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Abstract—A fast Newton-based support vector machine
(N-SVM) nonlinear equalizer (NLE) is experimentally demon-
strated, for the first time, in 40 Gb/s 16-quadrature amplitude
modulated coherent optical orthogonal frequency division multi-
plexing at 2000 km of transmission. It is shown that N-SVM-NLE
extends the optimum launched optical power by 2 dB compared to
the benchmark Volterra-based NLE. The performance improve-
ment by N-SVM is due to its ability of tackling both deterministic
fiber-induced nonlinear effects and the interaction between nonlin-
earities and stochastic noises (e.g., polarization-mode dispersion).
An N-SVM is more tolerant to intersubcarrier nonlinear crosstalk
effects than Volterra-based NLE, especially when applied across
all subcarriers simultaneously. In contrast to the conventional
SVM, the proposed algorithm is of reduced classifier complexity
offering lower computational load and execution time. For a low
C-parameter of 4 (a penalty parameter related to complexity), an
execution time of 1.6 s is required for N-SVM to effectively mitigate
nonlinearities. Compared to conventional SVM, the computational
load of N-SVM is ∼6 times lower.

Index Terms—Coherent detection, coherent optical OFDM, non-
linearity mitigation, support vector machines.

I. INTRODUCTION

THE data rate in an optical transmission system is currently
limited by amplified spontaneous emission, which deter-

mines the minimum power launched into each fiber span, and
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the interplay between chromatic dispersion (CD) and Kerr fiber
nonlinearity, which limits the maximum launch power [1].
To increase the data rate of current-generation coherent

systems, fiber nonlinearity compensation is required to en-
able higher launch powers, thereby providing enough optical
signal-to-noise ratio to support larger constellation sizes [2].
State-of-the-art fiber nonlinearity compensators (NLC) include
digital signal processing (DSP)-based techniques such as digital
back-propagation (DBP) [2], [3], reduced complexity Volterra-
based nonlinear equalization (NLE) [4], and phase-conjugated
twin-waves [5], which tackle nonlinearities of deterministic na-
ture. However, in coherent long-haul optical systems the interac-
tion between nonlinear phenomena with random noises such as
polarization-mode dispersion (PMD) results in stochastic non-
linear distortion, which can be partiallymitigated usingmachine
learning in the digital domain such as support vectors machines
(SVM) [6]–[10].
On the other hand, coherent optical orthogonal frequency

division multiplexing (CO-OFDM) is an excellent candidate
for long-haul communications because of its high spectral effi-
ciency, flexibility, and tolerance to chromatic dispersion (CD)
and PMD. However, due to its high peak-to-average power ratio
the deterministic nonlinear cross-talk effects among subcarriers
such as inter-subcarrier intermixing (ICI) cross-phase modula-
tion (XPM) and four-wave mixing (FWM) are significantly en-
hanced causing an additional “stochastic-like” interference [6],
[7]. SVM-based NLEs [6]–[10] have shown promising results in
CO-OFDM. Nevertheless, since optimization usually requires
many steps to converge (in the order of 30) [7], implementation
in real-time processing is impractical.
In this paper, we experimentally demonstrate, for the first

time, a fast classification SVM-NLE of reduced classifier com-
plexity using the Newton-method (N-SVM) [11] in 16 quadra-
ture amplitude modulated (16-QAM) CO-OFDM at 40 Gb/s,
transmitted at 2000 km of standard single-mode fiber (SSMF). It
is shown that compared to the benchmark deterministicVolterra-
based NLE, N-SVM extends the optimum launched optical
power (LOP) by 2 dB with very low DSP computational load
and execution time. N-SVM tackles ICI nonlinear crosstalk
effects more effectively than Volterra-NLE especially when
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Fig. 1. Block diagram of the CO-OFDM receiver equipped with the proposed
N-SVM-NLE.

applied across all subcarriers simultaneously, rather than on
each subcarrier separately.
The paper is organized as follows: Section II analyses the

principle of the proposed N-SVM-NLE and the benchmark
Volterra-NLE for 16-QAM CO-OFDM. Section III describes
the experimental CO-OFDM setup. Section IV presents the ex-
perimental results of N-SVM-NLE and Volterra-NLE for CO-
OFDM at 2000 km of transmission, and finally in Section V the
paper is concluded.

