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Abstract: The transmission impairments of a Raman amplified link using dual-polarization
16-quadrature amplitude modulation (DP-16QAM) are experimentally characterized. The impact of
amplitude and phase noise on the signal due to relative intensity noise (RIN) transfer from the pump
are compared for two pumping configurations: first-order backward pumping and bi-directional
pumping. Experimental results indicate that with increased Raman backward pump power, though
the optical signal-to-noise ratio (OSNR) is increased, so is the pump-induced amplitude and phase
noise. The transmission performance is firstly improved by the enhanced OSNR at a low pump
power until an optimum point is reached, and then the impairments due to pump-induced noise start
to dominate. However, the introduction of a low pump power in the forward direction can further
improve the system’s performance.
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1. Introduction

Unrepeatered transmission systems provide a low-complexity and cost-effective solution for
point-to-point connections on the order of a few hundred kilometers. The main objective for these
systems is to achieve a single-span system between the points of interest without any in-line active
elements between the terminals. Recently, high-order modulation formats and coherent detection using
digital signal processing (DSP) have been introduced to increase the transport capacity. In these systems,
the distributed Raman fiber amplifier (DFRA) is an attractive alternative to the conventional lumped
erbium-doped fiber amplifier (EDFA). The DRFA ensures a relatively constant power distribution
of the optical signals along the link and thereby improves the optical signal-to-noise ratio (OSNR)
and the fiber nonlinearity tolerance [1–7]. Using DRFA with a large effective area fiber, unrepeatered
transmission of a 30 Gbaud dual-polarization quadrature phase shift keying (DP-QPSK) over 444 km [2]
and a 28 Gbaud DP-16 quadrature amplitude modulation (DP-16QAM) over 240 km [3,4] have been
demonstrated. Unrepeatered transmission of a 40 × 256 Gb/s DP-16QAM signal over an ultra-low loss
fiber with a very large effective area was demonstrated by using a first-order backward-pumped DRFA
combined with a discrete EDFA at the receiver [5]. Transmission performance analysis was performed
for differential phase shift keying (DPSK) transmission using standard fiber and second-order Raman
amplification in [6], showcasing the different balance between impairments for different transmission
lengths and higher-order distributed amplification. Recently, an unrepeatered Nyquist PDM-16QAM
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transmission over 364 km was demonstrated using Raman amplification and multi-channel digital
back-propagation [7].

In DRFAs, the intensity fluctuations of the pump will induce both intensity and phase noise
of the received signal. This is known as relative intensity noise (RIN) transfer which deteriorates
the system performance and limits the system reach. The effect of RIN transfer on the intensity
noise of the received signal has been intensively investigated in intensity modulation direct-detection
systems [8–10]. The results show that the characteristics of the RIN transferred to the signal are
strongly affected by different aspects, for example fiber dispersion, pumping configuration, and
polarization-dependent gain [11–15]. The RIN transfer to both the amplitude and phase noise of
multilevel coherent optical communication systems using DRFA has been studied using numerical
analysis and system simulations, and evaluated with both unrepeatered and repeatered transmission
experiments [16–21]. The stochastic intensity fluctuations of the Raman pump laser induce extra phase
noise of the signal due to the pump signal cross-phase modulation. This is known as relative phase
noise (RPN) and it degrades the system performance of phase-sensitive detection schemes. For example,
the analytical model for the statistical property of RPN in first- and higher-order distributed Raman
amplifiers [15] indicates that the impairments dependent on the Raman pumping order and RIN
tolerance are different for each configuration. The study also shows that for the multi-level modulation
format, in addition to RIN and RPN, Raman pump RIN will also induce polarization crosstalk through
the cross-polarization modulation effect which has about the same impact on the performance as
the RPN. A comprehensive theoretical and simulation study of the RPN was presented for M-ary
phase shift keying (PSK) and 16QAM modulation formats in Reference [18]. The RPN-induced
impairment was evaluated and compared for QPSK, 8PSK, 16PSK, and 16QAM signals. We have
previously experimentally characterized the pump noise–induced impairments of an unrepeatered
single polarization of a 28 Gbaud 16QAM link using backward-pumped Raman amplification [22], and
for a dual-polarization 28 Gbaud 16QAM link [23] using bidirectionally pumped Raman amplification.

In this paper we report on a systematic experimental characterization of both the amplitude and
phase noise of the signal due to RIN transfer from the Raman pump and evaluate the transmission
impairments of a coherent DP-16QAM link using first-order pumped Raman amplification in a
standard single-mode fiber (SSMF). We adopt a frequency domain representation approach to
reconstruct the noise enhancement due to the Raman pump RIN transfer in both amplitude and
phase. Regarding the transmission, we first evaluate the maximum reach, determined by the
7%-overhead hard-decision forward error correction (HD-FEC) threshold, of a backward pumping
scheme. We subsequently investigate the transmission improvement one can achieve with the aid
of additional forward pumping. For each pumping scheme, the phase noise and amplitude noise
are measured as a function of the Raman pump power. Three different carrier phase recovery (CPR)
algorithms are tested and compared for each transmission scenario: decision-directed phase-lock-loop
(DDPLL) [24], two-stage feed-forward based on QPSK partitioning (QPSKP) with a sliding window
average [25] and feed-forward based on blind phase search (BPS) [26,27].

