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Abstract 

 

Background: Frailty is a prevalent geriatric condition associated with poor health 

outcomes. The pathogenesis of frailty is incompletely understood. We aimed to 

evaluate the relationship between cerebral small vessel disease (SVD) and frailty. 

Methods: People aged between 60 and 85 were randomly selected from the electoral 

roll into the Tasmanian Study of Cognition and Gait. Participants completed 

standardised questionnaires regarding medical history and underwent objective 

sensorimotor, gait and cognitive testing. These data were used to calculate a frailty 

index score. Magnetic resonance imaging was performed on all participants to 

measure SVD. Automated quantification was used to measure white matter 

hyperintensities (WMH), with manual consensus for sub-cortical infarction (SI) and 

cerebral microbleeds (CMB). Multivariable linear regression was used to determine 

the association between SVD and frailty. 

Results: The mean age of the sample (n=388) was 72.0 years (SD 7.0), 44% 

(172/388) were female and the median Frailty Index was 0.20 (inter-quartile range 

0.12, 0.27). WMH, SI and CMB in unadjusted models were positively associated with 

higher frailty scores (p<0.05). In final models including all brain variables, higher 

burden of WMH (β 2.16, 95% CI 0.75, 3.57; p=0.003), but not SI (β 2.96, 95% CI -

0.44, 6.35; p =0.09) or CMB (β -0.46 95%CI –4.88, 3.96; p=0.84), was independently 

associated with a higher frailty score.  

Conclusions: We provide cross-sectional evidence for a positive association between 

larger burden of WMH and frailty. Longitudinal design is required to determine the 

temporality of this relationship.    
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Introduction 

Frailty is a prevalent condition in older people, conceptualised as a reduction in 

reserve across multiple physiological systems resulting in a diminished capacity to 

respond to stressors (1, 2). Frailty has been shown to be an adverse marker for poor 

health outcomes in the elderly including falls, disability, and mortality (3-5). The 

prevalence in community-dwelling older population is approximately 10% and 

increases with age (6). Therefore, mitigation of frailty is an important part of geriatric 

care. 

Cerebral Small Vessel Disease (SVD) is also a common finding in the older 

community-dwelling population. Included under the umbrella of SVD are white 

matter hyperintensities of presumed vascular origin (WMH) (7), cerebral microbleeds 

(CMB) (7) and subcortical infarcts (SI) (8). Typically, features shown on Magnetic 

Resonance Imaging (MRI) are used as a surrogate marker for SVD. WMH can be 

visualised as a signal abnormality, of variable size that is hyperintense on T2-

weighted MRI (7, 9). WMH are found in varying degrees in nearly all persons aged 

60 and older (10). SI are defined as hypointense lesions on T1-weighted MRI and 

fluid attenuated inversion recovery (FLAIR) between 3 and 20mm, often with a 

hyperintense rim (8). The estimated prevalence of SI shows considerable variability, 

with the majority of published literature concluding figures between 10-20% and 

showing a clear increase in prevalence in those over 70 years (11). CMB are seen as 

2-10mm hypointense, homogenous lesions on T2-weighted gradient enhanced echo 

sequences that are round or oval in shape (7).  

Past research has elucidated links between SVD and certain components of frailty and 

its adverse outcomes (e.g. gait speed, falls and disability) (12-15). However, the 

relationship between SVD and frailty is not well understood, with conflicting data 
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arising from the few studies that have examined the relationship. Infarcts appear to be 

associated with frailty (16, 17), but this may only be for ‘macroinfarcts’, not 

‘microinfarcts’ using autopsy methodology (18). For WMH, some studies show a 

positive relationship (16, 19), while others found no relationship (17, 20), and only 

one study to our knowledge has found a positive relationship between CMB and 

frailty (17).  Potential reasons for these conflicting findings may be the time of 

assessment (e.g. at death on autopsy) or the semi-quantitative measurement of WMH. 

No studies have examined multiple markers of SVD, their interactions or used the 

cumulative deficit frailty model, which provides a continuous rather than a categorical 

measure of frailty.  A better understanding of the biological underpinnings of frailty 

may assist in preventing functional decline and adverse health outcomes in older 

people. This research aims to examine the association and interactions of WMH, SI 

and CMB and frailty in a population-based study of older people.  

