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Abstract

This thesis addresses the problem associated with the approximation of
signals as linear superposition of elementary components often called ‘atoms’.
After highlighting the limitations of using only orthogonal elements, the ap-
proximation technique is extended to consider the selection of atoms from a
large redundant set, called a ‘dictionary’. In particular, a highly correlated
‘mixed dictionary’ is considered, from which the atoms are selected through
highly non-linear techniques known as Matching Pursuit Strategies. These
techniques evolve by stepwise selection of dictionary atoms. In particular,
a relatively new strategy named Block wise Orthogonal Matching Pursuit is
considered. This technique operates on images divided into blocks and ex-
tends the stepwise selection of dictionary atoms to also select the blocks to
be approximated at each iteration step. The implementation of block selec-
tion introduces extra storage requirements, which has motivated the Macro
Processing Scheme proposed in this thesis. The project also focuses on the
effectiveness of the approach with regards to processing time. In this respect,
a C++ implementation of the Block wise Orthogonal Matching Pursuit tech-
nique has been developed to operate in MATLAB environment. Using the
developed tools a number of comparative tests, with respect to sparse image
representation, have been performed and analysed.
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1 INTRODUCTION

1 Introduction

An approximation is an inexact representation of something that is still close

enough to be useful.

Approximation is applied to numbers or functions, which is related to data

representation in the form of signals. A signal is any quantity varying with one

or more parameters. It is often represented by a function and approximated by

a linear combination of other known approximating functions. Approximating

functions are either orthogonal or non-orthogonal, and depending on what they

are, effects the way a signal is approximated. The project focuses on highly non-

linear approximations which need to be tackled by highly non-linear techniques.

Considerations are restricted to Matching Pursuit (MP) Strategies. In particular

an effective implementation of a relatively new strategy: block wise Orthogonal

Matching Pursuit strategy in 2D (BWOMP2D) is developed. The BWOMP2D

operates on a 2D image divided into small blocks. It selects the block to be

approximated at each iteration step and uses the method Orthogonal Matching

Pursuit in 2D (OMP2D) to approximate the blocks. Approximations of images by

the BWOMP2D strategy are restricted to medium size images, due to the storage

demands. As we discuss here, while the technique can be successfully applied up

to some image size, there is the challenge of its application on much larger images.

Motivated by the need of overcoming this limitation we propose a scheme to process

large images, that we call the macro processing scheme. We further address the

issue of an effective implementation of the BWOMP2D approach by developing a

C++ implementation, to be applied in a MATLAB platform by what is called a

C++ MEX file. The developed tools are used in numerical experiments which are

conceived for well defined comparative purposes.

The thesis is organised as follows: Section 2 is dedicated to revise some prelimi-

nary mathematics needed for the project. Section 3 focuses on linear and non-linear

approximations based on orthonormal functions. The next section, Section 4 ad-

dresses the matters arising by extending non-linear approximations to consider

non-orthogonal functions, which gives rise to highly non-linear approximations.

In this section the greedy techniques considered by this project, namely the block

wise extension of the Orthogonal Matching Pursuit, BWOMP, are introduced. Sec-

tion 5 is dedicated to comparing approaches for image approximation. Section 6

moves on to producing perceptually lossless approximations with the BWOMP2D

approach. Section 7 further examines the effectiveness of the BWOMP2D strategy

on different image resolutions. Section 8 demonstrates how to enhance performance

of the BWOMP2D approach, and the macro processing scheme is introduced in

Section 9. The scheme is finally tested in Section 10, and Section 11 draws final

conclusions.
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2 PRELIMINARY MATHEMATICS

2 Preliminary Mathematics

We revise here the basic mathematical concepts involved in the thesis.

2.1 Vector Space

A vector space over a field F is a set V together with two operations vector addition,

denoted v + w ∈ V for v, w ∈ V and scalar multiplication, denoted av ∈ V for

a ∈ F and v ∈ V , such that the following axioms are satisfied:

1. v + w = w + v, v, w ∈ V

2. u+ (v + w) = (u+ v) + w, u, v, w ∈ V

3. There exists an element 0 ∈ V , called the zero vector, such that v + 0 = v,

v ∈ V

4. There exists an element ṽ, called the additive inverse of v such that v + ṽ =

0, v ∈ V

5. ab(v) = (ab)v, a, b ∈ F and v ∈ V

6. a(v + w) = av + aw, a ∈ F and v, w ∈ V

7. (a+ b)v = av + bv, a, b ∈ F and v ∈ V

8. 1v = v, v ∈ V, where 1 denotes the multiplicative identity in F

The elements of a vector space are called vectors. [11].

2.2 Inner product

An inner product on a vector space V is a map from V to F which satisfies the

following axioms. Let u, v and w ∈ V and a ∈ F .

� < u+ v, w >=< u,w > + < v,w >

� < av,w >= a < v,w >

� < v,w >=< w, v > or for a complex vector space < v,w >= < w, v >

� < v, v >> 0 and equal to zero if and only if v = 0

A vector space together with an inner product on it, is called a inner product

space. [11].

2.3 Inner Product Spaces

2.3.1 Euclidean space

Euclidean n-space, sometimes called Cartesian space or simply n-space, is the space

of all n-tuples of real numbers, x = (x1, x2, ..., xn). It is commonly denoted R. [11].

For the Euclidean space Rn the inner product is given by the dot product

< x,y >= x1y1 + x2y2 + ...+ xnyn

12



2 PRELIMINARY MATHEMATICS

2.3.2 L2(a, b) space

The L2(a, b) space is the space of functions f(x) such that

‖f(x)‖ =

√∫ b

a
|f(x)|2 <∞ (1)

Furthermore the inner product for two complex functions f and g in L2(a, b) is

defined as

< f(x), g(x) >=

∫ a

b
f(x)g(x)dx. (2)

Since f(x) ∈ L2(a, b) and g(x) ∈ L2(a, b) we have,

‖f(x)‖2 =

∫ b

a
|f(x)|2 dx <∞ (3)

and

‖g(x)‖2 =

∫ b

a
|g(x)|2 dx <∞, (4)

and it can be proved that

−∞ << f(x), g(x) >=

∫ a

b
f(x)g(x)dx <∞. (5)

Proof

Since

< f(x), g(x) >=

∫ a

b
f(x)g(x)dx

we have

|< f(x), g(x) >| =
∣∣∣∣∫ a

b
f(x)g(x)dx

∣∣∣∣
From the Cauchy-Schwarz inequality (see Appendix A for the proof),

|< f(x), g(x) >|2 6 ‖f(x)‖2 ‖g(x)‖2

and by taking the square root,

|< f(x), g(x) >| 6 ‖f(x)‖ ‖g(x)‖

Since f(x) and g(x) are in L2(a, b), ‖f(x)‖ <∞ and ‖g(x)‖ <∞, therefore

|< f(x), g(x) >| 6 ‖f(x)‖ ‖g(x)‖ <∞

which implies

|< f(x), g(x) >| =
∫ a

b
f(x)g(x)dx <∞

QED
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2 PRELIMINARY MATHEMATICS

2.4 Basis and Orthogonal Basis in finite Dimension

A basis of a finite dimension vector space Rn is defined as a set {vi}ni=1 of vec-

tors in Rn that are linearly independent and span Rn, i.e Rn = span {vi}ni=1 .

Consequently, every v ∈ Rn can be uniquely written as,

v = c1v1 + c2v2 + ...+ cnvn

v =

n∑
i=1

civi

where c1, c2..., cn are in general complex numbers.

Two vectors v1, v2 are orthogonal if < v1, v2 >= 0, and a basis is orthogonal if

all vectors belonging to the basis are pairwise orthogonal.

A basis is orthonormal if it is orthogonal and all vectors belonging to the basis

have unit length. So,

< vi, vj >= δij where δij =

{
0 if i 6= j

1 if i = j
(6)

For a finite dimension subspace of L2(a, b) an orthonormal basis is a set {ψi(x)}Ni=1

spanning the subspace such that < ψi(x), ψj(x) >= δij , with < ψi(x), ψj(x) >=∫ a
b ψi(x)ψj(x)dx. In order to span the whole space the basis needs to be infinite.

2.5 Wavelet Transform

2.5.1 Continuous Case

Many signals and images exhibit piecewise smooth behaviour punctuated by tran-

sients. For example, speech signals are characterised by short bursts encoding con-

sonants followed by steady-state oscillations indicative of vowels, and natural im-

ages have edges. Unlike the Fourier basis, wavelet bases are adept at sparsely rep-

resenting piecewise regular signals and images, which include transient behaviour.

The advantage of wavelets is that they are capable of revealing aspects of data that

other signal analysis techniques miss, aspects like trends, breakdown points, dis-

continuities in higher derivatives, and self-similarity. They also have the capability

to compress a signal without noticeable degradation.

A wavelet function φ ∈ L2(R), (often referred to as the mother wavelet) can

be described as a function effectively limited in time domain, i.e. φ has values in

a certain range and zero elsewhere. One property of the mother wavelet is that it

has zero mean and has a non-zero norm.

Given ∫ ∞
−∞

φ(t) dt = 0

and

‖φ(t)‖2 =

∫ ∞
−∞

φ(t)φ∗(t) dt = 1

14



2 PRELIMINARY MATHEMATICS

the mother wavelet can form an orthonormal basis set denoted by{
φs,u(t) =

1√
s
φ

(
t− u
s

)}∣∣∣∣
s∈R,u∈R+

where s is the scaling parameter greater than zero, and u is the translating param-

eter used to locate the region of interest. Parameter s is inversely proportional to

the frequency, so if we want to focus on low frequencies larger s is used, while for

higher frequencies small s is used.

The wavelet transform (WT) of a one-dimensional signal f(t) ∈ L2(R) is given

by

Wf(s, u) = < f(t), φs,u(t) >

=

∫ ∞
−∞

f(t)φ∗s,u(t) dt

=

∫ ∞
−∞

f(t)
1√
s
φ∗
(
t− u
s

)
dt

and the inverse wavelet transform (IWT) is given by

f(t) =
1

Cφ

∫ ∞
0

∫ ∞
−∞

Wf(s, u)
1√
s
φ∗
(
t− u
s

)
du
ds

s2

where Cφ is defined as

Cφ =

∫ ∞
0

|ϕ(ω)|2

ω
dω <∞

and ϕ(ω) is the Fourier transform of the mother wavelet φ.

Wavelet transformation can be applied to image approximation in the following

way. Let X be the input image and Y the approximated image. One possibility of

an image process is OMP2D.

X
WT−→ X̃

Process−→ Ỹ
IWT−→ Y

2.5.2 Discrete Case

Definition

The Discrete Wavelet Transform (DWT) can be described as a series of filtering

and down sampling (decimating in time). One type of filter is a low pass filter.

A low pass filter is an electronic filter that passes low-frequency signals but re-

jects (reduces the amplitude of) signals with frequencies higher than the cutoff

frequency. The actual amount of reject for each frequency varies from filter to

filter. A high pass filter is the opposite of a low pass filter and a band pass filter

is a combination of a low pass and a high pass.

15



2 PRELIMINARY MATHEMATICS

Calculating Coefficients

To obtain the DWT the coefficients are calculated by applying a high pass wavelet

filter to the signal and down sampling the result by a factor of 2. At the same

level, a low pass scale filter is also performed followed by down sampling to pro-

duce the signal for the next level. The resolution of the signal, which is a measure

of the amount of detail information in the signal, is determined by the filtering

operations, and the scale is determined by sub sampling operations.

