. Amongst the factors, IOP contributed the 

most to the bias, followed by consecutively by A2T, A1T, A2V and CRF.  Currently, 

there is nothing in the literature that investigates the combined effects of demographic 

profiles, CCT and CRF on the CST tonometry bias in healthy subjects. 

This analysis had corrected for the confounding effect of CCT, IOPcc and CRF. Similar 

to this study, the lack of an effect of CCT, age and axial length on the CST-GAT inter-

method bias was also noted in a healthy Chinese cohort [211]. Despite that, CST 

parameters (A1T, A2T and A2V) had shown significant independent contributions 

towards the tonometry bias. This may indicate the significance of these parameters as 

additional element of corneal biomechanical properties other than CRF. In a study on 

glaucoma subjects, the increment of CST bias against GAT was positively affected by 

CCT [266]. Previous studies only highlight A1T and DA as the most reliable and 

reproducible parameters for describing corneal biomechanics [212, 245, 269]. 

3.2.4.3.4 ORA vs GAT 

This study revealed that there was a statistically significant difference of the mean 

IOPg, IOPcc and Tonopen amongst subjects with different gender, age group and 

ethnicity. Both IOPcc and IOPg are significantly higher in older subjects. This finding is 

similar to previous studies which showed a positive influence of CCT [72, 260]. In a 

large cohort of British people, the IOPcc was higher in males and increased with 

age[65]. The relationship of age with non-contact tonometry was well known in large 

population studies. A large tonometry study in a Japanese population [270] with a non-

contact tonometer found that the IOP decreases with age, and CCT variation has 

practically no effect on the age-IOP relationship. This was further supported by a 

Korean study with a much larger cohort [271]. They found that systolic blood pressure 

and heart rate were positively associated with IOP pattern.  
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All the tonometers employed in this study were in good agreement with GAT but a wide 

range of agreement levels were observed. The LOA of all the tonometers employed in 

this study was greater than the acceptable limit of approximately 8mmHg (Cook 2012). 

These indicate that all the tonometers are valid alternatives for GAT tonometry 

amongst healthy subjects with normal IOP value. However, the IOP values of these 

tonometers are not interchangeable with GAT. Amongst the paired tonometers, only 

CST was noted to overestimate GAT when the mean IOP increased. Thus, clinicians 

should be aware of the proportionate bias by CST when performing tonometry on 

subjects with high IOP (IOP of more than 22mmHg). The IOP measurement by CST 

may be more suitable for screening for ocular hypertension than for glaucoma 

monitoring and management purposes. Age affected the inter-tonometry bias between 

all paired tonometers with GAT except for CST. The CRF, A1T, A2T, A2V and DA are 

important biomechanical parameters that influence the inter-tonometry bias.                        
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3.3 Corneal Biomechanical Assessment of Healthy Eyes 

In the past decade, particular interest in corneal biomechanical properties has 

developed in glaucoma management. Apart from geometry, corneal biomechanic 

parameters of ORA (CH and CRF) were noted as confounding factors for intraocular 

pressure measurement by applanation tonometry. The in-vivo corneal biomechanical 

parameters and corneal thickness measured by ORA and Corvis ST provide valuable 

information and further insight on the biomechanical characteristics of the human 

corneal tissue. 

This study explored the in-vivo corneal biomechanical properties of healthy eyes with 

ORA and CST. In the initial section (3.2.1), analysis of the repeatability of the corneal 

biomechanical parameters of CST was performed. The relationships between corneal 

biomechanical parameters by the Corvis ST (CST) and Ocular Response Analyzer 

(ORA) were evaluated in section 3.2.2. Further in section 3.2.3, regression analysis 

was performed to analyse the influence of demographic, central corneal thickness and 

IOP on the biomechanical parameters. Each corneal biomechanical parameter 

employed in this analysis was detailed in section 2.3.4 and 2.3.5. 

3.3.1 The repeatability of corneal biomechanical parameters and central corneal 

thickness values by CST. 

In this study, intra-observer repeatability of the central corneal thickness and 

biomechanical parameters of CST were quantified with repeatability coefficients (RC), 

coefficients of variation (CV) and intraclass correlation coefficients (ICC). The overall 

mean of each parameters was listed in Table 3.1 in section 3.1. 

The ICC (two-way mixed, absolute agreement type) was calculated to measure the 

intra-session repeatability of the corneal measurements. The magnitude of variability 

between the measurements was represented by CV (Coefficient of Variation), whilst, 

the exact amount of variability was represented by CR (Coefficient of Repeatability). 

The calculation formula for these statistical measures was discussed in section 2.4.2. 

Table 3.9 listed the repeatability tests value of the variables. The distribution of mean 

difference for A1L, HpD and HcR does not fulfil the assumptions of normality and 

parametric distribution. Thus, the Repeatability Coefficient analysis was not calculated 

for these parameters. However, the ICC and Coefficient of Variance were calculated for 
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these parameters. The DA, A1T and A2T are 3 parameters that showed very good to 

excellent repeatability (ICC more than 0.8) and low variability (CV less than 10%). The 

HcR also showed good repeatability (ICC 0.71) and low variability (CV 7.7%). A1L and 

HcT were noted to have low variability but poor repeatability. The repeated 

measurements of A1V, A2L, A2V and HpD showed poor inter-measurement agreement 

and higher variability than other parameters. 

Table 3.9 The repeatability tests of all tonometry values and biomechanical parameters 

 Repeatability Coefficient  
(95%CI) 

ICC  (95% CI) Coefficient of 
Variance (95%CI) 

A1T 0.34 (0.3, 0.38) 0.88 (0.85,0.90) 1.5  (1.47, 1.53) 

A1L - 0.30 (0.15,0.45) 7.3 (7.27, 7.33) 

A1V 0.08 (0.07,0.09) 0.29 (0.12,0.43) 18.7 (18.69, 18.71) 

A2T 0.57 (0.51, 0.63) 0.87 (0.83,0.89) 0.9  (0.86, 0.94) 

A2L 0.88 (0.78, 0.98) 0.28 (0.1,0.43) 35.2  (35.07, 35.33) 

A2V 0.13 (0.12, 0.14) 0.68 (0.6,0.74) 24.3  (24.28, 24.32) 

HcT 1.16 (1.03, 1.29) 0.48 (0.35,0.58) 2.5  (2.41, 2.59) 

HpD - 0.31 (0.14,0.45) 34.2  (33.92, 34.45) 

HcR - 0.71 (0.64,0.77) 7.7  (7.59, 7.81) 

DA 0.12 (0.11, 0.13) 0.9 (0.88,0.92) 3.4  (3.39, 3.41) 

CCTcor 17.66(15.73,19.59) 0.98 (0.98,0.98) 1.2  (5.32, 5.75) 

CCTus 12.21(10.87, 3.55) 0.92 (0.89, 0.95) 0.83  (0.12, 1.78) 

3.3.2 Relationship between ORA and CST biomechanical parameters 

The mean value of all the corneal biomechanical variables based on demographic 

distribution was presented in the early part of this chapter (item 3.1). In this section, 

Pearson correlation analysis was performed to explore the relationship between the 

biomechanics parameters of ORA and CST. Pearson correlation measures the 

existence (given by a p-value) and strength (given by the coefficient r between -1 and 

+1) of a linear relationship between two variables. A significant outcome indicates that 

a correlation exists (if p<0.05). According to Cohen (1988) an absolute value of r of 0.1 

is classified as small/weak, of 0.3 is classified as medium/moderate and of 0.5 is 

classified as large/strong.  
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Table 3.10 showed that CH was strongly correlated with CRF (p<0.01). The CH and 

CRF was significantly correlated with all Corvis ST biomechanical parameters except 

for A1V, HcT, HpD and DA. The correlation of CH with HcR was strong (r=0.76, 

p<0.01). However, there was poor correlation between CH with A1T, A1L, A2T, A2L 

and A2V (r <0.24, p< 0.01).The CRF showed better correlation with the CST 

parameters. The Pearson’s correlation were small between CRF and A1L, A2T and 

A2L (p<0.01). There was moderate correlation between CRF with A2V and DA, (r>0.3, 

p<0.01). A strong correlation was noted between CRF and A1T (r=0.53, p<0.01) 

Amongst the CST parameters, DA was strongly correlated with A2V and moderately 

correlated with A1T, A2T and HcR. The A1T and A2T have moderate correlation with 

each other (p<0.05). 
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Table 3.10 The relationship of corneal biomechanical variables of ORA and Corvis ST(Pearson’s correlation test) 

CH CRF A1T A1L A1V A2T A2L A2V HcT PD R DA 

CH 1 0.83** 0.23** 0.14** 0.04 0.12* 0.21** 0.23** 0.04 -0.03 0.76** -0.09 

CRF 0.83** 1 0.51** 0.21** -0.08 -0.22** 0.25** 0.35** -0.002 -0.03 0.36** -0.34** 

A1T 0.23** 0.51** 1 0.19** -0.19** -0.60** 0.15** 0.40** -0.08 -0.12* 0.49** -0.60** 

A1L 0.14** 0.21** 0.19** 1 0.29** -0.11* 0.07 0.12* 0.005 0.02 0.20** -0.03 

A1V 0.04 -0.08 -0.19** 0.29** 1 0.31** -0.11* -0.16** 0.002 -0.03 -0.31** 0.31** 

A2T 0.12* -0.22** -0.60** -0.11* 0.31** 1 -0.04 -0.31** -0.01 0.07 -0.42** 0.58** 

A2L 0.21** 0.25** 0.15** 0.07 -0.11* -0.04 1 0.45** 0.09 -0.01 0.34** -0.23** 

A2V 0.23** 0.35** 0.39** 0.12* -0.16** -0.31** 0.45** 1 0.15** -0.12* 0.46** -0.70** 

HcT 0.04 -0.002 -0.08 0.01 0.002 -0.01 0.09 0.15** 1 -0.09 0.07 -0.07 

PD -0.03 -0.03 -0.12* 0.02 -0.03 0.06 -0.01 -0.12* -0.09 1 -0.03 0.16** 

HcR 0.17** 0.36** 0.49** 0.20** -0.31** -0.42** 0.34** 0.46** 0.07 -0.03 1 -0.54** 

DA -0.09 -0.34** -0.60** -0.03 0.31** 0.58** -0.23** -0.70** -0.07 0.16** -0.54** 1 

** Significance value <0.01 level (2-tailed).  

* Significance value < 0.05 level (2-tailed). 
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3.3.3 Factors affecting the biomechanical parameters by ORA and CST 

Multivariate linear regression analysis was carried out to identify factors that affect the 

corneal biomechanical parameters. Based on previous literature, age, gender, 

ethnicity, CCTus and IOPcc were chosen as predictors. The biomechanical parameters 

were analysed as separate criterion for the regression model. Details on the analysis, 

variables chosen for regression and outcome measures are described in section 2.4. 

In Table 3.11, the multivariate analysis of the effect of age, gender, CCT and IOP on 

corneal biomechanical parameters is presented. Amongst the corneal biomechanics 

parameters, the regression analysis explained moderate to strong predictability model 

for A1T, A2T, HcR, DA, CH and CRF. The model described 46% of the variability of CH 

and A2T, followed by 28% of the explained variability of A1T. The model also described 

25% of the variability of DA and CRF. Despite the significance of the regression models 

of A1L, A1V, A2L and A2V, the model explained less than 12% of these parameters’ 

variability. HcT and HpD regression models showed no significant contribution of the 

factors analysed. 

The CCT and IOPcc made a unique contribution to CH that accounted for 46% of its 

variability, with IOPcc recording a higher beta coefficient value (β coefficient= -0.53, 

p<0.00) than the CCTus (β coefficient= 0.43, p<0.00). The regression model of A2T 

showed that the total variance (46%) was explained by IOPcc, CCTus and age. The 

IOPcc has the highest unique contribution (β coefficient= - 0.59, p<0.00) on A2T 

variability, compared to age and CCTus (β coefficient= -0.23 and -0.16, p<0.00). The 

IOPcc was also noted to has the highest and most significant contribution on the 

variability of A1T (β coefficient= 0.43, p<0.00) and DA (β coefficient= -0.53, p<0.00). 

Both DA and A1T also affected by age (β coefficient= 0.11 and -0.12, p<0.00) and 

CCTus (β coefficient= -0.25 and 0.30, p<0.00). 
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Table 3.11 Factors affecting the biomechanical parameters by Corvis ST and ORA  

 Standardised coefficient (β) with 

B coefficients (BCa 95% CI) 

Adjusted 
R2 

p 

Age Gender CCTus IOPcc 

CH - - 0.43*** -0.53*** 0.46 0.00 

CRF - - 0.50*** - 0.25 0.00 

A1T -0.12** - 0.30*** 0.43*** 0.28 0.00 

A1L - - 0.26*** 0.11* 0.07 0.00 

A1V - - - -0.22** 0.05 0.00 

A2T -0.23*** - -0.16*** -0.59*** 0.46 0.00 

A2L - -0.13* 0.22*** - 0.07 0.00 

A2V - - 0.31*** 0.17** 0.12 0.00 

HcT - - - - 0.01 0.65 

HpD - - - - 0.01 0.80 

HcR 0.16* - 0.45*** 0.28*** 0.30 0.00 

DA 0.11* - -0.25*** -0.43*** 0.25 0.00 

 

Age, gender, CCTus and IOPcc, have variable effect on the corneal biomechanics 

parameters. Amongst the factors, CCTus was noted to affect majority of the CST 

parameters and both ORA parameters. Higher CCT positively affect A1T, A1L, A2L, 

A2V, HcR, CH and CRF (β coefficient= 0.30, 0.26, 0.22, 0.31, 0.45, 0.43 and 0.50, 

p<0.00). In contrast, CCT could cause reduction of DA and A2T (β coefficient=-0.25 

and -0.16, p<0.00). The IOPcc affected A1T, A1L, A1V, A2T, A2v, HcR, DA and CH. 

The IOPcc has positive unique contribution on A1T, A1L, A2V and HcR (β coefficient= 

0.43, 0.11, 0.17 and 0.28, p<0.01). This effect was in reverse on A1V, A2T, DA and CH 

(β coefficient= --0.22, -0.59, 0.43 and 0.53, p<0.00). Age could contribute to the 

reduction of A1T and A2T (β coefficient= -0.12 and -0.23, p<0.01), and increment of 

HcR and DA (β coefficient= 0.16 and 0.11, p<0.05). Gender has a negative effect on 

the A2L (β coefficient= -0.13, p<0.05).  
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3.3.4 Discussion 

The importance of corneal biomechanical properties in tonometry, ocular diagnosis and 

ocular disease management was well known. The ORA, which is the first in-vivo 

instrument for the measurement of corneal biomechanical parameters was well 

evaluated by many studies [15, 19, 59, 60, 69, 74, 84, 272-277]. In recent years, Corvis 

ST (CST) was introduced as a pachy-tonometer. It is able to perform in-vivo 

Scheimpflug imaging of the corneal deformation under air-pulse pressure [212, 245, 

265]. In the current study, the relationship between CST parameters and ORA was 

analysed. This study analysed the influence of IOP, CCT, gender, age and laterality on 

the corneal biomechanical parameters by CST and ORA. 

This study showed highly significant association between both CRF and CH, which was 

demonstrated in many studies since the launch of ORA a decade ago [220]. The 

parameters were derived from the same infra-red wave analysis but empirically 

calculated using different mathematical algorithms [69]. The results showed that all 

corneal biomechanical parameters from ORA except HcT and HpD, were significantly 

correlated with the parameters from CSTc. Both ORA parameters have significant 

moderate correlation with A1T. Other CST parameters (A1L, A2T, A2L, A2V and HcR) 

have weak but significant correlation with CH and CRF. However, DA showed an 

inverse relationship with CRF. Previous studies highlighted A1T and DA as the most 

reliable and reproducible parameters for describing corneal biomechanics [211, 245, 

269]. These CST parameters may be important to represent the viscoelastic properties 

of the cornea in-vivo. 

Similarly, the CRF was also noted to be more representative than CH on corneal 

viscoelasticity. A study on spectral analysis of the waveform of both ORA and CST 

found no statistically significant difference between CH and CRF versus DA [278]. The 

study did not explore direct correlations between corneal biomechanical parameters 

from both instruments.  

The CH was noted to be affected by age, CCT and IOP. However, the CRF increased 

with thicker CCT and was not influenced by other demographic variables and 

parameters. In a British population cohort, the mean CH and CRF declined with age 

and were higher in women than in men [58, 63, 96, 97]. Similar observations were 

made by other studies that indicated that the ageing cornea could reduce corneal 

viscoelasticity (92, 96, 124, 125). Despite a few contradictory findings in laboratory 

studies using donor cornea, the inverse association between age and corneal 
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viscoelasticity remains strong. However, the CRF was noted to be less influenced 

compared to CH . In this study, aging positively influenced A1T, A2T, HcR and DA 

which indicate higher cornea resistance to dynamic external force (air-pulse pressure 

of the CST).  

Similar positive association between age with A2T and DA was noted in a study on 

younger subjects undergoing refractive surgery [20, 70]. However, a study on a young 

to middle-aged healthy Brazilian cohort revealed an increase in HcT with age [70]. The 

author postulated that the HcT inversely represent the viscoelasticity profile in patients 

as a result of physiological cross-linkage of the corneal stoma collagen fibrils in ageing 

eyes. The variability on the association of the CST parameters with age maybe 

resulted from the heterogeneity of the study cohort as well as the CST software version 

employed. The present study population has a wide age range with multi-ethnic 

distribution and was examined with a more updated CST software version. 

The effect of IOP on the corneal biomechanical properties by ORA was previously 

analysed in normal and glaucomatous eyes [15, 17, 163]. The ORA’s estimate of 

corneal-compensated IOP (IOPcc) is a mathematically derived tonometry value and 

claims to be less affected by corneal biomechanical properties and IOP measurement 

in comparison to other tonometers [157]. Earlier studies have found that IOPcc was not 

associated with corneal curvature ,central corneal thickness [72, 73, 143]or axial length 

[72]. Therefore, IOPcc was chosen to represent the IOP for the analysis on factors 

affecting corneal biomechanics. The present study showed that CH was negatively 

affected by IOPcc.  

Other studies t noted an inverse correlation between IOP and CH [65, 68, 85-87]. 

