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Abstract

t-distributed Stochastic Neighbour Embedding (t-SNE) is one of
the most popular nonlinear dimension reduction techniques used in
multiple application domains. In this paper we propose a variation on
the embedding neighbourhood distribution, resulting in Γ-SNE, which
can construct a feed-forward mapping using an RBF network. We
compare the visualizations generated by Γ-SNE with those of t-SNE
and provide empirical evidence suggesting the network is capable of
robust interpolation and automatic weight regularization.

1 Introduction

Data which is high-dimensional in the observation space is naturally impossi-
ble to humanly interpret. The notion of information visualization transforms
these observations, generating a low (2 or 3) dimensional representation of
the data. This allows for valuable insight into complex data structures, for
instance the financial applications of [23]. An argument for the benefits
of 3-dimensional information visualization is presented in [14], however fol-
lowing the literature standard we restrict our experiments to 2-dimensional
visualizations. There has been much interest in recent years in the creation
of nonlinear mappings connecting the observation and visualization spaces,
see [17],[28] for a review. One of the most popular mappings which has
sparked interest is locally linear embedding [22] whereby local neighbour-
hoods are preserved by constructing a weighted neighbourhood. Stochastic
Neighbour Embedding [15] (SNE) extends this concept by considering global
neighbourhood structures, as opposed to local ones, attaching a probability
distribution to the neighbourhoods. The mapping is learned by matching a
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distribution over latent, visualized, neighbourhoods with that of the obser-
vation space. SNE differs from other global mappings such as NeuroScale
[19] by placing emphasis on mapping local neighbourhoods at the expense
of global reconstructions [20].

This methodology was extended using t-distributions over dissimilarities
for the visualization space in t-SNE [29] which forms a part of the visual-
ization framework in [3]. It was found that mismatching the neighbourhood
distributions allowed for better local clustering, with examples given in the
supplementary material of [29]. Further research into t-SNE has allowed for
feed-forward mappings using both kernel methods [5, 13] and deep belief
nets [27]. In addition to this, the impact of different measures of ‘closeness’
of the observed and visualized neighbourhood distributions is discussed in
[6, 9].

In order to introduce the method proposed in this paper we provide a
brief outline of the t-SNE mapping process. Given a set of observations,
{xi} ∈ RO we wish to create a 2-dimensional embedding of the data, {yi} ∈
R2, such that it can be visually interpreted using t-SNE. The mapping places
a distribution over neighbourhoods:

pj|i =
exp(−‖xi − xj‖2/2σ2i )∑
k 6=i exp(−‖xi − xk‖2/2σ2i )

, (1)

where σ2i is the perplexity corresponding to observation i [15]. These condi-
tional distributions are then symmetrized resulting in an observation neigh-
bourhood distribution:

pij =
pj|i + pi|j

2
.

A distribution is then placed over neighbourhoods of the visualized points:

qij =

(
1 + ‖yi − yj‖2

)−1∑
k 6=l (1 + ‖yk − yl‖2)−1

. (2)

t-SNE then attempts to match qij and pij by minimising the Kullback-
Leibler divergence:

C = KL (P‖Q) =
∑
ij

pij log

(
pij
qij

)
. (3)

There are two prominent issues with the setup of t-SNE in this form. Firstly,
we note that qij is a t-distribution over the dissimilarity between {yi} which
we denote dij . This ensures there is a finite probability that dij can be
negative, which for dij given by the Euclidean distance in t-SNE is not
possible. This distribution is therefore a poor fit to the neighbourhood
distances.
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(a) (b) (c)

Figure 1: (a) Randomly generated data consisting 20 3-dimensional points,
(b) NeuroScale mapping, (c) t-SNE mapping. The t-SNE visualization does
not preserve any neighbourhood structure and instead places the data ran-
domly on an approximately uniform grid, whereas the NeuroScale mapping
preserves neighbourhood structure, enforcing a local reconstruction.

A further issue is the optimisation of the cost function in equation (3).
In order to avoid achieving poor local-minima in the optimisation process a
momentum-based gradient descent process is required. t-SNE has achieved
impressive clustering results on popular datasets, however it can fail to prop-
erly preserve neighbourhoods when the t-distribution is a poor match to the
true latent distributions. One simple way to show this is to attempt to clus-
ter 20 3-dimensional randomly generated points where the values of the third
dimension are fixed to zero such that this is already a 2-dimensional observa-
tion space, as in figure 1. The NeuroScale generated visualization preserves
neighbourhood structures whereas t-SNE cannot preserve the neighbour-
hood structure since the latent distribution over visualized points is not
t-distributed.

