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Abstract 

Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of 

the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% 

of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for 

regulation of neuronal excitability. The control of water movement is achieved through a 

family of small integral membrane channel proteins called aquaporins (AQPs). Despite the 

fact that changes in water homeostasis occur in sclerotic hippocampi of people with TLE, the 

expression of AQPs in the epileptic brain is not fully characterised. This study uses 

microarray and ELISA methods to analyse the mRNA and protein expression of the human 

cerebral AQPs in sclerotic hippocampi (TLE-HS) and adjacent neocortex tissue (TLE-NC) of 

TLE patients. 

The expression of AQP1 and AQP4 transcripts was significantly increased, while that of the 

AQP9 transcript was significantly reduced in TLE-HS compared to TLE-NC. AQP4 protein 

expression was also increased while expression of AQP1 protein remained unchanged, and 

AQP9 was undetected. 

Microarray data analysis identified 3,333 differentially regulated genes and suggested the 

involvement of the MAPK signalling pathway in TLE pathogenesis. Proteome array data 

validated the translational profile for 26 genes and within the MAPK pathway (e.g. p38, JNK) 

that were identified as differentially expressed from microarray analysis. ELISA data showed 
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that p38 and JNK inhibitors decrease AQP4 protein levels in cultured human primary cortical 

astrocytes. Elucidating the mechanism of selective regulation of different AQPs and 

associated regulatory proteins may provide a new therapeutic approach to epilepsy 

treatment. 

 

Introduction 

Epilepsies are among the most common disorders of the central nervous system (CNS). It is 

estimated that over 65 million people worldwide suffer from these debilitating conditions 

(Ngugi et al., 2010; Moshé et al., 2015). Temporal lobe epilepsy (TLE) accounts for about 

one-third of all patients with epilepsy (Heuser et al., 2012). The majority of current anti-

epileptic drugs (AEDs) target the ion channels that mediate neuronal excitability (Rogawski 

& Löscher, 2004; Landmark, 2006), however about 30% of patients become medically 

refractory to AEDs (Löscher, 2011; Löscher et al., 2013). Pharmaco-resistance in TLE is 

often associated with hippocampal sclerosis (HS). The sclerotic hippocampus is 

characterized by neuronal loss, astrogliosis and increased microvascular density (Blümcke 

et al., 2012; Alonso-Nanclares & DeFelipe, 2014), particularly at the perivascular end-feet of 

astrocytes (Eid et al., 2005). 

 

Astrocytes play a major role in regulating water and ion (particularly K+) homeostasis in the 

brain. The association of K+ homeostasis and water transport is known to mediate synaptic 

transmission by modulating the extracellular environment around neurons (Simard & 

Nedergaard, 2004); additionally astrocytes can be depolarized and produce an action 

potential exhibiting neuronal-like characteristics (Bordey & Sontheimer, 1998). Water 

homeostasis is an important factor in modulating seizure susceptibility (Andrew, 1991; 

Schwartzkroin et al., 1998; Lee et al., 2012). Magnetic resonance imaging (MRI) of sclerotic 

hippocampi from TLE sufferers (TLE-HS) showed an increase in T2-weighted signal (Bronen 

et al., 1991; Dawe et al., 2014) and diffusion-weighted imaging demonstrated higher 

diffusion coefficient in TLE-HS patients compared to controls (Wieshmann et al., 1999). All 
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these data indicated higher free water content in sclerotic hippocampi tissue (Lee et al., 

2004; Heuser et al., 2010). 

 

The control of water movement into and out of cells is achieved via a family of small integral 

membrane proteins called aquaporins (AQPs). Thirteen human AQPs (AQP 0-12), have 

been identified and characterised (Day et al., 2014). AQP4 is the predominant AQP in the 

CNS and it has been identified and characterised in both neurons (Binder et al., 2006) and 

glia (Nielsen et al., 1997). In the human hippocampus, AQP4 has been found in the Cornu 

Ammonis (CA) and dentate gyrus (DG) areas. At the cellular and subcellular level, AQP4 is 

abundantly expressed in the plasma membrane of the astrocytes that sheathe the 

glutamatergic synapses, and shows the highest expression in perivascular astrocytes, where 

it is localised to the plasma membrane of astrocytic end-feet at the glia limitans (Lee et al., 

2004; Gleiser et al., 2016). AQP4 is co-localized with inwardly-rectifying K+ channels (Kir4.1) 

and glial K+ uptake is attenuated in AQP4 knockout mice compared to wild-type, indicating a 

functional interaction (Padmawar et al., 2005; Binder et al., 2006; Binder et al., 2012). In the 

sclerotic hippocampus, astrocytes have fewer Kir4.1 channels and immunohistological 

studies have indicated that Kir4.1 is lost from perivascular end-feet in sclerotic hippocampi of 

TLE patients (Heuser et al., 2012). It is not known if this change in expression is due to; or 

driven by, changes at the transcript level or changes in protein stability/degradation. There is 

also some controversy in the literature concerning the exact nature of the relationship 

between AQP4 and Kir4.1 in astrocytes, with one study suggesting that glial AQP4 and 

Kir4.1 do not interact functionally (Zhang & Verkman, 2008). 

Other AQPs have been identified in the CNS: AQP1 in the dorsal-root ganglia (Shields et al. 