At each decomposition level, the half band filters produce signals spanning only

half the frequency band. This doubles the frequency resolution as the uncertainty

in frequency is reduced by half. Thus, while the half band low pass filtering remove

half of the frequencies and thus halves the resolution, the decimation by 2 doubles

the scale. With this approach, the time resolution becomes arbitrarily good at

high frequencies, while the frequency resolution becomes arbitrarily good at low

frequencies. The filtering and decimation process is continued until the desired

level is reached. The maximum number of decomposition levels depends on the

length of the signal.

1D DWT and Inverse DWT

Figure 1(a) depicts the multi-level decomposition process for the 1D case of DWT.

Starting form A(j), this level provides two sets of coefficients: approximation co-

efficients cA(j + 1), and detail coefficients cD(j + 1). These vectors are obtained

by convolving A(j) with the low pass filter for approximation, and with the high

pass filter for detail, followed by decimation. We down sample by keeping the

even indexed elements. The first level of a signal would start with A(0), where

A(0) is the signal. In Figure 1(a), the length of each filter is equal to 2N , and if

n = length(cA(j)), then the signals F and G are of length n+2N−1, and the coef-

ficients cA(1) and cD(1) are of length floor
(
n−1
2

)
+N . The next level decompose

approximation coefficients cA(1) in two components using the same scheme, (re-

placing cA(0) by cA(1) in Figure 1(a), and producing cA(2) and cD(2), and so on.

For the 1D case of DWT the original signal is then obtained by concatenating all

the coefficients starting from the last level of decomposition. The wavelet decompo-

sition of the signal s analysed at level j has the structure [cA(j), cD(j), . . . , cD(1)].

The Inverse Discrete Wavelet Transform (IDWT) is the reverse process of 1D

decomposition. The approximation and detail coefficients at every level are up

sampled by a scale factor of 2, and passed through the low pass and high pass

filters and then added. This process is continued through the same number of

levels as in the decomposition process to obtain the original signal. For 1D Inverse

DWT we up sample by adding zero at the odd indexed elements.

2D DWT and Inverse DWT

For multi level 2D Discrete Wavelet Transform the decomposition process in de-

picted in Figure 1(b). When X is represented by a m by n matrix, the output

arrays cA, cDh, cDv, cDd are also m by n matrices. Matrices cDh, cDv and

16



2 PRELIMINARY MATHEMATICS

cA( j )

Low Pass

Filter

High Pass

Filter

Sample

Sample

cA( j+1 )

cD( j+1 )

F

G

(a) 1D DWT. Decomposition provides two components: the
approximation at level j + 1, and the detail.

Low Pass

Filter
Columns

Low Pass

Filter

High Pass

Filter

Rows

Rows

High Pass

Filter
Columns

Low Pass

Filter

High Pass

Filter

Rows

Rows

CA( j )

CA( j+1 )

CDh( j+1 ) 

CDv( j+1 )

CDd( j+1 )

Columns

Rows

(b) 2D DWT. Decomposition provides four components: the approximation at level j + 1, and
the details in three orientations.

Figure 1: Multi-level Discrete Wavelet Transform. Decomposition of approxima-
tion coefficients at level j.
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3 APPROXIMATION BASED ON ORTHONORMAL FUNCTIONS

cDd are the detail coefficients in three orientations, horizontal, vertical, and diag-

onal respectively. For 2D DWT we down sample the columns by keeping the even

indexed columns, and then down sample the rows by keeping the even indexed

rows.

For 2D IDWT is the reverse process of 2D decomposition. We would up sample

the rows by adding zeros at the odd indexed elements, and up sample the columns

by adding zeros at the odd indexed elements. Figure 2(b) illustrates the results of

DWT applied to the Lichtenstein Castle image shown in Figure 2(a), with 5 levels

of decomposition.

(a) Lichtenstein Castle

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Wavelet Transform

Figure 2: Discrete Wavelet Transform of level 5 applied to the image shown in
Figure 2(a).

3 Approximation based on Orthonormal Functions

There are two types of approximations with orthonormal functions, one is the

linear approximation and the other is the non-linear approximation.

3.1 Linear Approximation

The linear approximation with orthonormal functions considers only the first M

elements for approximation. Therefore a signal f(x) is approximated by fA(x),

where

fA(x) =
M∑
i=1

ciψi(x),

and the coefficients can be calculated as

ci =< f(x), ψi(x) >=

∫ b

a
f(x)ψi(x)dx.

3.2 Non-linear Approximation

For the non-linear approximation with orthonormal functions only the M largest

absolute value coefficients are considered.

The coefficients are calculated as ci =< f(x), ψi(x) >, i = 1, . . . , N and the M

largest absolute values are found by ordering the quantities |ci| , i = 1, . . . , N . The

largest absolute value coefficients are taken because this minimises the norm error
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3 APPROXIMATION BASED ON ORTHONORMAL FUNCTIONS

between f(x) and the approximated function fA(x), i.e minimises
∥∥f(x)− fA(x)

∥∥.

In this case the non-linear approximation with orthonormal functions is

fA(x) =
∑
i∈I

ciψi(x),

where I is a set containing the indexes corresponding to the M largest absolute

value coefficients.

3.3 Difference between Linear and Non-linear Approximation

The difference between the linear and non-linear approximation is that the linear

approximation satisfies the linear properties, i.e it satisfies

L(c1f(x) + c2g(x)) = c1L(f(x)) + c2L(g(x))

where L is the linear approximation operation.

Proof

Consider the approximation of f and g where f and g ∈ L2(a, b)

fA(x) =
M∑
i=1

aiψi(x) with ai =

∫ b

a
f(x)ψi(x)dx

and

gA(x) =
M∑
i=1

biψi(x) with bi =

∫ b

a
f(x)ψi(x)dx

Let h(x) = c1f(x) + c2g(x) and

hA(x) =
M∑
i=1

diψi(x) with di =

∫ b

a
h(x)ψi(x)dx

Hence

di =
∫ b
a (c1f(x) + c2g(x))ψi(x)dx

= c1
∫ b
a f(x)ψi(x)dx+ c2

∫ b
a g(x)ψi(x)dx

= c1ai + c2bi

and

hA(x) =
∑M

i=1 diψi(x)

=
∑M

i=1 (c1ai + c2bi)ψi(x)

=
∑M

i=1 c1aiψi(x) +
∑M

i=1 c2biψi(x)

= c1f
A(x) + c2g

A(x).

This means function h(x) can be approximated by an approximating function

hA(x) - which is the sum of other linear approximating functions fA(x) and gA(x).
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3 APPROXIMATION BASED ON ORTHONORMAL FUNCTIONS

This allows approximations to be calculated separately. For the non-linear approx-

imation this relation does not hold. In general the norm error of the non-linear

approximation is less than or equal to the norm error of the linear approximation.

3.4 Calculating the Error of Linear Approximation

Definitions

Point-wise Error

E(x) =
∣∣f(x)− fA(x)

∣∣2 (7)

Error in norm over the range [a, b]

‖E(x)‖2 =

∫ b

a

∣∣f(x)− fA(x)
∣∣2 dx (8)

Proposition

The error in (8) can be written
∥∥f(x)− fA(x)

∥∥2 =
∑∞

i=M+1 |ci|
2

Proof

We have f(x) =
∑∞

i=1 ciψi(x) where ci =< f(x), ψi(x) > and fA(x) =
∑M

i=1 ciψi(x)

where ci =< fA(x), ψi(x) > and so

f(x)− fA(x) =
∞∑

i=M+1

ciψi(x)

Let ∆ = f(x)− fA(x) =
∑∞

i=M+1 ciψi(x) then

∥∥f(x)− fA(x)
∥∥2 = < f(x)− fA(x), f(x)− fA(x) >

= < f(x)− fA(x),∆ >

= < f(x),∆ > − < fA(x),∆ >

where < fA(x),∆ >= 0 since

< fA(x),∆ >= <
∑M

i=1 ciψi(x), f(x)− fA(x) >

= <
∑M

i=1 ciψi(x),
∑∞

j=M+1 cjψj(x) >

=
∑M

i=1 ci < ψi(x),
∑∞

j=M+1 cjψj(x) >

=
∑M

i=1 ci
∑∞

j=M+1 cj < ψi(x), ψj(x) >

=
∑M

i=1

∑∞
j=M+1 cicjδij

and because i never equals j, δij = 0, hence < fA(x),∆ >= 0
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3 APPROXIMATION BASED ON ORTHONORMAL FUNCTIONS

So,

∥∥f(x)− fA(x)
∥∥2 = < f(x),∆ > − < fA(x),∆ >

= < f(x),∆ > −0

= < f(x),
∑∞

i=M+1 ciψi(x) >

=
∑∞

i=M+1 ci < f(x), ψi(x) >

=
∑∞

i=M+1 cici

=
∑∞

i=M+1 |ci|
2

This concludes by taking the M largest absolute value coefficients it minimises

the norm error between f(x) and the approximated function, as the norm error is

calculated by taking the sum of the remaining absolute value coefficients squared.

3.5 Numerical Example

We will now look at two examples of signal approximation using linear and non-

linear approximations, and assess how well the signals are approximated by looking

at the norm errors. Firstly we will approximate a chirp signal f(x) in the range

[0,7] and calculate the norm error for both types of approximation. Figure 3(a)

shows the chirp signal to be approximated using Fourier functions, ψn(x) = e
2πnxi

7 .

For this signal when M is small, e.g. M = 90, the first M coefficients (shown

in the middle of Figure 3(b)), are not the M largest absolute value coefficients

selected for non-linear approximation, and so the relative error norms are not

equal. Table 1 shows that as you get to a certain number of coefficients, e.g.

M=130, the error norm becomes equal for both types of approximations. This is

because the absolute values of the coefficients of the Fourier Transform shown in

Figure 3(b) monotonically decay as M increases, which means that the first M

coefficients for the linear approximation are in actual fact the M largest absolute

value coefficients used for the non-linear approximation, hence the corresponding

error norms are equal. If we approximate another signal this is not likely to happen.

Table 1 indicates using 200 coefficients the linear and non-linear approximation

may produce an acceptable approximation of the signal. Indeed, the norm of the

error is about 6% of the signal norm, and the signal is given by 1000 points. This

implies that the representation by coefficients reduces the dimension of the data 5

times for a error norm of 6%.
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(a) Chirp signal in [0,7]
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(b) Absolute value coefficients

Figure 3: A chirp signal in [0,7], and the absolute value coefficients of the Fourier
Transform.
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3 APPROXIMATION BASED ON ORTHONORMAL FUNCTIONS

Number of Coefficients Linear Non-linear

90 0.5227 0.4640

100 0.4408 0.3845

110 0.3426 0.2947

120 0.1931 0.1921

130 0.1170 0.1170

140 0.0911 0.0911

180 0.0646 0.0646

200 0.0591 0.0591

Table 1: The relative error norm to the chirp signal shown in Figure 3(a), for linear
and non-linear approximation verse the number of coefficients.

(a) Finger print
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(b) The signal in [0,120] corresponding to the
single line.

Figure 4: A finger print and a signal corresponding to the single line of the finger
print.

