
1 

 

Statistical Review 

 

 

RECOMMENDATIONS FOR ANALYSIS OF REPEATED-MEASURES DESIGNS: 

TESTING AND CORRECTING FOR SPHERICITY AND USE OF MANOVA AND 

MIXED MODEL ANALYSIS 

 

 

Richard A. Armstrong 

 

 

 

School of Life and Health Sciences: Ophthalmic Research Group, School of Optometry, 

Aston University, Birmingham, B4 7ET, UK. 

 

 

Running head: Repeated-measures design 

 

 



2 

 

Abstract 

Purpose: A common experimental design in ophthalmic research is the repeated-measures 

design in which at least one variable is a within-subject factor. This design is vulnerable to 

lack of ‘sphericity’ which assumes that the variances of the differences among all possible 

pairs of within-subject means are equal. Traditionally, this design has been analysed using a 

repeated-measures analysis of variance (RM-ANOVA) but increasingly more complex 

methods such as multivariate ANOVA (MANOVA) and mixed model analysis (MMA) are 

being used. This article surveys current practice in the analysis of designs incorporating 

different factors in research articles published in three optometric journals, viz. ophthalmic 

and physiological optics (OPO), optometry and vision science (OVS), and clinical and 

experimental optometry (CXO), and provides advice to authors regarding the analysis of 

repeated-measures designs.  

Recent findings: Of the total sample of articles, 66% used a repeated-measures design. Of 

those articles using a repeated-measures design, 59% and 8% analysed the data using RM-

ANOVA or MANOVA respectively and 33% used MMA. The use of MMA relative to RM-

ANOVA has increased significantly since 2009/10. A further search using terms to select 

those papers testing and correcting for sphericity (‘Mauchly’s test’, ‘Greenhouse-Geisser’, 

‘Huynh and Feld’) identified 66 articles, 62% of which were published from 2012 to the 

present.  

Summary: If the design is balanced without missing data then MANOVA should be used 

rather than RM-ANOVA as it gives better protection against lack of sphericity. If the design 

is unbalanced or with missing data then MMA is the method of choice. However, MMA is a 

more complex analysis and can be difficult to set up and run, and care should be taken first, 

to define appropriate models to be tested and second, to ensure that sample sizes are 

adequate. 

 

Key Words: Repeated-measures design, Sphericity, Mixed model analysis (MMA), 

Mauchly’s test, Greenhouse-Geisser, Huynh and Feld  
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Introduction 

 

A repeated-measures design is commonly used in many fields of research including plant 

science1, ecology and evolutionary science2, the training of athletes3, cognitive neuroscience4, 

and genetics5 and is also frequent in ophthalmic research.6-8 In a repeated-measures design at 

least one factor is a within-subject variable, i.e., different values or levels of a factor are 

measured on the same subject or replicate and differs from a between-subject factor in which 

different levels of the factor are measured on different subjects. Common examples include 

when the repeated-measure is an ordered longitudinal variable such as time, trial number, or 

drug dosage, the objective being to determine how the dependent variable may change with 

the repeated measure. Alternatively, the repeated-measure may include different categories 

such as treatment or drug type and the objective may be to determine whether differences 

among levels of a between-subject variable vary among levels of the repeated-measure. A 

repeated-measures design may contain multiple within-subject factors in addition to between-

subject factors resulting in complex ‘mixed model’ designs.9 

 

A repeated-measures design is vulnerable to a number of assumptions, most significantly to 

lack of ‘sphericity’ in which the variances of the differences among all possible pairs of 

within-subject means are assumed to be equal.10,11 In more complex designs, the degree of 

sphericity may also differ among factors; in neuroimaging studies for example, lack of 

sphericity often varies among brain regions.12 Lack of sphericity is also related to the number 

of levels of the within-subject factor, being minimal when only two are present. If the 

problem of sphericity is not taken into account, the most likely consequence is larger variance 

ratios (F) than expected when carrying out an analysis of variance (ANOVA) and the 

likelihood that an inaccurate conclusion could be drawn from the results. Lack of sphericity 

also has significant implications for the use of post-hoc tests for more detailed analysis of 

group mean differences.10,11  

 

If sphericity cannot be assumed, then the data may not exhibit ‘compound symmetry’, a 

closely-related concept, but which specifically assumes that the pattern of co-variance or 

correlation among levels of the repeated-measure is constant. Hence, with four successive 

trials it is assumed that the correlation between Trial 1 and 2 is the same as that between Trial 

1 and 4. Furthermore, it is assumed that the response of all subjects in the trial would change 

in the same way, i.e., if the response was an increase with trial number that the regression 
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lines would have the same positive slope for each subject. In addition, there are two further 

assumptions of repeated-measures ANOVA. First, that the trials are equally spaced in time, a 

consequence of the compound symmetry assumption, and second, that in most statistical 

programs such as SPSS, there are no missing values in the data set.  

