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Interaction-induced edge states in 
anisotropic non-Fermi liquids
I. V. Yurkevich   1,2

We devise an approach to calculation of scaling dimensions of generic operators describing scattering 
within multi-channel Luttinger liquid. The local impurity scattering in arbitrary configuration of 
conducting and insulating channels is investigated and the problem is reduced to a single algebraic 
matrix equation. The application to a semi-infinite array of chains described by Luttinger liquid models 
demonstrates that for a weak inter-chain hybridisation and intra-channel electron-electron attraction 
the edge wire is robust against disorder whereas bulk wires, on contrary, become insulating in some 
region of inter-chain interaction parameters. This result proves that the edge states may exist in 
disordered anisotropic strongly correlated systems without time-reversal symmetry breaking or spin-
orbit interaction and provide quantized low-temperature transport.

The recent advances in study of strongly correlated systems has led to wider search for exotic non-Fermi-liquid 
states in condensed matter systems. In particular, the quest for edge states protected against disorder has started. 
These states are protected by a symmetry forbidding perturbations that are potentially dangerous for the phase 
stability. The perturbations presenting a threat to the stability may also be forbidden by a conservation law. 
Another option is a renormalisation of the dangerous perturbations by the particle correlations such that the 
scattering processes become suppressed at low temperatures and leading to a ‘protected’ zero-temperature state. 
One of the promising models providing rich non-Fermi-liquid physics is an anisotropic system consisting of array 
of coupled one-dimensional wires. This model was used to for construction of integer1 and fractional quantum 
Hall states2. Sliding phases in classical XY models3, smectic metals4 and many other exotic states are all described 
by the sliding Luttinger liquid (sLL) model5. Infinite arrays of wires and few-channel liquids have been investi-
gated for decades. Their stability against disorder is another wide area of research. A single impurity embedded 
into a Luttinger liquid6, 7, and a continuous disorder in strongly correlated electron liquids8–10, are known to be 
essential for a single channel problem. The renormalisation group (RG) analysis shows that transport of repulsive 
electrons is completely blocked by a single impurity at zero temperature6, 7. The role of disorder (local impurity) 
embedded into a Luttinger liquid (LL) coupled to a quasi-one-dimensional quadratic bath was explored in refs 
11–13. Multi-channel strongly correlated systems with disorder have not been studied yet. The objective of this 
paper is to study a local impurity coupled to a multi-channel Luttinger liquid.

We will develop generic approach allowing treatment of various realisations of multi-channel Luttinger liq-
uids where channels are either labeled by quantum numbers or spatially arranged to form an array of wires. In 
particular, we investigate effect of a single impurity onto a finite array of weakly coupled Luttinger liquids (sliding 
Luttinger liquid). Our results also describe an array of wires with low density of impurities at moderate temper-
atures when thermal length is smaller than the mean distance between impurities and, therefore, each impu-
rity renormalises individually. We also assume that hybridisation, t⊥, between channels (wires) is small enough 
to ensure that the temperature, T⊥ ~ D(t⊥/D)α (where D is the bandwidth and the exponent α = (2 − Δ⊥)−1 is 
defined through the scaling dimension, Δ⊥, of the most dangerous hybridization term) is low enough and cannot 
be reached. Under these assumptions we may safely use model of interacting but not hybridised wires (channels) 
with disorder modelled by the individual impurities. And under these assumptions we will demonstrate that in 
some region of parameters (intra- and inter-wire interaction strengths) we must observe the edge states in 2D 
array of correlated wires without both magnetic field (preserved time-reversal symmetry) and spin-orbit scatter-
ing. The inter-wire interaction may enhance impurity scattering in the bulk wires (making them insulating) and 
suppress impurity scattering in the edge wires. This behaviour is similar to the one observed in quantum Hall 
systems or topological insulators.
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It is known that RG flow for a single channel problem depends on single parameter (so-called Luttinger 
parameter) K while excitations velocity does not play any role in the renormalisation6, 7. Our general construction 
generalises this result: N-channel LL is described by N velocities and a real symmetric N × N matrix which we call 
Luttinger K̂-matrix responsible for the impurity strength renormalisation. This matrix must be found from the 
algebraic matrix equation