Number of Coefficients Linear Non-linear

48 0.3735 0.1580

58 0.1438 0.1154

68 0.1028 0.0890

78 0.0809 0.0685

88 0.0568 0.0476

98 0.0468 0.0236

Table 2: This table shows the relative error norm corresponding to the finger print
signal shown in Figure 4(b) for linear and non-linear approximation.

The other signal we approximate using Fourier functions is a single line of a

human finger print. The finger print is shown in Figure 4(a), and the single line

signal to be approximated is shown in Figure 4(b). It is evident from Table 2

that as you increase the number of coefficients the error norm of the linear and

non-linear approximations decrease. However, even though the non-linear approx-

imation is better than the linear, since it produces smaller error norm, it still does

not provide a useful approximation for the finger print line. Certainly, consid-

ering that the signal is given by only 108 sample points a quality approximation

would require too many coefficients, thereby, making the approximation not useful.

From this example one can conclude that there are signals that can not be usefully

approximated by linear or non-linear approximation using Fourier functions.
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4 HIGHLY NON-LINEAR APPROXIMATIONS

4 Highly Non-linear Approximations

We have discussed the approximation of a function f(x) using orthogonal functions

by the expansion fA(x) =
∑n

i=1 ciψi(x) where < ψi(x), ψj(x) >= δij . In this case,

fA(x) is the orthogonal projection of f(x) in the subspace Vn = span {ψi(x)}ni=1

and therefore is the unique function in Vn minimising the distance to f(x), see

Appendix B. Moreover, if the approximation were to be improved by considering

more terms in the expansion, the new approximation is obtained by adding more

terms, but the coefficients in fA(x) are NOT modified.

When one wants to approximate f(x) with non-orthogonal functions {Φi(x)}ni ,

the problem is more complicated: The approximation still takes the form

fA(x) =

n∑
i=1

ciΦi(x)

however, since < Φi(x),Φj(x) >6= δij , the coefficient ci cannot be calculated as in

the orthogonal case. Furthermore, each time an approximation is to be improved

by adding more terms in the expansion, all the coefficients have to be recalcu-

lated to guarantee that the new approximation minimises the distance to the given

signal. The other problem that this sort of approximation has to consider is the

one of choosing the functions involved in the approximation. For these reasons

an approximation by non-orthogonal functions is said to be a highly non-linear

approximation.

4.1 Matching Pursuit Strategies

As already discussed, by using non-linear approximations with orthogonal functions

one may not obtain an economical approximation for some signals, i.e., to produce

a good approximation we may have to use almost as many coefficients as sampling

points giving the signal. With the limitation of orthogonal functions it is useful to

release the orthogonal property and approximate signals as a linear superposition

of elementary functions often called atoms, where the atoms are selected from a

large redundant set, called a dictionary. This thesis emphasizes the fact that, when

appropriate dictionaries are used, highly non-linear techniques, such as Matching

Pursuit Strategies, may produce far more economical approximations. One can

expect this outcome because those techniques give more freedom to choose the

functions for the signal expansion. Consequently less coefficients should be required

to produce a good level of approximation. We restrict consideration to two greedy

strategies: the first is called Orthogonal Matching Pursuit (OMP) [6] and the

second is Bock wise Orthogonal Matching Pursuit (BWOMP) [10].

4.2 Selection Strategies

The OMP algorithm is a greedy selection technique for approximating signals by

recursive selection of elementary components taken from a dictionary. Especially

when applied using separable dictionaries which are a mixture of a redundant co-

sine component and a component consisting of atoms of small support, OMP in
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4 HIGHLY NON-LINEAR APPROXIMATIONS

2D (called OMP2D) has been shown to be very effective for approximating natu-

ral images [1, 2], in particular astronomical images [3]. Since the approximations

considered in those papers aim to yield high approximations of high PSNR, the

possibility of blocking artefacts is not considered. However, for some classes of im-

ages containing large sections with uniform background, or some classes of X-ray

images, blocking artefacts may become an issue. It is the aim of this project to

illustrate the fact that by processing images in the wavelet domain blocking is not

visually detected as such. Moreover, using appropriate dictionaries, the levels of

achieved sparsity is very high.

Sparse image approximation in the wavelet domain has been successfully ap-

plied for image coding by schemes that apply the greedy Matching Pursuit (MP)

strategy using localised atoms, which are chosen by stepwise selection involving the

whole transformed image of regions corresponding to different wavelet bands [4,5].

Since we restrict considerations to high quality approximations, (yielding high

PSNR), the greedy technique OMP2D is expected to perform considerably better

than MP. Hence we discuss here an improvement of OMP2D which also selects

atoms in an stepwise manner involving large regions of an image (if not the whole

image itself) but maintaining the blocking processing structure to keep the tech-

nique effective in terms of processing time.

4.2.1 OMP2D selection

Given an image I ∈ RLx×Ly and two 1D dictionaries Dx = {dxn ∈ RLx}Mx
n=1 and

Dy = {dym ∈ RLy}My

m=1 the greedy procedure OMP2D for approximating I by the

superposition

IK(i, j) =
K∑
n=1

cKn d
x
`xn

(i)dy
`yn

(j) , i = 1, . . . , Lx, j = 1, . . . , Ly (9)

with atoms dx`xn and dy
`yn
, n = 1, . . . ,K, selected from Dx and Dy respectively,

evolves as follows.

On setting R0 = I at iteration k+1 the algorithm selects the atoms dx`xk+1
∈ Dx

and dy
`yk+1
∈ Dy that maximise the absolute value of the Frobenius inner products

〈dxn,Rkdym〉F, n = 1, . . . ,Mx, m = 1, . . . ,My, i.e.,

`xk+1, `
y
k+1 = arg max

n=1,...,Mx
m=1,...,My

|
Lx,Ly∑
i=1
j=1

dxn(i)Rk(i, j)dym(j)|

with

Rk(i, j) = I(i, j)−
k∑

n=1

ck(n)dx`xn(i)dy
`yn

(j).

(10)

The coefficients ck(n), n = 1, . . . , k in the above expansion are such that ‖Rk‖F
is minimum, where ‖ · ‖F is the Frobenius norm. This is ensured by request-

ing that Rk = I − P̂VkI, where P̂Vk is the orthogonal projection operator onto

Vk = span{dx`xn ⊗dy
`yn
}kn=1. A straightforward generalisation of the implementation
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4 HIGHLY NON-LINEAR APPROXIMATIONS

discussed in [6, 7] for the 1D case provides us with the representation of P̂VkI as

given by,

P̂VkI =

k∑
n=1

An〈Bk
n, I〉F =

k∑
n=1

ck(n)An, (11)

where each An ∈ RLx×Ly is an array with the selected atoms An = dx`xn ⊗ dy
`yn

and

Bk
n, n = 1, . . . , k are the concomitant reciprocal matrices, which are the unique

elements of RLx×Ly satisfying the conditions:

i) 〈An,B
k
m〉F = δn,m =

1 ifn = m

0 ifn 6= m.

ii) Vk = span{Bk
n}kn=1.

Such matrices can be adaptively constructed through the recursion formula:

Bk+1
n = Bk

n −Bk+1
k+1〈Ak+1,B

k
n〉F, n = 1, . . . , k

where

Bk+1
k+1 = Ck+1/‖Ck+1‖2F, with C1 = A1 and Ck+1 = Ak+1 −

k∑
n=1

Cn

‖Cn‖2F
〈Cn,Ak+1〉F.

(12)

For numerical accuracy in the construction of the set Cn, n = 1, . . . , k + 1 at

least one re-orthogonalisation step is usually needed. It implies that one needs to

recalculate these matrices as

Ck+1 = Ck+1 −
k∑

n=1

Cn

‖Cn‖2F
〈Cn,Ck+1〉F. (13)

The coefficients in (11) are obtained from the inner products ck(n) = 〈Bk
n, I〉F, n =

1, . . . , k. The algorithm iterates up to step, say K, for which, for a given ρ, the

stopping criterion ‖I− IK‖F < ρ is met. The MATLAB function OMP2D, and the

corresponding MEX file in C++ for faster implementation of the identical function,

are available at [8].

4.2.2 Block wise OMP2D selection

For effective processing of images with the OMP2D approach it has to be applied

on small blocks of size, say, Lx × Ly pixels, partitioning the image. From here on

a block of size 8× 8 pixels will be defined as block of size 8, i.e., block of size 8 will

consist of 8 × 8 = 64 pixels, and a block of size 16 will consist of 16 × 16 = 256

pixels. One possibility for this is to process the blocks totally independently and

then assemble them together to produce the approximated image. Alternatively,

we consider here the possibility for stepwise selection not only of the atoms but

also the blocks for which the atoms are chosen. In other words, if an image I is

assumed to the composition of Q identical blocks, i.e.,

I = ∪Qq=1Iq,
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4 HIGHLY NON-LINEAR APPROXIMATIONS

where each block Iq is approximated as

Ikq(i, j) =

kq∑
n=1

ckq(n)dx`x,qn (i)dy
`y,qn

(j), i, j = 1, . . . Lq. (14)

The atoms dx
`x,qn

and dy
`y,qn

are recursively chosen to improve, at step k + 1, the

approximation of the block, q, such that

`x,qk+1, `
y,q
k+1 = arg max

n=1,...,Mx
m=1,...,My

h=1,...,Q

|
Lx,Ly∑
i=1
j=1

dxn(i)Rkh(i, j)dym(j)|

with

Rkh(i, j) = I(i, j)−
kh∑
n=1

ckh(n)dx
`
x,h
n

(i)dy
`y,hn

(j).

(15)

This selection forces the storage of matrices (12), for each block partitioning the

image. While the complexity order of this variation of the technique does not

change with respect to the block independent version of OMP2D, the storage de-

mands significantly increase. The corresponding increment is in direct relation

with the partition cardinality. Hence, for large images the process needs to be

dedicated to deal with images of that nature. As already mentioned, a central aim

of this project is to investigate the possibility of applying, in an effective manner,

the block wise selection strategy, that we term BWOMP2D, in conjunction with

dictionaries that were specially designed to work within the wavelet domain.

4.3 Mixed dictionary for sparse image representation

The success in the economy of a representation depends on the dictionary being

suitable for the signal in hand. We introduce at this point the dictionaries that

will be used in the forthcoming sections.

Let dictionary Da be defined as

Da = {vi; vj,i = pi cos(
π(2j − 1)(i− 1)

2M
), j = 1, . . . , N}Mi=1,

with pi, i = 1, . . . ,M normalisation factors and the notation vj,i indicating the

component j of vector vi ∈ RN . If M = N this set is a Discrete Cosine (DC)

orthonormal basis for RN . If M = 2lN , with l a positive integer, the set is a

DC dictionary with redundancy 2l which we will call Redundant Discrete Cosine

(RDC) dictionary.

For constructing a mixed dictionary for image approximation, in addition to the

dictionary Da we further consider the set Db, which is a discrete Euclidean Basis

(EB) i.e.,

Db = {ei ∈ RN ; ej,i = δi,j , j = 1, . . . , N}Ni=1,
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where δi,j = 1 if i = j and zero otherwise.

The third set Dc is obtained by the translation of prototype atoms (PrA). Al-

together there are 7 different types. Atom type 1 and type 3 are triangles (‘Hats’)

of base 3 and base 5, and type 2 and type 4 are the complements to unity of type

1 and type 2 respectively. Types 5, 6 and 7 are Haar wavelets of 2 points, 4 points

and 6 points.