Methods:  

Sample 

The Tasmanian Study of Cognition and Gait (TASCOG) is a population-based study 

conducted in Hobart, Tasmania, Australia. Sample recruitment methodology has been 

described previously (12). Briefly, people 60 to 85 years, inclusive, were randomly 

selected from the Southern Tasmanian electoral roll. Exclusion criteria were inability 

to walk unaided, any contraindication to MRI, a diagnosis of dementia or residing in 

an aged care facility. Measurements were conducted between January 2005 and 

December 2008. Written consent was obtained from all study participants. The 

Southern Tasmanian Health and Medical human research ethics committee approved 

this study.  
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MRI brain measures 

MRI was obtained using a 1.5-Tesla machine (LX Horizon, General Electric, 

Milwaukee, WI) with the following sequences: high-resolution T1-weighted spoiled 

gradient echo (repetition time (TR) 35 ms, echo time (TE) 7 ms, flip angle 35°, field 

of view 24 mm; voxel size 1 mm3) comprising 120 contiguous slices, T2-weighted 

fast spin echo (TR 4,300 ms, TE 120 ms, one excitation, turbo factor 48; voxel size 

0.90 x 0.90 x 3 mm); fluid-attenuated inversion recovery (FLAIR) (TR 8,802 ms, TE 

130 ms, time interval 2,200 ms; voxel size 0.50 x 0.50 x 3 mm), gradient echo (GRE) 

(TR 800 ms, TE 15 ms, flip angle 30°; voxel size 0.93 x 0.93 x 7 mm). WMH were 

identified using fully automated morphological segmentation with adaptive boosting 

classification applied to FLAIR and T1- and T2-weighted scans. SI were determined 

by two experts in the field using a definition of 3–20 mm with a surrounding 

hyperintense rim, with care taken not to misclassify perivascular spaces as infarcts 

(21). CMB were also identified by consensus as small, rounded hypointense lesions 

with clear margins and size ranging from 2 to 10 mm on gradient echo images.  

Frailty index measures 

Comorbidities: Self-reported medical history (hypertension, angina, myocardial 

infarction, hyperlipidemia, diabetes, stroke, migraine, arthritis and falls history) was 

obtained using a standardised questionnaire. 

 Cognitive function: Five domains of cognitive function were assessed by a trained 

neuropsychologist utilising the following standardised tests: Executive function - 

using the Controlled Word Association test (COWAT; letters F, A and S) (22), and 

the Victoria Stroop test (two subtests: 1) congruent colored words, 2) incongruent 

color names) (23); Processing speed and attention – the Symbol Search, Digit Span 
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and Digit Symbol Coding subtests of the Wechsler Adult Intelligence Scale Third 

Edition (WAIS-III) (24); Visuospatial Ability – The Rey Complex Figure copy task 

(22); Memory – using the Hopkins Verbal Learning Test – Revised (22) (total 

immediate recall, delayed recall and recognition memory) and a delayed reproduction 

after 20 minutes of the Rey Complex Figure (22); Language was assessed with 

Category Fluency Test (animals).  

Physical and sensorimotor function: The short version of the Physiological Profile 

Assessment (PPA) (25) was used to measure sensorimotor function (postural sway 

standing on a foam mat with the eyes open; knee extension strength; simple hand 

reaction time; lower limb proprioception using a matching test; visual contrast with 

the Melbourne edge test); grip strength was measured with a bulb dynamometer; 

walking speed as the mean of 6 walks on a 4.6m GaitRite computerized walkway; 

steps per day using the mean of 7 days recorded with a Yamax Digi-Walker SW-200 

pedometer. 

Other measures: Quality of life with the 15 item Assessment of Quality of Life 

(AQol) questionnaire (26); Mood using the 15-point Geriatric Depression Scale 

(GDS); Disability with the Lawton Instrumental Activities of Daily Living 

questionnaire (27); and Body Mass Index (BMI) was calculated using measures of 

weight and height. 

