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Molecular biologists have traditionally interpreted the B-factor data of a protein crystal
structure as a reflection of the protein’s conformational flexibility. Crystallographers, in
contrast, are wary of assigning too much significance to B-factors since they can also be
attributed to processes unrelated to conformational dynamics such as experimental impre-
cision; crystal imperfections; or rigid body motion. In this study, the usefulness of both
isotropic and anisotropic B-factors as measures of conformational dynamics were evaluated
using high resolution structures. Alpha-carbon B-factor values were analysed in relation to
structural properties generally accepted to be correlates of conformational variability. The
influence of secondary structure, amino acid type, surface exposure, distance to the centre
of mass and packing density were investigated. The results support the argument that B-
factors measure conformational variability by demonstrating that atoms with the highest
B-factors are typically located in regions expected to have a high degree of conformational
freedom. Nevertheless, the results also highlight some of the limitations of crystallographic
data. Despite using high quality crystal structures, only very general qualitative trends
between B-factors values and the properties investigated could be established. Thus, B-
factors appear to be influenced, to a significant degree, by the numerous sources of error in
a crystallographic experiment.

By considering proteins with multiple published crystal structures, the existence of consensus
B-factor profiles were identified. These consensus profiles were hypothesised to represent the
dynamics within the crystal with a high degree of accuracy since much of the variation
between individual experiments would be eliminated. However, when compared against
measurements derived from molecular dynamic simulations, these consensus profiles only
weakly correlated with the predictions of the computer models. Therefore, although there is
some evidence to suggest that B-factors reflect conformational variability, B-factors cannot
be assumed to be reliable descriptors of the internal dynamics of a protein within a crystal.

Keywords: protein conformational dynamics, X-ray crystallography, molecular dynamics,

B-factors, atomic displacement parameters
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Glossary

alpha-carbon

The “central” carbon atom of an amino acid that is bonded to the amine, carboxylic

acid and side chain functional groups. In a protein, the alpha-carbons are part of the

protein’s backbone, positioned on either side of a peptide bond.

Amber99SB-ILDN

A version of the Amber99SB molecular dynamics force field with corrections for iso-

leucine, leucine, aspartate and asparagine (ILDN) torsion angles.

anisotropic atomic displacement parameter (AADP)

ADPs defining a trivariate Gaussian probability density function to model atomic fluc-

tuations. Unlike refinement with isotropic B-factors, the probabilities of atomic dis-

placements are dependent on both magnitude and direction.

anisotropic displacement covariance matrix (UC)

Cartesian covariance matrix describing the anisotropic fluctuations of an atom.

asymmetric unit

The smallest repeating structural element of a crystal lattice. In protein crystals, the

structure of the whole crystal lattice can be reconstructed from the asymmetric unit

by the repeated application of direct symmetries i.e., rotations and translations. The

choice of asymmetric unit is not necessarily unique.

atomic displacement parameter (ADP)

A measure that quantifies the uncertainty associated with determining the location of

an atom within a crystal structure. ADPs define probability density functions that

model the atomic fluctuations of a crystal structure.
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CHARMM27

Version 27 of the Chemistry at HARvard Macromolecular Mechanics (CHARMM) force

field for molecular dynamics simulations.

delta-carbon

A carbon atom of an amino acid side chain that is three chemical bonds removed from

the alpha-carbon. Depending on the amino acid type, there may be zero, one or more

delta-carbons.

eigenvalues of the matrix UC( λanisomax , λanisomid and λanisomin )

The three eigenvalues give the mean-square displacements of the anisotropic fluctu-

ations of an atom in the directions of the respective eigenvectors. The eigenvalues

λanisomax and λanisomin define the maximum and minimum mean-square displacement re-

spectively.

equivalent isotropic B-factor

An “equivalent” metric to the isotropic B-factor derived from anisotropic atomic dis-

placement parameters.

GROMOS54a7

Version 54a7 of the GROningen MOlecular Simulation (GROMOS) united atom mo-

lecular dynamics force field.

isotropic B-factor ( Biso )

The ADP of the simplest model to account for the uncertainty in the positions of

atoms in a crystal structure. Atomic fluctuations are modelled as Gaussian probability

density functions under the constraint that, irrespective of direction, displacements of

equal magnitude are equally likely.

median absolute deviation

A robust statistic to measure the spread across a set of values. Unlike variance and

standard deviation, the mean absolute deviation is not distorted by atypical “outlier”

data.

NVT

The canonical ensemble of statistical thermodynamics where the temperature, volume

and number of particles remain constant.
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screw-axis symmetry

A direct symmetry combing a translation with a rotation. The rotation is in a plane

orthogonal to the direction of the translation so screw-axis symmetries describe helical

patterns.

simple point charge (SPC)

A three site model of a water molecule used in molecular dynamics simulations. The

molecular topology uses the ideal tetrahedral bond angle for water.

space group

The complete set of symmetries describing the regular arrangement of molecules within

a crystal’s unit cell. Space groups of protein crystals are comprised of rotations and

screw-axis symmetries.

TIP3P

A three site model of a water molecule used in molecular dynamics simulations. The

molecular topology uses the experimentally determined bond angle for water.

unit cell

The complete structure of a crystal lattice can be constructed from the unit cell by

translations in three dimensional space. A helpful analogy is the unit cell as “building

block” whereby the crystal lattice is built by stacking copies of the unit cell one on top

of another. The number and arrangement of molecules within the unit cell is defined

by the space group.
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Acronyms

AADP Anisotropic Atomic Displacement Parameter.

ADP Atomic Displacement Parameter.

ANM Anisotropic Network Model.

COM Centre of Mass.

DSSP Define Secondary Structure of Proteins.

ENM Elastic Network Model.

FRET Fluorescence Resonance Energy Transfer.

FX Femtosecond X-ray Crystallography.

GNM Gaussian Network Model.

GROMACS GROningen MAchine for Chemical Simulation.

IUPAC International Union of Pure and Applied Chemistry.

MAD Median Absolute Deviation.

MD Molecular Dynamics.

MSF Mean Square Fluctuation.

NMA Normal Mode Analysis.

NMR Nuclear Magnetic Resonance.

OPLS-AA All Atom Optimised Potentials for Liquid Simulations.
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PDB Protein Data Bank.

PME Particle Mesh Ewald.

RCSB Research Collaboratory for Structural Bioinformatics.

SASA Solvent Accessible Surface Area.

SFX Serial Femtosecond X-ray Crystallography.

SPC Simple Point Charge.

SVM Support Vector Machines.

TLS Translation Libration Screw.

VdW Van der Waals.

XFEL X-ray Free-Electron Laser.
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Chapter 1

Introduction

1.1 The dynamic character of proteins

Although X-ray crystallography had been used to determine the structures of small organic

and inorganic molecules since the 1920s, it was not until the 1950s that the complexities

in applying the technique to biological macromolecules had been overcome (Schwarzenbach

2011). It is not an overstatement to say that the publication of the first protein structure

at near atomic resolution, that of sperm whale myoglobin (Kendrew et al. 1958), heralded

a revolution in the biological sciences. From that point onwards, biologist were able to

interpret biological processes in terms of molecular interactions and formulate hypotheses

on how the structures of protein molecules might relate to function. The application of

X-ray crystallography to solve macromolecular structures has been so successful that, to

date, over one hundred thousand structures have been deposited in the Protein Data Bank

(PDB). In tandem, structural biology, the study of macromolecular structures, has itself

become a whole new field of investigation within molecular biology. Nonetheless, although

X-ray crystallography has laid the foundations of structural biology, it is not the only, or

necessarily the most appropriate experimental technique for the study biological processes

at the molecular level. Despite the ability of X-ray crystallography to describe proteins at

the atomic level, it has one major limitation: it presents proteins as static molecules.

The suspicion that X-ray crystallography can only give a partial description of a protein has

been present since the very first structures were examined. Continuing the work of Kendrew

et al., the structure of myoglobin bound to oxygen was determined by Phillips (1980) reveal-

ing two important features of the protein. Firstly, when bound to oxygen, the conformation

of myoglobin is subtly altered. Secondly, and somewhat unexpectedly, the oxygen molecule

is buried within the interior of the protein with no obvious route of entry or exit (figure

1.1). Thus, myoglobin cannot maintain a fixed conformation, but must instead be a flexible

molecule than can adapt its conformation to accommodate the binding and release of oxy-
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Figure 1.1: Van der Waals representation of the crystal structure of oxymyoglobin 1MBO (Phillips
1980). The protein atoms are coloured blue and the haem atoms grey. The oxygen molecule is
coloured red and is only just visible when viewed from outside the molecule.

gen. The dynamic character of proteins was also implied by early crystal structures of the

family of alcohol dehydrogenases. In both dogfish lactate dehydrogenase (Adams et al. 1973)

and horse liver alcohol dehydrogenase (Eklund and Brändén 1979) marked differences are

observed in the conformation of the enzyme when bound to its substrate in comparison to its

free state. Consistent with the induced-fit model of enzyme catalysis (Koshland 1958), the

active site encloses around the substrate to reorientate catalytic residues and to shield the

reaction from the surrounding water molecules. The crystal structures suggest a conform-

ational plasticity that allows the enzyme to mould itself around the substrate to facilitate

catalysis. Nevertheless, the crystal structures are just static snapshots of the enzyme in two

distinct conformational states, and provides no information about how the conformational

transitions are achieved. A crystal structure gives the impression that proteins are rigid

molecules that adopt one or more fixed conformations depending on the binding of certain

ligands or physicochemical conditions. However, experiments of proteins in vitro suggested

that the opposite is true. Proteins have a high degree of structural flexibility and, rather

than being fixed, protein conformation is more accurately described as a fluid-like state that

is continually changing.

Evidence from X-ray crystallography that proteins can exhibit a high degree of conforma-

tional variability posed the inevitable question of how to study and quantify the internal
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motion of a protein molecule. There was an accumulating body of evidence to suggest that

X-ray crystallography gives a somewhat misleading representation of the structure of macro-

molecules. The first insights into protein conformational dynamics came from experiments

measuring the rates of hydrogen-deuterium atom exchange between protein molecules and

heavy water (deuterium oxide) (Hvidt and Linderstrøm-Lang 1955; Englander et al. 1997). In

these experiments, the hydrogen atoms of polar amino acid side chains and the peptide bond

undergo exchange through chemical reactions with water. What makes this phenomenon of

particular interest to biologists is that the rate of exchange depends on the degree to which

the hydrogen atom is exposed to the solvent. Thus, the rate of hydrogen exchange gives an

indication of the proximity of amino acids to the surface of a protein. Unexpectedly, even

hydrogen atoms buried deep within the core of a protein undergo exchange reactions with

water, albeit more slowly than those at the surface. Analysis of the kinetics of hydrogen ex-

change by Rosenberg and Chakravarti (1968) and Rosenberg and Enberg (1969) led to a dual

mechanism model to explain how the solvent can penetrate the protein’s interior. Rosen-

berg and co-workers proposed that regions of the protein may become exposed to the solvent

through spontaneous local unfolding and refolding. Simultaneously, through rigid-body “seg-

mental motions” of the protein, now commonly referred to as “breathing” movements, the

protein will transiently open up to allow the solvent to diffuse into the interior. The rel-

ative contributions of these two mechanisms to the overall rate of hydrogen exchange will

depend on physicochemical conditions with unfolding becoming dominant under structurally

destabilising conditions such as higher temperatures. Work by Eftink and Ghiron (1975) on

the dynamics of ribonuclease, probed using the alternative technique of fluorescence spec-

troscopy, supported the findings of the hydrogen exchange experiments. Eftink and Ghiron

argue that protein structure is far removed from the “pseudo-static” models suggested by

X-ray crystallography. Instead, protein conformation is in continual flux, rapidly interchan-

ging between similar folded forms, which has the side-effect of creating short-lived channels

into the protein’s interior.

The concept that proteins can be porous, malleable structures answers many of the questions

raised by the early crystallographic structures. The model is particularly appealing in the

case of the myoglobin structures because it suggests a mechanism by which oxygen molecules

can permeate the protein to gain access to the buried haem. Furthermore, the model is also

consistent with current opinions concerning the processes that drive protein folding (An-

finsen 1973; Dill 1990; Leopold et al. 1992; Sali et al. 1994; Wolynes 2005; Baldwin 2007).

In their fully folded states, many proteins are only marginally thermodynamically stable

(Kamerzell et al. 2008) with overall Gibbs’ free energies of folding that are typically within

the range −20 to −100 kJ mol−1 (Privalov and Khechinashvili 1974; Pace 1975; Dill 1990).

The network of hydrogen bonds, Van der Waals (VdW) interactions and salt bridges that

are established when a protein folds are enthalpically favoured. In addition, protein folding

is also driven by the hydrophobic effect: an increase in the entropy of the surrounding water

molecules that arises when bulky hydrophobic side chains are buried within the interior of
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the protein. However, in achieving its compact fully folded form, the protein’s conform-

ational freedom is significantly reduced in comparison to its prior unfolded state. Thus,

folding imposes a severe entropic penalty which is only just offset by the combination of the

hydrophobic effect and stabilising non-covalent interactions. Therefore, under physiological

conditions, the opposing forces that drive protein folding and unfolding are almost balanced.

From a purely thermodynamic perspective, folding does not appear to favour proteins tightly

constricting into one specific conformation.

The discovery that the conformations of folded proteins are only moderately stable prompts

the logical question to ask why there appears to be no evolutionary pressure to increase

stability. The answer could be that high thermodynamic stability may be undesirable because

it would impose conformational rigidity which could have a detrimental effect on the protein’s

ability to function. Supporting evidence comes from studies on enzymes where mutations

that increase structural stability typically reduce the enzyme’s catalytic activity (Shoichet

et al. 1995; Beadle and Shoichet 2002). The function versus stability hypothesis is also

supported by studies comparing the flexibilities, stabilities and activities of homologous

enzymes from bacteria adapted to extremes of temperature (Fields 2001; Jaenicke 1991).

Homologous enzymes from thermophilic bacteria are generally more thermally stable than

their mesophilic equivalents (Razvi and Scholtz 2006). However, improved stability through

greater conformational rigidity exacts a price at mesophilic temperatures. Thermostable

enzymes are typically less active at low temperatures due to the loss of conformational

flexibility. Conversely, enzymes from cold adapted bacteria are less thermally stable than

those from mesophilic bacteria due to the enzymes having increased flexibilities in order

to function at low temperatures (Georlette et al. 2004). Therefore, there appears to be a

three-way trade-off between a protein’s structural stability, conformational flexibility and its

biological activity. Evolution will favour proteins that are thermodynamically stable and

fold quickly and spontaneously into a single specific shape. At the same time, proteins need

a certain degree of flexibility in order to function, so the native structure cannot be so stable

as to prohibit small fluctuations in conformation. Furthermore, it has been argued that

marginal protein stability may be a necessary requirement for protein evolution (Taverna

and Goldstein 2002; Tomatis et al. 2008). If proteins were too stable, it would be highly

unlikely that any natural mutation would ever perturb a protein’s structure and dynamics

to such an extent as to alter the protein’s functionality.

The dynamic character of proteins is now widely accepted as being essential for life. Pro-

tein conformational variability facilitates most, if not all, biological processes (Karplus and

McCammon 1983; Teilum et al. 2009). Enzymes (Henzler-Wildman et al. 2007), receptors

(Brzozowski et al. 1997; Prade et al. 1997) and transporter proteins (Hollenstein, Dawson

et al. 2007; Hollenstein, Frei et al. 2007) are all examples of proteins whose conformations

need to be flexible in order to achieve their biological function. Protein flexibility and its

relationship to stability is also an important consideration in the study of the molecular
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basis of diseases such as Alzheimer’s, Parkison’s, Creutzfeldt-Jakob and type II diabetes.

The pathologies of these diseases are often associated with abnormal protein conformational

dynamics that lead to protein misfolding and aggregation (Dobson 2004; Chiti and Dobson

2006; Herczenik and Gebbink 2008).

1.2 Defining protein conformational dynamics

Despite the central importance of protein conformational dynamics in biology, it is very dif-

ficult to quantify the movements of protein molecules by experimental methods. Proteins

undergo conformational rearrangements at the atomic scale over time frames that can be as

brief as a few picoseconds or as long several hours. Part of the difficulty in quantifying pro-

tein dynamics is that, in a sense, protein dynamics is a blanket term covering a wide range

of different types of molecular movements. This thesis is only concerned with the equilib-

rium dynamics of proteins; that is the “steady state” conformational fluctuations of proteins

at thermal equilibrium with the environment. In contrast, many biologically interesting

phenomena arise through non-equilibrium dynamics where protein conformational change is

induced through the action of some external stimulus. The stimuli can be physicochemical

such as changes in temperature, pressure, pH, ionic strength or viscosity. In addition, a pro-

tein may undergo conformational change as a result of covalent modification, binding with a

ligand or association with another protein. Non-equilibrium dynamics, therefore, can explain

the molecular mechanisms involved in protein denaturation; enzymatic catalysis; the open-

ing or closing of a membrane channel; or signal transduction by a receptor. For this reason,

non-equilibrium dynamics are sometimes referred to as “activated processes” (Chandler 1986;

Henzler-Wildman and Kern 2007) that describe the changes between two stable states. How-

ever, unlike equilibrium dynamics, non-equilibrium dynamics do not reveal anything about

the inherent flexibility of protein molecules. Equilibrium dynamics are important because

they can provides insights into a protein’s structural stability and how a protein is able to

facilitate the conformation changes induced under non-equilibrium conditions.

Equilibrium dynamics are generally divided into two categories: “fast” and “slow” dynam-

ics. Fast dynamics are typically localised conformational changes that encompass atomic

fluctuations; bond rotations that flex amino acid side chains; and the rigid body movements

of elements of secondary structure. Slow dynamics usually describe global conformational

rearrangements and include the concerted movements of extended structural motifs, domains

and subunits. Slow dynamics also encompass the unfolding and refolding of extended regions

of the polypeptide chain. Table 1.1 summarises the different types of conformational change

that comprise equilibrium dynamics.

Fast and slow dynamics can also be described in terms of the energetics of protein folding.

The most widely accepted model for the folding process visualises folding as a random de-
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Table 1.1: Summary of the types of movement that are collectively described as equilibrium
protein dynamics. The time scales and magnitudes of the displacements are only approximate and
serve to give an indication of how the different types of movement compare to one another. The
information in the table is adapted from Karplus and McCammon (1983), Petsko and Ringe (1984)
and Henzler-Wildman and Kern (2007).

Type of dynamics Time scale Extent (Å) Description

Fast fluctuations fs 0.01–1 Bond vibrations, bending and rota-
tions.

Fast collective motion ps 0.01–10 Ring flipping and side chain flexing.

ns Secondary structure reorganisation
and rigid body motion.

Slow collective motion µs & 10 Global concerted movements. Do-
main and subunit rigid body mo-
tion.

Slow rearrangements &ms & 100 Unfolding and refolding.

cent down a funnel shaped conformational energy landscape (Leopold et al. 1992; Wolynes

2005). Folding does not occur through a sequence of prescribed steps. Instead, by a prin-

cipal referred to as “minimal frustration” (Bryngelson and Wolynes 1987), the native folded

state can be achieved via many alternative routes. Conceptually, the free energy landscape

for folding is a massively high dimensional rugged funnel. The huge numbers of random

unfolded conformations lie around the lip of the funnel while the native fold, the global

free energy minimum, sits at the base. A folding protein descends the landscape by making

small reversible conformational adjustments, favoured by a gradual lowering of free energy,

that bring the conformation ever closer to the native state. Once at the bottom of the fun-

nel, random conformational perturbations drive the protein’s equilibrium dynamics rather

than folding. Thus, equilibrium dynamics can be viewed in terms of a subset of the over-

all conformational free energy landscape; that is, an exploration of the area in the vicinity

of the global minimum. Equilibrium dynamics are the transitions between the metastable

conformational states (local free energy minima) that surround the global minimum. The

protein never truly achieves the minimal energy “native” folded state, but fluctuates around

it, adopting many near-native conformations. Fast dynamics and slow dynamics are differ-

entiated by their positions on the free energy landscape. Fast dynamics are conformational

fluctuations between free energy minima close to the global minimum separated by small

energy barriers. Slow dynamics, in contrast, are represented by conformational transitions

over higher energy barriers that take the protein farther from the global minimum. Figure

1.2 illustrates the concept of the folding landscape and conformational dynamics about the

free energy minimum.
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Figure 1.2: Stylised representation of the protein folding free energy landscape. The folding process
is illustrated on the left where unfolded proteins descend the free energy “funnel” to achieve the
native conformation. Fast conformational dynamics are illustrated on the right as rapid transitions
exploring the free energy landscape about the global minimum.
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Slow dynamics have usually been regarded as more functionally significant than fast dynamics

with rapid conformational fluctuations considered to be an “unimportant” and “uninterest-

ing” (Berendsen and Hayward 2000) aspect of protein flexibility. However, this view is not

universally shared, and in their review of the study of conformational dynamics, Karplus

and McCammon (1983) describe small scale fluctuations as the “lubricant” that facilitates

larger scale transitions. Similarly, Teilum et al. (2009) view protein flexibility at all scales

as being a fundamental characteristic of proteins since it allows for conformational adaptab-

ility. It should also be noted that, in many ways, the terms “slow” and “fast dynamics” are

inaccurate descriptors of protein conformational flexibility. Although, generally true, there

is an assumption that large scale conformational changes occur over longer time scales than

smaller displacements. One counter-example is the flipping of aromatic side chains within

the interior of a protein, which despite being a rapid small-scale fluctuation, is an infrequent

event due to the high energy barrier associated with rotating such a bulky functional group

within a conformationally restricted space (Petsko and Ringe 1984). Henzler-Wildman and

Kern (2007) avoid such ambiguity by describing protein dynamics in terms of a tiered hier-

archy of conformational fluctuations classified on the relative sizes of the energy barriers.

Equilibrium dynamics are divided into a discrete tiers with the highest tier of dynamics (tier

2) encompassing all the small amplitude oscillations about the global energy minimum. The

lower tiered dynamics (tiers 1 and 0) are associated with progressively larger energy barriers

and describe collective motions or infrequent conformational rearrangements.

In describing protein dynamics, it is apparent that there are both spatial and temporal as-

pects to conformational flexibility. In their review of the interplay between protein flexibility

and stability, Kamerzell and Middaugh (2008) rightly make the distinction between measures

of protein flexibility that are dependent and independent of time. A time independent met-

ric of flexibility simply measures the magnitude of the spatial deviations between different

conformations with no consideration of the time scales involved. A time dependent metric,

on the other hand, will quantify the rate of interconversion between the different conforma-

tional states. Thus, depending on whether time is factored into the measurements, there can

potentially be confusion surrounding the concept of protein flexibility. For example, which

are the more “flexible” regions of a protein? Surface amino acid side chains whose rotomers

only differ by a few angstrom but exchange in picoseconds? Or domains that can undergo

rigid body displacements of the order of tens or hundreds of angstrom but oscillate with

periods of milliseconds? Therefore, to avoid any ambiguity, all measures of protein flexibility

or rigidity need to be defined precisely. Most experimental techniques for probing protein

flexibility provide no or only limited information about the temporal aspects of protein mo-

tion. Consequently, this thesis will primarily focus on spatial measures of conformational

variability. The most flexible regions of a protein are defined as those regions where the

positions of the atoms undergo the greatest displacements.
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1.3 Measuring conformational dynamics experimentally

The complex hierarchies of molecular movements that give proteins their intrinsic flexibility

makes direct measurement of protein motion extremely difficult. To date, no single experi-

mental technique can be regarded to be universally applicable when attempting to quantify

protein equilibrium dynamics. Yet, a huge body of published dynamical data has been

generated from one experimental method in particular: X-ray diffraction. This may seem

somewhat contradictory, since X-ray diffraction is generally considered to be a technique that

reveals the static structures of protein molecules. Furthermore, an X-ray diffraction experi-

ment examines proteins in their crystalline form; an environment far removed from the cell

and the near physiological conditions of the early hydrogen exchange studies. Conceptually,

crystalline materials are visualised as highly regular rigid structures, and are not usually

associated with molecular flexibility. However, as will be outlined below, X-ray diffraction

can provide insights into the conformational dynamics of protein molecules. Although the

crystalline state imposes limitations on the types of dynamics that X-ray diffraction can

measure, the technique has the advantage of probing molecular movements at atomic or

near-atomic resolution.

1.3.1 Outline of protein X-ray crystallography

The physical principle behind X-ray crystallography is the scattering of X-rays as they pass

through matter. The extent to which X-rays are scattered depends on the molecules’ electron

densities, since scattering arises through the absorption and emission of X-ray photons by

electrons. In the case of biological macromolecules, scattering is due to carbon, nitrogen,

oxygen, sulphur and phosphorous while smaller atoms, hydrogen in particular, are invisible

to X-rays. Theoretically, if it were possible to direct a beam of X-rays at a single molecule

and observe the directions, intensities and phases of all the scattered X-rays, then a three-

dimensional map of the electron density for that molecule could be deduced. A model for

the structure of the molecule could then be proposed by fitting what is known about the

molecule’s chemistry to the electron density map. In the case of proteins, the process of model

fitting would be aided by a knowledge of primary structure, post translational modifications

and the presence of bound cofactors.

Unfortunately, measuring X-ray scattering by isolated protein molecules is not currently

feasible. Instead, it is more practical to grow crystals of protein molecules and to observe

how X-rays are scattered by the molecules en masse. In a crystal, there are billions of

structurally identical protein molecules aligned regularly with respect to one another across

a three-dimensional lattice. When a beam of X-rays passes through a crystal, all the pro-

teins scatter X-rays identically, and, because the molecules are aligned, the scattered X-rays

combine to produce a detectable signal. The scattered X-rays can combine constructively
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or destructively, depending on how the proteins are arranged across the crystal lattice. The

crystal lattice, therefore, acts as a diffraction grating, and the diffracted X-rays, resulting

from the superimposition of the scattered X-rays, are referred to as the reflections of the

crystal. The structural information that can be deduced from a set of reflections is incom-

plete because much of what could have been derived from the original scattered X-rays is

lost. More information can be recovered, however, by varying the orientation of the crystal

with respect to the incident beam of X-rays to obtain multiple sets of reflections. A structure

determined by X-ray crystallography cannot, therefore, be obtained from a single exposure

of the crystal to X-rays. This has consequences in terms of both performing an X-ray dif-

fraction experiment and interpreting the results. Exposure to an intense beam of X-rays will

inevitably lead to structural degradation so the numbers of reflections that can be obtained

from a single crystal are limited. Furthermore, sets of reflections are collected at different

points in time so do not represent an instantaneous “snap shot” of the conformations of the

molecules.

A structure derived by X-ray crystallography is, essentially a “double average” (Frauenfelder

and Petsko 1980) across all the molecules in the crystal. The structural information derived

from one particular set of reflections is a spatial average across all the molecules where the

scattered X-rays combine constructively. In addition, through merging sets of reflections

recorded at different time points, the molecular model constructed will be a temporal aver-

age over all the conformations adopted during the course of the experiment. The process

of deriving a molecular structure from an X-ray diffraction pattern is far more technically

challenging than implied by the brief summary above. Growing protein crystals of sufficient

quality; deducing the phases of diffracted X-rays and deciding on the molecular model that

best fits the electron density map are not trivial tasks. A more detailed account of macro-

molecular X-ray crystallography can be found in the following references: Durbin and Feher

(1996), Blow (2002) and Drenth (2007).

1.3.2 Measuring conformational variability in crystal structures

The protein structure derived by X-ray crystallography is a consensus structure averaged

over all crystallographically equivalent atoms during the course of the experiment. X-ray

crystallography must, therefore, capture certain aspects of the dynamics and conformational

variability of the protein molecules in the crystal. It is impossible to fit a molecular model of

a protein to an electron density map precisely. There will always be a degree of uncertainty

when assigning a position to every atom within the structure. Although undesirable from the

perspective of structure determination, this uncertainty can be exploited when investigating

conformational dynamics of proteins. Atoms whose positions cannot be established precisely

might be expected to reside within the most dynamic regions of the molecule. Conversely,

more rigid regions of the protein would be consistent with a greater level of accuracy. There-
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fore, the uncertainty in locating atoms within a crystal structure can be used to quantify

protein conformational dynamics.

There are two approaches to account for conformational variability in a crystal structure.

The first, and least frequently employed, is to derive multiple models for the structure of

the protein. If no single protein conformation can be fitted satisfactorily to the electron

density map, then the protein is presented as an ensemble of multiple conformations each of

which is consistent with the experimental data. Thus, the protein’s flexibility is represented

by the conformational diversity of the models. In X-ray crystallography, it is unusual for a

structure to be published with multiple models for the whole protein. Instead a single model

is published that includes alternate locations for the most dynamic regions of the molecule.

Typically, these are alternate locations representing different rotomers for amino acid side

chains. The second, and most common, approach to quantifying structural uncertainty is to

assign an “uncertainty value” to the coordinates of every atom located by X-ray crystallo-

graphy. These uncertainty measures are derived by interpreting the X-ray diffraction data

in probabilistic terms.

The simplest probabilistic model to account for the variability in a crystal structure is the

isotropic model where the deviations in the positions of crystallographically equivalent atoms

are modelled as spherically symmetrical Gaussian probability density functions. Atoms are

assumed to fluctuate with equal probability in all directions with the extent of the displace-

ments following a normal distribution. Whilst the locations of these atoms can never be

determined exactly, they are most likely to be found within some spherical region of space

centred on the average coordinates. Conceptually, the greater the variability in the coordin-

ates of the crystallographically equivalent atoms, the larger the radius of this sphere and,

subsequently, the lower the degree of precision associated with locating these atoms. The

isotropic model is parametrised by a single variable: < |u|2 >, the mean square magnitude

of the displacements of crystallographically equivalent atoms. This leads to the definition of

an isotropic B-factor which, by convention, is calculated as:

Biso = 8π2 < |u|2 > (1.1)

Thus, an isotropic B-factor describes the “degree of indeterminacy” associated with locat-

ing the position of an atom from a X-ray diffraction pattern. At higher resolution, a more

sophisticated anisotropic model of atomic displacements is frequently employed. Anisotropic

refinement models the locations of atoms with trivariate Gaussian probability density func-

tions allowing for independent fluctuations in three orthogonal spatial directions. Hence,

the regions of space most likely to be occupied by the atoms are modelled as ellipsoids

rather than spheres. Unlike the isotropic model, where the uncertainty in the locations the

atom is parametrised by a single variable for each atom, the atom’s mean-square displace-

ment < |u|2 >, the anisotropic model requires six variables per atom. Anisotropic atomic
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displacement parameters (Trueblood et al. 1996) are typically expressed as a matrix of co-

variances between the displacements in the directions of the three Cartesian axes. For a

displacement vector u with Cartesian components (∆x,∆y,∆z)T , the Cartesian covariance

matrix UC (Trueblood et al. 1996) is given by:

UC =

 < (∆x)2 > < ∆x∆y > < ∆x∆z >

< ∆x∆y > < (∆y)2 > < ∆y∆z >

< ∆x∆z > < ∆y∆z > < (∆z)2 >

 (1.2)

Matrix UC is real and symmetric and therefore, by the Spectral Theorem, can be orthogonally

diagonalised in the form:

UC = RDRT

where matrix R is the orthogonal matrix whose columns are the eigenvectors (ei) of UC and

D is the diagonal matrix of the corresponding eigenvalues (λi). Thus,

D =

 λ1 0 0

0 λ2 0

0 0 λ3

 =

 < (∆e1)
2 > 0 0

0 < (∆e2)
2 > 0

0 0 < (∆e3)
2 >



In diagonal form, the anisotropic displacements are easier to interpret geometrically. The

eigenvalues are the mean-square displacements (< (∆ei)
2 >) of the atom about its mean pos-

ition in the directions of the the eigenvectors. In terms of the trivariate Gaussian probability

density function, the eigenvalues are the second moments along the principal axes of all the

ellipsoidal surfaces of equal probability density. Hence, the eigenvectors define the directions

of anisotropic fluctuations while the extent of these movements are given by the eigenvalues.

Furthermore, the maximum and minimum anisotropic mean-square displacements along the

orthogonal axes correspond to the largest and smallest eigenvalues respectively. The aniso-

tropic model reduces to the isotropic model in the case where the mean-square displacements

are equal in all three directions.

The degree to which an atom’s movements deviate from a spherically symmetric distribution

can be calculated as the ratio of the minimum and maximum eigenvalues:

Anisotropy =
λmin
λmax

=
< (∆emin)2 >

< (∆emax)2 >
(1.3)

The anisotropy ratio, by definition, must lie in the range zero to one with the upper limit

corresponding to the perfectly spherically symmetric (isotropic) distribution of atomic dis-

placements. Atomic displacement distributions become more ellipsoidal (anisotropic) as the

ratio approaches zero.

An “equivalent” to the isotropic B-factor, Bequiv
iso , can be derived from the entries in the cov-
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ariance matrix UC . The calculation approximates an isotropic mean square displacement by

taking the mean of the mean-square displacements in the directions of the three eigenvectors.

This quantity is equivalent to the mean of the mean-square displacements in the directions

of the three Cartesian axes and, consequently, will result in the same expression as that of

the isotropic B-factor if the mean-square displacements are equal in every direction.

Beq
iso = 8π2

(
< (∆e1)

2 > + < (∆e2)
2 > + < (∆e3)

2 >
)

3
(1.4)

=
8π2

3
(λ1 + λ2 + λ3)

=
8π2

3
Trace(UC)

=
8π2

3

(
< (∆x)2 > + < (∆y)2 > + < (∆z)2 >

)
= 8π2 < |u|2 > = Biso if < (∆x)2 > = < (∆y)2 > = < (∆z)2 >

Collectively, the parameters that define the isotropic and anisotropic models of atomic fluc-

tuation are known as Atomic Displacement Parameters (ADPs). The term is rarely used in

the case of isotropic ADPs which are almost always referred to as B-factors. Unfortunately,

there is no consensus on the nomenclature used to describe anisotropic models. In the liter-

ature, ADP is sometimes only used in the case of anisotropic models as an abbreviation for

the term Anisotropic Displacement Parameter (Trueblood et al. 1996). To avoid confusion,

this thesis will refer to these parameters as Anisotropic Atomic Displacement Parameters

(AADPs).

ADPs have traditionally been attributed to the temperature dependent oscillations of atoms

under the constraints of bond geometry. Conceptually, these are the high-frequency perturb-

ations (stretching, bending and rotation) of chemical bonds in a molecular structure. Hence,

ADPs are often, incorrectly, referred to as temperature factors. The term temperature factor

is a misnomer because thermal fluctuations cannot account for all the structural variation

in a crystal. The International Union of Crystallography (IUCr) define atomic displacement

vectors as deviations from the ideal lattice structure that incorporate the effects of both

atomic motion and “static displacive disorder” (Trueblood et al. 1996; Merritt 2012). The

causes of static disorder are not always apparent, but contributing factors could include

irregularities in the arrangement of molecules across the crystal lattice (Petsko and Ringe

1984) or the existence of proteins “locked” in many alternate conformations (Meinhold and

Smith 2005). ADPs are, in a sense, “complex error terms” encapsulating the extent to which

the proposed model deviates from what can be deduced from the observed X-ray diffraction

data. Therefore, there is always the risk that, in the case of a poorly refined structure, the

ADPs are not a complete reflection of the protein’s dynamics.
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The lack of high resolution structures refined with anisotropic atomic displacement paramet-

ers has meant that structural bioinformaticians have, until recently, focused their attention

almost exclusively on isotropic B-factors. It is generally assumed that atoms with high B-

factors are indicative of highly dynamic regions of a protein. Even though B-factor values

are not exclusively determined by the effects of atomic motion, some degree of correlation

between B-factors and protein flexibility in the crystal can be expected. Nonetheless, such

relationships may not, necessarily, be translatable to proteins moving freely in solution under

physiological conditions. The symmetrical arrangement of proteins within a crystal is far

removed from a dilute aqueous solution and the “crowded” heterogeneous environment of

the cell. In addition, the extensive and highly regular protein-protein contacts of the crystal

lattice can alter a protein’s conformation and dynamics (Eastman et al. 1999; Eyal et al.

2005; Hinsen 2008). Proteins within a crystal lattice may also undergo certain types of rigid

body motion that may have little or no relevance to conformational variability in vivo. For

example, atomic displacements may be dominated by the effects of collective whole protein

or domain oscillations governed by the arrangement of the proteins within the lattice. Unfor-

tunately, there is no consensus on the extent to which these large-scale rigid body movements

might contribute to B-factors (Kuriyan and Weis 1991; Meinhold and Smith 2005; Soheilifard

et al. 2008).

Despite a crystal being far removed from the typical environment of a protein, there is

evidence to suggest that the dynamics of proteins within crystal may resemble motion in

vivo. Work by Norvell et al. (1975) demonstrated that, similar to myoglobin in vitro, amide

groups of crystallised myoglobin can undergo hydrogen-deuterium exchange when soaked

in heavy water. Furthermore, since deuterium was able to permeate into the core of the

myoglobin molecules, myoglobin must have been undergoing similar “breathing” movements

to those hypothesised to account for oxygen exchange in vivo. The native-like dynamics of

myoglobin crystals are not atypical since many proteins retain some degree of functionality

in the crystalline state (Mozzarelli and Rossi 1996). Proof of concept comes from studies

showing that many enzymes remain catalytically active once crystallised (Makinen and Fink

1977) implying that the enzymes remain conformationally flexible within the crystal lattice.