Kamiya et al. found that eyes with thinner CCT as well as higher IOP values are more 

predisposed to having lower CH [68]. By contrast, there is significant positive 

contribution of IOPcc on CRF in univariate analysis. CRF increases with rising IOP, 

indicating that resistance against the deformation of the cornea is higher in eyes with 

higher IOP values. However, upon inclusion of age, gender, IOPcc and CCT in the 

multivariate analysis, the significant effect of IOPcc disappeared and was shown to be 

affected by only CCT. The lack of influence of IOPcc on CRF may be due to the strong 

inter-correlation between IOPcc and CCT. Galletti et al. confirmed the confounding 

effects of IOP and CCT on ORA biomechanical parameters and suggested new values 

termed “transformed CH” (CHcorr) and “transformed CRF” (CRFcorr) [88]. The IOP 

significantly affected seven out of ten CST parameters in the presentstudy. Higher IOP 

caused significant increment of A1T, A1L, A2V and HcR. The effect of these CST 
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parameters indicates a ‘soft’ cornea and showed reduction of the corneal 

biomechanical properties with increase IOP.  

Previous studies have reported that a thinner CCT is an independent risk factor for 

open-angle glaucoma in patients with ocular hypertension (OHT) [75-79]. A study by 

Shah et al. [80] found significant and positive relationships between ORA parameters, 

CH and CCT, CRF and CCT and CRF and CH in normal eyes. In both glaucoma and 

normal subjects, CCT is positively correlated with CH [81-83]. As the cornea contains 

more collagen fibres and ground substances, resistance against deformation and 

damping capacity rises. Moreover, the stronger the corneal tension, the faster the 

cornea regains its original position following deformation. In addition, IOP represents 

an additional force that restores the cornea to its original position [84] Central corneal 

thickness was a significant predictor of A2L, A2V, and also HcR.  

3.4 Conclusion 

The inter-tonometry method agreement study in this chapter revealed all tonometers 

have good agreement with GAT. The tonometers are valid alternatives for GAT 

tonometry amongst healthy subjects with normal IOP values but are not 

interchangeable with GAT. Clinicians should be aware of the proportionate bias by CST 

when performing tonometry on subjects with high IOP (more than 22mmHg). Age 

affected all inter-tonometry mean differences except for CST. The CRF, A1T, A2T, A2V 

and DA are important biomechanical parameters that influence the inter-tonometry 

bias.  The next chapter looks into the inter-tonometry agreement and corneal 

biomechanical properties amongst glaucoma subjects. 
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CHAPTER 4: TONOMETRY AGREEMENT AND CORNEAL BIOMECHANICAL 

PROPERTIES IN EYES WITH GLAUCOMA AND OCULAR HYPERTENSION 

This chapter presents data collected from a cohort of glaucomatous subjects attending 

the glaucoma clinic at Birmingham and Midland Eye Centre. Details on subject 

selection, instrumentation and methods of analysis employed in this study are 

described in Chapter 2. The demographics of study subjects and all study variables are 

first presented. This chapter is then divided into two main sections (4.2 and 4.3); the 

first reports the agreement of IOP values of Tonopen, Icare, ORA and CST against 

GAT in glaucomatous eyes; and the second looks at the relationship of corneal 

biomechanical parameters of the ocular hypertensive and glaucomatous eyes by the 

ORA and CST.   

4.1 Demographic 

A total of 264 eyes were examined from 170 volunteers from a glaucoma clinic. The 

mean age of all subjects was 66.5 ± 1.2 years (median; 69 years, max; 85 years, min; 

24 years). The subjects were 143 male and 121 female. Overall, the study subjects are 

mainly from the Caucasian background (n= 156, 59.1 %) (Figure 4.1).                                                     

 

Figure 4.1 The ethnic distribution of glaucomatous subjects 
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Figure 4.2 Distribution of subjects by glaucoma diagnosis 

The IOP values of the glaucomatous eyes analysed in this section are listed in Table 

4.1.The IOPcc is the highest amongst the IOP value and the Icare was the lowest. All 

tonometers measured highest IOP value in OHT eyes, followed by POAG and NTG 

(One-way ANOVA with post-hoc Bonferroni analysis, p<0.001). 

Table 4.1 Mean IOP values, corneal biomechanical parameters and corneal thickness 
of glaucomatous eyes (all mean values are in mmHg) 

 All 

n=264 

OHT 

n=58 

NTG 

n=44 

POAG 

n=162 

p† 

GAT  16.22 ± 4.56 20.26 ± 4.48 12.30 ± 2.98 14.67 ± 3.09 <0.001 

Tonopen 16.18 ±  3.74 19.26 ± 4.29 12.91± 3.08 15.09 ± 3.00 <0.001 

Icare 15.71±  5.05 19.87 ± 5.18 11.45 ± 3.41 14.02 ± 3.88 <0.001 

IOPg 17.64 ± 5.64 21.92 ± 5.71 13.68 ± 4.49 15.61± 4.37 <0.001 

IOPcc 18.23 ± 5.13 20.73 ± 5.22 15.06 ± 4.04 17.25 ± 4.79 <0.001 

CST 16.26 ± 3.37   18.99 ± 3.68 13.07 ± 2.05 15.09 ± 2.93 <0.001 
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In table 4.2, mean central corneal thickness and corneal biomechanical parameters 

distribution for the study population are presented. The CCT, CH, CRF and all of the 

CST corneal parameters (except A1L and HcT) showed significant differences amongst 

the different glaucoma diagnoses (p<0.01).  

Table 4.2 Mean IOP values, corneal biomechanical parameters and corneal thickness 
of glaucomatous eyes 

 

 

 

 OHT  

n=58 

(mean±SD) 

NTG 

n=44 

(mean±SD) 

POAG 

n=162 

(mean±SD) 

p value 

CH 11.01 ± 2.89 8.96 ± 1.82 8.20 ± 1.73 <0.001 

CRF 11.80 ± 3.01 8.26 ± 1.25 8.65 ± 1.79 <0.001 

A1T 8.22 ± 0.51 7.52 ± 0.31 7.77 ± 0.33 <0.001 

A1L 1.73 ± 0.15 1.76 ± 0.26 1.76 ± 0.19 0.74 

A1V 0.13 ± 0.03 0.15 ± 0.03 0.14 ± 0.03 <0.001 

A2T 21.93 ± 0.36 22.52 ± 0.73 22.21 ± 0.48 <0.001 

A2L 1.82 ± 0.30 1.55 ± 0.30 1.76 ± 0.35 <0.001 

A2V -0.32 ± 0.07 -0.40 ± 0.10 -0.37 ± 0.08 <0.001 

HcT 16.40 ± 0.39 16.64 ± 0.73 16.48 ± 0.51 0.16 

HpD 3.16 ± 1.10 3.79 ± 1.21 3.75 ± 1.21 0.02 

HcR 7.77 ± 1.07 3.70 ± 1.33 6.89 ± 0.69 <0.001 

DA 1.03 ± 0.09 1.49 ± 1.34 1.14 ± 0.12 0.01 

CCTus 562.37 ± 40.19 513.93 ± 27.29 521.65 ± 36.33 <0.001 

*One-way ANOVA with Bonferroni post-hoc                        
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4.2 Agreement between tonometers in glaucomatous eyes 

This section explores the demographic and physical factors that may influence the 

agreement between the various tonometers and GAT amongst eyes with POAG, NTG 

and OHT. The details of these instruments were explained in chapter 2 (section 2.2).  

The inter-tonometry agreement of all tonometers against GAT is listed according to 

glaucoma diagnosis in table 4.3, 4.4 and 4.5. All tonometer’s mean biases are within 

the acceptable ± 2.0 mmHg range across all the different glaucoma diagnosis except 

for IOPcc by ORA. In POAG subjects, the mean IOPcc biases against GAT are slightly 

higher than the recommended range (2.53 mmHg).  

The IOPcc and IOPg (ORA tonometry values) recorded low percentage of acceptable 

bias (50% and less) compared to other tonometers. Across the different diagnosis, the 

OHT eyes showed lowest percentage of bias within ±2.0 mmHg compared to other 

NTG and POAG subjects ( except for inter-tonometry comparison of CST and GAT). 

Further, OHT subjects have higher standard deviation of mean difference in all paired 

tonometry, with an average value of more than 3.5 mmHg.  

Table 4.3 Mean difference, expected range of agreement and paired correlations 
between GAT and all tonometers amongst the OHT subjects 

 Mean Difference ± 
SD (mmHg) 

LOA (95%CI) ICC(95%CI) % within 
2.0 
mmHg 

Icare_GAT -0.23 ± 3.68 -7.44, 6.98 0.83 (0.72,0.93) 57.7 

Tonopen _GAT -0.81 ± 3.44 -7.55, 5.93 0.82 (0.68, 0.89) 57.8 

IOPcc_GAT 0.28± 4.35 -8.25, 8.76 0.68 (0.42, 0.82) 35.4 

IOPg_GAT 1.27 ± 3.92 -6.41,8.83 0.76 (0.58, 0.87) 47.9 

CST_GAT -1.21 ± 3.65 -8.36, 5.94 0.73 (0.53,0.85) 53.8 
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Table 4.4 Mean difference, expected range of agreement and paired correlations 
between GAT and all tonometers amongst the NTG subjects 

 Mean Difference ± 
SD (mmHg) 

LOA (95%CI) ICC(95%CI) % within 
2.0 
mmHg 

Icare_GAT -0.85 ± 2.03 -4.84, 3.14 0.86 (0.70, 0.90) 79.5 

Tonopen _GAT 0.59± 1.96 -3.25,4.43 0.87 (0.76, 0.93) 88.7 

IOPcc_GAT 2.07 ± 2.84 -3.5, 7.64 0.75 (0.30, 0.89) 50 

IOPg_GAT 0.65 ± 2.43 -4.11,5.41 0.87 (0.74, 0.94) 46.9 

CST_GAT 1.10 ± 1.73 -1.70, 3.90 0.83 (0.54, 0.92) 63.8 

 

 

Table 4.5 Mean difference, expected range of agreement and paired correlation 
between GAT and all tonometer amongst the POAG subjects 

 Mean Difference ± 
SD (mmHg) 

LOA (95%CI) ICC(95%CI) % within 
2.0 
mmHg 

Icare_GAT 0.68 ± 2.52 -4.22,5.58 0.78 (0.69, 0.85) 64.6 

Tonopen _GAT 0.34 ± 2.03 -3.65, 4.33 0.82 (0.75, 0.87) 70.2 

IOPcc_GAT 2.53± 3.49  -4.31, 9.37 0.57 (0.15, 0.76) 39.6 

IOPg_GAT 0.94 ± 3.14 -5.21, 7.09 0.69 (0.53, 0.78) 54.2 

CST_GAT 0.40 ± 2.00 -3.52, 4.32 0.78 (0.69, 0.84) 74.3 

 

The mean difference (bias) in each comparison is plotted against the average of 

tonometry values and presented as Bland-Altman plots in section 4.2.1 for further 

evaluation of the inter-tonometry agreement. 

  



Tonometry agreement and corneal biomechanical properties in glaucoma eyes 

Page 100 

4.2.1 Inter-tonometry agreement  

Figures 4.3-4.7a-c are the BA plots of inter-tonometry comparison, in the different 

subject groups (OHT, NTG and POAG). 

4.2.1.1 Agreement between Icare and GAT 

From Figure 4.3(a)-(b), the average of IOP Icare_GAT in the NTG and OHT groups are 

evenly distributed along the line of the mean difference  of the paired tonometers. The 

biases are almost all within the estimated limit of agreement. The wide limit of 

agreement in the OHT group was mentioned earlier in section 4.2. However, the 

distribution of the average IOP value in the POAG group plot, was noted to show an 

upward / positive pattern (Figure 4.3c).  

 

 

Figure 4.3(a) Bland-Altman plot of IOP by Icare vs GAT in OHT 
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Figure 4.3(b) Bland-Altman plot of IOP by Icare vs GAT in NTG 

 

Figure 4.3(c) Bland-Altman plot of IOP by Icare vs GAT in POAG 

4.2.1.2 Agreement between Tonopen and GAT 

According to Figure 4.4(a)-(c), the average value of Tonopen-GAT in all the glaucoma 

subgroups, are scattered in a well distributed pattern along the line of mean IOP 

difference of the paired tonometers. The biases are also mostly within the line of the 
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estimated limit of agreement. This indicates that the bias is fairly constant across the 

range of all average IOP value plotted. The LOA in the OHT subjects is apparently 

wider than other group, as mentioned before.        

 

Figure 4.4(a) Bland-Altman plot of IOP by Tonopen vs GAT in OHT  

         

Figure 4.4(b) Bland-Altman plot of IOP by Tonopen vs GAT in NTG 
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Figure 4.4(c) Bland-Altman plot of IOP by Tonopen vs GAT in POAG 

4.2.1.3 Agreement between IOPg and GAT 

In Figure 4.5(a)-(c), the mean difference of IOPg and GAT value along the line of the 

mean of bias are in non-uniform distribution. This may indicate that bias changes with 

average IOP value. Further analysis of this relationship is presented in section 4.2.2. 

 

Figure 4.6(a) Bland-Altman plot of IOP by IOPg vs GAT in OHT 
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Figure 4.5(b) Bland-Altman plot of IOP by IOPg vs GAT in NTG 

 

   

Figure 4.5(c) Bland-Altman plot of IOP by IOPg vs GAT in POAG 
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4.2.1.4 Agreement between IOPcc and GAT 

The BA plots in Figure 4.6(b)-(c) of the inter-tonometry bias between IOPcc and GAT 

are scattered in a positive pattern against the average IOP value for NTG and POAG 

subjects.The BA plot in Figure 4.6(b) revealed, again, that the LOA of the inter-

tonometry bias in the OHT group is the widest. Further analysis of the relationship 

between bias and average IOP value of IOPcc and GAT is presented in section 4.2.2.  

 

 

Figure 4.6(a) Bland-Altman plots of IOP by IOPcc against GAT in OHT 
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Figure 4.6(b) Bland-Altman plots of IOP by IOPcc against GAT in NTG 

 

 

 

Figure 4.6(c) Bland-Altman plots of IOP by IOPcc against GAT in POAG 
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4.2.1.5 Agreement between CST and GAT 

The BA plots for the CST versus GAT are presented in Figure 4.7(a)-(c). In Figure 

4.7(b), the OHT group showed almost a well-distributed bias along the mean bias value 

across the different average IOP range. However, for NTG and POAG groups, the plots 

showed a negative pattern of distribution of the inter-tonometry bias against the 

average IOP value of CST and GAT(Figure 4.7(b) and 4.7(c),respectively). These 

relationships are further analysed in item 4.2.2.  

 

 

Figure 4.7(a) Bland-Altman plots of IOP by IOPcc against GAT in OHT 
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Figure 4.7(b) Bland-Altman plots of IOP by IOPcc against GAT in NTG 

 

Figure 4.7(c) Bland-Altman plots of IOP by IOPcc against GAT in POAG 
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4.2.2 Proportionate bias of the inter-tonometry agreement  

In the majority of the BA plots in section 4.2.1, inconsistent bias values are noted with 

changing average IOP value between the paired tonometers. Tables 4.6, 4.7 and 4.8 

listed the regression analysis performed on the average IOP value against the bias for 

each tonometer pair, according to the glaucoma diagnosis. Linear regression models of 

each inter-tonometry bias at different average IOP values of the paired tonometers are 

presented in Table 4.9.  

Table 4.6 The effect of mean IOP on the mean difference (bias) between tonometers in 
OHT subjects: a linear regression analysis 

 Adjusted R2 B (Bca 95%CI) Standard Error B β p 

Icare_GAT 0.01 0.14  (-0.13, 0.39) 0.14 0.16 0.25 

Tonopen _GAT -0.02 -0.02 (-0.23, 0.24) 0.12 -0.02 0.88 

IOPcc_GAT -0.02 0.09  ( -0.32, 0.48) 0.17 0.08 0.61 

IOPg_GAT 0.02 0.19  (-0.01, 0.51) 0.16 0.21 0.16 

CST_GAT 0.06 -0.22  (-0.49, -0.02) 0.12 -0.27 0.05* 

Table 4.7 The effect of mean IOP on the mean difference (bias) between tonometers in 
NTG subjects: a linear regression analysis 

 Adjusted R2 B (Bca 95%CI) Standard 
Error B 

β p 

Icare_GAT 0.02 0.15  (-0.13, 0.34) 0.08 0.21 0.17 

Tonopen _GAT 0.003 0.10 (-0.06, 0.23) 0.08 0.14 0.37 

IOPcc_GAT 0.26 0.46 (0.22, 0.74) 0.13 0.53 <0.001

IOPg_GAT 0.44 0.47  (0.29, 0.65) 0.09 0.67 <0.001

CST_GAT 0.26 -0.39  (-0.61, -0.16) 0.12 -0.53 <0.001
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Table 4.8 The effect of mean IOP on the mean difference (bias) between tonometers in 
POAG subjects: a linear regression analysis 

 Adjusted R2 B (Bca 95%CI) Standard 
Error B 

β p 

Icare_GAT 0.12 0.32  (0.18, 0.49) 0.08 0.35 <0.001

Tonopen _GAT 0.002 0.06  (-0.01, 0.22) 0.08 0.08 0.37 

IOPcc_GAT 0.36 0.70 (0.49, 0.98) 0.12 0.61 <0.001

IOPg_GAT 0.31 0.61  (0.40, 0.87) 0.12 0.56 <0.001

CST_GAT 0.06 -0.24  (-0.40, -0.08) 0.08 -0.25 <0.001

Table 4.9 Regression model of measurement biases as a function of average 
measurement of paired tonometer 

 OHT NTG POAG 

Icare vs GAT - - ݕ ൌ ݔ0.32 െ 5.17 

Tonopen vs GAT  - - - 

IOPcc vs GAT - ݕ ൌ ݔ0.46 െ ݕ 3.84 ൌ ݔ0.7 െ 8.45 

IOPg vs GAT - ݕ ൌ ݔ0.47 െ ݕ 5.06 ൌ ݔ0.61 െ 8.1 

CST vs GAT ݕ ൌ 	െ0.27ݔ  ݕ  4.11 ൌ െ0.39ݔ  ݕ 5.97 ൌ െ0.24ݔ  3.84 

y = tonometry bias (mmHg), x = average IOP of paired tonometer (mmHg) 

 

There is no proportionate bias between Tonopen and GAT in any glaucoma subgroup. 