Frailty Index: 

We used the cumulative deficit model of frailty which allows frailty to be 

progressively graded rather than present or not (28), whereby higher scores indicate 

more frail subjects. Binary variables were coded with 1 point when deemed present or 

impaired, and 0 when absent or intact. Continuous variables were dichotomised, with 

a full list of numerical cut points provided in Supplementary Table 1. Cognitive 
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function was classified as impaired in each domain if a test in that domain was ≥1.5 

standard deviations (SD) below the age-, sex- and education level-appropriate norms 

as described previously (29). For steps per day, grip strength and the PPA variables 

the lowest quintile of the sample (sex specific for grip and knee strength) as per 

previous definitions (30, 31) was used as the cut point.  For visual contrast sensitivity 

19dB units was chosen as the nearest cut point to the lowest quintile.  The following 

cut points were used for other variables as previously reported in the literature: gait 

speed of 80cm/s (32); BMI of <18.5kg/m2 or >35 kg/m2 (33); for each AQoL question 

- answers were assigned 0, 0.5, 1 or 1 (31); GDS-15 scores of ≥6 (34) and ADL scores 

<21 were deemed as having significant disability. The Frailty Index score (FI) was 

calculated for each individual by summing the number of deficit points and then 

dividing by the total number of variables (maximum of 41) for each individual, giving 

a theoretical range of 0-1.0.  

To compare results with the FI, we constructed a physical frailty score similar to that 

of the Fried criteria using the lowest quintile for low grip strength, steps per day, gait 

speed and BMI and a negative response to item 13 of the GDS – “Do you feel full of 

energy”. These variables were then summed for a total score out of 5, categorising 

those with none of the criteria as robust, 1-2 criteria as pre-frail, and 3-5 criteria as 

frail (16, 19).   

Statistical analysis: 

For ease of interpretation the FI was multiplied by 100 before analyses, thus giving a 

range of 0-100. A two-sided T-test was used to compare participant characteristics 

between those with and without each SVD measure.  Spearman correlations were 

used to examine correlations between each brain measure. In regression analysis 

WMH was log transformed.  Univariable linear regression was used to assess the 
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association between SI, WMH and CMB (independent variables) with the FI 

(dependent variable).  Multivariable linear regression was then conducted for each 

marker of SVD in separate models adjusting for age, sex, years of formal education, 

and total intracranial volume (TIV; only in the case of WMH). In secondary analysis, 

WMH were divided into fifths to explore threshold effects (12).  In the final model all 

brain structural variables (SVD markers, gray and white volumes) were included to 

determine which SVD markers were independently associated with the FI.  Two-way 

interactions were assessed between SVD markers using the following product terms: 

SI×WMH, WMH×CMB and SI×CMB. Shapley value regression was performed to 

assess the relative contribution of each brain measure to frailty. Finally, two 

sensitivity analyses were performed. To determine the contribution of motor and 

cognitive measures to the model we constructed a cognitive index (the five cognitive 

variables) and a motor index (low grip, low knee strength and slow gait), using the 

same variables as the original FI.  We then performed multivariate regression with 

these indices as the outcomes adjusting for age, sex, education, TIV and an index 

made of the remaining frailty measures.  Secondly, we examined the associations of 

brain variables with the Fried criteria score using multinomial regression. Analyses 

were performed using STATA version 12.1 (Stata Corp., College Station, TX).  

Results:  

Initial response rate for the TASCOG study was n=431/804 (53.6%). Three 

participants were excluded as they had a diagnosis of dementia. Thirty-nine 

participants did not have an MRI scan. Two further participants were excluded 

because of poor quality scans, leaving 388 participants for analysis. Comparison of 

those without, to those with scans showed no significant differences in age (p=0.55), 

sex (p=0.82) or years of formal education (p=0.61), but those without MRI data had a 
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higher FI (median=0.25, IQR: 0.17, 0.42; p=0.002). Of the participants included in the 

study, 84% (n=327) had complete variables for the FI, 12% (n=47) had one missing 

variable, 3% (n=11) had ˂5 missing, and one individual had 15 missing variables.  