The structure of the lattice can, however, affect catalytic activity as seen in carboxypeptidase

A where activity is dependent on the crystal’s space group (Lipscomb 1973). Therefore,

since the inhibitory effects of different lattice packing arrangements varies, the dynamics of

crystalline proteins cannot always be assumed to be equivalent to the dynamics of proteins

in vivo. In addition, the conditions under which the biological activity of a crystal is assayed

may be very different to the conditions used to record the diffraction pattern. For example,

to avoid damage by exposure to high intensity X-rays, a crystallographic experiment is

typically performed at cryogenic temperatures. Hence, the B-factors derived from a crystal

structure may be very different to the atomic fluctuations of a protein in a crystal at room

temperature.
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1.3.3 Alternatives to X-ray crystallography

X-ray crystallography is not always the most appropriate technique for studying how a pro-

tein’s flexibility may relate to its biological function. In addition to the concerns regarding the

crystalline state discussed previously, studying protein dynamics by X-ray crystallography

has several major drawbacks. Foremost is the difficulty in obtaining samples of protein in

sufficient quantities to yield diffracting crystals. The nature of X-ray diffraction also imposes

restrictions on what can be deduced from crystallographic data. X-ray diffraction data can

only report on the average conformational variability of the crystal and is unable to probe

the movements of individual molecules. Quantifying conformational flexibility is limited to

the fast, low amplitude equilibrium dynamics of the molecules as opposed to slower conform-

ational rearrangements or the triggered changes of non-equilibrium dynamics. Although this

thesis focuses predominately on crystallographic data, many other experimental methods

can be employed to study protein conformational dynamics. Whilst by no means being ex-

haustive, the following section outlines some of the alternatives to classical X-ray diffraction

studies.

Cryo-electron microscopy

Cryo-electron microscopy allows for the direct observation of individual protein molecules

both in isolation and as components of sub-cellular structures. However, due to the lower res-

olution of the images, typically of the order of tens of angstrom, it is not possible to generate

molecular models at the atomic scale. Consequently, cryo-electron microscopy is frequently

employed to study large macromolecular complexes such as a ribosome or components of

the cytoskeleton (Purdy et al. 2014; Bai et al. 2015). At this scale, cryo-electron microscopy

can be used to study global conformational changes involving the rearrangement of subunits

or domains. For example, conformational variability has been observed in complexes of the

chaperonin proteins GroEL-GroES (Ludtke et al. 2004; Chen et al. 2006) and the enzyme

pyruvate dehydrogenase (Zhou et al. 2001).

NMR spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy, like X-ray crystallography, is primarily

perceived as a method for structural determination rather than quantifying conformational

dynamics. On the contrary, since NMR signals are affected by a protein’s conformational

dynamics, analyses of NMR spectra can reveal much about protein motion at the atomic

scale (Mittermaier and Kay 2009; Marion 2013). One of the key advantages of NMR is

that macromolecules are studied in aqueous solution, which is arguably closer to the cellular

environment than the crystalline state.
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The application of NMR spectroscopy to probe protein dynamics is a wide-ranging field

that encompasses many different techniques. The earliest NMR studies focused on spin

relaxation measurements of the nuclei of 15N−1H bonds to track the fast ps−ns dynamics of

the polypeptide backbone (Kay et al. 1989). A useful flexibility metric that can be derived

from spin relaxation experiments is the order parameter, s2, which quantifies the degree of

consistency in the relative orientations of NMR detectable bonds in the structure. Order

parameters are somewhat analogous to B-factors in that they can quantify the degree of

conformational variability at a particular position along the protein’s backbone. An amino

acid that has a peptide bond with order parameters close to one would be expected to be

highly constrained, while values close to zero would indicate a high degree of flexibility. For

example, Feng et al. (1998) reported that the surface loops of the E. coli cold shock protein

CspA have low order parameters in comparison to the rest of the protein. In addition, order

parameter analysis can reveal features of functional significance. In the case of the Syrian

hamster prion protein PrP, the low order parameters of the extended N-terminal region

suggested that it was highly disordered and possibly had a role in the aggregation process

that leads to neurodegenerative disease (Donne et al. 1997).

The main limitation with spin relaxation studies is that it is only possible to identify those

regions of proteins that are undergoing very fast conformational fluctuations. Furthermore,

unless different types of NMR probe are followed simultaneously, such as both the 15N−1H

and 13C−13C bonds of the backbone, it is very difficult to establish how the protein is

moving (Fischer et al. 1998). There are, however, NMR techniques that operate in the

µs−ms time window that can provide details about biologically significant dynamics. These

methods report on changes to the local chemical environment of the NMR probes and, there-

fore, track major conformational changes in the protein’s structure. Exchange Spectroscopy

(EXSY) and Carr-Purcell Meiboom-Gill (CPMG) relaxation dispersion are two widely used

techniques (Hansen et al. 2008; Mittermaier and Kay 2009; Kleckner and Foster 2011). The

application of EXSY to study the DNase domain of the bacterial toxin colicin E9 revealed the

slow interconversion between two distinct conformational states and suggested that the struc-

tural rearrangements were driven by the cis-trans isomerisation of peptide bonds (Whittaker

et al. 1998). Using CPMG, Eisenmesser et al. (2005) characterised the extended concerted

dynamics of the enzyme prolyl cis-trans isomerase cyclophilin A and hypothesised a role for

these movements in catalysis.

In addition to probing the dynamics of proteins in solution, NMR spectroscopy can also

be applied to proteins in the solid-state, and NMR data of protein crystals has been used

to determine whether B-factors are a true reflection of dynamics. A study by Reichert et

al. (2012) found no significant correlation between B-factors values and a protein’s internal

dynamics as measured by solid state NMR. This is in direct contrast to studies comparing

B-factors derived from ambient temperature crystallography to protein dynamics measured

by solution NMR where the two methods are found to be in general agreement (Clore and
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Schwieters 2006; Fenwick et al. 2014). These contradictory findings may be a consequence of

the limited number of proteins studied so far by NMR in comparison to X-ray crystallography.

Hopefully, as more data becomes available, it should be possible to establish whether NMR

supports B-factor data or is, in fact, a far superior method for measuring dynamics at the

atomic scale.

A study by Yang et al. (2007) took a different approach to the study of conformation dy-

namics using NMR. Rather than taking direct measurements, Yang et al. analysed the NMR

structures deposited in the PDB. By measuring the variation between the multiple NMR

models proposed for each PDB structure, a mean square fluctuation metric analogous to a

B-factor was derived. However, over the 64 proteins analysed, the NMR metric only weakly

correlated with the B-factor data. Interestingly, a stronger correlation was observed between

the NMR metric and the predictions of a simple computer model (a Gaussian network model).

Although seemingly an ideal technique for studying protein dynamics, there are technical

limitations preventing NMR being universally applicable. Not all atoms are detectable by

NMR, and, when probing biological macromolecules, investigations are usually limited to

hydrogen atoms and their interactions with the isotopes 13C or 15N. In addition, resolving

NMR spectra to identify individual atoms imposes an upper limit on the size of the proteins

that can be analysed. NMR spectra, similar to X-ray diffraction patterns, are signals that

are generated by an ensemble of molecules. Thus, like X-ray crystallography, NMR cannot

follow the conformational changes of individual proteins, but reports, instead, on the average

dynamics of the population as a whole.

Classical spectroscopy

Classical spectroscopy is usually associated with biochemical analysis: the identification and

assaying of chemical compounds through the absorption or emission spectra of certain chem-

ical groups. As such, spectroscopy has traditionally been often overlooked in structural

biology, but is now enjoying something of a renaissance through the application of spectro-

scopic methods to study protein dynamics. Classical spectroscopy is unique in being able

to probe dynamics over a wide range of time scales under near-physiological conditions, and

can, therefore, complement X-ray diffraction, NMR and cryo-electron microscopy studies.

Ranan spectroscopy can measure the vibrational modes of amide bonds, aromatic residues

and haem prosthetic groups within protein molecules to track conformational change (Spiro

et al. 1990; Balakrishnan et al. 2008). Two dimensional infra-red (IR) spectroscopy, can

probe the movements of a protein’s backbone (Ganim et al. 2008) and has been successfully

applied to characterise the structure and dynamics of the transmembrane region of a protein

(Mukherjee et al. 2006), a structural motif that is notoriously difficult to study by crystal-

lography or NMR. With Fluorescence Resonance Energy Transfer (FRET), often referred

to as a “molecular ruler” (Stryer 1978), it is possible to study the dynamics involved with
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protein-protein interactions; for example, the dimerisation of receptor protein-tyrosine phos-

phatase alpha in cell signalling (Tertoolen et al. 2001). In addition, FRET has also been

applied to measure how the distances between regions within the same protein vary as the

molecule undergoes conformational change. These studies are proving to be invaluable in the

study of the dynamics of protein folding (Ha et al. 1996; Jia et al. 1999; Deniz et al. 2000;

Schuler and Eaton 2008) where the high degree of structural disorder makes it impossible to

study by crystallographic methods.

Mass spectrometry

Primarily an analytical technique, mass spectrometry is frequently used in conjunction with

isotope exchange experiments to study conformational dynamics. In the case of hydrogen-

deuterium exchange experiments, mass spectrometry can locate regions of a protein exchan-

ging protons with the solvent with greater far greater sensitivity than is possible with the size

exclusion chromatographic techniques used previously (Wales and Engen 2006; Konermann

et al. 2011). Recently, mass spectrometry has been used to quantify conformational variab-

ility directly. Rather than undergoing fragmentation, the ionised proteins remain intact as

they pass through the mass spectrometer. The trajectory through the spectrometer’s electric

field becomes dependent on the protein’s shape as opposed to its molecular weight. Thus,

in simple terms, the distribution of locations where the macromolecules hit the detector can

be interpreted as a reflection of conformational variability in the protein sample (Koeniger

et al. 2006).

Other X-ray methods

Although synonymous with crystallographic diffraction, the interaction between X-rays and

matter can be exploited in other ways to study molecular structure and dynamics. Small

angle X-ray scattering can provide information about the size and shapes of macromolecules,

and, unlike X-ray diffraction, can be applied to both solid and liquid samples. The nano-

metre resolution of small angle X-ray scattering is poor compared to crystallography, but

makes it possible to investigate the structure of large macromolecules and their complexes

at the level of domains and subunits (Mertens and Svergun 2010; Kikhney and Svergun

2015). Working at the atomic scale, Laue X-ray crystallography is an alternative to clas-

sical X-ray diffraction where the X-ray source, rather than being “monochromatic”, spans a

range of wavelengths. The use of “polychromatic” X-rays means that Laue crystallography

only requires a single exposure to generate a sufficient number of reflections for structural

determination. Therefore, by drastically reducing the duration of an experiment, the Laue

methodology allows for time resolved crystallography : following the conformational changes

of molecules within the crystal in real time (Bourgeois et al. 2003; Schotte et al. 2003).
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Laue crystallography is not the only technique that has reduced the exposure time in X-ray

experiments. Femtosecond X-ray Crystallography (FX) has been made possible by the de-

velopment of X-ray Free-Electron Lasers (XFELs) as sources of X-rays. An XFEL generates

focused pulses of high energy X-rays to the extent that a 50 fs pulse exposes a crystal to

the same number of X-ray photons as delivered by a conventional synchrotron in one second

(Cohen et al. 2014). Exposure to a XFEL source completely annihilates the sample but,

before the sample is destroyed, a high resolution diffraction pattern is produced. This is not

as wasteful as it first appears since a diffraction pattern can be obtained from tiny nanocrys-

tals consisting of only a few hundred unit cells (Hunter and Fromme 2011). However, many

thousands of diffraction patterns are required to derive a model of a protein’s structure. The

solution is Serial Femtosecond X-ray Crystallography (SFX) where a continuous stream of

nanocrystals are fed into the path of the X-rays (Chapman et al. 2011).

SFX with a XFEL is based on the principle of “diffraction before destruction” (Neutze et al.

2000; Schlichting and Miao 2012) and this has several advantages over conventional X-ray

crystallography. The short duration of X-ray exposure means that there is no radiation

damage (Lomb et al. 2011) which can be a major source of error when interpreting the

diffraction pattern. In addition, since the precaution of cryogenic cooling is unnecessary

with SFX, structures can be determined at room temperature and, therefore, proteins may

adopt conformations that are more representative of the protein’s dynamics in vivo (Keedy

et al. 2015). The use of nanocrystals means that SFX can study proteins, such as membrane

proteins, that are difficult to grow as large high quality crystals. This is reflected in the

success of SFX in elucidating the structures of G-protein coupled receptors; for example, the

human serotonin receptor (Liu et al. 2013); human rhodopsin (Kang et al. 2015); and the

angiotensin II type 1 receptor (Zhang et al. 2015). Interestingly, Liu et al. (2013) made use

of B-factors to illustrate the difference between the restrained transmembrane helices and

the more flexible extracellular loops in the serotonin receptor. It could be argued that the

combination of ambient temperatures, small crystals and minimal radiation damage makes B-

factors obtained by SFX better measures of conformational dynamics than B-factors derived

by traditional crystallographic methods.

The short exposure times of SFX lends itself to time resolved crystallography. The femto-

second X-ray pulses generated by a XFEL are quick enough to capture the transient interme-

diate conformational states of an enzymatic reaction. By carefully synchronising SFX with

the activation of light sensitive proteins, two recent studies have been able to take molecular

“snapshots” of the conformational changes that occur during these light activated reactions.

Kupitz et al. (2014) detected conformational changes in the protein environment surround-

ing the oxygen evolving complex of photosystem II at 5 angstrom resolution. Tenboer et al.

(2014) were able to resolve the conformational changes at the chromophore of the photo-

active yellow protein at atomic resolution (1.6 angstrom). Reassuringly, the conformational

changes observed in the photoactive yellow protein were consistent with the results obtained
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from time resolved Laue crystallography.

1.4 Computational models of protein dynamics

Computational modelling of protein dynamics can overcome the two main limitations of

experimental approaches. Firstly, a computational model gives a complete picture of the

dynamics of a protein molecules; that is, at any given point in time, the locations of all

atoms are known precisely. Secondly, in contrast to experimental techniques that can only

report the average dynamics of a large ensemble of proteins, a computer simulation tracks

the movements of individual molecules. Furthermore, in order to model dynamics, a com-

puter simulation must also model the interactions between atoms that drive the dynamics.

Therefore, the value of computer simulation is not only the ability to observe the dynamics

of single molecules, but to explore how these dynamics might arise. In their review of the

techniques available to study protein dynamics, Henzler-Wildman and Kern (2007) inter-

pret the situation perceptively when they contrast experimental methods reporting “what is

moving” to computational simulations that explain “why things move”.

Computer simulation should not, nevertheless, be considered a panacea in the study of

protein conformational dynamics. In the absence of algorithms that can accurately predict

de novo protein folding, a computer model must be based upon an experimentally determined

protein structure. Moreover, in modelling an experimental structure, it is necessary to make

many simplifying assumptions. Proteins are very large molecules with complex chemistry.

Even a modestly sized protein, between one and two hundred amino acids in length, will be

composed of several thousand atoms. The protein’s dynamics are not solely determined by

the interactions between its constituent atoms, but will also involve interactions between the

water, salts and other biomolecules present within the cellular environment. Incorporating

every conceivable factor into a model would be computationally prohibitive, so a compromise

must be made between a model’s accuracy and its level of detail. Thus, a model must

always be interpreted in the knowledge that, at best, the simulated dynamics are only an

approximation, and, at worst, the motion may be entirely unrealistic.

Of all the approaches taken to model protein dynamics, this thesis will only consider Mo-

lecular Dynamics (MD), which describes the movements of atoms and molecules under the

formalism of classical physics. On the surface, this approach may appear somewhat ana-

chronistic, since it might be expected that quantum physics would be the appropriate frame-

work to describe matter at the atomic scale. However, a full quantum description of all the

atoms in a protein molecule is neither computationally feasible nor strictly necessary in order

to model protein conformational dynamics. Under the Born-Oppenheimer approximation,

electronic structure can be simplified to the point where molecules are assumed to have a

fixed chemical structure. Conformational dynamics can then be described in terms of the

35



movements of atoms under the constraints of molecular topology; that is, the freedom that is

permitted by bond geometries and steric effects. Atoms move under the laws of Newtonian

mechanics under the influence of classical electrostatic forces and VdW interactions. While

MD can adequately describe certain characteristics of proteins, the over-simplification of an

atom’s electronic structure means that many chemical phenomena, which could potentially

influence dynamics, are either excluded from the model or greatly simplified. For example, no

chemical reactions can take place since bonds can neither be broken nor formed. Hydrogen

bonding and electron delocalisation over pi-bonds are not explicitly represented and their

effects are accounted for through adjustments to bond geometries and the forces between

atoms. Protein acid-base chemistry is non-existent with no dissociation of water molecules

and no changes to the ionisation states of amino acid side chains.

MD is a somewhat vague umbrella term that encompasses a number of different approaches

to modelling protein conformational dynamics using classical physics. The following sections

outline the main areas of research that are categorised as MD.

1.4.1 All-atom simulations

An all-atom MD simulation models molecules in their entirety. Models of molecular struc-

ture, the molecular topology, accounts for all the bonded and non-bonded interactions of every

single atom of every molecule. As a result, all-atom simulations are the most computationally

demanding of the MD simulation methods. In simple terms, an all-atom simulation models

the movements of molecules by solving the Newtonian equations of motion for every atom.

These calculations are far from trivial, requiring the solution of large systems of coupled

differential equations. In general, it is not possible to derive closed solutions for the equation

of motion so numerical methods are employed instead.

The procedure of running a simulation can be divided in three distinct stages. Firstly,

through consideration of molecular structure and chemistry, the equations of motions of the

atoms are formulated. Secondly, the equations of motion are solved incrementally to obtain

the simulation’s trajectory: the time series recording the evolution of the potential energies,

coordinates and velocities of every atom in the simulation. Finally, the trajectory is analysed

to visualise the molecular motion and to reveal the interactions that drive these movements.

The process of translating a model of a protein into a system of equations of motion has

been greatly simplified by the development of standard MD force fields for macromolecules.

A force field defines how molecules are parametrised and how the forces between atoms are

calculated. Although individual force fields differ in the details of how they parametrise mo-

lecules, most follow the same underlying principles. A molecular topology applies geometric

constraints to bond lengths and angles depending on functional group chemistry. In pro-

teins, for example, these constraints prevent free rotation about the peptide bond and may
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also define permissible ranges for the backbone torsion angles of certain amino acid types.

The forces between atoms are calculated by first classifying every atom in the molecule as

belonging to a particular “atom type” that defines how it will interact with other atoms. For

example, the hydrogen atoms of water molecules are parametrised differently to the hydrogen

atoms of the methyl group of an alanine side chain to account for their differing polarities.

This is necessary because the potential functions modelling the interactions between atoms

are dependent solely upon the atoms’ “types” and their positions in space.

All force field potential functions have contributions from bonded and non-bonded inter-

actions as illustrated in equation 1.5, adapted from Karplus and McCammon (1983) and

Ponder and Case (2003), where r(t) is a vector representing the coordinates of every atom

in the simulation at a given point in time t.

V (r(t)) = V bonded(r(t)) + V non−bonded(r(t)) (1.5)

V bonded(r(t)) = V length(r(t)) + V angle(r(t)) + V dihedral(r(t)) + V improper(r(t)) (1.6)

V non−bonded(r(t)) = V electrostatic(r(t)) + V V dW (r(t)) (1.7)

As discussed previously, it is not possible to model the chemistry of a system completely,

so the bonded and non-bonded potentials are greatly simplified and only consider a subset

of all possible contributions. The bonded potential (equation 1.6) considers bond lengths

(stretching and compression); deviations in bond angles; dihedral angles (bond rotation)

and improper dihedrals (bond rotation constraints in ring systems). The non-bonded poten-

tial (equation 1.7) only considers the electrostatic and VdW interactions between pairs of

atoms. The forms of both the non-bonded and bonded potentials will depend on the types

of atom involved to account for factors such as differences in bond geometry or an atoms

electronegativity and polarisability in a particular functional group. Furthermore, for com-

putational efficiency, the non-bonded potential does not incorporate all possible non-bonded

interactions. Beyond a certain cutoff distance, the forces between atoms are assumed to be

negligible.

Since the potential is a function of atom position alone, the forces acting on the atoms are

conservative, and can be derived from the potential. Thus, by Newton’s third law of motion,

a system of coupled differential equations expressed in terms of the accelerations of the atoms

is obtained (equation 1.8). Step-wise numerical integration of the differential equations gives

the velocities and coordinates of every atom modelled by the simulation.
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−∇V (r(t)) = F(r(t)) =

N∑
i=1

mir̈i(t) (1.8)

where i indexes the atoms from 1 to N .

mi is the mass of the ith atom.

F is a vector field describing the forces acting on the atoms.

ri(t) is a vector representing the coordinates of the ith atom.

r̈i(t) is the acceleration of the ith atom.

The summary of the simulation methodology has overlooked many technical details involved

with modelling large macromolecules; for example, the handling boundary conditions and the

treatment of temperature and pressure at the microscopic scale. More complete accounts of

all-atom MD simulations can be found in Allen and Tildesley (1987) and Haile (1992). The

basic principle, however, remains the same. A simulation repeatedly recalculates the forces

acting on the atoms to incrementally adjust their positions and velocities. The thousands

of atoms comprising a typical protein simulation and the small femtosecond time-steps that

are necessary for accurate integration make all-atom simulation extremely computationally

intensive. To date, it is only feasible to simulate the protein dynamics over nanosecond and

microsecond time-scales, but, with continual advances in computer technology, millisecond

simulations are now within reach (Shaw et al. 2009). Nonetheless, due to the short durations

of all-atom simulations, the conformational dynamics studied are predominantly processes

involving fast small amplitude fluctuations. Moreover, it is not yet feasible to fully explore

the conformational diversity of a large ensemble of proteins that is routinely observed by

experimental methods such as NMR or X-ray diffraction.

1.4.2 Coarse-grained simulations

Coarse-grained MD permit longer simulations of proteins at the expense of the level of struc-

tural detail incorporated into the model. In contrast to all-atom MD, coarse-grained MD

simulations do not attempt to model every atom and bond in a molecular structure. In-

stead, molecules are distilled into their basic functional components; the level of abstraction

dependent on which features are considered to be important. For example, united atom

force fields, such as the GROMOS family (Scott et al. 1999), simplify proteins by incor-

porating hydrogen atoms into the heavy atoms of functional groups. The MARTINI force

field (Marrink et al. 2007) goes one step further, coalescing the atoms in each amino acid

into one or more spherical particles. For very large proteins, such as antibodies (Chaudhri

et al. 2012), it is possible to apply coarse-graining at the domain and subunit level. Thus,

by reducing the resolution of the molecular models, the MD calculations are simplified and

longer simulations can be run. Nevertheless, there is always the risk that, with greater levels

of abstraction, less is understood about the molecular interactions that drive the dynamics.
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1.4.3 Harmonic approximations

An alternate approach to lessening the computational demands of running a MD simulation

is to simplify the equations of motion. Under the harmonic approximation, particles are

assumed to behave as simple harmonic oscillators with potential functions that vary as

quadratic functions of atom displacements (Brooks and Karplus 1983; Go et al. 1983; Levitt

et al. 1985). The protein is assumed to have adopted its native minimal energy conformation

and the extent of its conformational dynamics are small fluctuations that never deviate too

far from the minimal energy structure. Hence, in terms of the protein’s funnel shaped free

energy landscape, harmonic approximations model the equilibrium dynamics of the protein

within a small region at the base of the funnel. The advantage of this approach is that,

by the technique of Normal Mode Analysis (NMA), the simplified equations of motion can

be solved to decompose the equilibrium dynamics of the protein in terms of a spectrum

of vibrational modes. Thus, NMA can discriminate between those regions of a protein’s

structure that undergo high-frequency, low-amplitude fluctuations and those that participate

in the lower frequency global collective movements. Furthermore, since the equations of

motion for NMA are time independent, NMA can reveal aspects of a protein’s conformational

dynamics that cannot be easily explored by classical all-atom MD. In particular, the large

amplitude slow global movements that occur over micro and millisecond time scales (Ma 2005;

Skjaerven et al. 2009). Nevertheless, although NMA can fully resolve the temporal aspect

of protein flexibility, the harmonic approximation severely limits the extent to which spatial

conformational variability can be modelled. Thus, harmonic models may be inappropriate

if the protein’s dynamics involve large scale structural rearrangements.

1.4.4 Elastic network models

In theory, NMA can fully characterise the temporal dynamics of a protein by identifying

regions of the protein that undergo the most significant high and low frequency oscillations.

However, solving equations of motion by NMA relies on linear algebraic methods that do

not scale well for all-atom models of proteins in an aqueous environment. In contrast to

MD, the limiting factor in NMA calculations is not computational time but the amount

of memory required by a computer in order to process a system of equations where every

atom is a harmonic oscillator whose motion is coupled to the movements of every other atom.

Therefore, as in the case of MD, the logical approach to make the NMA calculations tractable

is to reduce the complexity of the problem by coarse-graining the structure and applying a

greatly simplified potential function. Taking exactly the same approach to coarse-graining

as used in MD, NMA can probe conformational dynamics at varying levels of detail, ranging

between the vibrational modes of individual amino acids to the collective motions of domains

and subunits. A coarse grained model whose dynamics are described by NMA is known as an

Elastic Network Model (ENM) (Tirion 1996; Bahar et al. 1997; Haliloglu et al. 1997). The
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name is apt, since an ENM is often described as a “bead and spring” model. The “beads”

represent the protein substructures modelled (amino acids, domains or subunits) and the

“springs” represent the interactions between them. The system of springs maintains a semi-

rigid structure that only permits the substructures to oscillate about their average positions

through small elastic deformations. An investigation by Rueda et al. (2007) validated the

ENM approach by showing similarities between the large amplitude fluctuations predicted

by ENMs and the large scale deformations observed in all-atom MD simulations.

1.4.5 Validating computer models

Although computational methods can be extremely useful in the study of protein conform-

ational dynamics, the field in still in its infancy. There is, to date, no compelling evidence

to suggest that the predictions made by a computer simulations are sufficiently reliable to

replace traditional experimental techniques. Studies that attempt to validate MD force fields

typically focus their attention on the dynamics of short peptides (Aliev and Courtier-Murias

2010; Beauchamp et al. 2012; Cino et al. 2012). Furthermore, these studies are primarily

structural; i.e., evaluating force fields on the basis of how similar the simulated peptides’

conformations are to those observed by NMR and X-ray experiments. Thus, it could be

argued that these studies do not necessarily address how well MD models conformational

dynamics. A MD simulation may result in a peptide adopting the “correct” ensemble of con-

formations, but there are no checks on whether the conformational flexibility exhibited by

the simulated peptides are realistic, nor are there any assurances that the folding pathways

are similar to those followed by the peptides in vivo. Criticism of these studies is, perhaps,

unduly harsh because the computational costs of MD simulation mean that the only feasible

way to systematically compare MD force fields is to simulate short peptides. In addition,

since quantifying protein flexibility experimentally is inherently difficult, it is understandable

that MD simulations are typically validated against static structural measurements.

In contrast to MD, the conformational dynamics predicted by NMA, and ENM in particular,

have been scrutinised very closely. These simulations cannot undergo major conformational

change and can, therefore, only be evaluated in terms of their accuracy in modelling small

conformational fluctuations. The limited conformational freedom of an ENM lends itself

to comparisons with the tightly packed and structurally uniform protein lattices of X-ray

crystallography. Furthermore, the harmonic oscillations derived from an ENM are analogous

to the isotropic and anisotropic B-factors derived from an X-ray diffraction experiment. Ac-

cordingly, the close correspondence between X-ray data and the fluctuations predicted by an

ENM makes validating these types of simulation far simpler than for MD. Studies that have

systematically evaluated different ENMs by comparison with crystallographic data include

work by Kundu et al. (2002), Eyal et al. (2007), Kondrashov et al. (2007), Xia and Wei

(2013) and Opron et al. (2014). Interestingly, in all of this work, the level of agreement
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between the computational models and experimental data is weak. The correlation coeffi-

cients between experimental atomic fluctuations measured by X-ray crystallography and the

values predicted by the ENM are typically within the range range 0.5 to 0.6. Nonetheless,

as discussed previously, measures of atomic movements derived from X-ray crystallography

may not necessarily be an accurate reflection of the true dynamics of the protein. Therefore,

it is difficult to say with any confidence whether the discrepancies between experimental

X-ray data and the predictions of a computational model are due to deficiencies with the

model or are simply the result of experimental imprecision.
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Chapter 2

Methods

2.1 Software

The software developed for this project was implemented in the Java (OpenJDK version 1.7)

and python (version 2.7) programming languages. In addition to the core Java language, the

software made use of the Apache Commons Math libraries (version 3.2) (Commons Math De-

velopers 2013), JAMA linear algebra library (version 1.0.3) (Hicklin et al. 2012), EclipseLink

persistence libraries (version 2.4.2) (EclipseLink Project 2013) and the HyperSQL database

(version 2.2.9) (HSQL Development Group 2012). The initial stages of software development

were inspired by the BioJava bioinformatics libraries (version 3.0.7) (Prlić et al. 2012) and

these libraries were used as a reference during testing. GNU R (version 3.1.1) (R Develop-

ment Core Team 2008) was used for all statistical analysis and data visualisation with the

following core packages: ggplot2 (version 1.0.0) (Wickham 2009), plyr (version 1.8.1) (Wick-

ham 2011), moments (version 0.13) (Komsta and Novomestky 2012) and mixtools (version

1.0.1) (Benaglia et al. 2009).

Zero was defined as a number of magnitude less than 10−10 in all floating point calculations

that involved a comparison with zero or a rounding down to zero. Van der Waals (VdW)

radii and atomic masses were derived from the chemoinformatics data of the Blue Obelisk

Data Repository (BODR) (version 10) (Guha et al. 2006; The Blue Obelisk Group 2013).

Molecules and MD trajectories were visualised using VMD (version 1.9.1) (Humphrey et al.

1996).
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2.2 The PDB and the formatting of PDB data files

All the crystal structures analysed in this study were obtained from the PDB (Bernstein et al.

1977). The scope of the PDB is very broad, accepting macromolecular structures determined

by X-ray, neutron and electron diffraction crystallography or solution NMR spectroscopy.

The data files deposited in the PDB record not only the molecular structures, but also de-

tailed accounts of the experimental procedures followed in order to derive these structures.

For example, a structure determined by X-ray crystallography will include information char-

acterising the crystals and outline how the diffraction pattern was generated, recorded and

analysed.

At the most basic level, PDB data files are simple plain text files intended to be read sequen-

tially line by line. Structural and experimental data are organised into sets of records and

remarks which comply with strict formatting rules. In order to accommodate the diversity

of data deposited in the PDB, the PDB file specification lists over sixty different record

and remark types that can be included in a file. However, only a small subset of records

and remarks are found in every file; the majority only being relevant to a specific type of

macromolecular structure or experimental technique.

The sequence of records and remarks in a PDB file follows a logical ordering that organises the

contents of the file into three distinct sections. A PDB file begins with meta-data providing

information about the authors, macromolecules and details of the experiment. Following this

title section is a description of the primary structure of all proteins and/or nucleic acids and,

importantly, instructions on how the structure should be interpreted. For example, details

of any covalent modifications or cross linking between the residues. In X-ray structures, this

section will also account for any residues that are “missing” due to being unresolved by the

experiment. Finally, the PDB file ends with the structure: the three dimensional coordinates

of all the atoms detected by the experiment. In the case of NMR structures, the coordinate

data will usually be presented in the form of multiple models rather than a single definitive

structure.

Extracts from the PDB file for the scorpion toxin protein 1AHO (Smith et al. 1997) are

quoted in figure 2.1 as an example of how a PDB file is formatted. Each line begins with a

keyword that identifies the line as a record or a remark. In figure 2.1, the first three line begin

with the keyword REMARK followed by the number 290 indicating that the lines are remarks

of type “290” that are used to list the symmetries of a crystal. In this example, the three

lines combine to give a matrix of homogeneous Cartesian coordinates corresponding to the

identity symmetry. The next set of lines begin with the keyword SEQRES identifying these as

“residue sequence” records that report the macromolecule’s primary structure. Reading the

SEQRES records reveals that the scorpion toxin is a sixty-four residue, single chain protein

beginning with valine and terminating at histidine.
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Figure 2.1: Examples of records and remarks in the PDB file for protein 1AHO (Smith et al. 1997)

REMARK 290 SMTRY1 1 1.000000 0.000000 0.000000 0.00000

REMARK 290 SMTRY2 1 0.000000 1.000000 0.000000 0.00000

REMARK 290 SMTRY3 1 0.000000 0.000000 1.000000 0.00000

...

SEQRES 1 A 64 VAL LYS ASP GLY TYR ILE VAL ASP ASP VAL ASN CYS THR

SEQRES 2 A 64 TYR PHE CYS GLY ARG ASN ALA TYR CYS ASN GLU GLU CYS

SEQRES 3 A 64 THR LYS LEU LYS GLY GLU SER GLY TYR CYS GLN TRP ALA

SEQRES 4 A 64 SER PRO TYR GLY ASN ALA CYS TYR CYS TYR LYS LEU PRO

SEQRES 5 A 64 ASP HIS VAL ARG THR LYS GLY PRO GLY ARG CYS HIS

2.2.1 Developing software to process PDB data files

This project was primarily concerned with the analysis of protein structures determined by

X-ray crystallography. Tables 2.1 and 2.2 give a brief descriptions of the records and remarks

that must be parsed when interpreting a protein crystal structure. Many programming

libraries exist that can parse PDB data files; for example, the open bioinformatics tools

BioJava (Prlić et al. 2012) and BioPython (Cock et al. 2009). Unfortunately, these software

tools are designed for general use and lack the functionality to extract the more specialist

crystallographic information from PDB data files. Furthermore, after experimenting with

BioJava, it was decided that it was easier to write new software rather than re-engineer an

existing software project. Developing a new PDB file parser, however, posed a dilemma.

Creating a monolithic parser to process everything found within a PDB data file would be

both infeasible and inefficient. Conversely, building a parser with a limited scope, processing

only a small subset of records and remarks, could lead to software that is difficult to update

when additional functionality is required. The solution was to design a flexible PDB file

parser to which functionality could be added or removed as required.

Taking inspiration from the “chain of responsibility” software design pattern (Gamma et al.

1995), a light-weight PDB file parser was implemented that simply inspected every record

and remark within a PDB file. The responsibility for analysing the data was delegated to

pluggable modules. Each module was designed for a specific function; for example, listing

the symmetries of the protein crystal or identifying the presence of modified amino acids in

a structure. In this way, the functionality of the PDB file parsing software could be tailored

for a specific purpose by including the relevant data processing modules.
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Table 2.1: Overview of the important PDB file remarks necessary for processing protein crystal
structures

Remark Description

REMARK 200 Information relating to the crystallographic experiment. For ex-
ample, the temperature under which the X-ray diffraction data
was recorded.

REMARK 290 The symmetries of the unit cell. Applying these matrices to the
coordinates of the atoms in the asymmetric unit reconstructs the
arrangement of the molecules within the crystallographic unit cell.

REMARK 465 Residues that are missing from the structure due to being unre-
solved by crystallography.
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Table 2.2: Overview of the important PDB file records necessary for processing protein crystal
structures

Record Description

HEADER Name, deposition date and unique four character identifier for the
structure.

KEYWDS Keywords relevant to the structure.

COMPND All the proteins present in the structure and their subunits if
composed of more than one polypeptide chain.

SEQRES The primary structure of all protein chains in the structure.

MODRES Locates and describes all modified amino acid residues within the
structure.

SSBOND Lists all pairs of cysteine residues linked by disulphide bonds.

CRYST1 The geometry of the crystallographic unit cell. Specifies the
lengths and angles of the parallelepiped representation of the unit
cell and the space group classification of the crystal.

SCALE[1-3] The “scale matrix” that defines the transform between Cartesian
and crystallographic coordinates. The scale matrix transform,
when combined with the symmetries listed in the REMARK 290

section, can be used to reconstruct the arrangement of molecules
across the entire crystal lattice.

ORIGX[1-3] An orthogonal transform that will convert the coordinates to the
form that was originally submitted to the PDB. The transform
may realign the unit cell if none of the lattice vectors coincide
with the Cartesian axes. Useful when aligning unit cells to the
periodic boundaries of a molecular dynamics simulation box.

NUMMDL Lists the number of models presented for the structure. Multiple
models are rare when a structure has been determined by crystal-
lography, but it is typical for an NMR structure to contain ten or
more models.

MODEL/ENDMDL Records defining the beginning and end of the coordinate data for
each model in PDB file containing multiple models.

ATOM Atom coordinates for the protein molecules of the asymmetric unit
and the associated isotropic B-factors and occupancy values.

HETATM Identical to ATOM records for the atoms of non-protein molecules
in the structure.

ANISOU The Cartesian coordinate covariance matrix modelling the an-
isotropic displacements of an atom. Only present if the crystal
structure has been refined using the anisotropic model of atomic
displacements.

TER Identifies the end of the structural data for a polypeptide chain.
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2.2.2 Standardising structural data

It is unusual for a PDB file to define a single conformation for the three dimensional structure

of a protein. A PDB file may present a protein’s structure in the form of multiple models,

each representing a valid conformation for the protein, consistent with the experimental data.

However, in PDB files of protein crystals, the structures are very rarely presented in the

form of multiple models. Instead, it is more common to describe a protein’s conformational

variability in terms of small deviations at the residue level. The reason being that, in a crystal

structure, the adoption of multiple conformations is usually only confined to a few residues.

An example of how multiple conformations are presented in a PDB file is illustrated for a

glutamate residue in the scorpion toxin protein 1AHO (figure 2.2). In this example, there are

four atoms in the glutamate side chain that are assigned two alternate sets of coordinates.