 

Traditionally, a conventional univariate repeated-measures ANOVA (RM-ANOVA) followed 

by a standard post-hoc test such as Fisher’s protected least significant difference (PLSD), 

Tukey-Kramer honestly significant difference (HSD) test, or the Bonferroni test7,13,14 has 

been used to analyse a repeated-measures design. Nevertheless, the use of this approach has 

been questioned in various research fields1-5 and more complex methods suggested including 

multivariate ANOVA (MANOVA) and ‘mixed model analysis’ (MMA).15-17 MMA in 

particular is regarded as more flexible and less sensitive to various assumptions, including 

that of sphericity and compound symmetry, than RM-ANOVA. Hence, the aims and 

objectives of this article are: (1) to estimate the frequency of use of the repeated-measures 

design in the ophthalmic literature and the extent to which the problem of sphericity has been 

considered, (2) to discuss the relative merits of univariate RM-ANOVA, MANOVA, and 

MMA, and (3) to provide some statistical advice to authors wishing to analyse repeated-

measures designs.   

 

Frequency of the repeated-measures design  

 

Methods 

 

To estimate the frequency of use of the repeated-measures design in the ophthalmic literature, 

a sample of research articles published in the period 2003-2015, in which the experimental 

design incorporated one or more factors, was studied in three optometry journals: (1) 

ophthalmic and physiological optics (OPO), (2) optometry and vision science (OVS), and (3) 

clinical and experimental optometry (CXO). To obtain these articles, searches were made 

using various terms such as ‘ANOVA’, ‘within-subject factor’, ‘repeated-measures’ design, 

‘MANOVA’, and ‘MMA’. Whether the data were analysed using univariate ANOVA, 

MANOVA, or MMA was determined for each article. A total of 193 articles were reviewed 

for this study. In addition, a further survey was conducted using ‘Mauchly’s test’, 

‘Greenhouse-Geisser’, and ‘Huynh and Feld’ as search terms to estimate the frequency of 

articles in the three journals which tested and corrected for sphericity. A more detailed 
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manual review of all articles was also made in 2016 to determine whether the search terms 

identified all of the papers of interest. This review indicated that all relevant articles were 

identified although the search terms frequently selected articles which were not relevant and 

which were subsequently eliminated from the sample. 

 

Results and discussion 

 

Of the total sample of articles, 128/193 (66%) used a repeated-measures design and of these 

76/128 (59%) analysed the data using RM-ANOVA, 10/128 (8%) used MANOVA, and 

42/128 (33%) used a MMA. Hence, the majority of articles that used a repeated-measures 

design, the data were analysed using a conventional RM-ANOVA rather than MANOVA or 

MMA. Results were essentially similar in all three journals studied. In a similar analysis of 

articles in athletic training journals, 24% of papers reviewed used a repeated-measures design 

and of these papers 96% used RM-ANOVA.3 With regard to the proportion of articles using 

MMA rather than RM-ANOVA, 21% used MMA prior to 2009/10 and 42% from 2009/10 to 

2016. The data also suggested some articles using RM-ANOVA did not explicitly test for 

sphericity using Mauchly’s test18,19 or subsequently correct for this problem using either the 

Greenhouse and Geisser20 or Huynh and Feld21 adjustments.22,23 The Greenhouse and Geisser 

adjustment estimates a value of ‘epsilon’ () in order to correct the degrees of freedom (DF) 

of the ‘F’ distribution, thus enabling a more accurate ‘P’ value when the sphericity 

assumption is violated. The Huynh and Feld adjustment is similar but is regarded as more 

liberal than Greenhouse and Geisser. When search terms were used to specifically identify 

those articles which tested and corrected for sphericity, 14/66 (21%) used Mauchly’s test24, 

47/66 (71%) the Greenhouse-Geisser correction25-27, and 5/66 (8%) the Huynh and Feld 

correction28, 62% of which were published in the period 2012 to the present. A problem with 

these procedures, however, is that they may not protect against multiple testing using post-

hoc tests after RM-ANOVA especially if an overall error term is used.10,11 These 

considerations suggest that some caution should be used regarding the conclusions of papers 

using RM-ANOVA, either if there has been little consideration of sphericit or where post-hoc 

testing has been used and raises the question as to the best method of analysis of a repeated-

measures design, ANOVA, MANOVA, or MMA? 