=+ −
ˆ ˆ ˆ ˆK V K V , (1)

where the matrices +̂V  and −V̂  describe density-density and current-current (both intra- and inter-channel) inter-
actions between particles. It is this ‘Luttinger’ K̂-matrix that defines the scaling dimensions of all possible scatter-
ing terms in all possible phases. A phase is a particular set of N channels each of which is either continuous 
(conducting) or snipped (insulating) at the position of the impurity. To establish whether a phase is stable one has 
to check relevance of all thought perturbations. The most general perturbation corresponds to the process when 
ni particles are backscattered (tunneled) in conducting (insulating) i-th channel. The scaling dimension of the 
operator describing such a process is given by:

∆ = ∆ ∆ = +
− −ˆ ˆ ˆ ˆK Kn n n[ ] , , (2)T 1

c
1

c i i   

Here c i/  are the projectors onto conducting/insulating channels subspaces and nT = (n1, …, nN) is the 
integer-valued vector describing multiplicities of intra-channel scatterings. The complete and refined derivation 
of our main Eqs (1) and (2) can be found in the Appendixes B and E of the Supplementary Information (SI).

Our main result will be the application of this generic approach to a finite 2D array (strip) and the proof of 
the existence of the edge states robust against disorder on the background of insulating bulk. As it will be seen 
later, such a situation is realised for a weak intra-channel attraction between fermions or rather strong repulsion 
between bosons. The situation is similar to what is observed in quantum Hall systems or topological insulators. 
The main difference is that we describe situation when quantized edge currents require neither time reversal sym-
metry breaking nor spin-orbit interaction with non-trivial topology of single-particle spectrum. The concept of 
interaction-protected conducting phases can be also found in the paper14 where the authors essentially revisited 
analysis performed in earlier papers2, 5, and modernised it in application to the topological insulators (by mere 
exclusion of intra-channel single-particle backscattering forbidden by the time-reversal symmetry). All those 
papers considered either infinite arrays2, 5, or effectively arrays on a cylinder (periodic boundary conditions14) 
thus missing the opportunity of the boundary effects. To the best of our knowledge, the edge states in the sliding 
Luttinger liquid model were not predicted before.

The model
The Lagrangian describing a multichannel Luttinger liquid is built on two vector fields, θ = (θ1, …, θN) and 
φ = (φ1, …, φN), parameterising excitation densities, ρi = ∂xθi/2π, and currents, ji = ∂xφi/2π, in each channel i 
(1 ≤i ≤ N))1–5. The Lagrangian, 0,

θ φ
π

τΨ Ψ Ψ= = ∂ + ∂ ∂ = .
− −ˆ ˆ ˆ ˆG G V1

2
, 1

4
[ ] , ( , ) (3)t x x0

T
0

1
0

1
1

T T T

includes block-diagonal matrix = + −
ˆ ˆ ˆV V Vdiag[ , ] with each block describing density-density, +̂V , and 

current-current, −V̂ , interactions (see SI Appendix A); τ̂1 is the Pauli matrix.
Perturbing translation invariant system by a local impurity, one may find that the system is unstable in the 

sense that the scaling dimension of this perturbation is smaller than one (which is the physical dimension of a 
local term in 1 + 1 dimensional system). This means that a perturbation theory would be divergent and allegedly 
translation invariant configuration was a bad initial guess. In terms of transport, this fact suggests that some 
(all or few) of the channels (wires) become insulating and not ideally conducting as it is assumed in a transla-
tion invariant configuration. To test stability of such an inhomogeneous configuration where some channels are 
conducting while others are insulating, we have to introduce two subspaces of conducting, C, and insulating, I, 
channels. Since we have no á priori knowledge which configuration will be stable (and, therefore, may be called a 
phase) against all legitimate perturbations, we must devise a generic approach allowing treatment of all possible 
configurations.