Exclusion of this participant in the analyses did not alter results, and as such this 

participant was maintained in analyses. 

Table 1 presents the sample characteristics. The mean age of the sample was 72.0 (7.0 

SD) years and 44% (172/388) were female. The median WMH volume was 5.7ml 

(IQR 3.55-10.65), 18.3% (n=71) had SI and 7.7% (n=30) had CMB. Those with SVD 

tended to be older (p<0.05), and have a higher FI (p<0.01). Participants with low 

WMH volume had more years of education (p=0.03). 

Associations between SVD and the FI 

Supplementary Table 2 shows the correlations between brain variables.  The strongest 

correlations between markers of SVD were between SI and CMB (r=0.59), WMH and 

SI (r=0.31).  A Box-cox power transformation (0.56) in Stata was used prior to 

regression analyses to remove skewness of the FI (see Supplementary Figure 1). 

Transformation was then reversed to present beta-coefficients and 95% CI in original 

units. Table 2 shows the results of the linear regression analyses of each SVD 

measure with the FI in separate models, and a model including all brain measures. All 

SVD measures were significantly associated with a higher FI in unadjusted analyses 

(p<0.05). After adjusting for age, sex and years of education (and TIV for WMH), 

CMB were no longer associated with frailty (β 3.26 95% CI -0.80, 7.33; p=0.12). The 

presence of SI (β 4.49 95% CI 1.67, 7.31; p=0.002) and WMH (β 3.32 95%CI 1.92, 

4.72; p<0.001) remained associated with a higher FI. A WMH squared term was not 

significant (p=0.33). In the final model including all brain variables, WMH volume 

remained independently associated with the FI (β 2.16 95% CI 0.75, 3.57; p=0.003), 
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while SI (β 2.96 95%CI -0.44, 6.35; p=0.09) and CMB (β -0.46 95% CI-4.88, 3.96; 

p=0.84) were no longer significant. If CMB were removed from model, the 

association between SI and the FI was not statistically significant (β 2.76 95%CI -

0.02, 5.53; p=0.05).  There were no interactions between the product terms WMH×SI 

(p=0.98), WMH×CMB (p=0.99) and SI×CMB (p=0.53).  The final model explained 

26.6% (partial R squared) of the variance in the FI. Of this variance WMH 

contributed22.5%, SI 7.9%, CMB 1.6%, to the R squared value, with gray and white 

matter contributing a further 18.2% and 10.7%. respectively.  Supplementary Table 3 

shows the results of adjusted secondary analyses where WMH were divided into 

fifths, finding a quadratic trend across categories (p=0.02) and a threshold identified 

for WMH volume ≥ 6.87mL. When other brain variables were added to the model this 

weakened (p=0.17), but a linear term was significant (p=0.005). 

Association between SVD and motor and cognitive indices 

In fully adjusted models, none of the SVD variables were associated with the 

cognitive index: WMH (β 0.94 95%CI -1.19, 3.07); SI (β 0.95 95%CI -4.17, 6.08); 

CMB (β -2.54, 95%CI -9.61, 4.53).  CMB (β 12.08, 95%CI 0.44, 23.71), but not 

WMH (β -1.46 95%CI -4.97, 2.05) or SI (β -6.15 95%CI -14.58, 2.28), were 

associated with the motor index. 

Associations between SVD and the Fried criteria  

Using the Fried criteria 31.7% (n=123) of participants were classified as healthy, 

59.3% (n=230) as pre-frail and 9.02% (n=35) as frail.  Supplementary Table 4 shows 

the estimated relative risk ratio for each SVD marker with the pre-frail and frail 

groups relative to the robust group.  There were no significant associations (p>0.05) 

between any of the markers of SVD and frailty categories. 
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Discussion 

In a population-based study of older people we found that WMH was independently 

associated with greater frailty, measured using a continuous frailty index.  No prior 

studies to our knowledge have examined the independence or interactions of multiple 

SVD markers using the cumulative deficit measure of frailty.  