 

Analysis of repeated-measures designs  
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Univariate ANOVA 

 

Most commonly, ophthalmic researchers have used conventional ‘univariate’ ANOVA to 

analyse a repeated-measures design.29-37 An example of a RM-ANOVA using a fictitious data 

set based on that of Winer38 and analysed using STATISTICA software (general linear 

models option) is shown in Table 1. The design is a 2 x 3 x 3 factorial in which there are two 

categories of a between-subject factor (Two groups A, B), three 10-minute time intervals (T1, 

T2, T3), and three tasks (Task 1, Task 2, Task 3), the latter two variables being repeated-

measures. An obvious application of this design in ophthalmic research would be two patient 

groups and three visual perception tasks measured over three time intervals. The dependent 

variable is the number of errors made on each task. First, a basic ‘univariate’ analysis 

illustrating the significance of all main effects and interactions is shown below the data in 

Table 1. Note for this analysis that the data are in ‘wide’ format which is usual in most 

statistical software when carrying out RM-ANOVA, i.e., each subject is represented by a 

complete row and the levels of the within-subject factor are separate columns. There are three 

significant effects, viz, the main effects of ‘time’ (F = 63.39, P < 0.001) and ‘task’ (F = 89.82, 

P < 0.001) and a significant ‘group x time’ interaction (F = 5.67, P = 0.029). In both groups, 

performance on the tasks improved, fewer errors being made in successive 10-minute 

periods. Fig 1 illustrates this interaction showing that the responses were similar at T1 but 

then diverged statistically at T2, group B performing better than group A. To explore this 

specific interaction effect further, a contrast analysis can be used. In this circumstance, there 

are probably too few time periods to make a regression or polynomial ‘trend’ analysis 

worthwhile.10,11 However, it is likely to be the differential response at T1 and T2 which 

accounts for the interaction effect. This contrast can be tested separately and the analysis is 

shown at the bottom of Table 1. Hence, the interaction effect due to the difference between 

T1 and T2 and T2 and T3 is significant (F = 17.76, P = 0.013) and the two-factor interaction 

between ‘group’ and ‘time’ is therefore, largely due to a differential improvement from T1 to 

T2 in group B. Note at this stage, the effect of a possible lack of sphericity has not been taken 

into account. Lack of sphericity is likely in any repeated-measures design with more than two 

levels and the Greenhouse-Geisser adjustment can be applied, this correction being shown at 

the bottom of Table 1. This adjustment does not affect the significance of the main effects of 

‘time’ and ‘task’ but the ‘group x time’ interaction is not quite significant (P = 0.057). Hence, 
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in this example, lack of sphericity could have led to the erroneous acceptance of an 

interaction effect. 

 

Multivariate ANOVA (MANOVA) 

 

An extension to the method above is a multivariate approach to RM-ANOVA which does not 

rely to the same extent on the assumption of sphericity39 but has been relatively little used in 

ophthalmic research.40-43 At one time, programs such as SPSS analysed a repeated-measures 

design within the MANOVA option and it was not possible to carry out a traditional 

univariate RM-ANOVA. The univariate analysis incorporating the Greenhouse-Geisser 

adjustment is a strong indication that the sphericity assumption is unlikely to be valid for the 

data in Table 1 and therefore, a multivariate ANOVA (MANOVA) in which the levels of the 

repeated-measure are analysed as multiple dependent variables, should be carried out. There 

are various multivariate test criteria available including ‘Wilks’ Lambda’, ‘Hotelling-Lawley 

Trace’, and ‘Roy’s Largest Root’ and an analysis using STATISTICA software from the data 

in Table 1 using the first of these tests is shown in Table 2. In this analysis, the ‘group x time’ 

interaction is no longer quite significant suggesting violation of the sphericity assumption did 

lead to an erroneous acceptance of the interaction effect in this instance. However, the highly 

significant main effects of ‘time’ and ‘task’ remain significant even after taking sphericity 

into account. Results from the MANOVA are therefore similar to those of the RM-ANOVA 

but in many circumstances, and especially with more than two levels of the repeated measure, 

the outcomes will be different and the multivariate option is the preferred analysis as it gives 

better protection against lack of sphericity.   