The bias between Icare and GAT is only statistically significant for positively 

proportionate changes in the POAG subgroup (p<0.00). Positive contribution of the 

average IOP value between ORA (IOPcc, IOPg) and GAT on the inter-tonometer bias, 

is also statistically significant in both the NTG and POAG groups. However, for CST 

and GAT inter-tonometry bias, a contrasting effect was noted. A statistically significant 

negative contribution of the average IOP value on the measurement bias is noted in all 

glaucoma subgroups.  

The inter-tonometry biases of the paired tonometers are further investigated in the next 

section (4.2.3) to understand the influence of demographic and ocular factors (IOP, 

CCT and corneal biomechanical parameters) that may affect the variance.  
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4.2.3 Inter-tonometry bias 

In this section, the influence of the demographic variables, age, CCT, IOPcc and 

biomechanical factors on the inter-tonometry biases are analysed. The biases between 

gender and ethnic origins are analysed with paired t-test (for gender) and ANOVA with 

Bonferroni correction (for ethnicity). Paired t-test revealed no statistically significant 

influence on the inter-tonometry bias between female and male subjects amongst all 

glaucoma groups (p>0.05). Similarly, there was no significant association of ethnicity 

with inter-tonometry bias across all glaucoma diagnoses (p>0.05). 

4.2.3.1 Factors affecting the inter-tonometry measurement bias 

Multivariate regression analysis is employed to construct a predictive model of the 

inter-method bias. The demographic variables (gender and age) and biomechanical 

parameters (CRF, A1T, A2T, A2L, A2V, HcR and DA) were included in the analysis. In 

order to reduce bias of analysis, each linear regression is analysed by robust 

regression method as described item 2.4.4.1. All B coefficient values are accompanied 

by the bias corrected accelerated 95% confidence interval (BCa 95%CI) values. The 

multivariate model of each inter-tonometry bias was corrected for the effect of IOP, 

CRF and CCT. 

Analysis of correlation between corneal biomechanical parameters showed that only 

CH was strongly correlated with CRF. The Pearson’s r value are 0.74 in OHT, 0.79 in 

NTG and 0.72 in POAG subjects (p<0.01). As multicolinearity of variables can violate 

the assumptions for a valid regression model, the CH was excluded due to its high 

correlation with CRF. Ethnicity is not included in the multivariate analysis due to 

inadequate sample size in every cell. Simmons et al.  suggested that for categorical 

variable, each cell has at least 20 samples [240]. Other than Caucasian, other ethnic 

background has less than 20 samples in each glaucoma cohort. Thus, the ethnicity is 

not included in the multivariate analysis. The ocular laterality effect on all the inter-

method bias revealed no significant influence and does not affect the final outcome in 

all multivariate model, with p>0.05.   

The effect size of these variables were calculated and presented as: 

1. Adjusted R2 value represented the variance of the inter-method bias affected by the 

variables. The F value reported the number of significant predictors and residual 

predictors. The value of significance is set at p<0.05. 
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2. B (the unstandardized coefficient) for each predictor variable shows the predicted 

increase in the value of the criterion (inter-method measurement bias) for one unit 

increase in that predictor.  

3. Beta (β) (the standardised coefficient) gives a measure of the contribution of the 

variable to the model in terms of standard deviation.  

4.2.3.1.1 Inter-tonometry bias between Tonopen and GAT 

A multivariate regression analysis in OHT subjects established no significant 

contribution of all the variables studied on the predicted bias between Tonopen and 

GAT. The regression analysis yields adjusted R2 of 0.04 and p value of 0.25. Similar 

finding is noted in POAG subjects where there is no statistically significant model for 

the contribution of the variables tested on the inter-tonometry bias (R2= 0.04, Adjusted 

R2 =0.27, p=0.32). Table 4.10 listed the result of multivariate regression analysis for 

NTG. 

Table 4.10 Factors affecting the inter-tonometry bias between Tonopen and GAT in 
NTG subjects: a multivariate regression analysis 

 B Coefficient (Bca 95% CI) Standard Error B β P 

IOPcc 0.50 (0.19, 0.82) 0.06 1.08 0.00 

A1T -4.82 (-3.75, -6.01) 0.70 -0.85 0.00 

A1V -29.13 (-21.05,-37.34) 7.61 -0.40 0.00 

DA 0.51 (0.19, 0.69) 0.17 0.32 0.01 

Note: R2= 0.76, Adjusted R2= 0.72 (p=0.00) 

4.2.3.1.2 Inter-tonometry bias between Icare and GAT 

Table 4.11-4.13 presented the linear regression model of predictors of inter-tonometry 

bias in each glaucoma subgroups. The A1V has the strongest effect of the bias 

followed by HcR and age. 
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Table 4.11 Factors affecting the inter-tonometry bias between Icare and GAT in 
OHT subjects: a multivariate regression analysis 

 B Coefficient (Bca 95% CI) Standard Error B β P 

A1V -61.08 (-92.42,-29.75) 15.47 -0.51 0.00 

HcR 1.02 (0.09,1.95) 0.46 0.28 0.03 

Age -0.07 (-0.14,-0.01) 0.03 -0.27 0.03 

Note:   R2= 0.52 , Adjusted R2= 0.44  (p=0.00) 
 

 

Table 4.12 Factors affecting the inter-tonometry bias between Icare and GAT in 
NTG subjects: a multivariate regression analysis 

 B Coefficient (Bca 95% CI) Standard Error B β P 

IOPcc 0.26 (0.09, 0.44) 0.09 0.55 0.01 

Age -0.11(-0.17,-0.05) 0.03 -0.59 0.00 

A2L 2.08 (0.31, 3.85) 0.86 0.31 0.02 

A1T -1.99 (-3.95,-0.03) 0.95 -0.34 0.05 

Note: R2= 0.65 , Adjusted R2= 0.56 (p=0.00) 
 
 

 

Table 4.13 Factors affecting the inter-tonometry bias between Icare and GAT in POAG 
subjects: a multivariate regression analysis 

 B Coefficient (Bca 95% CI) Standard Error B β P 

IOPcc 0.18 (0.06,0.29) 0.06 0.31 0.00 

A2L 1.58 (0.13,3.03) 0.73 0.24 0.03 

Note: R2= 0.16 , Adjusted R2= 0.12 (p=0.01) 
 

4.2.3.1.3 Inter-tonometry bias between ORA (IOPcc) and GAT 

A multivariate regression analysis has established linear model of factors that influence 

inter-tonometry bias in OHT, NTG and POAG subjects. All linear models are presented 

in Table 4.14, 4.15 and 4.16. 
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Table 4.14 Factors affecting the inter-tonometry bias between ORA (IOPcc) and 
GAT in OHT subjects: a multivariate regression analysis 

 B Coefficient (Bca 95% CI) Standard Error B β p* 

IOPcc 0.65 (0.47,0.82,  0.04 0.70 0.00 

CCTus -0.01(-0.06,0.04) 0.004 -0.09 0.04 

Note: R2= 0.45 , Adjusted R2= 0.42  (p=0.00)  

 

Table 4.15 Factors affecting the inter-tonometry bias between ORA (IOPcc) and 
GAT in NTG subjects: a multivariate regression analysis 

 B Coefficient (Bca 95% CI) Standard Error B β p 

IOPcc 0.39 (0.21, 0.58) 0.09 0.59 0.00 

Age -0.11 (-0.18,-0.03) 0.04 -0.41 0.01 

Note: R2= 0.68 , Adjusted R2= 0.63  (p=0.00) 
 

 

Table 4.16 Factors affecting the inter-tonometry bias between ORA (IOPcc) and 
GAT in POAG subjects: a multivariate regression analysis  

 B Coefficient (Bca 95% CI) Standard Error B β P 

IOPcc 0.85 (0.75, 0.95) 0.05 1.08 0.00 

CRF -0.31(-0.50, -0.13) 0.09 -0.18 0.00 

CCT -0.01 (-0.2, -0.01) 0.00 -0.17 0.00 

A2T 1.30 (0.48,2.12) 0.41 0.19 0.00 

HcR 0.95 (0.48,1.41) 0.23 0.20 0.00 

A1T -1.64 (-3.01, -0.27) 0.69 -0.14 0.02 

A1L -3.27 (-5.03,-1.51) 0.88 -3.71 0.00 

A1V 21.97 (7.11, 36.84) 7.46 0.17 0.00 

Note: R2= 0.86 , Adjusted R2= 0.84 (p=0.004)  

4.2.3.1.4 Inter-tonometry bias between ORA (IOPg) and GAT 

A multivariate regression analysis has established linear model of factors that influence 

inter-tonometry bias in OHT, NTG and POAG subjects. All linear models are presented 

in Table 4.17. 
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Table 4.17 Factors affecting the inter-tonometry bias between ORA (IOPg) and GAT 
in glaucoma subjects  

Group Significant 
Factor 

B Coefficient 
(Bca 95% CI) 

Standard Error 
B 

β p 

OHT1 IOPcc 0.38 (0.12,0.62) 0.05 0.46 0.00

NTG2 IOPcc 0.33 (0.17, 0.49) 0.08 0.57 0.00

 A1L 2.67 (0.10, 5.23) 1.25 0.28 0.04

POAG3 IOPcc 0.36 (0.23, 0.50) 0.07 0.51 0.00
1 R2= 0.21 , Adjusted R2= 0.15  (p=0.02)                         
2 R2= 0.63 , Adjusted R2= 0.57  (p=0.00) 
3 R2= 0.27, Adjusted R2= 0.24  (p=0.00)  

 

4.2.3.1.5 Inter-tonometry bias between CST and GAT 

A multivariate regression analysis has established linear model of factors that influence 

inter-tonometry bias in NTG subjects. The linear models are presented in Table 4.18. 

There is no statistically significant model for the contribution of the variables tested on 

the inter-tonometry bias in OHT subjects (R2= 0.17, Adjusted R2 =0.09, p=0.11) and 

POAG subjects (R2= 0.01, Adjusted R2= -0.03, p=0.90). 

Table 4.18 Factors affecting the inter-tonometry bias between CST and GAT in NTG 
subjects: a multivariate regression analysis 

 B Coefficient (Bca 95% CI) Standard Error B β p 

IOPcc -0.29 (-0.40, -0.16) 0.06 -0.68 0.00 

Age -0.13 (-0.18, -0.08) 0.02 -0.81 0.00 

Note: R2= 0.61, Adjusted R2= 0.55 (p=0.00) 
 

4.2.4 Discussion 

In this chapter the inter-tonometry agreement analysis and corneal biomechanical 

characteristics of subjects from a glaucoma outpatient clinic are presented. This cohort 

has subjects that are diagnosed to have underlying Primary Open Angle Glaucoma 

(POAG), Ocular Hypertension (OHT) and Normal Tension Glaucoma (NTG). The 

ethnic distribution of the glaucoma subjects in this cohort is in accordance to the 

Birmingham’s ethnic proportion[241]. The OHT subjects are noted to have higher mean 
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tonometry value than the NTG and POAG. The inter-tonometry difference and 

agreement of the tonometry pair amongst the different glaucoma diagnoses are 

discussed further in the item below. 

This is the first study that extensively analyses the inter-tonometry agreement between 

four tonometers (Icare, Tonopen, ORA and CST) against GAT, amongst different 

glaucoma diagnoses. The inter-tonometry bias of each tonometry pair is further 

explored by analysing the influence of demographic as well as CCT, IOP and corneal 

biomechanical parameters of ORA and CST. A similar study was conducted by 

Sullivan-Mee et al. on glaucoma subjects with the Pascal Dynamic Tonometer, ORA 

and GAT [157]. In the study, the CH and CRF were included in the multivariate 

regression analysis. The authors noted a persistent influence of CCT, CH and CRF in 

the almost all pair of tonometry comparison. However, in this study, the strong 

correlation between CH and CRF is considered to violate the assumption for a valid 

regression analysis. Thus, CH was excluded and CRF was chosen for to represent 

corneal biomechanical parameters by ORA. The multivariate regression analysis of the 

inter-method bias was corrected against the confounding effect of CCT, IOPcc and 

CRF, using hierarchical regression method.  

4.2.4.1 Icare vs GAT 

In glaucomatous eyes, previous tonometry agreement studies were done on pooled 

subjects from glaucoma clinic [279-282]. Only two studies were found to report the 

specific finding in POAG and NTG. Brusini et al. had studied the inter-tonometry 

agreement of Icare and GAT in POAG subjects [191]. Whilst in NTG, a study looked 

into the inter-tonometry bias amongst NTG [253]. To date, no specific study was found 

in the literature on tonometry agreement of Icare and GAT on OHT subjects or 

compare between the three glaucoma diagnoses.  

In this study cohort, the bias between Icare and GAT for OHT and NTG subjects 

showed negative inter-tonometry bias which indicates underestimation of IOP by GAT. 

In POAG, Icare tonometry overestimates GAT by 0.68mmHg. However, a statistical 

analysis with One-way ANOVA revealed a non-significant difference. In NTG, we noted 

that Icare underestimates GAT by -0.85mmHg. A comparative study of NTG (97 eyes) 

and normal (89 eyes) in South Korea, noted Icare significantly underestimates GAT by 

- 0.23mmHg [253]. Interestingly, tonometry bias in POAG subjects by Brusini et al. 

revealed an underestimation of 1mmHg of IOP GAT value by Icare [191].  



Tonometry agreement and corneal biomechanical properties in glaucoma eyes 

Page 117 

The LOA for the Icare-GAT in OHT subjects (approximately ± 7mmHg) is apparently 

wider compared to the NTG and POAG subjects (approximately ± 4mmHg and ± 

5mmHg). Wider LOA indicate lesser agreement between the tonometry values of the 

paired tonometer. The difference is apparent on the Bland-Altman plots presented. The 

plots revealed that inter-tonometry agreement (within ± 2.0 mmHg) in OHT subjects 

(57.7%) are much less than NTG (79.5%) and POAG (64.6%). Interestingly, the BA 

plots revealed despite the poor inter-tonometry agreement in OHT, there is no 

significant proportionate bias with increasing average IOP value of the paired 

tonometer. Similar uniformity of bias was noted in NTG patients. In POAG, there is 

significantly positive pattern of inter-tonometry bias with increment of average IOP 

value.  

According to a systemic review by Cook et al.[21], the difference in tonometry between 

Icare and GAT in this glaucoma cohort is within acceptable limit and showed very good 

agreement (mean difference within ± 2.0 mmHg). However, the range of IOP 

agreement in POAG and especially in OHT is outside the acceptable range. Thus, the 

IOP value between Icare and GAT may be considered interchangeable only in NTG 

subjects, in which the IOP range is significantly lower than the other glaucoma groups. 

The difference in the Icare and GAT inter-tonometry bias between the different 

glaucoma diagnoses was further investigated. In the initial univariate model, CCT was 

significantly correlated with the inter-tonometry bias by Icare in OHT and POAG. A 

previous study reported that bias between Icare and GAT was significantly influenced 

by CCT in both glaucomatous and normal eyes [282]. However, the multiple regression 

analysis in our study revealed that CCT was not significantly associated with the bias 

when corneal biomechanical parameters by ORA and CST were considered at the 

same time. In this study, multivariate regression analysis was corrected for the effect of 

CCT, IOP and CRF. The bias in OHT is noted to be moderately and significantly 

influenced by age, A1V and HcR. The A1V parameter by Corvis ST is noted to have 

the strongest negative influence on the variability of bias, followed by HcR. Older 

subjects have significant negative influence on the inter-tonometry bias between Icare 

and GAT. In NTG, the variability of bias was moderately affected by intraocular 

pressure, age, A2L and A1T. Increasing intraocular pressure and A2L value in NTG 

eyes significantly related to positive bias change. Older subject and increase in A1T 

cause a negative change in the inter-tonometry bias. In POAG, the inter-tonometry bias 

was also positively affected by A2L and IOP. Even though the influence of these 

factors is significant, the relationship is weak. Shin et al. found that after adjusting for 
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age, CCT, spherical equivalent, keratometry, and axial length, CH and CRF remained 

significantly associated with Icare in the NTG and normal subjects.[253]  

4.2.4.2 Tonopen vs GAT 

In this study, the Tonopen overestimates GAT in POAG and NTG subjects by 0.59 

mmHg and 0.34mmHg, respectively. The tendency for Tonopen to overestimate GAT 

measurement was noted in previous studies on normal subjects [187, 262, 263]. A 

meta-analysis study also supported that Tonopen overestimated GAT with wide range 

of agreement [21]. Similar finding was noted in a study on POAG subjects, where the 

mean difference of IOP between Icare and GAT is 0.5mmHg [202]. In OHT group, the 

average IOP value is significantly higher than other glaucoma diagnosis. However, 

interestingly, the Tonopen is noted to underestimate GAT by 0.81 mmHg in this group. 

The negative difference may be explained by the tendency of Tonopen to 

underestimate IOP GAT at high IOP [14]. Our study revealed LOA range of Tonopen-

GAT agreement in OHT subjects is approximately 13mmHg. The range of inter-

tonometry agreement in NTG and POAG is very similar at approximate range of ± 

4mmHg. This inter-tonometry agreement between Tonopen and GAT is very good 

especially in NTG and POAG. The IOP value of both tonometer may be likely 

interchangeable in similar subjects. There is no proportionate bias seen in our study 

which was similar with our normal cohort and a previous study on glaucomatous 

subjects [243]. This indicates that the inter-tonometry bias between Tonopen and GAT 

is constant and uniform up to ±10 mmHg and not influenced by the change in the 

average IOP value.  