2007) and in the epithelium of the choroid plexus, where cerebrospinal fluid (CSF) is 

produced (Oshio et al., 2005) and AQP9 in the substantia nigra (Badaut et al., 2004). AQP1, 

3, 4, 5, 8, 9 and 11 have been shown to be expressed at gene and protein levels in the 

rodent brain, principally in astrocytes (Gorelick et al., 2006; Yang et al., 2009; Badaut et al., 

2014). Moreover, AQPs 3, 5 and 8 are expressed in the DG area in both astrocytes and 
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neurons (Yang et al., 2009). However, there is still little known about the expression profile 

of human cerebral AQPs, particularly in TLE patients. For example, there is contradictory 

evidence describing the expression of AQPs in sclerotic and non-sclerotic hippocampi: Lee 

et al showed AQP1 and AQP4 protein expression in astrocytes located in the hippocampal 

tissues, but only AQP4 protein expression was found to be upregulated in perivascular 

astrocytes in the sclerotic hippocampi tissue of TLE patients (n=4) compared to non-sclerotic 

hippocampi (n=5). Both Lee et al, and .Eid et al. reported an increase in AQP4 protein in 

mesial temporal lobe epilepsy (MTLE) hippocampi compared to non-MTLE, however a 

simultaneous loss of perivascular AQP4 localization was seen and attributed to loss of 

dystrophin localization. Bebek et al. reported that there was neither difference in the 

expression of AQP1 and AQP4 transcripts nor the AQP4 protein in 23 patients. Jamali et al. 

showed an increase in AQP1 transcript following a microarray study on hippocampal tissues 

from 15 TLE patients; however, their findings were not consistent following RT-PCR 

validation and therefore the gene was discounted from further analysis. 

 

A number of studies have investigated the possible mechanisms involved in AQP regulation; 

these studies identified the p38 Mitogen-activated Protein Kinase-dependent (MAPK) 

pathway as the possible primary mechanism controlling the altered expression of some 

AQPs (Fujita et al., 2003; Yang et al., 2013b). The MAPK family consists of three major 

pathways, the extracellular signal regulated kinase (ERK) pathway, the p38 pathway and C-

Jun N-terminal kinases (JNK) pathway. The MAPK pathway has been implicated in 

increased epileptic seizures due to hippocampal sclerosis (Pernice et al., 2016). The 

purpose of this current study was to analyse gene expression and protein profiling in TLE-

HS and the non-sclerotic temporal lobe that had no ictal or inter-ictal activity (TLE-NC; 

neocortex). Gene network analysis using Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis identified the MAPK pathway as the most likely pathway affected in TLE identified in 

the microarray. ELISA was conducted to investigate the involvement of p38, ERK1/2 and 
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JNK MAPKs in regulating AQP4 protein expression in primary human astrocytes using the 

specific inhibitors: SB203580, PD98059 and SP600125, respectively (Wang et al., 2007). 

Direct targeting of AQPs and/or the molecular mechanisms of their regulation via the MAPK 

signalling pathways could open new horizons for more specific and targeted treatments for 

TLE.  

Materials and methods: 

Sample collection and patients' clinical information:  

This research was approved by South Yorkshire research ethics committee (08/H1310/49) 

and it followed the code of ethics of the World Medical Association (2001). The samples 

were obtained from the Royal Hallamshire Hospital (R&D approval STH15210). All samples 

were obtained with the understanding and the written consent of each patient. The sample 

collection procedure fully conformed to the Code of Ethics of the World Medical Association 

(Declaration of Helsinki), British Medical Journal (1964). 

Patients with pharmaco-resistant TLE associated with unilateral hippocampal sclerosis were 

recruited. The diagnosis of TLE-HS was made by the treating clinician based on MRI brain 

scan and inter-ictal and ictal EEG characteristics, being consistent with a seizure focus in the 

hippocampus within the temporal lobe. The total numbers of patients used for this study 

were ten TLE patients (6 females and 4 males), their age at surgery was 38.2 ± 10.2 years, 

the average age at onset of first non-febrile seizure was 11.6 ± 9.9 years and the average 

duration of epilepsy was 26.6 ± 15.8 years. These patients underwent a therapeutic selective 

amygdalohippocampectomy. After surgery, two samples were obtained: sclerotic 

hippocampus (TLE-HS), and non-spiking neocortex (TLE-NC). Full clinical information for 

the patients is shown in Table 1. 

 

Microarray analysis (MA) 

Total RNA was extracted using SV Total RNA Isolation System (Promega, Z3100) according 

to the manufacturer's instructions. The quality and purity of the prepared RNA was assayed 

using a NanoDrop-1000 spectrophotometer and Agilent Bioanalyser-2100, to ensure only 
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high-quality RNA samples with A260/A280 ratio of 1.8 to 2.0 and an A260/A230 ratio of > 2.0 were 

used for the microarray study. Starting from 100 ng of RNA, cRNA samples were 

synthesized and labelled with Cy3 or Cy5 using the Two-colour Low Input Quick Amp 

labelling kit (Agilent Technologies, 5190-2306). TLE-HS hippocampi were labelled with Cy5 

and TLE-NC samples were labelled with Cy3.  Equal amounts of the labelled TLE-HS and 

TLE-NC samples were co-hybridized onto SurePrint G3 Human Gene Expression 8x60K 

Microarrays (Agilent Technologies, G4851A). The microarray array was scanned on Agilent 

Technologies SureScan scanner. Raw data was extracted using Agilent feature extraction 

software (version 10.7.1) and was then normalized by the locally weighted scatter plot 

smoothing (LOWESS) normalization method. The Rank Product (RP) test was used to 

identify the differentially expressed genes (P < 0.05) using Multi-Experiment Viewer (MeV) 

software, version 4.9 (Saeed et al., 2003; Breitling et al., 2004; Koziol, 2010). The list of up- 

and down-regulated genes was submitted to the bioinformatics and functional annotation 

tool provided by DAVID, version 6.7 (Huang et al., 2009a; b). Then KEGG pathway 

enrichment analysis was done to identify potential pathways that are possibly associated 

with TLE-HS pathophysiology (http://david.abcc.ncifcrf.gov/). 

In order to obtain biological information underpinning the molecular mechanisms and 

regulatory networks associated with TLE pathogenesis, microarray data was further 

assessed using the “TargetMine” (http://targetmine.mizuguchilab.org/) and the Gene 

Ontology Consortium (http://geneontology.org/) bioinformatics tools to obtain functional 

annotation clustering and gene ontology (GO) terms for the differentially-regulated genes 

(DEGs). Key results are summarised along with gene count, p value and fold enrichment in 

supplementary Table 1. 

