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A B S T R A C T

High frequency oscillations (HFOs, 80–500 Hz) in invasive EEG are a biomarker for the epileptic focus. Ripples
(80–250 Hz) have also been identified in non-invasive MEG, yet detection is impeded by noise, their low oc-
currence rates, and the workload of visual analysis. We propose a method that identifies ripples in MEG through
noise reduction, beamforming and automatic detection with minimal user effort. We analysed 15 min of pre-
surgical resting-state interictal MEG data of 25 patients with epilepsy. The MEG signal-to-noise was improved by
using a cross-validation signal space separation method, and by calculating ~2400 beamformer-based virtual
sensors in the grey matter. Ripples in these sensors were automatically detected by an algorithm optimized for
MEG. A small subset of the identified ripples was visually checked. Ripple locations were compared with MEG
spike dipole locations and the resection area if available. Running the automatic detection algorithm resulted in
on average 905 ripples per patient, of which on average 148 ripples were visually reviewed. Reviewing took
approximately 5 min per patient, and identified ripples in 16 out of 25 patients. In 14 patients the ripple lo-
cations showed good or moderate concordance with the MEG spikes. For six out of eight patients who had
surgery, the ripple locations showed concordance with the resection area: 4/5 with good outcome and 2/3 with
poor outcome. Automatic ripple detection in beamformer-based virtual sensors is a feasible non-invasive tool for
the identification of ripples in MEG. Our method requires minimal user effort and is easily applicable in a clinical
setting.

1. Introduction

All investigations in the workup for epilepsy surgery aim to identify
the epileptogenic zone sensitively and specifically. The trade-off be-
tween sensitivity and specificity often involves the invasiveness of the
investigation. Interictal epileptiform discharges, also called spikes, in
electroencephalography (EEG), electrocorticography (ECoG) and mag-
netoencephalography (MEG) are often used to estimate the location of
the epileptogenic zone, but spikes might not be very specific (Sugano
et al., 2007; Wennberg et al., 2011). High frequency oscillations (HFOs,
80–500 Hz) are electrophysiological transients that are used as bio-
markers for the epileptogenic zone in ECoG, and show a high sensitivity

and specificity (Fujiwara et al., 2012; Jacobs et al., 2010; van't Klooster
et al., 2015). The use of HFOs as a biomarker in non-invasive in-
vestigations is a topic of current research. Ripples (80–250 Hz) have
been found in both EEG and MEG (Andrade-Valenca et al., 2011;
Kobayashi et al., 2015; Van Klink et al., 2016a; Van Klink et al., 2016c).
A specific and sensitive non-invasive biomarker would reduce the need
for invasive investigations.

MEG is a promising recording technique for ripple analysis, because
of its generally higher spatial resolution than clinical EEG. Analysis of
ripples in MEG is a recent development. Few MEG studies have ana-
lysed high gamma or ripples in patients with epilepsy, either by looking
at the spectral content (Guggisberg et al., 2008; Miao et al., 2014; Tang
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et al., 2015; Tenney et al., 2014; Xiang et al., 2015), or by searching for
short lasting oscillations that stand out from the baseline (Papadelis
et al., 2016; Van Klink et al., 2016a; Von Ellenrieder et al., 2016).

The large number of sensors in modern whole-head MEG systems is
an advantage for localization, but makes visual analysis of ripples very
time consuming. Automatic detection algorithms for invasive ripples
have been developed, but direct application to MEG signals is difficult
due to differences in signal characteristics. A recent study (Von
Ellenrieder et al., 2016) used a detection algorithm to find ripples in
MEG based on an increase in root mean square amplitude in 10 narrow
frequency bands between 40 and 160 Hz. After rejection of possible
artefacts and visual validation by two reviewers, ripples were identified
in 8 out of 17 patients. This algorithm was developed to detect ripples
with a high sensitivity. Another algorithm, developed by Burnos and
colleagues (Burnos et al., 2014, 2016), identifies possible ripples by
using the Stockwell entropy (Stockwell et al., 1996) of the signal and
detects ripples based on the presence of a high frequency component
with well-defined characteristics in the time-frequency spectrum. This
algorithm was designed to detect ripples with a high specificity for the
seizure onset zone.

The low amplitude of the ripples, combined with high amplitude
background noise, result in a low signal-to-noise ratio (SNR) and mean
that it can be hard to (automatically) distinguish ripples from the
baseline. In a previous study we have shown that the use of beamformer
virtual sensors can increase the signal-to-noise ratio, and show ripples
that were not visible in the physical sensors (Van Klink et al., 2016a).
These ripples were marked visually for 70 virtual sensors placed in a
priori defined areas of interest. Covering the whole head with virtual
sensors would increase the sensitivity, but at the same time would
hugely increase the number of channels, rendering visual analysis im-
practical.

The aim of this study was to generate beamformer virtual sensors
throughout the cortex to increase the chance of finding ripples, and to
detect these ripples with an automatic detection algorithm with as little
manual reviewing as possible. To enable automatic detection, we fur-
ther increased the SNR by pre-processing the data with the extended
signal space separation (xSSS) method, which combines efficient in-
terference elimination and reduction of sensor noise (manuscript in
preparation). We adapted the ripple detector algorithm developed by
Burnos et al., 2014 to work with our MEG virtual sensor data. With this
detector it was possible to automatically analyse the approximately
2400 beamformer virtual sensors for the presence of ripples, showing
that the approach would be applicable in a clinical setting. We com-
pared the identified ripple locations to the clinical information of each
patient in order to determine the validity of the approach.

2. Methods

2.1. Patients

Patients with refractory epilepsy in the presurgical workup for
epilepsy surgery at the University Medical Centre Utrecht, who had an
MEG registration in 2012 or 2013 at the VU University Medical Centre
in Amsterdam, were included. Patients without epileptic spikes in the
MEG, according to the clinical report, were excluded, since patients
with spikes have a higher chance of showing ripples (Melani et al.,
2013). Also MEG recordings with extensive high frequency artefacts
were excluded. We determined the resected brain area in patients who
had undergone surgery based on post-surgical MRI (if available) or
based on a description of the surgery. Patients were considered seizure
free if they had an Engel score of 1 at the longest available follow up.
All patients or caretakers gave written informed consent for use of their
data for research.