There is no significant influence of the age, CCT, IOP and corneal biomechanical 

parameters on the variability of bias between Tonopen and GAT in both POAG and 

OHT subjects. Previous studies have similar result that showed no significant 

contribution of CCT in the inter-tonometry bias between Tonopen and GAT in mix 

glaucoma subjects [192, 251]. Tonopen indents a very small area of surface and, in 

applanation tonometry by GAT; the IOP measurement was almost static. Thus, the 

contribution of CCT on the bias may be non-demonstrable. The inter-tonometry bias in 

NTG is affected moderate to strongly, by DA, A1V, A1T and IOP, consecutively. Similar 

to our NTG cohort, DA is a significant biomechanical parameter affecting the inter-

tonometry bias between Tonopen and GAT in normal subjects. Despite no significant 

inter-tonometry bias pattern noted on the BA plot of NTG subjects, increment of 

1mmHg of ocular pressure from the mean value may increase the bias by 0.5mmHg.  
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4.2.4.3 ORA vs GAT 

The IOPcc was noted to have significantly higher against GAT in both NTG 

(2.07mmHg) and POAG subjects (2.53 mmHg) than OHT. In OHT, the bias is very 

minimal at 0.28mmHg. However, the IOPg was noted to be overestimating GAT in all 

glaucoma groups and especially in OHT subjects but the difference is not significant. 

Previous studies on healthy eyes noted positive bias between both IOPg and IOPcc, 

against GAT [72, 143]. The difference of IOP bias by ORA was quite obvious between 

studies. This bias was noted to be higher in other studies that recruited sample with a 

mix of glaucoma diagnosis [157].The current study noted that IOPg by ORA have the 

least bias to GAT compared to other tonometry. The inter-tonometry comparison of 

ORA to GAT in our study revealed mean difference of IOPg in all glaucoma group are 

within limits of ± 2mmHg, which is the acceptable systematic difference between 

tonometers which indicate good inter-tonometry agreement[21]. Unexpectedly, the 

IOPcc was noted to be outside the range of good agreement in NTG and POAG 

subject. 

Overall, the IOP by ORA is not interchangeable with GAT. The limit of agreement for 

IOPg-GAT and IOPcc-GAT in the current study was more than 8mmHg with in all 

glaucoma subgroup especially for bias of IOPcc in OHT subjects. Previous studies also 

noted the LOA in glaucoma subjects is more than the acceptable limit [157, 283]. This 

study did not found any proportionate bias in the BA plots for both IOPg and IOPcc bias 

against GAT in OHT. However, significant proportionate bias change is noted in with 

increasing average IOP in both NTG and POAG group. We found no similar study in 

glaucoma subgroup. However, few studies in normal subjects reported higher mean 

IOP causes proportionate increase in the inter-method difference of ORA IOP with GAT 

[74]. The difference in bias and LOA may be due to the variability of measurement of 

ORA as a non-contact tonometer. The tonometry was done in less than 10ms, thus it 

may be susceptible to the influence of ocular pulse amplitude [157], corneal tear film 

and CCT [261, 284].  

In the multivariate analysis, the inter-tonometry bias was noted to be significantly 

affected by IOP in all glaucoma subgroup. Older subjects seemed to cause further 

underestimation of the inter-tonometry bias in NTG subjects. In a large cohort of British 

population study, the IOPcc was noted higher in male and increased with age. The 

CCT is noted to have significant but minimal influence on the variability of the inter-

tonometry bias in both OHT and POAG. This finding is similar with previous studies 

which showed positive influence of CCT [72, 260]. Interestingly, CRF, A2T, HcR, A1T, 
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A1L and A1V have significant effect on the changes in the mean difference between 

IOPcc against GAT. Amongst all, A1L is noted to have the strongest effect on the 

variability of IOPcc bias. The variability of IOPg bias against GAT was weakly 

contributed by IOP in all glaucoma groups. In NTG, A1L is noted to significantly 

influence the change of bias with a moderately positive effect on the inter-tonometry 

bias. To the best of our knowledge no similar study is available in the literature that 

includes CST parameters in the analysis of inter-tonometry agreement. 

4.2.4.4 CST vs GAT 

The agreement between CST with GAT in NTG and POAG subjects was noted to be 

comparable to previous studies of normal eyes [265, 266](mean difference of 0.65 and 

1.1 mmHg, respectively). Both NTG and POAG subjects showed very good agreement 

range with LOA of less than ±4mmHg. In contrast, a similar agreement study on normal 

and glaucoma subjects revealed that CST underestimates GAT measurement [211]. In 

OHT, CST is noted to underestimate GAT. The limit of agreement of the CST against 

GAT in this group is more than 14mmHg. The BA plot revealed significant 

proportionate bias in all glaucoma diagnosis. The CST underestimated GAT with higher 

average IOP values.  

Multivariate analysis on the inter-tonometry bias between CST and GAT revealed that 

its variability was affected by age and IOPcc, only in NTG subject. In POAG, the 

univariate analysis of the bias was noted to be significantly affected by age, A1T, A1L, 

HcT and DA. This may indicate the significance of these parameters to represent 

additional element of corneal biomechanical properties other than CRF. However the 

effect was not sustained when the factors are analysed together. Multivariate analysis 

showed that the bias in OHT and POAG is not significantly influence by all the 

variables.  At the time this was written, no similar article study the combination effect of 

demographic profiles, IOP, CCT and CRF on the CST tonometry bias in different 

glaucoma subjects. In a study on OHT and glaucoma subjects, the increment of CST 

bias against GAT was positively affected by CCT [266]. The insignificant effect of CCT, 

age and axial length on the CST-GAT inter-method bias was also noted in a healthy 

cohort [211] but no similar study done glaucoma subjects yet.  
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4.3 Corneal Biomechanical Assessment of Glaucomatous and OHT Eyes 

This study explored the in-vivo corneal biomechanical properties of glaucomatous and 

OHT eyes with ORA and CST. In the initial section (4.3.1), the relationships between 

corneal biomechanical parameters by the Corvis ST (CST) and Ocular Response 

Analyzer (ORA) were evaluated in section. Further in section 4.3.2, regression analysis 

was performed to analyse the influence of demographic, central corneal thickness and 

IOP on the biomechanical parameters.  

4.3.1 Relationship between ORA and CST biomechanical parameters 

The mean value of all the corneal biomechanical variables based on demographic 

distribution was presented in the early part of this chapter (item 4.1). In this section, 

Pearson correlation analyses were performed to explore the relationship between the 

biomechanics parameters of ORA and CST in glaucoma subjects.  

The correlation between all corneal biomechanical parameters is listed according to the 

diagnosis in Table 4.19, 4.20 and 4.21. The correlation of age, CCT and IOPcc is also 

listed according to glaucoma diagnosis in Table 4.22, 4.23 and 4.24. 
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Table 4.19 The relationship between corneal biomechanical variables of ORA and Corvis ST in OHT subjects 

 CRF A1T A1L A1V A2T A2L A2V HcT PD R DA 

CH 
0.74** 

(0.56,0.86)   

0.44** 

(0.18,0.66) 

0.16 

(-0.21,0.48) 

-0.27 

(-0.52,0.08) 

-0.02 

(-0.32,0.26) 

0.08 

(-0.24,0.40) 

0.36* 

(0.10, 0.61) 

0.04 

(-0.26,0.33) 

-0.07 

(-0.37,0.23) 

0.42**  

(0.15,0.64) 

-0.27         

(-0.51,-0.03) 

CRF  
0.64** 

(0.44, 0.79) 

0.33* 

(0.02,0.58) 

-0.29 

(-0.47,-0.09) 

-0.22 

(-0.47,0.03) 

0.06 

(-0.23,0.32) 

0.54* 

(0.27, 0.75) 

0.01 

(-0.31,0.35) 

-0.06 

(-0.40,0.25) 

0.43**  

(0.08,0.68) 

-0.49** 

(-0.66,-0.31) 

A1T   
0.28 

(0.05,0.49) 

0.62** 

(-0.76,-0.47) 

-0.62** 

(-0.74,-0.50) 

-0.02 

(-0.29,0.27) 

0.55** 

(0.39,0.70) 

0.02 

(-030,0.37) 

-0.26 

(-0.52,0.03) 

0.45** 

(0.18,0.65) 

-0.61 

(-0.77,-0.41) 

A1L    
-0.03 

(-0.31,0.23) 

-0.26 

(-0.54,0.04) 

0.30 

(-0.11,0.63) 

0.46** 

(0.18,0.70) 

0.14 

(-0.17,0.45) 

-0.17 

(0.53,0.19) 

0.61** 

(0.43,0.75) 

-0.35 

(-0.57,-0.14) 

A1V     
0.50** 

(0.18,0.67) 

-0.12 

(-0.40,0.23) 

-0.47** 

(-0.65,-0.27) 

-0.02 

(-0.37,0.30) 

0.33* 

(0.05,0.54) 

-0.20 

(-0.52,0.13) 

0.26 

(-0.06,0.58) 

A2T      
-0.06 

(-0.37,0.29) 

-0.36* 

(-0.61,-0.04) 

-0.22 

(-0.50,0.08) 

0.32* 

(0.04,0.57) 

-0.28 

(-0.53,0.01) 

0.57** 

(0.27,0.78) 

A2L       
0.36 

(0.06,0.58) 

-0.01 

(-0.35,0.29) 

-0.06 

(-0.34,0.28) 

0.16 

(-0.16,0.41) 

-0.20 

(-0.49,0.16) 

A2V        
-0.05 

(-0.43,0.32) 

-0.22 

(-0.49,0.05) 

0.49** 

(0.69,0.21) 

-0.63** 

(-0.82,-0.35) 

HcT         
-0.19 

(-0.47,0.12) 

0.21 

(-0.11,0.54) 

0.07 

(-0.29,0.44) 

HpD          
-0.21 

(0.52,0.11) 

0.12 

(-0.15,0.41) 

HcR           
-0.47** 

(-0.68,-0.23) 

Pearson’s correlation with bootstrapping (Bca 95% CI)                                                                *p value <0.05, **p value<0.0 
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Table 4.20 The relationship between corneal biomechanical variables of ORA and Corvis ST in NTG subjects 

 CRF A1T A1L A1V A2T A2L A2V HcT PD R DA 

CH 
0.79** 

(0.60,0.89) 
-0.16 

(-0.50,0.36) 

-0.05 

(-0.2,0.25) 

0.40* 

(-0.26,0.67) 

0.04 

(-0.23,0.45) 

0.02  

(-0.38,0.48) 

0.21  

(-0.07,0.47) 

0.14 

(-0.26,0.48) 

-0.08  

(-0.47,0.40) 

0.06  

(-0.47,0.34) 

-0.20  

(-0.44,0.45) 

CRF  
0.12(-

0.26,0.63) 
0.03 

(-0.35,0.34) 

0.37* 

(-0.06,0.64) 

-0.15 

(-0.41,0.11) 

-0.05 

(-0.42,0.35) 

0.35 

(0.08,0.53) 

0.33 

(-0.04,0.65) 

-0.01 

(-0.42,0.49) 

0.20 

(-0.20,0.48) 

-0.19 

(-0.36,-0.08) 

A1T   
0.30 

(0.05,0.60) 

-0.13 

(-0.41,0.23) 

-0.41* 

(-0.59,-0.33) 

-0.07 

(-0.32,0.19) 

0.23 

(-0.06,0.55) 

0.27 

(-0.05,0.61) 

-0.13 

(-0.37,0.15) 

0.22 

(0.03,0.63) 

-0.01 

(-0.58,0.04) 

A1L    
0.20 

(-0.29,0.75) 

-0.11 

(-0.63,0.22) 

0.05 

(-0.40,0.44) 

0.22 

(-0.21,0.55) 

0.27 

(-0.04,0.48) 

0.19 

(-0.16,0.50) 

0.07 

(-0.23,0.54) 

0.13 

(-0.56,0.30) 

A1V     
0.02 

(-0.18,0.23) 

-0.22 

(-0.57,0.32) 

-0.25 

(-0.53,0.05) 

-0.17 

(-0.45,0.12) 

-0.31 

(-0.66,0.38) 

-0.12 

(-0.36,0.43) 

-0.08 

(-0.36,0.43) 

A2T      
0.19 

(-0.18,0.45) 

-0.48** 

(-0.76,0.03) 

-0.29 

(-0.52,0.02) 

-0.15 

(-0.48,0.19) 

-0.19 

(-0.36,-0.08) 

0.13 

(-0.12,0.33) 

A2L       
0.29 

(-0.09,0.60) 

0.04 

(-0.36,0.37) 

0.14 

(-0.24,0.52) 

0.12 

(-0.13,0.37) 

-0.06 

(-0.30,0.01) 

A2V        
0.63** 

(0.37,0.79) 

0.32 

(-0.06,0.59) 

0.22 

(-0.21,0.73) 

0.07 

(-0.78,0.21) 

HcT         
0.26 

(-0.06,0.49) 

-0.10 

(-0.56,0.62) 

0.37* 

(-0.67,0.62) 

HpD          
-0.08 

(-0.53,0.63) 

0.32 

(-0.40,0.53) 

HcR           
-0.83** 

(-0.94,-0.48) 

Pearson’s correlation with bootstrapping (Bca 95% CI)                                      *p value <0.05, **p value<0.0 
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Table 4.21 The relationship between corneal biomechanical variables of ORA and Corvis ST in POAG subjects 

 CRF A1T A1L A1V A2T A2L A2V HcT PD R DA 

CH 
0.72** 

(0.59,0.82) 

-0.09 

(-0.31,0.15) 

0.04 

(-0.14,0.22) 

0.30** 

(0.14,0.46) 

0.36** 

(0.19,0.51) 

0.36** 

(0.19,0.51) 

0.27* 

(-0.15,0.22) 

0.36** 

(0.15,0.53) 

0.13 

(-0.11,0.34) 

0.05 

(-0.22,0.31) 

0.29** 

(0.10,0.44) 

CRF  
0.36** 

(0.15,0.54) 

-0.04 

(-0.26,0.19) 

-0.07 

(-0.30,0.16) 

-0.02 

(-0.26,0.20) 

0.26* 

(0.06,0.44) 

0.45** 

(0.26,0.61) 

0.19 

(-0.00,0.36) 

0.12 

(-0.08,0.32) 

0.21 

(-0.03,0.43) 

-0.14 

(-0.30,0.01) 

A1T   
0.08 

(-0.11,0.27) 

-0.31** 

(-0.51,-0.08) 

-0.36** 

(-0.58,-0.12) 

 0.08 

(-0.10,0.26) 

0.51** 

(0.34,0.65) 

-0.26* 

(-0.44,-0.09) 

-0.07 

(-0.30,0.17) 

0.21 

(-0.02,0.42) 

-0.49** 

(-0.64,-0.33) 

A1L    
0.54** 

(0.09,0.36) 

-0.01 

(0.23,0.20) 

0.06 

(-0.21,0.33) 

-0.01 

(-0.25,0.26) 

-0.05 

(-0.18,0.10) 

-0.17 

(-0.37,0.04) 

0.21 

(-0.01,0.46) 

0.50 

(-0.15,0.23) 

A1V     
 0.46** 

(0.24,0.64) 

0.08 

(-0.18,0.30) 

-0.35** 

(-0.56,-0.08) 

0.19 

(0.02,0.35) 

-0.05 

(-0.27,0.15) 

0.02 

(-0.21,0.26) 

0.42** 

(0.17,0.59) 

A2T      
0.21 

(-0.05,0.43) 

-0.51** 

(-0.67,-0.34) 

0.21 

(0.02,0.40) 

0.11 

(-0.11,0.33) 

-0.14 

(-0.36,0.07) 

0.65** 

(0.47,0.79) 

A2L       
0.09 

(-0.11,0.30) 

0.18 

(-0.05,0.42) 

-0.05 

(-0.26,0.17) 

0.28* 

(0.05,0.47) 

0.06 

(-0.17,0.28) 

A2V        
0.06 

(-0.14,0.25) 

0.03 

(-0.18,0.23) 

0.35** 

(0.12,0.57) 

-0.68** 

(-0.76,-0.60) 

HcT         
-0.05 

(-0.25,0.14) 

0.07 

(-0.24,0.38) 

0.17 

(-0.10,0.42) 

HpD          
-0.10 

(-0.31,0.11) 

0.22* 

(-0.00,0.42) 

HcR           
0.41** 

(-0.60,-0.16) 

Pearson’s correlation with bootstrapping (Bca 95% CI)                                      *p value <0.05, **p value<0.0 
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Table 4.22 The relationship between age, CCT and IOPcc with the corneal biomechanical variables in OHT subjects ¥ 

 CH CRF A1T A1L A1V A2T A2L A2V HcT PD R DA 

Age 
 -0.38* 

(-0.62,-0.12) 

-0.34* 

(-0.53,-0.16) 

-0.36* 

(-0.54,-0.16) 

-0.16 

(-0.46,0.15) 

-0.04 

(-0.32,0.31) 

0.09 

(-0.18,0.33) 

0.04 

(-0.23,0.30) 

-0.32* 

(-0.49,-0.12) 

0.28 

(0.01,0.56) 

-0.09 

(-0.39,0.20) 

-0.16 

(-0.40,0.05) 

0.45** 

(0.24,0.65) 

CCT 
0.38* 

(-0.04,0.70) 

0.26 

(-0.14,0.66) 

0.15 

(-0.23,0.50) 

-0.10 

(-0.41,0.25) 

-0.23 

(-0.46,0.00) 

0.14 

(-0.17,0.40) 

0.27 

(-0.05,0.58) 

0.11 

(-0.20,0.43) 

0.09 

(-0.21,0.38) 

-0.04 

(-0.34,0.27) 

0.28 

(-0.06,0.57) 

-0.07 

(-0.36,0.25) 

IOPcc 
-0.21 

(-0.54,0.18) 

-0.10 

(-0.36,0.20) 

0.38 

(0.07,0.62) 

0.12 

(-0.20,0.42) 

-0.24 

(-0.58,0.15) 

-0.57** 

(-0.78,-0.26) 

0.04 

(-0.23,0.34) 

0.18 

(-0.15,0.49) 

0.04 

(-0.24,0.34) 

-0.11 

(-0.42,0.21) 

0.21 

(-0.15,0.58) 

-0.38* 

(-0.59,-0.14) 

 

Table 4.23 The relationship between age, CCT and IOPcc with the corneal biomechanical variables in NTG subjects ¥ 

 CH CRF A1T A1L A1V A2T A2L A2V HcT PD R DA 

Age 
 0.40* 

(0.07,0.66) 

0.28 

(-0.11,0.57) 

-0.25 

(-0.43,-0.09) 

-0.46* 

(-0.71,-0.14) 

0.22 

(-0.32,0.59) 

0.09 

(-0.16,0.63) 

0.13 

(-0.32,0.53) 

-0.15 

(-0.43,0.12) 