 

Sandwich enzyme-linked immunosorbent assay (ELISA) 

A 96-well microtiter flat-bottomed polystyrene plate (Nunc, Wiesbaden, Germany) was 

coated by overnight incubation at 4°C with 5 µl/well of either rabbit polyclonal anti-

AQP4 (Abcam, ab46182) diluted 1:500, rabbit polyclonal anti-AQP1 (Santa Cruz, sc-208110) 

http://david.abcc.ncifcrf.gov/)
http://targetmine.mizuguchilab.org/)
http://geneontology.org/)
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diluted 1:400 or rabbit polyclonal anti-AQP9 (LS-C20770) diluted 1:500; all antibodies were 

diluted in carbonate/bicarbonate buffer (pH 9.6). The plates were washed twice for 5 minutes 

with Phosphate Buffered Saline and 0.05% Tween 20 (PBS-T) (pH 7.5). The remaining 

unsaturated protein-binding sites in the coated wells were blocked by adding blocking buffer 

(5% non-fat dry milk/PBS) and then incubated overnight at 4°C with gentle shaking. Plates 

were washed twice for 5 minutes with PBS-T. Hippocampal proteins were extracted using 

CelLyticTM (Sigma, Cat. No. C2978) supplemented with protease inhibitor cocktail (Sigma, 

Cat. No. P2714, 1:100). The total protein concentration was determined using Pierce™ BCA 

Protein Assay Kit (Thermofisher Scientific, Cat. No. 23225) following the manufacturer’s 

procedure. 100 μl equally diluted samples at a concentration of 600 mg/ml were added to 

each well and incubated for 90-120 minutes at 37°C. Samples were then aspirated and the 

plates were washed twice with PBS-T. 100 μl of either the 1:1 diluted mouse monoclonal 

anti-AQP4 antibody (Abcam, ab9512), mouse monoclonal anti-AQP1 (Abcam, ab11025), or 

goat polyclonal anti-AQP9 (Santa Cruz F-17; sc-14988) were added to each well. The plates 

were covered with adhesive plastic and incubated for 2 h at 37°C and then washed twice for 

5 minutes with PBS-T. Then 100 μl of horseradish peroxidase (HRP)-conjugated secondary 

antibody, either chicken anti-mouse (Santa Cruz, sc-2954) for AQP4 and AQP1 or chicken 

anti-goat (c-2953) for AQP9, diluted at 1: 5,000 in freshly-prepared blocking buffer, was 

added to each well and incubated for 30 minutes at 37°C. The plates were washed (with 

gentle shaking) four times for 5 minutes with 200 µl PBS-T, followed by a single wash with 

PBS. The plates were incubated with 100 μl/well of RayBioTM TMB One-Step Substrate 

Reagent (Raybiotech; Cat. No. J120215098), at room temperature for 30 minutes, under 

light-protected conditions After the colour was developed, the reaction was stopped by 

adding 50 μl of 2 M H2SO4. The absorbance values were then immediately measured at 450 

nm using a Perkin Elmer Wallac 1420 Victor2 microplate reader. 

Proteome Profiling 

Proteome Profiler™ Human MAPK array (R&D Systems, ARY002B) was used to investigate 

the possible role of signaling molecules of all three major families of MAPKs, the 
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extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1-3), and 

different p38 isoforms (α/β/δ/γ) in TLE-HS. Protein from 3 matching pairs of TLE-HS and 

TLE-NC patient samples were extracted using CelLyticTM 10ml per gram of tissue (Sigma, 

C2978) supplemented with protease inhibitor cocktail 1:100 (Sigma, P2714). The total 

protein was quantified using Pierce™ BCA protein assay kit (Thermofisher scientific, 23225) 

following the manufacturer's procedure. Each proteome profiler membrane was then 

incubated with 300 μg of protein lysate, according to the manufacturer's instructions. The 

HRP-conjugated streptavidin provided in the kit was replaced with IRDye® 800CW 

Streptavidin (LI-COR, 926-32230) and it was diluted at 1:2000 using the array buffer 5 (R&D 

Systems, ARY002B). All of the following steps were performed according to the 

manufacturer’s recommendation. The arrays were scanned with LI-COR Odyssey® Infrared 

Imaging System and quantified with Image Studio™ software (LI-COR) to determine the 

relative amount of the specific MAPK proteins.  

 

Cell Culture 

Primary human cortical astrocytes (Sciencell, Cat. No. 1800) were plated into 75 cm2 culture 

flasks (Thermo Scientific Nunc Cell Culture Treated EasyFlasks) and cultured routinely in 

Astrocyte Medium (Sciencell; 1801) containing 1% fetal bovine serum (FBS, Sciencell Cat. 

No. 0010), 5 ml astrocyte growth supplement (AGS, Sciencell Cat. No. 1852), and 5 ml 1% 

penicillin/streptomycin solution (P/S, Sciencell Cat. No. 0503). Cultures were maintained at 

37°C and 5% air in a humidified environment.  

 

Treatment with p38, ERK1/2 and JNK inhibitors 

In order to investigate the possible role of p38, ERK1/2 and JNK in the differential regulation 

of AQP4 expression in astrocytes, the effects of SB20358010 µM a p38 inhibitor   (Hua et 

al., 2002), PD98059 10 µM a ERK1/2 inhibitor (Hua et al., 2002) and SP600125 40 µM a 

JNK inhibitor (Wallace et al., 2012) were examined in human primary cortical astrocytes for 
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6h. Data are presented as a fold-change normalised to the experimental control (n=4). In all 

cases, cells were at least 92% viable. 