The different positions for the atoms are differentiated by a label that prefixes the residue’s

name and, in this case, the two locations are labelled “A” and “B”. The likelihood that a given

atom will be located at either one of these positions is given by an occupancy value. For the

four glutamate atoms, occupancy values of 0.5 are assigned to both locations and, therefore,

all four atoms are equally likely to be positioned at either location. There is, unfortunately,

the potential for ambiguity when specifying multiple conformations using alternate atom

locations. Should atoms be assumed to occupy their alternate locations independently of

one another? Or, will bonding constraints result in the atoms occupying each alternate

location collectively? In the case of the glutamate side chain, this is the difference between

the alternate atom locations representing two and 24 = 16 different conformational states.
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Figure 2.2: Specification of the two alternate conformations of the glutamate residue at position 24
in the PDB file for protein 1AHO (Smith et al. 1997)

------------------------------------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13

------------------------------------------------------------------------------

ATOM 334 N GLU A 24 -4.881 3.516 -5.341 1.00 7.08 N

ATOM 335 CA GLU A 24 -5.136 2.127 -5.742 1.00 7.97 C

ATOM 336 C GLU A 24 -4.210 1.172 -5.012 1.00 7.47 C

ATOM 337 O GLU A 24 -4.678 0.155 -4.494 1.00 8.46 O

ATOM 338 CB GLU A 24 -4.965 1.952 -7.249 1.00 11.82 C

ATOM 339 CG AGLU A 24 -5.938 2.589 -8.197 0.50 14.37 C

ATOM 340 CG BGLU A 24 -5.083 0.492 -7.667 0.50 15.77 C

ATOM 341 CD AGLU A 24 -5.450 2.702 -9.627 0.50 17.13 C

ATOM 342 CD BGLU A 24 -5.516 0.208 -9.078 0.50 17.79 C

ATOM 343 OE1AGLU A 24 -4.535 1.980 -10.096 0.50 18.86 O

ATOM 344 OE1BGLU A 24 -5.560 1.170 -9.874 0.50 19.33 O

ATOM 345 OE2AGLU A 24 -5.987 3.569 -10.363 0.50 19.96 O

ATOM 346 OE2BGLU A 24 -5.825 -0.966 -9.404 0.50 19.68 O

ATOM 347 H GLU A 24 -4.552 4.086 -5.967 1.00 6.89 H

ATOM 348 HA GLU A 24 -6.084 1.908 -5.518 1.00 8.29 H

Key to the columns:

1 Record type (ATOM).

2 Unique numerical identifier for the atom.

3 Name of the atom (the atom’s “type”).

4 Alternate location label (A, B or blank for this residue).

5 Residue name (GLU - glutamate).

6 Chain identifier (chain A).

7 Residue number in the chain (24).

8-10 X, Y and Z coordinates for the atoms.

11 Occupancy value (value from 0.0 to 1.0).

12 The isotropic B-factor for the atom.

13 The atom’s element.
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The presence of atoms with alternate locations in a crystal structure posed a problem for

this project. Specifically, because this thesis focused on the analysis of high resolution crys-

tallographic data, many of the crystal structures under consideration did not assign atomic

coordinates uniquely. In a structure refined with alternate atom locations, the permutations

of all possible combinations of coordinates would make a thorough analysis of each distinct

protein conformation prohibitive. For example, the structure 2FG1 (Cuff et al. 2005), a

protein of unknown function produced by Bacteroides thetaiotaomicron, the atoms in 25

of its 158 residues are resolved with alternate locations. Of these 25 residues, 24 contain

atoms with two possible sets of coordinates while one reside has atoms with three sets of

coordinates. Assuming that the alternate locations should be grouped at the residue level,

the total number of different protein conformers is:

3× 224 > 107 distinct conformations

If atoms are assumed to occupy alternate locations independently then, since there are 183

atoms with two sets of coordinates and 7 atoms with three sets of coordinates, the number

of permutations explodes exponentially to:

37 × 2183 > 1058 distinct conformations

As a compromise, only three protein conformers were considered:

• A maximum occupancy conformer where all atoms take the highest occupancy coordin-

ates.

• A minimum occupancy conformer where all atoms take the lowest occupancy coordin-

ates.

• A conformer where all coordinates are calculated as an occupancy value weighted mean.

The calculation of the weighted mean coordinates occasionally resulted in amino acid side

chains with chemically impossible locations for atoms. For this reason, only the maximum

and minimum occupancy conformations were considered when analysing protein structures.

In the situation where two or more alternate locations had equal occupancy values, atoms

were assigned on the alphabetic ordering of the alternate location identifiers. Atoms la-

belled with the the identifier “A” were assigned to the maximum occupancy structure while

those atoms having an identifier coming last in the alphabetic sequence were assigned to

the minimum occupancy structure. Although a somewhat arbitrary assignment, this alloc-

ation ensured that the maximum and minimum occupancy structures would be different at

all locations where alternate sets of atomic coordinates were defined. For example, for the

glutamate atoms in figure 2.2, the atoms labelled as “A” would be assigned to the max-
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Figure 2.3: Superimposition of the minimum and maximum atom occupancy conformers of protein
2FG1 (Cuff et al. 2005). The conformer where all atoms are in their maximum occupancy positions
is coloured red and the minimum occupancy conformer is coloured blue.

imum occupancy conformer while those labelled as “B” would be assigned to the minimum

occupancy conformer.

Figure 2.3 compares the minimum and maximum occupancy conformers for the protein 2FG1

(Cuff et al. 2005). Surprisingly, given the high proportion of residues assigned multiple sets

of coordinates, the superimposition of the two conformers reveals only minor differences

between them. The root mean square deviation between all atoms in these conformers is

0.72 Å and, when only the backbone atoms are included in the calculation, the deviation is

close to zero at 0.084 Å.

It could be argued that alternate location data could itself be used to derive a measure of

local flexibility in a protein. However, in comparison with atomic displacement data, there

is an insufficient number of atoms with alternate locations for a rigorous analysis. Alternate

location data has limited value at present, but a comprehensive investigation may become

feasible in the future as more high resolution crystal structures are deposited in the PDB.
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2.2.3 Preparing PDB data files for analysis

PDB files were reformatted to remove all solvent and non-protein molecules. For crystal

structures that had been resolved with atoms in multiple locations, the maximum and min-

imum occupancy conformers where derived as described previously. The coordinates of all

missing atoms were assigned using Modeller (version 9.14) (Sali and Blundell 1993) by apply-

ing the all-hydrogen topology. Any structures with residues unresolved by crystallography

were made complete through the generation of a single model with Modeller’s automodel

functionality. The PDB file’s SEQRES records and missing residue remarks (REMARK 465)

were used to locate any breaks in the structure and to identify which amino acids needed to

be inserted to make the structure complete. The positions of all other atoms in the protein

were held fixed when missing atoms were added so as not to perturb those atoms whose

positions were known. Disulphide bonds were added if present in the SSBOND records of the

original PDB file.

The complete protein structures created by Modeller were merged with the original PDB

files to reincorporate important structural and crystallographic information such as the spe-

cification of the unit cell; crystal symmetries; and the isotropic and anisotropic displacement

parameters for atoms. Any structural modifications made by Modeller, such as the con-

version of selenomethionine (MSE) to methionine and changes to the protonation state of

histidine were reversed to ensure consistency with the original crystallographic data.

2.2.4 Reassembling the crystallographic unit cell

A PDB file of a protein crystal structure only publishes the atomic coordinates of the mo-

lecules that comprise the asymmetric unit of the crystal lattice. For most molecular biolo-

gists, the structures of the proteins in the asymmetric unit are sufficient. The asymmetric

unit, however, does not provide any information about how the proteins are arranged across

the crystal lattice. Therefore, it is impossible to accurately measure properties such as a

protein’s Solvent Accessible Surface Area (SASA) or atom packing density from the asym-

metric unit alone. In order to account for the protein-protein interactions of the crystal in

structural bioinformatics calculations, the crystallographic unit cell was reconstructed from

the asymmetric unit. The unit cell was reconstructed using the crystal geometry and sym-

metry data recorded in the PDB file. The symmetries of the unit cell were parsed from the

REMARK 290 records of the PDB file and the scale matrix was obtained from the SCALE[1-3]

records. The repeating structure of the crystal lattice was incorporated into the calculations

by making the unit cell periodic in the direction of each lattice axis.

Figure 2.4 illustrates the process of reconstructing the crystallographic unit cell for the scor-

pion toxin protein 1AHO. The first image (figure 2.4a) shows the asymmetric unit positioned

within the unit cell. The 1AHO crystals are orthorhombic and have unit cells that are rect-
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angular prisms defined by three lattice basis vectors of unequal length. The unit cell’s space

group is P 212121 which has four symmetries: the identity symmetry and three 21 screw-

axis symmetries in the direction of each lattice vector (two-fold rotations combined with a

translation by half the length of the vector). Figure 2.4b shows the result of applying the

four space group symmetries to the asymmetric unit to generates a unit cell of four proteins.

The representation of the unit cell in figure 2.4b is somewhat misleading, suggesting a con-

siderable amount of space between the proteins. The crystal lattice is a periodic structure

generated by repeated translations of the unit cell in three dimensions and can be visualised

using the analogy of the unit cell as a “building block”. The crystal lattice is built up by

stacking copies of the unit cell one on top of another. Adjacent copies of the unit cell will

pack tightly together resulting in a compact structure with very little empty space between

the proteins. Figure 2.4c illustrates the packing of the proteins across the lattice using a

periodic representation for the protein molecules. The atoms of the periodic proteins reside

entirely within the unit cell and, unlike figure 2.4b, the proteins of figure 2.4c wrap around

to emerge from the opposite face when crossing the unit cell’s boundaries. Thus, figure 2.4c

is a visualisation of the unit cell showing how proteins from neighbouring cells encroach into

the space.
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Figure 2.4: Sequence of steps illustrating the reconstruction of the unit cell for protein 1AHO
(Smith et al. 1997). The edges of the unit cell are plotted as blue lines. The protein defined as the
asymmetric unit by the PDB file is coloured red and the three other proteins of the unit cell are
coloured orange, yellow and green.

(a) The asymmetric unit.
(b) The unit cell.

(c) The unit cell with periodic molecules.
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Figure 2.5: Illustrating the effect of crystal contacts on the calculation of SASA for the protein
1AHO (Smith et al. 1997). The normalised SASA values are visualised by shading the amino acids
using a range of colours from blue (low SASA) to red (high SASA).

(a) The asymmetric unit in isolation. (b) The proteins of the unit cell

It is apparent from figure 2.4c that protein crystals are tightly packed structures held to-

gether by an extensive network of intermolecular contacts. The effect of these protein-protein

contacts on structural bioinformatics calculations is illustrated in figure 2.5 where SASA is

calculated for the scorpion toxin protein 1AHO. Figure 2.5a is a visualisation of normalised

amino acid SASA values calculated for the asymmetric unit in isolation. As would be ex-

pected, the amino acids at the surface of the protein are coloured red indicating that a high

proportion of their surface area is exposed to the surrounding solvent. In contrast, when the

calculations are repeated for the proteins in the unit cell, there is a dramatic reduction in

surface exposure (figure 2.5b). Many of the amino acids that appeared to be surface residues

in the asymmetric unit have become occluded in the crystal lattice.
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2.3 Outline of structural bioinformatics calculations

2.3.1 Solvent accessible surface area

The SASA (Lee and Richards 1971) of an atom was calculated using an implementation of

the “rolling sphere” Shrake-Rupley algorithm (Shrake and Rupley 1973). It was necessary

to implement a custom version of the algorithm for this thesis because standard software

for calculating SASA, such as DSSP (Kabsch and Sander 1983), does not account for the

structure of the crystal lattice. Following convention, the solvent probe was a sphere of radius

of 1.4Å modelling a water molecule. The surfaces of atoms were described by spherical surface

meshes of 128 points at the VdW radii. An approximately uniform distribution of points

was achieved by projecting a golden section helix onto the surface of the sphere (Saff and

Kuijlaars 1997; Hannay and Nye 2004; Swinbank and Purser 2006). The SASA of each atom

was measured twice: once in the whole protein (SASAprot) and once in the absence of all

other atoms except for those within the same amino acid and the backbone atoms of the

two sequentially adjacent residues (SASAamino). Normalised SASA values were calculated

by dividing SASAprot by SASAamino. SASA values for amino acids were calculated by

summing SASA values for all the constituent atoms. Normalised amino acid SASA values

were calculated by dividing the SASAprot sum by the SASAamino sum.

2.3.2 Secondary structure assignment

Secondary structure was assigned using the Define Secondary Structure of Proteins (DSSP)

program (version 2.2.1) (Kabsch and Sander 1983).

2.3.3 Distance from the protein surface

The depth of an atom was defined as the shortest Euclidean distance from the atom to an

atom at the surface of the protein. A surface atom was defined as an atom with a SASA or

normalised SASA greater than zero (> 10−10).

2.3.4 Distance from the centre of mass

The Centre of Mass (COM) was calculated as a mass weighted average of the atomic coordin-

ates. The distance between an atom and the COM was calculated as the Euclidean distance

between the coordinates of the COM and the centre of the atom. For this calculation, it was

not necessary to reconstruct the unit cell and account for lattice periodicity.
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2.3.5 Alpha-carbon coordination number

The alpha-carbon coordination number (Nishikawa and Ooi 1980; Pollastri et al. 2002) was

chosen as a simple measure of the number of contacts that an amino acid makes with its

immediate neighbours. Coordination number was defined as the number of alpha-carbon

atoms within a given radius of the alpha-carbon of the amino acid under consideration

(excluding itself).

2.4 Algorithms for structural bioinformatics calculations in

crystals

SASA, coordination number and the depths of atoms from the protein surface were all cal-

culated using the periodic unit cells reconstructed from the asymmetric unit. All these cal-

culations were dependent on measuring the shortest Euclidean distance between two atoms

under the periodicity of the crystal lattice. From this calculation it was then possible to

determine how close atoms were to each other in the crystal. Establishing an atom’s im-

mediate neighbours was essential for the calculation of SASA, coordination number and the

depth to the protein’s surface. The algorithms implemented to reconstruct the unit cell,

measure distances between atoms and calculate SASA, coordination number and depth from

the surface are described below in pseudocode.
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Reconstruction of the unit cell

Applies the space group symmetries to all the chains of the asymmetric unit to generate a

complete unit cell structure. All the atoms lie within the primary unit cell i.e., the paral-

lelepiped, in the positive octant of the Cartesian coordinate system, with vertices defined by

linear combinations of single lattice vectors.

Algorithm 1 Algorithm to reconstruct the unit cell in Cartesian coordinates

Require:

1: chain : the asymmetric unit chain

2: {Mxyz} : the set of Cartesian symmetry matrices

3: S : the scale matrix

4:

5: unitCell← []

6: for all Mi ∈ {Mxyz} do

7: chainnewi ← copy(chain)

8: for all atom ∈ chainnewi do

9: pxyz ← getCoordinates(atom)

10: pabc ← SMxyzp
xyz

11: pabc ← pabc − bpabcc
12: pxyz ← S−1pabc

13: setCoordinates(atom,pxyz)

14: end for

15: appendChain(unitCell, chainnewi )

16: end for

Notes

5 Initialise a new unit cell structure.

6 Iterate over all the symmetries in the unit cell.

9 Create a new chain based on the original.

10 Apply the symmetry transformation and convert to crystal coordinates.

11 Truncate atom coordinates to lie within the primary unit cell.

12 Convert back to Cartesian coordinates.

15 Add the new chain to the structure.
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Calculating the shortest distance in a periodic lattice

Calculation of the Euclidean distance between two points within the unit cell. The algorithm

accounts for the periodicity of the crystal lattice to return the shortest possible distance.

Essentially, the algorithm calculates the distance between the first point and the closest

crystallographically equivalent second point.

Algorithm 2 Function to calculate the shortest distance between two points in the crystal
lattice

Require:

1: pxyz
1 and pxyz

2 : the two points under consideration

2: S : the scale matrix of the unit cell

3:

4: function shortestDistance(p1,p2,S)

5: pabc
1 ← Spxyz

1

6: pabc
2 ← Spxyz

2

7: vabc
1,2 ← pabc

1 − pabc
2

8: vabc
1,2 ← vabc

1,2 − bvabc
1,2 c

9: vxyz
1,2 ← S−1vabc

1,2

10: return |vxyz
1,2 |

11: end function

Notes

5 Convert to crystal coordinates.

7 Calculate the crystal coordinate vector between atoms.

8 Truncate vector components to account for periodicity.

9 Convert vector back to Cartesian coordinates.

10 Return the distance (Euclidean norm).
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Find all the neighbouring atoms about a given atom

Locates all the neighbouring atoms no farther than some cutoff distance from a given atom

within a unit cell. The algorithm accounts for the periodicity of the crystal lattice and will

“wrap around” the boundaries of the unit cell if necessary.

Algorithm 3 Function to find neighbouring atoms within the crystal lattice

Require:

1: ai : the atom under consideration

2: rc : the neighbourhood cutoff distance

3: unitCell : the reconstructed unit cell

4: S : the scale matrix of the unit cell

5:

6: function findNeighbours(ai,rc,unitCell,S)

7: neighbours← []

8: pi ← getCoordinates(ai)

9: for all aj ∈ unitCell : aj 6= ai do

10: pj ← getCoordinates(aj)

11: d← shortestDistance(pi,pj,S)

12: if d < rc then

13: appendAtom(neighbours,aj)

14: end if

15: end for

16: return neighbours

17: end function

Notes

7 Initialise an empty list.

12 Add the neighbouring atom if within the cutoff distance.

16 Return all the neighbours of atom ai.
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Estimate the solvent accessible surface area of an atom with a unit cell

Applies the Shrake-Rupley algorithm (Shrake and Rupley 1973) to calculate SASA in the

context of a periodic lattice structure. The algorithm accounts for lattice periodicity when

determining how much of an atom’s solvent accessible surface area is occluded by its immedi-

ate neighbours. The surface of an atom is defined as a spherical mesh of points approximately

equidistant from one another (see the method section for the details of how the mesh was

constructed).
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Algorithm 4 Function to calculate the SASA of an atom within some group of atoms

Require:

1: ai : the atom under consideration

2: atomGroup : the group of atoms (the unit cell or the amino acid and backbone atoms)

3: S : the scale matrix of the unit cell

4:

5: function calculateSasa(ai,atomGroup,S)

6: rprobe ← 1.4

7: N ← 128

8: rv,i ← vanDerWallsRadius(ai)

9: pi ← getCoordinates(ai)

10: surfacePointsi ← constructSurfacePoints(pi, rv,i + rprobe, N)

11: neighboursi ← []

12: for all aj ∈ G : aj 6= ai do

13: rv,j ← vanDerWallsRadius(aj)

14: pj ← getCoordinates(aj)

15: d← shortestCartesianDistance(pi,pj,S)

16: if d < rv,i + rv,j + (2× rsolv) then

17: appendAtom(neighbours,aj)

18: end if

19: end for

20: for all s ∈ surfacePointsi do

21: for all aj ∈ neighbours do

22: xj ← getCoordinates(aj)

23: rv,j ← vanDerWallsRadius(aj)

24: d← shortestCartesianDistance(s,pj,S)

25: if d < rv,j + rprobe then

26: removePoint(s,surfacePoints)

27: end if

28: end for

29: end for

30: n← numberOfPoints(surfacePoint)

31: sasa← 4π(rv,i + rprobe)
2 × n

N
32: return sasa

33: end function

Notes

10 Create the spherical mesh of N surface points centred at point pi with a radius of

rv,i + rprobe (solvation radius).

61



11 Initialise an empty list to store neighbouring atoms.

12-19 Find all neighbouring atoms that limit the atom’s exposure to the solvent.

17 Add the neighbour to the list if the solvent cannot fit between atoms.

20-29 Measure the extent of solvent exposure.

25 Eliminate the surface point if occluded by a neighbouring atom.

31 Calculate the proportion of exposed surface area based on the number of surface points

remaining.
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Estimate the normalised solvent accessible surface area of an amino acid

Calculates the normalised SASA of an amino acid within the unit cell. The SASA is simply

the sum of the SASA values calculated for each atom of the amino acid. The SASA cal-

culation is undertaken twice. The first calculation is for the amino acid surrounded by all

other structure within the unit cell and accounts for the periodicity of the crystal lattice.

The second calculation is of the amino acid in isolation except for the backbone atoms of its

flanking residues in the protein chain. Dividing the SASA of the amino acid in the unit cell

by the SASA of the amino acid in isolation gives the normalised SASA value.

Algorithm 5 Function to calculate the normalised SASA of an amino acid

Require:

1: aminoAcid : the amino acid under consideration

2: unitCell : the reconstructed unit cell

3: segment : the isolated amino acid plus the backbone atoms of flanking residues

4: S : the scale matrix of the unit cell

5:

6: function aminoAcidNormSasa(aminoAcid,unitCell,segment,S)

7: sasaProtein← 0

8: sasaIsolated← 0

9: for all atom ∈ aminoAcid do

10: sasaProtein← sasaProtein+ calculateSasa(atom, unitCell, S)

11:

12: sasaIsolated← sasaIsolated+ calculateSasa(atom, segment, S)

13:

14: end for

15: aminoAcidNormSasa← sasaProtein

sasaIsolated
16:

17: return normSasa

18: end function

Notes

7-8 Initialise total SASA values as zero.

9 Calculate SASA in the environment of the protein and add to the running total.

10 Calculate SASA for isolated amino acid (including any adjacent backbone atoms) and

add to the running total.

12 Normalise SASA as the ratio of the two surface areas calculated.
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Finding the atoms at the surface of a protein within a unit cell

Simple method to find all the surface atoms of a protein. The SASA values of each atom

within the protein are calculated both in the periodic unit cell and in isolated parent amino

acids. The ratio of the atom’s SASA in the unit cell to the value in the isolated amino acid

is calculated. All the atoms with a ratio greater than zero are considered to be exposed at

the surface. Atoms whose raw SASA values are effectively zero are discounted immediately

to avoid problems with division by zero or division by very small numbers.

Algorithm 6 Function to locate the surface atoms of a protein

Require:

1: protein : the protein under consideration

2: unitCell : the reconstructed unit cell

3: S : the scale matrix of the unit cell

4:

5: function findSurfaceAtoms(protein,unitCell,S)

6: surfaceAtoms← []

7: for all aminoAcid ∈ protein do

8: segment← createIsolatedStructure(aminoAcid, protein)

9: for all atom ∈ aminoAcid do

10: sasaProtein← calculateSasa(atom, unitCell, S)

11: sasaIsolated← calculateSasa(atom, segment, S)

12: ratio← 0

13: if sasaProtein and sasaIsolated are not zero then

14:

15: ratio← sasaProtein

sasaIsolated
16:

17: end if

18: if ratio > 0 then

19: append(atom, surfaceAtoms)

20: end if

21: end for

22: end for

23: return surfaceAtoms

24: end function

Notes

6 Initialise an empty list of surface atoms.

8 Construct isolated amino acid segment.
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10 Calculate the SASA of the atom in the protein

11 Calculate the SASA of the atom in the isolated amino acid segment.

12 Determine whether the atom meets the criteria of a surface atom.

13 Add atom to the list of surface atoms if there is any degree of solvent exposure.
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Calculation of the depth of an atom from the protein’s surface

Builds upon the algorithm used to identify surface atoms to calculate surface depth. All

the surface atoms of a protein are calculated using the algorithm described previously. The

distance of atom from the surface is simply to shortest distance from that atom to any of

the surface atoms.

Algorithm 7 Function to calculate the surface depth of an atom

Require:

1: atom : the atom under consideration

2: surfaceAtoms : the surface atoms of the protein

3:

4: function surfaceDepth(atom, surfaceAtoms)

5: if atom ∈ surfaceAtoms then

6: return 0

7: else

8: patom ← getCoordinates(atom)

9: ∀psurf ∈ { getCoordinates(a) : a ∈ surfaceAtoms}
10: return min( shortestDistance(patom,psurf ,S))

11: end if

12: end function

Notes

5 Define atoms at the surface as having zero “depth”.

9 Find the minimum distance for the atom to any surface atom.
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Calculation of amino acid coordination number within a unit cell

Builds upon the algorithm used to locate the immediate neighbours of a given atom within

the unit cell. The unit cell is reconstructed using only the alpha-carbon atoms of the protein

chains. All the neighbours within a cutoff distance of a given alpha-carbon are calculated

using the algorithm described previously. The number of neighbouring alpha-carbons is the

coordination number.

Algorithm 8 Function to calculate the α-carbon coordination number of an amino acid

Require:

1: aminoAcidi : the amino acid under consideration

2: unitCell : the reconstructed unit cell

3: S : the scale matrix of the unit cell

4: rc : the cutoff radius

5:

6: function countCoordNumber(aminoAcidi, unitCell, S, rc)

7: Cα,i ← getAlphaCarbon(aminoAcidi)

8: pi ← getCoordinates(Cα,i)

9: coordNumber ← 0

10: for all aminoAcidj ∈ unitCell : aminoAcidi 6= aminoAcidj do

11: Cα,j ← getAlphaCarbon(aminoAcidj)

12: pj ← getCoordinates(Cα,j)

13: if shortestDistance(pi,pj,S) < rc then

14:

15: coordNumber ← coordNumber + 1

16: end if

17: end for

18: return coordNumber

19: end function

Notes

9 Initialise the coordination number count to zero.

13 Check if the atom is within the required local neighbourhood.

14 Increment the coordination number count by one.
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Chapter 3

Evaluating isotropic B-factors as

indicators of a protein’s

conformational dynamics

3.1 Introduction

The introduction outlined the reasoning behind the assumption that crystallographic B-

factors are a reflection of the conformational dynamics of a protein within a crystal. In

addition, an equally valid counterargument was discussed, proposing that B-factors may

bear little or no relation to the underlying dynamics of the protein. The precision to which a

protein structure can be determined by X-ray crystallography is affected by many variables,

and conformational dynamics may not necessarily be the dominant factor. Crystal defects,

experimental error, static structural disorder and global rigid body movements of a protein

all offer plausible alternative explanations for B-factors.

Despite all the known limitations of B-factors, researchers continue to mine the B-factor

data of the PDB in order to establish relationships between a protein’s structure and its

conformational dynamics. Analysis of B-factor distributions have been used to derive flex-

ibility indices for individual amino acids (Karplus and Schulz 1985; Smith, Radivojac et

al. 2003) and to relate conformational stability to side chain motility (Carugo and Argos

1997). B-factors have also been applied to the problems of predicting enzyme active sites

(Yuan et al. 2003) and potential protein-protein interaction sites (Liu et al. 2010). The value

molecular bioinformaticians still place on B-factor data is apparent from the fact that meth-

ods to predict protein B-factor profiles are continually being developed (Yuan et al. 2005;

Schlessinger et al. 2006; Sonavane et al. 2013). In light of this considerable body of work,

there is a clear need to re-evaluate the usefulness of B-factors as indicators of a protein’s
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conformational dynamics.

Two areas have been identified where previous research could usefully be extended. Firstly,

scarcity of structural data meant that older studies had to make use of low resolution or low

quality structures. Secondly, technological limitations meant that analyses only considered

proteins in isolation rather than as elements of a crystal lattice. Given the increased number

of high quality structures in the PDB and the greater computational power now available,

it is now time to re-evaluate rigorously the relationship between crystallographic B-factors

and protein conformational dynamics.

3.2 Aim

The aim is of this study is to make an up-to-date assessment of the value of isotropic B-

factors as indicators of conformational variability in protein crystals. This study will begin by

focusing on isotropic B-factor data rather than anisotropic atomic displacement parameters.

The rationale being that isotropic B-factors are more frequently used as a surrogate measure

of flexibility in bioinformatics research.

The extent to which isotropic B-factors reflect protein dynamics will be assessed using high

resolution crystal structures. B-factor data will be analysed in relation to a set of protein

structural properties that are expected to correlate with conformational variability. Further-

more, since the analysis is limited to the data deposited in the PDB, measurements will be

restricted to static structural features of a protein that can be derived from the data present

in a PDB file.

The static structural properties chosen for analysis are:

• Amino acid type

• Secondary structure

• Surface exposure measured as a normalised SASA

• Surface depth

• Distance from the protein’s COM

• Local atom packing density

In addition, all protein-protein contacts in the crystal will be considered where this may

affect the calculations.
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3.3 Hypothesis

Using only high resolution crystallographic data and fully accounting for the crystal structure

should make it possible to observe clear relationships between isotropic B-factors and the

protein’s structure. Specifically, an atom’s B-factor value should be consistent with its

expected conformational freedom given the structure of the crystal. If, however, B-factors

are dominated by contributions from other effects, then it will be more difficult to discern

any relationships.

3.4 Results and discussion

3.4.1 Creating the protein data set

A key objective in this project was to derive a suitable data set of high resolution proteins for

analysis. Strict selection criteria were applied to ensure the quality of the crystallographic

data.

The criteria applied to select proteins for analysis were:

• X-ray structures determined at near-atomic resolution (≤1.5 Å).

• Structures refined purely isotropically.

• Single chain proteins.

• Chains of at least 50 amino acids.

• Low sequence homology between proteins (< 30%).

• Cytosolic or extracellular proteins.

• Structures to be complete or near-complete with only a small number of unresolved

amino acids.

• High quality crystal structures with low R (“reliability”) indices.

• Proteins should not be bound to large cofactors or co-crystallised with large molecules.

The rationale behind these criteria is that, by limiting the analysis to a diverse collection of

high quality structures, any relationships between B-factors and the structural properties of

proteins will be more apparent than if the data set encompassed every isotropically refined

crystal structure deposited in the PDB. Setting a near-atomic upper limit for the resolution

(1.5 Å) made it more likely that any uncertainty in locating atoms within a structure would

be due to the protein’s conformational dynamics. Hence, the assertion that B-factors are

reflection of conformational variability is far easier to justify. Furthermore, B-factors are less
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likely to be catch-all error terms in structures that have been refined with low R (“reliab-

ility”) indices, since a low R index is indicative of a structure in close agreement with the

crystallographic data.

The analysis was restricted to single chain proteins to avoid any complications that might

arise from the dynamics of multi-subunit protein complexes. The protein-protein interactions

between the chains in a multi-subunit complex are different to those that hold the crystal

lattice together (Carugo and Argos 1997). Consequently, the B-factors of atoms in crystals

of multi-subunit complexes may be unlike those of comparable atoms in crystals of single

chain proteins. Peptides (defined as proteins shorter than 50 amino acids) were similarly

excluded since the lack of extended secondary and tertiary structure might result in unusual

dynamics.

Low sequence homology between proteins guaranteed structural diversity and minimised bias

from the inclusion of proteins whose crystal structures have been determined multiple times.

For example, approximately 50 structures at near-atomic resolution have been deposited in

the PDB for hen egg-white lysozyme.

Membrane proteins were excluded from the data set because their inclusion might have had a

distorting effect on the analysis. The structures of membrane proteins are distinctly different

to those of cytosolic or extracellular proteins. Membrane proteins span lipid bilayers and,

therefore, have surfaces enriched with hydrophobic amino acids. In contrast, the hydrophobic

amino acids of a cytosolic or extracellular protein are usually buried within its interior. In

addition, membrane proteins must be co-crystallised with detergent molecules to provide

stability in the absence of the cell membrane. The interaction between a membrane protein

and detergent may perturb the dynamics, and result in B-factors that are not directly com-

parable with other proteins. By the same reasoning, any cytosolic or extracellular proteins

co-crystallised with large molecules, either present as bound cofactors or as components of

the crystallisation medium, were excluded.

The measurements of structural properties such as surface area and atom packing density

requires complete protein structures where the location of every atom is known. However,

this presents a problem for structures determined by X-ray crystallography since atoms with

low electron density, hydrogen in particular, are rarely detected. Furthermore, highly mobile

amino acids within unstructured regions of a protein may be completely missing from the

structure or only partially resolved. Modelling software can deduce the most likely positions

of any missing atoms within a crystal structure, but the structures generated can only be

considered to be reliable if the majority of the protein’s conformation is already known. For

this reason, near complete crystal structures were favoured over those with long stretches of

unresolved residues.

Full details of how the protein data set was obtained is given in the methods section of this

chapter. The properties of the final dataset of 114 structures are summarised in table 3.1.
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Table 3.1: Summary of the protein structures resolved isotropically.

Feature Number of proteins % of data set

Chain length 1

51− 99 24 21.1
100− 299 70 61.4
300− 532 20 17.5

Resolution
< 1.0Å 3 2.6
1.0− 1.5Å 72 63.2
1.5Å 39 34.2

Space Group
P 21 21 21 38 33.3
P 1 21 1 15 13.2
C 1 2 1 13 11.4
22 other space groups 2 48 42.1

Structural Classification 3

all-α (> 60% α and < 5% β) 10 8.77
mostly α-helix (> 60% α and > 5% β) 1 0.88
all-β (> 50% β and < 5% α) 4 3.51
mostly β-structure (> 50% β and > 5% α) 0 0.00
αβ proteins (15− 55% α and 10− 45% β) 66 57.89
others 33 28.95

Alternate conformations 4

0% 47 41.2
0− 10% 55 48.3
10− 20% 12 10.5
≥ 20% 0 0.0

1 Median length 166.5. The minimum and maximum are 51 and 721 respectively.
2 Eleven space groups are represented by a single structure.
3 Using the domain structural classification of Michie et al. (1996).
4 Measured as the proportion of amino acids resolved with alternate conformations. The highest

proportion is 19.2%.
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3.4.2 Assessing the quality of the data set

The quality of the B-factor data was evaluated using a local averaging check based on the

assumption that atoms in close proximity should have similar B-factors (Hendrickson 1985).

The methodology is similar to the ISOR and SIMU restraints of the SHELX crystallographic

refinement software (Sheldrick and Schneider 1997) where the variance in isotropic atomic

displacements of spatially close atoms cannot exceed a certain threshold. An atom was

marked as an “outlier” if its B-factor exceeded three standard deviations from the mean

of its neighbours within a 5 Å radius. The number of outlier atoms was counted for each

protein and expressed as a percentage of the total. A high proportion of outlier atoms was

reasoned to be indicative of a structure that fitted poorly to the crystallographic data. The

presence of such proteins in the data set would, therefore, obscure any relationships between

B-factors and the protein structural properties under investigation.

The distribution of the proportion of outlier atoms over the whole data set is plotted in figure

3.1. The distribution clearly shows that the proportion of atoms with “atypical” B-factors

is very low. Less than 1% of the atoms in each protein of the data set are outliers, and the

proportion is even lower (less than 0.5%) for the majority of these proteins. Consequently,

there is no evidence for any significant systematic anomalies in the B-factor data of the

structures in the data set.
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Figure 3.1: Distribution of B-factor outliers across the protein data set. The horizontal axis is the
percentage of atoms in a crystal structure that have “atypical” B-factors and is a continuous scale.
The data is binned in intervals of 0.1%. For example, the first bar shows that, for the majority
of structures in the data set, the percentage of atoms in the structure with “atypical” B-factors is
between 0 and 0.1%.
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3.4.3 Distribution of alpha-carbon B-factors

The analysis of B-factors was focused on the alpha-carbons of proteins. The choice of alpha-

carbons was guided by the assumption that, of all the atom types present in every amino acid,

the movement of the alpha-carbon is most likely to be influenced by the local dynamics of the

protein. The alpha-hydrogen was not considered suitable because it is not usually resolved

by X-ray crystallography and the carbonyl and amine groups of the backbone were rejected

because their movements are constrained by the chemistry of the peptide bond. Therefore,

where defined, the B-factors of the alpha-carbons can be used as a standard, comparable

measure of the conformational variability along the length of the protein backbone. Figure

3.2 is a schematic diagram of a generalised amino acid within a protein, illustrating the

position of the alpha-carbon in relation to the other atoms of the backbone.

The isotropic B-factors of the atoms within each structure were normalised using the median-

mad method. This technique was preferred over traditional mean-standard deviation (“z”-

normalisation) because the use of robust statistics for central tenancy (median) and spread

(Median Absolute Deviation (MAD)) make it less sensitive to distortion from atypical data

(Wilcox 2010).

Figure 3.2: Generalised structure of an amino acid within a protein. The alpha-carbon (Cα) is
positioned centrally with the amine and carbonyl groups of the peptide bonds at either side. The
amino acid side chain is represented by the functional group “R”.
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The distribution of normalised alpha-carbon B-factors (figure 3.3) is highly positively skewed

(skewness measure 3.021). It could be argued that the source of the skew in the distribution

is a consequence of the B-factor data being “incomplete” due to there being alpha-carbons

unresolved by crystallography. The data set is representative of the true distribution because

there are 22,810 alpha-carbons in the data set of which only 123 (approximately 0.5%) were

unresolved and had coordinates, but not B-factors, estimated by modelling software. Thus,

the data set is almost complete with respect to alpha-carbon B-factors. It should be noted,

however, that the unresolved atoms are likely to be located in the most mobile regions of

a protein and would, therefore, be expected to have B-factors that lie to the far right of

the distribution. The absence of these highly mobile atoms will contribute to the positive

skewness of the distribution but, given the small numbers involved, it is unlikely to be a

75



Table 3.2: Parameters for the Gaussian mixture model. Values calculated after convergence of the
EM algorithm (ε = 10−3).

i (component) λi (proportion) µi (mean) σi (standard deviation)

1 0.810 -0.132 1.115

2 0.190 3.598 3.460

significant factor.

The broad spread of atoms with high B-factors is an interesting feature of the data set and

has been commented on previously (Parthasarathy and Murthy 1997; Smith, Radivojac et al.

2003). It is tempting to explain the shape of this distribution in terms of a two population

model consisting of low B-factor interior atoms and a set of more flexible high B-factor

atoms at the surface (Parthasarathy and Murthy 1997). This was investigated by fitting a

two component Gaussian mixture model to the data. In this model, the probability density

function for the alpha-carbon B-factors is assumed to be a weighted sum of two Gaussian

distributions (equation 3.1).

p(x) = λ1n(x;µ1, σ1) + λ2n(x;µ2, σ2) (3.1)

In equation 3.1, n(x;µ, σ) is the density function for a Gaussian with mean and standard

deviation of µ and σ respectively. The weightings of the two Gaussians, λ1 and λ2, correspond

to the proportions of atoms in the two populations. The parameters of the mixture model

were calculated using the EM algorithm as implemented by the mixtools R library (Benaglia

et al. 2009). A plot comparing of the empirical distribution to the fitted mixture model is

shown in figure 3.4 and the values of the model’s parameters are recorded in table 3.2.

Visual inspection of the graphs in figure 3.4 suggest that a two component Gaussian mixture

model is an approximate description of the B-factor data. This was confirmed quantitatively

by a Kolmogorov-Smirnov test that gave a test statistic of 0.0374 (zero and one measuring

maximal and minimal agreement respectively). The closeness of the fit is best visualised

by a quantile-quantile plot of the empirical cumulative density function against that of the

mixture model (figure 3.5) where perfect agreement would correspond to a straight line.