II. PRINCIPLE OF NEWTON SUPPORT VECTOR MACHINE-NLE

A. Operation of N-SVM-NLE for 16-QAM CO-OFDM

In Fig. 1 the block diagram of the CO-OFDM receiver
equipped with the N-SVM-NLE is depicted, where the received
optical signal is converted back to an electrical one through a
homodyne 90° coherent detector. Afterwards, OFDM demodu-
lation process follows similarly to [6], where serial-to-parallel
(STP), removal of cyclic prefix (CP) and fast Fourier trans-
form (FFT) are processed. After the FFT block the proposed N-
SVM-NLE takes place for all subcarriers simultaneously before
decoding and parallel-to-serial (PTS) conversion. The proposed
N-SVM-NLE implements a fast Newtonmethod that suppresses
input space features for a nonlinear programming formulation
of supervised SVM classifiers. This stand-alone method can
handle classification problems in very high dimensional spaces.
An implicit Lagrangian formulation of an SVM classifier which
leads to a highly effective iterative scheme [11] is solved in this
algorithm by a Newton method which handles classification
problems in just a few steps. In order to handle a 16-QAM con-
stellation mapper which has a very large dimensional input, a
fast-finite Newtonmethod is employed to find the unconstrained
unique global minimum solution of the implicit Lagrangian as-
sociatedwith the classification problem.The solution is obtained
by solving a system of nonlinear equations, a finite number of
times. The algorithm implements the Newton method with an
Armijo step-size [12] and establishes its finite global termina-
tion to the unique solution. All vectors are column vectors unless
transposed to a row vector by a T superscript. The 2-norm of
a vector x is denoted by x. The matrix A[m × n] is related
to the A received signal with m complex OFDM symbols in
the n-dimensional real space Rm which defines the order of

Fig. 2. Block diagram of proposed N-SVM for the adopted single-
channel/polarization 16-QAM CO-OFDM receiver.

modulation format level (i.e. 16 for 16-QAM) as depicted in
Fig. 2.
In Fig. 2 where e is the column vector of value 1, while w, b,

are the normal vector (i.e. weights with w0 being the initialized
weight) and the scalar of the hyperplane (bias), respectively.
To control the trade-off between minimizing training errors and
model complexity we introduce a slack variable z for each train-
ing symbol and a “penalty parameter” C (which controls the
trade-off between the slack variable penalty and the margin).
Similar to [13] the margin maximization formula in the SVM is
replaced by the least square 2-norm error, which brings out an
unconstrained optimization being solved by the finite “stepless”
Newton method. The N-SVM formulation thus requires only
solutions of nonlinear equations instead of quadratic program-
ming and simultaneously maximizes the margin and minimizes
the error as shown in (1):

min f (w, b, z) =
(

1
2

)
‖w‖2 + CeT z

subject to D (Aw − eb) |+z ≥ e, (1)

where z ∈ Rm is the non-negative slack vector and C ∈ R1 is a
positive constant (C penalty parameter), both used to tune errors
and margin size, while A is the received signal. To perform non-
linear N-SVM, the classification sigmoid function is employed.
To change from a linear to a non-linear classifier however, we
substitute a kernel evaluation in (1) instead of the original ‘dot
product’. Recent developments for massive nonlinear SVM al-
gorithms [11] reformulate the classification as an unconstrained
optimization. By changing the margin maximization to the min-
imization of ( 1

2 )w, b2 and adding with a least squares 2-norm
error, the SVM reformulation with nonlinear kernel leads to:

min f (w, b, z) =
(

1
2

)
‖w, b‖2 +

(
C

2

)
‖z‖2

subject to D (Aw − eb) + z ≥ e (2)

The formulation of (2) can be rewritten by substituting z =
[e − D(Aw − eb)]+ leading to (3):

min f (w, b) =
(

1
2

)
‖w, b‖2+

(
C

2

) ∥∥[e − D (Aw − eb)]+
∥∥2

(3)



GIACOUMIDIS et al.: REDUCTION OF NONLINEAR INTERSUBCARRIER INTERMIXING IN COHERENT OPTICAL OFDM 2393

Fig. 3. N-SVM algorithm. A = Received signal; D = training data.

Fig. 4. IVSTF-NLE [4] for 16-QAM CO-OFDM. (I)FFT: (inverse) fast-
Fourier transform; HCD : system chromatic dispersion; NC: nonlinearity com-
pensation; k: constant related to the nonlinear distortion and the total power. m:
number of nonlinearity compensators.

where (x)+ replaces negative components of a vector x by zeros
into the objective function f. By setting [w1w2 . . . wnb]T to u
and [A − e] to H (which is the Hessian matrix [11]), then the
SVM formulation of (3) is rewritten by (4):

min f (w, b) =
(

1
2

)
uT u +

(
C

2

) ∥∥[e − DHu)]+
∥∥2

(4)

B. The “Stepless” N-SVMA Algorithm

The adopted N-SVM process is described in Fig. 3 showing
the finite “stepless” Newton method which solves the strongly
convex unconstrained minimization problem in (4). In most of
tested cases [11]–[14] this algorithm has given an optimum
solution with a few number of iterations varying from 5 to 8.