2.2. MEG data acquisition

MEG recordings were performed with a 306-channel whole head
Elekta Neuromag® system (Elekta Oy, Helsinki, Finland) in a magneti-
cally shielded room (VacuumSchmelze GmbH, Hanau, Germany). The
system consists of 102 sensor units, each with two gradiometers and
one magnetometer. Four or five head localization coils continuously
recorded the position of the head in the MEG helmet. The data were
recorded with a 1250 Hz sampling frequency, a low-pass anti-aliasing
filter of 410 Hz and a high-pass filter of 0.1 Hz. Recordings were made
with closed eyes, and in a supine position, to minimize head movement.
A fifteen-minute resting-state interictal recording was used for analysis.
Other recordings included a motor task and somatosensory stimulation,
but these data were not used in this study. The position of the head
localization coils and the shape of the scalp were digitized using a 3D
digitizer (Fastrak, Polhemus, Colchester, VT, USA).

2.3. Anatomical MRI

Each MEG recording was co-registered with a T1-weighted struc-
tural magnetic resonance image (MRI) of the patient with surface
matching software developed by one of the authors (AH). This resulted
in a co-registration error of approximately 4 mm (Whalen et al., 2008).
A single sphere, which fitted best to the outline of the scalp, was used as
volume conductor model. This model was used for the beamformer
analysis described below.

We used the same T1 MRI to reconstruct virtual sensors in the grey
matter. This was done by segmenting the grey matter in SPM12 in
Matlab (version 8.5.0; Mathworks Inc., Natick, MA, USA), down sam-
pling the grey matter voxels to get a minimum inter-sensor distance of
5 mm, and excluding all voxels below the nose. Cerebellar grey matter
voxels were excluded, but deep structures like the hippocampus and
interhemispheric grey matter were maintained. The remaining voxels
were used as virtual sensor locations. The coverage of virtual sensors
was visually checked for each patient. Each patient had between 2060
and 2788 virtual sensor locations (average 2421, Fig. 1).

2.4. Data processing

We removed the signal from the head localization coils with a band-
stop filter and applied the new cross-validation signal space separation
(xSSS) method implemented in a research software module (Elekta
MaxFilter version 3.0, not commercially available). Compared to the
spatial SSS (Taulu and Kajola, 2005) and spatiotemporal tSSS (Taulu
and Simola, 2006), the xSSS method has two important novelties: cross-
validation for extracting and suppressing uncorrelated channel artefacts
and noise, as well as covariance-based regularization of the SSS re-
construction for reducing the sensor noise. Details of the xSSS pre-
processing are described in Appendix A.

We used a scalar beamformer similar to Synthetic Aperture
Magnetometry (Robinson and Vrba, 1999) that is implemented in a
research software module (Elekta Beamformer version 2.2, not com-
mercially available). The 80 Hz high-pass-filtered, pre-processed signal
was used for data covariance, and the first 10 s of the unfiltered pre-
processed signal were used to estimate noise covariance. Both mag-
netometer and gradiometer data were used to calculate the beamformer
solution, so that the relative advantages of the two sensor-types are
combined (i.e. magnetometers for deeper sources; gradiometers with
higher SNR for superficial sources). Normalized beamformer weights
were calculated and used to reconstruct time series for the virtual
sensor locations (Cheyne et al., 2007; Hillebrand and Barnes, 2005;
Hillebrand et al., 2005).

2.5. Ripple detection

Ripples were automatically detected in all virtual sensors by an
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adapted version of the HFO detector developed by Burnos et al., 2014,
2016. The original detector has previously been optimized for use on
intracranial grid and depth electrode signals, which have a higher SNR
than non-invasive MEG signals. We adapted the parameters of the de-
tector and added extra requirements for true ripples to deal with the
increased noise levels. The detector filtered all channels with an elliptic
band pass filter between 70 and 253 Hz (−3 dB points) with a stop
band attenuation of 60 dB on both sides, and a band pass attenuation of
0.5 dB. The algorithm was applied on filtered individual channels and
has a two-step approach: first a baseline was identified by computing
the Stockwell entropy for 120 random one second epochs; samples with
entropy higher than the threshold (0.85 ∗maximum entropy) were
considered as baseline. In the second step the ripples were identified.
An envelope for all baseline segments was calculated with the Hilbert
transform, a cumulative distribution function (CDF) of all segments was
constructed, and the 98th percentile of this CDF was used as a threshold
for potential ripples for that channel. When the Hilbert envelope of a
channel exceeded this channel threshold for at least 20 ms, a potential
ripple was found. A true ripple was defined when for a potential ripple
a) the Stockwell entropy during the event was stable; the maximum
entropy was smaller than 125% of the minimum entropy, excluding the
first and last sample, b) the absolute amplitude was higher than the
absolute amplitude plus one standard deviation of 1000 samples before
and 1000 samples after the potential ripple, and c) a distinct component
was present in the time-frequency spectrum between 40 and 250 Hz,
detected by a peak above 40 Hz preceded by a trough in the power
spectral density (PSD, Fig. 2).

As automatic ripple detectors have the tendency to include a large
number of false positives, we checked the performance of the detector
in each patient by visually reviewing a selective set of detected (‘true’)
ripples. All moments in time that at least one ripple was detected
(ripple-times) were extracted, and the review set was comprised by a
maximum of three randomly chosen virtual sensors with ripples at each
ripple-time. The reviewer was presented a 10 s trace of the unfiltered
virtual sensor at the time of the ripple, a 1 s trace of the unfiltered
virtual sensor, and a 1 s trace of 80 Hz high pass filtered virtual sensor,
with the marked event in all traces, in a custom-made graphical user
interface. The reviewer determined if the automatically detected ripple
was true or not. If more than half of the reviewed ripples at a ripple-
time were considered true, all ripples at that ripple-time in all channels
were considered true, also the ripples that were not included in the
review set. As the review set consisted of maximum three ripples at a
certain ripple-time, all ripples at that ripple-time were considered true
if> 66% of the ripples in the review set were considered true (Fig. 3).
This strategy minimized the number of ripples to be reviewed, while all
ripple-times were evaluated. Potentially true ripples at the same time as
artefact detections at other channels could be excluded with this ap-
proach. The reviewer was blinded for the clinical information and for

the location of the channel that was reviewed. The location of the
ripples in the analysis is the location of the virtual sensors in which
ripples were detected. We did not systematically review the raw MEG
data at the same time-points, because in an earlier study we found that
at 78% of the ripple-times, the raw MEG only showed noise (Van Klink
et al., 2016a). We did review the unfiltered virtual sensor data to de-
crease the chance of marking artefacts. Fig. 4 shows examples of events
that were considered true ripples, and events that were considered ar-
tefacts, together with the physical sensor channels.

