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An elongated bottle microresonator with nanoscale para-
bolic effective radius variation can possess a series of dense
equally spaced optical eigenfrequencies whose separation
can match the eigenfrequency of its axially symmetric
acoustic mode. It is shown that this acoustic mode can para-
metrically excite optical modes and give rise to a highly
equidistant and moderately broadband optical frequency
comb with the teeth spacing independent of the input laser
power and the amplitude of mechanical vibrations.
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Among a broad class of optical microresonators including
Fabry—Perot, spherical, toroidal, bottle, and photonic crystal
resonators, of special interest are those that can serve as high
Q-factor acoustic and optical resonators simultaneously. These
microresonators exhibit fascinating phenomena of opto-acoustic
coupling, including the resonant Brillouin and Raman scattering,
radiation pressure interactions, and optomechanical cooling.
An investigation of these phenomena emerged as a research
direction in physics—cavity optomechanics (see [1-9] and
references therein).

Microresonators of special interest are those having optical
modes which can resonantly interact with acoustic modes. In
such resonators, the separation of optical eigenfrequencies is
close to their natural acoustic frequency or Brillouin frequency.
The matching of two optical whispering gallery mode (WGMs)
eigenfrequencies with an acoustic eigenfrequency ~130 MHz
has been reported for a spherical microresonator with a 162 pm
radius [4]. In [5], the splitting of optical WGM eigenfrequen-
cies of two evanescently coupled 32 pm radius toroidal micro-
resonators has been adjusted to match the 23 MHz acoustic
eigenfrequency of one of them. Resonant opto-acoustic inter-
action has been demonstrated for much larger calcium fluoride
and silica resonators, whose radii exceeded 2.5 mm and free
spectral ranges matched the Brillouin frequencies equal to ~18
and 11 GHz, respectively [6,7]. Generally, for microresonators
with small characteristic dimensions ~100 pm, the resonant
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matching condition of optical WGMs frequencies and natural
acoustic frequencies ~100 MHz is difficult to achieve because
of their small dimensions and insufficient fabrication precision.

Here we note that the ultraprecise fabrication of microreso-
nators, which are designed to enable efficient resonant interac-
tion of optical and acoustic modes, can be realized using the
surface nanoscale axial photonics platform [10,11]. For exam-
ple, two coupled identical bottle microresonators having the
effective radius variation (ERV) of ~5 nm were fabricated in
[12] at the 38 pm diameter optical fiber with a precision better
than 0.2 angstrom. The splitting of optical eigenfrequencies of
these resonators was ~0.5 GHz and could be reduced further
by post-processing. In another example, a bottle resonator with
2 2.8 nm ERV demonstrated in [11] had the free spectral range
~180 MHz. The separation of optical eigenfrequencies in both
examples was comparable to the natural breathe frequencies of
these resonators (see [13] and calculations below).

Recently, it has been experimentally demonstrated that the
axially symmetric breathe acoustic modes of a bottle microre-
sonator can be excited in both passive and lasing regimes by
optical WGMs of this resonator [14]. The separation of optical
WGM eigenfrequencies considered in [14] did not match
acoustic eigenfrequencies, i.e., were not resonant. In this Letter,
we introduce and study a bottle resonator with a nanoscale
parabolic ERV (Fig. 1) which exhibits resonant interaction of
optical and acoustic modes. We show that an acoustic mode
localized in this resonator, which resonantly interacts with an
optical WGM, can parametrically generate a series of optical
modes with a highly equidistant spectrum forming a moder-
ately broadband optical frequency comb (OFC).

