1	THPP target assignment reveals EchA6 as an essential fatty acid shuttle in
2	mycobacteria
3	
4	Jonathan A. G. Cox ^{1#} , Katherine A. Abrahams ^{1#} , Carlos Alemparte ² , Sonja Ghidelli-
5	Disse ³ , Joaquín Rullas ² , Iñigo Angulo-Barturen ² , Albel Singh ¹ , Sudagar S. Gurcha ¹ ,
6	Vijayashankar Nataraj ¹ , Stephen Bethell ¹ , Modesto J. Remuiñán ² , Lourdes Encinas ² ,
7	Peter J. Jervis ¹ , Nicholas C. Cammack ² , Apoorva Bhatt ¹ , Ulrich Kruse ³ , Marcus
8	Bantscheff ³ , Klaus Fütterer ^{1*} , David Barros ² , Lluis Ballell ^{2*} , Gerard Drewes ³ ,
9	Gurdyal S. Besra ^{1*}
10	
11	
12	¹ Institute of Microbiology and Infection, School of Biosciences, University of
13	Birmingham, Edgbaston, Birmingham B15 2TT, UK, ² Diseases of the Developing
14	Word, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain,
15	³ Cellzome - a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
16	
17	[#] These authors contributed equally to this work.
18	
19	*E-mail for correspondence material requests: g.besra@bham.ac.uk (TEL: +00 44 121
20	415 8125; FAX +00 44 121 414 5925), Lluis.p.ballell@gsk.com (TEL:
21	+34676861497), k.futterer@bham.ac.uk (TEL: +00 44 121 414 5895)
22	
23	Key words: Tuberculosis, chemical proteomics, THPP, EchA6, drug discovery
24	
25	

27 Phenotypic screens for bactericidal compounds against drug-resistant 28 tuberculosis are beginning to yield novel inhibitors. However, reliable target 29 identification remains challenging. Here we show that tetrahydropyrazo[1,5-30 a pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a 31 stereospecific manner, instead of the previously assigned target M. tuberculosis 32 MmpL3. While homologous to mammalian enoyl-CoA hydratases, EchA6 is non-33 catalytic yet essential, and binds long-chain acyl-CoAs. THPP inhibitors compete 34 with CoA-binding, suppress mycolic acid synthesis and are bactericidal in a 35 mouse model of chronic tuberculosis infection. A point mutation, W133A, 36 abrogated THPP-binding and increased both the *in vitro* minimum inhibitory 37 concentration and the in vivo effective-dose 99 in mice. Surprisingly, EchA6 38 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial 39 two-hybrid assays, suggesting essentiality may be linked to feeding long-chain 40 fatty acids to FAS-II. Finally, our data show that spontaneous resistance-41 conferring mutations can potentially obscure the actual target or alternative 42 targets of small molecule inhibitors.

43 Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a global 44 disease with an estimated 8.7 million new cases and around 1.4 million deaths annually¹. TB drug-resistance first emerged 40 years ago, but since then has grown to 45 46 an alarming level requiring the development of new antibiotics. Although enzyme-47 screening campaigns have dominated antibiotic discovery for years, their lack of 48 success has prompted a change of strategy. In many instances, target identification of 49 phenotypic hits is initiated by generating spontaneous drug-resistant mutants, with the 50 expectation that resistance-conferring mutations will be revealed by whole genome sequencing (WGS)²⁻⁵. For instance, Bedaquiline was identified as an inhibitor of the 51 *M. tuberculosis* F_0F_1 ATP synthase through WGS of spontaneous resistant mutants⁶. 52 53 Using the same approach, MmpL3 was shown to be targeted by several inhibitors including SQ109, adamantyl ureas, BM212, THPPs, SPIROs and NITDs7-13. 54 55 However, spontaneous resistance can occur through mutations not only in the drug target but also in other proteins linked to interactions between the cell and 56 inhibitor^{14,15}. In this study, we were able to exploit stereoselectivity of ligand binding 57 58 in a quantitative affinity pull-down to identify the target of THPPs and reveal a novel 59 fatty acid shuttle in mycobacteria.