 

MMA 

 

Given the problems associated with the repeated-measures design, there has been 

considerable interest in alternative methods of analysis. An obvious choice is MMA (also 

known as ‘linear mixed models’ or ‘hierarchical linear models’) especially if multiple factors 

incorporating more than a single within-subject factor, missing data, or an unbalanced design 

is present.15-17 Various examples of the use of this analysis have been published in the 

ophthalmic literature including as an alternative to RM-ANOVA.44-47 Other studies have used 

MMA in combination with conventional ANOVA.48,49 MMA has also been used in studies 
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which use right and left eye as a within-subject factor50,51, in the estimation of inter-observer 

reliability52, and in calculation of the inter-class correlation coefficient (ICC).53 

 

There are a number of considerations before attempting a MMA of a repeated-measures 

design. First, the variables in the investigation are usually classified as ‘fixed-effect’ or 

‘random- effect’ factors. To distinguish between them, consider the effect of removing one of 

the levels from a factor and whether this would effectively change the detail of the 

experiment. Hence, in Table 2, patient group and task are fixed effect factors since changing 

one patient group or task to another fundamentally changes the nature of the experiment. By 

contrast, if the factor is time, altering one time period may not fundamentally change the 

nature of the experiment and hence, subjects or repeated-measures factors such as time can be 

usefully modelled as random-effect factors in some circumstances. Second, although closely 

related to sphericity, MMA usually considers compound symmetry to be the more important 

assumption. This assumption is unlikely to be valid if the responses of different subjects with 

time or trial number are different. Hence, it is useful to plot the responses for each subject 

individually to determine the extent to which the trends with time are consistent among 

subjects. An example drawn from some of the subjects in Table 1 is shown in Fig 2 

illustrating the fact that although the response of all three subjects illustrated declined with 

time, the response of subjects 1 and 3 were similar but subject 2 declined more rapidly 

suggesting that the compound symmetry assumption may not be valid in this instance. 

 

There are a number of advantages to MMA.54-56 First, MMA is more flexible and 

powerful57,58 and there are no limits to the number of factors that can be included as long as 

sample sizes are large enough. Note that to fit several models to a data set may require 

significant numbers of DF and the question of sample size needs to be carefully considered.59 

Second, although not a specific advantage of MMA, co-variates can be included along with 

one or more within-subject factors and various testing methodologies are usually available.12 

Third, MMA does not require complete or balanced data, has less stringent assumptions, and 

exhibits increased power to detect treatment effects.60 Hence, if some data are missing for a 

subject, the remaining data from that patient can still be used. As a result, MMA does not use 

a least-squares solution to calculate its parameters as in ANOVA but a ‘maximum likelihood’ 

(ML) solution which does not require complete data. Nevertheless, if a design is completely 

balanced then similar results are likely to be obtained using ANOVA and MMA. Fourth, in 

longitudinal designs, the data collection does not have to be at regularly spaced sample points 
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or consistent regarding when each subject is measured. Fifth, MMA does not assume 

compound symmetry and the analysis often allows the user to select whether this assumption 

is valid or alternatively, to select from a set of possible co-variance structures, or to specify 

their own co-variance structure. 

 

The first stage of a MMA of the data in Table 1 using SPSS software and which for 

simplicity models all three factors as fixed-effect factors is shown in Table 3. MMA can be 

more complex to set up and carry out than traditional ANOVA and potential users should 

work through several examples in the literature.17,61-63 In addition, reference63 is linked to 

videos which illustrate the ‘mechanics’ of carrying out MMA. The basic rationale of a MMA 

is to find the simplest model which best fits the data. To carry out the analysis requires a 

number of requirements and several decisions. First, most software programs including SPSS, 

require that data be tabulated in ‘long format’ in which each observation occurs in a separate 

row. The data for subject 1 from Table 1 are illustrated in this format at the top of Table 3. 