III. BENCHMARK VOLTERRA-NLE FOR 16-QAM CO-OFDM

The adopted Volterra-NLE is similar to [4], accounting for
single-band and single-polarization as depicted in Fig. 4. It
employs the inverse Volterra-series transfer function (IVSTF)
with up to 3rd order Volterra kernels. It should be noted
that when higher-order kernels were employed, similar results
were revealed [15]. IVSTF-NLE offers ∼25% reduced com-
plexity compared to full-step/span DBP [4], [9] and inherits
some of the features of the hybrid time-and-frequency domain

implementation, such as non-frequency aliasing and simple im-
plementation.
The process of nonlinearity compensation by Volterra-NLE is

described as follows: The input OFDM signal is first converted
to frequency domain by FFT. The Volterra-NLE compensates
CD using a linear compensator.
On the other hand, the number of required nonlinear com-

pensators depends on the number of homogeneous spans in
the transmission link. The output of the linear and nonlinear
compensator is combined and converted back to time-domain
using the inverse FFT (IFFT). The Volterra-NLE procedure
can be described from (5)–(9). Since a reduced complexity
3rd order IVSTF is considered, the kernels H1(ω, z) and
H3(ω1 , ω2 , ω − ω1 + ω2 , z) are given by,

H3 (ωz) = e−αz/2e−jω 2 β2 z/2 (5)

H3 (ω1 , ω2 , ω − ω1 + ω2 , z) = − jγ

4π2 H1 (ω, z)

× 1 − e−(α+jβ2 (ω1 −ω )(ω1 −ω2 ))z

α + jβ2 (ω1 − ω) (ω1 − ω2)
. (6)

where ω is the optical frequency and ω1 , ω2 are the dummy vari-
ables acting as parameters and influence the interactions of the
lightwaves at different frequency, especially the ICI interaction
effects. α is the fiber loss, β2 is the 2nd order CD parameter and
γ accounts for the effect of fiber nonlinearity averaging. For an
optically amplified Nspan fiber link with Lspan being the span
length, the corresponding pth inverseis given by the nonlinear
kernels as,

K1 (ω) = H−1
1 (ω) = e−jω 2 β2 Ns p a n Ls p a n /2 (7)

K3 (ω1 , ω2 , ω − ω1 + ω2) = − jγ

4π2 K1 (ω)

× 1 − e−(α+jβ2 Δω )Ls p a n

α + jβ2 (ω1 − ω) (ω1 − ω2)

Ns p a n∑
k=1

e−jkβ2 Ls p a n Δω

(8)

≈ − jγ

4π2 × 1 − e−αLs p a n

α

× K1 (ω)
Ns p a n∑
k=1

e−jkβ2 Ls p a n Δω . (9)

The corresponding compensation scheme representing (7) and
(9) is applied in Fig. 4. Each nonlinear compensation stage is a
realization of

K3 (ω1 , ω2 , ω − ω1 + ω2) ≈ − jγ

4π2 × 1 − e−αLs p a n

α

× K1 (ω) e−jkβ2 Ls p a n Δω . (10)

Finally, since single-polarization is considered we have

SK 1 (ω)
∫ ∫ ∞

∞
K3,K 1 (ω1 , ω2 , ω − ω1 + ω2)

× A (ω1) A∗ (ω2) × A (ω − ω1 + ω2) dω1dω2 (11)
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Fig. 5. Experimental setup of 40 Gb/s CO-OFDM equipped with either Volterra-NLE or N-SVM-NLE. ECL: external cavity laser, DSP: digital signal processing,
AWG: arbitrary waveform generator, AOM: acousto-optic modulator, EDFA: Erbium-doped fiber amplifier, GFF: gain flatten filter, LO: local oscillator.

where SK 1 (ω) is derived by passing the received signal through
(HC D )(K 1 ,K 2 ) , and nonlinearity compensation is performed by
jk(|.|2)(.) where we multiply the received signal by a constant
k related to the nonlinear distortion and the total power. This pa-
rameter varies for this configuration and is obtained by sweeping
it to get optimum performance, which is part of the calibration
of the Volterra-NLE. Finally, the residual CD is compensated
passing through (HC D )N −(K 1 ,K 2 ) .