It is the joint dictionary Dabc = Da ∪ Db ∪ Dc (RDC ∪ EB ∪ PrA) that will

be used with the selection strategies in the wavelet domain.

To achieve highly sparse image approximations it is important to use the ‘best’

dictionary. For general processing we only consider a mixed dictionary formed by

redundant Discrete Cosine components, discrete Euclidean Basis and components

obtained by the translation of prototype atoms, so using ‘better’ dictionaries one

would only enhance on the results obtained in this thesis. Figure 5 illustrates

one of the many atoms available from 8 different types of atoms, this includes the

Euclidean Basis.

4.4 Quality of a technique for signal approximation

The suitability of a technique for signal approximation can be quantified by a few

factors one of which is the speed. A fast technique is, of course, always preferable.

However, as already discussed a fast orthogonal technique may produce poorer

results than a non-orthogonal one, in relation to the number of coefficients needed

for representing the signal as a linear combination. When the number of coefficients

is much less than the number of sample points needed to represent the signal, the

decomposition is said to be sparse. The sparsity quality is the central property

that we aim to achieve in this project. Highly non-linear techniques are specially

suitable for this purpose. The price to be paid is in terms of computation time.

However, as we will demonstrate in subsequent sections, by segmenting the signal

the required time becomes very affordable and one can process large dimensional

signals such as 2D images using a laptop. We shall enhance the importance of non-

linear techniques for achieving a sparse representation of an image by comparing

the results with those yielded by two popular transforms: the Discrete Cosine

Transform (DCT) [12] and the Discrete Wavelet Transform [9,12].

4.5 Quality of an approximate image

The quality of an approximate signal can be measured by calculating the Peak

Signal to Noise Ratio (PSNR). The PSNR is generally used to analyse the quality

of an image, sound and video files in decibels (dB). In particular the PSNR calcu-

lation of two images of equal size, one original and an altered (approximate) image

describes how far two images are equal. The formula for the calculation is given

by

PSNR(dB) = 10 log

(
Imax

2
µ2
)
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(a) Type 1: Hat base 3: Atom 4
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(b) Type 2: Complement to unity of type 1:
Atom 4
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(c) Type 3: Hat base 5: Atom 6
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(d) Type 4: Complement to unity of type 3:
Atom 6
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(e) Type 5: Haar 2 point: Atom 8
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(f) Type 6: Haar 4 point: Atom 8
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(g) Type 7: Haar 6 point: Atom 8
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(h) Type 8: Euclidean Basis: Atom 3

Figure 5: Illustrates an atom from 8 different types of atoms.
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with

µ2 =

Ly∑
i=1

Lx∑
j=1

|Bij −Aij |2

Lx Ly

- A is the matrix representation of the original image.

- B is the matrix representation of the approximate image.

- µ2 is the mean square error.

- Lx is the number of pixels along the vertical axis.

- Ly is the number of pixels along the horizontal axis.

- Lx Ly is the total number of pixels in the image.

- Imax = 2LB − 1, where LB is the number of bits used to represent the original

image.

Numerically the higher the PSNR the better the quality of the approximate image.

Nevertheless it is possible to produce a pleasant looking approximation with a not

too high PSNR and vice versa. For other images the same PSNR may not produce

a visually pleasing approximation.

4.6 Measure of sparsity of an approximated image

The sparsity of an image gives detail on the level of gain achieved with respect to

the image. The whole aim is to be able represent an image with fewer data points,

and there by reducing the data storage requirements. The measure of sparsity, or

the Sparsity Ratio (SR) of an image is defined as follows,

SR =
Number of pixels in the image

Number of coefficients used for approximating the image

When considering the best strategy for sparse image representation it is im-

portant to keep the quality (PSNR value) of the comparable images the same,

and compare the respective SR values. The higher the SR value the sparser the

approximation.

5 Comparing Selection Strategies

In the following section the aim is to examine the effectiveness of the BWOMP2D

strategy in the wavelet domain. To do this BWOMP2D is first compared with the

Discrete Cosine Transform (DCT) in the pixel domain to see artefacts formed as

a result of block processing. The technique is also compared with existing pursuit

strategies OMP2D, MP in 2D (MP2D) and its extension BWMP2D in the wavelet

domain.

MP2D differs from OMP2D in (10) in that the coefficients ck are calculated simply

as
Lx,Ly∑
i=1
j=1

dxn(i)Rk−1(i, j)dym(j)
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and the selected atoms may be selected more than once.

5.1 Experiment 1: DCT, OMP2D and BWOMP2D: Artefacts

Aim

The aim of this experiment is to compare the visual result (blocking effect) of

approximate images using an existing orthonormal transform DCT to see if by

working in the pixel domain blocking artefacts are observed. For this experiment

the quality (PSNR value) of the approximate images are fixed, and the sparsity

(SR value) is compared. This experiment will determine which strategy produces

visually appealing approximated images under the current experimental conditions.

Methodology

When working with blocks an approximated image can be prone to blocking arte-

facts. This experiment involves approximating two images, the Lichtenstein Cas-

tle Figure 6(a) and the Planet Figure 6(b), using DCT in the pixel domain, and

OMP2D and BWOMP2D in the wavelet domain to see if such observations are

found. The Lichtenstein Castle image will be approximated using blocks of size

8 and to a PSNR value of 43. The Planet approximation image will be approxi-

mated to a higher PSNR value of 45. DCT approximations use the Discrete Cosine

(DC) dictionary, and OMP2D and BWOMP2D use the Redundant Discrete Co-

sine (RDC) dictionary mentioned in Section 4.3. OMP2D and BWOMP2D will use

Discrete Wavelet Transform (DWT) of level 5 prior to processing, and after pro-

cessing revert back to the pixel domain using Inverse Discrete Wavelet Transform

(IDWT) of level 5.

Discussion of results

For the both the Lichtenstein Castle and Planet approximation it is evident, by

processing an image in the pixel domain blocking artefacts are still visual for PSNR

values of 43 and 45 respectively, but other effects are not detected for images

processed in the wavelet domain. The blocking artefacts are shown in Figure 7(b),

and Figure 8(b). For both images, Table 3 in terms of sparsity show BWOMP2D

to be the sparser strategy. The Planet approximation results recorded in Table

2(a) shows BWOMP2D produces a SR value of 37.42, compared to OMP2D value

of 29.53 and DCT value of 26.51.

Conclusion

One of the main conclusions observed is that by working in the wavelet domain

blocking artefacts produced by block approximation are avoided. The reason for

this is because it is difficult to represent edges in a block, and so when a approx-

imate image is visualised in the same domain as being processed, the irregularity

of joining blocks is more evident. For this reason when an image is converted

to a different domain, i.e., the wavelet domain, the artefacts still exist but when

translated back to the pixel domain are less visual to the eye. This experiment
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5 COMPARING SELECTION STRATEGIES

also gives promising results for the BWOMP2D strategy, and it produces sparser

results compared to OMP2D and DCT.

(a) Lichtenstein Castle (512 × 512) (b) Planet (512 × 512)

Figure 6: Test images: Sample 1

(a) Lichtenstein (512 × 512)

PSNR = 43

Strategy DCT OMP2D BWOMP2D

SR 4.1523 5.3118 5.5429

(b) Planet (512 × 512)

PSNR = 45

Strategy DCT OMP2D BWOMP2D

SR 26.5113 29.5307 37.4224

Table 3: DCT, OMP2D and BWOMP2D approximation results, using blocks of
size 8, for the Lichtenstein Castle and Planet image shown in Figure 6. PSNR is
fixed for all images. Approximations use DC and RDC dictionary.
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5 COMPARING SELECTION STRATEGIES

(a) Lichtenstein Castle Original (b) DCT

(c) OMP2D (d) BWOMP2D

Figure 7: Lichtenstein Castle (512 × 512) approximations at PSNR 43 using blocks
of size 8.
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(a) Planet Original (b) DCT

(c) OMP2D (d) BWOMP2D

Figure 8: Planet (512 × 512) approximations at PSNR 45 using blocks of size 8.
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5.2 Experiment 2: MP2D vs OMP2D

Aim

The aim of this experiment is to illustrate if OMP2D produces sparser results than

MP2D in the wavelet domain for sample 1 test images shown in Figure 6. The aim

is also to realise which strategy has faster processing times.

Methodology

For this experiment the Lichtenstein Castle and Planet image shown in Figure 6,

are approximated using strategies MP2D and OMP2D. For this experiment each

image is processed using blocks of size 8, 16 and 32, and the respective SR values

are compared for both strategies. For fair comparison the PSNR values for all

block approximations of an image are fixed to 2 decimal places and DWT of level

5 is applied prior to processing. For both strategies we give processing times for

MATLAB implementation.

(a) Lichtenstein Castle (512 × 512)

PSNR = 43

Strategy MP2D OMP2D

Block Size SR MAT SR MAT

8 8.8691 0.3360 9.7198 0.3986

16 9.1955 0.9716 10.3758 1.2116

32 9.0075 5.6019 10.3614 12.5316

(b) Planet (512 × 512)

PSNR = 45

Strategy MP2D OMP2D

Block Size SR MAT SR MAT

8 51.3907 0.0623 54.8648 0.0714

16 66.1980 0.1331 74.8769 0.1506

32 64.1881 0.8110 75.4806 1.2332

Table 4: MP2D and OMP2D approximation results for images shown in Figure 6
with fixed PSNR.

Discussion of results

Sparsity results shown in Table 4 for the Lichtenstein Castle image and the Planet

image, show OMP2D produces higher sparsity values than MP2D for all block

sizes, and as the images are relatively small the processing times are minimal for

both strategies. For both images, OMP2D results using blocks of size 32 show

processing times are around twice as much as MP2D. However for block size 8,

the processing times are similar but yet OMP2D has significantly larger sparsity

values.

Conclusion

From Table 4 it is possible to conclude for sample 1 test images shown in Figure

6, OMP2D produces higher sparsity results than MP2D, and for approximations
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that use blocks of size 8 processing times for both strategies are almost identical.

As the BWOMP2D approach is an extension of the OMP2D approach, then

based on Experiment 1 conclusions, it implies for the same set of images, BWOMP2D

produces sparser results than MP2D.

5.3 Experiment 3: BWMP2D vs BWOMP2D

Aim

We compare the BWOMP2D approach with the block wise extension of MP2D

(BWMP2D) to see which strategy produces sparser approximations.

Methodology

This experiment is exactly the same as Experiment 2, but using pursuit strate-

gies BWOMP2D and BWMP2D, where BWMP2D is the block wise equivalent

extension of the BWOMP2D strategy.

(a) Lichtenstein Castle (512 × 512)

PSNR = 43

Strategy BWMP2D BWOMP2D

Block Size SR MAT SR MAT

8 9.4395 0.4513 10.4096 1.3390

16 9.4259 0.9249 10.6265 1.6679

32 9.2624 4.8952 10.6135 11.0712

(b) Planet (512 × 512)

PSNR = 45

Strategy BWMP2D BWOMP2D

Block Size SR MAT SR MAT

8 78.9828 0.1106 88.1156 0.2324

16 75.5023 0.1624 86.3452 0.2490

32 71.7613 0.6676 83.3261 1.1173

Table 5: BWMP2D and BWOMP2D approximation results for images shown in
Figure 6 with fixed PSNR.

