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Abstract 

In recent years, environmental problems caused by industries in China have drawn 

increasing attention to both academics and policy makers. This paper assesses the 

environmental efficiency of Chinese regional industrial systems to come up with 

some recommendations to policy makers. First, we divided each Chinese regional 

industrial system into a production process and a pollutant treatment process. Then, 

we built a scientific input-intermediate-output index system by introducing a new 

Network Slacks-Based Model (NSBM) model. This study is the first to combine 

NSBM with DEA window analysis to give a dynamic evaluation of the environmental 

efficiency. This enables us to assess the environmental efficiency of Chinese regional 

industrial systems considering their internal structure as well as China’s policies 

concerning resource utilization and environmental protection. Hence, the overall 
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efficiency of each regional industrial system is decomposed into production efficiency 

and pollutant treatment efficiency.  

Our empirical results suggest: (1) 66.7% of Chinese regional industrial systems 

are overall inefficient. 63.3% and of 66.7% Chinese regional industrial systems are 

inefficient in the production process and the pollutant treatment process, respectively. 

(2) The efficiency scores for the overall system and both processes are all larger in the 

eastern area of China than those of the central and western areas. (3) Correlation 

analysis indicates that SO2-generation intensity (SGI), solid waste-generation 

intensity (SWGI), COD-discharge intensity (CDI), and SO2-discharge intensity (SDI) 

have significantly negative impacts on the overall efficiency. (4) The overall 

inefficiency is mainly due to inefficiency of the pollutant treatment process for the 

majority of regional industrial systems. (5) In general, the overall efficiency was 

trending up from 2004 to 2010, indicating that the substantial efforts China has 

devoted to protecting the environment have yielded benefits. 

Keywords: Data Envelopment Analysis (DEA); Network SBM model; 

Environmental performance; Window analysis; Chinese industrial systems 

 

1. Introduction 

Since the opening and reforms in 1978, China becomes a member of the whole world 

big market. Many developed countries have moved their polluting enterprises to 

China because of its weak environmental regulations and cheap labor force. China 

maintains a high rate in economic growth but also gets problems of environmental 

degradation, such as air protection, and CO2 emission reduction (Zhang and Wen, 

2008). The major reason of environmental degradation is the huge pollutants from 

industries. Fortunately, in recent years the government and there peoples know the 

importance of environmental protection and climate change, and the government 

starts to develop a green economy to separate economic growth from the increasing 

emission of pollutions (Yang, 2012).  

The Chinese government has made many environmental policies and taken much 

action toward resource conservation and environmental protection to control the 
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industrial discharge of waste gas, waste water, and solid waste. The Environmental 

Protection Law was firstly enacted in 1979. Since then, China has established seven 

major laws concerning environmental protection1 (Chang and Wang, 2010). All of 

these laws can be employed to regulate emissions from various industries. To 

supplement these major laws, the Chinese central government has introduced many 

regulations, a range of environmental regulatory schemes (e.g. Environmental Impact 

Assessment (EIA), Three Synchronizations, and Pollution Levy System), and over 

500 environmental standards to regulate industrial pollutions (Shi and Zhang, 2006). 

The government gradually constructs a resource-saving and ecologically-friendly 

society. However, China still faces the problems of the resource shortage and 

environmental pollution (Geng et al., 2007; Bian and Yang, 2010; Yang, 2012). With 

increasing concerns about resource usage and environmental issues, environmental 

performance evaluation has become more critical. 

There has been a rapid increase in the number of studies using data envelopment 

analysis (DEA) to evaluate environmental performance (Zhou et al., 2008; Gomes and 

Lins, 2008). For example, several scholars evaluate the environmental performance of 

different regions and countries (Arcelus, Arocena, 2005; Sarkis, Cordeiro, 2009; 

Bremberger, Bremberger, Luptacik, Schmitt, 2014). The approaches of treating 

undesirable outputs in evaluating environmental performance can be classified into 

several groups (Liang et al., 2009; You and Yan, 2011). The first one treats the 

undesirable outputs directly as inputs (Berg et al., 1992; Hailu and Veeman, 2001) and 

applied in Bi et al. (2012) and Zhang and Choi (2013). The second group transforms 

undesirable outputs by adding a sufficiently large positive number to the undesirable 

output (Seiford and Zhu, 2002) and applied to measure the environmental efficiency 

of paper mills along the Huai River (Hua et al., 2007). The third introduces the 

concept of weak disposability in Färe et al. (1989), and applied in Bian and Yang 

(2010) and Zhou et al. (2007). 

                                                             
1These 7 major laws concerning environmental protection are: Environmental Protection Law; Law on Marine 

Environmental Protection; Law on Water Pollution Prevention and Control; Law on Air Pollution Prevention and 

Control; Law on Solid Waste Pollution Prevention and Control; Radioactive Pollution Prevention and Control Law; 

Environmental Noise Pollution and Prevention Law. 
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All of these studies treated each DMU as a black box. In these previous studies 

on the environmental efficiency of Chinese industrial systems, the initial inputs are 

considered to produce the final outputs through this “black box” without considering 

the undesirable intermediates. This efficiency evaluation method may not be 

reasonable as it does not simulate the specific processes of the real Chinese regional 

industrial system. In reality, the Chinese regional industrial system can be divided into 

a production process and a pollutant treatment process. Pollutants generated in the 

production process are also inputs to the pollutant treatment process. In this case, 

when a regional industrial system is deemed as a “black box”, we cannot identify how 

much inefficiency comes from the production process or how much from the pollutant 

treatment process. But when the internal process of the DMU is considered, the 

efficiency score of the DMU can be assessed accurately, and insights into the 

performance of the DMU can be obtained (Färe and Grosskopf, 2000). 

In recent years, a number of studies have focused on Network DEA (NDEA) to 

consider the internal process of DMUs (Färe and Grosskopf, 2000; Lewis and Sexton, 

2004; Tone and Tsutsui, 2009; Cook et al., 2010; Tone and Tsutsui, 2010; Kao, 2014). 

As results, NDEA has been extensively applied to many areas, such as hotels (Sexton 

and Lewis, 2003; Moreno and Lozano, 2014), R&D departments (Liu and Lu, 2010), 

retail stores (Vaz et al., 2010), information technology (Chen and Zhu, 2004), 

insurance companies (Kao and Hwang, 2008), power-supply companies (You and Jie, 

2014), incineration plants (Chen et al. 2012) and so on. NDEA has also been applied 

to dealing with undesirable variables though mostly undesirable outputs. Kordrostami 

and Amirteimoori (2005) firstly considered undesirable inputs and outputs in NDEA. 