In order to rectify this issue this paper presents a different mapping to
that of SNE or t-SNE, utilising the Gamma distribution for qij , allowing for
improved neighbourhood preservation. This new approach is integrated with
a feed-forward mapping to overcome some of the problems facing these al-
gorithms, particularly the ease with which false neighbourhoods are created
and the non-convexity of the optimisation process. We further demonstrate
using four standard datasets that our approach outperforms t-SNE whilst
retaining desirable projective properties allowing for reliable out-of-sample
mapping not guaranteed with t-SNE.

2 Method

The difference between Γ-SNE and alternative Neighbour-Embedding al-
gorithms is the change in distribution over the latent distances, qij . The
same distribution over neighbours in the observation space as in t-SNE
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and standard SNE from equation (1) is retained. Neighbourhood distances
in the visualization space are again determined by the Euclidean distance,
dij = ‖yi−yj‖, but here we place a Gamma distribution, q, over the neigh-
bourhood probabilities. This is a more realistic assumption than that of
SNE or t-SNE since the support of q(dij |a, b) is over dij > 0. The pdf of the
Gamma distribution is given by:

q(dij |a, b) =

(
1

Γ(a)

)
bad

(a−1)
ij e−dijb.

As with SNE and t-SNE we remove the normalisation terms, opting to
perform normalisation over the embedding dissimilarities numerically:

qij =
da−1ij e−dijb∑
k 6=l d

a
kle
−dklb

, (4)

where the normalisation term ensures the distribution sums to 1. In the
case that dij = 0 we fix qij = (

∑
k 6=l d

a−1
kl e−dklb)−1.

Following the framework of Neighnour Embedding algorithms we wish to
match the distributions, p and q, where the natural choice is the Kullback-
Leibler divergence as in equation (3). This is one of a wide variety of distance
measures over probability distribution functions and in particular is a special
case of the α [7], β [1] and γ-divergence [12] families. In [6] it was shown that
the performance of t-SNE can be improved when the cost C is replaced with
one of these divergence measures. We adopt these developments resulting
in the modified cost functions Cα, Cβ and Cγ respectively:

Cα =
1

α(α− 1)

∑
ij

pαijq
(1−α)
ij − αpij + (α− 1)qij ,

Cβ =
∑
ij

1

β − 1
pij

(
p
(β−1)
ij − q(β−1)ij

)
− 1

β

(
pβij − q

β
ij

)
,

Cγ = log


(∑

ij p
γ+1
ij

) 1
γ(γ+1)

(∑
ij q

γ+1
ij

) 1
γ+1

(∑
ij pijq

γ
ij

) 1
γ

 .
These cost functions are nonconvex by nature and require optimisation
through a gradient-descent procedure. The gradients for the latent visu-
alized points, yi, using the auxiliary variable Vij are given by:

Vij = 4

(
a− 1

dij
− b
)

(yi − yj) ,

∂C

∂yi
=
∑
j

(pij − qij)Vij ,
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∂Cα

∂yi
=

1

α

∑
j

[
pαijq

1−α
ij − qij

∑
kl

pαklq
1−α
kl

]
Vij ,

∂Cβ

∂yi
=
∑
j

[
qβ−1ij (pij − qij)− qij

∑
kl

qβ−1kl (pkl − qkl)

]
Vij ,

∂Cγ

∂yi
=
∑
j

[
pijq

γ
ij∑

kl pklq
γ
kl

−
qγ+1
ij∑
kl q

γ+1
kl

]
Vij .

Unlike the learning procedure for SNE and t-SNE we now have a para-
metric embedding in which we must determine a and b (note the ν parameter
used in one-dimensional t-distributions is fixed to unity in t-SNE and there-
fore requires no optimisation). By defining an auxiliary variable for the
normalisation constant, u =

∑
k 6=l d

a−1
kl e−dklb, we have the gradients for a:

∂C

∂a
=

1

u

∑
ij

pij log(dij)− log(dij)d
(a−1)
ij e−dijb, (5)

and for b:
∂C

∂b
=

1

u

∑
ij

−pijdij + daije
−dijb. (6)

In this form a fixed mapping of a set of data, {xi} can now be constructed
using the above gradients. In numerical experiments we have found that op-
timising the latent points, {yi}, in addition to the parameters, a, b, can
potentially yield local minima and thus require a stochastic or momentum-
based gradient approach to optimising these parameters. An alternative
method is to fix a and b prior to optimising the latent points. Initial ex-
periments have found that a maximum likelihood fit of a and b to a PCA-
embedded mapping yields a performance drop of less than 1% relative error
of the cost function. The non-convexity of the cost function in this form
of Γ-SNE is an issue shared also with SNE and t-SNE. We propose to not
only construct a visualization of a dataset with Γ-SNE, but also to create
a mapping whereby new, unseen data can be projected to the latent space.
This requires an alternative optimisation approach which in numerical ex-
periments has not suffered from the same local minima problems.