-0.29 

(-0.59,0.05) 

-0.26 

(-0.64,0.20) 

0.12 

(-0.49,0.47) 

-0.32 

(-0.63,0.59) 

CCTus 
0.06 

(-0.45,0.56) 

0.04 

(-0.43,0.63) 

0.10 

(-0.21,0.45) 

0.34 

(0.04,0.58) 

-0.23 

(-0.61,0.30) 

-0.07 

(-0.34,0.17) 

-0.03 

(-0.35,0.27) 

0.33 

(0.14,0.51) 

0.33 

(-0.02,0.64) 

0.27 

(-0.17,0.65) 

-0.15 

(-0.68,0.61) 

0.39* 

(-0.47,0.68) 

IOPcc 
0.07 

(-0.43,0.45) 

0.33 

(-0.11,0.69) 

0.53** 

(0.31,0.80) 

0.24 

(-0.20,0.58) 

0.15 

(-0.26,0.47) 

-0.47** 

(-0.63,-0.36) 

-0.18 

(-0.56,0.21) 

0.32 

(-0.01,0.61) 

0.31 

(-0.17,0.69) 

-0.29 

(-0.61,0.06) 

0.38* 

(0.00,0.64) 

-0.33 

(-0.47,-0.38) 

   

¥Note: Pearson’s correlation with bootstrapping (Bca 95% CI) ,where * p value <0.05, ** p value<0.0 
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Table 4.24 The relationship between age, CCT and IOPcc with the corneal biomechanical variables in POAG subjects 

 CH CRF A1T A1L A1V A2T A2L A2V HcT PD R DA 

Age 
-0.26* 

(-0.42,-0.07) 

-0.14 

(-0.32,0.04) 

0.14 

(-0.09,0.37) 

-0.18 

(-0.40,0.11) 

-0.17 

(-0.37,0.04) 

-0.19 

(-0.42,0.06) 

-0.05 

(-0.34,0.27) 

0.06 

(-0.16,0.27) 

-0.06 

(-0.28,0.15) 

0.12 

(-0.11,0.35) 

0.21 

(0.00,0.39) 

-0.01 

(-0.21,0.21) 

CCT 
0.18 

(-0.80,0.38) 

0.43** 

(-0.80,0.38) 

0.26* 

(0.00,0.49) 

-0.06 

(-0.28,0.18) 

-0.28 

(-0.47,-0.04) 

-0.33** 

(-0.54,-0.10) 

0.21 

(-0.02,0.43) 

0.42** 

(0.24,0.59) 

0.20 

(-0.04,0.40) 

-0.05 

(-0.28,0.17) 

0.23* 

(-0.12,0.52) 

-0.33** 

(-0.56,-0.06) 

IOPcc 
-0.46** 

(-0.62,-0.28) 

0.10 

(-0.15,0.33) 

0.55** 

(0.37,0.69) 

-0.09 

(-0.29,0.12) 

-0.42** 

(-0.58,-0.22) 

-0.62** 

(-0.73,-0.50) 

0.20 

(-0.33,0.11) 

0.46** 

(0.25,0.63) 

-0.31** 

(-0.47,-0.14) 

-0.03 

(-0.24,0.20) 

0.16 

(-0.07,0.38) 

-0.56 

(-0.70,-40) 

    

 Note: Pearson’s correlation with bootstrapping (Bca 95% CI) ,where * p value <0.05, ** p value<0.0 
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4.3.2 Factors affecting the biomechanical parameters by ORA and CST 

Linear regression analysis was carried out to identify factors that affect the corneal 

biomechanical parameters. Based upon the previous literature, age, gender, CCTus 

and IOPcc were chosen as predictors. The IOPcc was chosen to represent IOP in the 

regression analysis as it was claimed to represent the corneal-compensated IOP value 

[20, 157, 187].  

Multivariate regression analysis was executed to evaluate the effect of age, gender, 

CCT and IOP on the biomechanical parameters in this study. Enter (block entry) 

method was chosen with robust regression to detect the significant factors for the best 

predictive model of each biomechanical parameters employed in this study. Table 4.25 

summarises the results for OHT subjects, whilst Table 4.26 and 4.27 summarised the 

result for NTG and POAG subjects respectively. 

According to Table 4.25, in OHT subjects, almost 25% of the variability of CH and CRF 

was contributed by age and gender. Male subjects contributed to increment of the CH 

and CRF, whilst the increment of age causes a negative effect on the values (p<0.01). 

The effect of age, gender and IOP was significantly large in A1T with a total 46% 

predictive value (p<0.01).The influence of age is more than IOP and gender on the A1T 

parameter (Beta coefficient values of 0.49, 0.39 and 0.44, respectively, p<0.01). The 

DA is noted to be strongly and positively predicted by age more than IOP (Beta values 

of 0.57 and -0.40, respectively, p<0.01). Both age and IOP (and contributed 39% to the 

variability of DA (p<0.01). The CCT is noted to significantly affect the A1V and A2L. 

However, the overall regression model for both parameters are not statistically 

significant (p>0.05). 
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Table 4.25 Factors affecting the biomechanical parameters by Corvis ST and ORA 
in OHT subjects: a multivariate regression analysis 

 

 Standardised coefficient (β) with 

B coefficients (BCa 95% CI) 

Adjuste
d R2 

p 

IOPcc CCTus Age Gender 

CH -0.15 

-0.09(-0.26,0.08) 

0.29 

0.02(-0.00,0.04) 

-0.15* 

-0.07(-0.14,-0.02) 

0.28* 

1.54(0.19,3.03) 

0.25 0.00
** 

CRF -0.12 

-0.08(-0.27,0.06) 

0.16 

0.01(-0.01,0.03) 

-0.33* 

-0.08(-0.14,-0.02) 

0.46* 

2.77(1.16,4.57) 

0.24 0.00
** 

A1T 0.39* 

0.04(0.02,0.07) 

0.11 

0.00(-0.01,0.05) 

-0.49* 

-0.02(-0.03,-0.01) 

0.44* 

0.44(0.21,0.69) 

0.46 0.00
** 

A1L 0.09 

0.03(-0.06,0.13) 

-0.21 

-0.01(-0.02,0.01) 

-0.30 

-0.03(-0.07,0.00) 

0.15 

0.05(-0.05,0.15) 

0.04 0.24 

A1V -0.26 

-0.02(-0.04,0.01) 

-0.32* 

0.00(-0.01,0.01) 

-0.05 

0.00(-0.02,0.02) 

-0.20 

-0.01(-0.03,0.01) 

0.11 0.07 

A2T -0.56** 

-0.42(-0.06,0.02) 

0.11 

0.01(-0.02,0.03) 

0.020 

0.001(0.00,0.02) 

0.01 

0.01(-0.20,0.19) 

0.29 0.00
** 

A2L 0.11 

0.01(-0.01,0.03) 

0.25 

0.00(-0.01,0.01) 

0.07 

0.00(-0.01,0.01) 

-0.13 

-0.08(-0.26,0.12) 

0.02 0.54 

A2V 0.20 

0.00(-0.01,0.01) 

-0.01 

0.00(-0.01,0.01) 

-0.41 

-0.02(-0.04,-0.01) 

0.14 

0.02(-0.02,0.06) 

0.12 0.07 

HcT 0.05 

0.00(-0.02,0.03) 

0.13 

0.01(-0.02,0.04) 

0.29 

0.01(0.00,0.02) 

-0.09 

-0.07(-0.33,0.18) 

-0.01 0.46 

HpD -0.10 

-0.02(-0.11,0.07) 

0.04 

0.01(-0.07,0.11) 

0.02 

0.00(-0.03,0.03) 

-0.04 

-0.08(-0.84,0.58) 

-0.09 0.96 

HcR 0.28 

0.06(0.00,0.13) 

0.29 

0.01(0.00,0.02) 

-0.15 

-0.01(-0.03,0.01) 

0.04 

0.10(-0.56,0.77) 

0.08 0.13 

DA -0.40** 

-0.01(-0.01,-0.0) 

0.02 

0.00(-0.01,0.01) 

0.57** 

0.04(0.02,0.05) 

-0.17 

-0.03(-0.07,0.11) 

0.39 0.00
** 

** level of significance, p< 0.01 

*level of significance, p< 0.05 
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Table 4.26 Factors affecting the biomechanical parameters by Corvis ST and ORA 
in NTG subjects: a multivariate regression analysis 

 Standardised coefficient (β) with 

B coefficients (BCa 95% CI) 

Adjuste
d R2 

p 

IOPcc CCTus Age Gender 

CH 0.17 

0.07(0.07,0.22) 

0.21 

0.01(-0.10,0.04) 

0.35 

0.06(-0.01,0.12) 

0.29 

1.01(-0.31,2.32) 

0.18 0.06 

CRF 0.44* 

0.13(0.01,0.23) 

0.24 

0.01(0.00,0.04) 

0.30 

0.03(-0.00,0.07) 

0.31 

0.77(-0.07,1.57) 

0.28 0.01* 

A1T 0.53** 

0.04(0.02,0.07) 

0.15 

0.00(0.00,0.01) 

-0.03 

-0.01(-0.08,0.13) 

-0.11 

-0.07(-0.36,0.14) 

0.22 0.04* 

A1L 0.20 

0.01(-0.01,0.04) 

0.26 

0.02(-0.01,0.06) 

-0.28 

-0.06(-0.16,0.05) 

-0.09 

-0.05(-0.26,0.16) 

0.18 0.06 

A1V 0.20 

0.01(-0.03,0.05) 

-0.13 

0.00(0.00,0.01) 

0.11 

0.00(-0.01,0.00) 

0.27 

0.01(-0.01,0.04) 

0.03 0.32 

A2T 0.51 

-0.09(-0.19,-
0.03) 

0.17 

-0.01(-0.02,0.00) 

-0.11 

-0.01(0.00,0.02) 

0.23 

0.06(-0.60,0.74) 

0.13 0.11 

A2L -0.17 

-0.10(-0.04,0.02) 

-0.03 

0.00(-0.01,0.00) 

0.21 

0.01(-0.01,0.02) 

-0.29 

-0.17(-0.39,0.06) 

-0.04 0.57 

A2V 0.38* 

0.01(0.00,0.02) 

0.41* 

0.00(0.00,0.00) 

0.23 

0.02(-0.03,0.05) 

-0.36 

-0.07(-0.16,0.02) 

0.25 0.02* 

HcT 0.33 

0.06(-0.01,0.15) 

0.34 

0.01(0.00,0.03) 

-0.04 

0.00(-0.03,0.03) 

-0.14 

-0.20(-0.71,0.29) 

0.14 0.10 

HpD -0.35 

-0.10(-0.19,0.04) 

0.12 

0.01(-0.01,0.03) 

-0.22 

-0.02(-0.07,0.04) 

-0.20 

-0.47(-1.64,0.61) 

0.12 0.12 

HcR 
0.41 

0.13(0.00,0.28) 

-0.03 

0.00(-0.02,0.03) 

0.31 

0.04(-0.02,0.10) 

-0.26 

-0.67(-1.38,-
0.10) 

0.12 0.12 

DA -0.37* 

-0.12(-0.28,-
0.01) 

0.23 

0.01(0.00,0.04) 

-0.32 

-0.04(-0.10,0.00) 

-0.01 

-0.03(-0.68,0.37) 

0.21 0.04* 

** level of significance, p< 0.01 

*level of significance, p< 0.05 
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In NTG subjects (Table 4.26), approximately 21-24% of the variability of CRF, A1T and 

DA parameters is significantly predicted by IOP. The effect of IOP on CRF and A1T are 

positive, whilst on DA, IOP has a negative influence (p<0.05). The A2V in this group is 

influenced by both IOP and CCT and predicted 25% of the A2V value (p<0.05). 

Table 4.27 Factors affecting the biomechanical parameters by Corvis ST and ORA in 
POAG subjects: a multivariate regression analysis 

 Standardised coefficient (β) with 

B coefficients (BCa 95% CI) 

Adjusted 
R2 

p 

IOPcc CCTus Age Gender 

CH -0.55** 

-0.22(-0.30,0.15) 

0.28** 

0.01(0.01,0.02) 

-0.14 

-0.02(-0.03,0.01) 

0.23* 

0.80(0.14,1.43) 

0.36 0.00** 

CRF -0.03 

-0.10(-0.11,0.08) 

0.38** 

0.02(0.01,0.03) 

-0.13 

-0.02(-0.04,0.01) 

0.18 

0.62(-0.07,1.42) 

0.18 0.00** 

A1T 0.52** 

0.04(0.03,0.05) 

0.10 

0.00(-0.01,0.02) 

-0.01 

0.00(-0.04,0.04) 

0.17* 

0.11(0.01,0.22) 

0.32 0.00** 

A1L -0.14 

-0.01(-0.02,0.00) 

0.08 

0.01(0.00,0.002) 

-0.10 

-0.01(-0.04,0.02) 

0.12 

0.05(-0.03,0.14) 

0.01 0.29 

A1V -0.28* 

-0.02(-0.03,0.00) 

-0.15 

0.00(0.00,0.00) 

-0.14 

0.00(-0.01,0.00) 

-0.02 

-0.01(-0.12,0.10) 

0.11 0.01** 

A2T -0.62** 

-0.07(-0.09,-0.05) 

-0.05 

-0.01(-0.03,0.02) 

0.01 

0.00(-0.05,0.06) 

-0.10 

-0.10(-0.28,0.10) 

0.38 0.00** 

A2L -0.18 

-0.02(-0.04,) 

0.28 

0.00(0.00,0.01) 

0.10 

0.00(-0.01,0.01) 

-0.03 

-0.02(-0.18,0.16) 

0.05 0.07 

A2V 0.31** 

0.01(0.00,0.10) 

0.29** 

0.01(0.00,0.01) 

0.03 

0.00(-0.01,0.01) 

-0.02 

-0.01(-0.04,0.03) 

0.17 0.00** 

HcT -0.35** 

-0.06(-0.08,-0.03) 

0.33** 

0.01(0.00,0.10) 

0.01 

0.01(-0.10,0.10) 

0.23* 

0.34(0.05,0.63) 

0.24 0.00** 

HpD -0.10 

-0.03(-0.09,0.04) 

0.09 

0.00(0.00,0.01) 

0.13 

0.01(-0.01,0.03) 

0.03 

0.06(-0.47,0.61) 

-0.01 0.59 

HcR -0.06 

-0.01(-0.04,0.03) 

0.30* 

0.01(0.00,0.01) 

0.18 

0.01(0.00,0.02) 

0.19 

0.29(0.07,0.60) 

0.15 0.01** 

DA -0.26 

-0.03(-0.09,-0.01) 

0.04 

0.01(-0.01,0.04) 

0.10 

0.04(-0.01,0.12) 

-0.10 

-0.12(-0.41,0.05) 

0.04 0.11 

** level of significance, p< 0.01 

*level of significance, p< 0.05 
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In POAG subjects, the CH was mildly influenced by IOP, CCT and gender. The CRF 

was only affected by CCT. For CST parameters, A2V and HcT are both weakly 

affected by the IOP and CCT. The HcR is only affected by CCT. The influence of 

gender on A1T, HcT and CH are generally minimal. 

4.3.3 Discussion 

Amongst all glaucoma diagnoses, the CRF, CH, A1T, A2L, HcR and CCT are noted to 

be highest in OHT. High CCT in OHT subjects was previously reported in Ocular 

Hypertension Treatment Trial (OHTT) [285]. Analysis of correlation showed that CH 

was strongly correlated with CRF (p<0.01) in all glaucoma subgroup. This study 

showed highly significant association between both CRF and CH, which was 

demonstrated in many studies since the launch of ORA since a decade ago [184, 220]. 

Both parameters was derived from the same infra-red wave analysis but CRF was 

calculated using different mathematical calculation and algorithm[69].  

The corneal biomechanical parameters from ORA were significantly correlated with 

different parameters from CST according to glaucoma diagnosis. In POAG and OHT, 

both ORA parameters (CH and CRF) have significant moderate correlation with A1T 

and A2V. In NTG subjects, CH and CRF are only significantly correlated with A1V only. 

The similarities of relationship between ORA and CST parameters (A1T and A2V) in 

OHT and POAG may be indicative of the influence of IOP on the corneal biomechanics 

of both subjects. This is a novel finding and may be investigated to further characterise 

the parameters that may identify the different glaucoma diagnosis. A study on spectral 

analysis of the waveform analysis of ORA and CST noted statistically significant 

difference of both instruments in normal eyes [278].  

Other CST parameters; A1V, A1L, A2T, A2L, HcT and DA have weak but significant 

correlation with CH in POAG subjects. DA showed significant unique relationship with 

CH in POAG and CRF in OHT. Studies in healthy and glaucoma subjects highlighted 

A1T and DA as the most reliable and reproducible parameters for describing corneal 

biomechanics [212, 245, 269]. The study did not explore direct correlation between 

corneal biomechanical parameters from both instruments. To the best of our 

knowledge, there is no available study that looked into the characteristics of CST 

corneal biomechanical parameters in POAG, OHT and NTG. These CST parameters 

may be important to represent the viscoelastic properties of the cornea in-vivo for 

glaucoma eyes. 
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In the multivariate analysis, this study analysed the collective contribution of age, 

gender, CCT and IOP on the corneal biomechanical parameters by ORA and CST. In 

OHT subjects, age has significant negative contribution on CH, CRF, A1T and DA. 

Female subjects are noted to positively influence CH, CRF and A1T. The contribution 

of age and gender to the variability of these parameters are moderate to strong. In 

NTG, no significant influence of age and gender noted on the ORA and CST 

parameters. The CCT only affected the A2V parameter whilst the IOP have significant 

influence on the variability of CRF, A1T, A2V and DA. However, in POAG, IOPcc is 

noted to positively contribute to CRF, A1T, A2V and DA.  

In POAG, the CH was influenced by age and gender where being female and older 

increases the CH value. Female subjects tend to have higher CRF, A1T, A2T and HcT, 

how the effect was very small. Subjects with high central corneal thickness significantly 

influence CRF value. Subjects with higher IOP are noted to have higher A1T and A2V. 