Tone and Tsutsui (2010) extended the network SBM to the dynamic structure with 

undesirable intermediates. They considered the importance of inputs and desirable 

outputs separately. Lozano et al. (2013) proposed a Directional Distance Function 

(DDF) network DEA approach considering undesirable final outputs to assess the 

efficiency of airports. Lozano (2015) proposed a general networks slacks-based 

inefficiency (GNSBI) with undesirable final outputs to assess banks efficiencies. 

Khalili-Damghani and Shahmir (2015) proposed a network DEA model in the 
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presence of uncertainty and undesirable final outputs to evaluate the efficiency of 

electrical networks. Recently, Liu et al. (2015) studied network DEA models, 

systematically, by considering undesirable inputs, intermediates, and outputs. They 

proposed that inconsistency may exist in deciding the desirability of intermediates2. 

They applied the proposed model to evaluate the efficiencies of China’s listed banks. 

However, there is a lack of literature on applying NDEA to assess environmental 

performance of industrial systems in China by incorporating undesirable variables. 

Song et al. (2014) attempted to apply two independent DEA models to assess the 

environmental efficiencies of 36 Chinese coal enterprises. However, they treated the 

two-stage production system as two independent processes, which ignored the fact 

that the intermediates must be consistent both as the outputs of process one and inputs 

of process two. 

All the previous studies on network DEA with undesirable variables have either 

separately considered the importance of inputs or desirable outputs or did not consider 

the importance of either. They neglected the importance of undesirable outputs. 

However, when undesirable outputs exist in each sub-system, we may overestimated 

the overall system as well as its sub-systems if the relative importance between inputs 

and undesirable outputs in sub-systems is ignored. Then, it may be unreasonable to 

estimate the environmental efficiency scores of the overall system and both 

sub-systems if each DMU has a preference on saving inputs and reducing undesirable 

outputs. However, none of prior studies in the network system with undesirable 

variables addressed this problem.  

To approach the problem, we assign user-specific weights for inputs and 

undesirable outputs to reflect China’s resource and environmental policy. In order to 

measure the dynamic changes in environmental performance and quantify their 

contributing factors, we also employ window analysis (Charnes and Cooper, 1984; 

Cooper et al., 2011) in our empirical study. This study makes two main contributions 

to the literature. First, this paper proposes a new Network SBM model that considers 

                                                             
2They pointed that inconsistence means that the types of intermediates from the system-view and sub-system view 

are different. 
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the relative importance between inputs and undesirable outputs in both processes. It 

considers both the production process and pollutant treatment process in one network 

system to reflect the environmental performance of regional industrial systems in 

China for the first time. This study is the first to combine NSBM with DEA window 

analysis to give a dynamic evaluation of the environmental efficiency of regional 

industrial systems in China. Second, the study not only calculates and analyzes 

characteristics of different processes, which will give more accurate conclusions about 

environmental performance, but also provides insights on how to improve the 

efficiencies of the regional industrial systems in China. Therefore, this work offers 

important guidelines for policy implementation in the future development of Chinese 

regional industries.  

The rest of this paper is as follows. In the next section, models for measuring 

each regional industrial system’s overall efficiency, production efficiency, and 

pollutant treatment efficiency are presented. In Section 3, the empirical results of the 

Chinese regional industrial system from 2004 to 2010 are provided. Section 4 

contains discussion of the results and in the last section, concluding remarks are 

given. 

2. Methodology  

In this study, the Chinese regional industrial system is divided into a production 

process and a pollutant treatment process. The network process of Chinese regional 

industrial system in this study is shown in Fig.1. Suppose in the production process, 

each regional industrial system jDMU  nj ,...,1  has Pm inputs
jiP

x  PP mi ,...,1 , 

and uses these inputs to produce Ps  desirable outputs 
jrP

y  Pp sr ,...,1  as well as 

D  undesirable outputs 
djz  Dd ,...,1 . The D undesirable intermediates

djz  then 

become part of the inputs to the pollutant treatment process. The other part of the 

inputs are exogenous inputs
jiT

x  TT mi ,...,1 . The outputs from the pollutant 

treatment process are desirable outputs 
jrT

y  TT sr ,...,1  and undesirable outputs 

bju  Bb ,...,1 . The generated pollutants from the production process are referred to 
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as the undesirable intermediates between the production process and the pollutant 

treatment process. Thus, the performance of the regional industrial system is 

determined by performance in both processes.  

<Insert Fig.1 here> 

Since each regional industry system’s production process and pollutant treatment 

process are interdependent, it is better to jointly assess these two processes and 

estimate related performance indicators simultaneously. Thus, we propose a new 

Network SBM (NSBM) model with undesirable intermediates, undesirable outputs as 

well as user-specific weights for inputs and undesirable outputs in both processes. We 

define an overall network production possibility set in terms of  
pix ,  dz ,  

Pry , 
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where P

j  nj ,...,1  and T

j  nj ,...,1  are the intensity variables for the 

production process and pollutant treatment process respectively. It is obvious the 

increase of intermediates 
djz  Dd ,...,1  can produce more desirable outputs 

jrT
y



7 
 

 TT sr ,...,1  and undesirable outputs 
bju  Bb ,...,1  in the pollutant treatment 

process. However, these intermediates are undesirable outputs of the production 

process. The intermediates 
djz  Dd ,...,1  are desirable from the point view of the 

system but it is undesirable from a point of view of the production process. Thus, 

there exists inconsistence in deciding the desirability of the intermediates according to 

Liu et al. (2015). As the undesirable intermediates
djz serve as undesirable outputs of 

the production process and desirable inputs of the pollutant treatment process, we 

treat 
djz  as inputs to the production process similar to Liu et al. (2010) and Liu et al. 

(2015) (note constraint (1.3)), and also treat 
djz  as desirable inputs of the pollutant 

treatment process (note constraint (1.4)). 

As the intermediates could be freely adjusted but should be consistent between 

the production process and pollutant treatment process3, the “free” intermediates 

between the production process and pollutant treatment process can be constrained by 

the condition below: 

 dzz
n

j

n

j

dj

T

jdj

P

j  
 

,
1 1

                                  (2) 

Under the current network production possibility set, the NSBM model of Fig.1 

can be represented as follows: 

                                                             
3 In our study, the undesirable intermediates refer to the pollutants generated from the production process and 

therefore they could be adjusted freely by industry production. 
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It should be noted that (3.1) denotes the inputs of the first stage and (3.6) denotes the 

inputs of the second stage, In model (3), 

Pi
s  PP mi ,...,1 , 



ds  Dd ,...,1 , and 

Pr
s

 pP sr ,...,1  are slack vectors corresponding to inputs, undesirable outputs, and 

desirable outputs in the production process, and 
'

ds  Dd ,...,1 , 

Ti
s  TT mi ,...,1 , 



Tr
s  TT sr ,...,1 , and 

bs  Bb ,...,1  are slack vectors corresponding to endogenous 

inputs, exogenous inputs, desirable outputs, and undesirable outputs in the pollutant 

treatment process. The subscript k  represents the DMU under evaluation. 1  and 

1  are user-specified weights for inputs and undesirable outputs in production 

process, hence, 111   . 2  and 2  are the corresponding weights for the 

pollutant treatment process.  