2.6. Spike dipole analysis

The primary, non-propagated, and therefore clinically most im-
portant epileptic spikes in the physical sensor channels were marked
and evaluated for a clinical report by a team of clinicians, MEG/EEG
technicians and physicists. These primary spikes were localized with a
dipole fit at every sample from half-way of the flank preceding the top,
to the top of the spike, with a single moving equivalent current dipole
(using the Elekta Source Modelling software version 5.5). The locations
of the fitted dipoles were used to compare with the locations of the
ripples.

2.7. Analysis

The results of the ripples after automatic detection and review were
visualized on axial slices of the patient's MRI, and in a 3D figure. The
concordance between the area(s) with ripples and the area(s) with
spikes in the MEG was assessed visually and was classified as good (+)
if all ripples were located in the same lobe as the spike dipoles, mod-
erate (=) if any ripple was located in the same lobe as the spike dipoles,
and bad (−) for discordance. A similar classification strategy was used
to assess the concordance between the area with ripples and the re-
sected brain area for those patients who had undergone surgery.
Concordance was good (+) if> 50% of the ripple locations were in-
cluded in the resection, at lobar level, moderate (=) if< 50% ripple
locations were included in the resection, and bad (−) for discordance.
We classified the concordance between the MEG spike dipole locations
and the resected brain area by using the same criteria as for ripples.

Twelve patients (14–25) had already been included in a previous
study in which we visually marked ripples in a predefined area of in-
terest using the same MEG recordings (Van Klink et al., 2016a). Here,
we were therefore able to compare the number of automatically iden-
tified ripple-times to the number of visually marked ripple-times in
these patients.

Statistical analyses were performed using IBM SPSS Statistics 23
(IBM Corp., Armonk, NY, USA); a p-value< 0.05 was considered sig-
nificant.

Fig. 1. Locations of beamformer virtual sensors for 4 different axial slices in patient 22. All grey matter voxels were segmented from the MRI and down sampled to a minimum inter-
sensor distance of 5 mm. Cerebellar grey matter voxels were excluded, but deep structures like the hippocampus and interhemispheric grey matter were maintained.
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3. Results

3.1. Patients

Fifty-eight patients had an MEG recording in 2012 or 2013, of
whom 32 did not show epileptic spikes in the clinical analysis. The MEG
of one patient showed such artefacts that the patient had to be excluded
from the analysis. The other 25 patients were included: they had a
mean age of 12 years (range: 4–29) and 19 were male. Fifteen patients
had undergone epilepsy surgery, for which the resection area was

determined based on all available presurgical investigations, including
MEG spikes (Table 1). Ten patients were seizure free after surgery
(Engel 1 outcome). The average follow up time for all patients was
2.2 years (range: 0.5–4 years).

3.2. MEG pre-processing

The previous study (Van Klink et al., 2016a) utilized the standard
SSS methods for suppressing magnetic interference (Taulu and Kajola,
2005; Taulu and Simola, 2006). The cross-validation SSS method in the

Fig. 2. Schematic overview of automatic ripple detection algorithm, with examples of a true ripple (left) and an event that is not in the final output of the detector (right), because the
entropy is not stable over the length of the event. A) Unfiltered virtual sensor signal. B) 80 Hz high-pass filtered signal, showing the true ripple (left) and false detection (right). C)
Stockwell entropy over the length of the event is stable for the true ripple (left), and irregular for the false detection (right). D) Time-frequency decomposition shows a high frequency
component for the true ripple (~100 Hz) and the spike that can be seen in part A (12–20 Hz, left), and less distinct components and high frequency artefacts for the false detection (right).
E) The power spectral density (PSD) also shows the high frequency component in the true ripple (60–100 Hz, left), and the irregular high frequency activity for the false detection (right).

N. van Klink et al. NeuroImage: Clinical 15 (2017) 689–701

692



(caption on next page)

N. van Klink et al. NeuroImage: Clinical 15 (2017) 689–701

693



present study required more computing steps (see Appendix A for de-
tails). Altogether, the xSSS pre-processing time of a 15-min long re-
cording was about 20 min on a 16GB RAM four-core Linux workstation
(HP Z600). Creating the approximately 2400 beamformer virtual sen-
sors took about 3 h on the same workstation.

3.3. Ripple detection

The ripple detection algorithm processed batches of 100 virtual
sensors with 15 min of signal in 45 min on an 8GB RAM, 2.6 GHz CPU
laptop. Detecting ripples in all 2400 channels per patient took about
18 h. It identified ripples in all patients before visual review, on average
905 ripples per patient (range: 79–3924). The review set consisted of 11
to 546 ripples per patient (average 148), and it took approximately
5 min per patient to review this set. The number of ripples excluded
after visual review varied from 67 to 2950 per patient (average 737).
The ripple detection algorithm thus had a false positive rate of 81.5%.
This high false positive rate was accepted to ensure a good sensitivity.
The majority of false positive detections were movement artefacts or
EMG-like activity.

3.4. Ripple rates

After reviewing, 16 of the 25 patients (64%) showed ripples. In
these 16 patients, on average 18 ripple-times were identified, which
were on average 261 ripples per patient, with an average rate of 1.31
per minute (Table 2). Ripples were found on 165 virtual sensors on
average, and this number was not correlated to the total number of
virtual sensors in a patient (Spearman's rho(23) = 0.36, p = 0.08).

3.5. Ripple locations

Visual analysis showed good concordance of the location of the
ripples at the lobar level with the location of the MEG spikes in 10/16
patients with ripples. Four patients showed moderate concordance,
because some ripple locations were outside of spike locations. Of these
four patients, the main focus of ripples in two patients (1 and 3) was
also a spike location. Bad concordance was seen in two patients (14 and
17), both with only few ripple-times (3 and 1) and few channels with
ripples (4 channels both, Table 2). Examples for individual patients are
shown in Fig. 5.

Eight patients with ripples underwent surgery, of whom five were
seizure free after resection (Engel score 1). Patient 4 and 15 were sei-
zure free, and the MEG ripples showed good concordance with the re-
section site. The other three patients who were seizure free showed a
moderate (patient 16 and 22) or bad (patient 24) concordance between
MEG ripples and the resection site. In all three a temporo-lobectomy
with amygdalohippocampectomy was part of the surgery. The three
patients with ripples who did not become seizure free showed good
(patient 9), moderate (patient 13) and bad (patient 11) concordance
with the resection site. Patient 9 had an incomplete resection of the
lesion. The MEG spikes in patients 11 and 13 were multifocal, and did
not perform better than ripples in identification of the resection site.