Although figure 3.5 approximates a straight line, the plot deviates from this ideal over the

whole data range. Increasing the number of components of the mixture model improved the

fit, but a Gaussian mixture model could be made to fit the data to any level of precision

given a sufficient number of components. More complex models, however, would be far more

difficult to interpret in terms of protein structure.

Even though a Gaussian mixture was only an approximate model for the B-factor data, it

was interesting to examine whether the two Gaussian components corresponded to interior

and exterior atoms of the proteins. A coarse classification was applied where alpha-carbon
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Figure 3.3: Distribution of alpha-carbon B-factors for the maximum occupancy structures.
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(a) Histogram of alpha-carbon B-factors
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(b) Cumulative frequency distribution for alpha-carbon B-factors
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Figure 3.4: Comparing the empirical distributions for the B-factors to a Gaussian mixture model.
The histogram is shaded in grey and the empirical probability distribution is plotted as a black line.
The mixture model is superimposed in red.
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atoms were defined as interior atoms if their amino acids had a normalised SASA less than

or equal to 0.05. An amino acid with a normalised SASA greater than 0.05 was defined

as being at the surface. Density plots of the B-factor distributions of these two subsets of

atoms are presented in figure 3.6 and their summary statistics in table 3.3. The results

confirm that the interior atoms generally have lower B-factors than those at the surface of

the protein. Nonetheless, there is a considerable degree of overlap between the ranges of B-

factors exhibited by these two groups of atoms. Comparing the parameters of tables 3.2 and

3.3 reveals that the components of the mixture model do not correspond with the definitions

of interior and surface atoms. Furthermore, alpha-carbons within the protein interior make

up a smaller proportion of all atoms and exhibit a greater spread of B-factor values compared

to the prediction of the mixture model. It could be argued that a better level of agreement

might be possible by adjusting the definitions for interior and surface atoms. Nevertheless,

this would be futile because, irrespective of the choice of the cutoff value used to classify

the atoms, the B-factor distributions for both interior and surface atoms will remain highly

skewed and deviate from normality. The factors that determine an atom’s B-factor appear

to be far more subtle than a simple binary classification based on the atom’s location.
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Figure 3.5: Quantile-quantile plot comparing the cumulative density function for the Gaussian
mixture model against the empirical cumulative density function for the B-factors. Perfect agreement
between the cumulative density functions is represented by the dashed line.
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Figure 3.6: Comparing the distributions for the B-factors of interior and surface atoms.
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Table 3.3: Summary statistics for surface and interior alpha-carbon B-factors

Location Number (proportion) Mean Std. Dev. Min. Max.

Interior 8790 0.39 -0.458 1.286 -4.947 14.927

Surface 13897 0.61 1.132 2.590 -4.011 30.326
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3.4.4 Relating alpha-carbon B-factors to protein structure

The initial exploration of the B-factor data set confirms that, at a very coarse level, B-factors

are a reflection of the conformational variability of an atom. B-factors of alpha-carbons

within the interior of a protein are typically lower than those at the surface which is consistent

with amino acids having less conformation freedom at the protein’s core. Nevertheless, there

are evidently other factors that influence B-factor values as seen from the considerable overlap

between the B-factors of surface and interior atoms.

In order to investigate whether B-factors are a reflection of conformational variability, the

alpha-carbon data was subdivided according to various structural properties. The features

chosen for analysis were: secondary structure classification, amino acid type, solvent expos-

ure, distance from the surface, distance from the protein’s COM and amino acid coordination

number. All of these properties are widely accepted as correlates of conformational variab-

ility and would, therefore, be expected to correlate with B-factor values if the hypothesis is

correct. Interestingly, irrespective of how the data set was subdivided in the subsequent ana-

lyses, similarly shaped positively skewed B-factor distributions were observed in all subsets.

It was decided to visualise the data as boxplots in order to preserve as much information as

possible about the shapes of the distributions. Boxplots were generated using the ggplot2

package in GNU R (Wickham 2009). The horizontal bars that define the “boxes” of the

boxplots are the 25%, 50% (median) and 75% quartiles of the data. The “whiskers” of the

boxplots extend to the nearest data points within a distance of 1.5 times the interquartile

range. All data points that lie beyond the range of the “whiskers” are classified as “outliers”.

The majority of the boxplots presented in this thesis are plotted without the outlier data.

Although comprising a small fraction of the total population, the outlying B-factor values

were at the extreme ends of the data range. The inclusion of outlier data requires a very

coarse scale when plotting the boxplots and can, therefore, obscure small but significant

differences between boxplots. Figure 3.7 plots the boxplots with outliers for alpha-carbon B-

factors grouped according to secondary structure classification. This example clearly shows

that including the outliers makes it very difficult to distinguish between the B-factor distri-

butions.

A striking feature of all the boxplots generated is the span of the “whiskers” and the wide

range covered by the outlier data. This observation suggests that protein B-factor data is

inherently highly variable. Quantitative analysis using summary statistics or fitting linear

models was deemed inappropriate due to the broad scattering of the data. This thesis can,

therefore, only report qualitative trends between B-factors and the structural properties

investigated. Deriving reliable predictive quantitative relationships proved to be impossible.
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Figure 3.7: Normalised alpha-carbon B-factors grouped according to secondary structure. Outliers
are plotted as red points. Secondary structure labels are the DSSP classifications: E : β (extended);
B : β (bridge); H : α-helix; I : π-helix; G : 3-10 helix; T : turn; S : bend; and U : unclassified (“coil”).
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Secondary structure

Secondary structure is maintained by a regular network of hydrogen bonds between the

amide groups of the protein’s backbone. Adoption of secondary structure would, therefore,

be expected to limit the conformational variability of the backbone atoms. Work by Yuan

et al. (2003) and Sonavane et al. (2013) have shown that normalised B-factors of alpha-

carbons in regions of α-helix or β-sheet are generally lower than those in other types of

secondary structure. The results presented in figure 3.8a clearly show, as might be expected,

that the alpha-carbon atoms of residues held within extended regions of regular secondary

structure have the lowest B-factors. B-factors of delta-carbons were also considered in order

to investigate whether the restraining effect of secondary structure might be just limited to

the atoms of the protein backbone. The B-factors of the delta-carbon atoms (figure 3.8b) are

higher than those of the alpha-carbons but, interestingly, still maintain differences between

the secondary structure classifications. A possible explanation could be that the side chains

of residues in regular secondary structure might be restrained through interactions that

maintain higher level “super-secondary” structural motifs such as the “beta-sandwich” or

“greek key”.

The effect of regular secondary structure on B-factors of alpha-carbon might be attributed to
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a dampening of the thermal fluctuations of the backbone atoms; other contributors to the B-

factor values, such as large scale rigid body motion and crystallographic defects, are unlikely

to be lessened by secondary structure. Despite “temperature factor” being a misnomer, the

analysis suggests that temperature dependent atomic motion must be a partial determiner

of B-factors. Nonetheless, the extent to which B-factors are affected by thermal fluctuations

cannot be easily quantified.
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Figure 3.8: Normalised B-factors grouped according to secondary structure. Secondary structure
labels are the DSSP classifications: E : β (extended); B : β (bridge); H : α-helix; I : π-helix; G : 3-10
helix; T : turn; S : bend; and U : unclassified (“coil”).
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(a) Normalised Alpha-carbon B-factors. The proportion of outliers was less or equal to 7% for all
groupings
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(b) Normalised Delta-carbon B-factors. The proportion of outliers was less than 7% for all groupings.
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Amino acid type

The distributions of alpha-carbons B-factors among the twenty major amino acid types is

shown in figure 3.9a. Along the horizontal axis of the figure (from left to right), the amino

acids are broadly grouped into the following categories: “atypical”, acidic, basic, polar and

non-polar. Although there is considerable variation in the data, the overall trend observed

is clear: amino acids with the most hydrophobic side chains have the lowest B-factors.

As might have been expected, the amino acid B-factor profiles do not deviate significantly

from the isotropic B-factor profiles derived by Parthasarathy and Murthy (1997) and Smith,

Radivojac et al. (2003) and discussed by Sonavane et al. (2013). Previous studies explain the

differences between amino acids in terms of the relative frequencies of occurrence within the

interiors of proteins. Hydrophobic amino acids are typically buried inside a protein, and the

low B-factors are a reflection of the limited conformational freedom within the tightly packed

interior. Conversely, hydrophilic amino acids at the surface would experience significantly

less hindrance.

The analysis of Parthasarathy and Murthy (1997) acknowledges that B-factor distributions

cannot be satisfactory explained by amino acid hydrophobicity alone. This is supported by

the results of this thesis which suggest that all aspects of an amino acid side chain chemistry

can have an effect on B-factor values. Glycine exhibits a very broad distribution of high

B-factor values which can be attributed to the greater conformational freedom allowed by

the absence of a side chain. Similarly, the low B-factors observed for cysteine and histidine

may be a consequence of the restraining effect of the bonded and non-bonded interactions

in which they participate. Cysteines would be severely restricted when linked via disulphide

bridges, but the restrictions imposed on histidine are not so obvious. In enzymes, histidine

arises more frequently at active sites in comparison to the rest of the structure (Bartlett et al.

2002; Holliday et al. 2007) strongly suggesting that histidine has a key functional role. The

B-factors at an enzyme’s active site are typically lower than those in equivalent environments

at other locations (Yuan et al. 2003). Hence, it is feasible that the presence of catalytically

active histidine residues may contribute to the low B-factor values of histidine observed in

the data set.

The effect of side chain chemistry can be dramatically illustrated with proline. The alpha-

carbon B-factor distribution of proline is comparable to that of glycine due to its constrained

cyclic structure. Proline’s delta-carbons (figure 3.9b) have very low B-factors compared to the

highly mobile delta-carbons of other amino acids. The difference can be directly attributed

to proline’s delta-carbon being covalently bonded to the backbone nitrogen.

It is difficult to find a single, satisfactory explanation to account for the differences between

the B-factors for the different amino acid types. Hydrophobicity is important because it

determines whether a particular class of amino acid is likely to be located at the surface or
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buried within the interior. In addition, amino acid chemistry and the role of the residue

in the protein will have an effect. For example, the conformational dynamics of a cysteine

residue will be very different depending on whether that residue is part of a disulphide bridge,

located at an enzyme’s active site or has no specific structural or functional role. Despite an

uncertainty in the underlying causes, the data shows a general correlation between B-factor

values and the amino acid types expected to exhibit the greatest conformational fluctuations.

Nevertheless, the high degree of variability in the dataset makes it difficult to derive an amino

acid “flexibility index” (Karplus and Schulz 1985) based on B-factor values alone.
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Figure 3.9: Boxplots of normalised B-factors grouped according to amino acid type

−4

−2

0

2

4

6

G P D E H R K N Q S T C M A V L I F Y W

Amino acid

N
or

m
al

is
ed

 B
−

fa
ct

or

(a) Normalised Alpha-carbon B-factors. The proportion of outliers was less than 7% in all groupings
except for methionine (9.5%) and tryptophan (7.2%).
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(b) Delta-carbon B-factors. The proportion of outliers was less than 6% in all groupings.
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Solvent exposure and surface depth

The amino acid analysis suggests that the location of an atom at the protein’s surface or

interior is an important factor in determining its B-factor. Consequently, it was decided to

investigate surface effects in more detail. The first feature considered was the exposure of an

amino acid’s atoms to the solvent. Exposure was measured as a normalised ratio of an amino

acid’s SASA in the protein to the SASA of the same amino acid in the same conformation

and surrounded by the backbone atoms of two sequentially adjacent amino acids. Initially,

only the normalised SASA ratios for individual alpha-carbon atoms were measured, but this

was found to be poor measure of surface exposure because not all surface amino acids have

an alpha-carbon in direct contact with the solvent. It was, therefore, necessary to calculate

the SASA of the whole amino acid even though only the B-factors of the alpha-carbons are

considered.

The relationship between normalised amino acid SASA and alpha-carbon B-factors is visual-

ised in figure 3.10. The general trend observed is an increase in the B-factor values as solvent

exposure increases. The simplest interpretation is that greater solvent exposure will mean

fewer contacts with neighbouring amino acids and, thus, greater conformational freedom. It

is also conceivable that the dynamics of the protein, when in direct contact with the solvent,

could be influenced by the motion of the solvent’s atoms through a “buffeting” action.

The effect of solvent exposure on B-factor values have been studied extensively. Carugo and

Argos (1997) interpreted the increase in mobility of amino acid side chains with increased

solvent exposure as being a consequence of the removal of restrictions that limit conformation

freedom in the tightly packed protein core. A strong correlation between solvent exposure

and B-factor values was observed in the α-helices of hemerythrins. The B-factor profiles of

these proteins exhibited a periodicity that coincided with that of the exposure of residues

in the external α-helices (Sheriff et al. 1985). However, the effect of solvent exposure on

B-factor values may be more difficult to pinpoint in the general case. An analysis by Zhang

et al. (2009) deduced that the solvent can exert a long range influence of the conformational

dynamics of a protein. Specifically, an alpha-carbon’s B-factor value can be affected by the

neighbouring amino acids’ exposure to the solvent.

There are other, equally feasible, explanations for the correlation between SASA and B-factor

values that are independent of a protein’s inherent conformational flexibility. The protein

surface may be more likely to exhibit static conformational variation as opposed to the

buried residues of the core. Atoms at the surface may also undergo greater displacements

as a consequence of whole protein rigid body librations as described by the Translation

Libration Screw (TLS) model (Schomaker and Trueblood 1968). It is also feasible that,

rather than being local effects, the protein-protein contacts of the crystal lattice may cause

perturbations affecting dynamics over a wide area of the protein surface.
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Figure 3.10: Boxplots of alpha-carbon B-factors grouped according to normalised SASA for the
amino acid. The bin width is 0.05 units except for the final bin (0.9 to 1.0). The proportions of all
outliers were less than 7% in each grouping except at 0.3 (7.2%).
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Calculating an amino acid SASA is a coarse metric of surface exposure. Therefore, the

alternative approach of measuring the depths of atoms from the protein surface was also

pursued. The relationship between atom depth and B-factors is the reciprocal to that ob-

served for amino acid SASA ratios (figure 3.11). The general trend can be explained with

similar arguments to those used when considering amino acid SASA. Interestingly, the iso-

tropic B-factor analysis by Sonavane et al. (2013) found that the mean normalised B-factor

values of alpha-carbons decreased by 0.1055 for every 0.5 Å from the protein surface. With

respect to median-mad normalised B-factors, the decrease in the median values of the box-

plots in figure 3.11 is approximately 0.13 for every 0.5 Å (estimated by linear regression).

However, due to the considerable degree of variation in the data, it is impossible to attach

much significance to this value.

It would be remiss not to discuss the limitations of the methodology as a reason for the high

variability observed when relating surface exposure to B-factor values. Of all the protein

properties investigated, surface exposure is the one attribute that cannot be quantified with

precision. The need to implement a customised version of the SASA algorithm meant that

complex structural features such as the presence of internal cavities were not accounted

for. Nonetheless, it can be argued that the algorithm used is adequate because none of the

proteins in this study are multi-subunit complexes which are more likely to form structures
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Figure 3.11: Boxplots of alpha-carbon B-factors grouped according to the atom’s distance from the
surface. The bin width is 0.5 Å. The proportions of all outliers were less than 6% in each grouping
except ≥7.0 Å (5.7-16.7%).
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with large internal channels or pockets. Although, measuring SASA to a high degree of

precision is desirable, it is more important that the SASA measurements account for the

protein-protein contacts across the crystal lattice.

Another source of error in the SASA calculations was the omission of any surface occlusion

effects from the non-protein molecules in the crystal. Although large ligands and cofactors

were excluded, small organic molecules and salts were present in some structures. The pro-

teins may have also been tightly bound to ion cofactors such as zinc, cadmium, iron or

copper. Despite being a source of error, it would have been impractical to account for the

presence of every compound in the crystal and, in particular, in those cases where the mo-

lecules were only partially resolved or completely unresolved. The fact that only crystals

containing small non-protein compounds were permitted and that over 114 diverse proteins

were examined should mean that these oversights are insignificant in the overall analysis.

Furthermore, different compounds may affect protein dynamics in ways that are completely

independent of surface occlusion. For example, the influence of an ionic compound’s electro-

static interactions with the protein are likely to perturb dynamics to a greater extent than

any solvent shielding effects. Although an interesting area of research, a full consideration

of the effects of intermolecular forces is outside the scope of this work.
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Figure 3.12: Boxplots of alpha-carbon B-factors grouped according to the atoms’s distance to the
protein’s COM. The bin width is 1 Å except for the final bin (≥45 Å). The proportions of all outliers
were less than 7% in each grouping in the range 3–36 Å and up to 21% otherwise

0

4

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Distance to COM (angstrom)

N
or

m
al

is
ed

 B
−

fa
ct

or

Distance of the atom from the protein’s centre of mass

The relationship between B-factors and distance to the COM was investigated to determine

if there was a significant contribution to B-factor values from the movements of the protein

as a rigid body. In a simplified version of the TLS model, atomic displacements due to whole

protein librations (“rocking” movements) are assumed to be proportional to the square of

the distance of the atom to the protein’s COM (Kundu et al. 2002). This simple model is

not supported by the results (figure 3.12) since the B-factor values appear to tail-off rather

than increase quadratically as the distance to the COM increases.

Figure 3.12 reveals something about the shapes of the proteins in the data set. If all the

proteins are assumed to be approximately spherical with a uniform distribution of mass, then

the distance to the COM would be negatively correlated with surface depth. On the basis

of the previous results, B-factors would be expected to increase as the distance to the COM

increases. Not only do the results deviate from this hypothetical relationship, but the range

of distances to the COM are five-fold higher than those measured for surface depth. Hence,

the data set must exhibit a diversity of different protein shapes. This hypothesis was tested

by filtering the dataset to include only the most “spherical” proteins. A spherically shaped

protein was defined to be a structure where the standard deviation in the distances from the
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Figure 3.13: Boxplots of alpha-carbon B-factors grouped according to the atoms’s distance to the
protein’s COM for the most spherical proteins in the data set. The bin width is 1Å. The proportions
of all outliers were less than 8% in each grouping except for 1,18,23 and 25 Å at 16.7,8.2,10.0 and
20.0% respectively.
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COM to the atoms at the surface are less than 3.5 Å. Applying this condition selected only

31 from the 114 proteins of the data set. Arguably, the proteins selected are not particularly

spherical in shape, but this criteria filtered out the most irregularly shaped proteins whilst

still retaining a sufficient number for study. Repeating the analysis with these spherical

proteins gave a result that broadly supported the hypothesis. The maximum distance to the

COM was reduced from 45 Å to approximately 26 Å and a positive correlation was observed

between the distance to the COM and the B-factors (figure 3.13). Nevertheless, it would be

inappropriate to draw any definitive conclusions from such a small sample.

It is not possible to explain the relationship between the distance to the COM and B-factors

without a much more detailed analysis of the shapes of the proteins. Proteins consisting

of multiple domains would be expected to undergo rigid-body motions more complex than

simple librations. Furthermore, there would be no linear correlation between surface exposure

and distance from the COM for an irregularly shaped protein.
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Amino acid coordination number

The investigation into the effect of distance to the COM prompted a consideration of how the

shape and mass distribution in a protein might affect B-factor values. Shape is very difficult

to quantify, but density is easier to measure. Amino acid coordination number (Nishikawa

and Ooi 1980; Pollastri et al. 2002), also known as the contact number, was used as a simple

indicator of how closely amino acids were packed together.

Before calculating the coordination numbers, a suitable cutoff distance was sought. Ideally,

the cutoff distance should extend from each alpha-carbon atom to encompass only the alpha-

carbons of immediately adjacent amino acids. The cutoff distance was selected by analysing

the distribution of the inter-alpha-carbon distances over all the proteins of the data set.

All inter-alpha-carbon distances less than 20 Å were measured for each protein. Distances

were converted to frequencies using a bin size of 0.5 Å and expressed as normalised ratios by

dividing by the total number of distinct alpha-carbon pairings. The median ratio for each

distance increment was calculated and plotted (figure 3.14). Two maxima are apparent from

the graph. The first peak at 3.5–4 Å corresponds to the average distance between alpha-

carbons of sequentially adjacent amino acids. The second broader peak lying within the

range 5–8 Å was interpreted to be the range of distances between alpha-carbons of spatially

adjacent amino acids. Therefore, 8 Å was chosen as a suitable distance to calculate alpha-

carbon coordination numbers. Reassuringly, the cutoff was consistent with the results of a

similar analysis by Halle (2002), indicating that the structures are representative of proteins

in general.

The results of the coordination number analysis are shown in figure 3.15. There is a decrease

in the normalised alpha-carbon B-factor as the coordination number of the amino acids

increase. High coordination numbers indicate a tightly packed region of the protein and,

it is hypothesised that, the corresponding low B-factors are a direct consequence of limited

conformational freedom. Hindrance to movement could be a result of insufficient free space

or strong non-bonded interactions between other atoms in close proximity. Irrespective of the

mechanisms involved, the effect of coordination number will only impact protein dynamics

in terms of thermal fluctuations and local rigid body motion.

In this analysis, no consideration was made to the effect of the different amino acid types and

their relative sizes on coordination number. For example, a tightly packed group of aromatic

amino acids might have a lower alpha-carbon coordination number compared to a sparse

cluster of amino acids with less bulky side chains. This issue was addressed by recalculating

the coordination numbers using all neighbouring atoms over the same 8Å radius rather than

just alpha-carbons. The trend observed was the same (figure 3.16), suggesting that the

relationship between local packing density and B-factors is the same irrespective of how the

packing is measured. These findings are consistent with the theoretical Local Density Model

(LDM) proposed by Halle (2002) where isotropic B-factor values are governed by atomic
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Figure 3.14: Distribution of alpha-carbon to alpha-carbon distances for the maximum occupancy
protein structures of the dataset. Lower and upper quartiles are represented with error bars to
indicate the spread of proportions.
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Figure 3.15: Boxplots of alpha-carbon B-factors grouped according to the coordination number of
the amino acid.The proportions of all outliers were less than 6% in each grouping except at 3 (7.1%).
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Figure 3.16: Boxplots of alpha-carbon B-factors grouped according to the number of neighbouring
atoms. The proportions of all outliers were less than 6% in each grouping.
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packing densities within the crystal.

Although coordination number appears to be an ideal parameter to explain B-factor values,

there are potential shortcomings with measuring local density in this way. Surface amino

acids will always have low coordination numbers even when their side chains are internalised

and packed tightly together. A more rigorous treatment of surface amino acids would be

necessary to account for this effect.
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Effect of protein contacts

The protein-protein contacts of the crystal lattice must be taken into account if SASA

and coordination numbers are to be accurately calculated. This was the main reason the

structure of the crystal lattice was reconstructed in the analyses. Failure to do so would

have resulted in underestimating packing density and overestimating SASA in regions where

proteins interact. Despite the greater accuracy, calculations involving lattice symmetries

are more complex and computationally intensive than the equivalent calculations on single

isolated proteins. Consequently, it was questioned whether there is sufficient benefit in

reconstructing periodic unit cells when analysing B-factor data. In order to answer this

question, the calculations were repeated using only the crystals’ asymmetric units in the

absence of any lattice symmetries.

The effect of crystal contacts on the relationship between coordination number and B-factors

is shown in figure 3.17. The graph superimposes the B-factor profiles against coordination

number calculated for both crystal lattices and isolated proteins. The effect of protein-

protein contacts in the crystal is apparent from figure 3.17 where the B-factors of amino

acids with low coordination numbers (exposed residues at the surface) are much higher when

measured in the crystal lattice. Presumably, this effect is due to the incorrect assignment of

low coordination numbers to atoms close to protein-protein interaction sites. These atoms

would have less freedom in movement and, therefore, lower B-factors are to be expected.

However, the extent to which crystal contacts dampen B-factors values cannot be quantified

since there is no data for equivalent non-crystalline structures. Furthermore, due to the

high degree of variability in B-factor values across the dataset, any attempt to apply a

“correction factor” to estimate B-factor values in the absence of crystal contacts would be

highly unreliable.
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Figure 3.17: Effect of crystal contacts on coordination number. Median normalised alpha-carbon
B-factors plotted against coordination number for single proteins and proteins in the crystal. The
lower and upper quartiles are plotted as upward and downward pointing triangles respectively
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Table 3.4: Correlations between structural properties measured for proteins in the crystal lattice.
Spearman correlation coefficients calculated to 3 d.p. Equivalent correlation coefficients measured
for the isolated asymmetric units are in italics. Note: the distance to the COM is always measured
in an isolated protein.

SASA Depth COM distance Coord. Number

SASA 1.000 -0.675 0.386 -0.777
-0.693 -0.384 -0.697

Depth 1.000 -0.324 0.652
-0.327 0.593

COM distance 1.000 -0.383
-0.353

Coord. Number 1.000

3.4.5 Correlations between structural properties

The protein attributes measured in this study are not completely independent of one another.

Moving through the protein, from the surface to the interior, surface depth and coordination

number increase while distance to the COM and SASA decrease. Hence, positive correlation

is presumed between surface depth and coordination number and both quantities would be

expected to correlate negatively against solvent exposure and the distance to the COM. Cor-

relation coefficients were calculated between all the structural properties in order to expose

any redundancy in the analysis. Spearman’s method was used to calculate the correlations

since neither linear relationships nor normally distributed data can be assumed. The cal-

culations (table 3.4) are consistent with the expected relationships and, unsurprisingly, the

weakest correlations are those involving the distance to the COM which can be attributed

to the diversity of protein shapes discussed previously. A reasonable correlation between

coordination number and solvent exposure supports the assertion that coordination number,

and related measures, can be used as a computationally inexpensive estimate for solvent ex-

posure (Hamelryck 2005). From the perspective of structural bioinformatics, this has obvious

applications when approximating solvent exposure for proteins.

An unanticipated finding is the difference between the correlations for the properties meas-

ured in a crystal lattice compared to those measured for isolated proteins. These differences,

particularly those involving coordination number, highlight why it is important to consider

the lattice when analysing crystallographic data.
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3.4.6 Strategies to reduce the variation in B-factor data

The analysis discussed previously broadly supports the hypothesis that B-factors are in-

dicators of conformational variability within the crystal. However, contrary to what might

have been expected, high quality crystallographic data and fully accounting for crystal con-

tacts did not make it possible to derive quantitative relationships between B-factors and

the structural properties that correlate with conformational dynamics. B-factor values are

highly variable across the proteins in the data set and this makes it impossible to deduce

anything other than broad qualitative trends from the data. Subsequently, this led to an

investigation into strategies that could be employed to reduce the variability of the B-factor

data. The two approaches taken were: transforming the data with a mathematical function

and applying different normalisation techniques to standardise the B-factors of each protein.

Transforming B-factors

As has been commented previously, the spread of B-factor values is highly positively skewed.

The asymmetry is partly a consequence of the definition of isotropic B-factors as mean square

distances i.e., quadratic functions of atomic displacements (equation 1.1). It was therefore

logical to compensate for this effect by taking the square root of the B-factor. Applying

the square root transform to the data reduced the degree of skew, but the distribution still

remained positively skewed (skewness measure reduced from 3.021 to 1.922). Interestingly,

the skew can be reduced further by transforming the B-factor data with the natural logarithm

function (skewness measure at 1.185). However, unlike the square root, the natural logarithm

of a B-factor cannot be easily interpreted in terms of atomic fluctuations. Despite reducing

the skewness of the data set, neither the square root nor the natural logarithm appeared

to reduce the spread of B-factor values. Furthermore, the trends observed remained the

same irrespective of whether or not a transform was applied. As an example, figures 3.18a

and 3.18b are boxplots between B-factors and alpha-carbon coordination number when the

square root and natural logarithm are applied. A comparison between the transformed data

in figures 3.18a and 3.18b with the original data in figure 3.15 suggests that there is no

advantage in applying these transforms.

Normalising B-factors

It is feasible that the high level of variability in the B-factor data might be a consequence

of the differing conditions under which crystal structures were determined. The structures

have been derived from protein crystals across a range of different temperatures, pressures,

pH values and solvents. In addition, different laboratories will have used different equipment

and followed different methodologies to obtain, interpret and refine the crystallographic data.

In response, most, if not all, previous research on B-factors has attempted to standardise
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Figure 3.18: Boxplots of transformed alpha-carbon B-factors grouped according to the coordination
number of the amino acid
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(a) Square root transform. Proportion of outliers less than 6% in all groupings.
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(b) Natural logarithm transform. Proportion of outliers less than 5% in all groupings.
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the data by normalising the B-factors within each protein. Unfortunately, there is no clear

consensus on which normalisation techniques are the most successful at eliminating the

variability between structures.

In the absence of evidence from previous research, three widely used normalisation meth-

ods were compared to assess what effect, if any, normalisation would have on the B-factor

data. The three normalisation techniques compared were: mean-standard deviation (“z”-

normalisation); median-mad (z-normalization using robust statistics) and min-max scaling.

Full definitions of these normalisation methods are given in the methods section of this

chapter.

A simple metric was devised to quantify the extent to which normalisation reduced the

spread of B-factor values. The definition of this metric is given in equation 3.2 below:

Score =

∣∣∣median
{
Bnorm
dynamic

}
−median

{
Bnorm
rigid

}∣∣∣
max

[
mad

{
Bnorm
dynamic

}
,mad

{
Bnorm
rigid

}] (3.2)

where,

Bnorm
dynamic are the normalised B-factors of a subset of alpha-carbons in a region of the protein

expected to be conformationally dynamic.

Bnorm
rigid are the normalised B-factors of a sunset of alpha-carbons in a region of the protein

expected to be conformationally rigid.

The scores calculated using equation 3.2 should always be positive and, over all criteria

used to divide atoms into “dynamic” and “rigid” subsets, the normalisation method that

consistently scores highly will be the method that is most effective at standardising B-

factors. The rationale being that an optimal normalisation method should maximise the

difference between the average normalised B-factors of the most dynamic and rigid atoms

whilst minimising the spread of normalised B-factors for those two groups of atoms. Hence,

in the numerator of equation 3.2, the difference between the median normalised B-factors

should be large. Simultaneously, in the denominator, the maximum MAD across both sets

of normalised B-factors should be small. Robust measure of location (median) and spread

(MAD) are used to limit distortion from atypically high or low normalised B-factors.

The score defined by equation 3.2 is independent of the criteria used to define subsets of

alpha-carbon expected to be conformationally dynamic or rigid. Using the results described

previously, a number of different definitions of conformationally dynamic and rigid groups

of atoms were formulated. These definitions are summarised in table 3.5.

The results of calculating the scores defined by equation 3.2 for each of the three normal-
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Table 3.5: Criteria used to define dynamic and rigid groups of atoms

Atom subset criterion Conformationally dynamic Conformationally rigid

secondary structure unclassifiable extended β-structure

normalised amino acid SASA > 0.5 < 0.01

coordination number ≤ 5 ≥ 15

amino acid type aspartate tryptophan

isation methods are given in table 3.6. For comparison, the calculations included the scores

for B-factors that had not been normalised. In addition, a criterion that did not distinguish

between conformationally dynamic and rigid atoms was included as a control. This control

simply selected 5000 alpha-carbon atoms at random for the dynamic and rigid subsets and

would, therefore, always be expected to give a score close to zero. The table also includes

the results for the normalisation of B-factors that were transformed with the square root or

the natural logarithm functions. This was done for completeness as it is conceivable that a

combination of normalisation and data transformation may be the optimal solution.

The calculations in table 3.6 demonstrate that normalisation has an effect on reducing the

variability in the B-factor data. Irrespective of how the atoms were divided into dynamic and

rigid subsets, both mean-standard deviation and median-mad normalisation methods gave

scores that showed an improvement compared to when no normalisation was applied. There is

some evidence to suggest that median-mad normalisation offers a fractional improvement over

mean-standard deviation. However, since the underlying distributions for the metric scores

are unknown, it is impossible to confirm whether these differences are statistically significant.

Table 3.7 gives a rough indication of the level of “background noise” expected with the

calculations. In the case of mean-standard deviation and median-mad normalisation, these

values are comparable to the differences between the scores for these two methods in table 3.6.

Therefore, the effects of median-mad and mean-standard deviation normalisation appear to

be roughly equivalent. Min-max scaling, whilst improving the data slightly, does not appear

to eliminate inconsistencies in B-factor values as effectively as the other two methods. A

possible explanation is that min-max scaling is based on the assumption that the atoms

with the highest and lowest B-factors are equivalent in all protein structures. While this

may be a reasonable assumption when comparing proteins with a high degree of structural

similarity, it may not be appropriate for the diverse set of structures considered here. It

is also noteworthy that both median-mad and mean-standard deviation normalisations of

transformed B-factors show a slight improvement over the untransformed data. However,

because the normalisation scores for the raw and transformed B-factors are not strictly

comparable, it is impossible to say whether this is significant.

To confirm that normalisation is beneficial, the analysis was repeated using the raw B-factor
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Table 3.6: Comparing B-factor normalisation methods

Atom subset criterion transform Normalisation Score

secondary structure none none 0.6575
mean-sd 0.8897

extended β-structure: 5181 atoms median-mad 0.9346
unclassified structure : 4365 atoms min-max 0.8452

square root none 0.6826
mean-sd 0.9311
median-mad 0.9646
min-max 0.8880

natural log none 0.7159
mean-sd 0.9774
median-mad 0.9896
min-max 0.9350

solvent exposure none none 1.5117
mean-sd 2.0923

SASA > 0.5 : 1605 atoms median-mad 2.1816
SASA < 0.01 : 5643 atoms min-max 1.7912

square root none 1.6953
mean-sd 2.3715
median-mad 2.4625
min-max 2.0361

natural log none 1.9629
mean-sd 2.7344
median-mad 2.7939
min-max 2.3513

coordination number none none 1.8561
mean-sd 2.2594

≥ 15 : 1533 atoms median-mad 2.2663
≤ 5 : 538 atoms min-max 1.9514

square root none 2.1880
mean-sd 2.5895
median-mad 2.5970
min-max 2.2584

natural log none 2.5778
mean-sd 3.0203
median-mad 2.9764
min-max 2.7593

amino acid type none none 0.8227
mean-sd 0.8415

Aspartate : 1428 atoms median-mad 0.9133
Tryptophan : 360 atoms min-max 0.8733

square root none 0.8611
mean-sd 0.8969
median-mad 0.9365
min-max 0.9231

natural log none 0.9283
mean-sd 0.9520
median-mad 0.9697
min-max 0.9598
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Table 3.7: Comparing B-factor normalisation methods with random selections of atoms. The
random selection of 5000 atoms for the two groups was repeated 5 times. The score reported is the
mean of these 5 samples and the associated standard deviation.

transform Normalisation Score (mean ± sd)

none none 0.0279 ± 0.0125
mean-sd 0.0497 ± 0.0299
median-mad 0.0122 ± 0.0141
min-max 0.0374 ± 0.0233

square root none 0.0445 ± 0.0234
mean-sd 0.0399 ± 0.0424
median-mad 0.0210 ± 0.0109
min-max 0.0251 ± 0.0258

natural log none 0.0243 ± 0.0234
mean-sd 0.0291 ± 0.0114
median-mad 0.0125 ± 0.0191
min-max 0.0312 ± 0.0308

data. Figures 3.19 and 3.20 are the boxplots for raw B-factors against the distance to the

protein’s COM and surface. When compared to the normalised data in figures 3.12 and

3.11, normalisation has reduced some of the variability in the data. The relative sizes of the

interquartile ranges and boxplot “whiskers” are reduced when compared to the plots where no

normalisation has been applied. Furthermore, the trends observed appear to be clearer in the

normalised plots. A comparison between figures 3.12 and 3.19 for the COM distance analysis

provides a particularly striking example. Median normalised B-factors increase smoothly as

the distance to the COM increases while median B-factors in the non-normalised plot wildly

fluctuate once the distance to the COM exceeds 30 Å. In the case of surface depth, the

normalised boxplots clearly show a reduction in both the median and the spread of B-factor

values the deeper the atom is buried within the protein. This is consistent with the model

that atoms within the protein interior have less conformational freedom compared to those

near the surface. Although the non-normalised boxplot (figure 3.20) shows a reduction in

the median B-factor values as depth increases, the reduction in the spread in B-factor values

is less apparent.
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Figure 3.19: Boxplots of alpha-carbon B-factors grouped according to the atoms’s distance to the
protein’s COM. The bin width is 1 Å except for the final bin (≥ 45 Å). The proportions of all outliers
were less than 5% in each grouping in the range 3–42 Å and up to 20% otherwise

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Distance to COM (angstrom)

B
−

fa
ct

or
 (

an
gs

tr
om

 s
qu

ar
ed

)

105



Figure 3.20: Boxplots of alpha-carbon B-factors grouped according to the atom’s distance from the
surface. The bin width is 0.5 Å. The proportions of all outliers were less than 5% in each grouping
except ≥7.0 Å (5.6-16.7%).
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3.4.7 Effect of atom occupancy

All the results described so far have been derived from structures where all the atoms are

in their maximum occupancy positions. Interestingly, more than half of the structures in

the data set have been resolved with atoms in alternative conformations. This led to the

consideration of whether the results would be different if these other conformations were

examined. The analysis was repeated using structures where all atoms were in their minimum

occupancy positions. It was hoped that, by comparing these two “extremes” of conformation,

any differences due to the alternate locations would be apparent. Surprisingly, the analysis

of the minimum occupancy structures generated results that were almost identical to those of

the maximum occupancy structures. Figures 3.21a and 3.21b compare the results obtained

from the minimum and maximum occupancy structures with respect to SASA and alpha-

carbon coordination number.