60

61 **Results**

62

63 Target identification

64

THPPs were prepared in a four-step synthetic route (**Fig. 1a**) and the desired enantiomer separated by chiral-HPLC. GSK366A and GSK951A¹², and two novel THPP analogues, GSK059A and GSK572A, were included as tool compounds for mode of action and structural studies. All compounds were endowed with selective anti-tubercular potency and were devoid of any significant cytotoxicity against HepG2 cell lines (**Fig. 1b**). Compound GSK951A was progressed to a dose response analysis in a murine model of chronic TB infection (**Fig. 1c**)¹². Thus, GSK951A combines potency in culture with *in vivo* activity and lack of cytotoxicity.

73

74 We applied a chemical proteomics strategy to identify the protein target(s) of the THPP lead compound directly in *M. bovis* BCG extracts. To this end, we synthesized 75 76 carboxylic acid analogues of the active (GSK729) and inactive (GSK730) THPP 77 enantiomers suitable for immobilization to Sepharose beads (Fig. 2). Each type of 78 bead was incubated with *M. bovis* BCG extracts under three different conditions: (i) in presence of vehicle, (ii) in presence of excess "free" active enantiomer analogue, 79 80 and (iii) in presence of excess "free" inactive enantiomer analogue. The relative 81 protein content captured by the beads from each sample was quantified by isobaric 82 tagging of tryptic peptides and tandem mass spectrometry analysis of the combined peptide pools in a 6-plex format¹⁶. Target proteins would be expected to bind 83 84 selectively to beads derivatized with the active enantiomer analogue, a preference we 85 probed by competition with free active vs free inactive enantiomers. Relative 86 quantification (Supplementary Table 1 and 2) demonstrated that only a single protein showed a pronounced preference in this competition assay. The putative 87 88 enoyl-CoA hydratase EchA6 showed robust inhibition (92%) by the active 89 enantiomer GSK729 to the binding of GSK729-derived beads, but only insignificant 90 inhibition (16%) by its inactive enantiomer GSK730 (Fig. 2a,b). MmpL3 was readily 91 detected within the whole proteome analysis of the *M. bovis* BCG extract, but it was not identified in pull-downs with the immobilized THPP analogues. This does not 92

93 necessarily rule it out as a target, since it could be due to either steric hindrance by the 94 linker on the compound, low affinity, or denaturation of the extracted MmpL3. 95 Supporting the specificity of the GSK729-beads, in similar experiments performed 96 with HepG2 cells, the beads did not capture the closest human EchA6 orthologue, 97 ECH1. To determine the affinity of GSK729 for EchA6 in M. bovis BCG extracts, we 98 optimized the concentration of immobilized ligands on the beads, enabling a dose-99 dependent binding of EchA6 to GSK729 in *M. bovis* BCG extracts with an IC₅₀ of 1.8 100 μM (Fig. 2c and Supplementary Table 2 and 3).

101

102 EchA6 is essential and GSK951A inhibits mycolic acid biosynthesis

103

To confirm essentiality we used a genetic tool termed CESTET^{17,18}. Initially, a 104 105 merodiploid strain in *M. bovis* BCG was generated that contained a second integrated copy of echA6 (Rv0905) under the control of the inducible tetracycline (ATc) 106 107 promoter and subsequently the genomic copy was disrupted. As shown in 108 Supplementary Figure 1a, the strain grew normally in liquid medium with ATc, but 109 eventually showed cell lysis when grown in medium lacking ATc (Supplementary 110 Fig. 1a, inset). To evaluate the effect of depletion of *echA6* on both mycolic acid and fatty acid synthesis in *M. bovis* BCG, mycolic acid methyl esters (MAMES) and fatty 111 112 acid methyl esters (FAMES) were prepared from cultures following labeling with ¹⁴C]-acetate. As shown in Supplementary Figure 1b, conditional depletion of 113 114 echA6 results in a reduction of α -MAMES and keto-MAMES, while the overall 115 abundance of FAMES remains largely unaffected, a classic hallmark of inhibitors targeting mycolic acid biosynthesis^{14,19}. 116