The translation invariant channels, i ⊂ C, are described by continuous θi - and φi -fields. The insulating chan-
nels, i ⊂ I, are cut at the origin and, therefore, described by the fields obeying the boundary conditions imposing 
zero current15, θ π= −∂j x t x t( , ) ( , )/2i t i ):

θ θ φ φ
θ θ φ φ






− = + − = + ⊂
− = + = ∂ − = ∂ + ⊂ .

i C
i I

( 0) ( 0), ( 0) ( 0), ;
( 0) ( 0) 0, ( 0) ( 0), (4)

i i i i

i i x i x i

Instead of using this boundary conditions, we find it more convenient to do the following trick: adding to the 
translation invariant Lagrangian, 0, a quadratic form with an auxiliary diagonal kernel matrix 
ζ ζ ζ= ...ˆ diag( , , )N1 . This matrix will not affect the channel i if the corresponding parameter is set to zero ξi → 0, 
whereas it will suppress current (like an infinite barrier) if ξi → ∞. One can derive all necessary correlations for 
an arbitrary ξ̂ -matrix because the auxiliary Lagrangian is still quadratic,



www.nature.com/scientificreports/

3Scientific Reports | 7: 3550  | DOI:10.1038/s41598-017-03823-5

  θ θζ= −ξ
ˆ1

2
, (5)0

T

and remove it later from the final result using the limiting procedure

ζ → ⊂
∞ ⊂ .

.{ i
i

C
I

0 , ,
, (6)i

The correlations found from the auxiliary Lagrangian ξ  become true correlations of an inhomogeneous con-
figuration after this limit is performed. The trick allows dealing with all configurations on the same footing. In 
what follows, we will refer to this limiting procedure simply as ξ-limit (the name will become clear later when ζ 
will be rescaled and renamed to ξ).

Results
In the regime of a weak inter-wire hybridisation one can neglect impurity scattering resulting in particles hopping 
between the wires in the course of their scattering. Limiting ourselves to the simplest model of the nearest neigh-
bours inter-channel interaction, both density-density, +̂V , and current-current, −V̂ , interaction matrices become 
symmetric three-diagonal matrices. All such matrices commute with each other and, therefore, we can explicitly 
solve the Eq. (1) defining the Luttinger mutrix:

= .−

+

ˆ ˆ
ˆK V

V (7)

The most dangerous intra-wire process is the single-particle backscattering. When it happens in the i-th wire, 
the scaling dimension of such a process is given by (see Methods)

∫ π
κ κ α

α
∆ = = =

+
+

.
π

−

+
K K q qi q

q
2 d sin , 1 cos

1 cos (8)
i ii q q

0

2

Here K is the standard Luttinger parameter defined under the absence of inter-wire interactions: K < 1 describes 
single-wire fermions with repulsion and K > 1 corresponds to either attractive fermions or repulsive bosons16. The 
parameters α± are dimensionless strengths of interaction between the adjacent wires. They are proportional to the 
off-diagonal elements of ±̂V -interaction matrices in the Eq. (3). The explicit expressions for the inter-wire 
density-density, (α±), and current-current, (α−), interactions are not universal. Their dependence on bare values 
of interactions and the mean particle density differ for bosons and fermions and, therefore, we will not dwell on 
these details. The only important fact is that the positive definiteness of interactions implies that |α±| < 1 and α± 
is positive (negative) for repulsion (attraction) while the sign of α− can be arbitrary reflecting competition in the 
density-density and current-current sectors.

The backscattering in the bulk (i ≫ 1) and at the edge (i = 1) have different scaling dimensions, Δbulk

∫ ∫π
κ

π
κ∆ = ∆ = = = .

π π− −K
K

K
K

K q K q q, , where d , 2 d sin
(9)

q qbulk
bulk

edge
edge

bulk
1

0
edge

1

0

2

which are found from the general expression Eq. (8). As one can see from Eq. (9), in the regions of parameters

< <K K K , (10)dge ulke b

the impurity scattering in the bulk is RG-relevant and drives the system into the bulk insulator phase whereas 
backscattering at the edge is irrelevant and the edge wire is perfectly conducting. The system then is similar to a 
quantum Hall system or a topological insulator: the bulk is insulating (low-temperature transport is blocked by 
backscattering from individual impurities in each bulk wire) whereas edge wires are robust against backscattering 
generated by an impurity sitting at the edge.