We also determined the concordance between the MEG spike dipole
locations and the resection area. For the eight patients with ripples who
underwent surgery the spike and the ripple concordance were the same
in six patients, and the spikes performed better than the ripples in the
other two patients. For all ten patients who underwent surgery with
good outcome, the spikes showed good concordance with the resection
site in six patients, moderate concordance in 2 patients and bad

concordance in 2 patients (Table 2).

3.6. Comparison with visual analysis

The number of ripple-times identified by automatic and visual
analysis were comparable and not significantly different (Wilcoxon
Signed Rank Test, Z = −0.28, p = 0.78, Fig. 6). Only for patient 21 the
difference was striking, as we found 109 ripple-times automatically,
and only 19 by visual marking. This is probably due to the limited
spatial sampling of the visually marked sensors.

Ripples were marked visually in 8/12 patients; in 6 of whom ripples
were also found automatically. The two patients in whom visually
marked ripples were not detected automatically had only 1 and 2 visual
ripple-times. Two patients in whom we did not find ripples visually,
showed ripples after automatic detection.

4. Discussion

We show the feasibility of automatic detection and visualization of
ripples in clinical MEG recordings. We used cross-validation SSS pre-
processing and beamformer virtual sensors to increase the SNR and
therefore were able to find ripples in 16 of the 25 patients in this study
(64%). We validated these ripples by comparison with MEG spike di-
pole findings, which showed good or moderate concordance in 14 of the
16 patients with ripples. For six out of eight patients who had surgery,
the ripple locations showed good or moderate concordance with the
resection area: 4/5 with good outcome and 2/3 with poor outcome.
Performing this analysis required only minimal review of the detected
ripples, allowing for application in clinical practice.

The large amount of data of MEG routinely acquired in pre-surgical
assessments requires a good data analysis strategy. The approach has to
be accurate, as well as fast and easy to use for non-specialists, to be
useful in clinical practice. Automatic detection algorithms for ripples
usually have a high false positive rate, to ensure all true ripples are
caught (Zelmann et al., 2012). This is especially crucial in MEG, where
the ripple-rates are very low compared to intracranial recordings (Von
Ellenrieder et al., 2016; Van Klink et al., 2016a). Visual review of the
automatically detected events is usually the solution, but even this is a
cumbersome job when> 300 channels with 80 Hz high pass filtered
signal have to be reviewed. Our proposed algorithm takes time to run –
approximately 3 h to create 2400 virtual sensor signals and 18 h to run
the ripple detector on all these channels – but these steps are un-
supervised. Determining the virtual sensor locations can also be auto-
mated. By creating a smart subset of detected ripples to review visually,
the time a reviewer needs to spend on ripple analysis in one patient is
reduced to 5 min to check the subset of detected ripples and exclude the
false detections. The complete procedure, from raw MEG data to de-
tected ripples, took approximately 21.5 h per patient, in which max-
imum half an hour of human work is involved, to initially check the
quality of the recording and to check the subset of detected ripples.

The fact that ripples can be found in non-invasive MEG and EEG was
long considered impossible, because the generators would be too small
(Von Ellenrieder et al., 2014). The number of studies disproving this
statement is growing, especially in EEG. The high density of MEG
sensors and the ease to create a forward model for MEG would suggest
that MEG is more suitable for HFO analysis than clinical EEG. However
the magnitude of the background noise in MEG, and the interference
induced by electrical power lines, vehicles, or heart beats, for example,
might deem this untrue (Vrba, 2002). Passive or active shielding, smart
geometry of gradiometers and magnetometers, synthetic higher order

Fig. 3. Schematic overview of the review process. The automatic detector has detected ripples in all ∼2400 virtual sensor channels. All moments in time where at least one ripple was
detected (ripple-times) were extracted, and a review set was comprised by a maximum of three randomly chosen virtual sensors with ripples at each ripple-time. The reviewer was
presented a 10 s trace of the unfiltered virtual sensor at the time of the ripple, a 1 s trace of the unfiltered virtual sensor and a 1 s trace of the 80 Hz high pass filtered virtual sensor, with
the marked event in all traces. The reviewer determined if the automatically detected ripple was true or not. If> 2/3 of the reviewed ripples at a ripple-time were considered true, all
ripples at that ripple-time in all channels were considered true, also the ripples that were not included in the review set.
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Fig. 4. Examples of ripples that were approved (A + B) and not approved (C + D) during the visual check. On the left side we show the physical sensors after xSSS preprocessing closest
to the virtual sensors that are shown on the right. The left part of each sensor set shows unfiltered data. The grey area is 80 Hz high pass filtered and shown on the right. Vertical lines
indicate the same moment in time. In part A and B the true ripples are underlined, and a time frequency spectrum of each signal is shown below. Some sign of the ripple can be found in
the physical channels, but only the virtual channels show a clear ripple. In part C and D the falsely marked ripples by the detector are underlined. These were discarded by the reviewer
and not used for further analysis.

N. van Klink et al. NeuroImage: Clinical 15 (2017) 689–701

695



Ta
bl
e
1

Pa
ti
en

t
ch

ar
ac
te
ri
st
ic
s,

sh
ow

in
g
th
e
lo
ca
ti
on

of
M
EG

sp
ik
es
,i
nt
er
ic
ta
l
EE

G
ab

no
rm

al
it
ie
s,

ic
ta
l
EE

G
on

se
t,
PE

T
ab

no
rm

al
it
ie
s,

SP
EC

T
ab

no
rm

al
it
ie
s,

pa
th
ol
og

y
an

d/
or

M
R
I
fi
nd

in
gs
,a

nd
su
rg
er
y
w
it
h
En

ge
l
ou

tc
om

e
an

d
du

ra
ti
on

of
fo
llo

w
-u
p.