However, the IOP influence was reversed in HcT, A2T and DA. The effect on these 

parameters may indicate rapid deformation and deflection of the cornea to air-puff 

pressure. Thus, can be a demonstration of reduced rigidity of the cornea in POAG 

subjects. The CCT is noted to significantly contribute to positive value in CH, CRF, 

A2V, HcT and HcR. The CH, A1T, A1V, A2T, A2V, HcT are influenced by IOP. The 

contribution of these factors on the corneal biomechanical parameters is noted to be 

weak but significant.  

In NTG, the IOP influenced the CRF, A1T, A2V and DA. Only A2V is affected by CCT 

in this study group. The significant contribution of these factors, although significant, is 

weak (R2=0.22-0.28). Previous studies found that IOP more than CCT and age 

contribute to the variability of CST corneal biomechanical parameters factors [20, 266, 

286]. The CH and CRF by ORA are known to be affected by IOP, age and CCT in 

normal subjects [59, 65]. 

The CH was noted to be affected by age, CCT and IOP in subjects with corneal 

deformity and glaucoma [81-83]. However, the CRF increases with thicker CCT and not 

influenced by other demographic variables and parameters. In a study of a British 

population, the mean CH and CRF declined with age and were higher in women than in 

men [65], which is in accordance to the findings in POAG and OHT subjects in this 

study.  For this glaucoma cohort, the significant effect of age was noted on CH, CRF, 

A1T and DA in OHT eyes. Similar observations were made by other studies that 

indicated ageing cornea could reduce corneal viscoelasticity (92, 96, 124, 125). 

Despite a few contradictory findings in laboratory studies using donor cornea, the 
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inverse association between age and corneal viscoelasticity are present in many 

studies [220]. The effect of IOP on the corneal biomechanical properties by ORA was 

previously analysed in normal and glaucomatous eyes [15, 17, 163]. In both glaucoma 

and normal subjects, CCT is positively correlated with CH [81-83]. As the cornea 

contains more collagen fibres and ground substances, resistance against deformation 

and damping capacity rises. Moreover, the stronger the corneal tension, the faster the 

cornea regains its original position following deformation. The IOP may serves as an 

additional force that restores the cornea to its original position [84]. 

4.4 Conclusion 

Overall, all the tonometers employed in this study have variable range of agreement 

with GAT. All tonometers showed good agreement with GAT in all glaucoma subgroups 

except for IOPcc. The Tonopen are not affected by change of the average IOP values. 

The LOA of all tonometers was greater than the acceptable range, except for Tonopen 

in NTG and POAG groups. Thus the IOP values of these tonometers are non-

exchangeable to GAT tonometric values. Clinicians should be aware of the 

proportionate bias by CST when performing tonometry on subjects with different 

glaucoma diagnosis as the effect of age, IOP, CCT and corneal biomechanical 

parameters are also variable. Age affected the inter-tonometry bias between IOPcc, 

Icare and CST with GAT in variable contribution across the glaucoma diagnosis.  The 

CRF, A1T and DA are important biomechanical parameters that influence the inter-

tonometry bias. Subjects of each glaucoma diagnosis showed variable relationship 

between ORA and CST corneal biomechanical parameters.  
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CHAPTER 5: TONOMETRY AGREEMENT AND CORNEAL BIOMECHANICS 

EVALUATION IN KERATOCONIC EYES 

This chapter presents data from a cohort of keratoconus subjects. The subjects were 

recruited from the out-patients clinic at Birmingham and Midland Eye Centre. Details on 

subject selection, instrumentation and methods of analysis employed in this study are 

described in Chapter 2.  The initial section, 5.1, describes the demographics of the 

study subjects. The inter-tonometry agreement study is presented in section 5.2. In 

section 5.3, results of the corneal biomechanical study by the ORA and CST are 

reported.  

5.1 Demographics 

This study recruited 113 eyes from a total of 69 subjects diagnosed with keratoconus. 

The mean age of all subjects was 29.3 ± 9.8 years (median; 29.0 years, max; 58 years, 

min; 18 years). The subjects consist of 15 female (27.8%) and 54 male (72.2%). The 

keratoconic eyes were classified according to the Amsler-Krumeich grading described 

in section 1.5.2. 

          
 
 

Figure 5.1 The ethnic distribution of the keratoconus subjects 
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Figure 5.2 The distribution of keratoconic eyes according to the Amsler-Krumeich 
classification  
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Table 5.1 Mean IOP values, corneal biomechanical parameters and corneal thickness 
of keratoconic eyes  
 

 Mean ± SD Minimum Maximum 

GAT (mmHg) 11.75 ± 3.00 6.00 16.00 

Tonopen (mmHg) 11.96 ± 2.79 5.00 18.00 

Icare (mmHg) 9.37 ± 3.50 4.00 17.00 

ORA_IOPg (mmHg) 9.84 ± 3.72 2.90 19.70 

ORA_IOPcc (mmHg) 12.62 ± 2.93 6.00 20.80 

CST_IOP (mmHg) 12.19 ± 1.96 6.70 16.50 

CH 8.69 ± 2.18 4.40 15.10 

CRF 7.35 ± 2.49 2.70 13.80 

A1T (ms) 7.38 ± 0.28 6.61 7.98 

A1L (mm) 1.64 ± 0.26 0.87 2.12 

A1V (m/s) 0.16 ± 0.03 0.10 0.15 

A2T (ms) 22.82 ± 0.47 21.38 23.87 

A2L (mm) 1.56 ± 0.42 0.91 2.41 

A2V (m/s) -0.48 ± 0.09 -0.69 -0.31 

HcT (ms) 16.38 ± 0.65 13.52 17.68 

HpD (mm) 3.56 ± 1.25 2.22 6.02 

HcR (mm) 5.14 ± 1.35 2.51 10.78 

DA (mm) 1.32 ± 0.18 1.03 1.75 

CCTus (µm) 451.65 ± 65.25 246.00 544.00 

 
 
  



Tonometry agreement and corneal biomechanical properties in keratoconic eyes 

Page 137 

5.2 Agreement between tonometers in keratoconus eyes 

This section examines the agreement of IOP measurements between these 

tonometers; the Corvis® ST, Tonopen Avia®, Icare® and Ocular Response Analyzer® 

with Goldman applanation tonometer (GAT). Further, the influence of demographic, 

central corneal thickness and cornea biomechanical factors on the inter-tonometry 

agreement is analysed.  

5.2.1 Inter-tonometry agreement 

The agreement of the tonometers was evaluated with intraclass correlation coefficients 

(ICC), mean difference (bias), 95% limits of agreement (LOA) and Bland-Altman plots 

(Bland & Altman, 1986).  

Table 5.2  showed the mean IOP difference of all paired tonometers with GAT in 

keratoconic eyes. The inter-method bias was high by Icare and IOPcc with the mean 

difference values of more than 2.0 mmHg. The mean difference of the Icare, CST and 

IOPcc was comparable at less than 0.5 mmHg. The Tonopen showed the least 

different to GAT measurement. The widest LOA was by Icare_GAT tonometer pair 

(LOA range of 13.50 mmHg) and the narrowest was by IOPcc_GAT pair (LOA range of 

10.01 mmHg). 

Table 5.2 The inter-tonometry bias, limit of agreement and paired correlation of 
tonometers against GAT                                                                                                                            

 

Paired tonometry Mean Difference 
± SD (mmHg) 

LOA (95%CI) ICC (95%CI) 

Icare vs GAT -2.25 ± 3.43 4.50 to -9.00 0.46 0.11, 0.66 

Tonopen vs GAT 0.07 ± 2.55 5.09 to -4.95  0.72 0.59, 0.81 

IOPcc vs GAT 0.47 ± 3.38 7.13 to -6.19 0.58 0.34, 0.73 

IOPg vs GAT -2.31 ± 3.38 4.35 to -8.97  0.55 0.15, 0.75 

CST_IOP vs GAT -0.11 ± 2.80 5.41 to -5.52 0.59 0.39, 0.72 
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Figure 5.3 The tonometry agreement plots between Icare and GAT 

 
 

 

Figure 5.4 The tonometry agreement plots between Tonopen and GAT 
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Figure 5.5 The tonometry agreement plots between IOPcc and GAT 

 

 

Figure 5.6 The tonometry agreement plots between IOPg and GAT 

 



Tonometry agreement and corneal biomechanical properties in keratoconic eyes 

Page 140 

 

Figure 5.7 The tonometry agreement plots between IOPcst and GAT 

In Figure 5.3-5.7, the Bland-Altman plots revealed that, the mean difference for paired 

tonometers Icare-GAT, IOPg-GAT and IOPcc-GAT were scattered in a constant pattern 

along the line of average IOP value. The biases were also mostly within the line of the 

estimated limit of agreement except for IOPcc, with a few outliers.  

5.2.2 Proportionate bias of the inter-tonomery agreement 

The inter-tonometry biases for CST-GAT and Tonopen-GAT pairs are noted to show a 

proportional bias against the mean IOP value of the two paired tonometers.(Figure 5.5 

and 5.8) Further linear regression analysis was done on this relationship to predict the 

inter-tonometry bias based on the average IOP value. The inter-tonometry bias of 

Icare-GAT is found to be weak but significantly reduced by 0.24 mmHg with each 

1mmHg increment of the average IOP (adjusted R2=0.05, F=5.56, with p=0.02). 

Similarly, the inter-tonometry bias between CST and GAT showed a negative 

proportionate bias of 0.43mmHg with each 1 mmHg average IOP increment (adjusted 

R2=0.11, F= 12.20 with p<0.01). Table 5.3 and 5.4 listed the estimated mean difference 

and limit of agreement of both tonometer pairs at various IOP average values. 
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Average Icare and GAT  Icare vs GAT  Limit of Agreement (LOA)  

5 1.74 -4.92 , 8.40 

10 0.54 -6.12, 7.20 

15 -0.66 -7.32, 6.00 

20 -1.86 -8.52, 4.80 

25 -3.06 -9.72, 3.60 

  ¥values in mmHg

 
 
Table 5.4 Estimated mean difference and 95% limit of agreement at various average 
IOPcst and GAT value 
 

Average IOPcst and 
GAT  

IOPcst vs GAT  Limit of Agreement (LOA)  

5 2.78 -2.74, 8.30 

10 0.63 -4.89, 6.15 

15 -1.52 -7.04, 4.00 

20 -3.67 -9.19, 1.85 

25 -5.82 -11.34,-0.30 

  ¥values in mmHg

5.2.3 Inter-tonometry bias 

This section further investigates the relationship of the demographic variables and 

influence of physical and corneal biomechanical variables on the inter-tonometry bias. 

For continuous variables such as age, CCT and corneal biomechanical parameter 

value, a Pearson’s correlation was initially performed to investigate any significant 

correlation. 

A one-way ANOVA with post-hoc Bonferroni test was also executed to evaluate the 

difference of inter-tonometry bias amongst different keratoconus severity (Amsler-

Krumeich scale). Amongst all inter-tonometry bias, only Icare-GAT paired tonometer 

Table 5.3 Estimated mean difference and 95% limit of agreement at various average
Icare and GAT value 
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showed significant increase in mean negative bias with increasing keratoconus 

severity,(F=3.70, p<0.05). Whereas, the inter-tonometry biases for others are 

comparable amongst different keratoconus grades. 

Table 5.5 listed the correlation between all continuous variables. The CCT was noted 

to have significant moderate and positive correlation with all inter-tonometry biases 

(p<0.05). The HcR also has significant positive correlation with all biases except for 

Tonopen-GAT bias (p>0.05). Age has significant correlation with Tonopen-GAT inter-

tonometry bias only (p<0.01). The inter-tonometry bias of Icare-GAT showed 

significantly positive and moderate correlation to A2L and HcR (p<0.05). The IOPcc-

GAT bias is significantly related to CCT, CH, A2V, HcT and HcR with weak to 

moderate correlation (p<0.05). Other than CCT, the IOPg-GAT bias is moderately and 

significantly correlated to A1T, A2T, A2L, A2V and HcR (p<0.05). For CST-GAT bias, it 

is positively correlated with CCT, A1T, A1L, A2V, HcT and HcR with weak to moderate 

relationship (p<0.05). 
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Table 5.5 Relationship of the inter-tonometry bias (value in mmHg) with age, CCTus and biomechanical parameters in keratoconic eyes 

 

  AGE CH CRF CCT Mean 
K  

A1T A1L A1V A2T A2L A2V HcT HpD HcR DA 

Icare-
GAT 

-0.05 0.18 0.21 0.41** -0.41** 0.17 0.19 0.03 -0.03 0.33* 0.20 0.22 0.06 0.37** -0.11 

Tonop
en-
GAT 

-0.31* 0.22 0.24 0.34* -0.26* 0.18 0.28* 0.14 0.08 0.11 0.13 0.28* 0.07 0.23 -0.02 

IOPcc-
GAT 

0.03 -0.13 0.02 .33* -0.33* 0.11 0.17 0.06 -0.16 0.21 0.12 0.41** 0.24 0.27* 0.00 

IOPg-
GAT 

-0.05 0.36** 0.55** 0.33* -0.24 0.22 0.14 0.03 -0.21 0.24 0.26 0.28* 0.18 0.27* -0.08 

CST-
GAT 

0.07 .24 0.18 0.39** -0.31* 0.18 0.26 0.07 -0.02 0.16 0.16 0.30* 0.31* 0.23 -0.01 

Pearson’s correlation (BCa 95% CI)                                                                                                                                     
*p value <0.05, **p value<0.0 
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5.2.3.1 Factors affecting inter-tonometry bias 

The inter-method bias can be influenced by many interactive factors. Therefore, 

multivariate regression analysis was employed to construct a predictive model of the 

inter-method bias. The robust regression analysis was chosen and further details on 

the method and the variables included were described in section 2.4.4.  

The demographic variables (gender and age), biomechanical parameters (CRF, A1T, 

A1L, A1V, A2T, A2L, A2V, HpD, HcR and DA) and corneal curvature ( mean K) were 

included in the analysis. In the analysis, the CH was excluded due to its high 

correlation with CRF (Pearson’s correlation, r=0.77 (BCa 95% CI= 0.62, 0.89) with 

p<0.01). This is to reduce multi-colinearity of both variables that may violate the 

assumptions for a valid regression model. Ethnicity was not included in the multivariate 

analysis due to very small sample size in Oriental and Afro-carribean.  

5.2.3.1.1 Inter-tonometry bias between Tonopen and GAT  

This study established no significant contribution of all the variables studied on the 

predicted bias between Tonopen and GAT.  

5.2.3.1.2 Inter-tonometry bias between Icare and GAT 

Similar to the Tonopen and GAT paired tonometers, this analysis established no 

significant contribution of all the variables studied on the predicted bias between Icare 

and GAT.  

5.2.3.1.3 Inter-tonometry bias between ORA (IOPcc) and GAT 

This multivariate regression analysis established that mean K significantly accounted 

for 19 % of the IOPcc-GAT inter-tonometry bias (p<0.05). The mean K has unique 

contribution to the overall bias (β coefficient = -0.67). 
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5.2.3.1.4 Inter-tonometry bias between ORA (IOPg) and GAT 

Linear regression analysis showed that CRF, HcR and DA could statistically predict the 

IOPg and GAT inter-method bias in keratoconic eyes. These factors accounted for 38% 

of the explained variability of the inter-tonometry bias (F=3.80, p<0.01). DA is the 

highest unique contribution on the variability (β coefficient = 0.57), followed by CRF (β 

coefficient = 0.57) and HcR (β coefficient = 0.53) with p<0.05. The equation for this 

regression model is y= 16.86(DA) + 0.76(CRF) + 1.33(HcR) + 16.21, (where y= IOPg 

vs GAT bias). 

5.2.3.1.5 Inter-tonometry bias between CST and GAT 

The inter-method IOP bias between Corvis ST and GAT was established to be 

significantly predicted by mean K and HpD. These factors accounted for 27% of the 

explained variability of the inter-tonometry bias between CST and GAT, F=2.48, 

p<0.01. The corneal curvature causes a negative effect on the measurement bias (β 

coefficient = -0.05, p=0.012) whilst the HpD positively contributes to the bias. The 

model for predicting the CST-GAT bias is y=-0.25 (Mean K) + 1.02(HpD) -48.74, 

(where y=CST-GAT). 

5.2.4 Discussion 

This chapter studied keratoconus subjects recruited from an outpatient clinic. This 

study adopted the Amsler-Krumeich (AK) scale to grade the severity of keratoconus. 

Information of subjects’ refraction status, clinical findings and corneal curvature was 

extracted from the medical record for the purpose of classification for keratoconus 

severity.  

In this cohort, majority of the subjects have AK scale grade 1. The study recruitment 

clinic is a referral centre for keratoconus treatment in the region. Thus, the majority of 

the advance keratoconus either had undergone keratoplasty surgery and the 

progressive conditions were often already treated with corneal cross-linking therapy. 

There are 10 eyes that could not be graded due to unavailability of the K Mean since 

the videokeratography instrument was faulty during their appointment. These 10 eyes 

have not been included. 
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Amongst all tonometers studied against the GAT, the Icare and IOPg showed high 

inter-tonometry bias. Both underestimated GAT by more than 2mmHg. There is no 

information on the agreement of Icare and GAT in keratoconic eyes. The IOPg was 

noted to underestimate IOP by GAT in keratoconus [187, 287]. The highest acceptable 

bias for tonometers is ±3 mmHg [21]. Thus, both Icare and IOPg are still within 

acceptable limit of agreement with GAT. The Tonopen, IOPcc and CST showed very 

good agreement with inter-tonometry bias of less than 0.5mmHg. However, in this 

cohort, the LOA for all tonometers exceeded the range for acceptable limit of 

agreement. A similar study found that the Tonopen overestimated IOP measurement 

by more than 3mmHg and was noted to be less dependent on CCT than GAT. [187] 

The study also found that the IOPcc has the least bias against GAT and is one of the 

most acceptable modalities for tonometry in healthy and keratoconic eyes. [187] 

Assessing the Bland-Altman plots for proportionate bias shows both Icare and CST 

were noted to show a negative bias pattern with increasing average IOP. This indicated 

that with the increment of IOP, Icare and CST underestimate the GAT. No information 

on proportionate bias of Icare and CST against GAT was found for keratoconus 

subjects specifically. However, proportionate bias of Icare was noted in earlier study in 

normal and glaucoma subjects [281]. The authors found instead of a negative pattern, 

Icare further overestimates the GAT with increasing average IOP. [281] Thus, clinicians 

should be more caution on examining keratoconus subjects with CST and Icare. The 

tonometers can be an added alternative to tonometry but is not interchangeable with 

GAT. 