Discussion of results

BWMP2D vs BWOMP2D results in Table 5, show BWOMP2D to have slower pro-

cessing times than BWMP2D. Processing times for BWOMP2D are around twice

as much for the Lichtenstein image, but as the Planet image is sparse, processing

times do not differ as much. For both images, approximations that use blocks of

size 8 for processing have faster processing times.

For both images and both strategies, most approximations that use blocks of

size 8 produce the sparser approximation, In other cases, approximations of block

size 8 are still comparable with approximations that use blocks of size 16, and

blocks of size 32.

For both strategies BWOMP2D produces sparser results than BWMP2D. One

example for the Planet image using blocks of size 32 shows BWOMP2D produces

a sparsity value of 83, compared to the lesser value of 71.7 for BWMP2D.
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Conclusion

For the set of images shown in Figure 6 results from this experiment allow to

conclude BWOMP2D produces sparser results than BWMP2D, and from conclu-

sions obtained from Experiment 1 and 2, sparser results than OMP2D and MP2D.

Thus, the results obtained for this set of images motivates further analysis of the

BWOMP2D approach.

6 Perceptually Lossless Approximations

In this section the BWOMP2D approach is used with a mixed dictionary to ap-

proximate images in the wavelet domain. The aim is to produce ‘perceptually

lossless’ approximations. These are approximations that do not have any visual

degradation with respect to the raw image at the original resolution. One of the

applications where perceptually lossless approximations are required concerns rep-

resentation of X-ray medical images. Such images are called radiography and are

useful for:

� the detection of pathologies of the skeletal system,

� the detection of some disease processes in soft tissue.

Radiography can be used for instance to identify lung diseases such as pneu-

monia, lung cancer or pulmonary edema. The abdominal X-ray can also detect

intestinal obstruction or pathologies such as gallstones or kidney stones. These

applications highlights the importance of visually retaining all details on approx-

imated X-ray images, otherwise the approximation could be misleading and, as a

result, could potentially be life threatening. Thus, perceptually lossless approxi-

mations are tested here, using the set of images shown in Figure 9

6.1 Experiment 1: OMP2D vs BWOMP2D Further Analysis

Aim

The aim of this experiment is to conclude if the BWOMP2D approach produces

sparser results than the OMP2D approach for perceptually lossless approximations.

The experiment will involve approximating the 6 different X-ray images depicted

in Figure 9.

Methodology

For this experiment OMP2D is compared against BWOMP2D. For each image and

each strategy, the varying factor of the experiment is the size of the block used

for approximation. Thus, in order to conduct a fair experiment it is essential the

X-ray images are prepared before approximation.

Preparation of an image involves manually cropping the image in such a way

that all the varying blocks sizes divide perfectly into the dimensions of the cropped

image, i.e., leaving no unprocessed parts of the cropped image. When cropping
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(a) Osteopetrosis pelvis
(629 × 829)

(b) Chest (755 × 927)

(c) Sinus frontalis (1006 × 1074) (d) Cervical spine (1110 × 992)

(e) Dislocated shoulder
(1005 × 1305)

(f) Chest Inverted (1956 × 2412)

Figure 9: Test images: Sample 2
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6 PERCEPTUALLY LOSSLESS APPROXIMATIONS

an image, areas of most detail are considered: the aim behind this is to retain

detail. The cropped image should now act as the original image, and be processed

as usual with varying block sizes.

For comparison the ‘original’ image should first be approximated using OMP2D.

For OMP2D processing the PSNR value is fixed to 2 decimal places, and the num-

ber of atoms (NAT) used for the varying block approximations are recorded. The

image is then processed with the BWOMP2D approach using the same NAT. In

this way it is possible to compare the PSNR values for OMP2D and BWOMP2D

processing at fixed sparsity (SR). For this experiment DWT of level 5 is applied

before an image is processed. The experiment requires the use of an industrial

computer to deal will the high storage demand of the block wise strategy.

Discussion of results

By observing Table 6, it is possible to conclude for each image and each block size,

the BWOMP2D strategy produces a higher quality approximate image for the given

sparsity, compared to OMP2D. The amount of increase in quality varies depending

on the size of the blocks used for approximation. For block size 8 approximations,

there is a large increase in PSNR value, and for block size 32 not as large of

an increase, but still an increase that can be appreciated since the images where

originally approximated to a very high level (visually indistinguishable). Results in

Table 6 for the Osteopetrosis pelvis X-ray image shows block size 8 approximation

has an increase of 2.2 dB, block size 16 has an increase of 0.66 dB and finally block

size 32 has an increase of 0.36 dB. It is important to note for the Chest Inverted

X-ray shown in Figure 9(f), BWOMP2D with block size 32 fails to process (FtoP)

the very large 1952 × 2400 pixel image.

Conclusion

The sparser results achieved by the BWOMP2D strategy indicate the benefits

of the BWOMP2D strategy. It was also noticed that block size 8 approximations

produced a large increase in dB. This conclusion is beneficial in terms of processing

times as approximations that use blocks of size 8 deal with smaller matrices, as a

result produce faster processing times.

Results for this experiment were achieved using an industrial computer. Thus,

the aim now is to focus on ways to apply the strategy on large images.
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(a) Osteopetrosis pelvis X-ray image (608 × 800)

Block Size 8 16 32

Strategy SR = 29.0614 SR = 37.7523 SR = 39.4421

OMP2D 46.6760 46.6798 46.6809

BWOMP2D 48.8707 47.3307 47.0429

(b) Chest X-ray image (736 × 896)

Block Size 8 16 32

Strategy SR = 22.9960 SR = 25.8894 SR = 26.1990

OMP2D 47.7359 47.7387 47.7395

BWOMP2D 48.1122 47.8195 47.7966

(c) Sinus frontalis X-ray image (992 × 1056)

Block Size 8 16 32

Strategy SR = 7.4119 SR = 7.7642 SR = 7.8746

OMP2D 46.7195 46.7244 46.7160

BWOMP2D 46.8823 46.7895 46.7989

(d) Cervical spine X-ray image (1088 × 992)

Block Size 8 16 32

Strategy SR = 28.4033 SR = 35.4682 SR = 37.0396

OMP2D 46.8579 46.8604 46.8599

BWOMP2D 48.0985 47.2185 47.0493

(e) Dislocated shoulder X-ray image (992 × 1280)

Block Size 8 16 32

Strategy SR = 17.2686 SR = 18.9104 SR = 19.2472

OMP2D 47.0155 47.0159 47.0192

BWOMP2D 47.4321 47.1545 47.1365

(f) Chest X-ray Inverted image (1952 × 2400)

Block Size 8 16 32

Strategy SR = 5.3625 SR = 5.6227 SR = 5.7661

OMP2D 46.4196 46.4217 46.4181

BWOMP2D 46.4630 46.4437 FtoP

Table 6: Details of results of the X-ray images shown in Figure 9 for OMP2D and
BWOMP2D approximation. All approximations are to a visually indistinguishable
quality.
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7 Resolution

The detail in an image is determined by resolution. Resolution can be expressed as

the total number of dots, or pixels, used to display an image. A higher resolution

image uses more pixels than a lower resolution image, resulting in a crisper, cleaner

appearance. The resolution of an image may effect the results obtained by sparse

image approximation. Thus, approximations on difference resolutions of an image

are tested here.

7.1 Experiment 1: BWOMP2D, Wavelet and DCT

Aim

The aim of this experiment is to fix sparsity for BWOMP2D approximations for all

block sizes and resolutions, and to identify any trends that may appear for increas-

ing resolution. Additionally the aim is to compare BWOMP2D, Wavelet and DCT

approximations using blocks of size 8 to see if similar trends are identified. The

experiment will involve approximating variations of the 6 different X-ray images

depicted in Figure 9.

Methodology

This experiment approximates various resolutions of the X-ray images shown in

Figure 9. Each resolution is approximated using blocks of size 8, 16 and 32 at a

fixed SR. The common problem with most resolutions is that when processed with

a particular block size, there are some pixels of the original image left unprocessed.

For large resolution images if there are some unprocessed pixels it would not make

a major effect on the approximation. However if there are the same number of

unprocessed pixels in a smaller resolution a lot more detail is lost compared to the

higher resolution. So for a fair experiment the images need to be prepared.

To prepare the resolution images for a particular block size, one calculates

the scale factors between the smallest resolution and the higher resolutions. A

scale factor for a higher resolution is calculated by dividing the dimensions by

the dimensions of the smallest resolution. One then calculates the amount of

unprocessed pixels that remain for the smallest resolution (for that particular block

size). Then on the higher resolutions manually crop out the same pixels or detail

by removing ‘scale factor of that resolution × the number of unprocessed pixels

from the smallest resolution’. This way the same amount of detail is removed from

higher resolution images as was for the smallest resolution. The same rescaling

technique is applied to prepare images for other block sizes.

This experiment will apply DWT of level 5 to an image before it is processed

with BWOMP2D. Approximations will be made on sample 2 test images shown

in Figure 9, where sparsity for all block sizes and resolutions are fixed. Since this

experiment involves approximation of large images, they will be performed using

an industrial computer. For further analysis, Wavelet and DCT approximations

using blocks of size 8 are compared with BWOMP2D approximations.
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Discussion of results

Results show to a certain stage where there was an increase in resolution there

was an increase in PSNR. It is also clear for top end resolutions the PSNR val-

ues lower. This effect is expected as larger images have courser detail. Wavelet

and DCT approximations show similar trends as BWOMP2D block size 8 results

when resolution is increased. Looking at the the results obtained for different block

sizes, Table 7 shows that the change in block size does not produce much better

approximatations. This suggests that it would be more convenient to work with

blocks of size 8, as, in Section 5 it was shown to have faster processing times. It is

important to note for the Chest Inverted image BWOMP2D approximation fails

to process (FtoP) using blocks of size 32.

Conclusion

This experiment concludes BWOMP2D approximations produce sparser approx-

imations than the other popular techniques. It also shows for all techniques the

relation is maintained at all resolutions.
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(a) Osteopetrosis pelvis (629 × 829)

SR = 29.9

Resolution 8 16 32 Wavelet DCT

240 × 316 41.3679 41.2347 41.0015 36.8254 32.9012

480 × 633 46.5515 46.5259 46.3902 41.4305 38.6408

600 × 791 48.7979 48.8694 48.7370 42.9821 40.2701

629 × 892 48.8081 48.7350 48.5763 43.3478 40.5982

(b) Chest (755 × 927)

SR = 24.4

Resolution 8 16 32 Wavelet DCT

240 × 295 45.8464 45.9761 45.8730 41.2904 38.2943

480 × 589 49.2196 49.3881 49.3041 45.0619 42.2588

600 × 737 49.7066 49.8375 49.6642 46.0143 43.3778

755 × 927 47.9732 48.0437 47.9815 45.4207 43.4493

(c) Sinus frontalis (1006 × 1074)

SR = 7.6

Resolution 8 16 32 Wavelet DCT

240 × 256 46.7453 46.8104 46.8336 40.4111 39.4066

600 × 640 47.9568 48.3227 48.4640 41.9306 41.3698

768 × 820 47.9356 48.3370 48.1842 41.9110 41.3552

1006 × 1074 46.8288 47.2204 47.1734 40.8867 40.3295

(d) Cervical spine (1110 × 992)

SR = 28

Resolution 8 16 32 Wavelet DCT

239 × 214 38.0355 37.8863 37.3840 33.8926 31.2811

480 × 429 43.0248 42.9619 42.3995 39.0081 35.8824

600 × 536 44.3316 44.2543 43.6217 40.4955 37.4007

1110 × 992 47.9123 47.9921 47.3245 44.3929 41.6030

(e) Dislocated shoulder (1005 × 1305)

SR = 16.9

Resolution 8 16 32 Wavelet DCT

240 × 312 42.0965 41.8928 41.5640 37.1574 35.1293

480 × 623 44.3526 44.3978 44.1212 40.8218 39.2167

768 × 997 46.1144 46.1540 45.9895 42.5026 41.2302

1005 × 1305 47.6465 47.7014 47.6043 43.8443 42.5136

(f) Chest Inverted (1956 × 2412)

SR = 5.8

Resolution 8 16 32 Wavelet DCT

240 × 296 45.5202 45.7460 45.3843 38.1533 37.1478

480 × 592 47.3282 47.6725 47.7164 40.8712 40.2420

600 × 740 47.4016 47.7649 47.9021 41.0122 40.4954

768 × 947 47.0364 47.4534 47.7373 40.6268 40.1835

1024 × 1263 46.4781 46.9348 47.3631 39.9730 39.5775

1956 × 2412 45.5663 46.0655 FtoP 38.6962 38.5407

Table 7: BWOMP2D resolution approximation results for X-ray images shown in
Figure 9 with fixed SR. Wavelet and DCT approximations use blocks of size 8.
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8 Enhance Performance using C++ MEX files

What is a MEX file?