We consider slow optical WGMs numerated by azimuthal,
radial, and axial quantum numbers, 7, 7, and ¢, respectively.
The slowness of modes is determined by the proximity of their
eigenfrequency v to a cutoff frequency v, (see, for example,
[13]). In contrast to spherical and toroidal microresonators
[1-7,15,16], the separation of eigenfrequencies of a bottle res-
onator along the quantum number g can be made very small,
without increasing the resonator cross-sectional radius 7 (see,
for example, [13]). This makes the bottle resonator very attrac-
tive for the investigation of interactions between its optical
WGMs and acoustic modes. The acoustic modes of our interest
are the axially symmetric breathe modes with zero azimuthal
quantum number, 7, = 0, illustrated in Fig. 1(a). These
modes can be excited by the radiation pressure of an optical
WGM whose magnitude is modulated with the frequency of
the chosen acoustic mode. In turn, an axially symmetric acoustic
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Fig. 1. () Illustration of a bottle microresonator holding an optical
WGM and an acoustic axially symmetric mode. Light is coupled in
and out of the resonator by a microfiber taper which is aligned nor-
mally to the resonator axis z. (b) Excitation of the optical modes with
even axial quantum numbers by an acoustic mode which is symmetric
with respect to axis z leading to the generation of an equidistant OFC.

mode with eigenfrequency 1) causes resonant coupling of op-
tical modes with the same 7 if the difference of their eigenfre-
quencies AP along the quantum number g matches 1.
Crucially, the clamping losses of the considered acoustic modes
can be eliminated, since the optical fiber hosting a bottle res-
onator can be clamped in the regions completely separated
from the acoustic mode location.

Provided that the power of optical WGMs is relatively small
so that the back-action effects [1] can be ignored, variation of a
slow optical WGM along the bottle axis z is described by the
Schrédinger equation [17]

i oY 1 Y  Ar(zt)
2aVqy 0t 2f%, 027 7o

cut

¥=4,z2, (1)

where S = 2avn,/c is the cutoff wavenumber, 7, is the
refractive index of the fiber material, ¢ is the speed of light,
and Ar(z, t) = r(z, t) - ry is the ERV of the fiber. The source
term A;, (2, #) in this equation generalizes the stationary expres-
sion for the input of light from the microfiber coupled to
the bottle resonator at z = z, [Fig. 1(a)] [18] to the nonsta-
tionary case:

Ain (Z, z, U)
exp(2wyr) <0
1 t>0

= o - 20) pl-2ai0 - )| @
where 6(x) is the delta-function, v is the frequency of the input
light, and y~! characterizes the switching time, which is usually
much greater than the lifetime of optical modes. The effect of
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mechanical vibrations of our concern, whose amplitude is
typically several of the ERV, has the negligible effect on the
coupling between the microfiber and the resonator.

The excitation of the optical modes of a bottle resonator by
its natural mechanical vibration with frequency 1 is modeled
by Eq. (1) with Ar(z, ) = Ar(z) + n(z) sin(220¢), where
Ar(z) is the unperturbed nanoscale profile of the resonator and
n(z) < Ar(z) is the axial distribution of the amplitude of the
excited acoustic mode. In the presence of acoustic oscillation
with frequency 1®, the solutions of Eq. (1) can be expressed
through Floquet quasi-states [19]:

¥, (= 1) = exp[-27i({, - vew)?]

x Z exp[-27(ip Re v

p=-o0

+ pllm oI )AU,, (2), 3

where {, is a quasi-frequency, ¢ is the axial quantum number,
and quantum numbers 7 and 7 are omitted for brevity.
In Eq. (3), Im @ characterizes the attenuation of mechanical
oscillations so that the acoustic Q-factor is determined as
Q) = Re/*) /Imv/*). Due to the proximity of frequency
1) and the spacing between optical eigenfrequencies Av(°P),
we assume that the transition amplitudes between quasi-states
W, (r,#) is much greater than the transition amplitudes be-
tween these quasi-states and other quasi-states of the resonator.
Then, the expression for the non-stationary Green’s function
of the Schrodinger equation [20] will include only the series
{¥,(r,2)} of our interest:

G(z1, 2 11, 1) = 0(2 - fz)Z\Pq(zp t)¥; (20 1), @)
q

where 0(x) is the Heaviside step function.