 

Statistical analysis   

Microarray analysis, ELISA and proteome profiling data were found not to be normally 

distributed using a Shapiro-Wilk test, therefore Kruskal-Wallis with Conover– Inman post hoc 

analysis tests were used to identify significant differences between samples (P ≤ 0.05 was 

taken as significant).  

 

Results 

Microarray (MA) gene expression analysis 

In the MA analysis on the SurePrint G3 human gene expression 60K microarrays (Agilent 

Technologies, G4851A), a total number of 34,197 uniquely-annotated probes were present 

and significant differences in the expression levels of 3,333 genes were identified. In the 

TLE-HS tissue, 1,821 genes (5% of all detected genes) were significantly up regulated and 

1,511 genes (4%) were significantly down regulated compared to TLE-NC tissue from seven 

patients. Figure 1 shows the data for all investigated cerebral AQPs and their associated 

Kir4.1 channel. Fold change (FC) was calculated by dividing the value representing the gene 

expression in TLE-HS by the corresponding TLE-NC value. AQP1 and AQP4 mRNA levels 

were both significantly increased (4.03-fold ± 0.89-, p<0.0001 (n= 7) and 3.42-fold ±0.58, 

p<0.0001 (n= 7); respectively). AQP9 mRNA levels were significantly reduced to 0.31-fold 

±0.06, p=0.01 (n= 7). There was no significant difference in mRNA levels for AQP3, AQP5, 

AQP8, AQP11 or Kir4.1.  

 

Protein expression levels of AQP4 and AQP1  

The AQP ELISA data demonstrated a significant increase in AQP4 protein expression in 

TLE-HS samples (2.53-fold ± 0.1-fold, p<0.0001 n= 3) compared to TLE-NC samples from 

the same set of patients (Figure 2A). AQP1 protein was measurable in both samples, 
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however there was no detectable significant difference (p=0.065) in AQP1 protein levels in 

the sclerotic TLE-HS samples compared to non-sclerotic TLE-NC samples (Figure 2B). The 

expression of AQP9 protein could not be detected using our custom-made ELISA system 

with the combination of antibodies used. 

 

DAVID/KEGG pathway analysis of MA data  

The 3,333 differently-regulated genes from the MA analysis were submitted to the 

bioinformatics database, DAVID, using KEGG database for pathway enrichment analysis. To 

minimize false positives among significantly-enriched functions, a false discovery rate (FDR) 

≤0.05 (-log P-value = 1.33) was used to determine the probability that each biological 

function assigned to that data set was due to chance alone. The calcium signalling pathway, 

MAPK signalling pathway and neuroactive ligand-receptor interaction pathway showed the 

highest enrichment scores in the sclerotic TLE-HS tissue compared to TLE-NC (Figure 3). 

The MAPK signalling pathway was the second most highly-represented pathway with an 

enrichment score of 6.1 (after the Ca2+ signalling pathway with an enrichment score of 8.7) 

and the one with the highest number of significantly-regulated genes. The expression of 50 

MAPK genes was altered: 27 genes had a higher expression and 23 genes had a lower 

expression in TLE-HS compared to the TLE-NC tissue. Their distribution profile within the 

MAPK pathway is illustrated in Figure 4. 

 

MAPK signalling profile in TLE-NC and TLE-HS samples 

Since analysis of the MA data demonstrated the involvement of the MAPK signalling 

pathway in TLE pathophysiology (Figures 3 and 4), 26 of the significantly-enriched MAPK 

related genes (Figure 5a) were investigated at the protein level using a Proteome Profiler 

Human MAPK Array Kit (Figure 5b). Transcription levels were determined by reanalysing the 

MA data for each of these 26 individual genes to determine the protein expression level in 

TLE compared to TLE-NC. In addition, the transcriptional and translational expression FC of 
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a number of significant MAPKs was calculated by dividing the gene or protein expression 

level in TLE-HS by its corresponding TLE-NC value as shown in Table 2.  

 

The results show significant up-regulation of ERK2 and MMK3 at both the gene (2.75-fold 

±0.02; p<0.0001; 1.15-fold ±0.09; p<0.0001) and protein level (2.33-fold ±0.65; p=0.02; 2.26-

fold ±0.53; p=0.02). There were also significant increases in protein levels of AKT Pan (3.78-

fold ±0.48; p=0.0213); p53 (2.89-fold ±0.47; p=0.021) and RSK2 (1.75-fold ±0.28; p=0.02) 

although there were no significant differences at the mRNA level.  Several genes showed 

significant expression changes that were not accompanied by a corresponding change in 

protein expression. These included the up-regulation of ERK1 (1.34-fold ±0.02; p<0.0001), 

GSK3-beta (1.81-fold ±0.01; p<0.0001), HSP27 (2.01-fold ±0.27; p=0.0062) and RSK1 

(1.03-fold ±0.01; p<0.018) and the down-regulation of GSK3-alpha (0.67-fold ±0.06; 

p=0.0419), JNK2 (0.54-fold ±0.04; p=0062) and p38 delta (0.66-fold ±0.01; p=0.0033). 

 

 Effect of p38, ERK1/2 and JNK inhibitors on AQP4 protein expression in primary 

human cortical astrocytes using sandwich ELISA. 

Data are presented as fold-change compared to untreated astrocytes (n=4). Figure 6 shows 

that treating astrocytes with the p38 inhibitor caused a significant reduction in AQP4 protein 

expression (0.67-fold ± 0.01; p=0.014). A similar trend in reduction of AQP4 protein 

expression was seen after treating the cells with a JNK inhibitor (0.57-fold ± 0.009; p=0.007). 

There was no change in AQP4 protein expression in astrocytes following ERK1/2 inhibitor 

treatment (p value=0.27). 