In order to construct a feed-forward mapping from observation space
to our visualization space we choose to interpolate over the data using a
Radial Basis Function (RBF) network [4]. The k-th output dimension of
the network takes the form:

yki =
∑
j

Wjkφ(d(xi, cj)),

where W is a weight matrix, φ(. . . ) is a nonlinear basis function, d(. . . ) is
a dissimilarity measure comparing observation xi to network centers, cj . In
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this paper we consider the case where xi is a data vector and d(. . . ) is the
Euclidean distance, however this approach will work with any generalised
observation Xi provided a dissimilarity measure d is specified. In the exper-
iments of this paper we fix the basis functions to be thin plate splines such
that φ(r) = r2 log(r). Typically the weights in neural networks and other
interpolation models are optimised by gradient descent of a cost function,
however here we can employ an alternative training approach. Denoting the
matrix set of visualization vectors, Y , we can compute the shadow targets
[26] at each training iteration as in Neuroscale:

T = Y − η ∂C
∂Y

,

Ŵ = Φ†T . (7)

Where η is the gradient descent learning rate. It was shown in [25] that
this approach has the useful properties of automatic weight regularization,
a reduction of curvature and smoother optimisation when compared to alter-
native gradient descent methods in the NeuroScale mapping. We therefore
seek to employ this optimisation procedure in Γ-SNE also and compare the
empirical results with those of NeuroScale in the following section. In addi-
tion to Y the parameters a and b can also be learned in the Shadow Targets
framework:

â = a+ δη
∂C

∂a
,

b̂ = b+ δη
∂C

∂b
,

where δ is a smoothing parameter. This is required since the summation in
∂C
∂b can force the gradient contributions to be large, and the learning rate,
η, which is used to learn yi must be small for smooth gradient learning
and to avoid poor minima, particularly in large datasets. We have found a
suitable value for the smoothing parameter to be dependent on the Shadow
Targets, namely δ =

∑
ij(TT T ). As is typical with nonlinear visualization

algorithms we propose to initialise the latent variables with PCA, following
which the visualization space will be centered at the origin. From this we
see that our proposed δ weights a and b by the sample data covariance and
that the relative scale of T will not adversely impact a and b.

The pseudocode required to compute an RBF-Γ-SNE mapping is shown
in algorithm 1. This process is generic and as such the cost function, C can
trivially be replaced with Cα, Cβ or Cγ as above.

3 Results

In this section we show the results of visualizations generated by Γ-SNE on
four datasets. The first is the open box dataset used as a benchmark com-
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Algorithm 1 Pseudocode for RBF-Γ-SNE for visualization

Require: Data {xi} and perplexities σi, learning rate η, number of itera-
tions, Niter

1: Calculate the neighbourhood probabilities, pij and basis function matrix,
Φ,

2: Initialise latent points Y randomly or through PCA,
3: Initialise RBF weight matrix W = Φ†Y ,
4: Calculate latent dissimilarities dij = ‖yi − yj‖,
5: Initialise Gamma distribution parameters {a, b} through maximum

likelihood of dij ,
6: Calculate latent neighbourhood probabilities, qij ,
7: Calculate initial cost, C,
8: for iter = 1:Niter do
9: Calculate error gradients ∂C

∂Y , ∂C
∂a , ∂C

∂b ,

10: Update targets T = Y − η ∂C∂Y ,
11: Calculate latent parameter gradient coefficient δ,
12: Update RBF network weights W = Φ†T ,
13: Update parameters of the latent Gamma distribution: â = a +