The eigenfrequencies of a high Q-factor optical microreso-
nator are usually detected by measuring the resonant transmis-
sion amplitude of light evanescently coupled to the resonator
though a waveguide [Fig. 1(a)]. For weak coupling between the
input—output waveguide and the resonator (strong under-
coupled regime [16]), the inelastic output amplitude [corre-
sponding to [p,| + |p;] #0 in Eq. (5)] is found from
Egs. (2)—(4) as

Aout(yl)UZ)
) t o
- / dr, / dn, / 421 G (21,20 11y 12) A (21011, 01)

=4 Z U‘i’l’l (20) U;»Pz (z0)
9Pr:P2

x {(py Rev® — i]p, | Im %) + $,-v1)
x[(p) - p)Rer™ —i(|p,| + [p,NIm e + 0, -]} (5)

Consider the important case when the input optical fre-
quency is equal to the botte resonator eigenfrequency,
vy = Re({,). Then, the equally spaced OFC teeth are deter-
mined from Eq. (5) as

vy = Re({,) + pRe V),

Equation (6) shows that, in contrast to the frequency of
mechanical vibrations generated by optomechanical back-
action [1] and the repetition rate of the OFC generated due

p==xL+£2,... (6)
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to Kerr nonlinearity [21], the spacing between the teeth
maxima in our case is fully determined by the natural acoustic
frequency Rev(®). Provided that the heating effects are small,
this frequency does not depend on the input optical power and
mechanical vibration amplitude. The power of the generated
OFC teeth is determined from Eq. (5) as

_ [4o Uq,o(zo) U;,p(ZO) 1
o4 (Re y(ac) Re é'q)ZPZ

From this equation, the power of the teeth is proportional
to the squared product of the optical Q-factor, Q©PY =
Re{,/Im{,, and acoustic Q-factor, Q) = Re /) /Im 1),

To illustrate the general results described by Eqs. (5)—(7), we
consider the parametric excitation of optical modes in a para-
bolic bottle resonator perturbed by the axially symmetric acous-
tic mode with ,. = 0, n,. = 1, and g,. = 0. We simplify the
problem by approximating the Gaussian axial distribution of
the amplitude of this mode by a parabola. Then,

2
Ar(z, 1) = ——— (1 + 2¢ sinQa 1)),

(QEPIQE)~L (7)

e<1. (8)

In addition, we assume that the input of light is situated in
the middle of the resonator [z; = 0 in Eq. (2) and Fig. 1(a)]. In
this case, the excited optical and acoustic modes have the same
reflection symmetry (¥(z,¢) = ¥(-2, ¢)), and mechanically
generated transitions will only exist between the WGMs with
axial quantum numbers ¢ of even parity. Parametric excitation
of these modes takes place for acoustic oscillations with a fre-
quency close to 2A0°P) = 2¢(27n,) " (-rgRy) /2

V) = AYOP(2 4+ 8), s< 1, (9)

which is twice as large as that for a general asymmetric case
considered above. While the model of the vibrating parabolic
resonator described by Eq. (8) cannot fit the axial distribution
of an acoustic mode exactly, it is remarkably accurate for rela-
tively small quantum numbers ¢ of optical modes. As an exam-
ple, Fig. 2(a) shows the nanoscale ERV of a silica bottle resonator
with 7y = 20 pm for the acoustic mode with quantum numbers
mye = 0, m,e = 1, and ¢, = 0 corresponding to Ry = 3.3 km
and 19 = 2A1°P) = 255 MHz calculated using theory [13].
Figure 2(b) compares the axial distribution of this acoustic mode
with a parabola. A comparison of this distribution with those of
optical WGMs with g = 0, 10 and 50 in Fig. 2(c) shows that the
parabolic approximation of Eq. (8) is justified for axial quantum
numbers g of several tens. The number of axial modes situated in
the fiber segment with nanoscale ERV A7y ~ 2 nm and length
~5 mm [Fig. 2(a)] is estimated as I/(()OP)AVO/(AI/(OP) 7o) ~ 200.