 

Discussion 

This study has demonstrated a differential expression of AQPs 1, 4 and 9 transcripts, and 

revealed changes in AQP4 protein expression in human TLE-HS along with twelve key 

regulatory elements of the MAPK pathway by DAVID/KEGG analysis. Our results together 

with evidence of TLE-impaired water homeostasis (Bronen et al., 1991; Lee et al., 2004; 
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Heuser et al., 2010; Dawe et al., 2014) may implicate these elements in the pathophysiology 

of TLE directly or indirectly through their effect on AQP expression.  

 

Regulation of water transport is increasingly being suggested as a mechanism in the 

aetiology of TLE (Bronen et al., 1991; Lee et al., 2004; Heuser et al., 2010; Dawe et al., 

2014). A rapid increase in brain water-content can result in seizures (Andrew, 1991). 

Moreover, it has been suggested that seizures could cause cell swelling and a decrease in 

the size of the extracellular space (Janigro & Walker, 2014). This can result in an increase in 

the extracellular K+ concentration, which has a significant effect in increasing seizure 

susceptibility (Dietzel et al., 1980; Dudek & Rogawski, 2005). Experiments in AQP4 -/- mice 

suggested a direct role for AQP4 in controlling neurotransmission via modulating dopamine 

metabolism (Fan et al., 2005; Ding et al., 2007) and glutamate uptake (Li et al., 2012; Yan et 

al., 2013). Since elevated extracellular potassium and glutamate concentrations are well-

known drivers of epilepsy (Cho, 2013) and AQP4 appears to positively regulate the uptake of 

both of these molecules into astrocytes, it may be that the upregulation of AQP4 is a 

homeostatic response to high concentrations of these molecules. However, because AQP4 

is mislocalized in the astrocytes of the sclerotic hippocampus (Eid et al., 2005; Alvestad et 

al., 2013), this homeostatic response is insufficient for preventing seizures. 

In the present study, the whole-genome transcriptional profile was determined using 

microarray and the gene network analysing software DAVID and KEGG. Differentially 

expressed putative target genes, biomarkers and pathways that may play a role in TLE have 

been identified. This study reports that the transcript expression of AQPs 1 and 4 are 

significantly increased, while the transcript expression of AQP9 is significantly reduced in 

TLE-HS compared to TLE-NC. This was accompanied by a significant upregulation of the 

transcripts of the astrocytic biomarker, glial fibrillary acidic protein (GFAP) in TLE-HS 

compared to TLE-NC, which reflects a state of gliosis in TLE-HS (Lee et al., 2004). The 

transcripts of the neuronal biomarker, neuronal nuclear antigen (NeuN), was significantly 
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decreased in TLE-HS compared to TLE-NC which could refer to neuronal loss in sclerotic 

tissue samples (supplementary material Figure 1). 

 

Of the investigated cerebral AQP genes, transcriptome analysis indicated only a significant 

differential expression of AQP1, AQP4 and AQP9 transcripts. The ELISA data in this study 

showed a significant increase in AQP4 protein expression in sclerotic tissue samples 

compared to the non-sclerotic samples from the same set of patients that followed the same 

trend of upregulation as seen at the mRNA level. This result is in qualitative agreement with 

the findings of Das et al. (2012) who reported a ~1.8-fold increase in AQP4 protein 

expression in six sclerotic samples compared to three non-matched post-mortem controls. 

Similarly, Lee et al (2004) reported a 1.6-fold increase in AQP4 transcript by microarray and 

a 2.6-fold increase by qPCR in sclerotic hippocampi from four mesial TLE patients (MTLE) 

compared to three non-matched TLE patients. This is qualitatively consistent with our 

observation of a 3.4-fold increase in AQP4 transcript by microarray in seven sclerotic 

hippocampi from TLE patients compared to matched non-sclerotic tissue. A study by Eid et 

al. reported a 3.6-fold increase in AQP4 protein in six MTLE patient hippocampi compared to 

six non-MTLE controls, and a simultaneous loss of perivascular AQP4 localization attributed 

to loss of dystrophin localization. Bebek et al. claimed that there was no change in AQP4 

protein expression in five MTLE patients compared to five non-MTLE using 

immunofluorescence. However, the number of AQP4-positive cells per field was the reported 

measure for AQP4 expression, but there was no attempt to measure changes in intensity of 

AQP4 staining in those positive cells. In addition, the authors reported that AQP4 transcript 

was unchanged in 23 MTLE samples compared to seven post-mortem controls. However, 

their control samples spanned a 1 million-fold range (normalised expression from 10-7 to  

10-1; (see Bebek et al., Figure 1B), compared to a 4-fold range in our data (Rn values from 

5,000 to 20,000 (Figure 1). This large difference in sample-to-sample variability might 

explain why the data from some studies (Eid et al., 2005; Lee et al., 2004) and our data 

showed a significant difference in AQP4 expression whereas  Bebek et al., (2013) did not. 
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Changes in differential AQP4 expression could be implicated in the pathophysiology of 

sclerosis via water-mediated changes in neuronal activity through AQP4-mediated water 

efflux at the end-feet (Amiry-Moghaddam & Ottersen, 2003). 

Our microarray data have revealed a significant upregulation of AQP1 at the mRNA level. 

This result is in agreement with the findings reported through the transcriptomics analysis 

work by Jamali et al., (2006). Normally in the hippocampus, AQP1 is only observed in 

astrocytes or cerebrovascular endothelial cells under stress conditions. However, in a 

chronic model of status epilepticus (SE), AQP1 expression was observed in astrocytes 

following SE at 4 weeks, and was up-regulated at 6 weeks when a significant up-regulation 

was reported in epileptic hippocampi compared to control (Kim et al., 2009). In addition, 

AQP1 expression in cerebrovascular endothelial cells is only highly expressed in conditions 

where the blood brain barrier (BBB) is disrupted such as in malignant brain tumours 

(Papadopoulos & Verkman, 2013). There is transient opening of the BBB during SE, which 

shows epileptogenic effects and also induces inflammation (Kovács et al., 2012; Gorter et 

al., 2015). Therefore, in drug resistant TLE hippocampi, AQP1 expression could be induced 

in endothelial cells, which could facilitate water movement across the BBB but this needs to 

be confirmed and validated using immunohistochemical studies. However, the AQP1 ELISA 

data reveal that there was no significant difference in AQP1 protein levels between TLE-HS 

and TLE-NC samples which could be due to various translational regulation mechanisms.  