The objective function deals not only with input excess and output shortfall but 
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also excess and shortfalls in the undesirable intermediates as main targets of 

evaluation in both processes. Thus, the objective is to account for all inefficiencies 

from inputs, desirable outputs, and undesirable outputs in both processes. The 

undesirable outputs should be reduced as much as possible while the desirable outputs 

should be increased. Thus, the slacks of undesirable outputs in the production process 

and pollutant treatment process are in the numerator being treated as inputs in our 

model, while the desirable outputs in the production process and pollutant treatment 

process are in the denominator. 

If variable returns to scale (VRS) over the reference technology are assumed in 

the production process and pollutant treatment process, we impose 



n

j

P

j

1

1  and 





n

j

T

j

1

1  on the technology in model (3). Note that the Pw  and Tw  defined in this 
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Model (3) can be transformed to the following linear model (5) as  

                                                             
4 In this paper, we simply set 5.0 TP ww  as the economic development and environmental protection are 

of equally importance in developing industries in China. 
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where 
P

j

P

j t ˆ ,
T

j

T

j t ˆ ,  
PP ii tsŝ ,  

PP rr tsŝ ,  
TT ii tsŝ , 

  dd tsŝ , 
  ''ˆ

dd tss , 

 
TT rr tsŝ , and   bb tsŝ . Let an optimal solution of model (5) be 

 *****'***** ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ, T

j

P

jbrdirdi ssssssst
TTPP


, then the optimal solution of model (3) can be 

obtained as:  

** N

k

N

k   , 
*** ˆ tP

j

P

j   , 
*** ˆ tT

j

T

j   , *** ˆ tss
PP ii

  , *** ˆ tss
PP rr

  , *** /ˆ tss
TT ii

  , 

*** /ˆ tss dd

  ,
**'*' /ˆ tss dd

  , *** ˆ tss
TT rr

  , *** ˆ tss bb

  .                       (6) 

Accordingly, by solving model (5), we can obtain the optimal values of the 

overall efficiency *N

k , and its corresponding two measures: production efficiency 

measure and pollutant treatment efficiency measure. Here, ** N

k

N

k   , where *N

k  

are the optimal values from model (3). 
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Then, the optimal values of the production efficiency measure and pollutant 

treatment efficiency measure in model (3) can be calculated by 

**

**

**
* P

k

P

kP

k

P

kP

k
t

t





  and
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* T

k

T

kT

k

T

kT

k
t

t





  , respectively. 

The following definitions provide a measure of the overall efficiency and its 

decompositions: 

Definition 1. (Overall efficiency, OE). The overall efficiency of kDMU  is defined to 

be *N

k , the optimal objective function value of model (3). kDMU is deemed to be 

overall efficient if and only if 1* N

k  and all the slacks satisfy 0* 

Pi
s , 0* 

ds , 

0* 

Prs , 0*' 

ds , 0* 

Ti
s , 0* 

Tr
s , and 0* 

bs . 

Definition 2. (Production efficiency, PE). The production efficiency of kDMU , *P

k , 

is defined based on model (3) as 
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                        (11) 

kDMU is deemed to be production-efficient if and only if 1* P

k  and the 

slacks satisfy 0* 

Pi
s , 0* 

ds , and 0* 

Prs . 

Definition 3. (Pollutant treatment efficiency, PTE). The pollutant treatment efficiency 
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of kDMU , *T

k , is defined based on model (3) as 
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kDMU is deemed to be pollutant treatment-efficient if and only if 1* T

k  and 

the slacks satisfy 0*' 

ds , 0* 

Ti
s , 0* 

Tr
s , and 0* 

bs . 

In the proposed model, preferences or the relative importance between the inputs 

and undesirable outputs are taken into consideration in both processes. When the 

preference is removed (i.e., these two kinds of variables are treated in the same 

manner), the objective function becomes the objective of the traditional Network 

SBM, and can be formulated as: 
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The corresponding efficiency measures in the production process and pollutant 

treatment process are defined as  
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We have the following theorem: 

Theorem 1. '** N

k

N

k   , *'* P

k

P

k   , *'* T

k

T

k    

See the proof in Appendix A. 
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It is obvious that the proposed overall efficiency measure explains all 

inefficiencies including undesirable outputs in both the production process and 

pollutant treatment process. The theorem reflects that if the preferences between 

inputs and undesirable outputs in each process are ignored, then the overall efficiency, 

production efficiency, and pollutant treatment efficiency would be overestimated. 

Thus, in this paper, we adopt the efficiency measures (11) and (12) which consider the 

preferences between inputs and undesirable outputs to evaluate the production 

efficiency and pollutant treatment efficiency, respectively.  

3. Empirical results 

3.1. Environmental efficiency analysis of regional industrial systems in China  

From the perspective of China’s development and political factors, its 31 regions 

including autonomous regions and municipalities are divided into three major areas: 

eastern area, central area, and western area (Daniel, 1990). Since the environmental 

statistics of Tibet are incomplete, it is excluded and only the other 30 regions are 

evaluated.  

According to the internal structure of Chinese regional industrial system 

discussed in Section 2, the characteristics of the dataset are summarized in Table 1. 

The selection of inputs and outputs of the production process in this paper follows 

previous studies on the environmental performance of Chinese industrial systems 

which deem each DMU as a “black box” (e.g., Bian and Yang, 2010; Bi et al. 2015; 

Zhang and Choi, 2013). Thus, in the production process, we select the total amount of 

employees, fixed assets, and electricity used by industry as the inputs. Intuitively, 

gross domestic product (GDP) can reflect the production stage, so we select GDP of 

the secondary industry as the desirable output of the industry. COD, SO2, and solid 

waste are harmful to human health, so we select generated COD, SO2, and solid waste 

as the undesirable outputs. Also, the generated COD, SO2, and solid waste are 

disposed of in the pollutant treatment process by using pollutant treatment facilities. 

Thus, in the pollutant treatment process, we select these generated pollutants as 

re-input indicators and pollutant treatment investment in these facilities as an 

exogenous input. The value of comprehensive utilization of the three wastes (VCU) is 
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chosen as an desirable output, and the emitted COD, SO2, and solid waste are chosen 

as undesirable outputs. The data set in Table 1 was obtained from the China Statistical 

Yearbook 2011 published by the Chinese National Bureau of Statistics in 2011. 