118 In light of these findings we decided to further investigate our previous studies on the effects of THPPs on mycolic acid synthesis¹². As shown in Figure 3a left panel, 119 GSK951A suppresses the synthesis of all classes of MAMES in *M. bovis* BCG, while 120 121 the overall abundance of FAMES remains largely unaffected. This result is similar to 122 the mode of action of the thiolactomycin (TLM) and INH, well-known inhibitors of mycolic acid biosynthesis^{14,19} (Fig. 3a, right panel), supporting our earlier echA6123 124 conditional depletion experiments (Supplementary Fig. 1b). Further resolution of the 125 FAMES by reverse-phase TLC indicated the accumulation of C26 FAMES (Fig. 3b). 126 suggesting that THPPs act downstream of fatty acid synthase-I (FAS-I), and similar to 127 the mode of action of INH (Fig. 3a,f). In addition, GSK951A significantly suppressed 128 the synthesis of cell wall bound MAMES (Fig. 3a, middle panel). In marked 129 contrast, using the inactive enantiomer, GSK540A, even at a minimum inhibitor concentration (MIC) of 20 × that of GSK951A, failed to inhibit total 130 MAMES/FAMES and cell wall bound MAMES (Supplementary Fig. 2). Whole-cell 131 132 target engagement of GSK951A was supported by increased resistance when echA6 133 was overexpressed in M. bovis BCG. M. tuberculosis echA6 (Rv0905) was cloned into the multi-copy plasmid pVV16, which resulted in overexpression of His-tagged 134 135 EchA6 as shown by Western Blot analysis (Fig. 3c). Upon labeling cultures with 136 ¹⁴C]-acetate, pVV16-echA6 containing strains revealed an elevated synthesis of 137 MAMES (Supplementary Fig. 1c left panel, and d) and a 6-fold increased-resistance 138 to GSK951A with solid or liquid media (MIC of 1.60 - 2.00 µM), in comparison to 139 the pVV16 vector control strain (MIC of 0.32 µM) (Supplementary Fig. 1e and Fig. 140 3d). Finally, the synthesis of cell wall bound MAMES in the pVV16-echA6 strain was 141 less refractory to the addition of GSK951A at 1 × MIC compared to the pVV16 vector control strain (Supplementary Fig. 1c, right panel). 142

144 The addition of GSK951A to cultures up to $4 \times$ the MIC resulted in no significant 145 difference in terms of extractable cell envelope lipids (Supplementary Fig. 3, Panels 146 A-C). The organic solvent extractable mycolates were markedly altered in the 147 presence of GSK951A, and overall resulted in an elevated level of TMM 148 (Supplementary Fig. 3, Panels D1 and D2). Indeed, confirmed MmpL3 inhibitors, 149 including SQ109 and BM212, have been reported to cause significant accumulation of TMM¹³. Nevertheless, when applied at concentrations of up to $4 \times$ their respective 150 151 MICs, SQ109 or BM212 had no effect on total MAMES, and only moderately 152 inhibited cell wall bound MAMES (Supplementary Fig. 2). In contrast, GSK951A 153 effectively suppressed both total and cell wall bound MAMES at concentrations well 154 below the 4 × MIC margin, emphasising the distinctive phenotypic response of 155 GSK951A. Interestingly, we have observed an increased sensitivity to GSK951A 156 when MmpL3 (Rv0206c) was overexpressed in *M. bovis* BCG using the multi-copy 157 plasmid pMV261-mmpL3, in comparison to the pMV261 vector control (Supplementary Fig. 1f). Increased sensitivity to GSK951A would be consistent 158 159 with MmpL3 moonlighting as a THPP importer, in addition to its function as a TMM 160 exporter. Taken together, these findings provide strong evidence for THPPs acting 161 upstream of fatty acid synthase-II (FAS-II) (Fig. 3f), without excluding the possibility 162 of a downstream activity via MmpL3. To further probe the possible interaction of 163 EchA6 with components of FAS-II, we conducted a protein-protein interaction screen 164 using the bacterial two-hybrid system-BACTH. Interestingly, we found preliminary 165 evidence for EchA6 interacting with two specific components of FAS-II (Fig. 3e,f). 166 These included the β -ketoacyl-ACP synthase KasA, and the enoyl-ACP reductase 167 InhA (**Fig. 3e**). No interactions were observed with other specific components of the 168 core multi-enzyme FAS-II complex²⁰.