δη ∂C∂a , b̂ = b+ δη ∂C∂b ,

14: Calculate new latent points Ŷ = ΦW ,
15: Update latent dissimilarities, dij ,
16: Update latent neighbourhood probabilities, qij ,
17: Re-calculate cost, C,
18: if cost reduced then
19: Y ← Ŷ , a← â, b← b̂, increase η,
20: else
21: decrease η,
22: end if
23: end for

parison for linear and nonlinear visualization algorithms in [17] containing
an open top and uniformly sampled faces with 316 datapoints. The second is
the punctured sphere dataset from the mani toolbox [30] used in [18] which
poses the difficulties of an open top and sparse base in the 3-dimensional
observation space with 500 datapoints. The third dataset used is a subset
of the well known MNist dataset [16] containing 50 0’s, 1’s and 6’s as in [8].
Finally we analyse the Caltec101 images dataset [11] following the creation
of a 500-dimensional SURF bag-of-words feature descriptor vector [2] as in
[21].
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(a) Open box (b) Punctured sphere

Figure 2: Open box and punctured sphere datasets. These structures both
contain open tops which typically pose problems for visualization algorithms.
The regular spacing between points in the box sides should be preserved in
the visualizations, as well as the sparse base of the sphere.

3.1 Visualizations

Figure 2 shows the open box and punctured sphere observation spaces. For
each dataset we compute four mappings with Γ-SNE based on the Kullback-
Leibler divergence cost function C (a, b fixed, a, b learned, RBF with a, b
fixed and RBF with a, b learned), a t-SNE generated visualization for com-
parison and α-Γ-SNE, β-Γ-SNE and γ-Γ-SNE visualizations learned using
the α-, β- and γ-divergences respectively. The fixed mappings of Γ-SNE
are optimised with scaled conjugate gradients and the RBF mappings are
optimised using shadow targets. Due to the use of different cost functions,
C, Cα, Cβ and Cγ , we cannot compare mapping performance through min-
imum cost values. In order to numerically evaluate the performance of each
of the algorithms we opt to assess the Trustworthiness and Continuity of
mappings, following [24], through the area under the curves over all neigh-
bourhoods, shown in table 1.

Figures 3, 4 and 5 show the mappings for the open box, punctured
sphere and MNist datasets respectively. For the open box dataset the Γ-
SNE mappings using the standard cost function, C, are very similar with
slight changes in the curvature of the box sides (orange and light blue). The
smoothest mapping is generated by RBF Γ-SNE with a, b learned. This
mapping is more accurate than the fixed counterpart due to the better op-
timisation of the Shadow Targets algorithm. The t-SNE mapping tears the
box faces from one-another in order to preserve local neighbourhoods as
do the α-, β- and γ-Γ-SNE mappings. As expected the standard Γ-SNE
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mapping achieves the best neighbourhood preservation from table 1.
The latent spaces corresponding to the punctured sphere dataset shown

in figure 4 appear to be the same except for where the α and β-divergences
are used. Here the mapping opts to tear the structure from the sparsely
sampled base as opposed to the punctured hole as expected. Despite being
less visually appealing this representation produces better neighbourhood
preservation than all alternative mappings.

The t-SNE mapping of the MNist dataset appears to have performed the
best class-separation of this dataset, but there are points which have been
incorrectly removed from their local neighbourhoods in the center of the
visualization space. The standard Γ-SNE mappings produce similar visual-
izations to α-Γ-SNE which has both the lowest class overlap and the highest
level of trustworthiness. On the other hand, the visualizations learned using
β- and γ-divergences have performed a latent clustering over small neigh-
bourhoods, particularly obvious with β-Γ-SNE, whilst retaining some struc-
ture of the latent variables of curvature, angle and boldness for instance.

Figure 6 shows the visualizations of the Caltec dataset where all map-
pings similarly cluster the dollar bills, aeroplanes and bonsai trees mostly
into distinct clusters. When the parameters of the Gamma distribution are
learned the latent space is smoother than in the fixed {a, b} and t-SNE cases
creating a more intuitive representation. As for the MNist dataset, both the
β- and γ-divergence mappings have created a set of micro-clusters spanning
the space. For this dataset the optimal mapping in terms of neighbour-
hood preservation is found by Γ-SNE optimised using an RBF network and
learning the distribution parameters.

In order to demonstrate the suitability of the Gamma distribution over
latent distributions, as opposed to the t-distribution, figure 7 shows the his-
tograms for the Γ-SNE and t-SNE mappings of the Caltec dataset. Since
the latent dissimilarities are Euclidean in both cases they are bounded from
below by 0. The dissimilarities of the Γ-SNE mapping, with a, b learned,
results in the distribution plotted as a red curve in figure 7a. This is clearly
a tight fit between the probability density function and the actual learned
distances. In contrast the t-SNE mapping, whose dissimilarities are shown in
figure 7b, is not capable of such a tight fit with the t-distribution. A signifi-
cant portion of the area under the curve is allocated to dissimilarities below
0 which will never be observed. This demonstrates why the developments
in this paper are necessary.