The Tonopen-GAT bias is noted to be independent of all factors analysed in this study 

but shows no significant difference with keratoconus severity. Previous study in 

keratoconus subjects noted that Tonopen is independent of CCT but weakly correlated 

with corneal curvature [187]. The authors also showed that Icare may underestimate 

IOP in healthy steep cornea and overestimate IOP in normal flat corneas. This is 

supported by Salvetat et al. that found an inverse influence of corneal curvature and 

IOP on the Icare-GAT agreement in normal eyes [251]. Even though the Icare-GAT 

bias was noted to be significantly different according to keratoconus severity, the bias 

is noted to be independent of all the corneal curvature, corneal thickness and corneal 

biomechanical parameters. Low number of subjects in grade 2, 3 and 4 of the AK scale 

may contribute to the insignificant result for other tonometry pair in this study. This 

study found that corneal curvature has weak but significant contribution towards the 

variability of IOPcc-GAT and CST-GAT paired tonometers.  In addition to that, HpD 
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also contributes to the variability of CST-GAT bias. The CRF, HcR and DA significantly 

affected IOPg-GAT bias only. The effect of these significant variables is weak to 

moderate.  

These biases can be due to other factors such as location of applanation or 

indentation. The keratoconic corneal surface has thinned area that can be located 

either centrally or off-centre. This may affect tonometry especially for Tonopen, Icare 

and GAT as the tonometers may measure on ectatic thinned cornea or thicker corneal 

area. This may lead to heterogeneous readings that may affect the significance of the 

regression analysis. Additionally, the tonometers paired with the GAT may have unique 

measurement principles. Tonometry in keratoconus can be different than in normal or 

glaucoma subjects. The ectatic cornea may be the causative factor in itself and may 

not be represented by all the corneal biomechanical parameters tested in this study. 

Further investigation on the characteristics of the ectatic cornea in keratoconus is 

reported in the next section. 
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5.3 Corneal Biomechanical Assessment of Keratoconic Eyes 

The corneal biomechanical parameters between different keratoconus classification 

and gender are evaluated in this section with ANOVA (with Bonferroni post-hoc test) 

and t-test. The relationships between continuous variables (corneal biomechanical 

parameters by CST and ORA, CCT, IOPcc and age) were evaluated with Pearson’s 

correlation. Further, multivariate regression analysis was performed to measure the 

effect of age, central corneal thickness, CRF and IOP on each biomechanical 

parameter. Details of the type of analysis used were explained in item 2.4. 

5.3.1 Relationship between ORA and CST biomechanical parameters 

A one-way ANOVA (robust method) with post-hoc Bonferroni test was executed to 

evaluate the mean value of all corneal biomechanical parameters according to 

keratoconus severity (Amsler-Krumeich scale). Statistically significant difference was 

noted in all parameters except CH, CRF, A1L, A2T and HpD. From the post-hoc 

analysis, statistically significant increase of A1V and DA are noted with increasing 

keratoconus severity (p<0.00). Meanwhile, a statistically significant reducing trend is 

noted in A1T, A2L, A2V, HcT and HcR (p<0.00) with increasing keratoconus severity. 

The CCT also showed a significant reducing pattern with increasing severity (p<0.01). 

In table 5.6, the CCT is seen to have a significantly weak to moderate correlation with 

CST parameters except A1V, A2L and HpD. The CH was strongly correlated with CRF 

(p<0.01). The CH and CRF was significantly correlated with all Corvis ST 

biomechanical parameters except for A1V, HcT, HpD and DA. The correlation of CH 

with HcR was strong (r=0.76, p<0.01). However, there was poor correlation between 

CH with A1T, A1L, A2T, A2L and A2V (r <0.24, p< 0.01).The CRF is more correlated 

with the CST parameters compared to CH. A moderate correlation was noted between 

CRF and A1T (r=0.53, p<0.01). However, the correlation of CRF with A2V, DA, A1L, 

A2T and A2L (p<0.01) are weak. Amongst the CST parameters, DA was moderately 

correlated with A2V and has weak correlation with A1T, A2T and HcR. The A1T and 

A2T have weak correlation with each other (p<0.05). Age has no correlation with both 

ORA and CST parameters in keratoconus subjects. 
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Table 5.6 The relationship of CCT and corneal biomechanical variables of ORA and Corvis ST in keratoconic eyes  

 
CCT CH 

CRF A1T A1L A1V A2T A2L A2V HcT HpD HcR DA 

Age 
0.18  

(-0.11,0.44) 

0.002  

(-0.19,0.20) 

-0.06  

(-0.26,0.15) 

0.13  

(-0.14,0.38) 

0.002   

(-0.22,0.22) 

0.01  

(-0.29,0.31) 

-0.18  

(-0.44,0.20) 

0.03  

(-0.23,0.28) 

-0.02  

(-0.22,0.19) 

-0.15  

(-0.54,0.06) 

0.20  

(-0.01,0.39) 

0.06  

(-0.17,0.27) 

0.09  

(-0.13,0.30) 

CCT 
 0.04  

(-0.18,0.31) 

0.20  

(-0.03,0.43) 

0.58**  

(0.40,0.73) 

0.32**  

(0.08,0.54) 

-0.16         

(-0.33,0.04) 

-0.30*          

(-0.55,-0.01) 

0.20  

(-0.40,0.44) 

0.54** 

(0.34,0.72) 

0.26* 

(0.03,0.44) 

0.11 

(-0.13,0.31) 

0.55** 

(0.32,0.80) 

-0.43** 

(-0.63,-0.23) 

CH 
  0.77** 

(0.62,0.89) 

-0.07 

(0.31,0.22) 

0.001 

(-0.20,0.22) 

0.17 

(-0.11,0.41) 

-0.09 

(-0.35,0.16) 

-0.13 

(-0.34,0.14) 

0.00 

(-0.38,0.38) 

-0.14 

(-0.31,0.12) 

0.00 

(-0.28,0.25) 

-0.14 

(-0.34,0.14) 

0.01 

(-0.32,0.29) 

CRF 
   0.17 

(-0.05,0.39) 

0.04 

(-0.17,0.31) 

0.16 

(-0.12,0.41) 

-0.23 

(-0.49,0.02) 

-0.07 

(-0.31,0.20) 

0.09 

(-0.18,0.39) 

-0.04 

(-0.21,0.22) 

0.02 

(-0.25,0.30) 

-0.08 

(-0.35,0.27) 

-0.05 

(-0.35,0.17) 

A1T 
   

 
0.30* 

(0.07,0.52) 

-0.25* 

(-0.44,-0.05) 

-0.41** 

(-0.65,0.11) 

0.08 

(-0.14,0.31) 

0.47** 

(0.24,0.65) 

0.08 

(-0.27,0.26) 

0.06  

(-0.22,0.31) 

0.37** 

(0.09,0.66) 

-0.49** 

(-0.66,-0.29) 

A1L 
   

  
0.30* 

(0.07,0.52) 

-0.23 

(-0.47,0.04) 

-0.09 

(-0.35,0.20) 

0.24 

(-0.10,0.49) 

0.12 

(-0.15,0.28) 

0.28* 

(0.07,0.47) 

0.20 

(-0.06,0.48) 

-0.22 

(-0.45,0.04) 

A1V 
   

   
0.27* 

(0.02,0.48) 

-0.15 

(-0.36,0.10) 

-0.44** 

(-0.61,-0.23) 

0.10 

(-0.16,0.41) 

0.09 

(-0.14,0.30) 

-0.29* 

(-0.50,-0.11) 

0.52** 

(0.33,0.66) 

A2T 
   

    
0.01 

(-0.19,0.20) 

-0.41** 

(-0.59,-0.19) 

-0.18 

(-0.43,0.31) 

-0.18 

(-0.43,0.12) 

-0.06 

(-0.41,0.21) 

0.49** 

(0.23,0.71) 

A2L 
   

     
0.32** 

(0.09,0.52) 

0.37** 

(0.17,0.52) 

0.09 

(-0.17,0.33) 

0.47** 

(0.26,0.62) 

-0.17 

(-0.39,0.04) 

A2V 
   

      
0.11 

(-0.08,0.30) 

-0.01 

(-0.28,0.28) 

0.57** 

(0.31,0.81) 

-0.83 

(-0.90,-0.72) 

HcT 
   

       
0.07 

(-0.23,0.24) 

0.27* 

(-0.03,0.51) 

0.09 

(-0.29,0.31) 

HpD 
   

        
0.15 

(-0.16,0.39) 

-0.05 

(-0.29,0.18) 

HcR 
   

         
-0.56** 

(-0.74,-0.42) 

Pearson’s correlation with bootstrapping (Bca 95% CI)                                                                                                           *p value <0.05, **p value<0.0 
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5.3.2 Factors affecting the biomechanical parameters by ORA and CST 

The corneal biomechanical parameters were known to be influenced by many factors. 

Previous studies found that CCTus and IOPcc contribute to the variability of CST 

corneal biomechanical parameters factors [20]. CH and CRF by ORA are known to be 

affected by IOP and CCT [59, 65], as well as age and gender [65]. Thus, multivariate 

regression analysis was executed to evaluate the effect of age, gender, CCT, corneal 

curvature and intraocular pressure effect on the biomechanical parameters by ORA 

and Corvis ST. Enter analysis method was chosen for the best predictive model of 

each biomechanical parameters employed in this study.  

Table 5.7 Factors affecting the biomechanical parameters by Corvis ST and ORA 

 Standardised coefficient (β)  Adjusted 
R2 

p 

Age Gender CCTus IOPcc K 

CH -0.11 -0.41** 0.19 -0.55** -0.01 0.41 0.00 

CRF -0.11 0.46** 0.17 -0.12 -0.06 0.22 0.00 

A1T -0.01 -0.03 0.39 ** 0.48** 0.01 0.48 0.00 

A1L -0.15 -0.13 0.24 0.02 -0.01 0.02 0.31 

A1V 0.03 0.09 0.20 0.02 0.03 0.03 0.24 

A2T 0.01 0.00 0.06 -0.63** 0.05 0.33 0.00 

A2L 0.05 0.11 -0.05 -0.01  -0.48** 0.12 0.03 

A2V 0.00 0.13 0.09 0.03 -0.72** 0.59 0.00 

HcT -0.05 0.12 -0.02 0.19 -0.32** 0.13 0.02 

HpD 0.13 0.05 0.03 -0.10 -0.07 -0.06 0.93 

HcR 0.08 -0.02 0.13 -0.01 -0.54** 0.38 0.00 

DA 0.09 0.05 0.12 -0.25* 4.58** 0.41 0.00 

 ** level of significance, p< 0.0    *level of significance, p< 0.05 
Notes: 
Adjusted R2= the variance of the parameter affected by the predictor variables 
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In Table 5.7, the multivariate analyses of the effect of age, gender, CCT, IOP and 

mean K value on corneal biomechanical parameters are listed. Amongst the corneal 

biomechanics parameters, the regression analysis showed a moderate to strong 

predictability model for A1T, A2T, A2V, HcR, DA, CH and CRF.  

Both corneal biomechanical parameters by ORA were influenced by age whilst CH was 

additionally affected by IOPcc. Age has no significant influence on all corneal 

biomechanical parameters in keratoconus subjects (p>0.05). The CST corneal 

biomechanical parameters are significantly affected by IOPcc (A1T, A2T, CH and DA) 

and mean K (A1V, A2L, A2V, HcT, HcR and DA), whilst CCT significantly contributed 

to the variability of A1T only.  

5.3.3 Discussion 

In recent years a rapid influx of information has developed with the advent of in vivo 

and ex vivo instruments to evaluate biomechanical properties of the cornea. Significant 

scientific interest has been focused on two commercially available air-puff tonometer 

that also able to measure biomechanical properties of the cornea in vivo; ORA and 

CST. These tono-pachymeters have been employed in studies to look at the accuracy 

of IOP measurements, the diagnosis of keratoconus and screening patients at risk for 

acquired ectasia after laser refractive surgery. 

This study recruited subjects with variable keratoconus severity. However, no 

significant difference was noted in the ORA parameters amongst different keratoconus 

severities. Although, previous studies noted a lower CH and CRF in keratoconic 

compared to healthy eyes [19, 60, 118, 120, 288, 289], the sensitivity and specificity of 

these parameters to diagnose keratoconus are poor [88, 290, 291]. 

In this cohort female subjects were noted to have lower CH and higher CRF than 

males. In addition to gender influence this study found that CH was negatively 

influenced by IOPcc.The influence of gender was noted in a recent large population-

based study of healthy British adults in Norfolk, United Kingdom [93]. Many studies that 

have also reported the IOPcc was inversely correlated with CH.[65, 68, 85-87] The 

result may be related to the state of the ectatic thinner cornea. In support of this eyes 

with thinner CCT as well as higher IOP values are more predisposed to having lower 

CH.[68] By contrast, CRF increases with rising IOP indicating that resistance against 

the deformation of the cornea is higher in eyes with higher IOP values.  
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The majority of the CST parameters showed a significant change with more advance 

keratoconus disease. A1V and DA are two parameters that are significantly higher with 

worsening of the keratoconus grade. Meanwhile, the A1T, A2L, HcT, HcR and CCT 

noted to be significantly reduced with more advance keratoconus grade. These findings 

are supported by a study that compared CST parameters of keratoconus subjects with 

normal subjects [292]. The keratoconic eyes have greater DA with faster corneal 

applanation velocity. The author postulates that due to less effective collagen fibres, 

the corneal mechanical strength is reduced, leading to less resistance to air pulse or 

indentation. Therefore, the thin ectatic cornea was applanated easily and bounced 

back in less time with a shorter radius change. The low A1T, A2L and HcT represent 

reduced time and length for the corneal applanation and indent. Low HcR value 

indicates a much less radius change during the air-pulse indentation.  

5.4 Conclusion 

In keratoconus subjects, the Tonopen, IOPcc by ORA and CST are in good agreement 

with GAT and can be a valid alternative for GAT. However, the wide LOA of all paired 

tonometers indicates that the IOP values of these tonometers are not interchangeable 

with GAT. The clinicians should be aware of the proportionate bias by CST and Icare 

against GAT when performing tonometry on keratoconus subjects with high IOP. The 

corneal curvature, DA, HcR and CRF are important biomechanical parameters that 

influence the inter-tonometry bias. 



Discussion 

Page 153 

CHAPTER 6: DISCUSSION                                                                      

TONOMETRY AGREEMENT AND CORNEAL BIOMECHANICS IN CLINICAL 

PRACTICE 

The tonometer is an important screening tool for the detection of glaucoma. 

Tonometers are not only used by ophthalmic practitioners in eye clinics, but have 

expanded to optical shops for screening, and even home use for self-monitoring of the 

IOP. There are many techniques to measure IOP but all tonometers have features that 

may have a substantial and widely variable influence on IOP measurement [160]. The 

advent of new tonometry methods has enabled clinicians to address the limitation of 

previous tonometers and is welcomed by clinicians. However, it is very challenging for 

scientists to design a practical tonometer that can measure ‘true’ IOP.  

Glaucoma experts recommend the use of a single type of tonometer in monitoring 

patients. However, in practice, this is not always achievable especially when assessing 

referrals, screening and making diagnosis of a wide array of corneal and ocular 

conditions. Furthermore, the patient may be seen at different clinics with different 

instruments. This study aimed to be more practical in the approach of filling the gap 

between the ‘on paper’ recommendations of tonometry with actual ophthalmic practice. 

Many researchers have addressed factors that influence the IOP measurement of a 

tonometer. However, limited information is available that addresses factors that affect 

tonometry agreement. This study embarked on finding out the differences between 

tonometers with standard tonometry (GAT), and factors that influence the agreement 

between tonometers.The inclusion of a new in-vivo corneal biomechanical assessment 

instrument, the CST, in this study has added another novel aspect to this work. The 

relationship between the parameters of two commercially available corneal 

biomechanical instruments is studied. This analysis is then extended to investigate the 

factors that may influence these parameters - information that is also currently lacking 

in the literature. 

This study reports variable inter-tonometry bias, limit of agreement, proportionate and 

agreement-influencing factors in different ocular diagnosis. Amongst the tonometers 

tested, the Tonopen and CST have proven to have good agreement with GAT in all 

study subjects. In healthy subjects, all tonometers showed good agreement with GAT. 

However, the IOPcc was more susceptible to overestimate IOP in glaucoma subjects 
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compared others. In keratoconus, the Tonopen, IOPcc and CST are more agreeable to 

GAT compared to Icare and IOPg.  

Even though the bias was high in the healthy eyes, the Tonopen is independent of the 

average IOP values. It has not shown any proportionate tonometry bias except in the 

keratoconus group. This may be due to the fact that both the Tonopen and GAT, share 

the same tonometric principle. The Tonopen is an electronic applanation tonometer 

that also adapts the Imbert-Fick principle [293]. It was made to be independent of the 

tear film effect. The small area of applanation needed plus the advantage of having the 

readings monitored for error may have made it less susceptible to bias [201, 202], and 

this may help with the agreement with GAT. The Tonopen and GAT measure the IOP 

by central cornea applanation. In keratoconic eyes, the location of the cone and the 

variability of the cornea thickness and slopes may have affected the IOP measurement 

by both Tonopen and GAT. This may have caused further underestimation of the GAT 

readings with increment of average IOP values. However, the bias is still within good 

agreeable limits and this supports the suggestion for Tonopen use in ectatic or irregular 

corneas [201]. Age is a dominant factor that affects the inter-tonometry agreement of 

normal and glaucoma subjects. As the aging cornea becomes more rigid it caused 

Tonopen to further underestimates the bias.  