Table 1 shows that the data varies greatly from area to area. For example, the 

amount of COD emission ranges from 2.817 to 138.287, and the standard deviation is 

36.129. Thus, the effect of scale on the environmental efficiency score should be 

considered. The VRS assumption should be imposed on the model. 

<Insert Table 1 here> 

The empirical result of the modified NSBM model (5) is computed by program 

code in the Matlab language. However, when solving model (5), we have to 

appropriately set not only the parameters 1  and 1  in the production process, but 

also the parameters 2  and 2  in the pollutant treatment process. China has a goal 

to build a resource-saving and eco-friendly society. To achieve this goal, China 

implemented national policies concerning resource conservation and environmental 

protection, and these policies have played a vital role in changing the mode of 

development, protecting the environment, and regulating scientific progress. The 

Chinese government persists in laying equal emphasis on resource conservation and 

emission reduction, so based on the current conditions in China, resource saving and 

emission reduction are equally important, and we set 5.011   and 5.022   . 

The results of model (5) are listed in Table 2.  

<Insert Table 2 here> 

Table 2 reports the results of the regional industrial systems’ overall efficiency 

scores, production efficiency scores, pollutant treatment efficiency scores, and their 

ranks. Ten regions, namely Beijing (P1), Tianjin (P2), Shanghai (P5), Zhejiang (P7), 

Hainan (P10), Jilin (P14), Heilongjiang (P15), Jiangxi (P17), Inner Mongolia (P13), 

and Guizhou (P23), are overall efficient, production-efficient, and pollutant 

treatment-efficient, which means they rank first. It can be seen that any regional 

industrial system is efficient if and only if it is efficient in both processes. However, 

for each regional industrial system, an efficient production process does not guarantee 
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an efficient pollutant treatment process, and vice versa. For example, Guangdong (P9) 

is efficient in the production process but not efficient in the pollutant treatment 

process.  

Among the efficient regional industrial systems, five regions belong to the 

eastern area, four regions belong to the central area, and only one region belongs to 

the western area. This data indicates that the industry has achieved significant 

development in each of the three areas. To compare the differences between the three 

areas, consider the following. The average overall efficiency score of the eastern area 

at 0.781 is higher than the average overall score of the central and western areas at 

0.748 and 0.58, respectively. The average production efficiency score of the eastern 

area at 0.914 is higher than the average production efficiency score of the central and 

western areas at 0.889 and 0.756, respectively. The average pollutant treatment 

efficiency score of the eastern area at 0.724 is higher than the average pollutant 

treatment efficiency score of the central and western areas at 0.691 and 0.570, 

respectively. Summarizing these differences, the regional industrial systems in the 

eastern area are more efficient than those in the central and western areas.  

It is worth noting that inefficiency in two sub-processes reveals some of the 

hidden inefficiencies of the whole system. Kao and Huang (2008) identified the main 

causes of inefficiency of the whole two-stage system by identifying the sub-process 

with lower efficiency. We follow their method to identify the sub-process that mainly 

contributes to the overall inefficiency. Directions for improving the overall efficiency 

of each regional industrial system in the entire two-stage network process can also be 

identified. An efficiency YX -  scatter diagram utilizing efficiencies of both 

processes is shown in Fig.2.  

<Insert Fig.2 here> 

In Fig.2, the horizontal and vertical axes of the efficiency diagram represent the 

production process efficiency and pollutant treatment process efficiency, respectively, 

and each regional industrial system is shown in the matrix. From this figure, we can 

see that the distribution of each regional industrial system is flat on the coordinate 
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plane. A ray is drawn along the 45  angle of coordinate axis to divide the entire 

coordinate plane into two parts. According to the location of the regional industrial 

system in the two parts, policy and strategic implications for improving overall 

performance can be proposed. 

Sixteen regions – Hebei (P3), Liaoning (P4), Jiangsu (P6), Fujian (P8), 

Guangdong (P9), Shandong (P11), Anhui (P16), Henan (P18), Hubei (P19), Hunan 

(P20), Guangxi (P21), Sichuan (P22), Shaanxi (P25), Ningxia (P28) and Xinjiang 

(P29), and Chongqing (P30) – have higher production efficiency scores but lower 

pollutant treatment efficiency scores, as they are below the ray. This indicates that the 

low overall efficiencies of these regional industrial systems are mainly due to their 

low efficiency scores of the pollutant treatment process. Thus, these sixteen regions 

should pay more attention to the pollutant treatment process when pursuing economic 

increase. This is especially important for five regions –Sichuan (P22), Shaanxi (P25), 

Ningxia (P28), Xinjiang (P29), and Chongqing (P30) – since they are located in the 

western area where the ecological environment is very weak, making pollutant 

treatment there more important as industry develops. The regions located above the 

ray have higher pollutant treatment efficiencies but lower production efficiencies, 

including Shanxi (P12), Yunnan (P24), Gansu (P26) and Qinghai (P27). This 

indicates that the low overall efficiencies of these regional industrial systems are 

mainly due to their low efficiency scores of the production process, and thus these 

regions should pay more attention to that process. All of these regions, both above and 

below the ray, will be overall efficient if they reduce inputs and pollutants, and 

increase the desirable outputs, following the guidance of formula (6). 

<Insert Table 3 here> 

To investigate the impact of pollution on a region or country’s overall efficiency, 

some previous literature on environmental efficiency used carbon intensity to monitor 

the region or country’s environmental performance in CO2 emission(Lozano and 

Gutierrez, 2008; Bian and Yang, 2010). We follow this previous method by defining 

the following indicators in the production process and pollutant treatment process: 
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electricity intensity (EI) as electricity-consumption per GDP, COD-generation 

intensity (CGI) as COD-generation per GDP, SO2-generation intensity (SGI) as 

SO2-generation/GDP ratio, solid waste-generation intensity (SWGI) as solid 

waste-generation per GDP, COD-discharge intensity (CDI) as COD-discharge per 

VCU, SO2-discharge intensity (SDI) as SO2-discharge per VCU, and solid 

waste-discharge intensity (SWDI) as solid waste-discharge per VCU. 