Both critical values of the intra-wire Luttinger parameter, Kbulk and Kedge, separating conducting and insulat-
ing phases of the bulk (K > Kbulk or K < Kbulk), and the edge (K > Kbulk or K < Kbulk), are plotted in the Fig. 1. The 
Fig. 1(a) presents the critical values, Kbulk and Kedge, in the case of the absence of current-current interactions, 
α− = 0. The critical values are function of density-density interaction strength α+, they both are smaller than one 
and are decreasing functions of interaction. The density-density interaction of a wire with its surrounding gener-
ates intra-wire attraction between electrons (BCS-type effect). The effective attraction drives the system towards 
conductor making impurity scattering less relevant (similar conclusion has been reached in ref. 14). This picture 
corresponds to the suppression of the critical K-values. It is obvious that the effect of surrounding is more pro-
nounced in the bulk than at the edge leading to a weaker suppression of the edge critical value, Kbulk ≤ Kedge ≤ 1. 
Therefore, without current-current inter-wire interactions, both bulk and edge wires are either conducting for 
K > Kedge or driven towards insulating phases, K < Kbulk. The intermediate regime, K < Kbulk < K < Kedge, corre-
sponds to the conducting bulk and insulating edge. This regime is unappealing since it is nothing more that just a 
negligible reduction of the number of conducting bulk wires.

The situation is completely different when current-current interactions win over density-density inter-wire 
interactions, α− > α+. As one can see in the Fig. 1(b), strong inter-wire current-current interaction is equivalent 
to a suppression of the scaling dimensions or, in other words, increase of the critical values, Kbulk and Kedge. The 
fact that the surrounding now leads to the induced additional intra-wire repulsion can be understood from the 



www.nature.com/scientificreports/

4Scientific Reports | 7: 3550  | DOI:10.1038/s41598-017-03823-5

duality arguments based on the Eq. (7). It is seen that swapping density and currents, ↔+ −
ˆ ˆV V , leads to the 

replacement →
−ˆ ˆK K

1
. The current-current and density-density interactions play opposite roles and compete 

against each other. The effect of the surrounding onto the bulk and edge wires always favours edge states due to its 
relatively (with respect to the bulk) limited exposure to it. That is why the increase of the bulk and the edge critical 
values is more dramatic for the bulk one, Kedge < Kbulk, for strong enough inter-wire current-current interaction, 
α− > α+. Restricting ourselves to the region α− > α+, we can observe that on the top of the anticipated phases, 
when all wires are either conducting or insulating, we can reach the intermediate regime Kedge < K < Kbulk pre-
dicted earlier, Eq. (10). In this regime, a local impurity at the edge becomes RG-irrelevant while the same impurity 
placed in the bulk wires is relevant. Hence the bulk wires are driven into the insulating regime whereas edge wire 
tends to become ideally conducting. This situation arises when we have weak intra-channel attraction between 
fermions (or strong repulsion between bosons) since this intermediate state is possible for K > 1 (see Fig. 1).

In the Fig. 2, one can see values of the critical scaling dimensions for the weak intra-channel attraction, 
K = 1.05. The plot presents the critical values Kedge (blue surface) and Kbulk (orange surface) as the functions of 
density-density and current-current inter-wire interaction strengths, α+ and α+. The green surface is the K = 1 
plane. The region between the blue, Kbulk, and the orange, Kedge, surfaces corresponds to the region Eq. (10) of 
parameters α+ with conducting edge states and insulating bulk.

The only subtle point that needs attention is the necessity to test whether this intermediate state is a stable 
fixed point. The problem is that so far we have tested only the situation when the bulk is insulating (irrelevant of 
the edge state, the bulk cannot depend on a state of a single edge wire) while the edge state is translation invariant 
but perturbed by a weak back scatterer. It means that we have proved the stability of the conducting edge state 
against weak perturbation. But we know that there are so-called mixed states where both conducting and 

Figure 1.  The critical scaling dimensions, Kbulk (blue) and Kedge (orange) dependence on (a) density-density 
inter-wire interaction strength, α+ without current-current inter-channels interactions, α− = 0, and (b) current-
current inter-wire interaction α− for a given strength of inter-wire density-density interaction, α+ = 0.4.