The almost identical results obtained could be explained by the observation that, for the

majority of protein structures resolved with atoms in alternate locations, only a small pro-

portion of the overall structure is affected. Of the 77 proteins in more than one conformation,

the conformational variation in 55 (71%) of these proteins occurs in fewer than 10% of their

amino acids (see table 3.1). Nevertheless, even small changes to the orientations of a few side

chains at the protein’s surface could change which residues are exposed to or shielded from

the solvent. This explains the minor discrepancies between the minimum and maximum oc-

cupancy structures in the analysis of SASA (figure 3.21a) compared to the almost complete

agreement in the analysis of coordination number (figure 3.21b). It is not surprising that the

calculation of SASA is more sensitive to small variations in atom coordinates, particularly

when the atoms affected are likely to be the highly mobile side chains of residues at or near

to the protein’s surface.
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Figure 3.21: Comparison of the results of B-factor analysis when minimum and maximum occupancy
structures were used. The median B-factor calculated over each interval is plotted as a line. The
lower and upper quartiles are represented by upward and downward pointing triangles.
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3.4.8 Combining structural properties

The results described above show that there are weak correlations between B-factor values

and structural properties that are likely to influence the conformational variability. The rela-

tionships observed, however, are only very general and the trends cannot be easily quantified.

The high degree of variability inherent in the data set is apparent from the broad interquart-

ile ranges of the boxplots used to visualise the data (figures 3.8a to 3.15). It was speculated

that it might be possible to establish a more convincing connection between B-factor values

and conformational dynamics if, instead of considering each structural property in isolation,

the effect of all the properties in combination could be investigated. The assumption that

each structural property in isolation would give some indication of the underlying dynamics

of the protein may have been too simplistic. It is, perhaps, more likely that the dynamics

of a protein, and consequently atom B-factor values, are influenced by a complex interplay

between different structural factors.

Support Vector Machines (SVM) were employed to establish whether B-factor values could

be predicted from all the protein structural properties in combination. SVM are a machine

learning technique that can be used for both regression and classification tasks. Initially,

SVM were used for regression to predict alpha-carbon B-factor values given the amino acid

type; secondary structure; normalised SASA of the amino acid; distance to the protein

surface; distance to the protein’s COM; and coordination number within an 8Å radius for the

atom. The regression model was derived by training on a random selection of 75% of proteins

from the data set. The model was then tested by comparing the model’s predictions to the

experimentally determined B-factors for the remaining 25% of the proteins. The accuracy

of the SVM model was quantified by calculating the Pearson and Spearman correlation

coefficients between the predicted B-factor values and the experimental data. The process of

training and testing the SVM model was repeated five times using different randomly selected

sets of proteins to ensure that the results were not dependent on the choice of proteins used

for training or testing. The results are presented in table 3.8 for raw B-factor values and

B-factors normalised by the mean-standard deviation and median-mad methods.

Table 3.8: Correlation coefficients for five independent randomised SVM regression analyses of the
isotropic B-factor data set

Correlation coefficients

No Normalisation Mean-SD Median-MAD

Pearson Spearman Pearson Spearman Pearson Spearman

0.378 0.367 0.594 0.650 0.590 0.619

0.401 0.411 0.609 0.659 0.617 0.618

0.289 0.302 0.573 0.632 0.624 0.651

0.371 0.392 0.574 0.645 0.599 0.616

0.281 0.282 0.568 0.644 0.574 0.610

0.34 ± 0.06 0.35 ± 0.06 0.58 ± 0.02 0.65 ± 0.01 0.60 ± 0.02 0.62 ± 0.02 (mean ± SD)
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The most striking feature in table 3.8 is the difference between the results for raw B-factors

and B-factors that have been normalised. The benefit of applying normalisation is apparent

from the near doubling of the correlation coefficients when either mean-standard deviation

or median-mad normalisation is used. The difference between the correlation coefficients for

the normalised and raw B-factor data is statistically significant. Testing whether the dis-

tributions of correlation coefficients were equal using the Mann-Whitney test gave p < 0.01

for both Pearson and Spearman coefficients. Furthermore, regression performed equally well

irrespective of the choice of normalisation method. There were no statistically significant dif-

ferences between the distributions of correlation coefficients when comparing the results de-

rived from median-mad and mean-standard deviation normalised B-factors (Mann-Whitney

tests at p > 0.05).

The SVM analysis was repeated using only alpha-carbon coordination number as the in-

dependent variable. The results are given in table 3.9 and, interestingly, the accuracy of

the predictions appear to be close to that obtained when all the structural properties were

used in the analysis. These results suggest that, of all the structural properties considered,

atom packing density might have the greatest influence on determining B-factor values. An

attempt was made to find a minimal subset of structural properties that could be used

for B-factor predictions. Whilst the search was not exhaustive, alpha-carbon coordination

numbers always appeared to be the dominant variable.

Table 3.9: Correlation coefficients for five independent randomised SVM regression analyses of
median-mad normalised B-factors where the alpha-carbon coordination number is the only
independent variable.

Correlation coefficients

Pearson Spearman

0.522 0.519

0.449 0.492

0.507 0.511

0.479 0.513

0.498 0.521

0.49 ± 0.03 0.51 ± 0.01 (mean ± SD)

Although there appears to be some relationship between B-factor values and static struc-

tural properties of proteins, SVM regression cannot predict B-factor values with a high level

of precision. Subsequently, it was considered whether SVM might be more successful when

applied to the easier problem of classifying atoms as being either “flexible” or “rigid”. The

classification analysis was run identically to the regression analysis with the exception that

the alpha-carbon B-factor values were replaced with a label of “flexible” or “rigid”. Labels

were assigned by inspecting the normalised B-factor values and assigning the label of “flex-

ible” or “rigid” depending on whether the values were greater than or less than zero. A

normalised B-factor greater than zero indicated that an atom had a higher B-factor than
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Table 3.10: Percentage of atoms correctly classified as being “flexible” or “rigid” in five
independent randomised SVM classification analyses of the median-mad normalised B-factor data
set.

Choice of independent variables

All structural Alpha-carbon
properties coordination number

73.8% 69.3%
72.2% 67.8%
72.5% 69.1%
72.8% 67.1%
73.5% 69.0%

73 ± 0.7% 68 ± 1.0% (mean ± SD)

a typical atom of the structure and, thus, could be considered to be more “flexible”. Con-

versely, a normalised B-factor less than or equal to zero was indicative of a more “rigid”

atom. The results of five independent rounds of SVM classification are given in table 3.10

which presents the percentage of atoms in test sets whose labels were correctly predicted.

The table also includes the results when the SVM classification task was repeated using

alpha-carbon coordination number as the only independent variable. The results of the clas-

sification tasks in table 3.10 are not a great improvement over the results of the regression

analysis. Irrespective of the choice of independent variables, the SVM classifiers can only

predict “flexible” or “rigid” atoms with an accuracy of around 70% which means that there

is a significant proportion of atoms whose B-factors are not consistent with what might be

expected given the proteins’ structures.
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3.5 Methods

3.5.1 Deriving the protein data set

The set of protein X-rays structures used in the analysis was derived in a two stage process.

The first step queried the PDB using the RESTful web services of the Research Collaboratory

for Structural Bioinformatics (RCSB) website (September 2014). A query was submitted

in the form of XML that requested the PDB identifiers, resolutions and R-factors of all

experimental X-ray structures resolved to a maximum resolution of 1.5 Å. In addition, the

query limited the search to single chain proteins at least 50 residues in length and sharing

no more than 30% sequence homology. These criteria produced a list of 1591 candidate

proteins.

The second processing step screened the candidate proteins using more rigorous criteria than

were available through the web services. All structures were downloaded from the PDB FTP

repository and each PDB file was parsed to analyse the protein structure and the details of

the crystallographic experiment. Structures were excluded if any of the reported R-factors

were greater than 0.25 or if there were more than three consecutive unresolved residues. Any

inconsistencies between the sequence and structure of the protein, as specified by the SEQRES

and ATOM records, resulted in exclusion and only MSE was accepted as a modified residue.

Proteins complexed with large cofactors or ligands (defined as molecules with more than

10 resolved atoms) were also eliminated. Membrane proteins were discarded, as far as was

possible, on the basis of whether the PDB file contained the text “membrane” or “channel”

in the title or keyword meta-data. Structures that included any anisotropic displacement

data (ANISOU records) were also eliminated from this study to ensure that the structures had

been refined with isotropic B-factors.

3.5.2 Structural calculations

Minimum and maximum occupancy structures were derived for each protein in the data set

following the procedure described in the methods chapter. Each structure underwent two

rounds of processing. The first stage ran calculations on the asymmetric units, treating them

as isolated proteins. The second stage of processing reconstructed each protein crystal’s peri-

odic unit cell to recalculate properties such as SASA, coordination number and surface depth

that are affected by the structure of the crystal lattice. The results of all the calculations

were stored in a HyperSQL database (HSQL Development Group 2012) allowing for efficient

querying and reformatting of the data for subsequent statistical analysis and visualisation.

The structural processing software was implemented as a multi-threaded Java application in

order to make efficient use of computational resources and limit processing bottlenecks.

The results of the calculations were analysed using the scripts written in the programming
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language R (R Development Core Team 2008) which is optimised for statistical computation

and data visualisation. A Java program was developed to run queries against the database

and to output the results in a format that could be read by the R scripts. The program also

applied all post-processing operations to the data such as the normalisation and mathemat-

ical transformation of B-factor values.

3.5.3 B-factor normalisation methods

The reasoning behind normalisation is that it might correct for any variation in B-factor

values arising from the different conditions under which structures are determined. There-

fore, normalisation was applied to each structure individually and no attempt was made to

normalise the B-factors across all the proteins collectively. All normalisation techniques rely

on atoms being grouped into of sets the same “type”. Atoms were classified according to

their type as defined by the names of the atoms in the ATOM records of the PDB file. Branch

digits were ignored to ensure that similar atoms were made equivalent; for example, the two

gamma carbon atoms of valine (CG1 and CG2) were both considered to be the same. Care

was taken to account for white space in the atom names as not to confuse “SE ” (selenium)

with “ SE” (an epsilon sulphur).

Atoms where the coordinates had been assigned by the modelling software were not included

in the normalisation calculations. Atoms were also excluded if their B-factors could not be

normalised i.e., if all the atoms of a particular type had equal B-factors or where there was

only one atom of a particular type in the structure.

Mean-standard deviation (“z”) normalisation

The mean and population standard deviation were calculated for each atom type in the

structure and used to normalise the B-factors following the method of Carugo and Argos

(1997). For example, given a protein structure containing atoms of type X, the normalised

B-factors Bnorm
X,i of the ith atom of this type was calculated as:

Bnorm
X,i =

BX,i− < BX >

σpop(BX)
(3.3)

where BX,i is the raw B-factor and < BX > and σpop(BX) are the B-factor mean and

population standard deviation for all the atoms of type X in the structure.
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Median-mad normalisation

Median-mad normalisation is similar to mean-standard deviation normalisation but uses the

more robust statistics of the median and MAD as the measures of location and spread. The

normalised B-factors Bnorm
X,i of the ith atom of type X in a structure was calculated as:

Bnorm
X,i =

BX,i −median(BX)

mad(BX)
(3.4)

where BX,i is the raw B-factor and median(BX) and mad(BX) are the B-factor median and

MAD for all the atoms of type X in the structure.

Minimum-maximum normalisation

Unlike both the previous methods, minimum-maximum normalisation ensures that the B-

factors for all structures lie within the same interval. A linear scaling is applied so that the

lowest B-factor in the structure maps to a value of zero and the highest to one. This approach

is similar to the unitary normalisation employed by Schneider et al. (2014) who scaled the B-

factors of DNA and protein complexes to values in the range 1-100. The normalised B-factors

Bnorm
X,i of the ith atom of type X in a structure were therefore calculated as:

Bnorm
X,i =

BX,i −min(BX)

max(BX)−min(BX)
(3.5)

where BX,i is the raw B-factor and min(BX) and max(BX) are the minimum and maximum

B-factors values for the atoms of type X in the structure.

3.5.4 Machine learning using support vector machines

The implementation of the SVM regression and classification algorithms were provided by the

e1071 R package (Meyer et al. 2014) that incorporates the LIBSVM SVM library developed

by Chang and Lin (2011). The alpha-carbon B-factor data set required preprocessing to

convert the two non-numeric discrete variables (amino acid type and secondary structure

classification) into a suitable input format. Both variables were converted to binary vectors;

for example, the amino acid types of the alpha-carbon atoms were converted to twenty

element binary vectors. Each element of the vector took a value of either one (“true”) or

zero (“false”) to indicate which of the twenty standard amino acid types was assigned to the

atom. Thus, for each vector, only one element could take a value of one while all the other

elements were set to zero. Secondary structure classification was treated in exactly the same

way using eight element binary vectors to represent the seven DSSP secondary structure types

plus an unclassifiable/“random coil” category. The classification task applied an additional
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preprocessing step which replaced the B-factor values of the atoms with labels of “rigid” or

“flexible” . B-factor values were first normalised by the median-mad method described above

and then each atom was assigned one of the two labels. Atoms with normalised B-factors

greater than zero were labelled as being “flexible” while those with normalised B-factors

equal to or less than zero were labelled as “rigid”.

The tune.svm function of the e1071 package was used to find suitable values to use for

the SVM gamma and cost parameters. SVM were tuned using values for gamma and cost

over the range 10n for n = −4,−3, . . . , 3, 4 for a small number of proteins. This located an

optimal value for gamma within the range 0.001 to 0.1 and costs from 10 to 1000. Tuning was

then repeated using ten randomly selected proteins. The values of the cost parameter were

set to 0.1, 10, 100 or 1000 and the gamma values to 10−n for n = 2, 3 and 4. This process

was repeated five times to determine suitable values for the cost and gamma parameters.

The values chosen for the cost and gamma varied depending on the data set used. For the

raw B-factors, the optimal value for gamma was 0.01 and 10 for the cost. For median-mad

normalised data the gamma value was 0.001 with a cost of 1000. In the case of mean-standard

deviation normalisation, a gamma value of 0.01 and a cost of 100 was chosen. Nonetheless,

the choice of these parameters was not clear-cut, gamma values from 0.001 to 0.01 and costs

10 to 1000 all scored similarly under tuning.

The SVM models for both B-factor regression and classification tasks was derived using the

svm.model function of the e1071 package. Default parameters were chosen with the excep-

tion of the cost and gamma parameters and the option to normalise/scale the input data

when deriving the models. Scaling was not applicable to the binary vectors representing

amino acid type and secondary structure classification. The SVM models were derived by

training on a random selection of 75% of the proteins in the data set. Training with fewer

proteins gave models that performed poorly while increasing the size of the training set sig-

nificantly increased the computational time without any improvement in the accuracy of the

predictions. The choice of whether the SVM model generated could be used for regression or

classification was determined automatically by the svm.model function. Supplying numeric

B-factors produced a SVM model for regression and replacing the B-factor values with labels

gave a SVM model that could be used for classification.
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Chapter 4

Evaluating anisotropic B-factors as

indicators of a protein’s

conformational dynamics

4.1 Introduction

From the work described in chapter 3 of this thesis, it is not possible to establish a clear

relationship between isotropic B-factors and structural properties expected to correlate with

conformational flexibility. A plausible explanation could be that the isotropic model is

an inadequate description of the fluctuations of crystallographically equivalent atoms. In

contrast, the alternative anisotropic model may characterise the movements of atoms within

a crystal structure more realistically. Furthermore, since the anisotropic refinement of a

structure requires good quality crystallographic data at a very high resolution, AADPs may

be less susceptible to distortion from model error than isotropic B-factors. Therefore, the

analysis of chapter 3 was repeated using only high resolution protein structures that had been

refined anisotropically. Unlike isotropic B-factors, there are no examples in the literature

of recent analyses where AADP data has been related to static structural properties of

proteins. Most work relating to AADPs is in the context of validating theoretical models

of protein dynamics and, in particular, the harmonic atomic oscillations predicted by elastic

network models (Eyal et al. 2007; Kondrashov et al. 2007; Hafner and Zheng 2011). The

motivation for a classical analysis of AADPs was not only to fill a gap in the literature,

but to investigate whether AADPs might be more insightful and informative indicators of

conformational flexibility in protein crystals than isotropic B-factors.

Unlike the isotropic model, which is parametrised by a single variable, the anisotropic model

uses six parameters to characterise the fluctuations of atoms. Consequently, it is not possible
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to make a direct one-to-one comparison between isotropic B-factors and AADPs. Nonethe-

less, of the the six AADPs, three of these variables represent mean-square displacements

analogous to an isotropic B-factor.

4.2 Aim

The overarching aim of this study is to establish whether the conformational variability in a

protein crystal can be more accurately described by AADPs than isotropic B-factors. A set of

high resolution protein crystal structures resolved with AADPs will be analysed to investigate

whether there are any relationships between an atom’s AADPs and the environment in which

it is located in the crystal. The influence of amino acid type; secondary structure; depth

from the surface; exposure to the solvent and atom packing density will be considered. The

results from chapter 3 supported the assertion that these static structural properties were

correlates of conformational variability even though no quantitative relationships with B-

factor values could be formulated. It is therefore reasonable to assume that, if AADPs are a

more accurately model for the atomic displacements in a crystal, it will be easier to observe

the effect of protein crystal structure on conformational dynamics by analysing AADPs

rather than isotropic B-factors.

The analysis of AADPs will focus on measures of atomic mean-square displacements rather

than the variables that define the orientations of these movements. Although the asymmetry

in the direction of atomic movements is a significant feature of the anisotropic model, the

extent to which an atom moves is more important when considering conformational flexibility.

Moreover, when considering a structurally diverse collection of protein crystals, it would be

very difficult to determine how every structure should be orientated so that the directions of

atomic fluctuations could be meaningfully compared. The AADPs considered in this study

are:

• The three eigenvalues of the covariance matrices modelling the anisotropic movements

of atoms.

• The anisotropy ratio.

• The equivalent isotropic B-factor.

• The anisotropic volume.

The values of the three eigenvalues are equal to mean-square displacements of the atoms.

Specifically, the largest and smallest eigenvalues correspond to the mean-square deviations

in the directions of maximal and minimal displacement respectively. Therefore, a secondary

aim of this study will be to establish whether all three eigenvalues should be considered when

quantifying conformational dynamics, or whether just one value is sufficient; for example,
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the eigenvalue corresponding to the maximal deviations of an atom. In addition, three

measures derived from the eigenvalues will also be considered: the anisotropy ratio; the

“equivalent” isotropic B-factor and the anisotropic volume. Anisotropy is the ratio of the

smallest eigenvalue to the largest (equation 1.2) and measures the degree of asymmetry in

the movements of the atoms. The equivalent isotropic B-factor is derived from the mean

of the three eigenvalues (equation 1.4) while the anisotropic volume is the product of the

square roots of the three eigenvalues. Geometrically, the anisotropic volume is proportional

to the volume of the region of space where an atom is expected to found at any given level

of probability.

4.3 Hypothesis

The ADPs of protein structures refined anisotropically are more representative of the pro-

tein’s dynamics than the ADPs of structures refined isotropically. Analysing the relation-

ships between AADPs and the structural properties that influence protein conformational

variability should yield better quality results compared to isotropic B-factors.

4.4 Results and discussion

4.4.1 Deriving the protein data set

A set of high resolution protein crystal structures was derived following exactly the same

procedure that was used to obtain the protein data set described in chapter 3. The only

difference in methodology was the selection of structures that had been refined using an

anisotropic model for atomic fluctuations. Anisotropically refined structures were selected

by inspecting the atomic coordinate records of the PDB data files and excluding structures

that did not publish any AADP data. The higher resolution, and greater quality of the

structures refined anisotropically, allowed for stricter criteria when selecting structures to

include in the data set. The minimum resolution for the structures was reduced from 1.5 Å

to 1.2 Å and the maximum R indices from 0.25 to 0.2.

The initial query submitted to the PDB generated a list of 491 candidate proteins that

had been resolved to a resolution of 1.2 Å or higher. Subsequent filtering by the parsing

of PDB data files resulted in a final data set of 120 proteins which are summarised in 4.1.

Comparing table 4.1 to the summary data for the isotropic data set (table 3.1) reveals some

notable similarities and differences. Both sets of proteins have similar compositions in terms

of crystal structure with the three dominant space groups, P 21 21 21, P 1 21 1 and C 1 2 1,

occurring with approximately the same frequency. There are some significant differences in

terms of structure between the two sets of protein. The isotropic data set contains proteins
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that are, on average, longer by 20 amino acids and there is a higher proportion of all-

alpha proteins and mixed alpha-beta proteins. Moreover, the anisotropic data has a higher

proportion of proteins that cannot be easily categorised with respect to secondary structure

composition. As would be expected, the structures of the anisotropically resolved proteins are

at the upper limits of X-ray resolution with approximately a third of all structures resolved

at the sub-angstrom scale. As a direct consequence of the improved resolution, many more

residues in the anisotropically refined structures are modelled with alternate conformations.

Approximately 90% of all the anisotropically refined proteins are modelled with alternate

conformations in contrast to just under 60% for the isotropically refined structures. Most

strikingly, 17.5% of the proteins in the anisotropic data set have 20% or more of their amino

acids in more than one conformation while there are no isotropically refined structures that

have a similarly high proportion of residues in alternate conformations.
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Table 4.1: Summary of the protein structures resolved anisotropically.

Feature Number of proteins % of data set

Chain length 1

51− 99 30 25.0
100− 299 80 66.7
300− 532 10 8.3

Resolution
< 1.0Å 41 34.2
1.0− 1.2Å 79 65.8

Space Group
P 21 21 21 42 35.0
P 1 21 1 21 17.5
C 1 2 1 11 9.2
23 other space groups 2 46 38.3

Structural Classification 3

all-α (> 60% α and < 5% β) 8 6.7
mostly α-helix (> 60% α and > 5% β) 1 0.8
all-β (> 50% β and < 5% α) 8 6.7
mostly β-structure (> 50% β and > 5% α) 1 0.8
αβ proteins (15− 55% α and 10− 45% β) 54 45.0
others 48 40.0

Alternate conformations 4

0% 11 9.2
0− 10% 55 45.8
10− 20% 33 27.5
≥ 20% 21 17.5

1 Median length 146.5. The minimum and maximum are 51 and 532 respectively.
2 Twelve space groups are represented by a single structure.
3 Using the domain structural classification of Michie et al. (1996).
4 Measured as the proportion of amino acids resolved with alternate conformations. The highest

proportion is 27%.
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4.4.2 Initial choice of anisotropic atomic displacement parameter for ana-

lysis

The analysis of AADPs began by concentrating on the largest eigenvalue of the AADP

covariance matrix. As the largest eigenvalue, it was reasonable to assume that this parameter

might be the most suitable to highlight differences between atoms. Furthermore, focusing

the analysis on a single mean-square displacement parameter allowed for a direct comparison

with the previous work on isotropic B-factors. To simplify the nomenclature used to discuss

the AADPs analysed in this thesis, the following symbols will be used when referring to the

eigenvalues derived from the AADP covariance matrix UC (the ANISOU records of the PDB

files):

• The largest eigenvalue: λanisomax

• The “middle” eigenvalue: λanisomid

• The smallest eigenvalue: λanisomin

4.4.3 Assessing the quality of the data set

The quality of the structures in the data set was assessed following a similar procedure to

that described in chapter 3 for isotropic B-factors. The value of λanisomax was calculated for

every atom in the structure that had been refined with AADPs. The value of the atom’s

λanisomax was compared with the values for all the atoms of the same type in a 5 Å radius. The

atom was marked as an “outlier” if its λanisomax differed from the mean value by more than three

standard deviations. The percentage of all atoms with atypical “outlier” values for λanisomax was

calculated for each structure and the distribution across the data set is presented in figure

4.1. The maximum eigenvalue was chosen as the discriminatory variable when validating

the structures because this quantity represents the maximum anisotropic displacements of

atoms and would, therefore, reveal any discrepancies in the precision to which atoms in close

proximity have been resolved. As might be expected from a data set of high quality protein

structures, very few atom had been assigned atypical AADPs. The percentage of outlier

atoms was less than 1% for the majority of the structures in the dataset. Hence, the data

set of anisotropically refined structures is of comparable quality and self-consistency to the

set of isotropically refined structures.

4.4.4 Normalisation of AADP data

The investigation of isotropic B-factors in chapter 3 suggested that normalisation of B-factors

can eliminate some of the inconsistencies in the data. To test whether the same result held
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Figure 4.1: Distribution of outliers across the protein data set using λanisomax as the discriminatory
anisotropic atomic displacement parameter.The horizontal axis is the percentage of atoms in a crystal
structure that have “atypical” AADPs and is a continuous scale. The data is binned in intervals of
0.2%. For example, the first bar represents the number of structures in the data set with the smallest
percentages of “atypical” AADPs (between 0 and 0.2% of all the atoms in these structures have
“atypical” AADPs).
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for AADP, the effectiveness of different normalisation methods were analysed for alpha-

carbon λanisomax data (tables 4.2 and 4.3). Unexpectedly, the calculations gave very similar

results when compared to the isotropic B-factors (3.6). This is surprising because it suggests

that the value of λanisomax is no better than an isotropic B-factor at differentiating between

atoms expected to have the greatest and least conformational freedom within the structure.

Given the higher quality of anisotropically refined structures, and the more realistic model

for atomic displacements, it might have been expected that an atom’s λanisomax value would be

a far better indicator of its flexibility than the B-factor.

The similarities in the results also extends to the normalisation methods. As was seen with

the isotropic B-factor data, applying median-mad or mean-standard deviation normalisation

was beneficial. However, there is little to distinguish between the two normalisation methods.

Therefore, in all subsequent work, median-mad normalisation was applied to AADPs values.

Median-mad normalisation was selected over mean-standard deviation on the basis that it

uses “robust” statistics that are less sensitive to atypical data values. The analysis of isotropic

B-factors had showed that ADPs values can be highly variable with a high proportion of

“outliers”. It was hoped that, unlike mean-standard deviation normalisation, the median-

mad method would be less prone to distortion.
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Table 4.2: Comparing normalisation methods when applied to the largest eigenvalue of the AADP
covariance matrix.

Atom subset criterion Transform Normalisation Score

secondary structure none none 0.6545
mean-sd 0.8358

extended β-structure: 3999 atoms median-mad 0.8882
unclassified structure : 4908 atoms min-max 0.8126

square root none 0.6773
mean-sd 0.9136
median-mad 0.9167
min-max 0.8806

natural log none 0.7083
mean-sd 0.9772
median-mad 0.9628
min-max 0.9430

solvent exposure none none 1.7698
mean-sd 1.9990

SASA > 0.5 : 1178 atoms median-mad 2.0731
SASA < 0.01 : 4585 atoms min-max 1.7462

square root none 2.0191
mean-sd 2.3959
median-mad 2.4225
min-max 2.0687

natural log none 2.3381
mean-sd 2.8182
median-mad 2.8320
min-max 2.5268

coordination number none none 1.9191
mean-sd 2.1322

≥ 15 : 1405 atoms median-mad 2.0372
≤ 5 : 395 atoms min-max 2.0588

square root none 2.2526
mean-sd 2.6070
median-mad 2.4278
min-max 2.4929

natural log none 2.5940
mean-sd 3.2298
median-mad 2.8846
min-max 3.0918

amino acid type none none 0.6899
mean-sd 0.7616

Aspartate : 1219 atoms median-mad 0.8386
Tryptophan : 283 atoms min-max 0.6714

square root none 0.7175
mean-sd 0.8139
median-mad 0.8660
min-max 0.7588

natural log none 0.7568
mean-sd 0.8475
median-mad 0.8848
min-max 0.8087
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Table 4.3: Comparing AADP normalisation methods with random selections of atoms. The
random selection of 5000 atoms for the two groups was repeated 5 times. The score reported is the
mean of these 5 samples and the associated standard deviation.

Transform Normalisation Score (mean ± sd)

none none 0.0198 ± 0.0136
mean-sd 0.0283 ± 0.0175
median-mad 0.0135 ± 0.0146
min-max 0.0154 ± 0.0140

square root none 0.0445 ± 0.0261
mean-sd 0.0256 ± 0.0290
median-mad 0.0173 ± 0.0126
min-max 0.0322 ± 0.0162

natural log none 0.0338 ± 0.0161
mean-sd 0.0490 ± 0.0224
median-mad 0.0268 ± 0.0209
min-max 0.0318 ± 0.0380
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4.4.5 Distribution of alpha-carbon anisotropic atomic displacement para-

meters

The distribution of the median-mad normalised λanisomax for the alpha-carbons (figure 4.2) is

highly positively skewed (skewness measure 4.443). The high skew of the distribution is

partly a consequence of normalisation, which increased the skew from 3.935 for the non-

normalised data. The skew measured is higher than that for the isotropic B-factor dis-

tribution calculated in chapter 3 (skewness 1.825 non-normalised and 3.021 median-mad

normalised), and higher than the “equivalent” B-factors derived from the AADPs (skewness

3.752). The high skew might be explained by the anisotropic model. Atoms with highly

asymmetric movements will have far larger λanisomax values than atoms fluctuating more uni-

formly about their average positions. If the proportion of highly anisotropic atoms is small,

then their high λanisomax values will enhance the positive skew of the distribution. An attempt

to reduce the skewness of the data was made by taking the square root of λanisomax values before

normalisation. Applying the square root transform to the data reduced the degree of skew,

but the distribution still remained highly positively skewed (skewness measure 2.359). Fur-

thermore, applying a natural logarithm transform also failed to eliminate the skew (skewness

1.231).

It could be argued that the source of the skew in the distribution is due to the anisotropic

displacement data being “incomplete”. PDB files are not guaranteed to include anisotropic

displacement data for all the atoms in the structure. Furthermore, any atoms added by

the modelling software would also be excluded from the analysis. Nonetheless, since the

proportion of ‘missing” AADP values is small, the data set is likely to be representative of

the true distribution. There are 19717 alpha-carbon atoms in the data set of which only 207

(approximately 1%) lacked ANISOU PDB records. In addition, of these 207 atoms, 121 (58%)

were missing ANISOU records due to being unresolved by crystallography. These atoms are

likely to be located in the most mobile regions of a protein and would, consequently, be

expected lie to the far right of the distribution. Therefore, it is unlikely that the exclusion

of a small number of highly flexible atoms would result in significant changes to the shape

of the distribution.
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Figure 4.2: Distribution of normalised alpha-carbon λanisomax values for the maximum occupancy
structures.
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(a) Histogram of the median-mad normalised maximum eigenvalue
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(b) Cumulative frequency distribution for the median-mad normalised maximum eigenvalue
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4.4.6 Relating AADPs to static structural properties of proteins

The methodology employed chapter 3 was repeated to generate boxplots relating median-mad

normalised λanisomax values to the static structural properties of protein crystals. The results

of the analysis were very similar to those obtained for isotropic B-factors (see appendix A).

Alpha-carbons with the highest normalised λanisomax values were found in regions of the protein

crystals that would be expected to have the greatest conformational freedom. Typically,

atoms at or close to the surface of proteins; less densely packed together; and not held in

extended secondary structure had high λanisomax values.

The consistency in the results is reassuring and implies that the two data sets are represent-

ative of the proteins in general. The distributions of alpha-carbon to alpha-carbon distances

in both data sets gave 8 Å as the distance between an alpha-carbon and its immediate neigh-

bours. The occurrence of the same maximum alpha-carbon coordination number (23) and

distance to the surface (≈10 Å) in both data sets suggest that these may be structural limits

for single chain proteins.

Despite the general consensus in the results, there were some unexpected differences. In

the analysis of delta-carbons atom ADPs, amino acids classified with π-helical secondary

structure had the highest median normalised λanisomax values. In contrast, isotropic B-factors

of π-helical delta-carbons atoms have one of the lowest median values. This is unlikely to be

a statistical anomaly caused by small sample sizes as there are 103 and 85 π-helical delta-

carbon atoms in the isotropic and anisotropic data sets respectively. There could, however,

be differences between the proteins’ tertiary structures that account for this disparity.

Another possibly significant difference can be seen with the variation in ADP values as the

distance to the proteins’ COMs increases. In the isotropic data set, the trend is an increase in

B-factor value as the distance to the COM increases until a distance of approximately 20 Å is

reached where the values begin to plateau. In the anisotropic data set, normalised λanisomax also

show the same trend, but after approximately 30 Å the boxplots statistics fluctuate wildly. It

is possible that this can accounted for by differences between the structures of the proteins,

especially since the proteins of the isotropic data set are, on average, larger than those of the

anisotropic data set. In the isotropic data set there are 106 alpha-carbon atoms within the

35 Å bin and 28 at 40 Å. The sample sizes for the anisotropic data set are far smaller, with

only 17 atoms at 35 Å and 6 at 40 Å. Hence, with fewer atoms to sample at distances beyond

30 Å, the boxplot statistics calculated for the anisotropic data set may be unrepresentative.
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Figure 4.3: Plots of the median normalised alpha-carbon AADPs against amino acid coordination
number. The lower and upper quartiles are plotted as upward and downward pointing triangles
respectively. The five AADPs are: the maximum, middle and minimum anisotropic eigenvalues; the
equivalent B-factor; and the anisotropic volume.
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Consideration of other atomic displacement parameters

The analysis was repeated using different metrics for anisotropic atomic displacements. In

addition to the eigenvalues λanisomid and λanisomin , the “equivalent” B-factor and the anisotropic

volume were also examined. Unexpectedly, the same trends were observed between the

protein properties and the normalised AADPs irrespective of how the AADP was defined.

As an example, figure 4.3 superimposes the different median-mad normalised AADPs profiles

for coordination number. The most striking feature of these plots is the almost identical

shape of the different graphs and the similar variability of the data. This result is surprising

since, of all the AADPs considered, the maximum anisotropic mean-square displacement

(λanisomax ) might have been expected to be a considerably “better” indicator of conformational

variability.

Since there was nothing to distinguish between the different AADPs, it was natural to ask

whether there was any difference between the AADPs and isotropic B-factors. Figure 4.4

compares the effect of alpha-carbon coordination number on isotropic and anisotropic ADPs.

The median-mad normalised isotropic B-factors from the isotropically refined structures of

chapter 3 are plotted against normalised λanisomax and “equivalent” B-factors from the aniso-
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Figure 4.4: Plots of the median normalised alpha-carbon AADPs against amino acid coordination
number. The lower and upper quartiles are plotted as upward and downward pointing triangles
respectively. The three ADPs are: the isotropic B-factor, maximum anisotropic eigenvalue; and the
equivalent B-factor.
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tropically refined structures. Not only are the median ADPs values almost identical, but

there is a remarkable degree of consistency in the reduction of the spread of ADP values

as coordination number increases. The graph suggests that both anisotropic and isotropic

ADPs values reflect the reduction in conformational freedom caused by tighter amino acid

packing. Furthermore, contrary to what might have been expected, there is no evidence

that AADPs provide a more accurate measure of conformational flexibility than isotropic

B-factors.

The simplest explanation to account for the high degree of similarity could be that the

displacements of the majority of atoms are not particularly anisotropic. If the majority of

atoms refined anisotropically are near-isotropic then this may account for the almost identical

set of results. A plot of the distribution of anisotropy ratios (figure 4.5) clearly shows the

opposite to be true. Atoms whose fluctuations are approximately isotropic (anisotropy ratios

greater than 0.75) are a small proportion of the data set (17%) while the highly ellipsoidal

atoms (anisotropy ratios less than 0.5) represent a significant sub-population (39%).

To assess whether the degree of anisotropy is a useful measure in itself, the analysis was

repeated using the anisotropy ratio in place of ADPs. Unexpectedly, only extremely weak

relationships were observed between the anisotropy ratios and the structural properties of
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Figure 4.5: Histogram of the distribution of anisotropy ratios for the alpha-carbon of the maximum
occupancy structures.
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the proteins. Figure 4.6, relating anisotropy ratio to coordination number, is typical of the

results obtained. Looking at the only the median values, there is a trend of the displacements

becoming less ellipsoidal as coordination number increases. Presumably, this is due to the

greater packing density restricting movement equally in all directions. Nevertheless, when

the full distributions are considered, the alpha-carbon atoms are seen to exhibit a near full

range of anisotropy ratios irrespective of the coordination number. It could be argued that

only at the extremes does the packing density of the protein appear to have a significant

influence on the direction of movement. High anisotropy at coordination number two (an

unconstrained residue) might be explained by harmonic motion; for example, surface loops

or the terminal strands swinging back and forth in the cavities of the lattice. Ellipsoidal

displacements at very high packing densities are somewhat unexpected, but it might be a

consequence of the atoms being so tightly packed that movement is only possible in certain

directions.

A broad distribution of anisotropy ratios was also seen in the analysis by Eyal et al. (2007).

Interestingly, their study demonstrated a decrease in anisotropy between the alpha-carbons

of exposed (normalised SASA greater than 0.5) and buried (normalised SASA less than

0.1) residues. The corresponding results derived for this thesis are given in figure 4.7 and

augments their work to show that, with the exception of the most exposed residues, small

changes in SASA have negligible effects on anisotropy.

131



Figure 4.6: Boxplots of alpha-carbon anisotropy ratios grouped according to the coordination num-
ber of the amino acid. The proportion of outliers at values 20 and 21 are 25% and 20% respectively.
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Figure 4.7: Boxplots of alpha-carbon anisotropy ratios grouped according to the coordination
number of the amino acid. The proportions of outliers are less than 0.1% in all groupings.
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Figure 4.8: Plots of the median normalised maximum eigenvalues against coordination number for
spherical and ellipsoidal atomic fluctuations.The lower and upper quartiles are plotted as upward and
downward pointing triangles respectively. Spherical atomic fluctuations are defined as an anisotropy
ratio greater than 0.75 and for ellipsoidal fluctuations the ratio is less than 0.5.
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Although the anisotropy ratio was a poor indicator of conformational variability, it was

investigated whether the ratio could be used in conjunction with AADPs. Specifically, to

determine whether there was any difference between atoms with approximately spherical dis-

placements and those whose displacements are highly ellipsoidal. The analysis of normalised

λanisomax was repeated ignoring all alpha-carbon atoms except for those with either the most

spherical or ellipsoidal fluctuations (anisotropy ratios greater than 0.75 and less than 0.5 re-

spectively). Figure 4.8 superimposes the results for the most spherical and ellipsoidal ADPs

with respect to coordination number. Figure 4.8 is typical of the analysis as a whole in that

the same trends are observed irrespective of the degree of anisotropy. There are, however,

differences in the magnitudes of the λanisomax for these two subsets of atoms. In general, atoms

with the greatest displacements tend to be the most anisotropic.
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4.4.7 Combining structural properties

The relationship between AADP values and the structural properties of proteins in com-

bination was investigated with SVM following the same methods discussed in chapter 3.