 

It is well known that regulatory mechanisms underlying AQP gene and protein expression 

are complex and could be influenced by various physiological, pathological or regulatory 

stimuli, including hormones (Gu et al., 2003), cytokines (Yang et al., 1995) and/or stress 

activated signals (Arima et al., 2003). For example, hypertonic stress upregulated AQP1 

expression in rodent renal medullary cells by inducing an extracellular signal-regulated 

kinase including p38 and JNK, which regulate a hypertonicity-responsive element present in 

the AQP1 promoter (Umenishi & Schrier, 2003). It has been shown that some pathological 

conditions including multiple sclerosis could result in simultaneous upregulation of AQP1 and 
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AQP4 (Satoh et al., 2007). However this is not always the case, as suggested by the data 

from our study, which is supported by comparable findings (Mao et al., 2006) showing that 

inducing severe hydrocephalus stimulated AQP4, but not AQP1, protein expression in 

perivascular astrocytes. 

 

Restoration of the ion gradients, after seizures, requires energy and an enhanced oxygen 

and glucose consumption; in fact, it was found that during epileptic activity there is a 

reduction in levels of glucose and ATP in the tissue as well as an increased level of lactate 

(Folbergrová et al., 2000). In order for the neurons to meet this enormous metabolic demand 

they use glycerol and lactate as a source of energy (Magistretti et al., 1999; Badaut et al., 

2014). The aquaglyceroporin, AQP9, is expressed in both astrocytes and neurons in the 

brain. AQP9 is able to transport both glycerol and lactate, therefore, it may play a vital role in 

the changes in astrocyte and neuronal energy metabolism that occurs in response to seizure 

activity (Amiry-Moghaddam & Ottersen, 2003; Badaut & Regli, 2004). In the present study, 

the total AQP9 transcript level is reduced in TLE-HS compared to TLE-NC indicating that it 

might be contributing to the pathophysiology of TLE-HS; however, these results need to be 

confirmed at the protein level in future studies. 

 

DAVID and KEGG analysis of the microarray data identified that 50 of the 3,333 differentially 

regulated genes were most commonly associated with the MAPK pathway in TLE-HS 

compared to TLE-NC, as indicated in Figure 4. Interestingly, it has been shown that the p38 

MAPK-dependent pathway is possibly the primary mechanism in controlling the altered 

expression of a number of major AQPs including AQP4 and AQP9 (Fujita et al., 2003) as 

well as AQPs 3, 5 and 8 (Yang et al., 2013b). This study has identified changes in AQP4 

protein expression in human TLE-HS and key regulatory elements of the MAPK pathway by 

DAVID/KEGG analysis. Our results (Figure 6) reveals that the activity of p38 and JNK 

MAPKs, but not ERK1/2, contributes to the differential expression of AQP4 protein and 

hence the astrocytic response to changes in water homeostasis. These results are in 
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agreement with previous reports using cultured astrocytes and in animal models ( Rao et al., 

2010; 2011). Our results together with evidence of TLE-impaired water homeostasis (Bronen 

et al., 1991; Lee et al., 2004; Heuser et al., 2010; Dawe et al., 2014) may implicate these 

elements in the pathophysiology of TLE directly or indirectly through their effect on AQP 

expression, therefore revealing possible new therapeutic targets. Further studies 

investigating the effects of p38 and JNK inhibitors on animal models of epilepsy will be 

needed to validate these findings. 

 

The up-regulation of ERK2 at the genetic and protein levels could be linked to the 

mechanism underlying the pathophysiology of sclerotic TLE. ERK activation has been 

reported to induce epilepsy in mouse models by stimulating the N-methyl-D-aspartate 

(NMDA) receptor. The ERK signalling cascade may contribute to the aetiology underlying 

some other epileptic types in humans (Nateri et al., 2007). The present study also reveals a 

significant increase in p53 protein in the sclerotic hippocampi of TLE patients.  This is 

consistent with immunohistochemical data that showed up-regulation of p53 in the 

hippocampi of TLE patients (Xu et al., 2007) along with a correlation between seizure-

activated neuronal death in rat hippocampi and p53 responses (Sakhi et al., 1994; Araki et 

al., 2004). However, neuropathological studies reveal that seizure-mediated cellular death in 

TLE happens in a very limited manner (Bernasconi et al., 2002; Mathern et al., 2002; Liu et 

al., 2003; Engel et al., 2007). This might suggest a pro-apoptotic effect of p53; this study 

suggested induced activities for several anti-apoptotic and cytoprotective signalling 

cascades including AKT and RSK. AKT is the key modulator of the AKT-mTOR signalling 

pathway that is involved in neurogenesis, dendrite development and synapse formation. This 

result is consistent with the recently published study by Griffin and colleagues (Griffin et al., 

2016) . RSK modulates mTOR signalling and is involved in cell survival and proliferation in 

addition to its role in inhibiting the pro-apoptotic function of Death-associated protein kinase 

1 (DAPK1) and Bcl-2-associated death promoter (BAD). Furthermore, these cytoprotective 

and anti-apoptotic properties could also be mediated by inhibition of JNK2 since JNK2 is 
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known to stabilise p53 activity by blocking its ubiquitination (Fuchs et al., 1998; Bode & 

Dong, 2007); and additionally the inhibition of p38 delta (Zarubin & Jiahuai, 2005). 

Differential changes in apoptosis-related signalling cascades are largely found in TLE tissue. 