Pt
#

G
en

de
r/
ag

e
M
EG

sp
ik
es

In
te
ri
ct
al

EE
G

ab
no

rm
al
it
ie
s

Ic
ta
l
EE

G
on

se
t

PE
T

SP
EC

T
Pa

th
ol
og

y/
M
R
I

Su
rg
er
y
(o
ut
co

m
e)

1
M
/2

1
L/

fr
on

ta
l

L
fr
on

ta
l

N
A

L
te
m
po

ra
l

N
A

M
R
I
no

ab
no

rm
al
it
ie
s

N
o
su
rg
er
y

2
M
/8

R
/f
ro
nt
al

R
ce
nt
ro
te
m
po

ra
l

R
Fr
on

to
ce
nt
ro
pa

ri
et
al

N
A

N
A

M
ul
ti
pl
e
co

rt
ic
al

tu
be

rs
Su

bt
ot
al

re
se
ct
io
n
R
fr
on

ta
l
tu
be

r
(1
A
,3

y)
3

F/
14

Bi
la
te
ra
l
fr
on

ta
l

Fr
on

ta
l
R

>
L

R
fr
on

ta
l

R
fr
on

ta
l

N
A

M
R
I
no

ab
no

rm
al
it
ie
s

N
o
su
rg
er
y

4
M
/2

5
R
/c
en

tr
al

R
pa

ri
et
oc

en
tr
al

R
pa

ri
et
oc

en
tr
al

N
A

N
A

G
an

gl
io
gl
io
m
a
W
H
O

I
R
po

st
ce
nt
ra
l

Le
si
on

ec
to
m
y
R
po

st
ce
nt
ra
l
(1
A
,
3y

)
5

F/
28

R
te
m
po

ro
pa

ri
et
al

Bi
la
te
ra
l
fr
on

ta
l

R
fr
on

ta
l

N
A

N
A

G
an

gl
io
gl
io
m
a
W
H
O

I
R
fr
on

ta
l

Le
si
on

ec
to
m
y
R
fr
on

ta
l
(1
A
,4

y)
6

M
/5

Bi
la
te
ra
l
ce
nt
ro
te
m
po

ra
l

R
ce
nt
ro
te
m
po

ra
l

N
A

N
o
ab

no
rm

al
it
ie
s

N
A

M
R
I
no

ab
no

rm
al
it
ie
s

N
o
su
rg
er
y

7
M
/1

2
Bi
la
te
ra
l
fo
nt
al

pa
ra
sa
gi
tt
al

Bi
la
te
ra
l
fr
on

ta
l

Bi
la
te
ra
l
fr
on

ta
l

N
o
ab

no
rm

al
it
ie
s

N
A

M
R
I
no

ab
no

rm
al
it
ie
s

N
o
su
rg
er
y

8
M
/5

L
fr
on

ta
l+

L
m
es
io
te
m
po

ra
l

L
fr
on

ta
l

L
Fr
on

ta
l/
fr
on

to
te
m
po

ra
l

N
A

N
A

C
ys
t
L
fr
on

ta
l

L
fr
on

ta
l
di
sc
on

ne
ct
io
n
(3
A
,3

y)

9
M
/4

R
oc

ci
pi
ta
l

R
fr
on

ta
l+

L
pa

ri
et
al

R
pa

ri
et
al

w
it
h
fa
st

sp
re
ad

to
fr
on

ta
l

R
pa

ri
et
o-
oc

ci
pi
ta
l

N
A

FC
D

IL
A
E
IC

R
pa

ri
et
oo

cc
ip
it
al

di
sc
on

ne
ct
io
n
(3
A
,3

y)

10
F/

5
D
iff
us
e/
m
ul
ti
fo
ca
l

R
fr
on

to
ce
nt
ra
l

N
A

N
A

N
A

Po
re
nc

ep
ha

lic
cy
st

R
an

d
ti
ss
ue

de
ge

ne
ra
ti
on

of
ba

sa
l
nu

cl
ei

R
he

m
is
fe
re
ct
om

y
(1
A
,2

y)

11
M
/1

4
L
fr
on

ta
l

+
te
m
po

ro
oc

ci
pi
ta
l

L
pa

ri
et
al

L
po

st
er
io
r
te
m
po

ra
l

L
te
m
po

ro
pa

ri
et
al

N
A

G
an

gl
io
gl
io
m
a
L
an

te
ri
or

ba
so
te
m
po

ra
l,
W
H
O

I,
w
it
h

as
so
ci
at
ed

FC
D
,I
LA

E
II
IB

Le
si
on

ec
to
m
y
L
te
m
po

ro
-o
cc
ip
it
al

ba
sa
l(
2A

,3
y)

12
M
/4

R
fr
on

ta
l+

w
id
es
pr
ea
d

M
ul
ti
fo
ca
l:
R

fr
on

to
la
te
ra
l,
R
te
m
po

ra
l,

L
te
m
po

ra
l

N
o
la
te
ra
lis
at
io
n
or

lo
ca
lis
at
io
n

N
A

M
ul
ti
fo
ca
l
(L

TP
,

L
T,

L
PO

,R
P)

M
ul
ti
pl
e
co

rt
ic
al

tu
be

rs
N
o
su
rg
er
y

13
M
/1

3
Bi
la
te
ra
l
fr
on

ta
l
an

d
te
m
po

ra
l

M
ul
ti
fo
ca
l:
R

fr
on

to
la
te
ra
l,
R
oc

ci
pi
ta
l,

L
fr
on

to
la
te
ra
l

M
ul
ti
fo
ca
l,
m
os
t
pr
om

in
en

t
R
fr
on

to
la
te
ra
l

N
A

R
fr
on

ta
l

M
ul
ti
pl
e
co

rt
ic
al

tu
be

rs
Le

si
on

ec
to
m
y
R
fr
on

ta
l
an

d
te
m
po

ra
l
(4
A
,3

y)

14
M
/7

L/
te
m
po

ra
l

Po
ss
ib
le

fr
on

ta
l
fo
cu

s,
pr
ob

ab
ly

R
N
o
la
te
ra
lis
at
io
n
or

lo
ca
lis
at
io
n

N
o
ab

no
rm

al
it
ie
s

N
A

M
R
I
no

ab
no

rm
al
it
ie
s

N
o
su
rg
er
y

15
M
/1

5
R
/t
em

po
ra
l
ba

sa
l

R
fr
on

to
te
m
pe

ro
ba

sa
l

R
,n

ot
lo
ca
liz

in
g

N
A

R
te
m
po

ra
l

M
ul
ti
pl
e
co

rt
ic
al

tu
be

rs
,
de

cr
ea
se
d

gr
ey

an
d
w
hi
te

m
at
te
r
di
ff
er
en

ti
at
io
n

R
te
m
po

ra
l

R
te
m
po

ro
lo
be

ct
om

y
w
it
h

am
yg

da
lo
hi
pp

oc
am

pe
ct
om

y
(1
A
,6

m
d)

16
M
/1

6
R
/t
em

po
ra
l
ba

sa
l

R
an

te
ri
or

te
m
po

ra
l

R
te
m
po

ra
l

R
te
m
po

ra
l

R
te
m
po

ra
l

M
R
I
no

ab
no

rm
al
it
ie
s

R
te
m
po

ro
lo
be

ct
om

y
w
it
h

am
yg

da
lo
hi
pp

oc
am

pe
ct
om

y
(1
D
,1

y)
17

F/
16

L/
te
m
po

ro
pa

ri
et
al

L
fr
on

to
te
m
po

ro
ba

sa
l

R
or

L
in

di
ff
er
en

t
se
iz
ur
es
.