Regression and classification analyses were repeated using both λanisomax and the equivalent

B-factors as the dependent variables. Tables 4.4 and 4.5 are the results of the regression

and classification experiments where all protein structural properties have been included as

SVM variables. Mann-Whitney tests revealed no statistically significant differences between

the Pearson correlation coefficients with λanisomax and the equivalent B-factor as the AADP.

The small improvement in Spearman correlation coefficients for the equivalent B-factors was,

however, significant (p < 0.05). Classification failed to differentiate between λanisomax and equi-

valent B-factors as the ADP that could be most accurately deduced from the static structural

properties of a protein (Mann Whitney p > 0.05).

The Mann-Whitney tests were repeated to compare the results of regression and classification

derived from the anisotropic equivalent B-factors and the median-mad normalised isotropic

B-factors of chapter 3 (tables 3.8 and 3.10). There was no statistically significant differences

between the Pearson correlation coefficients and results of the atom classification. The

difference between the Spearman correlation coefficients were significant (p < 0.05). In

terms of the hypothesis proposed at the beginning of the chapter, there is no compelling

evidence to suggest that “better” predictions of an atom’s conformational flexibility can be

made with anisotropic atomic displacement parameters compared to isotropic B-factors.

Table 4.4: Correlation coefficients for five independent randomised SVM regression analyses of the
anisotropic data set

Correlation coefficients

Max. eigenvalue Equivalent B-factor

Pearson Spearman Pearson Spearman

0.507 0.642 0.613 0.690

0.602 0.687 0.539 0.697

0.555 0.644 0.584 0.700

0.564 0.623 0.586 0.714

0.531 0.643 0.560 0.686

0.55 ± 0.04 0.65 ± 0.02 0.58 ± 0.03 0.70 ± 0.01 (mean ± SD)
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Table 4.5: Percentages for correct classifications in five independent randomised SVM
classification analyses of the anisotropic data set

Percentage correct classification

Max. eigenvalue Equivalent B-factor

72.6% 75.2%

75.9% 75.3%

72.8% 75.8%

74.8% 77.1%

75.0% 75.1%

74.2 ± 1.5% 75.7 ± 0.8% (mean ± SD)

The SVM experiments were repeated using only the alpha-carbon coordination number as

the independent variable to see if, like isotropic B-factors, AADP values are predominately

determined by packing density. The results of the regression and classification analyses are

presented in tables 4.6 and 4.7 respectively. Interestingly, the result are almost identical to

those presented in chapter 3 for isotropic B-factors. Although not able to predict AADP as

accurately as SVM incorporating all structural properties, analyses using only coordination

numbers achieve reasonable results.

Table 4.6: Correlation coefficients for five independent randomised SVM regression analyses of the
anisotropic data set where only the coordination number was used as an independent variable.

Correlation coefficients

Max. eigenvalue Equivalent B-factor

Pearson Spearman Pearson Spearman

0.444 0.498 0.549 0.564

0.483 0.542 0.504 0.554

0.480 0.520 0.527 0.556

0.504 0.516 0.480 0.577

0.458 0.514 0.495 0.561

0.47 ± 0.02 0.52 ± 0.02 0.51 ± 0.03 0.56 ± 0.01 (mean ± SD)

Table 4.7: Percentages for correct classifications in five independent randomised SVM classification
analyses of the anisotropic data set where only the coordination number is the independent variable.

Percentage correct classification

Max. eigenvalue Equivalent B-factor

68.4% 70.5%

67.5% 70.0%

69.2% 68.6%

67.2% 70.8%

68.0% 70.7%

68.1 ± 0.8% 70.1 ± 0.9% (mean ± SD)
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4.5 Methods

4.5.1 Deriving the protein data set

The protein data set was derived following the same procedures described in the methods

section of chapter 3 with a few minor adjustments. The initial query to the PDB only

retrieved crystal structures of resolution no lower than 1.2 Å rather than the 1.5 Å limit used

to derive the isotropic B-factor data set. The second processing that filtered the downloaded

PDB data files reduced the maximum permissible R indices for the structures from 0.25 to

0.2. In addition, anistropically refined structures were selected by discarding all PDB files

that had no ANISOU records associated with the atom coordinate data.

4.5.2 Processing anisotropic atomic displacement parameters

The six integer components: U11, U22, U33, U12, U13 and U23 that define the Cartesian

anisotropic displacements of atoms were parsed from the ANISOU records of the PDB files.

Each component was divided by 104 to convert to units of Å2 and then assembled to give

the covariance matrix UCas defined by equation 4.1. An example of an ANISOU record from

the PDB data file for the structure 1BKR (Bañuelos et al. 1998) is given in figure 4.9 and

equation 4.1.

Figure 4.9: An example of anisotropic atomic displacement parameters in a PDB data file. The
ATOM and associated ANISOU record for the alpha carbon of the second residue of protein 1BKR (a
domain from human beta-spectrin) (Bañuelos et al. 1998). The ANISOU record is annotated with
labels to show the ordering of the elements of the covariance matrix UC .

ATOM 2 CA LYS A 2 9.296 31.931 19.151 1.00 14.98 C

ANISOU 2 CA LYS A 2 2146 1770 1774 -296 -458 -279 C

U11 U22 U33 U12 U13 U23

UC =

 U11 U12 U13

U12 U22 U23

U13 U23 U33

 = 10−4

 2146 −296 −458

−296 1770 −279

−458 −279 1774

 (4.1)

=

 < (∆x)2 > < ∆x∆y > < ∆x∆z >

< ∆x∆y > < (∆y)2 > < ∆y∆z >

< ∆x∆z > < ∆y∆z > < (∆z)2 >

 (compare with equation 1.2)

All three eigenvalues of UCwere calculated and the eigenvalues sorted in descending order

of magnitude. The first and last eigenvalues, corresponding to the maximum and minimum
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mean-square displacements in the directions of the orthogonal axes, were used to calculate

the anisotropy ratio as defined in equation 1.3.
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Chapter 5

Simple models of atomic

displacement in protein crystals

5.1 Introduction

The analysis of chapters 3 and 4 suggest that ADP values do reflect the conformational

variability of atoms within protein crystal structures. However, only very general qualitative

relationships could be established between ADPs and static structural properties of proteins.

A possible explanation is that, despite using high quality crystallographic data, there was

still a high level of “noise” in the ADP data. Atomic displacements may only be a partial

determiner of ADP values and factors unrelated to conformational variability, such as crystal

defects or experimental and modelling errors, may have a significant influence.

An alternative explanation for the failure to observe clear relationships between an atom’s

ADP value and its location within a protein’s structure could be that no such relationships

exist. It may not be possible to formulate a model that adequately predicts ADP values

in terms of simple measurements derived from protein crystal structures. If ADPs reflect

atomic motion then, perhaps, an approach that explicitly models the equilibrium dynamics

of protein crystals may be necessary. The work in chapters 3 and 4 point towards packing

density (alpha-carbon coordination number) being a dominant influence on ADP values. In

conjunction, the trends, albeit weak, between ADP values and the distances to the protein

surface and COM suggest that a more rigorous consideration of the shapes of proteins may

be required. As a starting point, the question of whether the ADP values of the protein data

sets could be explained by modelling the crystals as a simple ENMs was explored.

ENMs were considered to be appropriate models for protein crystals because the theory

underlying ENMs is based on the same assumptions that are employed in crystallographic

refinement. An ENM assumes that the protein’s conformation has achieved a state of equi-
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librium. The protein’s tertiary structure is essentially fixed, and all atomic motion is reduced

to simple harmonic oscillations about the atoms’ average positions. Conceptually, an ENM

can be visualised as a coarse “bead and spring” model of a protein. Structural elements of

the protein are represented by beads and are connected by springs modelling the combined

inter and intra-molecular interactions. Typically, ENMs model proteins with one bead per

amino acid. However, coarser representations are possible with individual domains represen-

ted by one or more beads. At the other extreme, ENMs can model the interactions between

each individual atom where the ENM becomes equivalent to the application of NMA to an

all atom MD force field.

Figure 5.1 is a visualisation of an elastic network for the crystal of the “lasso” peptide 3NJW

(Nar et al. 2010). The peptide is not one of the proteins analysed in this thesis, but is used

as an example because its small size makes it clearer to see the individual “beads” and

“springs”. Each amino acid is represented by a spherical bead centred on the amino acids’

alpha-carbons. The springs are represented by blue lines and two beads are connected by a

spring if their centres are within 8 Å of one another. The lattice contains multiple repeats of

the unit cell and corresponding chains within the unit cells are shaded with the same colour

to emphasise the symmetry of the crystal. For clarity, the whole structure has been rotated

to view the crystal along one lattice axis. Figure 5.1 illustrates both the inter and intra-

molecular interactions modelled by the ENM. Although the majority of the interactions are

between beads within the same peptide, there are also interactions between adjacent peptides

that hold the lattice together.
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Figure 5.1: Visualisation of the elastic network model for the “lasso” peptide 3NJW (Nar et al.
2010).

ENM were constructed at the amino acid scale because atomic scale models would have

been too demanding in terms of both time and computational resources. Furthermore,

using amino acid “beads” in an ENM allows for a straight-forward comparison with the

alpha-carbon ADP data derived in chapters 3 and 4. Following convention, an ENM is

constructed with amino acid beads centred at the coordinates of the alpha-carbons in the

crystal structure. As the structure moves, the mean-square displacements of the beads

about their equilibrium positions will be proportional to the values of the alpha-carbon

ADPs in the original crystal structure. In addition, constraints can be applied to the ENM

that correspond to the assumptions made during crystallographic refinement. A Gaussian

Network Model (GNM) (Tirion 1996; Bahar et al. 1997; Haliloglu et al. 1997) is a form of

ENM where the displacements of the beads are isotropic and, therefore, the mean-square

displacements correspond to isotropic B-factors. The Anisotropic Network Model (ANM)

(Doruker et al. 2000; Atilgan et al. 2001) lifts the restriction of isotropic displacements

allowing free movement in all directions. The mean-square displacements of the beads of an

ANM correspond to the AADPs of crystal structures refined anisotropically.
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5.2 Aim

The aim of this study is to compare the ADP of high resolution crystal structures to the

predictions of ENMs. GNMs will be used to calculate mean-square displacements that can

be compared to the isotropic B-factors of the proteins analysed in chapter 3. The anisotropic

“equivalent” B-factors (Bequiv
iso ) of the proteins analysed in chapter 4 will be compared to the

mean-square displacements calculated by ANMs.

5.3 Hypothesis

An ENM is expected to be a reasonable approximation for the equilibrium dynamics of a

protein crystal. Isotropic B-factors should correlate with the mean-square displacements

predicted by GNMs of protein crystals. Similarly, anisotropic equivalent B-factors would be

expected to correlate well with the predictions of ANMs.

5.4 Results and discussion

5.4.1 Gaussian network models

GNMs were constructed and isotropic B-factors estimated for all the proteins analysed in

chapter 3. Two GNMs were derived for each protein: a model of the isolated protein and

a model of the crystal lattice. The models of the single proteins were derived using the

structures of the crystallographic asymmetric units. The GNM of the crystal lattices were

derived by reconstructing the crystallographic unit cell and assigning connections between

amino acids consistent with the periodicity of the crystal lattice. A cutoff distance of 8 Å was

used when assigning connections between amino acids. This distance was chosen because,

as confirmed by the work in chapters 3 and 4, the distance between an alpha-carbon and its

immediate neighbours is within a range of 3–8 Å. For simplicity, the interactions between

connected amino acids were all modelled as springs with identical elasticity constants.

The agreement between the GNMs and the experimental data was quantified by calculating

Spearman correlation coefficients between the alpha-carbon isotropic B-factors published in

the PDB files and the mean-square displacements for the amino acid beads predicted by the

model. The non-parametric Spearman method for calculating correlation coefficients was

used in preference over the Pearson method because, from the analysis of B-factor data in

previous chapters, the data is unlikely to meet the criteria of being both normally distributed

and homoscedastic. The calculations of the correlation coefficients did not include alpha-

carbons for which there was no experimental data. All mean-square displacements derived

from atoms that had been added by modelling software were omitted.
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Figure 5.2: Distribution of the Spearman correlation coefficients between the predictions of GNMs
and experimentally determined isotropic B-factors.
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Figure 5.2 plots the distribution of Spearman correlation coefficients between experimental

isotropic B-factors and the predictions of the GNM for the protein crystal lattices. The

distribution shows a broad range of correlation values. The GNMs predict the isotropic

B-factors of some proteins almost perfectly while others show a very poor correspondence.

On average, there is a weak correlation between the experimental data and the predictions

of the GNMs. The mean Spearman correlation coefficient is 0.589 with a standard deviation

of 0.131.

Unexpectedly, the results for the GNMs derived for the asymmetric units of the proteins

are almost identical to the results for the crystal lattices. The mean correlation coefficient

for the single proteins is 0.569 with a standard deviation of 0.149. A paired Mann-Whitney

test showed no statistically significant differences between the mean-square displacements

calculated for the crystal lattices and those derived for single proteins (p > 0.1). Therefore,

for the GNM, the influence of lattice structure and the contacts between proteins has a

negligible influence on equilibrium dynamics. The comparison between GNMs for single and

lattice proteins is visualised in figure 5.3. Most points in the scatter plot follow the central

dashed line, highlighting that the correlation coefficient calculated for a protein in isolation

is usually very similar to the calculation when the protein is a component of a crystal lattice.
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Figure 5.3: Scatter plot of the Spearman correlation coefficients between the predictions of GNMs
and experimentally determined isotropic B-factors for GNMs of single proteins and proteins in the
unit cell. The dotted line indicates the points where the correlation coefficients are equal
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5.4.2 Anisotropic network models

ANMs were constructed analogously to GNMs using the data set of crystallographic struc-

tures refined anisotropically described in chapter 4. ANMs for both single proteins and

crystal lattices were constructed using the same 8 Å cutoff distance between amino acids

and an elasticity constant of unity. Whilst it is usually recommended to apply a longer

cutoff distance when building an ANM, the ANMs were constructed using the same cutoff

as for the GNMs to allow for a direct comparison between the two types of ENM. It was

not possible to derive an ANM model for one of the proteins of the data set because the size

of the resulting Kirchhoff matrix for the unit cell was too large to diagonalise. This protein

was excluded from the analysis. The predictions of the ANMs were compared to experiment

by calculating Spearman correlation coefficients between Bequiv
iso derived from the ANMs to

the alpha-carbon B-factors published in the structures’ PDB files. As discussed in chapter

4, the majority of alpha-carbon atoms in the data set had been refined anisotropically and,

therefore, most B-factors published in the PDB files would be Bequiv
iso values derived from

AADPs. This assertion was tested and it was confirmed that, with the exception of two

structures, all the B-factors agreed with the their corresponding Bequiv
iso value to at least one

decimal place. In the case of the two exceptions, the B-factors and Bequiv
iso values agreed but

with a lower degree of precision (all B-factors and Bequiv
iso values differed by less than 0.5).

Figure 5.4 plots the distribution of Spearman correlation coefficients between experimental

B-factors and the “equivalent” B-factors derived from ANMs of crystal lattices. The mean

correlation coefficient is 0.640 with a standard deviation of 0.147. In comparison, the mean

correlation coefficient between predicted and experimental B-factors for single proteins is

lower at 0.564 (standard deviation of 0.157). Interestingly, unlike GNMs, a paired Mann-

Whitney test showed that the differences between the correlation coefficients for single pro-

teins and crystal lattices were statistically significant (p < 10−5). This difference is apparent

from the scatter plot of the correlation coefficients for single proteins against those calculated

for crystal lattices (figure 5.5). In figure 5.5, many points lie above the dashed line indicating

that the predictions of the ANM are more accurate when the structure of the crystal lattice

is accounted for.
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Figure 5.4: Distribution of the Spearman correlation coefficients between the predictions of ANMs
and experimentally determined isotropic B-factors.
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Figure 5.5: Scatter plot of the Spearman correlation coefficients between the predictions of ANMs
and experimentally determined isotropic B-factors for ANMs of single proteins and proteins in the
unit cell. The dotted line indicates the points where the correlation coefficients are equal
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Table 5.1: Summary statistics for the Spearman correlation coefficients calculated between
experimental B-factors and the predictions of Gaussian and anisotropic elastic network models for
the data set of anisotropically refined structures.

Single proteins Crystal lattices
Elastic Network mean±sd median±mad mean±sd median±mad

ANM 0.564±0.157 0.583±0.108 0.640±0.147 0.663±0.082
GNM 0.610±0.151 0.641±0.077 0.634±0.116 0.658±0.073

Paired Mann-Whitney tests with a significance level p < 0.05:

1 Statistically significant differences between single proteins and crystal lattices for the ANM.

2 No statistically significant differences between single proteins and crystal lattices for the GNM.

3 Statistically significant differences between GNM and ANM for single proteins.

4 No statistically significant differences between GNM and ANM for crystal lattices proteins.

The mean correlation coefficient for the ANMs of crystal lattices is higher than the mean

correlation coefficient achieved with GNMs of the data set of isotropically refined proteins

(0.640 compared to 0.589). To investigate whether an ANM is a better model of equilib-

rium dynamics than a GNM, GNMs were derived for the data set of anisotropically refined

structures. Unexpectedly, the predictions of the GNM were comparable to those of the

ANMs. The mean Spearman correlation coefficient between experiment and B-factors de-

rived from GNMs of crystal lattices is 0.634 with a standard deviation of 0.116. A paired

Mann-Whitney test between the predictions of the GNM and ANM for the crystal lattices

did not identify any statistically significant differences (p = 0.0741). The GNM of the single

proteins, however, performed significantly better than the corresponding ANMs with a mean

correlation coefficient of 0.610 and standard deviation of 0.151 (Mann-Whitney p < 10−5).

These statistics are summarised in table 5.1.

The results of the comparison between the Gaussian and anisotropic elastic network models

for the anisotropically refined structures are interesting for two reasons. Firstly, for crystal

lattices, the more sophisticated ANM does not generate significantly better predictions for

B-factors when compared to the GNM. Secondly, the structure of the crystal lattice appears

to be important for an ANM but less so in the case of the GNM. The insensitivity of a GNM

to lattice structure could be explained by the fact that it is a more constrained model than

an ANM. A GNM imposes restrictions on both the extent and direction of an amino acid’s

displacement from its equilibrium position. An ANM relaxes the limits on the direction of

movement, allowing for asymmetrical displacements. Therefore, because a GNM is a more

constrained system, the sparse protein-protein interactions across the crystal lattice may have

a lesser influence on the dynamics compared to the more numerous interactions between an

amino acid and its immediate neighbours. In contrast, due to fewer constraints, the dynamics

of an ANM may be more sensitive to the effects of lattice structure. This may explain why

longer cutofff distances are usually employed when modelling proteins with ANMs compared

to GNM (Atilgan et al. 2001; Riccardi et al. 2009). Extending cutoff distances generates a
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network with more extensive interactions and, in a sense, imposes more structural “order”

on the system. Perhaps, in the case of crystal lattices, long cutoff distances for ANMs are

not necessary because the periodicity and symmetry of the lattice will restrict the dynamics

of the proteins.
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5.5 Methods

5.5.1 Creating Gaussian network models

GNMs were derived for the set of crystal structures analysed in chapter 3. All structures

were complete and the coordinates for all atoms were in maximum occupancy locations. All

atoms were removed from the structures except for the alpha-carbons. The coordinates of

the alpha-carbons were used as the locations of the amino acid “beads” in the GNMs. The

structure of the crystallographic unit cells were reconstructed by applying the symmetry

operations defined in the PDB files. A virtual “spring” connected two amino acid beads if

the distance between the alpha-carbons was less than 8Å.

The structure of a GNM was encoded as a Kirchhoff matrix (Bahar et al. 1997; Haliloglu

et al. 1997):

K =


k1,1 k1,2 . . . k1,N

k2,1 k2,2 . . . k2,N
...

...
. . .

...

kN,1 kN,2 . . . kN,N

 (5.1)

The elements ki,j encode the connectivity between amino acids i and j. Amino acids are

numbered sequentially following the order of the protein primary structure. The numbering

is contiguous across the multiple chains of the unit cells. Therefore, for a unit cell containing

m chains of length n, the amino acids indices run consecutively from 1 to N = m× n.

The values of the elements ki,j are set using the following rule:

ki,j =


−1 if i 6= j and the amino acids are within the cutoff distance

0 if i 6= j and the amino acids are outside the cutoff distance

si if i = j

(5.2)

where si is a positive integer such that all rows and columns of the Kirchhoff matrix sum to

zero i.e.,

si = −
N∑

j=1,j 6=i
ki,j

The periodicity of the crystal lattices was taken into account when determining the con-

nectivity between amino acids.

Isotropic B-factors were estimated by calculating the mean-square displacements for each

amino acid within the unit cells. The Kirchhoff matrix of a GNM is proportional to the

Hessian matrix modelling the simple harmonic dynamics of network. The mean-square
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displacements of the amino acids were calculated exactly through diagonalisation of the

Kirchhoff matrix and its inversion to obtain a covariance matrix for atomic displacements

(Bahar et al. 1997; Haliloglu et al. 1997).

Let Kirchhoff matrix K be diagonalised in the form K = UΛUT where U is the orthogonal

matrix of eigenvectors and Λ a diagonal matrix of eigenvalues. Then, the inverse matrix was

calculated as K−1 = UΛ−1UT . Strictly speaking, the Kirchhoff matrix is non-invertible since

it has at least one zero eigenvalue due to the degeneracy of the GNM; however, diagonalisation

allows for the calculation of the elements of the “inverse” Kichhoff matrix.

The mean-square displacements of the amino acids in the unit cell were calculated using the

relationship:

< |∆rk|2 > ∝
1

γ

N∑
i=1

1

λi
[uiui

T ]k,k for all λi 6= 0 (5.3)

where < |∆rk|2 > is the mean-square displacement of the kth amino acid.

γ is the spring constant for the network.

λi is the ith eigenvalue of the Kirchhoff matrix.

ui is the eigenvector corresponding to eigenvalue λi.

[uiui
T ]k,k is the kth element on the leading diagonal of the matrix

resulting from the product of the ith eigenvector with its

transpose.

For convenience, the spring constant γ was set to 1 for all GNMs

5.5.2 Creating anisotropic network models

ANMs were derived for the set of crystal structures analysed in chapter 4. The same prepro-

cessing steps used for GNMs were followed to create unit cell structures of alpha-carbons.

The virtual “springs” connecting two amino acid beads used the same 8Å cutoff distance.

However, unlike GNMs, ANMs define multiple springs between amino acids. In combination,

the springs model the direction dependent oscillations of the atoms about their equilibrium

positions.

For a unit cell of N amino acids, the Hessian matrix modelling the dynamics is a 3N × 3N

matrix. Amino acids are indexed following the same convention used for GNMs, but the

rows and columns of the Hessian matrix now account for three Cartesian variables for each

amino acid.

The Hessian matrix of an anisotropic ENM can be visualised as the concatenation of 3

sub-matrices each of which describe the interactions between two amino acids. If Hi,j is a

sub-matrix for the interactions between amino acids i and j, then the Hessian matrix for the

network, H, is given by (Atilgan et al. 2001):
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H =


H1,1 H1,2 . . . H1,N

H2,1 H2,2 . . . H2,N

...
...

. . .
...

HN,1 HN,2 . . . HN,N

 (5.4)

For i 6= j, the elements of the sub-matrices Hi,j are calculated from the Cartesian coordinates

for the two amino acids. For two amino acids separated by a distance greater than the 8Å

cutoff, the sub-matrix Hi,j is a zero matrix representing no interaction. Otherwise, if the

coordinates of amino acids i and j are (xi, yi, zi) and (xj , yj , zj) respectively, then

Hi,j =
−γ
d2

 hx,x hx,y hx,z

hy,x hy,y hy,z

hz,x hz,y hz,z

 (5.5)

where

hx,x = (xi − xj)2

hy,y = (yi − yj)2

hz,z = (zi − zj)2

hx,y = hy,x = (xi − xj)(yi − yj)

hx,z = hz,x = (xi − xj)(zi − zj)

hy,z = hz,y = (yi − yj)(zi − zj)

d2 = (xi − xj)2 + (yi − yj)2 + (zi − zj)2

γ is the spring constant for the network (set to 1)

The elements of the sub-matrices Hi,j where i = j are set, analogous to a GNM, to values that

ensure that all the sub-matrices of each row and column of the Hessian matrix H (equation

5.4) sum to give zero matrices. Thus,

Hi,i = −
N∑

j=1,j 6=i
Hi,j (5.6)

The Cartesian covariance matrix describing mean-square anisotropic displacements of each

amino acid is derived by inverting the Hessian matrix H following a similar methodology to

that used for GNMs. Hence, the elements of the inverse Hessian matrix H−1 are given by
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the equation:

H−1[a, b] =

3N∑
c=1

1

λc
[ucuc

T ]a,b for all λc 6= 0 (5.7)

where H−1[a, b] is the element at row a and column b of the inverse Hessian

matrix H−1.
λc is the cth eigenvalue of the Hessian matrix H.

uc is the eigenvector corresponding to eigenvalue λc.

[ucuc
T ]a,b is the the element at row a and column b of the matrix

resulting from the product of the cth eigenvector with its

transpose.

Like the original Hessian matrix H, the inverse Hessian H−1 can be viewed as the concaten-

ation of 3 sub-matrices. Each of these sub-matrices is a covariance matrix for the anisotropic

displacements of the amino acids in the unit cell. The Cartesian covariance matrices giving

the anisotropic mean-square displacements for each amino acid about its equilibrium position

are the sub-matrices running along the leading diagonal of the inverse Hessian.

H−1 =


H−11,1 H−11,2 . . . H−11,N

H−12,1 H−12,2 . . . H−12,N
...

...
. . .

...

H−1N,1 H−1N,2 . . . H−1N,N

 (5.8)

Thus, the Cartesian covariance matrix for the anisotropic displacements of the kth amino

acid of the unit cell, UCk , is given by the sub-matrix H−1k,k of the inverse Hessian. The

equivalent B-factor for the amino acid is calculated from the trace of the matrix UCk as given

in equation 1.4 in chapter 1.
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Chapter 6

Using isotropic B-factor data to

validate molecular dynamics force

fields

6.1 Introduction

The accumulated evidence from previous chapters points towards ADPs being unreliable in-

dicators of proteins conformational dynamics. One possible cause for the this inaccuracy may

be a high level of background “noise” associated with ADP data. As discussed previously,

ADPs can be influenced by factors unrelated to the movements of atoms. It was, perhaps,

incorrect to assume that, by only considering high quality atomic resolution structures, ADP

values would be predominantly determined by conformational dynamics. The high degree

of variability in the data suggests otherwise. Even in the highest quality crystal structures,

the dynamical component to ADP values appears to be buried under a layer of noise.

It was considered whether it might be possible to eliminate the noise associated with ADP

data. It would be reasonable to assume that the noise would be random and unlikely to

be the result of systemic errors common to all crystallographic experiments. Therefore, by

averaging the ADP data over multiple determinations of the same crystal structure, it may

be possible to derive consensus ADP values that better reflect protein dynamics. In contrast

to the strategy of previous chapters, where diverse collections of single crystal structures

were analysed, the focus of the research switched to the small number of proteins for which

multiple crystal structures have been published.

A equally valid criticism of the previous analysis is whether the methods chosen to measure

conformational variability are sufficiently accurate. In chapters 3 and 4, static structural

features were assumed to be correlates of protein flexibility while, in chapter 5, proteins were
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reduced to very simplistic elastic network models. It could be argued that these approaches

are too coarse to adequately account for all the subtle effects that may influences protein

dynamics. In particular, accurate modelling of the chemical structure of proteins and the

interactions between the proteins and the water and ions that permeate the crystal. An

all-atomistic MD simulation is one method for modelling the dynamics of a protein crystal

that could account for all these different factors. Therefore, by running MD simulations

of protein crystals it may be possible to generate estimates for ADPs that align closely

with the protein’s consensus (averaged) ADP profile. Furthermore, if MD simulations are

found to be consistent with consensus ADP profiles, then this suggests a new method to

validate MD force fields. Assuming a protein’s consensus ADP profile is a true reflection of

its dynamics, the MD force field that most closely reproduces the profile is the force field

that most realistically models protein molecules.

6.2 Aim

The initial aim will be to identify those proteins in the PDB whose structures have been

determined multiple times. Averaging the ADPs data for a protein should reveal whether

a consensus exists or if ADPs are simply complex error terms with little relation to the

protein’s dynamics. If consensus ADP profiles can be established for the proteins, then these

profiles will be compared to atomic fluctuation measurements derived from MD simulations

of crystals. Repeating the simulations using different MD force fields may reveal which force

fields most accurately model protein dynamics.

6.3 Hypothesis

Averaging ADP data over multiple independent crystal structures of the same protein will

eliminate much of the “error” that obscures the relationship between protein conformational

flexibility and ADP values. Consensus ADP profiles should correlate with the atomic fluctu-

ations predicted by MD simulations of protein crystals. The strength of the correlation will

reflect how well the force field models protein chemistry. ADP estimates from simulations

using modern force fields such as CHARMM and AMBER would be expected to correlate

more strongly than those that use older force fields such as All Atom Optimised Potentials

for Liquid Simulations (OPLS-AA).
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Table 6.1: Details of the clusters of X-ray structures sharing more than 95% sequence homology.

Number of Example
structures PDB Id Description

521 1VSP Lysozyme C (hen egg white lysozyme)
494 164L T4 lysozyme
469 3MGO Beta-2-microglobulin and its complexes
265 1HR0 Prokaryotic ribosomal subunits1

239 2SPO Myoglobin
238 4J67 Pancreatic ribonuclease
225 3HV5 Mitogen-activated protein (MAP) kinase
218 2PWR HIV-1 protease1

215 1YHR Haemoglobin1

209 1STN Staphylococcal nuclease
203 3JYT HIV-1 reverse transcriptase
200 1LHL Human lysozyme
195 4NVC Cytochrome c peroxidase
181 1XW7 Insulin1

137 3T10 Heat shock protein HSP 90-alpha
129 4L79 Calmodulin and its complexes
125 3TMP Ubiquitin and its complexes
123 3TLI Thermolysin
120 2I4J Peroxisome proliferator-activated receptor gamma
114 2VH5 H-ras GTPase and its complexes
113 3MVD Histone-DNA complexes
111 5CPP Cytochrome P450
108 3F3V Proto-oncogene tyrosine-protein kinase Src
100 3K7A Eukaryotic RNA polymerase II subunits

1 Multiple clusters identified for these proteins. Only the largest cluster is reported.

6.4 Results and discussion

6.4.1 Analysis of PDB clusters

The PDB generates statistics on the sequence homology of all protein structures deposited.

These statistics are published in the form of a report listing all clusters of NMR and X-ray

structures sharing 95% or more sequence homology. This cluster data was used to identify

proteins for which a large number of X-ray structures were available. A summary of all the

clusters identified containing 100 or more X-ray structures is given in table 6.1.

Subsequent analysis of these structures assessed the quality and the degree of similarity

between the structures in each cluster. Crystals of single proteins were favoured over large

macromolecular assemblies to ensure consistency between the protein-protein and protein-

nucleic acid interactions across the cluster. Ribosomal subunits, calmodulin, ubiquitin, beta-

2-microglobulin, histone complexes and RNA polymerase were, therefore, discounted from
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subsequent analysis. For the same reason, clusters were subdivided according to the crystals’

space groups to eliminate variability in lattice structures. Differences between the sequences

of the proteins in each cluster were determined through comparisons with a reference struc-

ture of the wild-type protein. Structures were discarded from the clusters if the sequences

deviated from the reference by more than a few engineered substitution mutations. Where

possible, structures containing large ligands were excluded from the analysis. However, in

certain cases, ligands were permitted where there was consistency across the structures; for

example, all myoglobin structures contained the same haem prosthetic group.

It was not possible to establish a global set of criteria to assess the degree of consistency

between structures. Each cluster varied in the number, degree of sequence similarity and

quality of its structures. Slightly different filtering criteria were, therefore, applied to each

cluster to ensure a sufficient number of structures were retained. Nonetheless, it was not

always possible to find the required level of agreement between the structures in every cluster.

Clusters were discounted if fewer than ten similar structures could be found. The lack of

consistency between structures is the reason that HIV-1 reverse transcriptase; peroxisome

proliferator-activated receptor gamma; mitogen-activated protein kinase and proto-oncogene

tyrosine-protein kinase Src were excluded from further analysis. Table 6.2 summarises the

analysis of the clusters of crystal structures and lists the proteins for which reasonable

numbers of similar structures could be identified.
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Table 6.2: Summary of the clusters of X-ray structures after selecting structures sharing a high
degree of similarity.

Space Number of Reference
Description group structures PDB Id

Hen egg white lysozyme (lysozyme C) P 43 21 2 252 1HEL

Max. 2 substitutions

T4 Lysozyme P 32 2 1 76 3LZM

Max. 2 substitutions

Human Lysozyme P 21 21 21 150 1LZ1

Max. 2 substitutions

Staphylococcal nuclease P 41 30 1STN

Max. 2 substitutions

Pancreatic ribonuclease (Bos taurus) P 1 21 1 21 1KF5

Max. 2 substitutions

Pancreatic ribonuclease (Bos taurus) P 32 2 1 54 1KF5

Max. 2 substitutions

Cytochrome c peroxidase (Saccharomyces cerevisiae) P 21 21 21 22 2CYP

Max. 5 substitutions. Includes haem.

Cytochrome P450 (Pseudomonas putida) P 21 21 21 14 2ZAX

Max. 2 substitutions. Includes haem and camphor.

Sperm whale myoglobin P 1 21 1 55 1SWM

Max. 2 substitutions. Includes haem.

Sperm whale myoglobin P 6 100 1MLO

Max. 4 substitutions. Includes haem.

Human haemoglobin P 21 21 2 54 3HHB

Max. 4 substitutions. Includes haem.

Human insulin H 3 35 1TRZ

Max. 2 substitutions.

Thermolysin (Bacillus thermoproteolyticus) P 61 2 2 82 3FB0

Max. 2 substitutions. Includes large ligands.

Human heat shock protein 90 I 2 2 2 31 3T0H

Max. 2 substitutions. Includes large ligands.

HIV-1 protease P 21 21 21 31 1HPX

Max. 6 substitutions. Includes large ligands.

Human HRas GTPase H 3 2 35 2RGE

Max. 2 substitutions. Includes large ligands.
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Figure 6.1: Consensus alpha-carbon B-factor profile for hen egg white lysozyme
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6.4.2 Consensus B-factor profiles for PDB clusters

The structures in each of the clusters listed in table 6.2 vary in resolution and crystallo-

graphic quality and, consequently, only a small proportion of the structures are resolved

with AADPs. Therefore, only isotropic B-factors, or the “equivalent” B-factors in the case

of anisotropically refined atoms, are considered when averaging ADPs over the cluster. Fig-

ure 6.1 plots the profile of the median-mad normalised B-factors for the alpha-carbon atoms

of the hen egg white lysozyme structures. The median normalised B-factor values are plot-

ted as a solid line; the interquartile range as a grey ribbon and the minimum and maximum

values are represented by dotted lines. The figure shows that, although there is a high degree

of variability in B-factor values across the set of structures, a consensus exists. The median

normalised B-factors trace a definite profile within a narrow interquartile range. This con-

firms that the B-factors are consistent across all the structures in the cluster. If there was

no agreement between the structures, and B-factors were error terms independent of the

protein’s structure, then the graph plotted in 6.1 would be very different. Instead of plotting

a defined profile, the median B-factors would be close to a straight line, flanked either side

by a broad interquartile range.

Graphs of normalised alpha-carbon B-factor profiles for the other clusters of table 6.2 are

included in appendix B. Although containing fewer crystal structures than hen egg white

lysozyme, all the other proteins give similar results. When averaged over a number of
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crystal structures, consensus B-factor profiles exist. Therefore, B-factor values appear to be

structure dependent and not catch-all error terms of the crystallographic refinement process.

Despite being dictated by the composition of the PDB, there is diversity across the clusters

investigated. A consideration of the differences between the proteins and their crystal struc-

tures hints at some of the factors that might influence the B-factors. Six of the clusters

represent the crystal structures of single chain proteins in the absence of large ligands. As

might be expected, clear consensus B-factor profiles emerge for the three lysozymes, staphyl-

ococcal nuclease and ribonuclease. However, even for these “ideal” proteins, there are outlier

alpha-carbon B-factors that deviate significantly from the consensus. A logical explanation

for these outliers is that they are caused by perturbations to the protein’s structure arising

from protein engineering or changes to the phyiscochemical properties of the crystals. This

is to be expected, since the primary motivation for a researcher to repeat a crystallographic

experiment is to explore how protein conformation is changed by mutation or physicochem-

ical effects. In addition, as has already been discussed in previous chapters, B-factor data is

inherently “noisy” and the presence of outliers is to be expected. Thus, only by averaging

B-factor data over a number of independently determined crystal structure can atypical

B-factor values be eliminated to reveal the underlying trends.

The majority of the crystal structures studied contain cofactors or other large ligands bound

to the protein. Interestingly, the presence of these large organic molecules does not appear

to cause major perturbations to the consensus B-factor profiles. In the case of haemoglobin,

myoglobin and cytochrome c, all the structures within the cluster share common prosthetic

groups bound at the same sites to the proteins. It is, therefore, not surprising to observe

a high degree of consistency in the B-factor profiles. In contrast, in crystal structures such

as HIV-1 protease, HRas GTPase and thermolysin, the proteins are bound to a disparate

collection of ligands. It is somewhat unexpected that these proteins also show consensus B-

factor profiles. A possible explanation is that, despite the ligands being structurally different

they may be functionally equivalent; that is, they bind to the same target sites in the proteins

and interact with the proteins in similar ways. For example, many of the ligands in the

structures of HIV-1 protease are potential drug candidates that target the enzyme’s active

site.

Another notable feature of the data set is the effect of space group on the B-factor profile.