Figure 2.  The critical scaling dimensions, Kbulk (blue) and Kedge (orange), as functions of inter-wire interaction 
parameters α+ and α−. The region below the blue and above the yellow surfaces corresponds to the phase with 
conducting edge states surrounded by insulating bulk wires. The green plane, K = 1, is for eye guidance only.
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insulating phases are equally available and the actual state depends on the scattering strength. Such states corre-
spond to the unstable RG fixed points. To classify the RG fixed point, one has to test the configuration where the 
edge wire is cut in two pieces that are inter-connected by a weak tunnel link (similar to the approach of refs 6 and 7).  
If the tunneling turns out to be a relevant perturbation, then and only then one may claim that the conducting 
phase of the edge state survives, the edge state is robust against any perturbation strength and the conducting edge 
is the true phase. Otherwise, the edge state would be in a mixed state (see ref. 17 for a detailed discussion). As it is 
shown in the Supplemental Information, the scaling dimension ∆edge

tun  of the corresponding tunneling operator 
can be extracted from the generic result on dualities in multi-channel luttinger liquids (Eq. (F.12) of the 
Supplemental Information): ∆ = ∆ .−

edge
tun

edge
1  This duality means that only one of the edge state phases (conducting 

or insulating) can be stable, i.e. only one of the scaling dimensions can be smaller than one. This is the situation of 
a single stable fixed point when the conducting edge state is robust against both weak and strong scattering. 
Therefore, in the range of parameters defined by the inequality Eq. (10) the edge state is’protected’ by inter-wire 
interactions at low-temperatures.

Methods
The auxiliary Lagrangian ξ  in the Eq. (5) involves the auxiliary Green function ξĜ  that can be calculated using 
T-matrix technique. The equation for retarded Green function in (ω,x)-representation is given by

ω ω ω ω ω′ = − ′ + − ′ξ ξ
ˆ ˆ ˆ ˆG x x G x x G x G x( ; , ) ( ; ) ( ; )T ( ) ( ; ), (11)

R
0
R

0
R R

0
R

where T̂-matrix depends on rescaled auxiliary matrix ξ π ω ζ=ˆ ˆi(2 / ) :

ω
π ξ

=










=
+

.ξ
ξ

ξ −
ˆ ˆ ˆ

ˆ ˆ
T

i
R R

K2
0

0 0
, 1

(12)
1

The local Green function ( ′ → ±x x, 0) is found from the algebraic Eq. (11). The ξ-limit (which is not univer-
sal and dependent on the phase under consideration) should then be taken to obtain the true correlations of the 
fields.

The most general term describing a process of simultaneous backscattering of few particles in the conducting 
channels and accompanying it transfer (tunneling) of particles across the cut in the insulating channels is written 
in the terms of the field Φ = θc + ϕi as

∑= = + . .Φv e, c c ,
(13)

i

n
n n n

n
pert

T
  

w he re  we  have  d e f i ne d  i nte ge r- v a lu e d  ve c tor  nT =  ( n 1,  n 2,  … ,  n N)  and  a  ne w  f i e l d 
ϕ φ φ= = + − = −x x[ ( 0) ( 0)]/2 describing the old φ-fields discontinuity around the scatterer (placed at the 
origin). There are two different processes that appear in the scattering term Eq. (13). First, it is backscattering in 
conducting channels where only θ-fields from conducting channels, θ θ≡c c , define this process. Second, it is the 
tunneling in the insulating channels governed by the fields discontinuity ϕ ϕ≡i i . The Eq. (13) represents the 
most general perturbation that can be applied to an arbitrary configuration if we neglect (as it was discussed in 
the introduction) scattering accompanied by a hopping between the wires. We would like to stress here that we 
restrict ourselves to these perturbations only to keep the calculations simple. If one needs and account of a specific 
scattering process, the only thing which has to be done is the relabeling of chiral channels to make sure that the 
important scattering event occurs inside the same non-chiral channel. Such a procedure will corrupt the matrices 