3.2 Feed-forward properties

So far we have shown that the visualizations generated by Γ-SNE are su-
perior to those of t-SNE in all four datasets. We now show some of the
interesting properties found when performing the mapping with the feed-
forward RBF network.
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(a) Γ-SNE (b) Γ-SNE (a, b)

(c) RBF Γ-SNE (d) RBF Γ-SNE (a, b)

(e) t-SNE (f) α− Γ-SNE

(g) β − Γ-SNE (h) γ − Γ-SNE

Figure 3: Open box mappings using (a) Γ-SNE with a, b fixed, (b) Γ-SNE
with a, b learned, (c) RBF Γ-SNE with a, b fixed, (d) RBF Γ-SNE with a, b
learned, (e) t-SNE (f) SNE.
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(a) Γ-SNE (b) Γ-SNE (a, b)

(c) RBF Γ-SNE (d) RBF Γ-SNE (a, b)

(e) t-SNE (f) α− Γ-SNE

(g) β − Γ-SNE (h) γ − Γ-SNE

Figure 4: Punctured sphere mappings using the above techniques.
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(a) Γ-SNE (b) Γ-SNE (a, b)

(c) RBF Γ-SNE (d) RBF Γ-SNE (a, b)

(e) t-SNE (f) α− Γ-SNE

(g) β − Γ-SNE (h) γ − Γ-SNE

Figure 5: MNist subset mappings using the above techniques where the 150
original images are centered on each latent point. Note that the 6’s are
correctly placed between the 0’s and 1’s as they share similar features to
both characters.
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(a) Γ-SNE (b) Γ-SNE (a, b)

(c) RBF Γ-SNE (d) RBF Γ-SNE (a, b)

(e) t-SNE (f) α− Γ-SNE

(g) β − Γ-SNE (h) γ − Γ-SNE

Figure 6: Caltec subset mappings using the above techniques.
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Figure 7: (a) Fit of Gamma distibution from Γ-SNE and (b) t-distribution
fit from t-SNE for the mappings of the Caltec dataset. The t-distribution
offers a poor fit to the dissimilarities which ensures the latent distribution qij
is a poor fit. This forces to optimisation of t-SNE to focus on matching local
distances and not the tails, making visualizations appear clustered when the
data may in fact not be.

Box Sphere MNist Caltec

Γ-SNE 284.53 338.69 106.59 111.66

Γ-SNE (a,b) 283.98 368.41 106.26 113.86

RBF Γ-SNE 283.19 338.54 106.30 111.95

RBF Γ-SNE (a,b) 283.05 338.57 105.82 114.91

t-SNE 270.98 342.89 101.83 106.79

α− Γ-SNE 239.29 418.82 108.10 108.13

β − Γ-SNE 239.70 391.90 106.44 103.83

γ − Γ-SNE 257.36 340.18 103.06 110.12

Table 1: Area under the QTC curves with higher values showing better
neighbourhood preservation in the visualizations. Largest values highlighted
in bold face.
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Figure 8: (a) Plot of weight magnitude, ‖W ‖2, against iteration num-
ber showing that the mapping automatically regularizes the weights during
training of the MNist visualization. (b) Plot of mapping curvature against
the cost function being optimised given in equation (3) for the punctured
sphere dataset. We see the relative curvature increasing during training.

Firstly, as with NeuroScale the network automatically regularizes the
network weights during training. Figure 8a shows a plot of ‖W ‖2 against
iterations for the mapping of the MNist dataset illustrating the drop in
weight norm. High values of this norm indicate unregularized weights re-
sulting in overtraining such that test and unseen data will not be projected
reliably. When the weights in the feed-forward mapping are learned through
the shadow targets updating rule of equation (7) the weight magnitude is
given by:

‖W ‖2 =
‖Y ‖2
‖Φ‖2

,

where Φ is typically fixed based upon the observed data and as such the
weight magnitude is dependent on the norm of the visualized points, Y .
From a PCA initialisation, as is typically performed for many nonlinear
dimension reduction algorithms, the visualized points will naturally be cen-
tered at the origin, however the spread will depend on the algorithm used.
Table 2 shows the norm of the visualized points, Y , for each of the ex-
periments. In all cases except for the MNist mapping the magnitude for
t-SNE far exceeds that of the methods proposed in this paper. The value
of learning the Γ-SNE parameters, a and b, is clear here where the weight
norm is lower than for the fixed Γ-SNE mappings in all experiments. This
indicates that t-SNE does not perform automatic weight regularization as
Γ-SNE does, a further benefit of our approach.