To investigate the impact of these pollutants on the overall efficiency, we 

calculate the correlations between overall efficiencies and all intensity variables. The 

results of using Spearman’s correlation test are reported in Table 3. It can be observed 

that SGI, SWGI, CDI, and SDI have higher negative correlation with the overall 

efficiency (Spearman’s correlation coefficients are -0.367, -0.481, -0.643, -0.403), 

while the EI, CGI, SWDI have lower negative correlation with the overall efficiency 

(Spearman’s correlation coefficients are -0.229, -0.312, -0.330).These figures indicate 

that SGI, SWGI, CDI, and SDI have greater impacts on the overall efficiency than EI, 

CGI, and SWDI have. Therefore, to improve the overall efficiency, the government 

should pay more attention to controlling the generation of SO2 and solid waste in the 

production process, and the discharge of COD and SO2 in the pollutant treatment 

process. 

<Insert Table 4 here> 

Sensitivity analysis should be performed for different combinations of 

parameters on inputs and desirable outputs since the preference between inputs and 

undesirable outputs may be different in reality. For example, different countries may 

have different energy and environmental policies, or the same country in different 

time periods may have different policies for resource saving and pollutant treatment. 

These above results are computed with parameters 5.011   and 5.022   , 

that is, assuming each region lays equal emphasis on reducing the inputs and 

undesirable outputs. 

We should further perform sensitivity analysis for the overall system’s efficiency 

with different value combinations of parameters  11, and  22 , . Table 4 lists the 
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overall efficiency scores of the regional industrial systems and the corresponding 

ranks based on different value combinations of parameters  11,  and  22 , . We 

see that for eachefficient regional industrial system, the efficient status of the system 

is insensitive to the parameters 1  and 1 . Efficient regional industrial systems 

always rank first and their efficiency is robust to parameter changes. As for the 

inefficient regional industrial systems, their rankings also stayed relatively stable as 

parameters varied. The regional industrial system with the largest ranking difference 

is Gansu (P26), which has a large ranking difference of 3 when the parameters change. 

The regional industrial system with the second ranking difference is Guangdong (P9), 

which has a large ranking difference of 2 when the parameters change. Other regional 

industrial system’ rankings are almost same when the parameters change. Therefore, 

the rankings of regional industrial systems are not sensitive to the parameters. Also, it 

can be found from Table 4 that the overall efficiency scores of the regional industrial 

systems generally increase when 1  and 2  increase. Because the parameters 

satisfy 111    and 122   , the overall efficiency scores of the regional 

industrial systems generally increase when 1  and 2  decrease. 

3.2. Window analysis 

Since China promotes a strategy of sustainable development, the government has 

increased spending on environmental protection year by year, and has achieved 

significant results (Liu, 2008). To examine whether Chinese industry performs well 

after years of continuous effort, and whether specific environmental policies affect 

performance of Chinese industry, we apply window analysis (Charnes and Cooper, 

1984; Cooper et al., 2011) to 30 Chinese regional industrial systems to identify 

changes in the overall efficiency scores. 

In this study, we analyze 30 Chinese regional industrial systems and a time 

period of 7 years (2004-2010) of efficiencies, so 30n  and 7T . It is known that 

a window with three or four time periods tends to yield the best balance of stability 

and information about the efficiency measure (Charnes, 1994). Following Zhang et al. 
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(2011) and Wang et al. (2013), we chose a narrow window with a width of three 

 3w  to get credible environmental efficiency results. Thus, each regional 

industrial system is represented as a different DMU for each of the three following 

analyses. The first three years, 2004-2006, are the first window. Then the window 

moves on a one-year period by dropping the original year and adding a new year. This 

procedure continues until the last window (containing the last three years 2008-2010) 

is constructed. Doing this, we obtain five windows, and each window analysis 

consists of 90  90330 wn  scores.  

<Insert Table 5 here> 

The window analysis is applied based on model (5), and Hunan (P20) is taken as 

an example in Table 5, in which the calculation of the overall efficiency is shown. 

From the column data of Table 5, we can test the stability of the efficiency scores for 

each region across the different datasets. We find that the efficiency scores of all 

regions do not change significantly from the column view. This indicates that the 

results are stable across different datasets that occur with the moving of the window. 

Also, the row data enables us to examine the trends across the same dataset. 

According to the last row of Table 5, we find that the overall efficiency of Hunan (P20) 

had a slight decline from 2004 to 2005whereas the efficiency increased from 2005 to 

2010. We omitted the calculations for other 29 regions as the calculation procedures 

are similar. The results of the window analysis in the form of the overall efficiency of 

30 regional industrial systems are shown in Tables 6. This tables shows the overall 

efficiency results of 30 such systems in China, grouped into three different areas and 

the whole country, in the study period from 2004 to 2010. 

<Insert Table 6 here> 

To examine whether specific environmental policies or regulations of the 

Chinese government affect the overall efficiency, we explore the changes in the 

overall efficiency scores before and after a certain policy or regulation is launched. It 

can be found in Table 6 that the overall efficiencies of eastern, central, and western 

areas as well as the whole country in 2007 are all higher than those in 2005. China’s 



20 
 

Renewable Energy Law and Law on Promoting the Circular Economy were issued in 

2005, both becoming effective in 2006, which may account for the increase of the 

overall efficiency in the three areas and the whole country in 2007. Additionally, the 

overall efficiencies of three areas and the whole country in 2008 are all higher than 

those in 2006. The National Development and Reform Commission (NDRC) released 

“Medium and Long Term Plan for Renewable Energy Development” in 2007, with the 

intention of reaching an ambitious target of renewable energy accounting for about 10% 

of the total energy consumption by 2010 and about 15% by 2020.This policy of 

intending to increase use of clean energy may explain the rise of the overall 

efficiencies of the three areas and the whole country in 2008. Furthermore, the overall 

efficiencies of the three areas and the whole country in 2010 are all higher than those 

in 2008. In 2009, the state council passed a plan entitled “Environmental Impact 

Assessment Ordinance,” which focuses on using the evaluation management method 

to prevent environmental pollution. This may be the reason the overall efficiencies of 

the three areas and the whole country increased in 2010.Thus, effective policies or 

regulations of resource and environment have positive effects on the improvement of 

overall efficiency.  

It can be observed in Table 6 that the overall efficiency scores of the eastern area, 

central area, western area, and whole country increased during the study period 2004 

to 2010 with the average overall efficiency score improving by 30.73%, 31.48%, 

14.25%, and 28.72%, respectively. This finding that the overall efficiency was 

trending up from 2004 to 2010 indicates that the substantial efforts spent on 

protecting the environment have yielded benefits nationwide.  