C, C++, or Fortran subroutines can be called from the MATLAB command line

as if they were built-in functions. These programs, called binary MEX files, are

dynamically-linked subroutines that the MATLAB interpreter loads and executes.

MEX stands for ‘MATLAB executable’.

MEX Application

MATLAB scripts are very slow when it comes to loops, as in MATLAB, loops are

done implicitly. Sometimes, however, the loops can be avoided by vectorizing the

code. This means that a function is applied to all input/data at once. In the cases

where a computation is not vectorizable, and speed is important, it is possible to

re-write the performance-critical MATLAB routines in C or C++. A MATLAB

function written in a compiled language is called a MEX file.

Here is a demonstration on how to implement a C++ MEX file of certain codes

performed in MATLAB. A case where a C++ MEX file can be considered is when

a loop is used to iterate through a structure with MATLAB implementation.

For example, if a script named Test1.m calls upon the arrayProduct.m routine,

and it is found the arrayProduct.m routine takes some time to iterate through a

large array, then the use of a C++ MEX file could enhance performance. The

way to enhance performance of the Test1.m script would be to implement the ar-

rayProduct routine in C++. To be able to execute the C++ file on a MATLAB

platform, there is a need for a MEX file (arrayProduct.cpp) that acts as the ‘gate-

way’ to the platform for the C++ routine arrayProduct.h.

In other words, MATLAB routine calls,

1) Test1.m (MATLAB) → arrayProduct.m (MATLAB)

are converted to C++ MEX calls,

2) Test1.m (MATLAB) → arrayProduct.cpp (MEX) → arrayProduct.h (C++).

Implementations for 1) and 2) are shown in Appendix C.

The above described construction of C++ MEX files was used to produce the

C++ MEX version of the MATLAB function BWOMP2D. This implementation,

that is called BWOMP2D Mex is a direct translation of the available MATLAB

function. It reproduces the same results but with faster processing time. The

BWOMP2D Mex routine is given in the attached CD.
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9 Macro Processing Scheme

As discussed in Section 4.2.2, block-independent OMP2D processing involves par-

titioning an image into small blocks, henceforth to be called micro blocks of size,

say Lx × Ly pixels and optimise, in an stepwise manner, the selection of the dic-

tionary atoms for approximating each micro block. Thus, the storage demands of

this implementation depend only on the micro block size and not on the actual

image size. Another feature of this type of processing is that the computational

complexity of the whole image increases linearly with the number of micro blocks.

Since, in addition of the best atoms, BWOMP2D processing also optimises in a

stepwise manner which is the block to be approximated at each iteration step, and

so the processing of micro blocks becomes slightly dependent. Consequently, within

this framework the image size does matter and large images cannot be processed

as a whole. In order to implement BWOMP2D for large images, and also at a

competitive running time, we introduce the macro processing scheme described

below.

As done for the independent processing, the images is first partitioned into

micro blocks of size Lx × Ly . Additionally, the algorithm breaks the image into

macro blocks (henceforth to be also called macros) of size say, Nx×Ny. The size of

the macros can be conveniently set, with the only restriction that it satisfies being

a multiple of the block size, i.e. Nx = aLx and Ny = b Ly , where a, b ∈ Z+.

Next the large image is split into macro blocks. Each macro is to be processed by

BWOMP2D. The macro partition is illustrated by the light pink macros in Figure

10.

Our macro processing-based algorithm for implementation of BWOMP2D has

an additional functionality to process the remainder of an image: The algorithm

singles out the part of the image which is not covered by the the macro partition

and, if applicable, calculates the size of the largest blocks that can fit that section

of the image. Again, the size of the fitted macro blocks are a multiple of the block

size. The result of these steps are illustrated by the red, green and dark blue

regions in Figure 10.

Finally, depending on the size of the edges, the algorithm either keeps all the

edge macros or processes them using BWOMP2D. The edges are illustrated by the

orange and sky blue macros in Figure 10. In Figure 10 all the pixels highlighted

by the purple macros are simply kept. To obtained the approximated image, all

macro results are concatenated.

Code snippets of the macro processing scheme are shown in Appendix D.

A numeric example of macro partitioning

Figure 10 image size is 372× 491.

User defined:

Block size (Lx × Ly) is 16× 16,

Light pink macro size (Nx ×Ny) is 128× 128.

44



10 MACRO APPROXIMATION

Calculation of the next largest macros:

Red macro size 112× 128,

Green macro size 128× 96,

Dark blue macro size 112× 96.

Remainder:

Orange macro size (RLx ×Ny) is 4× 128, where block size (RLx × Ly) is 4× 16,

Sky blue macro size (Nx×RLy) is 128× 11, where block size (Lx RLy) is 16× 16,

Purple macro are of sizes 4× 96, 112× 11 and 4× 11.

For the orange macros, if RLx < 3 simply keep all the pixels, otherwise pro-

cess each macro using BWOMP2D.

For the sky blue macros, if RLy < 3 simply keep all the pixels, otherwise pro-

cess each macro using BWOMP2D.

For the purple macros, keep all the pixels.

Figure 10: Illustration of macro processing an image of size 372 × 491, using blocks
of size 16 × 16 pixels, and macro blocks of size 128 × 128 pixels.

10 Macro Approximation

10.1 Experiment 1: Wavelet Application

Aim

To examine the effectiveness of the macro processing scheme it is important to find

an effective technique, of applying DWT to an image formed of macros. The aim
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of this experiment is to get an insight of how to best deal with an image before it

is passed to the macro processing scheme.

Methodology

The experiment involves comparing two different ways of processing an image by

altering the regions where DWT is applied. Method 1 would be to perform DWT

on the whole image, and then process the whole image using the BWOMP2D strat-

egy. Method 2 would be to perform DWT on regions within an image and then

process the whole image using the BWOMP2D strategy. An example would be to

take an image say of dimension 512 × 512 such that the dimensions are divisible

by blocks of size 8, 16 and 32. Then, for method 2, for each block size apply DWT

on regions within the image. Examples of possible sectioning, henceforth to be

called ‘region size’ for an image of size 512× 512 would be to have regions of size

128 × 128, or 256 × 256. A region of size 512 × 512 on a image of size 512 × 512

would be the same result as applying method 1 to the image.

As the image size would divide perfectly into region size and block size, it would

allow one to examine the effect of block size and region size on each method. To

compare method 1 and method 2 the number of atoms used (NAT) will remain

fixed, and the achieved level of PSNR will be compared. The difference between

the two methods is: method 1, the image would contain the combined DWT infor-

mation of the whole image before it is processed, and method 2, the image would

have the DWT information of regions within the image before it is processed.

Comparing these two methods would allow one to see if processing an image with

its full DWT information produces higher quality approximations, than process-

ing the image with DWT information of regions. Since this experiment fixes all

parameters it would mean any difference in result would be as a result of applying

the two different methods. For analysis, a new set of images shown in Figure 11,

along with sample 1 test images shown in Figure 6 are to be used.

Discussion of results

For all tested images, Table 8 results indicate method 2 produces lower quality

approximations when compared with method 1. The difference between the two

methods is less than 1 dB. Nevertheless, results indicate method 1 produces higher

quality approximations. In general no block size is more superior than the other.

Conclusion

Results show with method 1 processing, higher quality approximations are ob-

tained. This implies before an image is sent to the BWOMP2D strategy it is

better to send all the DWT information of that image. This would mean when

preparing macros under the macro processing scheme all the DWT information of

that particular macro should be sent to the strategy. This method of preparing

macros for the macro processing scheme is to be termed Macro WT (or MWT),

and from now on will be used for all macro processing approximations.
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(a) Lichtenstein Castle (512 × 512)

SR = 10.31 (NAT=25418)

Region Size 8 16 32

128 × 128 42.9975 43.1825 43.1871

256 × 256 43.0855 43.2843 43.2839

512 × 512 43.1070 43.3467 43.3333

(b) Planet (512 × 512)

SR = 87.38 (NAT=3000)

Region Size 8 16 32

128 × 128 44.6085 44.4078 44.2455

256 × 256 44.8780 44.6745 44.5499

512 × 512 45.0523 44.9212 44.7096

(c) Landscape (1024 × 1024)

SR = 9.9998 (NAT=104860)

Region Size 8 16 32

128 × 128 42.0720 42.6047 42.7857

256 × 256 42.1878 42.7069 42.8902

512 × 512 42.2417 42.7803 42.9567

1024 × 1024 42.2697 42.8082 43.0040

(d) Rib (1024 × 1024)

SR = 5.2 (NAT 201650)

Region Size 8 16 32

128 × 128 47.6761 48.2334 48.5673

256 × 256 47.7444 48.2934 48.6467

512 × 512 47.7719 48.3373 48.6844

1024 × 1024 47.7853 48.3503 48.7046

(e) Gentleman (1024 × 1024)

SR = 4.6517 (NAT 225418)

Region Size 8 16 32

128 × 128 46.3111 46.8257 47.1104

256 × 256 46.3694 46.8756 47.1778

512 × 512 46.3973 46.9159 47.2141

1024 × 1024 46.4117 46.9325 47.2348

Table 8: BWOMP2D approximation results for sample 1 and sample 3 test images
shown in Figure 6 and 11. SR value is fixed for each image. Method 1: WT is
applied on the whole image, and processed as a whole image. Method 2: WT is
applied to each region, then all regions are processed as a whole image.
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(a) Landscape (1024 × 1024) (b) Rib (1024 × 1024)

(c) Gentleman (1024 × 1024)

Figure 11: Test images: Sample 3

10.2 Experiment 2: Uniform macros

Aim

The aim of this experiment is to successfully apply the macro processing scheme

on images using uniform macros. The objective is to compare the quality (PSNR

values) of the approximate images for varying macro size and micro size, at fixed

sparsity.

Another aim is to test the speed of our BWOMP2D C++ MEX implementa-

tion by comparing processing times of MATLAB and C++ implementations. The

sole purpose for the C++ implementation was to be able to apply the BWOMP2D

strategy on large images, and on a larger scale, but at a reduced time when com-

pared to MATLAB implementation. It will be shown later C++ implementation

is faster.