This study has several strengths. The random selection of participants from the 

general population allows for greater generalisation than those from studies of 

volunteers.  Sensitive and quantitative methods were used for measuring SVD 

increasing internal validity. The use of automated segmentation for analysing WMH 

also reduced the potential for inter-rater error. In addition, we carefully adjusted for 

confounders and examined the interactions between SVD measures. In sensitivity 

analysis, we created a motor and cognitive index to explore whether these measures 

were responsible for driving our findings. We found that only CMB was associated 

with a motor index, suggesting that accumulation of cognitive and motor impairments 

alone did not underlie our findings.  Secondly, we presented associations between 

SVD and the Fried criteria in order to contrast results with the FI.      

To our knowledge this study was the first to use a cumulative deficit model of frailty 

rather than a variant of the phenotypical definition to examine any potential 

relationship to SVD.  The derived FI was continuous and potentially allowed for more 

sensitive analysis when compared to the categorical nature of the phenotypic 

definition.  Supporting this, we did not find any associations between brain variables 

and categories of the Fried criteria, although this may have also reflected the variables 

selected.  Inclusion of variables in the FI, totalling 41, followed protocols previously 

proposed: biologically sensible; showing accumulation with age: not saturating too 

early; and being associated with adverse outcomes (31).  It has previously been shown 
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that 30-40 variables maintains accuracy of the index (2, 3). The use of this definition 

is a strength, but may also be a limitation as it is possible that some variables included 

in the index (such as hypertension) may contribute to development of SVD.  

Nevertheless, the definition emphasises the accumulation of deficits rather than the 

effect of any one individual deficit.  Other related limitations of this study are its 

cross-sectional nature that does not allow for directionality to be concluded; with the 

potential that SVD may be a marker or a result of an accumulation of deficits.  It is 

possible that WMH were due to other factors such as multiple sclerosis (although 

none were diagnosed) or leukodystrophies rather than SVD (7).  In addition, we were 

unable to consider other brain pathologies, such as atherosclerosis, arteriolosclerosis, 

amyloid burden or Lewy Body Disease, that have been examined in prior autopsy 

studies (18, 35).  Participants without scans had greater frailty and this may have 

caused an underestimation of the association between variables. The exclusion of 

potentially more frail participants (i.e. nursing home residents), may have contributed 

to attenuated strength of associations.  Finally, although the frailty index represents 

the overall cumulative burden of aging and disease, it does not by itself allow 

identification of different organ systems that may be useful in identifying new targets 

for interventions. 

Those with a higher burden of WMH were independently associated with a 

continuous measure of frailty in our study.  Prior studies yield conflicting evidence, 

with some showing no association (both from the I-Lan Longitudinal Aging Study) 

(17, 20) and others a positive association (both from the Cardiovascular Health Study) 

(16, 19). Those showing no association (17, 20) may have been due to a younger 

sample, and thus less WMH (10), or the potentially less sensitive categorical 

classification of frailty (17, 20).  Interestingly, WMH greater than  a moderate burden 
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(≥6.87mL) (corresponding to a score of approximately 2 on the Fazekas visual score 

(36)), appeared to show the strongest association with frailty.  This is consistent with 

prior work that has found a threshold effect of WMH with falls (12).  However, our 

sensitivity analysis (motor and cognitive indices) was not consistent with prior 

findings that WMH are associated with components of frailty such as poorer gait 

speed and disability (12-15). This may be due to the low numbers of participants with 

deficits in our indices. 

Subcortical infarcts alone were associated with frailty, but when CMB and WMH 

were added to the model they were no longer significant.  This may have been due to 

the high correlation between the two variables (r=0.59). However, when CMB were 

removed from the model, and WMH maintained, they remained non-significant. 

Potentially due to a lack of power. Prior evidence is less clear. Associations have been 

found cross-sectionally between all infarcts > 3mm on MRI and frailty (16).   In 

contrast, infarcts visible to the naked eye on autopsy were not associated with frailty 

measured proximate to death (37).  Further study on autopsy in a larger sample found 

infarcts visible to the naked eye, but not microscopic infarcts, were associated with 

the rate of change in frailty before death (18).  Differences between studies may be 

due to the varying definitions of infarcts (all infarcts, subcortical or microscopic), 

methods of assessment (autopsy versus MRI) or time of assessment at death.  