The CST shows a very comparable mean IOP value but slightly overestimates 

compared to GAT in healthy and POAG subjects. The bias increases with average IOP 

in normal subjects. In contrast, the CST underestimates when compared to GAT in 

OHT subjects. This indicates that the CST’s tonometric performance is variable in 

different subjects. The OHT subjects have highest CCT and the corneal biomechanical 

parameters that indicate a high resistance feature. The air-puff pressure of the CST 

may have been automatically adjusted during measurement of OHT subjects and the 

resistant cornea caused underestimation of its reading.  
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Table 6.1 Summary of the inter-tonometry agreement study in all study subjects 

  Icare-GAT Tonopen-GAT IOPcc-GAT IOPg-GAT CST-GAT 

Normal ≤ 2 mmHg bias Y Y Y Y Y 

±GAT ↓ ↑ ↑ ↓ ↑ 

Proportionate bias = = = = Y 

Factors  age, CCT age, DA IOPcc, 
CRF,A1T, 
A2V,CCT,age 

IOPcc, 
CRF,A1T,A2
T,A2V, age 

IOPcc, 
CRF, A1T, 
A2T , A2V 

OHT ≤ 2 mmHg bias Y Y Y Y Y 

±GAT ↓ ↓ ↑ ↑ ↓ 

Proportionate bias = = = = ↓ 

Factors A1V, HcR, 
Age None IOP,CCT IOP IOP,CCT 

NTG ≤ 2 mmHg bias Y Y N Y Y 

±GAT ↓ ↑ ↑ ↑ ↑ 

Proportionate bias = = ↑ ↑ ↓ 

Factors Age Age, A2V None IOP, A1L IOP, age 

POAG ≤ 2 mmHg bias Y Y N Y Y 

±GAT ↑ ↑ ↑ ↑ ↑ 

Proportionate bias ↑ = ↑ ↑ ↓ 

Factors 
IOP, A2L None 

IOPcc, CRF, 
CCT, A2T,HcR IOP IOP, age 

Kerato-
conus 

≤ 2 mmHg bias N Y Y N Y 

±GAT ↓ ↑ ↑ ↓ ↓ 

Proportionate bias = ↓ = = = 

Factors None None K DA,CRF,HcR K, HpD 

Note:   

↑   :overestimate 

↓   : underestimate  

Y  : yes  

N  : No  

=  : constant bias 
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The ORA produces two IOP measure: the IOPcc and IOPg. The IOPcc has persistently 

shown an overestimation compared to GAT readings in all study groups. The bias is in 

accordance to the acceptable level in the normal and keratoconus sub-groups. 

Proportionate bias is seen in all except the keratoconus group. There is a weak 

influence of corneal curvature on the agreement between IOPcc and GAT but a similar 

effect is not seen in IOPg. IOPg overestimates compared to GAT with increasing 

average IOP values in the glaucoma group but an inverse finding is noted in the normal 

and keratoconus group. Corneal biomechanical parameters by both ORA (CRF) and 

CST (CRF, DA) influenced IOPg agreement with GAT readings. As the IOPcc has 

good agreement with GAT values, no proportionate bias and minimal effect of corneal 

curvature; it is proposed that IOPcc is more superior for tonometry in keratoconus 

subjects [187, 251]. 

The CST is a fairly new tono-pachymeter. At the moment, there are only a few studies 

available in the literature that looks into tonometry agreement with GAT in glaucoma 

and keratoconus sub-groups. This study reports reliable tonometry by CST in all study 

subjects. In normal subjects, increases in average IOP value can increase the bias. 

However, in keratoconus and NTG it can cause an underestimation compared with 

GAT values. Age can cause CST to further underestimate the GAT in NTG. In healthy 

and keratoconic eyes, increased CRF and CST’s parameters (cornea applanation 

parameters and during peak corneal deformation) which indicate increase in corneal 

resistance; can cause similar effect. Therefore, clinicians should be aware of the bias 

when doing CST tonometry in elderly subjects or in patients with corneal changes such 

as patients that have undergone cross-linking therapy, or laser vision correction, or 

corneal graft or with underlying corneal scars. This would require further analysis with 

these types of patients to establish the effect. 

This study reported a significant role of corneal applanation parameters of CST (A2T 

and A1T) as well as corneal deflection parameters (HcR and DA) in the agreement of 

tonometers amongst different glaucoma sub-groups and various keratoconus severity 

grades. This can be deduced as an indicator of functional corneal biomechanical 

parameters in these subjects. Similarly to the findings of this study, the deformation 

amplitude was recommended as a potential diagnostic parameter, in other studies, and 

deserves further research and clinical attention [294, 295]. A study comparing normal 

and keratoconic eyes revealed significant difference in the repeatability of several 

parameters and found deformation amplitude to be highly reliable [295]. Tian et al. 

suggested that DA to be considered as the most viable diagnostic parameter and 
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deserve clinical attention in healthy, glaucomatous and keratoconus subjects [294, 

296]. 

 

Table 6.2 List of factors affecting corneal biomechanical parameters in all study cohorts 

 Normal OHT  NTG POAG Keratoconus 

CH IOP,CCT gender, age None IOP, CCT, 
gender 

IOP, gender 

CRF CCT gender, age IOP CCT gender 

A1T IOP,CCT, Age gender, age IOP IOP, gender IOP, CCT 

A1L CCT, IOP None None None None 

A1V IOP CCT None IOP None 

A2T IOP, age, CCT IOP None IOP IOP 

A2L CCT, gender None None None K 

A2V CCT, IOP None CCT, IOP IOP,CCT K 

HcT None None None IOP,CCT, 
gender 

K 

HpD None None None None None 

HcR CCT, IOP, age None None CCT K 

DA IOP, CCT, age age, IOP IOP None K, IOP 

 

 

This study has reported good reliability of CST parameters in normal subjects that was 

in agreement with other studies [214, 294, 295, 297]. No information is yet available on 

the reliability of CST parameters in glaucoma subjects. In this study, the relationship 

between CRF and CH with CST parameters is significantly variable in different corneal 

diagnoses.  

 

The CST dynamics during applanation and at maximum corneal concavity are 

significant additional parameters that represent other properties of corneal 

biomechanics. In normal and POAG subjects, the CRF is influenced by CCT whilst CH 

is affected more by IOP than CCT, this is in agreement with previous studies [81-83, 

157]. The CST parameters are also affected by both IOP and CCT, though corneal 

curvature is associated with more reduced parameter value. Age affected CST 

parameters more in normal than any other subjects. This study has not compared the 
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corneal biomechanical parameters of diseased groups against an age matched healthy 

cohort. It is hoped further works can be done to further analyse the differences and 

shed more light on the characteristics of corneal biomechanical parameters in 

glaucoma diagnoses and keratoconus patients. 

This study has successfully achieved its aims in investigating two main aspects of 

clinically relevant information to assist clinicians in daily practice. It has effectively 

assessed the intra-operator inter-tonometry agreement of the four tonometers against 

GAT and factors that is associated with it. This research has also extensively reported 

on the factors affecting tonometry agreement bias and corneal biomechanics. The 

study cohorts reports the findings in 3 main glaucoma diagnoses, similar studies are 

not currently available in the literature. Each cohort was represented by a good sample 

size to achieve a good power of analysis. It has abided by the proposed guidelines for 

agreement study, which was noted to be significantly lacking in the current literature.  

This study acknowledges several limitations. The ophthalmologists performing the GAT 

were always experienced ophthalmologists, with at least 5 years of clinical experience, 

but the same ophthalmologist did not perform all GAT measurements. In fact the 

ophthalmologists changed every six to twelve months. This may have introduced 

unexpected operator bias for the tonometer. Additionally, another limitation of our study 

is that the inter-tonometry analysis between different pair of the 5 tonometers was not 

done in this study. We only performed analysis against the standard tonometer GAT. 

This study did not include tear film evaluation and corneal curvature in the assessment 

of factors affecting the agreement for all study subjects. The tear film is known to affect 

the IOP measurement by GAT [75, 298]. Corneal curvature has also been reported to 

influence tonometry [18, 39]. These factors could be confounders and should be 

considered in future studies. Ethnicity was described in the demographics of subjects 

but it was not included as one of the variables for analysis of factors affecting 

tonometry agreement and corneal biomechanics. The distribution of each ethnicity 

listed is very small for some groups and uneven rendering regression analysis would 

be in-valid.  

Across the study subjects, it was noted that the GAT values for POAG and normal eyes 

were almost similar, inspite the difference in the standard deviations which represented 

by variability and sample size. The POAG and NTG patients were all diagnosed and 

treated with antiglaucoma. This observation may highlight the effect of glaucoma 

medications on IOP which can influence the corneal biomechanical parameters. 
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Additionally, the corneal biomechanical properties may be altered due to the chronic 

use of prostaglandin analogue. A most recent report by Meda et al. noted this 

significant effect in POAG eyes[299]. The assessment of the corneal biomechanics of 

the glaucomatous eyes in this study may need further evaluation as to include the 

effect of different type of antiglaucoma and treatment duration. Prospective study 

looking at newly diagnosed glaucoma eyes may shed more information on the effect on 

the corneal biomechanics and effect on tonometry agreement. 

There are additional analyses that can be achieved with the current study data. Further 

analysis will involve cross inter-tonometry agreement between all tonometers involved. 

This information will aid clinicians in assessing reliability of instruments, especially in 

subjects where a certain type of tonometry is not feasible. A comparative analysis of 

corneal biomechanical parameters between each glaucoma and keratoconus diagnosis 

against healthy subjects will definitely shed more information on the new CST 

parameters. It will enable identification of possible parameters that can characterise 

each ocular diagnoses. This will lead to a more focused and probable diagnostic 

parameters that will aid in the screening of glaucoma and keratoconus patients. 

Additional recruitment of moderate to severe keratoconus subjects will enable more 

analysis and information on certain characteristics of keratoconus progression. Future 

research can be done on other corneal ectasia subjects such as post refractive ectasia 

subjects.  

In conclusion, this body of work suggests that if GAT was not used then Tonopen and 

CST would be recommended as reliable monitoring devices in glaucoma and 

keratoconus subjects due to their excellent repeatability, independence to IOP change 

and corneal properties. Clinicians should be cautious of CST use in keratoconus 

patients due to its potential to underestimate IOP. Tonopen is suitable for glaucoma 

screening purposes due its excellent repeatability and constant measurement with 

changing IOP. Age is a potential confounding effect that affects tonometry agreement 

with GAT. Thus, measurements in elderly should be done with caution due to it’s the 

tendency to underestimate GAT with high IOP. Deformation amplitude is a potential 

corneal biomechanical parameter in glaucoma and keratoconus subjects. It is more 

affected by CCT than IOP and corneal curvature. More analysis and studies should 

highlight its potential as a diagnostic parameter in keratoconus and glaucoma 

screening. 
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Patient Information Sheet 
 

Assessing the agreement between different tonometers 
 

You are being invited to take part in a research study. Before you decide, it is 
important for you to understand why the research is being done and what it will 
involve.  Please take time to read the following information carefully. Talk to others 
about the study if you wish.  
• Part 1 tells you the purpose of this study and what will happen to you if you take 

part.   
• Part 2 gives you more detailed information about the conduct of the study.  
Ask us if there is anything that is not clear or if you would like more information.  
Take time to decide whether or not you wish to take part. 
 
PART 1 
 
What is the purpose of the study? 
 
The measurement of the pressure inside the eye is very important in the 
management of a variety of eye conditions including glaucoma and corneal 
diseases. 
 
While the eye pressure in the eye clinics is commonly measured using Goldmann 
tonometer, more technologically advanced instruments are now available for this 
purpose. In our study, we will investigate how these different instruments agree with 
each other. We will be measuring the eye pressure in patients affected by a variety 
eye conditions and also individuals not affected by any ocular disease. 
 
Do I have to take part? 
 
No.  It is up to you to decide whether or not to take part.  If you do, you will be given 
this information sheet to keep and be asked to sign a consent form. You are still free 
to withdraw at any time and without giving a reason.  A decision to withdraw at any 
time, or a decision not to take part, will not affect the standard of care you receive.  
 
What will happen to me if I take part? 
 
You will be given an option of either to complete the examination for the study during 
your appointment day or on a separate appointment. Each person will have 
measurements from the different instruments in a different order which is 
randomised.  
 
Your eyes’ pressure and the properties of the front window of your eyes (cornea) will 
be measured with devices which do not touch the surface of your eyes (non contact). 
The non contact instruments are Ocular Response Analyzer® (ORA) by Reichert 
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Technologies and Corvis ST® by Oculus Optigereate GmbH. During the 
examinations you will feel a puff of air going into your eyes each time we test the 
eye. This will not cause any pain or discomfort.  
 
Then, we will administer one set of eye drops to numb the surface of your eyes 
before assessing the pressures using the instruments that will make contact with the 
surface of your eyes. The contact instruments are Goldmann applanation tonometer 
(GAT), Tono-pen and ICare. These instruments will only touch your eyes slightly and 
you might feel some pressure on your eyes but no pain or discomfort.  
 
As part of your normal examination, we usually take the eye pressure measurement 
using the Goldmann applanation tonometry, and will do so even if you decide not to 
take part in the study.  
 
The measurement duration will differ from one machine to another but would not 
exceed 5 minutes each. The entire process of informed consent and measurements 
will take no more than 40 minutes, thus it will not significantly affect your waiting time 
if you choose to be measured during your routine outpatient appointment. 
 
What do I have to do? 
 
You will not have any specific things to do while having your intraocular pressure 
measured.  
You do not have to make any extra visits unless you choose to return on a special 
visit just for the tests. 
 
What is being tested? 
 
We will assess the pressure inside your eyes and other eye measurements using 
different techniques and different instruments. We will compare the measurements to 
those of other patients. 
 
What are the potential side effects of the procedure? 
 
Some of the techniques of examination do not require any eye contact and are not 
known to cause any side effect. Some tonometers included in our study, will involve 
a gentle touch on the front window (cornea) of your eyes. You should not feel any 
discomfort because your eyes will be anaesthetised. However, this can very rarely 
irritate the surface of the eye. Nevertheless, an ophthalmologist will check your eyes 
before you leave the clinic. 
 
In the very rare event that you suffer any discomfort that does not settle the same 
day following your visit to the clinic and having the measurements, you need to be 
reviewed at the Eye Hospital A&E. If you cannot get back to the Eye Hospital, then 
you should visit your own doctor who can help. 
 
What are the other possible disadvantages and risks of taking part? 
 
Your appointment may take a little longer than usual, but all other treatment and 
follow-up arrangements are unchanged. 
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What are the possible benefits of taking part? 
 
You may have no direct benefit from this study but hopefully the results will give us a 
better idea about the new devices to measure the eye pressure accurately.  
What happens when the research study stops? 
 
Your direct involvement in this study only lasts for the time taken to measure the 
pressure inside your eyes. The measurements will be kept for duration of the study 
until the research is completed. The data will then be destroyed.  
  
 
What if there is a problem? 
 
Any complaint about the way you have been dealt with during the study or any 
possible harm you might suffer will be addressed and documented.  
 

Harm:  In the event that something does go wrong and you are harmed during 
the research study there are no special compensation arrangements.  If you 
are harmed and this is due to someone’s negligence then you may have 
grounds for a legal action for compensation against Sandwell & West 
Birmingham Hospitals NHS Trust, but you may have to pay your legal costs. 
The normal National Health Service complaints mechanisms will still be 
available to you (if appropriate). 

 
 
Will my taking part in the study be kept confidential?  
 
Yes.  All information and measurements are kept so you are not able to be identified, 
so your participation in this study will be kept confidential.  The details are included in 
Part 2. 
 
Contact Details: 
 
For further information about the study or should you have any concerns about your 
involvement please contact : 
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This completes Part 1 of the Information Sheet. 
 
If the information in Part 1 has interested you and you are considering participation, 
please continue to read the additional information in Part 2 before making any 
decision. 
 
 
Part 2  
 
What will happen if I don’t want to carry on with the study? 
 
You can withdraw from the study at any point. However, we would need to use the 
information collected up to your withdrawal.  
 
 
Will my taking part in this study be kept confidential? 
 
All information which is collected about you during the course of the research will be 
kept strictly confidential.  This information will be gathered by one of the clinical 
members of staff either directly from you at the time you enrol in the study or from 
your clinical notes at a later date. This information will be anonymised, and only 
clinical members of staff involved directly with your clinical care will have access to 
any identifiable data.  
 
Our procedures for handling, processing, storage and destruction of your data are 
compliant with the Data Protection Act 1998. You have the right to view the data we 
have on record about you and to correct any errors. 
 
With your permission we would like to inform your GP that you have participated in 
this study.  
 
What will happen to my personal information? 
 
The data will be stored in a secure environment on the Birmingham & Midland Eye 
Centre Site. Only members of Mr Nessim’s research team will have access to the 
data. All data will be anonymised and only clinical members or staff involved directly 
with your clinical care will have access to any identifiable data. The data will be 
stored for 2 years and then be destroyed 
 
 
What will happen to the results of the research study? 
 
It is intended that the results of the research will be presented at scientific meetings, 
and published in relevant clinical and academic journals. We also feed these results 
back to participants through patient support groups and information in clinic. You will 
not be identified in any report or publication. 
 



Assessing the agreement between tonometers study  

 Version 1.7       Page 5 of 6 20/09/2013 

Who is organising and funding the research?   
 
The Sandwell & West Birmingham Hospitals Trust is organising this study. No funds 
are required and no profit will be made. You will not receive any payment for 
participating in the study. 
 
Who has reviewed the study?  
 
This study was given a favourable ethical opinion for conduct in the NHS by the 
Birmingham East, North and Solihull Research Ethics Committee. 
 
 
And finally … 
 
You will be given a copy of the information sheet and a signed consent form. Thank 
you for taking the time to read this sheet and considering involvement in this 
research study  
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Study Number: 
Patient Identification Number 
 
 
CONSENT FORM: Assessing the agreement between tonometers  
 
 
Chief Investigator: Mr Maged Nessim                Please initial box 
         
 
1. I confirm that I have read and understand the information sheet dated 20.09.13 

(version 1.7) for the above study. I have had the opportunity to consider the 
nformation provided, ask questions and have had these answered satisfactorily.  

 
2. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights being 
affected. 

 
3. I understand that relevant sections of my medical notes and data collected during 

the study may be looked at by individuals from regulatory authorities or from the 
NHS Trust, where it is relevant to my taking part in this research. I give permission 
for these individuals to have access to my records. 

 
4. I agree with my GP being informed of my participation in the study.  
 
5. I agree to take part in the above study. 
 
 
 
 
 
 
 
Name of Patient   Date    Signature  
 
 
 
 
 
Name of person taking consent Date    Signature 
 
 
When completed, 1 copy for the patient, 1 for researcher site file, 1(original) to be kept in the 
medical notes. 
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