Successful application of the macro processing scheme, using uniform macros

will be tested on sample 1 and sample 3 test images shown in Figure 6, and 11.

Methodology

The experiment will involve approximating five images with varied macros sizes

using the BWOMP2D approach. Each macro will be processed with micro blocks

of size 8, 16 and 32. The chosen images for testing will be suitable for uniform

macros since the chosen macro size will be exactly divisible into the image size. For

this reason, there would be no need to prepare images for fair micro size/ macro

size comparison. This also implies there will be no remaining unprocessed parts
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of the image. Previously, it was decided that DWT of level 5 would be applied

to each macro (MWT) before the macro was passed to the BWOMP2D selection

strategy. For all approximations, SR values will be fixed to 2 decimal places and

PSNR values compared.

Discussion of results

Results in Table 9 show the time reduction advantage of BWOMP2D C++ imple-

mentation. Examples of time reduction for the Rib (1024× 1024) approximations

using macros of size 128 × 128, shown in Table 8(d) include, micro size 8: time

reduced by a factor of 12.5, micro size 16: time reduced by a factor of 6.6, and

micro size 32: time reduced by a factor of 4.7. For all images, the larger the macro

size the higher the quality (PSNR value) of the approximate images. Since the

sparsity of the approximate images is higher for larger macro, the processing time

also reduces. This is because the strategy has fewer matrices to manage. One

of the main noticeable features of the BWOMP2D strategy indicated by Table 9

results, show for most images micro size of 8 produces higher quality results com-

pared micro size 16, and 32, and in cases where this is not the case, micro size 8 is

comparable.

Conclusion

This experiment shows successful application of the macro processing scheme us-

ing uniform macros for image approximation. As expected the time reduction

achieved by the BWOMP2D C++ MEX implementation is noticeable. The gain

makes the BWOMP2D C++ implementation a much needed tool, especially for

approximations that involve large images, due to the high matrix complexity. An-

other important conclusion raised by this experiment is that micro blocks of size

8 produce higher quality approximations or comparable results, when compared

with approximations that use micro blocks of size 16 and 32. This is a advanta-

geous, since processes that use micro blocks of size 8 are faster when compared

to processes that use micro blocks of size 16 and 32. This experiment leads to

the conclusion that the BWOMP2D strategy is efficient and effective using micro

blocks of size 8, and other micro blocks need not to be considered .
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(a) Lichtenstein Castle (512 × 512)

SR = 10

Micro Size 8 16 32

Macro Size PSNR MAT C++ PSNR MAT C++ PSNR MAT C++

128 × 128 37.5820 1.2088 0.1106 37.6848 1.7374 0.3976 37.6880 9.8750 2.4582

256 × 256 38.5534 1.2323 0.1016 38.6716 1.6681 0.3353 38.6775 10.2783 2.4966

512 × 512 43.4586 0.9065 0.1114 43.7009 1.7035 0.3563 43.6987 10.9445 FtoP

(b) Planet (512 × 512)

SR = 35

Micro Size 8 16 32

Macro Size PSNR MAT C++ PSNR MAT C++ PSNR MAT C++

128 × 128 47.7661 0.3482 0.0584 47.7931 0.5029 0.1233 47.4964 2.4843 0.6758

256 × 256 50.0745 0.4005 0.0420 49.9511 0.4452 0.1076 49.8058 2.6290 0.6833

512 × 512 51.0300 0.4525 0.0420 50.9031 0.5023 0.1065 50.7084 2.8091 FtoP

(c) Landscape (1024 × 1024)

SR = 10

Micro Size 8 16 32

Macro Size PSNR MAT C++ PSNR MAT C++ PSNR MAT C++

128 × 128 43.9583 9.0809 0.7402 44.6687 15.0453 2.3912 44.9954 101.1875 24.6379

256 × 256 44.8851 7.1574 0.5944 45.9706 14.8089 2.4266 45.9208 102.7200 26.3414

512 × 512 45.2707 6.6772 0.6613 45.9706 12.6212 2.4349 FtoP FtoP FtoP

(d) Rib (1024 × 1024)

SR = 5

Micro Size 8 16 32

Macro Size PSNR MAT C++ PSNR MAT C++ PSNR MAT C++

128 × 128 47.2266 9.5996 0.7671 47.8134 17.6978 2.6959 48.1649 119.0933 25.2797

256 × 256 47.4237 9.5689 0.7242 48.0035 17.2726 2.6240 48.3649 119.6354 21.9996

512 × 512 47.8651 8.6680 0.7855 48.4638 18.1708 2.6288 48.8196 145.0425 FtoP

(e) Gentlemen (1024 × 1024)

SR = 4.2

Micro Size 8 16 32

Macro Size PSNR MAT C++ PSNR MAT C++ PSNR MAT C++

128 × 128 47.1442 8.6315 0.8619 47.7488 15.8265 3.3221 48.0819 162.2858 29.5583

256 × 256 47.4484 9.0473 0.8265 48.0370 15.6827 3.3352 48.3965 162.3457 30.3997

512 × 512 47.8635 9.2573 0.9053 48.4777 16.6082 3.3303 FtoP FtoP FtoP

Table 9: BWOMP2D macro approximation results for sample 1 and sample 3 test
images shown in Figure 6 and 11. MWT of level 5 is applied to the image. SR is
fixed to 2 decimal places.
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10.3 Experiment 3: Non-Uniform

Aim

The aim of this experiment is to successfully apply the macro processing scheme

on images using non-uniform macros. The objective is to compare SR results for

macro size and micro size of approximations of the same quality. Successful ap-

plication of the macro processing scheme, using non-uniform macros will be tested

on sample 1 and sample 3 test images shown in Figure 6, and 11.

Methodology

The experiment will involve approximating six images with varied macros sizes

using the BWOMP2D strategy. Each macro will be processed with micro blocks

of size 8, 16, 32. The chosen images for testing will be suitable for non-uniform

macros since the chosen macro size will not be exactly divisible into the image

size. The macro processing scheme will be responsible for the remaining unpro-

cessed parts of the image, and deal with using non-uniform macros. Earlier, it was

decided that DWT of level 5 would be applied to each macro before the macro

was passed to the BWOMP2D selection strategy. For all approximations, PSNR

values will be fixed to 2 decimal places and SR values compared.

Discussion of results

Observations of the results obtained for the non-uniform macro processing shown

in Table 10 show an increase in macro size gives rise to an increase in sparsity.

Results for the Dislocated Shoulder image shows there is an increase in sparsity

from 17.1443 for macro size 128 × 128, to 19.1148 for macro size 800 × 800. For

non-uniform macro processing, micro size 32 produces a slight increase in spar-

sity compared to micro size 16, and 8, but the gain would be canceled since it was

found earlier processes that use micro blocks of size 32 have slower processing times.

Conclusion

This experiment shows successful application of the macro processing scheme us-

ing non-uniform macros for image approximation. Results also show larger macros

produce sparser results. This experiment reconfirms the findings of Section 10 Ex-

periment 2; where it was found that results for micro blocks of size 8 were very

competitive with results for micros of size 16 and 32.
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(a) Osteopetrosis pelvis (629 × 829)

PSNR = 47

Macro Size 8 16 32

128 × 128 30.4740 30.0473 28.2073

256 × 256 35.6419 34.9538 32.9588

512 × 512 38.6195 39.8259 39.9357

608 × 608 39.1208 39.7895 40.2688

(b) Chest (755 × 927)

PSNR = 47

Macro Size 8 16 32

128 × 128 23.7547 24.6014 25.1423

256 × 256 30.4390 31.0536 31.6432

512 × 512 32.5498 33.6015 34.3367

736 × 736 33.4889 34.3687 34.5179

(c) Sinus frontalis (1006 × 1074)

PSNR = 47

Macro Size 8 16 32

128 × 128 7.0664 7.3383 7.4293

256 × 256 7.2238 7.4808 7.5819

512 × 512 7.3255 7.5955 7.7089

800 × 800 7.4907 7.7681 7.8486

(d) Cervical spine (1110 × 992)

PSNR = 47

Macro Size 8 16 32

128 × 128 30.5884 31.4696 31.5128

256 × 256 33.3198 33.9401 34.4186

512 × 512 34.8975 35.8309 36.1035

800 × 800 33.6858 34.5460 34.8676

(e) Dislocated shoulder (1005 × 1305)

PSNR = 47

Macro Size 8 16 32

128 × 128 17.1443 17.7516 18.0980

256 × 256 18.1385 18.7637 19.2467

512 × 512 19.0203 19.7912 20.1389

800 × 800 19.1148 19.8220 20.0040

(f) Chest Inverted (1956 × 2412)

PSNR = 47

Macro Size 8 16 32

128 × 128 4.8202 5.0489 5.1800

256 × 256 4.9610 5.1879 5.3274

512 × 512 5.0317 5.2715 5.4043

800 × 800 5.0758 5.3164 5.4465

Table 10: BWOMP2D macro approximation results for X-ray images shown in
Figure 9. PSNR is fixed to 47 to 2 decimal places. MWT of level 5 is applied to
each image.
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11 Conclusion

It is clear from the results presented in this thesis that, while the application

of orthogonal transforms for approximating images is a simple task with available

tools, it does not produce optimal approximations with regards to sparsity. On the

contrary, releasing the condition of orthogonality and creating a large redundant

dictionary for choosing approximating atoms, the sparsity property is improved.

This type of approximation is known as highly non-linear.

Approximating images with a highly non-linear approximation involves the

problem of i) using the appropriate dictionary for the signal/image in hand, ii)

choosing the right functions from the dictionary. In the project the dictionary was

fixed. The selection of atoms from such a dictionary was addressed by stepwise

greedy techniques which are known as Pursuit Strategies.

The block selection strategy BWOMP2D was compared with other widely used

strategies such as the block independent strategy OMP2D, block independent strat-

egy MP2D and the block selection strategy BWMP2D. The examples given in this

thesis illustrate the improvements in sparsity achieved by the BWOMP2D tech-

nique.

For a fixed mixed dictionary comprising of redundant DCT component and

a component of localised atoms, one of the main findings using the BWOMP2D

strategy was that micro blocks of size 8 was the most convenient size, as it gave

comparable results as micros of size 16 and 32, but the processing time was con-

siderably faster.

The inability to apply the block selection approach to large images lead to

the proposal of a scheme that would allow to do that. The proposal enabled the

application of the BWOMP2D strategy on larger images by decomposition into

macro blocks. This scheme is called the macro processing scheme. Results obtained

by this scheme showed that the use of large macros produced higher sparsity for an

image. The implementation of the BWOMP2D C++ MEX file helped to reduce

processing times.

53



REFERENCES

References

[1] L. Rebollo-Neira, J. Bowley, A. Constantinides and A. Plastino, “Self con-
tained encrypted image folding”, Physica A, vol 391, pp. 5858–5870, 2012.

[2] J. Bowley, L. Rebollo-Neira, “Sparse image representation by discrete co-
sine/spline based dictionaries”, arXiv:0909.1310v1.

[3] L. Rebollo-Neira, J. Bowley, “Sparse representation of Astronomical Images”,
preprint,

[4] Ryszard Maciol, Yuan Yuan and Ian T. Nabney, “Colour Image Coding with
Matching Pursuit in the Spatio-frequency Domain”, Image Analysis and Pro-
cessing ICIAP 2011 Lecture Notes in Computer Science, vol 6978/2011, pp
306–317, 2011.