IV. EXPERIMENTAL SETUP

Fig. 5 depicts the experimental setup where an external cav-
ity laser (ECL) of 100 kHz linewidth was modulated using a
dual-parallel Mach-Zehnder modulator (DP-MZM) in IQ con-
figuration. The DP-MZMwas fed with OFDM I-Q components,
whichwas generated offline. The transmission path at 1550.2 nm
was a recirculating loop consisting of 20×100 km spans of
Sterlite OH-LITE (E) SSMF (attenuation of 18.9-19.5 dB/100
km) controlled by acousto-optic modulator (AOM). The loop
switch was located in the mid-stage of the 1st Erbium-doped
fiber amplifier (EDFA) and a gain-flattening filter (GFF) was
placed in the mid-stage of the 3rd EDFA. The optimum LOP
was swept by controlling the output power of the EDFAs. At
the receiver, the incoming signal was combined with another
100 kHz linewidth ECL acting as local oscillator. After down-
conversion, the baseband signal was sampled using a real-time
oscilloscope operating at 80 GS/s and processed offline inMat-
lab. 400OFDM symbols were generated using a 512-point IFFT
in which 210 subcarriers were modulated using 16-QAM. To
eliminate inter-symbol-interference from linear effects, a CP of
2% was included. For fair comparison among linear equaliza-
tion (LE), Volterra-NLE and the proposed N-SVM-NLE, the net
and raw bit-rate were fixed at ∼40 Gb/s and ∼46 Gb/s, respec-
tively. The N-SVM training overhead was set at 10% (optimum
value for LE) resulting in a training length of 40 symbols. The
offline OFDM demodulator included timing synchronization,
frequency offset compensation, channel estimation and equal-
ization with the assistance of an initial training sequence, as
well as I-Q imbalance and CD compensation using an over-
lapped frequency domain equalizer employing the overlap-and-
save method. When N-SVM-NLE was performed, the LE was
neglected due to N-SVM ability of compensating both linear

TABLE I
CO-OFDM TRANSCEIVER AND TRANSMISSION PARAMETERS

Parameter Value

Net bit-rate (LE, NLEs) ∼40 Gb/s
Raw bit-rate (LE, NLEs) ∼46 Gb/s
Signal modulation format 16-QAM
OFDM symbols 400
Modulated OFDM subcarriers 210
Cyclic prefix (CP) length 2%
FFT/IFFT size 512
N-SVM Training overhead 10%
N-SVM Training symbol length 40 symbols
ECL linewidth 100 KHz
OH-LITE (E) SSMF attenuation 18.9–19.5 dB/100 km
Span number 20
Span length 100 km
Transmission wavelength 1550.2 nm

and nonlinear inter-subcarrier crosstalk effects. The CO-OFDM
transceiver and transmission parameters are depicted on Table I.
The NLEs performances were assessed by Q-factor measure-
ments averaging over 10 recorded traces (∼106 bits), which
was estimated from the bit-error-rate (BER) obtained by error
counting after hard-decision decoding. The Q-factor is related
to BER by Q = 20log10[

√
2erfc−1(2BER)]. For 16-QAM, a

BERof 10−3 (forward-error-correction-limit, FEC-limit) results
in a Q-factor of ∼9.8 dB.

V. RESULTS AND DISCUSSION

In Fig. 6 the Q-factor against the training overhead of N-
SVM-NLE is depicted for 16-QAM CO-OFDM at 2000 km of
transmission for a LOP of 2 dBm, which is the optimum LOP of
LE. It should be noted that changing the training overhead, the
raw bit-rate was adjusted accordingly. From Fig. 6 it is evident
that a minimum 10% of training data is required for N-SVM-
NLE to effectively tackle the OFDM inter-subcarrier crosstalk
effects (e.g. ICI-XPM/FWM). In this paper, 10% of training
data are employed for N-SVM-NLE in all sections.
In Fig. 7, the Q-factor against the LOP is plotted for the

40 Gb/s CO-OFDM system at 2000 km of transmission for LE,
Volterra-NLE, and N-SVM-NLE. It is shown that compared
to Volterra-NLE, the proposed N-SVM-NLE can extend the
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Fig. 6. Q-factor vs. training overhead of N-SVM-NLE for 16-QAM CO-
OFDM at 2000 km of transmission for a launched optical power (LOP) of
2 dBm, which is the optimum LOP of linear equalization (LE).