N
o
ab

no
rm

al
it
ie
s

L
te
m
po

ra
l

M
in
im

al
w
hi
te

m
at
te
r
m
al
fo
rm

at
io
ns

R
fr
on

ta
l

N
o
su
rg
er
y

18
F/

17
R
/f
ro
nt
oc

en
tr
al

Fr
on

to
ce
nt
ra
l
m
id
lin

e,
pr
ob

ab
ly

m
or
e
L

Bi
la
te
ra
l
fr
on

to
ce
nt
ra
l

R
ce
nt
ra
l

N
A

M
R
I
no

ab
no

rm
al
it
ie
s

N
o
su
rg
er
y

19
M
/1

0
Bi
la
te
ra
l
fr
on

ta
l

Bi
la
te
ra
l
fr
on

ta
l
an

d
ge

ne
ra
liz

ed
N
A

N
A

N
A

A
ra
ch

no
id
al

cy
st

L
te
m
po

ra
l

N
o
su
rg
er
y

20
M
/6

L/
te
m
po

ra
l
po

st
er
io
r

L
te
m
po

ra
l,
m
or
e

po
st
er
io
r

L
po

st
er
io
r
te
m
po

ra
l

N
A

N
A

M
ul
ti
pl
e
co

rt
ic
al

tu
be

rs
+

SE
G
A

R
ne

ar
in
tr
av

en
tr
ic
ul
ar

fo
ra
m
en

R
es
ec
ti
on

of
gr
ow

in
g
SE

G
A

3r
d
ve

nt
ri
cl
e

+
tu
be

r
R
fr
on

ta
l
(4
B,

1.
5y

)
21

M
/6

R
/p

ar
ie
ta
l

R
ce
nt
ra
l
pa

ra
m
ed

ia
n

R
ce
nt
ra
l
pa

ra
m
ed

ia
n

R
fr
on

ta
l
or

pa
ri
et
o-

oc
ci
pi
ta
l

N
A

M
ul
ti
fo
ca
l
gl
io
si
s,

R
>

L
N
o
su
rg
er
y

22
M
/1

2
R
/t
em

po
ra
l
po

st
er
io
r

R
he

m
is
ph

er
e,

m
os
t

te
m
po

ra
l

R
ce
nt
ro
te
m
po

ra
l

R
te
m
po

ro
-p
ar
ie
to
-

oc
ci
pi
ta
l

R
te
m
po

ro
-

pa
ri
et
al

M
TS

R
,W

yl
er

IV
R
te
m
po

ro
lo
be

ct
om

y
w
it
h

am
yg

da
lo
hi
pp

oc
am

pe
ct
om

y
an

d
le
si
on

ec
to
m
y
R

po
st
er
io
r
pa

ri
et
al

(1
A
,1

y)
23

M
/1

4
R
/t
em

po
ra
l

R
po

st
er
io
r
te
m
po

ra
l

R
po

st
er
io
r
te
m
po

ra
l

R
po

st
er
io
r
te
m
po

ra
l

N
A

FC
D

IL
A
E
II
A
,R

oc
ci
pi
to
te
m
po

ro
ba

sa
l

R
oc

ci
pi
to
te
m
po

ro
ba

sa
l
re
se
ct
io
n
(1
A
,2

y)

24
M
/1

2
R
/f
ro
nt
oc

en
tr
al

R
fr
on

ta
l
an

d
ce
nt
ro
pa

ri
et
al

R
te
m
po

ra
l
di
ff
us
e

R
an

te
ri
or

te
m
po

ra
l

N
A

V
en

tr
ic
ul
ar

cy
st

R
fr
on

ta
l+

M
TS

R
,

W
yl
er

2
R
an

te
ri
or

te
m
po

ro
lo
be

ct
om

y
w
it
h

am
yg

da
lo
hi
pp

oc
am

pe
ct
om

y
(1
C
,1

.5
y)

25
F/

29
L/

pa
ri
et
ot
em

po
ra
l

N
o
cl
ea
r
in
te
ri
ct
al

ep
ile

pt
if
or
m

di
sc
ha

rg
es

L
fr
on

ta
l
an

d
m
id
lin

e
N
A

N
A

A
rt
er
io
ve

no
us

fi
st
ul
a
L

pa
ri
et
oo

cc
ip
it
al

Le
si
on

ec
to
m
y
of

fi
st
ul
a,

un
ab

le
to

re
se
ct

se
iz
ur
e

fo
cu

s
du

e
to

sp
ee
ch

ar
re
st

(1
D
,1

.5
y)

M
:m

al
e,
F:

fe
m
al
e,
L:

le
ft
,R

:r
ig
ht
,S

EG
A
:s
ub

ep
en
dy

m
al

gi
an

tc
el
la

st
ro
cy
to
m
a,

FC
D
:f
oc
al

co
rt
ic
al

dy
sp
la
si
a,

M
TS

:m
es
io
te
m
po
ra
ls
cl
er
os
is
,W

H
O
:w

or
ld

he
al
th

or
ga
ni
za
tio

n
cl
as
si
fi
ca
tio

n
fo
r
tu
m
or
s,
IL
A
E:

in
te
rn
at
io
na

ll
ea
gu
e
ag
ai
ns
te

pi
le
ps
y
cl
as
si
fi
ca
tio

n
fo
r

fo
ca
lc

or
tic
al

dy
sp
la
si
a,

N
A
:
no

t
av
ai
la
bl
e.

N. van Klink et al. NeuroImage: Clinical 15 (2017) 689–701

696



gradiometers (Vrba, 2002), signal space separation (Taulu and Kajola,
2005; Taulu and Hari, 2009), and beamforming (Hillebrand et al.,
2016; Van Klink et al., 2016a) can be used to improve the SNR. In a
previous study we have shown that it is possible to identify epileptic
ripples in the time domain in MEG data that was pre-processed (Van
Klink et al., 2016a). In that study we only sampled a small area of in-
terest, and calculated beamformer virtual sensors based on spike
markings. In this study we used the whole 80 Hz filtered 15 min signal
as data covariance, thus minimizing the effect of a small covariance
matrix on the quality of reconstructed sources and power estimation
(Brookes et al., 2008). We further improved the SNR by using the cross-
validation signal space separation (xSSS; manuscript in preparation)
that reduced both magnetic interference and sensor noise. The resulting
signals were of such quality that automatic detection of ripples was
possible.