Whilst most clusters fall into single space groups, the crystal structures of ribonuclease

and myoglobin are split across two space groups. In the case of both ribonuclease and

myoglobin, there are differences between the consensus B-factor profiles for the two space

groups. Figure 6.2 superimposes the consensus B-factors profiles for the two space groups

of both proteins to illustrate the extent to which the profiles deviate. In figure 6.2, most of

the peaks and troughs occur at the same locations in the structure indicating a broad level

of agreement between the profiles for the two space groups. However, there are differences

in the relative heights of the peaks between the profiles. These deviations suggests that
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the structure of the crystal lattice is an important factor in determining B-factor values.

The effect of space group could be attributed to differing protein-protein interactions or,

perhaps, steric effects that give certain regions of the protein more or less conformational

freedom depending on how the proteins are arranged in the crystal. These observations are

supported by the weak positive correlation coefficients calculated between the space group

profiles (table 6.3a). Interestingly, the differences observed for the myoglobin profiles are

similar to those discussed by Kondrashov et al. (2008) who compared single high resolution

myoglobin strucures in different space groups.

The consensus profiles of insulin, haemoglobin and HIV-1 protease also point towards the

crystal lattice having a subtle influence on B-factor values. The asymmetric units for all of

these proteins are multimeric, composed of multiple copies of chains with the same primary

sequence. However, despite having identical sequences and very similar tertiary structures,

the consensus profiles for crystallographically different copies of the same chain show de-

viations from one another. As an example, figure 6.3 superimposes the consensus profiles

for the two copies of the alpha and beta chains of haemoglobin. Table 6.3b presents the

correlation coefficients calculated for the two copies of the same chain in each cluster of

structures. As seen previously when comparing different space groups, the two profiles for

the same chain do not coincide exactly. This suggests that identical chains may exhibit the

same underlying conformational dynamics modulated by the structure of the crystal lattice.

The only exception is insulin’s “A” chain where there is no agreement between the B-factor

profiles. The small size of the “A” chain (21 amino acids) may offer an explanation for this

discrepancy. The “A” chain is essentially a peptide and, therefore, its conformation and

dynamics may be far more susceptible to influence by the local crystal environment. The

two copies of the “A” chain are crystallographically different and, consequently, experience

different intermolecular interactions.
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Figure 6.2: Superimposition of the consensus alpha carbon B-factor profiles for crystals of the same
protein in two different space groups.
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Table 6.3: Correlation coefficients for the B-factor profiles of protein chains with the same primary
structure but crystallographically different structures

(a) Profiles for the same protein in different space groups

Correlation coefficient
Protein profiles Pearson Spearman

Ribonuclease (P 1 21 1 and P 32 2 1) 0.575 0.618
Myoglobin ( P 1 21 1 and P 6) 0.663 0.417

(b) Profiles for crystallographically different versions of the same chain in the asymmetric unit

Correlation coefficient
Protein profiles Pearson Spearman

HIV-1 protease 0.698 0.736
Insulin “A” chain -0.120 -0.165
Insulin “B” chain 0.690 0.900
Haemoglobin alpha chain 0.643 0.665
Haemoglobin beta chain 0.848 0.743
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Figure 6.3: Superimposition of the consensus alpha-carbon B-factor profiles for the two alpha and
beta chains of haemoglobin.
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6.4.3 Molecular dynamics simulations

Having established that consensus B-factors can be derived for crystal structures, the next

logical step was to investigate whether these profiles reflect the conformational dynamics

of the proteins within the crystals. A decision was made to model the crystals with MD

simulations since MD is generally accepted as one of the most accurate computational tech-

niques for investigating protein motion at the atomic scale. Rather than attempt to simulate

all the crystal structures discussed previously, the research focused on the simplest crystal

structures. These are the crystals where the unit cells are primarily composed of water and

multiple copies of a single protein chain. The five proteins modelled were: hen egg white lyso-

zyme, human lysozyme, T4 lysozyme, staphylococcal nuclease and pancreatic ribonuclease.

From the two most common space groups for ribonuclease crystals, P 1211 was selected be-

cause the unit cell contained fewer proteins and was, therefore, less computationally intensive

to model.

Proteins bound to cofactors or large ligands were not modelled because deriving correct

MD topologies and force field parameterisations for the ligands would be an additional layer

of complexity. The development of topologies and parameter sets for proteins and water

molecules is more mature than those derived for other organic molecules and metal ions. As

a result, it was assumed that models of protein-only crystals would be more reliable than

models of crystals where proteins are complexed with ligands. Insulin was not chosen for a

combination of reasons. Despite being a small protein, the hexagonal symmetry of insulin’s

space group, H 3, generates a larger unit cell compared to the other proteins, and would,

therefore, be far more computationally demanding to simulate. In addition, a key feature

of the structure of insulin crystals is the coordination with zinc ions (Smith et al. 1984;

Smith, Pangborn et al. 2003; Dunn 2005). Organometallic interactions are not typically

parameterised by MD force fields and, therefore, there is no guarantee that the effects of

zinc coordination would be correctly incorporated into the model.

Crystals were simulated by reconstructing the arrangement of proteins in the unit cell and

setting the simulation box to be equivalent to the parallelepiped that describes the unit cell.

With periodic boundary conditions duplicating the unit cell in all directions, the simulation

system models an infinitely large crystal lattice. The only other components of the simulation

system were water molecules and chloride ions. The water and ions were added randomly

to fill the cavities in the crystal and were not positioned according to known locations in

the reference crystal structures. It could be argued that this would affect the accuracy of

the simulation, but the solvent is rarely fully resolved by crystallography, so there would be

insufficient information to model these molecules exactly. Furthermore, the salt composition

of the simulations differs from the real crystals since MD can only model a protein in a fixed

ionisation state and, by default, assumes the protein is in an aqueous environment at neutral

pH. Ions were only added to neutralise the net charge of the system rather than attempt
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Table 6.4: Composition of the simulation “boxes” representing the unit cells of protein crystals.
The amount of water is an approximation since the number of water molecules varied for each
simulation. The number of water molecules used with united atom force fields are higher compared
to all-atom force fields and are, therefore, listed separately.

Number of molecules
Water Chloride

Protein crystal Proteins all-atom united-atom ions

Hen egg white lysozyme 8 2800 3300 64
Human lysozyme 4 1200 1500 32

T4 lysozyme 6 5400 6000 48
Staphylococcal nuclease 4 1950 2300 32
Ribonuclease (P 1 21 1) 2 770 880 8

to model the ionic strength of the solvent. While the models of the crystals are arguably

simplistic, the arrangement of proteins across the crystal lattice was accurately represented.

Table 6.4 outlines the composition of the unit cells simulated for each protein crystal. As an

example, figure 6.4 is a visualisation of the periodic unit cell box constructed for a hen egg

white lysozyme simulation.

All simulations were run under the NVT ensemble at a constant temperature of 300 K.

Pressure coupling was not applied in the simulations because this would have scaled the

dimensions of the simulation boxes and, consequently, altered the structure of the crystal

lattice. It was felt that it was more important to maintain a fixed lattice structure than

attempt to account for atmospheric pressure. Although some crystallographic experiments

are performed at room temperature, many are performed at cryogenic temperatures. A

simulation temperature of 300 K would, therefore, seem unrealistic but is necessary when

running standard MD simulations. MD force fields and topologies are parameterised to

model molecules under standard physicochemical conditions and are, therefore, unlikely to

reproduce cryogenic behaviour accurately.

Comparing MD simulations to B-factor profiles

Mean Square Fluctuation (MSF) was calculated for the movements of all the alpha-carbon

atoms in the MD simulations of the crystal structures. The MSF of an atom should be

directly proportional to its isotropic B-factor, assuming that isotropic B-factors measure the

fluctuations of atoms about their average positions in a crystal structure. Prior to calculating

MSFs, the protein chains were aligned to eliminate the effects of rigid body movements. Thus,

the MSF values calculated for the alpha-carbons should only measure protein conformational

flexibility as simulated by MD. Although it has been argued that B-factors may reflect

the rigid body movements of the protein in a crystal, this thesis did not to attempt to

incorporate any rigid body motion in the MD calculations. Simply calculating MSF without

alignment would not be appropriate. The process of crystallographic refinement is more
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Figure 6.4: Visualisation of the periodic simulation box used to model the unit cell of a hen egg
white lysozyme crystal

sophisticated than obtaining a set of average coordinates for atoms and their mean square

deviations. Refinement generates feasible models for a structure under the constraints of

protein chemistry and bond geometry. Furthermore, in the case of proteins whose structures

have already been determined, existing structures may be used as a basis for formulating

the the model. Therefore, atomic MSFs from an aligned MD trajectory are, perhaps, not

so dissimilar from the isotropic B-factors derived from modern crystallographic refinement

techniques.

In calculating MSF, it was assumed that the duration of the MD trajectory was sufficient to

sample the equilibrium dynamics of the proteins. Preliminary experiments varied the number

of simulations steps in order to determine an appropriate value to use for the production

simulations. Too few steps would give inaccurate results while too many steps would be

unnecessarily wasteful of computational resources. Figure 6.5 illustrates the reasoning behind

the decision to limit the production simulations to 200 ns. MSF profiles for the alpha-carbon

of one chain in a simulation of a human lysozyme crystal are plotted after 50 ns, 100 ns, 150 ns

and 200 ns of simulation time. The plots show convergence in the shapes of the profiles after

150 ns suggesting that 200 ns is a reasonable end point for the simulations.

Calculation of the alpha-carbon MSF profiles revealed differences between the chains in the

models of the unit cells. Figure 6.6a superimposes the MSF profiles for the four chains in the

unit cell of human lysozyme over a 200 ns MD simulation. The models of the unit cells were
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Figure 6.5: Alpha carbon MSF plots for one chain in an Amber99SB-ILDN MD simulation of a
human lysozyme crystal. Profiles are calculated for simulations of the protein’s dynamics over 50 ns,
100 ns, 150 ns and 200 ns.
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constructed so that all the proteins made identical contacts with one another. Asymmetry

was, however, introduced with the addition of water and chloride ions into the system. Thus,

each protein will experience slightly different intermolecular interactions which may account

for the differences in the dynamics. It is interesting to note that there is agreement in the

shapes of the MSF profiles; that is, all show peaks and troughs in the same regions of the

structure. All chains may share the same intrinsic dynamics as a consequence of their near

identical tertiary structures. The differences between the MSF profiles could be the result of

slightly different local environments in which the chains are situated. Figure 6.6b combines

the MSF profiles over the four chains to highlight the common features.
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Figure 6.6: Alpha-carbon MSF plots for the four chains in an Amber99SB-ILDN MD simulation of
a human lysozyme crystal.

(a) MSF profiles for the four individual chains.
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(b) Summary of the MSF profiles. The grey ribbon represents the full range of MSF values. The
solid and dotted lines plot the median and mean MSF values respectively.
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Table 6.5: Pearson and Spearman correlation coefficients between alpha-carbon MSF values and
crystallographic B-factors. The MSF value of an alpha-carbon is the median value over all the chains
in a 200 ns simulation of the model of the unit cell. The B-factor of an alpha-carbon is the median
median-mad normalised B-factor over the cluster of crystal structures collated for the protein.

Correlation coefficient
Protein Force field Pearson Spearman

Hen egg white lysozyme Amber99SB-ILDN 0.638 0.663
OPLS-AA 0.486 0.595
CHARMM27 0.512 0.564
GROMOS54a7 0.467 0.679

Human lysozyme Amber99SB-ILDN 0.496 0.643
OPLS-AA 0.408 0.559
CHARMM27 0.270 0.595
GROMOS54a7 0.307 0.583

T4 lysozyme Amber99SB-ILDN 0.597 0.329
OPLS-AA 0.625 0.502
CHARMM27 0.477 0.550
GROMOS54a7 0.589 0.507

Pancreatic ribonuclease Amber99SB-ILDN 0.157 0.663
OPLS-AA 0.351 0.475
CHARMM27 0.250 0.473
GROMOS54a7 0.496 0.556

Staphylococcal nuclease Amber99SB-ILDN 0.803 0.740
OPLS-AA 0.717 0.687
CHARMM27 0.703 0.735
GROMOS54a7 0.802 0.634

In order to compare the results of the MD simulations to the consensus B-factor profiles, it

was necessary to summarise both sets of data. The median values of both the normalised

B-factors and MD MSF data were chosen. Agreement between the median MSF values and

median normalised B-factors was calculated as a linear correlation coefficient. Table 6.5

presents the correlation coefficient data for the five crystal structures and four MD force

fields investigated.

The most notable feature of the data in table 6.5 is how poorly the MSF profiles agree with

the consensus B-factor profiles across all five proteins. Simulations of staphylococcal nucle-

ase appear to be the most accurate in reproducing crystallographic B-factors, but there is a

caveat to these results. The N and C-termini of staphylococcal nuclease are not resolved by

crystallography but were modelled by the MD simulations. The most unstructured and con-

formationally dynamic regions of this protein were, therefore, excluded from the calculation

of the correlation coefficients. All the other proteins were completely resolved by crystallo-

graphy and their terminal regions were included in the correlation calculations. It is feasible

that inaccuracies in modelling the dynamics of the N and C-termini may be responsible

for the low correlation coefficients. However, repeating the calculations with five residues
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excluded from both ends did not improve the results.

One of the aims of this study was to try to use the consensus B-factor profiles to validate

MD force fields. The analysis is, unfortunately, unable to differentiate between the MD force

fields. All force fields appear to be roughly equivalent in their agreement with the consensus

B-factor profiles, and there is no force field that clearly outperforms the others across all the

crystal structures modelled. This is, perhaps, to be expected because MD force fields are not

parametrised to reproduce the conformational dynamics of proteins. Maintaining expected

bond geometries and correctly simulating protein folding are the main criteria against which

force fields are assessed (Krieger et al. 2004; Soares et al. 2004; Zagrovic and van Gunsteren

2006; Best et al. 2008; Aliev and Courtier-Murias 2010; Hayre et al. 2011; Beauchamp et al.

2012; Cino et al. 2012; Lindorff-Larsen et al. 2012). Furthermore, the results of this study

are consistent with current opinion amongst structural bioinformaticians. Although certain

force fields may be optimised for specific applications, there is no general agreement as to

which force field most accurately models the conformational dynamics of protein molecules.

The derivation of B-factors assume the harmonic fluctuations of atoms in proteins with a fixed

conformation, so short MD simulations should, in theory, be adequate to predict B-factor

values. However, the weak correlations between simulation and experiment suggest that the

simulated proteins may have failed to exhibit the same degree of conformational variability

as a real crystal. A 200 ns simulation of a crystal, while a reasonable time scale for MD,

is brief in comparison to the time scale over which some protein conformational transitions

occur (Henzler-Wildman and Kern 2007). In addition, the classical mechanics of MD can

result in limited exploration of the dynamics across all of the conformational space available

to the proteins (Tai 2004; Lei and Duan 2007). By averaging the MSF values over all the

proteins in the unit cell, the models do account for some of diversity in the conformations and

dynamics of the proteins in a crystal. However, the numbers of proteins in the simulations

are minuscule in comparison to the trillions of proteins that comprise the crystals used in

diffraction experiments. Furthermore, the high degree of symmetry imposed by the periodic

boundary conditions of the MD simulation box may also mean that the movements of the

proteins are too tightly coupled to one another. Thus, the conformations and dynamics of

the simulated proteins may be biased and not representative of the population of proteins

in a real crystal.

The data presented in table 6.5 are the results from single simulations of protein crystals.

It was not feasible to repeat each simulation multiple times for every force field due to time

limitations. MD simulations are chaotic systems; that is, the trajectories are deterministic

but extremely sensitive to initial conditions (Braxenthaler et al. 1997). To assess whether

the results were consistent, the simulations of human lysozyme were repeated three times

for both the Amber99SB-ILDN and OPLS-AA force fields. Each repeat of the simulation

started with the same protein crystal structure, but all other steps, including the addition of

water and ions, were completely rerun. Thermodynamically, each production simulation was
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Table 6.6: Pearson and Spearman correlation coefficients between alpha-carbon MSF values and
crystallographic B-factors for independent repeated simulations of human lysozyme. The MSF value
of an alpha-carbon is the median value over all the chains in a 200 ns simulation of the model of the
unit cell. The B-factor of an alpha-carbon is the median media-mad normalised B-factor over the
cluster of crystal structures collated for the protein.

Correlation coefficient
Force field Run Pearson Spearman

Amber99SB-ILDN 1 0.496 0.643
2 0.318 0.674
3 0.558 0.699

mean±sd 0.457 ± 0.124 0.672 ± 0.028

OPLS-AA 1 0.408 0.559
2 0.505 0.597
3 0.514 0.668

mean±sd 0.475 ± 0.059 0.608 ± 0.055

identical, but in terms of the initial positions and velocities of all the atoms in the system,

each simulation run was different. The correlation coefficients for the repeated simulations

are presented in table 6.6.

The correlation coefficients calculated in table 6.6 show that repeated simulations give vari-

able but broadly consistent results. Comparing the correlation coefficients with a Mann

Whitney test found no statistically significant differences between the two MD force fields

tested. The median MSF profiles for the three simulations for both force fields are plotted in

figure 6.7. Superimposing the median profiles shows that each simulation gives very similar

median MSF profiles. This was confirmed by calculating the correlation coefficients between

the median profiles for each repeated simulation (table 6.7). There is a surprisingly high

level of agreement between the results of independent simulations. Each run traces a near

identical MSF profile with the only difference being the extent of the fluctuations. This is

reflected in the values of correlation coefficients with the Spearman coefficients being gener-

ally much higher than the Pearson. Therefore, the weak correlations between experimental

B-factors and the predictions of MD simulations cannot be attributed entirely to the chaotic

nature of MD trajectories.
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Figure 6.7: Median alpha-carbon MSF plots for three independent simulation of a human lysozyme
crystal (labelled run1, run2 and run3).

(a) Simulations using the Amber99SB-ILDN force field.
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(b) Simulations using the OPLS-AA force field.
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Table 6.7: Pearson and Spearman correlation coefficients between median alpha-carbon MSF
values for three independent MD simulations. The Spearman correlation coefficients are printed in
italic text.

(a) Amber99SB-ILDN force field

run 1 run 2 run 3

run 1 1.000 0.669 0.777
1.000 0.853 0.867

run 2 1.000 0.738
1.000 0.869

run 3 1.000
1.000

(b) OPLS-AA force field

run 1 run 2 run 3

run 1 1.000 0.771 0.721
1.000 0.912 0.876

run 2 1.000 0.911
1.000 0.892

run 3 1.000
1.000
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Table 6.8: Pearson and Spearman correlation coefficients between alpha-carbon MSF values of
proteins in solution and both the MSF values of simulations of the crystal lattices and the
consensus B-factor profiles. The MSF value of an alpha-carbon in the crystal lattice is the median
value over all the chains in a 200 ns simulation of the model of the unit cell. The B-factor of an
alpha-carbon is the median media-mad normalised B-factor over the cluster of crystal structures
collated for the protein.

Correlation coefficient
Lattice simulations B-factors

Protein Pearson Spearman Pearson Spearman

Hen egg white lysozyme 0.615 0.805 0.418 0.606
Human lysozyme 0.619 0.813 0.268 0.677
T4 lysozyme 0.356 0.660 0.470 0.430
Pancreatic ribonuclease 0.736 0.758 0.366 0.485
Staphylococcal nuclease 0.874 0.615 0.795 0.639

6.4.4 Protein dynamics in solution

MD simulations of single proteins in solution were run to assess the effect of the crystal

lattice on the simulations. The Amber99SB-ILDN force field was used for all the simulations.

Single protein simulations are very computationally intensive and, therefore, repeating the

simulations using all four force fields was not deemed to be practical. Furthermore, since

the previous work had not revealed any marked differences between the force fields, a full

comparison was considered to be unnecessary. Table 6.8 presents the calculations of the

correlation coefficients between alpha-carbon MSF of the single proteins in solution and

the corresponding MSF values for the simulations of the crystal lattices and the consensus

B-factor profiles.

Comparing tables 6.8 and 6.5 is surprising in that the level of agreement between B-factors

and MSF values is the same irrespective of whether the simulations are of single proteins or

crystal lattices. Interestingly, the MSF profiles of single proteins are generally in agreement

with the corresponding profiles in the crystal lattice. The stronger Spearman correlation

coefficients suggest that the correspondence is with respect to the shapes of the MSF profiles

rather than the MSF values. This is consistent with proteins having the same intrinsic dy-

namics both in solution and the crystal, but with the more sterically restrictive environment

of the crystal modulating these movements. It is, perhaps, not surprising that the simula-

tions of the proteins in crystals and solution are so similar. MD force fields are parametrised

with constraints on permissible torsion angles for both the protein backbone and the amino

acid side chains. Since both types of simulations start with the same protein structure, these

restraints may bias the movements of the proteins so that they never deviate too far from the

initial structure. Figure 6.8 superimposes the MSF profiles for the Amber99SB-ILDN MD

simulations of human and T4 lysozyme both in solution and in the crystal. As expected from

the correlation coefficients, the profiles of human lysozyme in solution and in the crystal are

very similar and only differ in the extent of the fluctuations. In contrast, the profiles of T4
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lysozyme are very different which is reflected in the poor correlation coefficients. The crystal

environment appears to suppress the movements of T4 lysozyme to a much greater extent

with only the N-terminal region showing any conformational variability in the crystal.
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Figure 6.8: Superimposing the alpha-carbon MSF plots for protein in solution and in a crystal. The
profile of eth crystal is the median profile over all proteins in the unit cell

(a) Simulations of human lysozyme.
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(b) Simulations of T4 lysozyme.
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6.4.5 Low temperature simulations

The poor correlation between experimental B-factors and the MSF values derived from MD

simulations could be attributed to the choice of 300 K as the simulation temperature. Al-

though some crystallographic experiments are undertaken at ambient temperatures, many

crystals are cooled to cryogenic or near cryogenic temperatures to limit damage caused by

X-ray exposure. Unfortunately, it is not obligatory for PDB files to publish the temper-

ature under which the X-ray diffraction pattern was recorded. Of the 150 PDB structures

analysed for human lysozyme, 50 state crystal temperatures of 100 K; 48 at 283 K; and 33

give no temperature information. To test whether lowering the temperature of the simula-

tion would give more representative dynamics for the crystals, a simulation of the human

lysozyme crystal was repeated at 150 K. The median MSF profiles for the simulations at

150 K and 300 K are plotted in figure 6.9. The plot clearly shows that there is very little

movement at 150 K with the extent of most fluctuations below 1 Å. As might be expected,

there is some agreement between the regions exhibiting the most and least flexibility at the

two temperatures. However, low temperature simulations did not improve the agreement

with experimental B-factors. The correlation between the median alpha-carbon MSF values

for the simulation at 150 K and the median normalised B-factor values for human lysozyme

are 0.540 (Pearson) and 0.603 (Spearman). There are two possible reasons why the low

temperature simulation offered no improvement when modelling the dynamics of the crys-

tal. Firstly, assuming atomic fluctuations are proportional to temperature, normalisation of

the B-factor data should correct for differences in the temperatures of the crystallographic

experiments. Secondly, MD force fields are not parametrised to model the dynamics of the

proteins or water far below standard conditions. In addition, MD simulation “temperature”

is very different to the macroscopic temperature that would be recorded in a crystallographic

experiment. It is more accurate to describe the simulation temperature as an indication of

the total kinetic energy. Thus, there is also uncertainty concerning how representative the

dynamics at a simulation temperature of 300 K are to the dynamics of the ensemble of

molecules within a crystal at the equivalent macroscopic temperature.
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Figure 6.9: Median alpha carbon MSF plots for the chain in an Amber99SB-ILDN MD simulation
of a human lysozyme crystal. Profiles are plotted for 200 ns simulation at temperatures of 150 K and
300 K.
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6.4.6 Alternative measures of conformational variability

An alternative argument that could account for the poor agreement between B-factor data

and the MSF values derived from MD simulations is that the two quantities may not be

directly comparable. An improved level of agreement may be possible by deriving a MSF

value from the experimentally determined crystal structures rather than using B-factor data.

By aligning all the independently determined crystal structures of the same protein, the

MSF of the alpha-carbon atoms can be calculated in exactly the same way as for the MD

trajectory. Figure 6.10 plots the profile for the deviations in the alpha-carbons coordinates

across all the structures of human lysozyme. The plots of the median and interquartile range

on the graph shows that, across the majority of structures, there is very little difference in

protein conformation. Interestingly, the plot of the mean (equivalent to MSF) differs from

the median and suggests that there are a small number of structures exhibiting alternate

conformations in certain regions of the protein. The most likely explanation is that the

mean has been distorted by a small number of structures showing “extreme” deviations

in the positions of certain alpha-carbons through substitution mutations or non-standard

crystallisation conditions. It might, therefore, be expected that, while both the mean and

median deviations would correlate with B-factors and MD MSF measurements, the median

deviations would be the more reliable measure of conformational variability. On the contrary,

neither the mean nor median deviations show a particularly convincing correlation with

the MD simulation data (table 6.9). There is a better correlation between B-factors and

the deviations between aligned structure (table 6.10). Nonetheless, across all five proteins

considered, the correlation between the structural deviation measurements and B-factors is

weak.

Measuring structural deviations between aligned structures may not be the most appropriate

measure of conformational variability. The method requires aligning structures, which is not

only a computationally expensive operation, but can also give a distorted picture of con-

formational change. The Kabsch alignment algorithm superimposes two structures through

the operations of translation and rotation to minimise the Euclidean distances between the

atomic coordinates. The implicit assumption of the algorithm being that the proteins have

near identical conformations and the translation and rotation will correct for any rigid body

displacement. There is, therefore, no guarantee that the difference between two aligned

structures will be an accurate reflection of protein conformational change. Consequently, an

alternative approach was considered that could measure conformational variability without

the reliance on structural alignment. The methodology employed was to examine the vari-

ability of the phi and psi torsion angles of the protein backbone. The rationale behind

this decision was that these torsion angles describe rotations about bonds involving alpha-

carbon atoms and measuring torsion angle variability might, therefore, give a flexibility

measure comparable with alpha-carbon B-factors. The degree of variability in the alpha-

carbon torsion angles was quantified by calculating angular dispersion. Consistent with
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Figure 6.10: Profile of the square deviations in the positions of the alpha-carbon for human lysozyme
with respect to the centroid of the cluster (structure 1C43). The solid line plots the median deviation
and the grey ribbon plots the interquartile range. The dotted line plots the mean deviations which
are equivalent to the MSF measurements of a MD simulation.
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Table 6.9: Pearson and Spearman correlation coefficients between alpha-carbon MD MSF values
and deviations measured between aligned PDB files. The MSF value of an alpha-carbon is the
median value over all the chains in a 200 ns simulation of the model of the unit cell. The deviations
between the alpha-carbon atoms of aligned structures is summarised as either the mean or median
value.

Correlation coefficient
Mean deviations Median deviations

Protein Force field Pearson Spearman Pearson Spearman

Hen egg white lysozyme Amber99SB-ILDN 0.470 0.613 0.583 0.528
OPLS-AA 0.401 0.567 0.409 0.509
CHARMM27 0.296 0.478 0.282 0.411
GROMOS54a7 0.243 0.614 0.225 0.520

Human lysozyme Amber99SB-ILDN 0.135 0.539 0.251 0.453
OPLS-AA 0.070 0.414 0.172 0.351
CHARMM27 0.059 0.416 0.148 0.333
GROMOS54a7 0.077 0.546 0.215 0.499

T4 lysozyme Amber99SB-ILDN 0.502 0.274 0.829 0.309
OPLS-AA 0.359 0.498 0.626 0.385
CHARMM27 0.231 0.349 0.447 0.359
GROMOS54a7 0.428 0.265 0.551 0.276

Pancreatic ribonuclease Amber99SB-ILDN 0.110 0.592 0.184 0.524
OPLS-AA 0.377 0.492 0.299 0.411
CHARMM27 0.053 0.258 0.156 0.443
GROMOS54a7 0.499 0.634 0.472 0.522

Staphylococcal nuclease Amber99SB-ILDN 0.674 0.726 0.730 0.688
OPLS-AA 0.620 0.717 0.626 0.659
CHARMM27 0.704 0.746 0.580 0.728
GROMOS54a7 0.550 0.727 0.705 0.663

Table 6.10: Pearson and Spearman correlation coefficients between alpha-carbon consensus
B-factor profiles and deviations measured between aligned PDB files. The B-factor of an
alpha-carbon is the median media-mad normalised B-factor over the cluster of crystal structures
collated for the protein. The deviations between the alpha-carbon atoms of aligned structures is
summarised as either the mean or median value.

Correlation coefficient
Mean deviations Median deviations

Protein Pearson Spearman Pearson Spearman

Hen egg white lysozyme 0.689 0.779 0.626 0.696
Human lysozyme 0.408 0.735 0.534 0.603
T4 lysozyme 0.615 0.340 0.742 0.460
Pancreatic ribonuclease 0.626 0.709 0.649 0.769
Staphylococcal nuclease 0.555 0.742 0.793 0.759
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standard measures of variance, angular dispersion measures the spread of torsion angles.

But, instead of measuring the differences between the magnitudes of the torsion angles, dis-

persion quantifies the agreement in the angles’ directions. Thus, angular dispersion avoids

the problems that can arise when standard descriptive statistics are applied to circular data.

In the absence of any experimental data, the angular dispersions of the phi and psi torsion

angles were calculated across the clusters of PDB structures to establish a baseline measure

of torsion angle variability in the crystals. Although not a direct measurement of how

the backbone torsion angles twist in a protein crystal, this calculation offered a reasonable

approximation. The most flexible regions of the structure would show the greatest variability

in torsion angles across the published crystal structures and this would be reflected in the

angular dispersions calculated. A comparison with the torsion angle dispersions calculated

for the MD trajectories may, therefore, reveal which MD force-field most accurately models

the flexibility of the protein backbone. The agreement between experiment and simulation

was quantified by calculating the correlation coefficients between the angular dispersions

calculated across the PDB structures and the angular dispersions of the chains over the

duration of the MD simulations. The angular dispersions of the multiple chains simulated

by MD were summarised by taking the median value.

The torsion angle profiles for the five proteins analysed are included in appendix C. The cor-

relation coefficients calculated between the torsion angle dispersions for the PDB structures

and the MD trajectories are presented in table 6.11. The results of the torsion angle ana-

lysis are very similar to the other methods that attempted to validate MD simulations. The

correspondence between the experimental torsion angle dispersions and those derived from

simulation are very weak as seen from the low Pearson correlation coefficients. The slightly

higher Spearman correlation coefficients suggest that there is a degree of agreement between

experiment and simulation in locating the most and least flexible regions of the structure.

It could be argued, however, that the poor correlations are due to incorrectly assuming that

the calculation of torsion angle dispersion across multiple PDB structures is representative

of how the proteins would move. It is, of course, impossible to test this assumption by meas-

uring torsion angle dispersions directly, but it is possible to test whether the torsion angle

dispersions are consistent with backbone flexibility. To counter this criticism, the correlation

between the torsion angle dispersion and B-factors was calculated. Interestingly, although

not a very strong correlation, the correlation between torsion angle dispersion and B-factors

is more convincing than that seen between the torsion angle dispersions derived from the

MD simulations (table 6.12). Thus, the torsion angle dispersions derived from the clusters

of PDB files are a reflection of the proteins’ dynamics. It is conceivable that the poor agree-

ment between torsion angle dispersions and the predictions of MD simulations may highlight

inaccuracies in how MD simulations model torsion angle rotations.
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Table 6.11: Psi and phi torsion angle dispersions correlation coefficients between PDB structures
and MD simulation. Both Pearson and Spearman correlation coefficients are calculated for both
torsion angles. The torsion angle dispersions of the MD trajectories are summarised as the median
over all the chains in a 200 ns simulation of the model of the unit cell

Correlation coefficient
Phi dispersion Psi dispersion

Protein Force field Pearson Spearman Pearson Spearman

Hen egg white lysozyme Amber99SB-ILDN 0.061 0.492 0.072 0.561
OPLS-AA 0.040 0.421 0.068 0.538
CHARMM27 -0.004 0.530 0.079 0.543
GROMOS54a7 0.411 0.577 0.421 0.489

Human lysozyme Amber99SB-ILDN 0.752 0.617 0.011 0.469
OPLS-AA 0.011 0.469 0.062 0.526
CHARMM27 0.011 0.610 0.031 0.603
GROMOS54a7 0.149 0.596 0.186 0.599

T4 lysozyme Amber99SB-ILDN 0.305 0.454 0.892 0.525
OPLS-AA 0.159 0.404 0.391 0.551
CHARMM27 0.214 0.480 0.402 0.502
GROMOS54a7 0.075 0.512 0.306 0.534

Pancreatic ribonuclease Amber99SB-ILDN 0.120 0.332 0.148 0.329
OPLS-AA 0.188 0.298 0.166 0.383
CHARMM27 0.215 0.353 0.143 0.287
GROMOS54a7 0.201 0.357 0.325 0.329

Staphylococcal nuclease Amber99SB-ILDN 0.153 0.461 0.201 0.509
OPLS-AA 0.183 0.453 0.279 0.420
CHARMM27 0.164 0.501 0.182 0.516
GROMOS54a7 0.198 0.512 0.179 0.398

Table 6.12: Pearson and Spearman correlation coefficients between alpha-carbon consensus
B-factor profiles and torsion angle dispersions derived from the clusters of PDB files. The B-factor
of an alpha-carbon is the median media-mad normalised B-factor over the cluster of crystal
structures collated for the protein.

Correlation coefficient
Phi dispersion Psi dispersion

Protein Pearson Spearman Pearson Spearman

Hen egg white lysozyme -0.149 -0.583 -0.238 -0.622
Human lysozyme -0.212 -0.729 -0.292 -0.708
T4 lysozyme -0.570 -0.484 -0.565 -0.574
Pancreatic ribonuclease -0.530 -0.524 -0.336 -0.353
Staphylococcal nuclease -0.601 -0.628 -0.699 -0.650
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6.4.7 Qualitative analysis

Approaches to quantitatively assess how closely different measures of conformational variab-

ility reflect one another all converge at the same conclusion: there is no substantive evidence

that MD simulation can reliably measure conformational dynamics in a crystal. Instead,

the level of agreement between simulation and experimental data is weak. Nonetheless, in-

spection of the “flexibility” profiles for the proteins investigated (appendix C) suggests that

there may be some consistency between simulation and experiment in the regions of the

proteins exhibiting the most conformational variability. To test this further, a more qual-

itative approach was taken to compare the predictions of simulation and experiment. For

each protein, the five most flexible residues were identified as determined by metrics derived

from both MD and PDB data. The reasoning behind this was to establish whether there

was any agreement in the regions of the proteins that were deemed to be the most dynamic.

The results are presented in appendix D in tabular form.

Even with this qualitative analysis, there is poor level of agreement between the flexibil-

ity measures derived from PDB structures and MD simulations. Across the five proteins

considered, there are only a small number of incidences where the most flexible residues

coincide. Of the four MD force fields considered, Amber99SB-ILDN and OPLS-AA appear

to out perform CHARMM27 and GROMOS54a7. However, since none of the force fields

performed particularly well, it would be inappropriate to draw any conclusions about the

validity of a particular force field based on these results. An interesting observation is the

consistency between the four force fields. The MD simulations do, in general, agree with one

another in the regions of the proteins that exhibit the greatest conformational variability.

It may not necessarily be exactly the same residue, but there is agreement within the same

local region of the protein.

For both MD and PDB data, the residues identified as having the greatest conformational

flexibility are those that would be expected to be the most dynamic given their amino acid

type and position within the structure. The most dynamic regions of the structures are

all residues in surface exposed turns or “random coil”. Often these residues are at the

transition points between regular secondary structure and a stretch of residues forming a

turn or an extended loop. Interestingly, 3-10 helices are often adjacent to these highly

dynamic regions of the protein. This observation is consistent with the analyses of chapters

3 and 4 which showed that, of all the regular secondary structure types, residues within 3-10

helices appeared to be the most dynamic. In terms of amino acid composition, glycine and

proline feature prominently in the regions identified due to their highly dynamic character

and potential disruptive effects on the formation of regular structure in their vicinity.

Despite not entirely agreeing with PDB data, MD simulations always identify regions of a

protein that would be expected to show conformational variability. In a sense, the simu-

lations are “correct”, but fail to reproduce the dynamics of the proteins that are entirely
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consistent with the experimental data. There are two possible explanations to account for

these differences. Firstly, flexibility metrics derived from PDB data, and B-factors in partic-

ular, may not accurately reflect the dynamics of the protein. Much of the information about

the protein’s dynamics that could be discovered by crystallography may have been lost or

obscured by the refinement process. MD simulations might, therefore, provide a truer picture

of the dynamics of the proteins in the crystal lattice. The alternative explanation is that the

inconsistencies between PDB data and MD are due to deficiencies in the construction of the

models and the simulation methods. The models employed are greatly simplified represent-

ations of a crystal lattice and do not account for all the physicochemical properties of the

crystals. In addition MD force fields are not parametrised to model protein chemistry under

the extreme conditions of a crystallographic experiment. MD simulations may, therefore,

offer nothing better than a very coarse approximation and are unable to account for all the

subtle effects that modulate protein dynamics in a crystalline environment.

6.5 Methods

6.5.1 Identifying PDB clusters

The file XrayAndNMR.txt listing X-ray and NMR structures sharing 95% or more sequence

homology was downloaded from the Research Collaboratory for Structural Bioinformat-

ics (RCSB) FTP repository: ftp://resources.rcsb.org/sequence/clusters/ (October

2014). The file was parsed to identify the proteins and to count the number of structures

that had been determined by X-ray crystallography. Clusters were sorted in descending

order of size to identify those proteins which contained 100 or more X-ray structures. The

PDB identifiers of each X-ray structure in the chosen clusters were extracted and used to

download the individual PDB structure files for further analysis.