Second, there are usually two methods available to estimate the parameters of the model, viz., 

the restricted maximum likelihood (REML) method or the full maximum likelihood (ML 

method).17,60 If both fixed and random-effect factors are to be modelled, the ML method 

should be used and is also necessary if the intention is to statistically compare different 

models as in the present example.60 Third, most software packages provide information on 

the parameters that are to be estimated and should be checked carefully to ensure that the 

model has been specified correctly. Fourth, the ‘information criteria’ table includes several 

measures of model fit. The simplest measure is the -2log likelihood (-2LL) method, but this 

can be difficult to interpret because it does not take into account differences in the number of 

parameters. The ‘Akaikes information criteria’ (AIC) is regarded as more straight forward 

and together with the ‘Schwarz’s Bayesian criterion’ (BIC) are commonly used to evaluate 

the models. The values of these models are not interpretable in themselves but only relevant 

when comparing models, ‘lowest’ value indicating best fit to a model. Fifth, in repeated-

measures designs, the different time measures are likely to be correlated but the initial 

analysis assumed no correlations are present (compound symmetry assumption). This 

problem can be taken into account by allowing the repeated-measure co-variance to be 

‘unstructured’, i.e., the repeated measure to be correlated and to have unequal variances. As a 

result, this model can be compared with one that assumes compound symmetry. In the 

present example, an unstructured model could not be fitted as it required too many 

parameters relative to the size of the data set. However, to illustrate the comparison of 
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models, a ‘diagonal’ model was fitted which allows the variances to be heterogeneous but the 

correlations to be zero. The two models can be compared using the AIC and BIC information 

criteria. In this circumstance, the compound symmetry model was a better fit to the data as it 

has the lowest scores on all information criteria and the fewest model parameters, i.e., 16 

rather than 23.  Once an appropriate model has been specified, and there are several potential 

further models which could be tested, then the various main effects and interactions can be 

estimated and tested as before and individual group means tested The main effects and two-

factor interactions, assuming a compound symmetry model, are shown at the bottom of Table 

3. The conclusions are essentially similar to those of the RM-ANOVA in which the main 

effects of ‘task’ and ‘time’ are highly significant but there is a significant group x time 

interaction effect. This result differs slightly from that given by the less powerful RM-

ANOVA after Greenhouse-Geiser adjustment and MANOVA in that the group x time 

interaction did not quite reach significance. However, very different conclusions could be 

obtained using an MMA compared with RM-ANOVA and MANOVA if the design was 

unbalanced or with missing values.  

 

Concluding remarks and advice 

 

A repeated-measures design is one of the most frequently used experimental designs in 

ophthalmic research. Most commonly, the repeated-measure represents time and longitudinal 

data frequently lack sphericity and compound symmetry, problems which can significantly 

affect the analysis and the conclusions drawn from a study. Recently, an increasing number 

of articles have tested for sphericity using Mauchly’s test and have used the Greenhouse-

Geisser or Huynh and Feld corrections. A problem with this approach is that it may not 

protect against multiple testing using post-hoc tests after RM-ANOVA especially if an 

overall error term is used.10,11 Hence, the following advice to authors is recommended: 

 

1. If the design is balanced without missing data MANOVA is preferable to RM-

ANOVA as it gives better protection against lack of sphericity.39-43 There are two 

exceptions to this advice: (a) if only two levels of the repeated measure are present or 

(b) there are more than two levels but sphericity can be assumed (Mauchly’s test). In 

both cases a RM-ANOVA is appropriate. 
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2. With more complex designs with multiple factors, especially if unbalanced or with 

missing data, then MMA is increasingly regarded as the method of choice.15-17 

Nevertheless, MMA is a more complex analysis and can be difficult to set up and run. 

Care should be taken to ensure that sample sizes are adequate and clarity is needed to 

define appropriate models to be tested.56 Investigators inexperienced with the method 

should work through the examples in the literature17,61-63 before carrying out MMA. 
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Legends to figures 

 

Figure 1. Mean number of errors on three visual perception tasks over three successive 10-

minute time intervals in two different subject groups (A, B) illustrating the group x time 

interaction. 
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Figure 2. Individual responses of three subjects extracted from the data in Table 1 suggesting 

different responses over time and therefore, that the assumption of compound symmetry is 

unlikely to hold. 

 

 