This paper is organized as follows. In Section 2, we present the experimental setup to
evaluate DFRA-induced impairments. Then we show and discuss the obtained results in Section 3.
The conclusions are finally drawn in Section 4.

2. Experimental Setup

The experimental setup for signal transmission and noise characterization is shown in Figure 1.
For transmission, a pseudo-random bit sequence with word length of 215 − 1 and its negated
pattern are generated by a pulse pattern generator (PPG) operating at 28 Gbaud. Decorrelation
is performed by delaying the negated pattern by 84 bits. A two-bit digital to analog converter
(DAC) with 19 GHz analog bandwidth is employed to convert the binary sequences into four-level
pulse amplitude modulation signals, where an additional 77-symbol delay is introduced between
the two outputs to drive an IQ modulator with 25 GHz 3 dB bandwidth to generate an optical
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28 Gbaud 16QAM. The transmitter external cavity laser (ECL) at 1550 nm has a linewidth of
~40 kHz. Polarization multiplexing (PolMux) emulation is performed after the IQ modulator to
achieve 224 Gbit/s DP-16QAM. An optical booster, an optical bandpass filter (OBPF) with bandwidth
of 1.2 nm and a variable optical attenuator (VOA) are placed before the fiber link for OSNR adjustment.
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Figure 1. Experimental setup of distributed Raman amplified coherent transmission link. PPG: pulse
pattern generator; DAC: digital-to-analog converter; WDM: wavelength division multiplexer;
SSMF: standard single mode fiber; LO: local oscillator; DSO: digital storage oscilloscope; DDPLL:
decision-directed phase-lock-loop; BPS: blind phase search; QPSKP: QPSK partitioning.

The transmission link is comprised of 200 km SSMF. First order pump at 1455 nm (PYL-1-1455-R,
IPG Photonics, Oxford, MA, USA) is used to Raman amplify the signal which is divided into two
parts 95% (backward) and 5% (forward) for distributed Raman amplification. An automatic gain
controlled pre-amplifier EDFA with fixed output power is placed after the link. A coherent receiver
with a ~40 kHz linewidth local oscillator (LO) and an 80 GSa/s digital storage oscilloscope (DSO) are
used for detection. Signal demodulation is performed off-line with a DSP chain consisting of low pass
filtering; chromatic dispersion (CD) compensation, timing recovery, polarization de-multiplexing and
three different CPR methods before a bit-error-rate counter.

For a better understanding of the signal impairments induced by the distributed Raman
amplification, we also characterized the amplitude and frequency noise of the received signal with
the use of the digital coherent receiver based on the method described in [28]. In this measurement
the transmitter laser is unmodulated and transmitted over the Raman amplified link with different
pump configurations.

3. Results

The OSNR improvement using distributed Raman amplification was first evaluated. Figure 2
illustrates the measured OSNR versus the power of the first-order Raman pump for two pumping
schemes, first using backward pumping with 95% of the pump power and second using bidirectional
pumping, using the remaining 5% pump power for co-pumping. The experiments were done at
two launched powers, 5 and 2 dBm, into the 200 km SSMF link. From Figure 2 it is observed that
with 95% backward pumping, the received signal OSNR increased with the pump power compared to
the reference case when the Raman pump was off. In addition, with the extra 5% of the power in the
forward pumping, the OSNR enhancement was higher, especially at high power. It is important to
note that the maximum forward pump used was only 40 mW.

In coherent optical communication systems using multi-level modulation formats, a high OSNR
only is not enough to ensure a good transmission quality since other impairments such as the phase
noise have a large impact on the system performance [18]. Therefore, we characterized the received
signal amplitude and phase noise induced by the Raman pump RIN transfer.
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Figure 2. OSNR versus Raman pump power for two pumping schemes, backward pumping only
with 95% and backward pumping with 95% together with co-pumping with 5% for two different
launching powers.

Figure 3 shows the measured relative frequency noise and amplitude noise power spectrum
density (PSD) of the received signal after bidirectional Raman amplification for different pump powers.
All selected cases are with a 200 km SSMF length and a 5 dBm launched power. In this measurement,
the transmitter laser was unmodulated and transmitted over the Raman amplified link with different
pump configurations, as shown with the green dots in Figure 1. It is noted that this method
characterizes the combined noise properties from both the received signal and the narrow linewidth LO.
From the frequency noise PSD shown in Figure 3a, one can see that with a low Raman pump power,
the noise shows a property that can be closely approximated as white phase noise. However, at a high
pump power, the frequency noise level in the low frequency regime rises, while at the high frequency
side the level decreases, which is due to the improvement of the signal OSNR (as shown in Figure 2).
It is noted that there are spurs rising at around 11 GHz at the high pump power, which we attribute to
the stimulated Brillouin scattering.
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Figure 3. (a) Measured frequency noise and (b) relative amplitude noise power spectrum density for
different pump powers. For all selected cases, the launched power = 5 dBm, fiber length = 200 km.