169

170 Acyl-CoA and THPP ligand binding

171

172 Initial inspection of the sequence of EchA6 and related family members from M. tuberculosis indicated that the conserved carboxylate side chains²¹ were mutated in 173 EchA6, suggesting that EchA6, despite resembling an enoyl-CoA hydratase in overall 174 175 sequence, was inactive. Nevertheless, residues involved in binding CoA are partially 176 conserved in EchA6, leaving open the possibility that binding of acyl-CoAs was 177 preserved, possibly as a mechanism for providing long-chain acyl-CoAs for fatty acid 178 biosynthesis via FAS-II. Using intrinsic tryptophan fluorescence (ITF), we assayed 179 variable chain-length acyl-CoA binding, which indicated that EchA6 has a clear 180 preference for acyl-CoAs of chain-lengths 12 carbons or greater (Supplementary 181 Table 4 and Fig. 4a). Ligand binding assays using EchA6 and THPPs were conducted 182 to establish K_d values for a selection of compounds (Supplementary Table 4), 183 highlighting that GSK951A (Fig. 4b) and GSK572A bound with the highest affinity as reflected by K_d values of 0.45 μ M and 1.9 μ M, respectively. In contrast, 184 GSK573A, which is the inactive enantiomer of GSK572A, bound with a K_d of 285.8 185 µM, a 150-fold increase, underscoring the distinct stereospecificity of the interaction 186 187 between THPP compounds and EchA6 (Supplementary Table 4). Assessing C₂₀-188 CoA binding following pre-incubation of EchA6 with GSK951A, at concentrations of 189 0.25μ M, 2.5μ M, and 10μ M of the drug, resulted in a distinct weakening of the interaction with C₂₀-CoA, thus indicating competition for the same binding site (Fig. 190 4c). Similar experiments with C₄-CoA (Fig. 4d) indicated that competition between 191

192 acyl-CoA and GSK951A for the EchA6 binding site was not solely dependent on the acyl-chain. While C₄-CoA bound with less affinity than C₂₀-CoA, the K_d increased by 193 similar margins when competing with GSK951A (Supplementary Table 4). 194 195 However, the increase was monotonic for C₄-CoA, while raising GSK951A above 2.5 μ M did not result in a further increase of K_d for binding of C₂₀-CoA. Finally, 196 197 introducing the point mutation, W133A, which maps to the THPP binding site (see 198 Fig. 6), completely abolished THPP binding (Fig. 4b), whilst C₂₀-CoA binding was 199 weakened, but not abrogated (Supplementary Table 4).

200

201 In vivo target engagement of THPPs and EchA6

202

In an acute TB infection $model^{22}$, *M. tuberculosis* transformed with a multi-copy 203 plasmid-borne $echA6^{W133A}$ resulted in a significant shift in the *in vivo* effective dose 204 205 99 (ED₉₉) of GSK951A when compared to strains transformed with empty vector or vector containing *echA6*. (Fig. 1d). The *echA6*^{W133A} strain resulted in a significant 206 increase in the ED₉₉ of GSK951A, from 85 and 77 mg/kg for the empty vector and 207 *echA6* strains, to >250 mg/kg for the *echA6*^{W133A} strain (Fig. 1d, right panel). This 208 209 increase of ED₉₉ was well outside the calculated 95 % confidence interval (CI) for the 210 empty vector and echA6 strains (41-182 mg/kg). As a control, all strains possessed 211 similar ED₉₉ values for INH (Fig. 1d, left panel) and were within the calculated 95 % CI range (0.2-3 mg/kg). While the empty vector and *echA6* strains were able to grow 212 at the same rate when inoculated into C57BL/6 mice in the acute TB infection model, 213 the $echA6^{W133A}$ strain was relatively attenuated for growth (Fig. 1e), suggesting that 214 215 the viability of *M. tuberculosis in vivo* was compromised by the EchA6 point 216 mutation that weakened acyl-CoA binding. In addition, M. bovis BCG transformed with a multi-copy plasmid-borne $echA6^{W133A}$ and grown in broth, showed a further increased resistance to GSK951A, possessing a MIC of 3.20 μ M. This is in comparison to a *M. bovis* BCG strain transformed with plasmid-borne echA6possessing a MIC of 1.60 μ M. Complete abrogation of THPP binding by EchA6^{W133A} would suggest a more pronounced effect, however, the wild-type copy present in the overexpressing strain could account for the modest MIC and ED₉₉ increase.

223

224 X-ray crystallographic analysis of EchA6

225

X-ray crystallographic structures of EchA6 in the ligand-free form, bound to C₂₀-CoA
and several THPPs were determined by molecular replacement (Supplementary
Table 5). EchA6 (Fig. 5a) consistently crystallized as a trimer (Fig. 5b), structurally
resembling a flat disk with 3 extended substrate-binding grooves (Fig. 5c). The
binding sites of the CoA-moiety and the THPPs reside on the 'front' and 'back' faces
of the trimer, respectively (Fig. 5c).