The rate of true ripples was 1.3/minute in patients with ripples,
which is low, but comparable to visually marked ripples (Van Klink
et al., 2016b). One other study that automatically detected ripples in
the time domain found ripples in 8 out of 17 patients (47%), without
using beamformer virtual sensors, and found similar ripple rates (Von
Ellenrieder et al., 2016).

Analysis of ripples can be difficult, as filtering of sharp transients
can result in ripple-like oscillations (Bénar et al., 2010). Filter artefacts
of sharp transients show activity over all frequencies, low to high. Our
automatic detector discards such high frequency activity that is part of
broadband activity, because the power spectral density will not show a
distinct high frequency peak (Fig. 2E). These ripples are considered
artefacts. However, we often see ripples at the same time as epilepto-
genic spikes, which are not connected in the frequency spectrum, and
therefore no filter artefacts. These were events that we considered as
true ripples. Ripples in invasive recordings can also be a physiological
phenomenon, and distinction between physiological and pathological

ripples is difficult when no tasks are performed. Physiological ripples
have not (yet) been found in spontaneous non-invasive recordings. As
most ripples in our study seemed to relate to the epileptic focus, we
assumed they were pathological.

With our proposed method, all moments a ripple was present in at
least one channel (ripple-times) were considered. This resulted in a
large area that seems involved in ripple generation. This is in contrast
with the idea that ripples in intracranial ECoG are thought to be gen-
erated by only a small brain area (Jacobs et al., 2012). Reasons for the
relatively widespread ripples in MEG can be found in the spatial
smoothness of the measured magnetic fields (Ahonen et al., 1993), and
the blurring effect, or leakage, of the spatial filtering beamformer al-
gorithm (Barnes and Hillebrand, 2003; Hillebrand and Barnes, 2011).
The diameter of the ripple cluster seemed also larger than the spike
clouds, but dipole clouds were the result of analysis of several selected
spikes, fitted over multiple latencies, and presented here without con-
fidence volumes, while ripples were detected on each virtual channel
independently. For these reasons, determining the actual size of the
ripple generating area and comparison with spikes is difficult. To be
able to draw conclusions on the ripple generation area, we would at
least need to reconstruct the sources of spikes and ripples in a similar
fashion.

The results for ripples as marker for the resection area were not
better than those for spikes, and spikes were a good marker. Ripples
should not replace spikes as a biomarker, but they can be an addition to
the spike information, to strengthen the result of the MEG. Of course the
added value of ripples would be larger if we can also find them in pa-
tients without spikes in MEG.

We used these spikes as gold standard to determine the reliability of
the detected ripples, which is not the best gold standard, but one that
was available for all patients. The best gold standard for identification
of the epileptogenic zone is seizure freedom after resective surgery. As

Table 2
MEG results: number of virtual sensors (VS) in each patient, duration of the recording, location of the identified ripples, concordance between ripples and MEG spikes, concordance
between ripples and the resection area, the number of moments that a ripple was found in at least one channel (ripple-times), the total number of VS that showed ripples, the ripple-times
per minute, and the concordance between MEG spikes and the resection area. Concordance is classified as good (+), moderate (=) or bad (−).

Pt # VS Duration
(min)

Location MEG ripples Concordance ripples with
MEG spike dipoles

Concordance ripples
with resection

Ripple-
times

VS with
ripples

Rate/min Concordance spikes with
resection

1 2649 14.8 L frontal + occipital = 24 167 1.62
2 2447 14.8 N 0 0 +
3 2480 15.3 Bilateral frontal

+ some widespread
= 42 816 2.75

4 2384 15.1 R central + + 6 36 0.40 +
5 2224 14.4 N 0 0 −
6 2061 10.0 R centro-temporal + 2 21 0.20
7 2326 18.3 N 0 0
8 2454 15.6 N 0 0 =
9 2275 8.6 R temporo-occipital + + 1 22 0.12 +
10 2363 17.1 N 0 0 =
11 2227 15.0 R frontal + L temporal = − 8 55 0.53 =
12 2269 15.0 R frontal + R fronto-

central
+ 15 112 1.00

13 2768 9.6 R > L parieto-occipital + = 29 368 3.02 =
14 2436 14.6 L fronto-temporal + R

occipital
− 3 4 0.21

15 2778 15.0 R temporal + + 13 97 0.87 +
16 2313 14.5 R temporal posterior + = 4 12 0.28 +
17 2321 15.0 R temporal posterior − 1 4 0.07
18 2060 14.7 N 0 0
19 2450 15.2 Bilateral frontal + 12 260 0.79
20 2364 5.7 N 0 0 −
21 2463 13.6 R parieto-occipital

+ some widespread
+ 109 358 8.01

22 2788 16.5 R parietal + = 16 285 0.97 =
23 2564 15.2 N 0 0 +
24 2393 15.0 R central + L temporal

+ R occipital
= − 2 19 0.13 −

25 2663 15.0 N 0 0 +

L: left, R: right, N: none.
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Fig. 5. Ripple results for three patients. Ripples are visualized in a 3D figure (top), as well as axial MRI slices (bottom right). The ripple locations are compared to the spike dipoles from
the clinical report (bottom left). All three patients show good concordance with MEG spike dipoles, as all ripple locations are also spike locations at lobar level. For patient 6, ripples were
found unilaterally right centro-temporal, and spike dipoles were fitted bilateral centro-temporal. This was classified as good concordance, as the ripple location was also a spike location.
Patient 6 did not undergo surgery because the number of seizures was too low. Patient 13 underwent surgery where a cortical tuber right frontal and a tuber right temporal were removed,
but the seizure frequency did not change (Engel 4B). Patient 15 underwent a right temporo-lobectomy with amygdalohippocampectomy and was seizure free (Engel 1A). Postoperative
MRI was not available.
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MEG in our centre is used mainly for patients without a clear hypothesis
about the epileptogenic zone, i.e. the most difficult cases, unfortunately
only eight patients with ripples were considered eligible for epilepsy
surgery, of which 5 were successful. The resection area was concordant
with the MEG ripples in two of them. Interestingly, the other three
patients had a temporo-lobectomy with amygdalohippocampectomy,
which suggests that detection of deep mesiotemporal sources is diffi-
cult. The insensitivity of MEG to sources in the mesiotemporal lobe has
been stated before (Hillebrand and Barnes, 2002), also for ripples (Von
Ellenrieder et al., 2016). However, even for two of these difficult cases
we still found moderate concordance, suggesting that the improved
SNR offered by beamforming (and xSSS in this study) may come to our
aid, as shown previously for interictal spikes (Hillebrand et al., 2016).
In the patients with poor outcome after surgery, ripples showed con-
cordance with the resection area in two of the three patients, which can
indicate that the resection was incomplete.