4. Discussion 

Our results provide environmental efficiency analysis of regional industrial systems in 

China by proposing a new Network SBM model which considers China’s policies on 

resource utilization and environmental protection. As shown in Table 2, only 10 

regional industrial systems were overall efficient, and most regional industrial 

systems were still at a low level of environmental efficiency in 2010. Thus, there is 

considerable room for improvement in Chinese industry. Because local governments 
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pursue GDP growth, they ignore environmental degradation and poor resource 

utilization. Such a governance framework has encouraged low eco-efficiency 

activities and neglected proper disposal of pollutants, thus causing crises in both 

resource shortage and environmental risks. Our results, particularly the analysis using 

formula (6), could provide advice for local governments to improve environmental 

efficiencies in their sphere of influence. 

The average overall efficiency scores, average production efficiency scores, and 

average pollutant treatment scores of the eastern area are all higher than those of the 

central and western areas. In China, the eastern region is the center of the economy 

and politics. Many relatively developed regions are located in the eastern area, which 

usually has more modern industries, advanced technology, higher management levels, 

and high-quality human resources. These advantages undoubtedly aid in using 

resources more efficiently and discharging fewer pollutants (Zhang et al., 2008). 

Furthermore, it is well known that the eastern region has a high level of regulation for 

industrial pollution and other environmental problems, regulated by not only the 

Chinese national government but also the local governments. As a result of 

technological advancement and governmental regulation, the eastern area has high 

overall efficiency scores, production efficiency scores, and pollutant treatment scores. 

Note that in Table 2 and Fig. 2, the overall inefficiency of Shanxi (P12), Yunnan 

(P24), Gansu (P26), and Qinghai (P27) ismainly due to the inefficiency of the 

production process. The pillar industries of Shanxi (P12) are coal, coking, metallurgy 

and electric power production. These industries consume many resources and produce 

severe pollutants. Yunnan (P24), Gansu (P26), and Qinghai (P27) are all located in 

the western area that is the least developed area in China, with a relatively lagging 

industrial sector. Therefore, these regions have low production efficiency. 

In general, the overall efficiency was trending up during the period 2004 to 2010, 

indicating that both national economic development and pollution control have made 

significant progress during the study period. Thus, the substantial efforts spent on 

protecting the environment have yielded benefits.  

The empirical results can serve as a practical tool for policy-makers to make 
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policies on resource saving and environmental protection in Chinese regional industry. 

The main policy implications of the research can be summarized as follows: 

First, the central government should encourage inter-regional technological 

cooperation. Thus, the undeveloped central and western regions should cooperate with 

the eastern region to learn and improve their technology. Encouraging the industrial 

transformation is also necessary, for example, making more effort in designing 

sustainable production, and launching the evaluation of sustainable design 

performance.  

Second, the sixteen regional industrial systems whose overall inefficiency is 

mainly due to the inefficiency of the pollutant treatment process should pay more 

attention to pollutant treatment when pursuing economic increase. More efforts 

should be exerted to encourage the industrial enterprises to use the pollutant treatment 

facilities. For example, the government should punish the industry enterprises that 

abnormally use the pollutant treatment facilities (especially the pollutant treatment 

facilities for abating SO2 and COD). These industrial enterprises must be fined and 

given warnings to use the pollutant treatment facilities consistently. The industrial 

enterprises should be ordered to pay attention to the inspection and maintenance of 

the pollutant treatment facilities. The four regional industrial systems whose overall 

inefficiency is mainly due to the inefficiency of the production process should pay 

more attention to improving production efficiency. It is advisable for the government 

to encourage the industrial enterprises to invest in developing improved technologies 

to improve resource and energy utilization efficiency. Since it is beneficial to use the 

financing instruments such as banking loans to achieve this goal, the government 

should encourage banks to provide low-interest and special loans for pollutant 

abatement to enterprises to support updating production technology and implementing 

clean production.  

Third, the government should carry out training activities about environmental 

laws, regulations, and policy to industrial enterprises to make them realize the 

significant effect of the environmental protection on the enterprise's own development. 

Strengthening the environmental consciousness of industrial enterprises can 
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encourage them to carry out effective measures of environmental protection 

consciously and actively. For example, the government should train the accountants 

of industrial enterprises to have a comprehensive knowledge of the costs and benefits 

of environmental practices, sustainable development, and so on. It is also necessary 

for the government to supervise the environmental assessment and promote the 

disclosure of environmental accounting information for each enterprise.  

Fourth, the government should continue to refine policies related to 

environmental protection and apply them to industry. On the one hand, the 

government should speed up developing norms and standards for pollutant discharge 

calculation and control, cleaner production auditing, environmental engineering 

construction management, and so on. On the other hand, the government should 

promptly formulate supporting regulations to ensure effective enforcement of laws. 

For example, to change any situation where the cost of illegal action is low and the 

cost of compliance is high, the government should enforce regulations requiring fines 

that increase significantly for each day of infraction, with no upper limit. For example, 

the fine could rise by 20% for each day of illegal pollution by the enterprise, including 

starting at the previous penalty level the next time the pollution occurs. 

5. Conclusions 

In this paper, we propose a new Network SBM (NSBM) model to assess the 

environmental efficiencies of Chinese regional industrial systems under a serial 

network structure. Compared to the previous literature on environmental performance, 

the model considers the inner structure of the regional industrial systems in China and 

is based on a non-radial approach. Moreover, the model includes user-specific weights 

for inputs and undesirable outputs to reflect China’s resource and environmental 

policies. The NSBM model proposed in the paper obtains the overall efficiency as 

well as production efficiency and pollutant treatment efficiency by maximizing the 

slacks of all the inputs, undesirable intermediates, and outputs in both the production 

process and the pollutant treatment process. 

The empirical study indicates the following results. First, most Chinese regional 

industrial systems are not overall efficient, production-efficient, and pollutant 
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treatment-efficient. Second, the average overall efficiency scores, average production 

efficiency scores, and average pollutant treatment scores of the eastern area are all 

larger than those of the central and western areas. Third, sixteen regional industrial 

systems’ overall inefficiency is mainly due to the inefficiency of their pollutant 

treatment processes, while four regional industrial systems’ overall inefficiency is 

mainly due to the inefficiency of their production processes. Fourth, the regression 

results indicate that SO2-generation intensity (SGI), solid waste-generation intensity 

(SWGI), COD-discharge intensity (CDI), and SO2-discharge intensity (SDI) have 

significant impacts on the overall efficiency. Fifth, the substantial efforts China has 

made to protect the environment have yielded benefits as the overall efficiency 

trended up during the period 2004 to 2010.Based on the empirical results, some 

practical suggestions are provided for policy-makers to regulate environmental 

protection in the industrial sector. 

Finally, it should be noted that the results of the empirical study presented are 

dependent on the regions included, the choice of variables, and the data set used. 