Interestingly a recent MRI study (17) did find associations with infarcts using a 

slightly smaller definition to ours (less than 15 mm in diameter).  Taken together, 

results of MRI studies suggest a positive association between infarcts and frailty, 

however evidence from autopsy suggests that only macro-infarcts at time of death are 

associated with frailty (18).  CMB, in fully adjusted models, were not associated with 

frailty in our study. This is in keeping with a recent analysis that also found no 
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association between CMB and frailty using the Fried criteria when adjusted for other 

markers of SVD (17).  

It is uncertain whether it is possible to slow or prevent the development of SVD, 

which may result in less frailty. In post-hoc analysis of the PROGRESS trial, blood 

pressure lowering reduced incident WMH volume in stroke survivors, and in post-hoc 

analysis of the ROCAS trial (participants with middle cerebral artery stenosis), statins 

delayed the progression of cerebral WMH among those who already had severe 

WMH at baseline (38, 39).  In the SPS3 study lowering systolic blood pressure to a 

target of less than 130 mmHg versus 130-149 mmHg resulted in no reduction (0.81 

95%CI 0.64-1.03) in all incident strokes or recurrent subcortical strokes (0.87 95%CI 

0.62-1.22 in people with recent symptomatic small subcortical strokes (40). Future 

trials in this field may wish to consider the outcome of frailty in their design.  

In conclusion, this work provides evidence of a cross-sectional relationship between 

WMH and higher levels of frailty in older people. Further research with a longitudinal 

design would strengthen the evidence for a relationship between SVD and frailty, and 

assist in ascertaining the direction of these associations.  
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SI indicates sub-cortical infarct; WMH, Median White Matter Hyperintensity volume (≥ 5.71 mL); CMB, Cerebral Microbleed; IQR, inter-quartile 

range

Table 1 Sample Characteristics by Brain Variable 

 Total sample 

(n=388) 

No SI 

(n=317) 

SI 

(n=71) 

p Low WMH 

(n=194) 

High WMH 

(n=194) 

 

p No CMB 

(n=358) 

CMB 

(n=30) 

p 

Age, y  72.0 (7.0) 71.4 (7.0) 74.9 (6.6) <0.01 70.0 (6.2) 74.1 (7.2) <0.01 71.8 (7.0) 74.8 (7.4) 0.02 

Female, n 

(%) 

172 (44.0) 145 (45.7) 27 (38.0) 0.24 88 (45.3) 84 (43.3) 0.68 162 (45.3) 10 (33.3) 0.21 

Education

, y 

 

10.9 (3.6) 11.0 (3.7) 10.4 (3.3) 0.24 11.3 (3.7) 10.5 (3.5) 0.03 10.9 (3.6) 10.5 (3.7) 0.52 

Frailty,  

(IQR) 

 

19.51 

(12.20, 

26,83) 

17.07 

(12.20,25.00

) 

24.39 

(18.29,32.9

3) 

<0.01 17.06 

(10.98,21.95) 

22.50 

(15.00, 30.9) 

<0.01 18.29 

(12.20,25.61) 

25.61 

(17.07,30.49) 

<0.01 
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Table 2. Univariable and multivariable regression of brain variables with the frailty index score 

 

Unadjusted (separate models) Adjusted for age, sex, years 

of education (separate 

models)* 

Adjusted model with all brain 

variables in the same model 

   β  95% CI    β  95%CI    β  95%CI 

Sub-Cortical Infarct 6.77 3.60, 9.88 4.49 1.67, 7.31 2.96 -0.44, 6.35 

Cerebral Microbleeds 5.26 0.66, 9.86 3.26 -0.80, 7.33 -0.46 -4.88, 3.96 

WMH*, mL 4.97 3.58, 6.36 3.32 1.92, 4.72 2.16 0.75, 3.57 

Gray matter volume, mL     -0.07 -0.11, -0.03 

White matter volume, mL     -0.06 -0.09, -0.02 

CI, confidence interval; WMH, White Matter Hyperintensities of presumed vascular origin 
*Additionally, adjusted for Total Intracranial Volume (mL) 
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