We included patients with spikes in the unfiltered MEG. The pre-
sence of spikes was not required to perform the analysis, but it in-
creased the chance of finding ripples (Melani et al., 2013). We found
ripples in 64% of the patients with spikes in the MEG, which is in line
with 61–88% of focal epilepsy patients with ripples that are reported in
scalp EEG (Andrade-Valenca et al., 2011; Melani et al., 2013; Van Klink
et al., 2016b). Our results also suggest that the chance of good locali-
zation is higher when the number of identified ripples is higher.
Therefore the performance of the method might improve when longer
epochs are analysed.

We used a method to facilitate ripple detection in the time domain,
where the virtual electrode time series were constructed on the basis of
the whole recording. The localization of the detected ripples could be

improved by applying source localization in the ripple band at the
ripple-times, combining information from all channels at all ripple-
times, and thereby increases the SNR in the spatial and temporal do-
main. This would also give more insight in the true size of the ripple
generating area. Methods such as beamforming (Hillebrand et al.,
2005) or the wavelet maximum entropy of the mean approach (wMEM,
(Lina et al., 2014)) could be used for such a next step to improve lo-
calization accuracy of the automatically identified ripples.

5. Conclusion

We generated beamformer virtual sensors throughout the brain to
increase the chance of finding ripples, and detected these ripples with
an automatic detection algorithm with minimum human intervention.
We have shown that this approach is feasible and that the identified
ripples correlated with the MEG spike dipoles and with the resected
area in the subset of patients who were successfully operated. Further
validation of the MEG ripples as a biomarker for the epileptogenic zone
has to be performed in a larger cohort of patients who underwent
surgery. This automatic analysis method paves the way for such studies.
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Appendix A

A.1. The cross-validation SSS method

Signal Space Separation (SSS) (Taulu and Kajola, 2005) is a method for processing multichannel magnetic recordings on the basis of quasistatic
Maxwell's equations and the geometry of the measurement. In MEG, SSS has been applied for suppressing external interference (software shielding),
compensation for signal distortions caused by head movements, and normalization of head positions (Taulu and Kajola, 2005). The spatiotemporal
tSSS method based on temporal correlations removes also nearby interference (Taulu and Hari, 2009; Taulu and Simola, 2006). The cross-validation
SSS (xSSS) method has two important novelties: cross-validation for extracting and suppressing uncorrelated channel artefacts and noise, and
covariance-based regularization of the SSS reconstruction for reducing numerical reconstruction noise (manuscript in preparation; conference ab-
stract has been presented by (Taulu et al., 2012)).

SSS reconstructions may suffer from artefacts or noise that are unique to a specific channel, as is the case when, for example, a channel is
malfunctioning. Such artefacts may affect the accuracy of the SSS model and consequently leak to other channels. The cross-validation algorithm
leaves out MEG channels one by one, and reconstructs, using SSS, the channel signal using the data from all other channels. The reconstructed signal
is an accurate representation of the true signal, assuming perfect calibration accuracy and an overdetermined system, i.e., a multichannel recording
with the number of channels exceeding the number of degrees of freedom. Even if the calibration information is not accurate, which affects the
accuracy of the SSS model, the reconstructed channel signal based on cross-validation is still completely free of sensor noise and artefacts corre-
sponding to the channel under investigation. Thus, the difference between the measured and reconstructed signal contains the signal component that
does not have any correlation with the signals of other channels. The approach provides two important benefits: 1) It detects channels with large
artefacts, e.g. due to a malfunctioning sensor, and neglects such channels in subsequent SSS reconstructions. 2) After the application of cross-
validation, each channel signal is free of its own noise and artefact contribution that was originally uncorrelated with all other channels. The method,

Fig. 6. Number of automatically identified ripple-times compared to the number of vi-
sually marked ripples in (van Klink et al., 2016a). The numbers are comparable and not
significantly different (p= 0.78).
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however, is not able to fully suppress spatial spreading of the uncorrelated sensor noise and artefacts to other channels, but the overall noise level
will be reduced by cross-validation.

The spatial SSS transforms measured N-channel MEG signals b into M device-independent harmonic function amplitudes x (M < N):

= Sb x,

where the matrix S contains the harmonic basis functions (Taulu and Kajola, 2005). Instead of estimating the amplitudes x with the pseudo-inverse,

=
−S S Sx b( ) ,T T1

information of the signal and noise covariance matrices (Cx and Cn) provides efficient regularization for the estimates (Foster, 1961):

= +
−C S SC S Cx b( ) .x

T
x

T
n

1

The details of the covariance estimation are presented elsewhere (manuscript in preparation). After covariance-based estimation of x, the SSS-
reconstructed signals have lower sensor noise over the whole frequency band.

The xSSS method can also be combined with temporal estimation and reduction of disturbance waveforms caused by nearby interference. The
disturbing waveforms are estimated as in tSSS (Taulu and Simola, 2006), but here they are projected out from the original signals b before any SSS
operations. The cross-validation and covariance-based regularization are performed thereafter as described above.

A.2. Pre-processing pipeline

We used a research software module (Elekta MaxFilter version 3.0, not commercially available) for pre-processing the data in four steps:

1) Computation of head positions and subtraction of the signal from the head localization coils, but no SSS operations (Uutela et al., 2001).
2) Identification of temporal waveforms caused by nearby interference sources, and time-domain projection of them from the data without doing

SSS transform. We used a buffer length of 10 s and sub-space correlation of 0.9.
3) Cross-validation based identification of channels exhibiting large uncorrelated artefacts or excessive noise, for neglecting such channels in SSS

operations.
4) SSS reconstruction using sensor-level cross-validation to subtract uncorrelated sensor artefacts and noise, and application of noise and signal

covariance information in the SSS transform to reduce the sensor noise in the whole frequency band.

The steps could be performed in a single script which processed the whole pipeline automatically. We took a two-step approach by checking for
channels with artefacts after step 3. The whole pre-processing of a 15-min long MEG recording took about 20 min on a four-core Linux workstation
with 16GB RAM.
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