Given data availability, this study could be expanded by using data from a longer or 

more recent time period. Unfortunately, the required data on pollution from Chinese 

regional industrial systems has not been made public since 2010. Further research 

may be done with more current data and longer time periods by using these methods 

with time series data. 
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Fig.1. Flowchart of production and pollutant treatment efficiency framework 

 

 

Fig.2. Plot of production efficiencies and pollutant treatment efficiencies 

Tables 

Table 1 Dataset and descriptive statistics 

  Variables Units Max Min Mean Std.dev. 

P
ro

d
u
ct

io
n

 

p
ro

ce
ss

 

Inputs 

Employees 10000 persons 2141.91 53.57 734.31 636.56 

Fixed assets 1 billion Yuan 12372.82 177.74 3810.85 2940.52 

Electricity (100 million kW 4060.13 159.02 1399.28 1012.94 

Pollutant 

Treatment 

Process 

Inputs 

jiP
x

, Pp sr ,...,1
 

Intermediate link 

djz
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Dd ,...,1
 

Outputs 

jrP
y

, Pp sr ,...,1
 

Production 

 

Process Undesirable outputs 

bju
, 

Bb ,...,1  
Inputs 

jiT
x

, TT mi ,...,1
 

Desirable outputs 

jrT
y

, TT sr ,...,1
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consumption • h) 

Intermed

iates 

COD 

generation 
10000 tons 

261.26 4.24 61.67 59.22 

SO2 

generation 
10000 tons 

453.54 11.60 172.28 106.49 

Solid waste 

generation 
10000 tons 

31688.00 212.00 8031.00 6635.78 

Desirabl

e outputs 

GDP of the 

secondary 

industry  

1 billion Yuan 

21462.72 385.21 6442.60 5475.79 

P
o
ll

u
ta

n
t 

tr
ea

tm
en

t 
p
ro

ce
ss

 

Exogeno

us input 

Pollutant-trea

tment 

investment 

1 billion Yuan 

456759.30 4353.5

0 

132325.

61 

105065.

66 

Desirabl

e outputs 
VCU  10000 Yuan 

2863867.0

0 

31623.

00 

592826.

53 

650121.

43 

Undesira

ble 

outputs 

COD 

emission 
10000 tons 

49.27 0.49 14.49 10.88 

SO2 emission 10000 tons 138.29 2.82 62.14 36.13 

Solid waste 

emission 
10000 tons 

12011.45 0.00 1925.20 2644.79 

 

Table 2 Results of efficiency measure for 30 regional industrial systems in China 

Code Region 

*N

k  
*P

k  
*T

k  

Score Rank Score Rank Score Rank 

Eastern area       

P1 Beijing 1.0000  1  1.0000  1  1.0000  1  

P2 Tianjin 1.0000  1  1.0000  1  1.0000  1  

P3 Hebei 0.5505  19  0.5677  26  0.5329  20  

P4 Liaoning 0.3969  29  0.8000  25  0.2504  28  

P5 Shanghai 1.0000  1  1.0000  1  1.0000  1  

P6 Jiangsu 0.8967  11  0.8990  18  0.8945  11  

P7 Zhejiang 1.0000  1  1.0000  1  1.0000  1  
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P8 Fujian 0.4805  26  0.8767  19  0.3221  26  

P9 Guangdong 0.5388  21  1.0000  1  0.3640  23  

P10 Hainan 1.0000  1  1.0000  1  1.0000  1  

P11 Shandong 0.7246  14  0.9115  15  0.6007  18  

Central area       

P12 Shanxi 0.5239  23  0.5087  27  0.5448  19  

P13 
Inner 

Mongolia 1.0000  1  1.0000  1  1.0000  1  

P14 Jilin 1.0000  1  1.0000  1  1.0000  1  

P15 Heilongjiang 1.0000  1  1.0000  1  1.0000  1  

P16 Anhui 0.6153  16  0.8039  24  0.4940  21  

P17 Jiangxi 1.0000  1  1.0000  1  1.0000  1  

P18 Henan 0.4366  27  0.8994  17  0.2837  27  

P19 Hubei 0.7503  13  0.8307  21  0.6755  16  

P20 Hunan 0.7860  12  0.9029  16  0.6898  15  

P21 Guangxi 0.3691  28  0.9477  14  0.2218  29  

Western area       

P22 Sichuan 0.4907  24  0.8041  23  0.3419  24  

P23 Guizhou 1.0000  1  1.0000  1  1.0000  1  

P24 Yunnan 0.5369  22  0.4377  29  0.7318  14  

P25 Shaanxi 0.4858  25  0.8182  22  0.3278  25  

P26 Gansu 0.5421  20  0.4323  30  0.7666  13  

P27 Qinghai 0.5660  18  0.4448  28  0.7929  12  

P28 Ningxia 0.2967  30  1.0000  1  0.1715  30  

P29 Xinjiang 0.5747  17  1.0000  1  0.3905  22  

P30 Chongqing 0.7228  15  0.8661  20  0.6119  17  

  

Averages: 

National 

Eastern 

Central 

Western 

 

 

0.709 

0.781 

0.748 

0.580 

  

 

0.858 

0.914 

0.889 

0.756 

  

 

0.667 

0.724 

0.691 

0.570 

 

 

Table 3 Results of Spearman’s correlation test 

  CGI SGI SWGI EI CDI SDI SWDI 

OE Coefficient -0.312 -0.367* -0.481** -0.229 -0.643** -0.403* -0.329 

 Sig. 0.093 0.046 0.007 0.223 0.000 0.027 0.0753 

*Correlation is significant at the 0.05 level (2-tailed). 

**Correlation is significant at the 0.01 level (2-tailed). 

 

Table 4 Sensitivity of the overall optimal efficiency to   and   
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Code Region 
3.0

21




 

4.0

21




 

5.0

21




 

6.0

21




 

7.0

21




 

Eastern area       

P1 Beijing 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P2 Tianjin 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P3 Hebei 0.538(19)  0.544(19)  0.551(19)  0.556(19)  0.561(20)  

P4 Liaoning 0.391(28)  0.394(28)  0.397(29)  0.400(28)  0.403(28)  

P5 Shanghai 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P6 Jiangsu 0.903(11)  0.900(11)  0.897(11)  0.893(11)  0.890(11)  

P7 Zhejiang 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P8 Fujian 0.481(25)  0.481(25)  0.480(26) 0.480(26)  0.480(26)  

P9 Guangdong 0.537(20)  0.538(20)  0.539(21)  0.540(22) 0.540(22)  

P10 Hainan 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P11 Shandong 0.719(14)  0.722(14)  0.725(14)  0.727(15)  0.729(15)  

Central area       

P12 Shanxi 0.509(23)  0.516(23)  0.524(23)  0.531(23)  0.538(23)  