[5] Y. Yuan and D. M. Monro, “Improved matching pursuits image coding”, In
Proc.of International Conference on Acoustics, Speech,and Signal Processing,
vol 2, pp 201–204, 2005.

[6] L. Rebollo-Neira and D. Lowe, Optimized orthogonal matching pursuit ap-
proach, IEEE Signal Processing Letters, vol, 9 137–140, 2002.

[7] M. Andrle and L. Rebollo-Neira, A swapping-based refinement of orthogonal
matching pursuit strategies, Signal Processing, vol 86, 480–495, 2006.

[8] Highly nonlinear approximations for sparse signal representation.
http://www.nonlinear-approx.info/

[9] I. Daubechies, “Ten lectures on wavelets”, CBMS-NSF Series in Appl. Math.,
SIAM, 1991.

[10] L. Rebollo-Neira, Personal communication, 2012.

[11] S. H. Friedberg, A. J. Insel and L. E. Spence, “Linear Algebra”, Pearson
Education, California, 2003.

[12] S. Mallat. “A Wavelet Tour of Signal Processing”, Academic Press, 1999.

54



APPENDIX A

Appendix A

Cauchy-Schwart Inequality Proof

The Cauchy-Schwart inequality is |< f(x), g(x) >|2 6 ‖f(x)‖2 ‖g(x)‖2 and by tak-
ing the square root gives |< f(x), g(x) >| 6 ‖f(x)‖ ‖g(x)‖.

If f(x) = λg(x) for f(x), g(x) ∈ L2(a, b) where ‖f(x)‖,‖g(x)‖ 6= 0 and λ ∈ C,
then |< f(x), g(x) >| = ‖f(x)‖ ‖g(x)‖ .

Define P (λ) = ‖λg(x)− f(x)‖2 > 0, so

P (λ) = ‖λg(x)− f(x)‖2

= < λg(x)− f(x), λg(x)− f(x) >

and from the inner product properties

= λλ < g(x), g(x) > −λ < g(x), f(x) > −λ < f(x), g(x) > + < f(x), f(x) >

= |λ|2 ‖g(x)‖2 − 2Real(λ) < f(x), g(x) > + ‖f(x)‖2

and by substituting λ = ‖f(x)‖2
<f(x),g(x)>

P

(
‖f(x)‖2

< f(x), g(x) >

)
=

∣∣∣∣ ‖f(x)‖2

< f(x), g(x) >

∣∣∣∣2 ‖g(x)‖2 − 2Real

(
‖f(x)‖2

< f(x), g(x) >

)
< f(x), g(x) > + ‖f(x)‖2

=
‖f(x)‖4

|< f(x), g(x) >|2
‖g(x)‖2 − 2Real

(
‖f(x)‖2

)
+ ‖f(x)‖2

=
‖f(x)‖4

|< f(x), g(x) >|2
‖g(x)‖2 − ‖f(x)‖2

and so,

‖f(x)‖2 =
‖f(x)‖4

|< f(x), g(x) >|2
‖g(x)‖2

‖f(x)‖2 |< f(x), g(x) >|2 = ‖f(x)‖4 ‖g(x)‖2

‖f(x)‖2 |< f(x), g(x) >|2 − ‖f(x)‖4 ‖g(x)‖2 > 0

and dividing through by ‖f(x)‖2 gives

|< f(x), g(x) >|2 − ‖f(x)‖2 ‖g(x)‖2 6 0

hence

|< f(x), g(x) >|2 6 ‖f(x)‖2 ‖g(x)‖2

QED
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Appendix B

Minimising Distance Proof

Let f be an element of a vector space H and let Vk be a subspace of H. The
closest approximation of f that can be obtained by a function g ∈ Vk can be writ-
ten as g = P̂Vkf , where P̂Vk is the orthogonal projector operator onto Vk

Proof

Since P̂Vk is the orthogonal projector operator onto Vk it should satisfy that

i)P̂Vkg = g for all g ∈ Vk
and
ii) P̂Vkg

⊥ = 0 for all g⊥ ∈ Vk⊥, where Vk
⊥ indicates the orthogonal complement of

Vk in H, i.e. Vk is the subspace of all the vectors in H that are orthogonal to all
the vectors in Vk. In other words: g ∈ Vk and g⊥ ∈ Vk⊥ implies < g, g⊥ >= 0

Let us assume that g is an arbitrary function in Vk and write it as

g = g − P̂Vkf + P̂Vk .f

If we calculate the distance ‖f − g‖2, since (f − P̂Vkf) ∈ V ⊥k we have:

‖f − g‖2 = ‖f − g − P̂Vkf + P̂Vkf‖
2 = ‖f − P̂Vkf‖

2 + ‖P̂Vkf − g‖
2.

Hence, the distance is minimised if g ≡ P̂Vkf . QED
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Appendix C

Examples of MEX/C++ Implementation

Test1.m (MATLAB)

% This is an example of a script implemented in MATLAB

xValue = 2;

n = 20;

yArray = rand(1,n); % creates a row array holding n number of random values

[result] = arrayProduct(xValue,yArray);

result % an array of size n containing the MATLAB result of y.*x

arrayProduct.m (MATLAB)

function [z] = arrayProduct(x,y)

% An example of a function arrayProduct implemented in MATLAB

sizeY = numel(y); % obtains the number of values in the input matrix y

z = zeros(1,sizeY); % creates a 1 x sizeY matrix to hold the multiplication results

for i = 1:sizeY

z(i) = x * y(i);

end

end

arrayProduct.h (C++)

// An example of a function arrayProduct implemented in C++

void arrayProduct(double x, double *y, double *z, int n) {
int i;

for (i=0; i<n; i++) {
z[i] = x *y[i];

}
}

arrayProduct.cpp (MEX)

#include "mex.h"

#include "OMP2D INTER.h"

using namespace std;

/** The MEX file arrayProduct.cpp in the most basic form could look like this. **/

/** The gateway function **/

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

/** Variable declarations **/

double multiplier; // input scalar

double *inMatrix; // 1xN input matrix

int ncols; // size of matrix

double *outMatrix; // output matrix

/* get the value of the scalar input */
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multiplier = mxGetScalar(prhs[0]);

/* create a pointer to the real data in the input matrix */

inMatrix = mxGetPr(prhs[1]);

/* get dimensions of the input matrix */

ncols = mxGetN(prhs[1]);

/* create the output matrix */

plhs[0] = mxCreateDoubleMatrix(1,ncols,mxREAL);

/* get a pointer to the real data in the output matrix */

outMatrix = mxGetPr(plhs[0]);

/* call the arrayProduct routine in file arrayProduct.h */

arrayProduct(multiplier,inMatrix,outMatrix,ncols);

}

To stabilise the MEX file it is important to validate input parameters passed from
the MATLAB Test1.m file to the MEX file. Validation is most often done after
declaring the gateway function and before declaring variables. An example of input
validation is,

/* check for proper number of arguments */

if(nrhs!=2) {
mexErrMsgTxt("Two inputs required.");

}
if(nlhs!=1) {

mexErrMsgTxt("One output required.");

}

/* make sure the first input argument is scalar */

if( !mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) || mxGetNumberOfElements(prhs[0])!=1 ) {
mexErrMsgTxt("Input multiplier must be a scalar.");

}

/* check that number of rows in second input argument is 1 */

if(mxGetM(prhs[1])!=1) {
mexErrMsgTxt("Input must be a row vector.");

}
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Appendix D

Macro Processing Scheme MATLAB Code Snippets

%=====================

% Validate Macro Size

%=====================

sO = size(mIOrig); % size of the image to be approximated

Approx = zeros(sO(1),sO(2)); % store to hold the approximated image

maxSizeX=800;

maxSizeY=800;

if sO(1) < maxSizeX

maxSizeX = sO(1);

end

if sO(2) < maxSizeY

maxSizeY = sO(2);

end

if input PC Nx > maxSizeX

fprintf('\n \n !*** The chosen value for macro length Nx | is too large ***! \n \n')
possible choices Nx = [Lx:Lx:maxSizeX]' % choices for macro length Nx

return

end

if input PC Ny > maxSizeY

fprintf('\n \n !*** The chosen value for macro length Ny is too large ***! \n \n')
possible choices Nx = [Lx:Lx:maxSizeY]' % choices for macro length Ny

return

end

if rem(input PC Nx,Lx) ∼= 0

fprintf('\n \n !*** Invalid choice for macro length Nx | ***! \n \n')
possible choices Nx = [Lx:Lx:maxSizeX]'

return

end

if rem(input PC Ny,Ly) ∼= 0

fprintf('\n \n !*** Invalid choice for macro length Ny ***! \n \n')
possible choices Ny = [Ly:Ly:maxSizeY]'

return

end

%=================================

% Partition Image into Macros

% (Light pink macros in Figure 10)

%=================================

iMLx = input PC Nx; % indexing to help iterate through the image via macros

iMLy = input PC Ny;

NXBiMLx = floor(sO(1)/iMLx); % NXBiMLx * NYBiMLy = Total number of marco blocks

NYBiMLy = floor(sO(2)/iMLy);

iMLxFinal= NXBiMLx*iMLx;

iMLyFinal= NYBiMLy*iMLy;

for i= iMLx:iMLx:iMLxFinal

for j= iMLy:iMLy:iMLyFinal

mI = mIOrig(i-iMLx+1:i,j-iMLy+1:j); % obtain the macro from the image

...Process macro using BWOMP2D

...Store (light pink) macro result

...Store necessary information

end

end

Management: Store all (light pink) macro results into 'Approx' and destroy unwanted arrays

%====================================================

% Remainder: Partition the bottom part of the Image

% (Red and Orange macros in Figure 10)

%====================================================

mIbottomImage = mIOrig( iMLxFinal+1:end, 1:iMLyFinal ); % Obtain the image covered by the red

and orange macros

sizeB=size(mIbottomImage)

s=floor(sizeB/Lx); % next largest macro size = [s(1)*Lx input PC Ny]
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% ### (If applicable) Process red macros in Figure 10 ###

if s(1) ∼=0;
for j=iMLy:iMLy:iMLyFinal

mI = mIbottomImage( 1:s(1)*Lx,j-iMLy+1:j);

...Process macro using BWOMP2D

...Store (red) macro result

...Store necessary information

end

end

% ### (If applicable) Process orange macros in Figure 10 ###

remx=rem(sizeB(1),Lx);

if remx ∼=0
mIbottomRem = mIbottomImage( (s(1)*Lx)+1:end,:); % Obtain orange macros

LxB=remx % Block size for orange macros = [LxB Ly], orange macro size= [LxB input PC Ny]

LyB=Ly

if (LxB<3)

fprintf('\n \n No need for processing all Orange macros. Keep all atoms \n \n ')

...Store necessary information

else

for j=iMLy:iMLy:iMLyFinal % process orange macros

mI= mIbottomImage( (s(1)*Lx)+1:end,j-iMLy+1:j);

...Process macro using BWOMP2D (with block size = [LxB LyB])

...Store (orange) macro result

...Store necessary information

end

end

end

Management: Store all (red and orange) macro results into 'Approx' and destroy unwanted arrays

Continue to process Green, Sky blue, Dark blue and Purple macros shown in Figure 10
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