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We propose a novel self-homodyne optical-electrical-
optical clock recovery technique for binary phase-shift 
keying signals using commercial optical and electrical 
components. We present the principle of operation as 
well as a proof-of-concept experiment for a 10.7 Gb/s 
NRZ BPSK signal clock-recovery transmitted over a 
dispersion compensated link of 20 km of SMF. 
Suppression of pattern related frequency noise at the 
output of the recovered clock is shown. The timing jitter 
of the recovered clock at 10.7 GHz was measured to be 
~450 fs (integration range: 100 Hz -10 MHz). © 2017 
Optical Society of America.  
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Clock recovery (CR) is one of the first steps in today’s digital coherent receivers [1, 2] for primary functions such as synchronization, data regeneration, and logic operation. Meanwhile, digital signal processing (DSP) has paved the way towards using advanced modulation formats with higher bit per symbol rates at the transmitter and compensation of transmission impairments at the receiver. Recovering the clock from the incoming optical signal is also required for synchronization of optical superchannels or reconstruction of coherent multi-wavelength sources at intermediate points such as optical add drop multiplexers in metro networks. In scenarios where full functionality of the receiver is not required and dispersion does not dominate the degradation of the signal, a circuit with simple hardware implementation (optical and/or electrical), enabling flexible data rate and analog CR is desirable. For phase modulation formats with weak or no clock components in their intensity spectra, all optical CR using nonlinear techniques such as four-wave mixing (FWM) and optical injection have been demonstrated. All optical CR for BPSK and/or DPSK modulation 

formats using Fabry-Pérot filters [3], mode-locked semiconductor optical amplifiers (SOAs) [4], self pulsating DBR lasers [5], and FWM in SOAs have been demonstrated [6, 7]. Recently, CR from NRZ QPSK modulation with a pre-processing stage (cross gain modulation with a CW pump in SOA followed by wavelength selective switch) to enhance the clock component and optical injection to a dual-mode amplified feedback DFB laser has been demonstrated [8]. All optical CR approaches could be implemented in an integrated platform using SOAs or mode-locked lasers. However, the recovered clock may incur excessive noise in the case of FWM based techniques, requiring narrowband electrical filters, post processing or frequency down conversion [6]. Optical injection based CR techniques [4-5, 8], shown to be effective in absorbing phase noise of the incoming signal, are usually limited to a very narrow locking range (typically ~1% of data rate) around the free running pulsation frequency of injected laser. This limits their interest for practical applications where a flexible optical transmitter is implemented with flexible baud rate [9]. As an alternative to all optical techniques, CR can be implemented after the BPSK demodulator and optical/electrical conversion using commercial modules based on electrical phase-locked-loops (PLLs) [10, 11]. These CR modules usually have a limited data rate for successful locking operation. It is also desirable for a CR scheme to be suitable for photonic integration, if it is to become part of a deployable optical receiver.  Previously, we demonstrated a self homodyne optical-electrical-optical (OEO) carrier recovery technique for BPSK signals in [11-13]. The carrier recovery scheme works by re-modulating the optical BPSK signal with the same or inverted data pattern which is regenerated at the electrical section of the OEO circuit. In this letter, for the first time, we demonstrate a self-homodyne optical-electrical-optical (OEO) self-starting CR technique for BPSK signals with standard, off-the-shelf optical and electrical components. We demonstrate that by modifying the logic operation of electrical section at OEO circuit and adding an optical-electrical feedback circuit, continuous phase switch between “0” and “π” occurs after re-modulating the optical BPSK signal. For a Mach-Zehnder modulator (MZM) biased at null, enabling phase-modulation, such 
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Fig. 3: Optical spectra of the BPSK signal (dashed-black), recovered clock (red), and the recovered carrier (blue). Inset: eye diagram of the MZM output, inverted clock pulse.  

 
Fig. 4: RF spectra of the recovered clock (red) and carrier(blue) with resolution bandwidth (RBW) 300 kHz. PRBS: 27-1. Inset: RF spectrum of recovered clock, PRBS 231-1. In the RF spectrum of the recovered clock, two features can be observed. Firstly, the power of the clock component (10.7 GHz) in CR case is larger by ~4 dB, compared with that of the recovered carrier. Secondly, the power of spur tones related to pattern length was significantly suppressed around the clock frequency down to the low frequency range. We expect suppression of these tones for any PRBS length from the clock recovery scheme. This could be attributed to the larger side bands generated in the optical spectrum of the clock recovery signal due to the phase switch at MZM output in every clock cycle. When converted to the electrical signal, this spectrum generates larger power for the component at clock frequency and weaker power at PRBS related spur tones. This is beneficial for practical application of the clock as it relaxes the filter requirements for suppressing the pattern dependent spur tones. The RF spectrum of recovered clock for PRBS length of 231-1 (inset of Fig. 4) is shown with RF SNR to be ≈40 dB for resolution bandwidth of 300 kHz. The timing jitter of the clock component in the RF spectrum (10.7 GHz) was calculated by integrating the normalized single side band measured phase noise spectrum (integration range: 100 Hz-10 MHz) to be ≈ 0.03 rad (~450 fs) indicating an excellent phase noise performance. This value is more than 50% better than all optical FWM in SOA technique [6-7] measured to be ~1 ps for a 21.4 GHz clock. Compared to all filtering techniques ([3]), values of ~710 fs were reported for a 10 GHz recovered clock, measured from the scope with precision time-base. The maximum available optical power in the feedback loop was around -1.6 dBm (692 μW) at the input of photoreceiver, 

with total gain conversion of 50 V/W, the amplitude of electrical signal at the clock input of differential encoder is estimated to be ~ 34 mV. We expect some residual jitter due to the low level of signal at the clock input of the differential encoder which should be improved by using a larger signal. With the availability of the components such as an extra MZM and differential encoder, one can implement simultaneous and independent carrier and clock recovery for BPSK signals using this scheme. The recovered clock can be distributed to synchronise the differential encoder for the carrier recovery circuit as well. This scheme uses standard electronic and optical components, make it an ideal option for photonic integration with practical deployment. We also note that despite some dispersion tolerance of BPSK modulation and demodulator [15], this scheme still requires reasonable pulses and therefore, dispersion compensation is required if the scheme is to be used for long haul transmission.  In conclusion, we demonstrated a novel clock recovery scheme for BPSK signals using an optical-electrical-optical self-homodyne technique. The self-starting clock recovery is based on generation of side bands for an MZM biased at null, giving a continuous phase switching between “0” and “π”. A proof of concept experiment was implemented for a 10.7 Gb/s BPSK with 20 km transmission and dispersion compensation showing suppression of pattern related spur tones at the RF spectrum of recovered clock as well as excellent phase noise performance.  
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