P13 Inner Mongolia 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P14 Jilin 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P15 Heilongjiang 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P16 Anhui 0.611(16)  0.613(16)  0.615(16)  0.617(16)  0.616(16)  

P17 Jiangxi 1.000(1)  1.000(1)  1.000(1)  1.000(1)  1.000(1)  

P18 Henan 0.432(27)  0.435(27)  0.437(27)  0.438(27)  0.439(27)  

P19 Hubei 0.736(13)  0.743(13)  0.750(13)  0.755(13)  0.759(13)  

P20 Hunan 0.771(12)  0.778(12)  0.786(12)  0.793(12)  0.796(12)  

Western area       

P21 Guangxi 0.362(29)  0.366(29)  0.369(28)  0.373(29)  0.376(29)  

P22 Sichuan 0.481(24)  0.486(24)  0.491(24)  0.494(24)  0.498(24)  

P23 Guizhou 1.000(1)  1.000(1)  1.000(1) 1.000(1)  1.000(1)  

P24 Yunnan 0.528(21)  0.532(22)  0.537(22)  0.541(21)  0.546(21)  

P25 Shaanxi 0.472(26)  0.479(26)  0.486(25)  0.493(25)  0.498(25)  

P26 Gansu 0.523(22)  0.532(21)  0.542(20)  0.552(20)  0.562(19)  

P27 Qinghai 0.565(17)  0.566(18)  0.566(18)  0.566(18)  0.567(18)  

P28 Ningxia 0.294(30)  0.296(30)  0.297(30)  0.298(30)  0.298(30)  

P29 Xinjiang 0.563(18)  0.569(17)  0.575(17)  0.580(17)  0.583(17)  

P30 Chongqing 0.705(15)  0.714(15)  0.723(15)  0.732(14)  0.738(14)  

 

Table 5 A three-year window analysis of the overall efficiency of Hunan (P20) 

Windows 2004 2005 2006 2007 2008 2009 2010 

Window 1 0.4086  0.4379  0.5427      

Window 2  0.3568  0.4528  0.5688     

Window 3   0.4432  0.5403  0.6521    

Window 4    0.5408  0.6555  0.7139   

Window 5     0.6256  0.7002  0.7581  
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Average 0.4086  0.3973  0.4796  0.5500  0.6444  0.7070  0.7581  

 

 

Table 6 Overall efficiency scores of 30 regional industrial systems in China 

   2004 2005 2006 2007 2008 2009 2010 Average 

Eastern area         

 

P1 Beijing 0.9047  1.0000  0.9585  0.8773  1.0000  0.9882  1.0000  0.9612  

P2 Tianjin 0.4852  0.5036  0.9251  0.7649  0.7716  1.0000  1.0000  0.7786  

P3 Hebei 0.3921  0.3915  0.4383  0.4982  0.7713  0.4970  0.5259  0.5020  

P4 Liaoning 0.4177  0.3286  0.3640  0.4572  0.4778  0.4989  0.3909  0.4193  

P5 Shanghai 0.8952  0.8221  0.7283  1.0000  0.9808  0.8624  1.0000  0.8984  

P6 Jiangsu 0.5863  0.7006  0.8158  0.8545  0.8921  0.9056  0.8907  0.8065  

P7 Zhejiang 0.7554  0.5422  0.8678  0.9624  0.9761  0.9433  1.0000  0.8639  

P8 Fujian 0.3847  0.3386  0.3732  0.3251  0.3784  0.6089  0.4647  0.4105  

P9 Guangdong 0.4889  0.5470  1.0000  0.8647  0.5411  0.7342  0.5324  0.6726  

P10 Hainan 0.4392  0.7344  0.4311  1.0000  0.6582  0.4324  1.0000  0.6708  

P11 Shandong 0.5035  0.5954  0.6065  0.7084  0.7149  0.7035  0.6750  0.6439  

  Average 0.5685  0.5913  0.6826  0.7557  0.7420  0.7431  0.7709  0.6934  

Central area         

 

P12 Shanxi 0.3927  0.4266  0.3805  0.4708  0.4967  0.4303  0.5063  0.4434  

P13 
Inner 

Mongolia 
0.3230  0.4065  0.1931  0.3522  0.3526  0.3712  1.0000  0.4284  

P14 Jilin 0.5603  0.4638  0.5912  0.5803  0.6952  0.6952  0.8643  0.6358  

P15 Heilongjiang 1.0000  0.6380  0.7201  0.6238  0.8300  0.5024  0.6870  0.7145  

P16 Anhui 0.4318  0.4604  0.4451  0.4992  0.5589  0.5333  0.6015  0.5043  

P17 Jiangxi 0.5151  0.5373  0.6044  0.6149  0.6429  0.8349  1.0000  0.6785  

P18 Henan 0.3464  0.3110  0.3415  0.3360  0.4231  0.4146  0.4259  0.3712  

P19 Hubei 0.7628  0.6394  0.6663  0.6761  0.6570  0.6717  0.7219  0.6850  

P20 Hunan 0.4086  0.3973  0.4796  0.5500  0.6444  0.7070  0.7581  0.5636  

P21 Guangxi 0.5222  0.3558  0.3956  0.4143  0.3621  0.3279  0.3548  0.3904  

  Average 0.5263  0.4636  0.4817  0.5118  0.5663  0.5489  0.6920  0.5415  

Western area         

 

P22 Sichuan 0.3296  0.4729  0.4447  0.4124  0.4422  0.5204  0.4751  0.4425  

P23 Guizhou 0.4741  1.0000  0.6228  0.7809  1.0000  0.4752  0.5054  0.6941  

P24 Yunnan 0.5364  0.7538  0.4813  0.5295  0.5524  0.4945  0.5208  0.5527  

P25 Shaanxi 0.1853  0.1580  0.2557  0.3150  0.2799  0.3886  0.4556  0.2912  

P26 Gansu 0.4209  0.4485  0.4364  0.5054  0.4993  1.0000  0.5157  0.5466  

P27 Qinghai 1.0000  0.3263  0.4188  0.8352  0.4731  0.4887  0.5342  0.5823  

P28 Ningxia 0.1895  0.1859  0.1874  0.1814  0.2208  0.2328  0.2794  0.2110  

P29 Xinjiang 0.4021  0.4062  0.3172  0.3596  0.3466  0.4169  0.5673  0.4023  

P30 Chongqing 0.4451  0.3410  0.4457  0.4733  0.5433  0.6664  0.6973  0.5160  

  Average 0.4426  0.4547  0.4011  0.4881  0.4842  0.5204  0.5056  0.4710  

 National Average 0.5166  0.5078  0.5312  0.5941  0.6061  0.6116  0.6650  0.5761  

 