Equation (1) with the ERV defined by Eq. (8) can be solved
analytically [22]. Under the conditions of Egs. (8) and (9),
ie, e <1, 6§ <1, we find that the parametrically generated
frequency combs are defined by Egs. (5)-(7), where z, = 0,
Uiy41,(0) = 0, and

_ [(24)!]% nfK 3 24 2q —2q—% 1-x\2nr
Uzq’p(o)_(—2)qq! (ﬂ(l—{—K)) Z (n)( n-p )(1—|—K) 5

n=max(0,p)

£\ 1/2 &\ -1/2
= (19) (149" (0

From this equation, the inelastic transmission amplitude,
Eq. (5), and comb teeth power, Eq. (7), depend only on the
ratio of relative amplitude of vibrations and relative deviation
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Fig. 2. Comparison of optical and acoustic mode distributions for a
bottle resonator having the eigenfrequency v of an acoustic mode
equal to the spacing of optical eigenfrequencies Av(°P) along the quan-
tum number ¢. (a) Nanoscale ERV of this resonator. (b) Axial distri-
bution of the acoustic mode with quantum numbers 7, =0,
ne = 1, and ¢, = 0 fitted by a parabola (dashed curve). (c) Axial
distribution of optical modes with ¢ = 0, g4 = 10, and ¢ = 50.

of acoustic eigenfrequency from the optical eigenfrequency
spacing, €/6, which formally can be arbitrarily small. Figure 3
shows the power of the frequency comb teeth for /6 = 0.1,
0.3, 0.5, and 0.9 and constant Im¢,,. It is seen that the band-
width of combs grows with €/8 and can be significant when
this ratio approaches unity [19]. At the same time, it follows
from Eq. (10) that the power of the teeth slowly vanishes as
€/6 — 1. The plots in Fig. 3 also show that the behavior of
comb tooth heights Q,, , is irregular as a function of quantum
numbers g and p. This is analogous to the behavior of transition
probabilities in a quantum mechanical time-dependent har-
monic oscillator described by the same Schrodinger equation [18].
The increase of asymmetry of the graphs with growing /6 is
explained by approaching the ground states at 29 + p = 0.

Note that the acoustic eigenfrequency 1* of the bottle res-
onator is surrounded by adjacent eigenfrequencies of acoustic
modes with non-zero axial quantum numbers ¢, [9]. The sep-
aration of these eigenfrequencies, AV s usually much
smaller than the width Im ¢, of optical eigenfrequencies. At
room temperature, this separation is also smaller than the width
of acoustic eigenfrequencies, Av(* < Im@. The opposite
condition A > Im /%9, which corresponds to very high
mechanical Q-factors Q. > 10°, can be achieved at very
low temperatures below 7"~ 0.1 K [24,25]. The elimination
of acoustic modes with large ¢, can be performed by clamping
the bottle resonator in the region where these modes are
situated [Fig. 2(c)].
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Fig. 3. Surface plots of the power of a generated OFCs as a func-
tion of quantum numbers p and ¢ and graphs of these dependencies
for fixed quantum numbers ¢. (@) €/6 =0.1, (b) €/6 =0.3,
(0)e/6=0.5,(d) /6 = 0.7, and (¢) £/ = 0.9. The green lines de-
fined by equation 2¢g + p = 0 indicate the axial ground state of the
bottle resonator.

In summary, it is shown that an OFC can be generated in an
optical bottle microresonator with an equidistant spectrum by
its natural mechanical vibrations. In practice, small deviations
from the spectral equidistance are introduced by fabrication
errors. However, these deviations affect the OFC teeth power,
rather than their equidistance, which is defined by the natural
frequency of vibrations 249, Generally, the power of OFCs
generated mechanically is inverse proportional to the squared
product of their optical and mechanical Q-factors. Provided
that these Q-factors are large enough, the power required
for the generation of these combs can be remarkably small
and only limited by the sensitivity of the optical detectors.
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