Similarly, from Figure 3b it is observed that as the pump power increases, the amplitude noise
level at the high frequency side decreases, which is also due to the improvement of the signal OSNR.
However, at the lower frequency regime a rise of the noise level at a higher pump power is observed.
This noise enhancement can be attributed to the RIN transfer from the Raman pump. It is noted that
the frequency regime of the enhanced noise is important for a potential effective mitigation by optical
or digital means, as it defines the mitigation bandwidth of the optical or digital filter.

The Q factor (calculated from the measured bit error rate) is presented in Figure 4 as a function
of the Raman pump power. The results for 200 km at a launched signal power of 5 and 2 dBm with
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the two different pumping schemes were taken after demodulation by the DDPLL, QPSKP and BPS
algorithms, respectively. From the results it can be seen that with the increase of the pump power,
the performance firstly improves due to the enhanced OSNR as shown in Figure 2. The optimum
was found at around 550 mW in all cases. Figure 5 shows the constellations of DP-16QAM with
the bidirectional pumping scheme for different pump powers. It is noted that in the constellations
with a high pump power, nonlinear distortions are not clearly observed. The signal suffers from
the induced amplitude and phase noise as shown in Figure 3, indicating that the induced noise
dominates the performance despite the high OSNR values at the higher pump power. Consequently,
unrepeatered coherent transmission should be optimized by balancing the signal OSNR and the
Raman pump–induced impairments. By comparing the backward and bidirectional pumping schemes,
we could observe a clear performance improvement around the optimum pump power, enabling the
bidirectional pumping scheme to achieve a Q factor above the 8.5 dB HD-FEC limit after 200 km SSMF
unrepeatered transmission. Moreover, it was observed that the BPS slightly outperformed DDPLL
and QPSKP in mitigating the Raman-induced impairments, thanks to the accurate phase tracking
capability at the high OSNR [27]. One should note that due to the experimental constraints, the power
ratio between the forward and backward pump was fixed during this work; however, it is worth
further investigation as an important aspect to draw a more generic conclusion. Additionally, a longer
fiber span, higher modulation orders, as well as higher-order pumping schemes are to be investigated
in our further studies.
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Figure 4. Q factor versus pump power for both (a) backward and (b) bidirectional pumping schemes
with DDPLL, QPSKP and BPS algorithms, respectively, for launched signal powers of 5 and 2 dBm.
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4. Conclusions

We have experimentally characterized the induced amplitude and phase noise due to the RIN of
the Raman pump and studied their impact on the system performance of an unrepeatered 224 Gbit/s
DP-16QAM link. The results show that a Q factor above the 8.5 dB HD-FEC limit after 200 km
SSMF can be achieved with a bidirectional pumping scheme, using an optimized pump power and
a small fraction (5%) of the pump in the forward direction. At low pump powers, additive noise
due to a low OSNR is the dominant noise source, while at high pump powers, the induced noise
from the Raman pump dominates. Additionally, the noise enhancement in both the amplitude and
phase was observed to concentrate on the low-frequency regime, while the high-frequency regime
was not as influenced. This indicates that the system performance may be further improved at high
pump powers by suppressing the RIN transfer or by using advanced higher-order pumping schemes,
or with certain digital mitigation methods focusing on low-frequency noise suppression. Further
experimental studies for various types of impairments and their balance is required for the optimal
design of the advanced multi-level modulation format signal–based unrepeatered transmission systems
using higher-order DRFA. On the other hand, RPN impairment mitigation with more powerful DSP
algorithms is worth investigating.
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Abbreviations

The following abbreviations are used in this manuscript:

BPS Blind Phase Search
CD Chromatic Dispersion
CPR Carrier Phase Recovery
DAC Digital to Analog Converter
DDPLL Decision-Directed Phase-lock-loop
DFRA Distributed Raman Fiber Amplifier
DSO Digital Storage Oscilloscope
DSP Digital Signal Processing
ECL External Cavity Laser
EDFA Erbium Doped Fiber Amplifier
HD-FEC Hard-Decision Forward Error Correction
IQ In-phase and Quadrature-phase
LO Local Oscillator
OBPF Optical Bandpass Filter
PolMux Polarization Multiplexing
PPG Pulse Pattern Generator
PSD Power Spectrum Density
RIN Relative Intensity Noise
RPN Relative Phase Noise
SSMF Standard Single Mode Fiber
QPSK Quadrature Phase Shift Keying
QPSKP QPSK Partitioning
QAM Quadrature Amplitude Modulation
VOA Variable Optical Attenuator
WDM Wavelength Division Multiplexer
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