±̂V  but otherwise the whole approach will be intact.
All the necessary for our purpose correlations are contained in the reduced Green function:

θ θ θ ϕ

ϕ θ ϕ ϕ
=







⊗ ⊗

⊗ ⊗






ξi ,

(14)

c c
T

c i
T

i c
T

i i
T



that can be extracted from the local (x,x′ ± 0) limit of the Eq. (11). Performing ξ-limit (see SI Appendix E), the 
scaling dimensions, Δ[n], of the exponentials in Eq. (13) can be written as the quadratic forms,

L P P P P= ∆ = +
− − −ˆ ˆ ˆ ˆ ˆ ˆK Kn n n n ndim[ ] [ ] [ ] [ ] , (15)n c

T
c

1
c

1
c i

T
i i

1
i

where =n nc c  and =n ni i . The inversion of the projected matrices in Eq. (15) must be performed in their 
corresponding subspaces, conducting or insulating. Using properties of the projectors, the scaling dimensions can 
finally be written in the form presented earlier in the Introduction, Eq. (2).

To determine a scaling dimensions of a scattering operator, one has to solve the algebraic matrix Eq. (1) and 
plug the Luttinger K̂-matrix into Eq. (2). This is be easily done in two rather simple limits that have been treated 
earlier otherwise4, 5, 17. But now we are interested in a finite array of spatially ordered wires. It turns out that this 
model can be treated analytically. The importance of this model lies in the fact that we may analyse boundary of 
multi-wire Luttinger liquid (surface or edge states depending of spatial arrangements). Below we will show that a 
solution of the Eq. (1) can be obtained for a finite strip in the nearest neighbours interaction model. This allows 
application of the scheme devised in this paper and, therefore, analysis of the edge wire stability against impurity 
scattering.
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The nearest neighbours interaction model is described by a symmetric three-diagonal ±̂V  interaction 
matrices:

δ δ δ= + ′ + .± ± ± + −V v v [ ] (16)
ij

ij i j i j, 1 , 1

Here ′±v  describe inter-channel density-density and current-current interactions, while v± encode intra-channel 
properties. Without inter-channel interaction we would have two noninteracting channels (wires) described by 
the velocity = + −v v v  and the Luttinger parameter (describing intra-wire correlations of an isolated wire). Since 
all symmetric three-diagonal matrices are diagonalisable by the same orthogonal similarity transformation, the 
solution for the K̂-matrix, Eq. (7), cane be written explicitly (see SI Appendix) and in the large-N limit this solu-
tion becomes:

∫ π
κ κ

α
α

α= = =
+
+

=
′

.
π

−

+

−

+
±

±

±
K K q qi qj K v

v
q
q

v
v

2 d sin sin , , 1 cos
1 cos

, 2

(17)
ij q q

0

The intra-wire correlations are defined by the standard Luttinger parameter K, while the rest describes the 
effect of the inter-channel interactions. The parameters α± are dimensionless strengths of the density-density and 
current-current inter-channel interactions. The substitutions  = =1 , 0c i  (a single back-scattering impurity in 
an ideal conductor) and nT = (0, 0, …, 1i, … 0) (single-particle scattering in the i-th channel) into Eq. (2) leads to 
the scaling dimensions Eq. (8).

Summary
We have developed a universal approach to the calculation of scaling dimensions of generic scattering operators 
in multi-channel Luttinger liquids in arbitrary configuration, i.e when some of channels are ideal (conducting) 
and others are interrupted (insulating). The problem was reduced to a single matrix equation. The approach 
allowed to analyse a finite array of interacting Luttinger liquids and define the set of parameters where insulating 
bulk coexists with conducting edges. The situation is similar to the one observed in the quantum Hall systems or 
topological insulators. The model under consideration required neither magnetic field nor spin-orbit interaction 
to observe a quantised low-temperature edge transport.
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