6.5.2 Screening structure files within a PDB cluster

The structure files in each cluster were parsed to find subsets of the most structurally similar

crystals. All structures with R indices above 0.3 were deemed poor quality and immediately

eliminated. Structures were also eliminated if the PDB file could not be completely parsed

or of there were inconsistencies between the structural and sequence records. Structures

were grouped according to the space group of the crystals, and only those space groups

representing a significant proportion of the cluster were considered further. The presence of

large ligands (molecules of 10 or more atoms) was used as a criteria for selection depending

on whether it was typical for the protein to be crystallised with bound ligands. For example,

lysozyme structures were selected in the absence of ligands; haemoglobin and myoglobin
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were selected only with haem cofactors; and HIV-1 protease was selected irrespective of the

bound ligands.

Sequence similarity between the structures in a cluster was established by comparison to a

reference structure. Where possible, a high quality structure of the wild type protein was

chosen as the reference. Using PDB files for sequence reference as opposed to a sequence

database was necessary to account for features such as the presence of engineered expres-

sion tags or runs of unresolved residues that are common to all structures. Typically, only

structures that deviated from the reference structure by no more than two amino acid sub-

stitutions were included in the cluster subset. However, this criterion was relaxed, as in the

case of cytochrome c, if too many structures would be excluded. Insertions and deletions

were not permitted as these engineered mutations were considered to be more disruptive

than substitutions. Furthermore, although occupying equivalent positions in the protein’s

sequence, residues may not be spatially equivalent in the vicinity of an insertion or deletion.

6.5.3 Molecular dynamics simulations

Molecular dynamics simulations were prepared and run using the GROningen MAchine for

Chemical Simulation (GROMACS) software suite (version 5.0.2) (Berendsen et al. 1995;

Lindahl et al. 2001; Van Der Spoel et al. 2005; Hess et al. 2008; Pronk et al. 2013). The

four MD force fields tested were: OPLS-AA (Jorgensen et al. 1996; Kaminski et al. 2001),

Amber99SB-ILDN (Hornak et al. 2006; Lindorff-Larsen et al. 2010), CHARMM27 (MacKer-

ell et al. 1998; Mackerell et al. 2004) and GROMOS54a7 (Schmid et al. 2011). Three point

water models were used for all simulations. The TIP3P model (Jorgensen et al. 1983) was

used for the all-atom force fields: OPLS-AA, Amber99SB-ILDN and CHARMM27, and the

Simple Point Charge (SPC) model (Berendsen et al. 1981) was was used with the united

atom GROMOS54a7 force field. GPU acceleration was enabled by compiling GROMACS

with support for NVIDIA’s CUDA library (version 5.5). GROMACS was compiled and used

with single floating point precision.

All MD simulations of the crystals were run under the NVT ensemble. Temperature equi-

libration was achieved with the velocity scaling thermostat and a coupling constant of 0.1.

The temperature of the proteins in the simulations was maintained separately to the solvent

through the use of two temperature coupling groups. No pressure coupling was applied to

ensure the dimensions of the unit cell and structure of the crystal lattice remained constant

throughout the simulation. The molecular dynamics integrator used a step size of 2 fs and

bond elongation was corrected by setting all bonds as constraints and applying the one iter-

ation of the LINCS algorithm with an order parameter of 4. Periodic boundary conditions

were applied in every direction to approximate the structure of the crystal lattice. Molecules

were defined as periodic to allow proteins to interact with themselves across the boundaries

of the simulation box. The linear velocity of the system’s centre of mass was corrected every
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100 steps.

The potential function for short-range VdW and electrostatic interactions applied an initial

cutoff value of 1 nm. Energy and pressure corrections were applied for long range dispersion

interactions. Particle Mesh Ewald (PME) was used for long range electrostatic interactions

with an initial Fourier grid spacing of 0.12 nm and cubic interpolation of the PME calcula-

tions. Lists of neighbouring atoms were maintained with a grid search and the initial update

frequency was set to every 20 steps. The buffered Verlet algorithm dynamically adjusted the

update frequency for the lists of interacting atoms and VdW and electrostatics parameters

to improve performance whilst maintaining accuracy.

Preparing the simulation system

Reference PDB files were chosen to build the simulation systems. The structures chosen were:

1HEL (hen egg white lysozyme) (Wilson et al. 1992), 1LZ1 (human lysozyme) (Artymiuk and

Blake 1981), 3LZM (T4 lysozyme) (Matsumura et al. 1989), 1KF5 (ribonuclease) (Berisio et al.

2002), 1STN (staphylococcal nuclease) (Hynes and Fox 1991). The PDB files were processed

to eliminate all molecules other than the proteins and to set all atoms in their highest

occupancy locations. In the case of staphylococcal nuclease, the missing N and C-terminal

residues were added using the modeller (Sali and Blundell 1993) software suite following

the same methodology described in chapter 3. The pdb2gmx tool was used to generate the

protein topology, position restraint and coordinate files for a given force field and water

model combination. The crystal symmetries of the original PDB file were applied to the

coordinate files to recreate the arrangement of proteins in the unit cell. The editconf tool

was used to set the dimensions of the MD simulation box to coincide with the unit cell by

reading the lengths and angles that define the unit cell from the CRYST1 record of the PDB

file. In addition, in the case of T4 lysozyme, it was necessary to apply the rotation defined by

the ORIGX records to align the lattice basis vector a with the basis vector x of the left-handed

Cartesian coordinate system assumed by GROMACS.

To eliminate steric clashes arising from the creation of the unit cell, steepest descent energy

minimisation of the unit cell in a vacuum was run for a maximum of 10 steps or until all

forces between atoms fell below 1000 kJ nm−1 mol−1. Water molecules were added to fill

the cavities between the proteins using the solvate tool and the GROMACS default three

point water coordinate file spc216.gro. The system was made electrically neutral with the

genions tool which substituted water molecules for either sodium or chloride ions. Un-

favourable interactions inadvertently introduced during the solvation of the unit cell were

corrected through two passes of energy minimisation. The first round used the steepest

descent algorithm to quickly bring all forces under 1000 kJ nm−1 mol−1. Energy minimisa-

tion then switched to use the conjugate gradient algorithm with the maximum force set to

100 kJ nm−1 mol−1. The solvent was relaxed and the system equilibrated to a temperature
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of 300 K with a restrained MD simulation. Positional restraints were applied to the protein

molecules and the temperature of the system was raised from zero to 300 K over 100 ps. With

the restraints still in place, the system was equilibrated for a further 100 ps at 300 K.

The production MD simulation was run as a continuation of the equilibration simulation

with the removal of the restraints on the protein molecules. The system was maintained at

300 K and run for a maximum of 200 ns. Coordinates were recorded every 2 ps to a precision

of 10−5 nm.

Simulations of proteins in solution

Simulations of single proteins in solutions were prepared and run following a similar meth-

odology to that described above. The structure of the asymmetric unit was used as the

reference structure for all simulations. The proteins were placed at the centre of a dodeca-

hedral simulation box that was sized so that the minimum distance between the farthest

extent of the protein and the edges of the box was 1.3 nm in all directions. Empty space

was filled with water molecules and the minimum number of chloride ions to neutralise the

overall charge of the system. Energy minimisation and equilibration was undertaken identic-

ally to the simulations of the crystal lattices. The production simulation was run for 200 ns

under the NVT ensemble to allow direct comparison with the simulations of the crystal lat-

tices. Despite modelling “simpler” systems, the simulations of the single proteins contained

more atoms than the corresponding crystal simulations (5.8 times the number in the case of

ribonuclease). Simulations were, therefore, more computationally intensive in terms of both

processor time and storage requirements for the trajectory coordinate data.

Analysing MD trajectories

The molecules of the MD trajectories were made whole and abrupt translations across the

simulation box were corrected using two passes of the trjconv tool. All molecules except

for the proteins were discarded and the trajectory was subsampled to record the coordinates

every 20 ps, resulting in trajectories of 10000 frames. The trajectories were then split to create

separate files for each protein chain. Each chain was then aligned by rotation and translation

to minimise the mean square deviations in the positions of the alpha-carbon atoms with

respect to a reference structure. The reference structures used were the coordinates of the

chains at the beginning of the production simulation (the first frames of the trajectory files).

Python scripts were written to analyse the aligned trajectories of the protein chains. The

python library MDAnalysis (Michaud-Agrawal et al. 2011) was used to parse the GROMACS

trajectory files.

The MSF of the alpha-carbon atoms for each chain were calculated using a python script
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that calculated the mean square displacement in coordinates of the atoms with respect to the

reference structure (equation 6.1). MSF was calculated using coordinates every 10 frames in

the trajectory; that is, sampling 1000 frames at intervals of 200 ps.

MSFi =
1

N

N∑
n=1

|Ri(n)−Ri(0)|2 (6.1)

where MSFi MSF of the ith atom

N total number of frames in the trajectory

Ri(n) coordinates of the ith atom at frame number n in the trajectory

6.5.4 Calculation of MSF for crystal structures

Crystal structures were aligned to minimise the sum of the square deviations in the positions

of the alpha-carbon atoms by the Kabsch algorithm (Kabsch 1976, 1978). MSF was calcu-

lated analogously to MD trajectories with equation 6.1. The reference structure used to align

all other structures was the centroid of the cluster with respect to the square deviations in

the positions of the alpha-carbons. The centroid was identified by first calculating the sum

of the square distances between alpha-carbons coordinates after alignment for every pair of

structures in the cluster. For each structure, the sums were added together across all the

structure’s pairings and the structure with the lowest total was defined as the centroid of

the cluster.

6.5.5 Torsion angle calculations

Two torsion angles, phi and psi, were calculated from the coordinates of the atoms of a

protein’s backbone. All calculations followed the definition of torsion angle recommended by

International Union of Pure and Applied Chemistry (IUPAC) (Moss 1996) as presented in

the on-line “Gold Book” (Nic et al. 2014) based on the original “Gold Book” compendium

(McNaught and Wilkinson 1997) (see figure 6.11). The phi and psi torsion angles were

defined following convention and are illustrated in figure 6.12. Calculation of the phi torsion

angle of an amino acid requires knowledge of the coordinates of the carbonyl carbon of the

previous amino acid. Thus, it is not possible to calculate the phi torsion angle for the first

amino acid in a chain. Similarly, because the calculation of the psi torsion angle of an amino

acid requires the coordinates of the amine nitrogen of the following amino acid, there is no

psi torsion angle for the last amino acid in a chain. For convenience, the first phi and last

psi torsion angles were always set to zero.
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Figure 6.11: IUPAC definition of torsion angle. Atoms A, B, C and D are atoms bonded in a
linear sequence. The torsion angle θ for the bond B-C is the angle of rotation that would result in
the alignment of bond A-B with bond C-D when viewed along bond B-C. The absolute value of the
torsion angle is restricted to the range −180–180◦ with a positive and negative values corresponding
to clockwise and anticlockwise rotations respectively.

A

B
C

D

(a) Generalised chain of bonded atoms.

AA
B

D

θ (-ve)

A

θ (+ve)

(b) Torsion angle for bond B-C (dashed atom
indicates a positive value).

Figure 6.12: Definitions of torsion angles using a schematic representation of the protein backbone.
The labels are as follows: CA : alpha carbon, N : amine nitrogen and C : carbonyl carbon. Amino
acid side chains, all hydrogens and the carbonyl oxygen have been omitted for clarity.

C

N
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C

(a) Phi torsion angle.

N
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(b) Psi torsion angle.

189



Variability of torsion angles across PDB structures and frames of MD simulations were

quantified by using the metric of angular dispersion as defined in equation 6.2 adapted from

Zar (2010) chapter 26, Circular Distributions: Descriptive Statistics.

Let θ1, θ2, . . . , θN be N torsion angles. Then, the angular dispersion r is defined as:

r =
√
A2 +B2 (6.2)

where A =
1

N

N∑
i=1

sin θi

and B =
1

N

N∑
i=1

cos θi

Angular dispersion is restricted to values in the range zero to one. A value of zero corresponds

to a uniform distribution of torsion angles over the full range of angles (−180–180◦). A value

of one corresponds to no variation; that is, a sequence of equal torsion angles.
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Chapter 7

Conclusions

The overall aim of this thesis was to re-evaluate the usefulness of crystallographic atomic

displacement parameters (ADPs) as measures of protein conformational dynamics since cur-

rent opinion is divided on this issue. Many structural bioinformaticians continue to make

use of the ADP data deposited in the PDB whilst others question the value of these crys-

tallographic data and use alternative methods to quantify protein flexibility. Irrespective of

personal opinion on this issue, there are two fundamental questions that need to be answered

in order to assess whether ADPs give a true reflection of the dynamics of a protein in a crystal:

1. Is there a correspondence between ADP values and those regions of a protein’s structure

that are known to be flexible or rigid?

2. What metrics of protein flexibility are the most suitable to quantitatively validate or

discredit ADPs?

Although these two questions are closely interlinked and difficult to separate, both have

been addressed by research presented in this thesis. Firstly, the question of whether ADPs

are a true reflection of conformational variability was examined by attempting to establish

relationships between ADP values and static structural features that are widely accepted to

be correlates of protein flexibility. The scope of the investigation then broadened to assess

computer modelling as an alternative approach to validating ADPs. It was hoped that,

by not relying on one particular method of validating ADP values, this would give a more

balanced assessment of ADP data. The conclusions from these two strands of research are

discussed below.
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7.1 ADPs as measures of protein flexibility

Chapter 3 re-examined the usefulness of isotropic B-factors as measures of conformational

variability in crystal structures. The results were broadly consistent with what might have

been expected from previous studies in this area (Sheriff et al. 1985; Carugo and Argos 1997;

Parthasarathy and Murthy 1997; Smith, Radivojac et al. 2003; Radivojac et al. 2004; Yuan

et al. 2003; Zhang et al. 2009; Sonavane et al. 2013). The atoms in a crystal structure resolved

with the highest isotropic B-factors are typically located within regions of the structure that

would be assumed to be highly flexible; whilst atoms with the lowest B-factors typically

coincide with the most conformationally restrained elements of the structure. What was

surprising, however, was that there were many exceptions to this general principle, making

it impossible to establish reliable qualitative relationships between structural features of a

protein and isotropic B-factor values.

It is conceivable that there may be errors in published PDB structures and this may be

reason why the B-factor data failed to give convincing results. Recently, Touw and Vriend

(2014), have developed a crystallographic database, the BBD, to check and correct any

inconsistencies in the B-factor data published by the PDB. Whilst it would be interesting

to repeat the analysis using structural data derived from the BDB, it is unlikely that the

results would change significantly. The proportion of structures corrected by the BDB is small

(less than 10%) and, because the B-factor data was normalised, some of corrections made

by the BDB would have little or no effect on the outcome of the analysis. In conducting

the research, only the highest quality structures were selected and the periodic nature of

the crystal lattice was fully accounted for in all structural analyses. The absence of any

clear correlations between B-factor values and structural conformational variability cannot,

therefore, be attributed to anomalies in the crystallographic data or flaws in the research

methodology. Instead, this research suggests that it may now be time to question the widely-

held belief that B-factors can be assumed to be an indirect quantitative measure of protein

flexibility.

Although a clear link between isotropic B-factors and protein flexibility/rigidity could not

be established, this does not necessarily mean that crystallographic data cannot be used

to measure conformational dynamics. Chapter 4 explored the possibility that, perhaps, it

was the assumption that underpins the derivation of isotropic B-factor values that was at

fault. It is conceivable that many atoms in a crystal structure do not vibrate with perfect

spherical symmetry about their average positions. Instead, a more realistic anisotropic model

of atomic motion might reveal clearer relationships between conformational flexibility and

crystallographic data. Consequently, chapter 4 repeated the analysis of chapter 3 using

anisotropic atomic displacement parameters (AADPs) in place of isotropic B-factors .

Contrary to what might have been expected, the results from the analysis of AADPs were
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no better than those of isotropic B-factors. Despite the structures refined with AADPs

being of higher quality and near atomic resolution, the correlation between AADP values

and protein conformation flexibility remained tenuous. What was surprising, however, was

that the choice of AADP used in the analysis was irrelevant. The same weak correlations

were observed irrespective of which AADP was chosen to measure conformational flexibility.

The inability of AADP to probe molecular motion with any greater precision than that

currently offered by isotropic B-factors may tell us something about the limitations of X-

ray crystallography to measure conformational dynamics. In theory, the AADP of high

resolution crystal structures should give a far more reliable and accurate picture of the

movements of atoms than what was observed. One possible explanation for this disparity

is that current crystallographic methods have reached the limit of what can be measured

experimentally. Thus, there is no advantage of measuring conformational flexibility using

AADPs over isotropic B-factors since the majority of X-ray diffraction experiments are not

yet sufficiently sensitive to distinguish between these two ADPs. Although there is only the

work in this thesis to support these claims, it is interesting to note that research on AADPs

to measure protein flexibility is in a minority in comparison to isotropic B-factors. This may

be partly due isotropic B-factors being a more familiar measure of flexibility and there being

more software tools available for analysis. Nevertheless, it is also feasible that the lack of

published research on AADPs is due to the fact that previous research in this area has also

failed to break new ground. Unfortunately, since negative results are rarely published in the

literature, it is very difficult to test this hypothesis.

Despite a scarcity of research, the literature does give some indirect evidence that there is

little to gain by using AADPs in place of isotropic B-factors as measures of conformational

flexibility. New research in this field is moving away from classical X-ray crystallographic

methods and is exploring the possibilities offered by new technologies. In particular, the

Fraser lab have been advocating new ways to undertake and interpret crystallographic ex-

periments to capture protein dynamics at the atomic scale. Fraser and colleagues argue

that traditional crystallographic experiments may give us a misleading picture of protein

conformational dynamics having demonstrated that the process of cryocooling alters the

conformational distributions of approximately 35% of side chains in a sample of 30 proteins

(Fraser et al. 2011). Ambient temperature crystallography and new computational meth-

ods to extract previously “hidden” conformational states in electron density maps are the

two main avenues the group have followed in order to address the limitations of classical

crystallography (Fraser et al. 2009, 2011; Lang et al. 2010, 2014; Woldeyes et al. 2014).

Although not a primary objective, one positive result obtained from this research was to

demonstrate the benefit of normalising ADP values as opposed to using raw data in ana-

lyses. Normalisation of ADP values is widely accepted as necessary when comparing crystal

structures, but there is an absence of any quantitative evidence in the literature to justify its

use. By devising a simple metric to compare normalisation methods, this thesis has estab-
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lished that normalisation does significantly reduce level of the “noise” inherent in ADP data.

Furthermore, this thesis provides evidence to justify the choice of using particular normal-

isation methods over others. It was found that median-mad and z-normalisation consistently

outperformed min-max scaling. This could potentially be an area for further research since,

to date, there has been no work to systematically compare the relative effectiveness of all

the different normalisation methods currently employed.

7.2 Validating ADPs using computer modelling

This thesis has explored various computational methods for modelling the conformational

dynamics of proteins within a crystal lattice. Investigations began, in chapter 5, with the

application of ENMs. Similar to the classical analyses of chapters 3 and 4, using high quality

crystallographic data and fully accounting for the symmetry of the crystal lattice did not

result in particularly strong correlations between ADP values and the predictions of the

ENMs. Although the ENM were simplistic in comparison to some of the more sophisticated

models that have been developed, refining the ENMs is highly unlikely to yield better results.

The correlation coefficients between ADPs and the predictions of ENMs from the literature

are typically in the range 0.5-0.6 so the consensus view is of a weak correlation (Kundu et al.

2002; Eyal et al. 2007; Kondrashov et al. 2007; Xia and Wei 2013; Opron et al. 2014). This is

not to say that the computer models are incorrect, but as suggested previously, the limiting

factor may be the imprecision of current ADP data. Thus, attempting to develop ENMs

that better reproduce current ADP datasets may be a futile exercise.

The conclusion from chapters 3 to 5 initially suggested that the possibilities for new research

into ADP datasets have been exhausted. However, chapter 6 considered whether it might be

possible to derive high quality ADP data by attempting to eliminate the experimental “noise”

in the data. The approach taken was to consider proteins whose crystal structures had been

derived multiple times. By averaging the ADP data across these structures, it was hoped

that experimental errors would be eliminated and the resulting consensus profile would be an

accurate reflection of protein dynamics. Although limited by the data available, the results

do support this hypothesis. There is consistency in the ADP profiles between independent

crystallographic experiments meaning that ADP values are related to the protein’s structure

and are not simply artefacts of the refinement process. Establishing whether these consensus

ADP profiles are a true reflection of protein dynamics proved to be a more difficult question

to answer.

The numbers of protein structures for which consensus ADP profiles could be derived was

limited and could not be considered to be a representative sample of all the structures

deposited in the PDB. Therefore, repeating the classical analysis of chapters 3 and 4 on

such a small sample of proteins was not considered to be worthwhile. Furthermore, assessing
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the simplistic ENMs of chapter 5 using such a small sample size would not be particularly

insightful. Consequently, the more sophisticated, but computationally more demanding,

molecular dynamic simulations were chosen as a means of assessing the consensus ADP

data. In addition, the opportunity was taken to compare the ADP data to the predictions

of different MD force-fields. It was envisaged that this would reveal which, of the most

commonly used MD force-fields, would best reproduce the ADP data. This could have

potentially have been a new method of evaluating MD force-fields.

There has been some previous work validating MD force fields by simulating protein crystals

and comparing to B-factor profiles. However, previous studies had drawbacks in that they

only looked at one protein and compared the simulations to limited B-factor data. Eastman

et al. (1999) investigated bovine pancreatic trypsin inhibitor; Cerutti et al. (2010) a scorpion

toxin; Hu and Jiang (2010) lysozyme; Xue and Skrynnikov (2014) ubiquitin; and Kuzmanic

et al. (2014) the villin headpiece. With the exception of Xue and Skrynnikov, these previous

studies were all based on simulations shorter than the 200 ns simulations presented in this

thesis. The approach of using multiple proteins and validating the against consensus ADP

data is, therefore, novel and not simply reproducing the work of others.

Surprisingly, the MD simulations showed only a partial agreement with the consensus ADP

profiles. There was little to differentiate between the different force fields so, on the basis

of this research, there is nothing to suggest that one force field is significantly better at

modelling protein dynamics. This is consistent with the outcomes of the work by Cerutti

et al. (2010) and Hu and Jiang (2010) which come to different conclusions about which are

the superior force fields for simulating protein crystals. Failure to clearly identify the “best”

MD force field suggests that there is still some way to go before bioinformaticians can be

entirely confident in the accuracy of MD simulations. This assessment, of course, is purely

based on the criterion of how well the force fields model dynamics in of the crystal lattice.

Nevertheless, it is not unreasonable to assume that, if the simulations do not adequately

model dynamics in the crystal, there may be deficiencies when simulating proteins in other

environments. The discrepancies between crystallographic data and MD simulations has

been commented on previously. Studies have found that the atomic fluctuations observed in

MD simulations are far greater than would be expected from ADP data (Kuzmanic et al.

2014; Xue and Skrynnikov 2014). Nonetheless, at this point in time, it is difficult to know

whether it is the MD simulations or the crystallographic data that is closer to reality.

There is the possibility, however, that the weak relationship between the consensus ADP

profiles and the MD simulations may be due to the incorrect assumption that the ADP

profiles are a true reflection of the protein dynamics. Averaging ADP profiles will suppress

the level of noise in the data sets but it may also act as a filter to eliminate some of the

essential features of protein’s dynamics. In effect, averaging could result in misleading picture

of protein dynamics by only preserving the general trends that are present across multiple

crystal structures. Consequently, the consensus ADP profiles might only be describing atomic
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motion at a very low resolution. Thus, the consensus ADP profiles and the predictions of

the MD simulations may not be directly comparable. It would be interesting to investigate

the consensus ADP profiles in more detail in order to determine how they compare to the

different types of dynamics exhibited by proteins. The consensus profiles may represent the

global “slow” dynamics of the protein molecules rather than the fast atomic fluctuations

captured by the nanosecond time scales of the MD simulations. It may be possible to test

this hypothesis by comparing the consensus ADP profiles to the dynamics modelled by MD

simulations over millisecond time scales. Whilst this would be difficult to achieve with all-

atom simulations, it may be possible to develop coarse-grained simulations of protein crystals

to model the slower global dynamics.

An alternative approach to validating MD simulations using crystallographic data has been

used by Wall et al. (2014). Instead of ADP data, diffuse X-ray scattering was used as an

indicator of conformational dynamics in a crystal. Interestingly, the research used the same

protein, staphylococcal nuclease, as used in this thesis but achieved near perfect agreement

between and experiment and simulation. The strategy differed, through, in that the MD

simulations were used to generate expected scattering intensities which were compared to

the experimental data. Thus, Wall et al. were using “primary” crystallographic data which

may account for the better results. Yet, before rejecting ADPs in favour of raw diffraction

data, the Wall et al. study only focused on a single protein and it is unknown whether

experiments on other protein crystals would be equally successful. Nevertheless, validating

MD data with diffraction signals is under-explored and could prove to be a fruitful area for

further research.

7.3 Summary

Crystallographic ADP data can tell us something about the dynamics of proteins within

crystals. However, the extent to which ADP data, in general, can be trusted as a reliable

indicator of protein flexibility or rigidity remains unclear. Molecular biologists should, there-

fore, be highly sceptical of any inferences made about protein dynamics based on ADP data

alone. The limitations of ADP data does not mean that crystallographic data has no value

in measuring protein dynamics. On the contrary, it can be reveal a great deal about the mo-

lecular mechanisms that drive conformational changes when used in conjunction with other

experimental methods and computer modelling. In a recent review of the current state of

measuring protein conformational dynamics, van den Bedem and Fraser (2015) optimistically

describe a synergistic relationship between NMR, crystallography and computer simulation.

The research presented in this thesis suggests that we may have reached the limit of current

crystallographic methods; however, advances in technology can only improve the resolution

at which the movements of proteins can be probed by crystallography.
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Appendix A

Anisotropic atomic displacement

parameter data
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Figure A.1: B-factors grouped according to secondary structure. Secondary structure labels are
the DSSP classifications: E : β (extended); B : β (bridge); H : α-helix; I : π-helix; G : 3-10 helix; T :
turn; S : bend; and U : unclassified (“coil”).
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(a) Alpha-carbon AADPs. The proportion of outliers was less than 8% for all groupings except for
π-helix (12.6%)
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(b) Delta-carbon AADPs. The proportion of outliers was less than 8% for all groupings.
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Figure A.2: Boxplots of AADPs grouped according to amino acid type
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(a) Alpha-carbon AADPs. The proportion of outliers was less than 7% in all groupings except for
methionine (9.5%) and arginine (7.5%).
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(b) Delta-carbon AADPs. The proportion of outliers was less than 6% in all groupings.
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Figure A.3: Boxplots of alpha-carbon B-factors grouped according to normalised SASA for the
amino acid. The bin width is 0.05 units except for the final bin (0.9 to 1.0). The proportions of all
outliers were less than 8% in each grouping except at 0.8 (11.5%).
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Figure A.4: Boxplots of alpha-carbon B-factors grouped according to the atom’s distance from the
surface. The bin width is 0.5Å. The proportions of all outliers were less than 8% in each grouping
except < 0.5Å (8.4%) and 7.5− 8.0Å (12.9%)).
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Figure A.5: Boxplots of alpha-carbon B-factors grouped according to the atoms’s distance to the
protein’s COM. The bin width is 1Å except for the final bin (≥ 45Å). The proportions of all outliers
were less than 10% in each grouping in the range 2− 35Å and up to 18% otherwise
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Figure A.6: Distribution of alpha-carbon to alpha-carbon distances for the maximum occupancy
protein structures of the dataset. Lower and upper quartiles are represented with error bars to
indicate the spread of proportions.
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Figure A.7: Boxplots of alpha-carbon B-factors grouped according to the coordination number of
the amino acid.The proportions of all outliers were less than 6.5% in each grouping except at 19
(9.5%).
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Appendix B

Consensus B-factor profiles
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Figure B.1: Consensus B-factor profile for T4 lysozyme
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Figure B.2: Consensus B-factor profile for human lysozyme
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Figure B.3: Consensus B-factor profile for Staphylococcal nuclease
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Figure B.4: Consensus B-factor profiles for pancreatic ribonuclease
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Figure B.5: Consensus B-factor profiles for sperm whale myoglobin
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Figure B.6: Consensus B-factor profile for yeast cytochrome c peroxidase
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Figure B.7: Consensus B-factor profile for Pseudomonas cytochrome P450 with camphor
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Figure B.8: Consensus B-factor profile for human heat shock protein 90 bound to various ligands
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Figure B.9: Consensus B-factor profile for thermolysin bound to various ligands
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Figure B.10: Consensus B-factor profile for human HRas GTPase bound to various ligands
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Figure B.11: Consensus B-factor profiles for HIV-1 protease homodimers bound to various ligands
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Figure B.12: Consensus B-factor profiles for human insulin where the unit cell is a homodimer
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Figure B.13: Consensus B-factor profiles for human haemoglobin where the unit cell is a tetramer
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Appendix C

MD simulations
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Figure C.1: Profile of the square deviations in the positions of the alpha-carbon for hen egg white
lysozyme with respect to the centroid of the cluster (structure 3A92). The solid line plots the median
deviation and the grey ribbon plots the interquartile range. The dotted line plots the mean deviations
which are equivalent to the MSF measurements of a MD simulation.

0.0

0.2

0.4

0.6

1 10 20 30 40 50 60 70 80 90 100 110 120 129
Sequence index

D
ev

ia
tio

n 
(a

ng
st

ro
m

 s
qu

ar
ed

)

217



Figure C.2: Alpha-carbon MD MSF profiles for hen egg white lysozyme. The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.3: Profile of the backbone phi and psi torsion angle dispersions for hen egg white lysozyme
structures.
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Figure C.4: MD phi torsion angle profiles for hen egg white lysozyme. The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.5: MD psi torsion angle profiles for hen egg white lysozyme. The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.6: Profile of the square deviations in the positions of the alpha-carbon for human lysozyme
with respect to the centroid of the cluster (structure 1C43). The solid line plots the median deviation
and the grey ribbon plots the interquartile range. The dotted line plots the mean deviations which
are equivalent to the MSF measurements of a MD simulation.

0.0

0.2

0.4

0.6

1 10 20 30 40 50 60 70 80 90 100 110 120 130
Sequence index

D
ev

ia
tio

n 
(a

ng
st

ro
m

 s
qu

ar
ed

)

222



Figure C.7: Alpha-carbon MD MSF profiles for human lysozyme. The solid and dotted lines plots
the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.8: Profile of the backbone psi and phi torsion angle dispersions for human lysozyme
structures.
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Figure C.9: MD phi torsion angle profiles for human lysozyme. The solid and dotted lines plots
the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.10: MD psi torsion angle profiles for human lysozyme. The solid and dotted lines plots
the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.11: Profile of the square deviations in the positions of the alpha-carbon for T4 lysozyme
with respect to the centroid of the cluster (structure 1L19). The solid line plots the median deviation
and the grey ribbon plots the interquartile range. The dotted line plots the mean deviations which
are equivalent to the MSF measurements of a MD simulation.
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Figure C.12: Alpha-carbon MD MSF profiles for T4 lysozyme. The solid and dotted lines plots the
median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.13: Profile of the backbone phi and psi torsion angle dispersions for T4 lysozyme struc-
tures.
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Figure C.14: MD phi torsion angle profiles for T4 lysozyme. The solid and dotted lines plots the
median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.15: MD psi torsion angle profiles for T4 lysozyme. The solid and dotted lines plots the
median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.16: Profile of the square deviations in the positions of the alpha-carbon for pancreatic
ribonuclease with respect to the centroid of the cluster (structure 1KF4). The solid line plots the
median deviation and the grey ribbon plots the interquartile range. The dotted line plots the mean
deviations which are equivalent to the MSF measurements of a MD simulation.
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Figure C.17: Alpha-carbon MD MSF profiles for pancreatic ribonuclease.The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.18: Profile of the backbone torsion angle dispersions for pancreatic ribonuclease structures.
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Figure C.19: MD phi torsion angle profiles for pancreatic ribonuclease. The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.20: MD psi torsion angle profiles for pancreatic ribonuclease. The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.21: Profile of the square deviations in the positions of the alpha-carbon for staphylococcal
nuclease with respect to the centroid of the cluster (structure 2F0I). The solid line plots the median
deviation and the grey ribbon plots the interquartile range. The dotted line plots the mean deviations
which are equivalent to the MSF measurements of a MD simulation.
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Figure C.22: Alpha-carbon MD MSF profiles for staphylococcal nuclease. The solid and dotted
lines plots the median and mean dispersions respectively. The grey ribbon plots the interquartile
range.
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Figure C.23: Profile of the backbone phi and psi torsion angle dispersions for staphylococcal nuclease
structures.
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Figure C.24: MD phi torsion angle profiles for staphylococcal nuclease. The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Figure C.25: MD psi torsion angle profiles for staphylococcal nuclease. The solid and dotted lines
plots the median and mean dispersions respectively. The grey ribbon plots the interquartile range.
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Appendix D

Qualitative analysis

Key to table headings:

Seq. index Amino acid sequence index.

PDB Conformation variability measures derived from PDB files.

B Consensus normalised B-factor profile.

SqD Square deviations derived from aligned PDB files.

r Torsion angle dispersion derived from PDB files.

MD MSF Mean square fluctuations derived from MD simulations.

MD torsion Torsion angle dispersion derived from MD simulations.

A MD simulation using the Amber99SB-ILDN force field.

O MD simulation using the OPLS-AA force field.

C MD simulation using the CHARMM27 force field.

G MD simulation using the GROMOS54a7 force field.

The five most dynamic residues as measured by a metric derived from PDB data or MD

simulation are marked in the table. Each column in the table must, therefore, contain

exactly five entries. The key to the table entries is:

∗ A dynamic residue as measured using data derived from PDB files.

+ A dynamic residues as measured by MD simulation in agreement with the PDB data.

− A residue classified as one of the most dynamic by MD simulation but not by the PDB

data.
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Table D.1: Locating the most flexible regions of hen egg white lysozyme

Fluctuations Torsion angles
Psi Phi

Seq. PDB MD MSF PDB MD torsion PDB MD torsion
index B SqD A O C G r A O C G r A O C G
18 −

20 − −
21 − −

23 − −
24 −

34 −
35 −
36 −
37 −

47 ∗ ∗ +

66 −
67 − −
68 −

70 ∗ ∗ + +
71 ∗ ∗ + ∗ + + ∗ + +
72 ∗ ∗ ∗
73 ∗ +
74 ∗ +

78 −

101 − − − ∗ + + + + −
102 − − − − ∗ + + + +
103 − − − −
104 −

109 ∗ +

116 −
117 − −
118 − −
119 −
120 −
121 −

128 ∗ −
129 ∗ ∗ + ∗ +
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Table D.2: Locating the most flexible regions of human lysozyme

Fluctuations Torsion angles
Psi Phi

Seq. PDB MD MSF PDB MD torsion PDB MD torsion
index B SqD A O C G r A O C G r A O C G
17 −
18 − −
19 − − − −

35 − −
36 −

47 − −
48 ∗ − −
49 −
50 −

67 −
68 ∗ −
69 ∗ +

71 ∗ ∗ ∗
72 ∗ ∗ ∗ + + ∗
73 ∗ ∗ ∗ + ∗ + +
74 ∗ ∗ + − −
75 − ∗ +

86 −

102 −
103 − −
104 − − − − −
105 − − − − − −
106 − −
107 −
108 − − −

116 −
117 − −

122 ∗
123 ∗

128 − −
129 − − −
130 ∗ +
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Table D.3: Locating the most flexible regions of T4 lysozyme

Fluctuations Torsion angles
Psi Phi

Seq. PDB MD MSF PDB MD torsion PDB MD torsion
index B SqD A O C G r A O C G r A O C G
1 −

10 −
11 − −
12 − − −

20 ∗ ∗
21 − −
22 −
23 −
24 −

29 −
30 −

36 ∗
37 − − −
38 ∗ − − −
39 ∗

48 −

51 − −
52 −
53 −
54 −
55 ∗ ∗ − −
56 ∗

80 −
81 −

82 ∗
83 ∗

106 −

109 −

112 − − −
113 − −

155 −
156 −

161 − − −
162 ∗ ∗ + ∗ + + +
163 ∗ ∗ + + + + ∗ + + + ∗ + +
164 ∗ ∗ + + + + ∗ +
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Table D.4: Locating the most flexible regions of pancreatic ribonuclease

Fluctuations Torsion angles
Psi Phi

Seq. PDB MD MSF PDB MD torsion PDB MD torsion
index B SqD A O C G r A O C G r A O C G
1 ∗ ∗ + ∗
2 −

16 − −
17 − − − −
18 − − −
19 − − − − − −
20 − − ∗ + + + −
21 ∗ ∗ − ∗ +
22 − ∗ + +

33 ∗ +
34 −
35 ∗

37 ∗
38 −

49 − − −
50 − −
51 −

53 −

63 ∗

65 −
66 −
67 ∗ + −
68 ∗ + + − −

77 ∗

87 −
88 ∗ −
89 − ∗
90 − −

92 −

94 − − −
95 − −

103 ∗

112 −
113 ∗ ∗ −

123 −
124 −
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Table D.5: Locating the most flexible regions of staphylococcal ribonuclease

Fluctuations Torsion angles
Psi Phi

Seq. PDB MD MSF PDB MD torsion PDB MD torsion
index B SqD A O C G r A O C G r A O C G
6 ∗ ∗
7 −
8 − −

18 −
19 −

45 − −
46 ∗ + −
47 ∗ ∗ + + + + ∗
48 ∗ + + + + ∗ +
49 ∗ ∗ + ∗ + ∗ + +
50 ∗ ∗ + + − − ∗ +
51 ∗

78 − − −
79 − − − −
80 − −

95 −
96 −
97 −

112 −
113 − − −
114 − − − −
115 − − − − − −
116 ∗ ∗
117 − ∗

119 −

138 −

140 − −
141 ∗ + −
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249



G., Gorke H., Ullrich J., Herrmann S., Schaller G., Schopper F., Soltau H., Kühnel K.-U.,
Messerschmidt M., Bozek J. D., Hau-Riege S. P., Frank M., Hampton C. Y., Sierra R. G.,
Starodub D., Williams G. J., Hajdu J., Timneanu N., Seibert M. M., Andreasson J., Rocker
A., Jönsson O., Svenda M., Stern S., Nass K., Andritschke R., Schröter C.-D., Krasniqi
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