Fig. 7. Q-factor vs. LOP for 16-QAM CO-OFDM when performing LE,
Volterra-NLE, and N-SVM-NLE.

optimum LOP by 2 dB (FEC-limit at ∼9.8 dB), while in com-
parison to LE it can extend the LOP by∼3.5 dB. To corroborate
the N-SVM-NLE performance enhancement, Fig. 8 is plotted,
showing the received 16-QAM constellations diagrams for the
three types of equalization and without equalization at 6 dBm
of LOP.
In Fig. 9, the Q-factor against the C-parameter (the C value

from (2)) is plotted for theCO-OFDMsystemunder test at a LOP
of 4 dBm. The C-parameter (also called “penalty parameter”) is
related to the computational complexity of N-SVM. It is shown
that a C of only 4 is required at an execution time of 1.6 sec for
stable optimum performance. This time required by the train-
ing process is considered for a general-purpose CPU operating
at 1.2 GHz. However, this time will be drastically reduced in
implementations based on Field-Programmable Gate-Array or
Application Specific Integrated Circuits. Theminimum required
C value for N-SVM-NLE is ∼6 times less than the correspond-
ing “penalty parameter” of the conventional SVM-NLE reported
in [7] for 16-QAM CO-OFDM. This occurs because i) N-SVM
performs fast classification tasks that separate cases of different
class labels, and ii) the conventional SVM performs both clas-
sification and regression analysis in contrast to N-SVM which
only classifies the data. It should be noted that a transmission
performance comparison between the proposed N-SVM and the
conventional SVM [7] is out of the scope of this paper since fair
comparison is not feasible.

Fig. 8. Received 16-QAM constellation diagrams of CO-OFDM at 2000 km
of transmission when the LOP is 6 dBm for the following cases: (a) without
equalization, (b) LE, (c) Volterra-NLE, and (d) N-SVM-NLE.

Fig. 9. C-parameter/Time vs. Q-factor for 16-QAM CO-OFDM equipped
with N-SVM-NLE at a LOP of 4 dBm.

In Fig. 10 the impact of N-SVMon the nonlinear ICI crosstalk
effects is investigated for the adopted CO-OFDM system. A
comparison is also made with the benchmark Volterra-NLE to
evaluate the impact of stochastic nonlinearities. In Fig. 10, an ad-
ditional case for exploring the nonlinear phenomena in OFDM
is proposed, in which the NLEs under test are performed for
each subcarrier. Although this case is unrealistic since it sub-
stitutes a separate NLE for each subcarrier, it will provide a
holistic and deeper understanding on the physics underlying
nonlinear phenomena in CO-OFDM. In Fig. 11, a conceptual
diagram is depicted for the application of NLE, and NLE per
subcarrier (related to Volterra and N-SVM) on received OFDM
signal. N-SVM and Volterra NLEs ‘per subcarrier’ cases (the
dotted lines in Fig. 10) includes 210 NLEs in contrast to the
realistic case where 1 NLE process all subcarriers together. In
Fig. 10, it is shown that in comparison to the ‘per subcarrier’
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Fig. 10. Q-factor vs. LOP for 16-QAMCO-OFDM equipped with Volterra/N-
SVM being processed across all subcarriers and per subcarrier (dotted lines).

Fig. 11. Conceptual diagram of application of NLE, and NLE per subcarrier
(for Volterra and N-SVM) on received OFDM signal.

case, when N-SVM is applied across all subcarriers it reduces
the fiber nonlinearity penalty by 0.5 dB. This occurs because
when applying N-SVM on each subcarrier separately, ICI non-
linear crosstalk effects are not combated. Finally, it is confirmed
that CO-OFDM is influenced by stochastic nonlinearities which
cannot be tackled by the deterministic Volterra-NLE.
The results from Fig. 10 indicate that the adopted realistic N-

SVM-NLEwhich accounts for all subcarriers together, provides
effective and fast compensation of inter-subcarrier nonlinear
crosstalk effects in CO-OFDM.

VI. CONCLUSION

A novel fast N-SVM-NLE of reduced classifier complex-
ity was experimentally demonstrated in 40 Gb/s 16-QAM CO-
OFDM at 2000 km of SSMF. In comparison to Volterra-NLE,
the proposed N-SVM extended the optimum LOP by 2 dB with
very low computational load and execution time. N-SVM tack-
led inter-subcarrier nonlinear crosstalk effects more effectively
than Volterra-NLE especially when applied across all subcarri-
ers simultaneously.
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