Secondly, unlike NeuroScale the curvature of the mapping increases as
the error decreases towards zero. This is illustrated in figure 8b which plots
the curvature of the network outputs against the cost function for the punc-
tured sphere dataset. This finding is a likely contributor for the success of
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Box Sphere MNist Caltec

Γ-SNE 16,180 18,537 15,400 136

Γ-SNE (a,b) 649 614 2,944 51

RBF Γ-SNE 15,388 18,244 15,700 137

RBF Γ-SNE (a,b) 13,538 18,166 15,659 100

t-SNE 303,190 745,990 12,057 10,522

α-Γ-SNE 25,144 14,501 31,186 290

β-Γ-SNE 23,362 17,499 63,497 473

γ-Γ-SNE 24,077 13,466 45,387 352

Table 2: Norm of visualized vectors, ‖Y ‖2, for each of the experiments.

Number of centers ‖W ‖2
79 (quarter) 2.6637

158 (half) 1.2671

237 (three quarters) 0.9691

316 (all) 0.8472

Table 3: Weight norms for networks trained with one quarter, half, three
quarters and all of the data as network centers. This shows that, contrary to
standard weight-based models, the weights regularize with a larger number
of centers, and therefore a larger feature space.

SNE and its derivatives in unsupervised clustering tasks as it warps the input
space to preserve local neighbourhood structures. This benefit over train-
ing data comes at the expense of out-of-sample neighbourhood preservation
which in mappings with high curvature is not possible.

Finally, unlike typical neural network-based regression tasks the mapping
improves as the number of network centers increases whilst regularizing the
weights, as with NeuroScale. In order to test the interpolation ability of
the RBF mapping proposed in this paper we computed the mapping for the
open box dataset using a quarter, half, three quarters and all of the data
as network centers. Figure 9a shows that the mapping curvature increases
during training irrespective of the number of network centers. The cost
function after training is equal for all configurations as shown in figure 9b,
however when only one quarter of the dataset is used as centers achieving a
minima requires more training iterations.

Table 3 shows the weight magnitudes for the four different configurations
of the open box mapping. This shows that more network centers allows for
more weight regularization as in NeuroScale.
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Figure 9: (a) Mapping curvature and (b) mapping error for RBF Γ-SNE
with different center configurations. The curvature and cost function are
relatively insensitive to the number of network centers and the curvature for
all configurations increases as the cost function decreases.

4 Discussion and Future Work

This paper has introduced a variation on the popular Stochastic Neighbour
Embedding algorithm. The new mapping is motivated by the desire to model
neighbourhood dissimilarities using a parameterised Gamma distribution.
It should be noted that the dissimilarity over inputs, {xi}, in this paper
need not be positive-semidefinite following the successful results developed
in [10], however integration of this work has not appeared widely in the
literature. We have shown that using an RBF network we can optimise
the parameters and visualized points of Γ-SNE using the Shadow Targets
algorithm. This mapping was tested on two artifical datasets, the open box
and punctured sphere, as well as the MNist and Caltec images datasets.
Γ-SNE achieves results superior to t-SNE for these four cases. Further to
this we have shown that the new algorithm automatically regularizes the
weights and warps the space, increasing curvature whilst decreasing the
mapping error. These results hold for a reduced number of network centers
showing the network is capable of interpolating over the dataspace. This
suggests that the mapping is incapable of overtraining in terms of weight
magnitude, but the imposed curvature will prevent the mapping from being
able to preserve all neighbourhoods in a large dataset, in agreement with
the findings of [20]. We have also extended Γ-SNE beyond the standard
Kullback-Leibler divergence cost function used as standard in SNE and t-
SNE. In the experimental results we have shown that better performance
is possible when α-, β- and γ-divergences are used, however the standard
approach to Γ-SNE is more stable across all datasets.

This mapping requires further research into the effect of the imposed
curvature in order to test whether the mapping can overtrain on data. The
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analysis in this paper assumes that data is deterministic, however data is
often uncertain and this method requires modification to deal with these
uncertainties. One approach is to map each observed datapoint and its rela-
tive uncertainty matrix into the visualization space, as in [20] for Normally-
distributed NeuroScale.
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