In humans, these findings could indicate that seizure-mediated stress could result in 

alterations in gene expression between adaptive responses that inhibit the neuronal loss and 

the cell death signalling pathways. 

 

Seizures are usually associated with a high energetic demand due to abnormal 

simultaneous firing of a large number of neurons. As the seizure progresses, the increased 

level of lactic acid decreases the tissue pH and causes metabolic-acidosis, which terminates 

the seizure (Yang et al., 2013a). During seizures, there is a remarkable increase in 

glycolysis due to inhibited aerobic metabolism; lactic acid is utilised as one of the major 

sources of energy (Williamson et al., 2005). Previous clinical studies suggest that 

carbohydrate metabolism and glycolysis could induce susceptibility to epileptic attacks and 

inhibiting glycolysis could have antiepileptic effects (Huttenlocher, 1976). The results from 

this study show significant differential expression of a number of essential elements involved 

in cerebral energy metabolism including the upregulation of the beta isoform of glycogen 

synthase kinase-3 (GSK3β), but not the alpha isoform. GSK3β is known to act as a negative 

regulator in the hormonal control of glucose homeostasis and an inactivating agent of 

glycogen synthase (Cho, 2011). The dual specificity mitogen-activated protein kinase kinase 

3 (MKK3) is also upregulated. MKK3 is activated by mitogenic and environmental stress and 

also by insulin and it is necessary for the expression of the glucose transporter (mainly 

through its effect on GLUT1 and GLUT4) (Fujishiro et al., 2001; Zarubin & Jiahuai, 2005). 

Further understanding of the specific role of energy metabolism and homeostasis in TLE 

could shed light on TLE pathophysiology, and may help in identifying novel therapeutic 

strategies. 

In conclusion, the mechanisms involved in TLE aetiology are complex and currently no 

single factor that could explain the underlying pathophysiology has been identified. 
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Understanding the signalling networks is essential for discovery and validation of new 

potential therapeutic targets and we have identified a number in this study using a global 

transcriptomics approach. Despite the essential role of AQPs in the pathophysiology of many 

diseases, including cerebral oedema, diabetes insipidus, cancer, TLE and many more, there 

are still no clinically-available drugs that target AQPs specifically (Verkman, et al., 2014). 

Therefore, understanding the molecular mechanisms involved in their regulation could 

provide new insights into the treatment of epilepsy and pharmaco-resistant TLE in particular. 

Targeting molecules of the MAPK signalling pathway involved in the regulation of AQP4 

expression could be one important area for future studies. 
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Anti-epileptic drugs (AEDs)   

Aquaporins (AQPs)    

BBB: Blood Brain Barrier   

Bcl-2-associated death promoter (BAD)  

Central nervous system (CNS)   

Cornu Ammonis (CA)    

Database for Annotation, Visualization, and Integrated Discovery (DAVID) 

Death-associated protein kinase 1 (DAPK1)  

Differentially regulated genes (DEGs) 

Dentate gyrus (DG)    

 Electroencephalogram (EEG)   

Fold change (FC)    

Glial fibrillary acidic protein (GFAP)  

Glycogen synthase kinase-3 (GSK3β) 

Gene Ontology (GO)  
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Hippocampal sclerosis (HS)   

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Mesial temporal lobe epilepsy (MTLE) 

Microarray (MA)    

Mitogen-activated Protein Kinase-dependent (MAPK) 

Neuronal nuclear antigen (NeuN)   

Phosphate Buffered Saline and 0.05% Tween 20 (PBS-T) 

RT-PCR (Real-Time Polymerase Chain Reaction) 

Sandwich enzyme-linked immunosorbent assay (ELISA) 

Sclerotic hippocampi (TLE-HS)   

Temporal lobe epilepsy (TLE)   

TLE-neocortex (TLE-NC) 
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Tables: 
 
Table 1. Patient clinical data:  
 

 Sex 
Age at 

surgery 
(years) 

Epilepsy 
duration 
(years) 

Samples Side Current AEDs Previous AEDs 

 
01 

F 34 33.5 
TLE-HS 
TLE-NC 

R LMT,LEV 
PB, PHT, CBZ, 

VPA 

02 F 32 13 
TLE-HS  
TLE-NC 

R 
LMT, CBZ, 

GBP 
LEV 

03 M 48 47 
TLE-HS 
TLE-NC 

R PER,CBZ 
PHT, LEV,LMT, 
GBP,TPM,PGB, 

ZNS 

04 F 51 40 
TLE-HS 
TLE-NC 

L LCS, LEV CBZ, LMT, VPA 

05 F 54 53 
TLE-HS  
TLE-NC 

L LMT,PGB 
GBP,VPA,PHT, 
CBZ,PB,LEV, 

CNP,LCS 

06 M 41 29 
TLE-HS  
TLE-NC 

L CBZ , LMT LEV, ZNS, PGB 

07 F 22 13 
TLE-HS 
TLE-NC 

R 
LCS, LMT, 
TPM, PB 

VPA 

08 F 25 6 
TLE-HS  
TLE-NC 

L LEV, PB,LCS PHT, LMT, CBZ 

09 M 42 8 
TLE-HS  
TLE-NC 

L LCS 
PER, LEV, CBZ, 

PHT 

10 M 33 24 TLE-HS L None CBZ,VPA, LEV 

AEDs: Antiepileptic drugs. CBZ: Carbamazepine. CLB: Clobazam. CNP: Clonazepam. 
GBP: Gabapentin. LCS: Lacosamide. LEV: Levetiracetam. LMT: Lamotrigine. NA: not 
available. OXC: Oxcabazepine. PB: Phenobarbital. PER: Perampanel. PGB: Pregabalin. 
PHT: Phenytoin. TGB: Tiagabine. TLE: Temporal lobe epilepsy. TLE-HS: spiking TLE 
sclerotic hippocampus. TLE-NC: non-spiking TLE superior temporal gyrus. TPM: 
Topiramate. VGB: Vigabatrin. VPA: Valproate. ZNS: Zonisamide. 
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Table 2: Fold change (FC) expression of MAPK target genes and corresponding 
proteins.  
 

MAPK Targets 
MAPK Gene Fold-

Change  
(TLE-HS/TLE-NC) 

Phosphorylated MAPK 
Protein Fold-Change 

 (TLE-HS/TLE-NC) 

AKT Pan - 3.78* 

ERK1 1.34**** ns 

ERK 2 2.75**** 2.33* 

GSK3 alpha 0.67* - 

GSK-3 beta 1.81**** ns 

HSP27 2.01** ns 

JNK 2 0.54** ns 

MKK3 1.15**** 2.26* 

p38 delta 0.66** ns 

p53 ns 2.89* 

RSK 1 1.03** ns 

RSK 2 ns 1.75* 

 
Table 2: Fold change (FC) was obtained by dividing the mean of the expression level in 
TLE-HS by the mean of its corresponding TLE-NC expression level. The data represent a 
comparative analysis for selected MAPK genes (normalized to array signal) and proteins 
(normalized to array control) in TLE-NC and TLE-HS. The results are presented as mean ± 
Standard Error of the Mean (S.E.M) for (n=7) for both TLE-NC and TLE-HS in microarray 
analysis; and (n=3) for both of TLE-NC and TLE-HS in proteome profiler analysis, using 
patient matched samples. Kruskal-Wallis with Conover-Inman post hoc analysis was used to 
identify significant differences between samples (*P < 0.05, ** P < 0.01, ***P < 0.001 and 
****P < 0.0001, ns = not significant). MA: microarray analysis. TLE: Temporal lobe epilepsy. 
TLE-HS: spiking TLE sclerotic hippocampus. TLE-NC: non-spiking TLE superior temporal 
gyrus. ns= not significant, - = data not available. 
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Figure captions:  

Figure 1: The mRNA expression profile of cerebral AQPs in TLE-HS and TLE-NC 
specimens investigated using microarray analysis. 
Histograms represent a comparative analysis for the cerebral AQP mRNA expression profile 
in TLE-HS and TLE-NC. Kruskall-Wallis with Conover-Inman post hoc analysis tests were 
used to identify significant differences between samples (*P < 0.05, ** P < 0.01 and ***P < 
0.001). Data presented as Mean ± S.E.M. Number of samples: TLE-HS (n=7); TLE-NC 
(n=7). MA: microarray analysis. TLE: Temporal lobe epilepsy. TLE-HS: spiking TLE sclerotic 
hippocampus. TLE-NC: non-spiking TLE superior temporal gyrus. MA KCNJ10: potassium 
voltage-gated channel subfamily J member. 
 
Figure 2: The translational profile of (A) AQP4 and (B) AQP1 in TLE-NC and TLE-HS 
specimens investigated by sandwich ELISA.  
The AQP4 protein level was significantly up-regulated in TLE-HS. The protein level of AQP1 
was increased in TLE-HS, though was not statistically significant. Kruskall-Wallis with 
Conover-Inman post hoc analysis tests were used to identify significant differences between 
samples (**** P < 0.0001).  Number of samples:  TLE-NC (n = 3); TLE-HS (n = 3) paired 
samples. All data presented as Mean ± S.E.M. TLE: Temporal lobe epilepsy. TLE-HS: 
spiking TLE sclerotic hippocampus. TLE-NC: non-spiking TLE superior temporal gyrus. 
 
Figure 3: KEGG Pathway Enrichment Analysis for differentially-expressed genes in 
TLE-HS vs TLE-NC  
Data represent KEGG Pathway Enrichment Analysis for differentially-expressed genes 
(DEGs) in TLE-HS vs TLE-NC. The Enrichment Score value for each KEGG Pathway is 
reported on the side of each bar and the number of genes identified in each pathway is 
reported as a number inside each bar. 
 
Figure 4: The distribution of the differentially-expressed genes within the detected 
MAPK signalling pathway in TLE-HS (adapted from KEGG website: 
www.genome.jp/kegg) 
The significant up- and down-regulated MAPK related genes, indicated with red and yellow 
stars respectively, were identified using DAVID/KEGG enrichment analysis of microarray 
data. The pathway enrichment score was 6.1 and the total number of enriched genes was 50 
(27 genes were significantly down-regulated while 23 genes were significantly up-regulated). 
Number of samples: TLE-HS (n=7); TLE-NC (n=7). 
 
Figure 5: MAPK signalling profile in TLE-NC and TLE-HS samples (A) microarray 
analysis for mRNA expression and B) proteome profiling analysis.  
Histograms represent a comparative analysis for selected MAPK genes and proteins in TLE-
NC and TLE-HS. Kruskal-Wallis with Conover-Inman post hoc analysis tests were used to 
identify significant differences between samples (*P < 0.05, ** P < 0.01, ***P < 0.001 and 
****P < 0.0001). Data presented as Mean ± S.E.M. Number of samples: MA (n=7); proteome 
profiler analysis (n=3). MA: microarray analysis. Rn: Normalized fluorescence intensity. TLE: 
Temporal lobe epilepsy. TLE-HS: spiking TLE sclerotic hippocampus. TLE-NC: non-spiking 
TLE superior temporal gyrus. 
 
Figure 6. The correlation between p38, ERK1/2 or JNK inhibition and AQP4 protein 
expression in primary human astrocytes. Data are mean fold-changes in expression (± 
S.E.M) (n=4). The p38 inhibitor is 10 µM SB203580; the ERK1/2 inhibitor is 10 µM PD98059; 
and the JNK inhibitor is 40 µM SP600125. FC: fold-change. Each bar represents the 
normalized mean ± S.E.M for each of the conditions. * represents statistical significance (p < 
0.05). 
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