232

The EchA6 monomer is structurally similar to the rat liver enoyl-CoA hydratase 233 (RnECH)²³ (Fig. 5a,b and Supplementary Fig. 4a). However, the C-terminal helices 234 235 $\alpha 10$ and $\alpha 11$ diverge from the orientation seen in RnECH (Supplementary Fig. 4a). 236 In RnECH, the backbone turns 180° after helix α 9 and helix α 10 runs anti-parallel to 237 α 9, whereas in EchA6, helices α 10 and α 11 project forward and fold back onto the 238 monomer (Fig. 5a). Despite the altered backbone conformation, helices $\alpha 10$ and $\alpha 11$ 239 still occupy analogous interfacial positions between the monomers in the context of 240 the trimer (Fig. 5b).

242 Enoyl-CoA hydratases belong to the crotonase superfamily of enzymes, which display 243 diverse structural scaffolds and catalyze a wide variety of reactions, involving CoAlinked substrates²⁴. Among structural neighbours identified by distance matrix 244 alignment (DALI)²⁵, EchA6 aligns most closely with crotonases mediating enoyl-245 246 CoA hydratase activity (e.g. RnECH, Supplementary Fig. 4a), in line with its 247 annotation in sequence databases. Yet, the catalytic residues are not conserved in 248 EchA6. The hydratase reaction converts the C2-C3 double bond of enoyl-CoA into a single bond and adds a hydroxyl to C3. Polarization is facilitated by positioning the 249 acyl-keto oxygen against the amide nitrogens of nearby glycine and alanine residues 250 251 (Gly141, Ala98 in RnECH), while two carboxylate side chains (Glu144, Glu164 in RnECH) coordinate the attacking water^{21,23} (Fig. 5d). Comparing the structures of 252 EchA6 and RnECH (30.8% sequence identity), the oxyanion hole backbone amides 253 254 are conserved (Ala100, Ala60), but the carboxylate side chains are substituted by glutamine (Gln103 for Glu144 of RnECH) and threonine (Thr123 for Glu164 of 255 256 RnECH), respectively (Fig. 5d). In contrast, the structural alignment of RnECH with M. tuberculosis EchA8 (PDB entry 3PZK, 50.2 % identity) demonstrates complete 257 258 conservation of key residues in the active site (Supplementary Fig. 4b). 259 Nevertheless, the C_{20} -CoA bound complex of EchA6 (Supplementary Fig. 4c) 260 demonstrates a conserved mode of CoA-binding, with the thioester superimposing 261 closely with the thioesters in the acetoacetyl-CoA bound complexes of RnECH (PDB entry 1EY3,²¹) and EchA8 (PDB entry 3Q0J). In addition, binding C₂₀-CoA to EchA6 262 263 induces a conformational change in the $\beta_{3-\alpha_{3}}$ loop (residues 61-68), transforming the 264 substrate-binding groove into a tunnel between the 'front' and the 'back' face of the 265 EchA6 trimer (green subunit in Fig. 5c).

267 In order to define the structural determinants of THPP inhibition, we solved structures 268 of EchA6 in complex with five different THPPs (Supplementary Table 5, Fig. 6a, 269 and Supplementary Fig. 4d-h), including the lead compound GSK951A (Fig. 1a). In 270 the trimeric molecule, all 3 subunits are occupied by the ligand. Superposition of ligand-bound and apo structures reveal only minor conformational adjustments of 271 272 side chains contacting the ligand. Situated on the 'back' face of the EchA6 trimer 273 (Fig. 5c), the inhibitor-binding site overlaps partially with the putative active site of 274 EchA6 (marked by the conserved oxyanion hole of Ala100 and Ala60), but mostly 275 occupies the extended hydrophobic groove, which accommodates the acyl-chain in 276 the C_{20} -CoA complex (Fig. 5c and Fig. 6b). The mode of binding is consistent 277 between all THPP-complexed structures (Supplementary Table 5 and 278 Supplementary Fig. 4d-h). A slightly different ligand conformation is observed for 279 GSK366A (Supplementary Fig. 4f), but the difference could be the result of 280 different crystal symmetries (Supplementary Table 5), due to packing-induced 281 structural changes of the protein. The complex with the bait compound, GSK729A, 282 matches the binding mode of the other complexes (Supplementary Fig. 4h). 283 Interactions with EchA6 are dominated by hydrophobic and van der Waals (vdW) 284 contacts. The pyrazolo-pyrimidine group is central to the interaction with the protein. 285 The trifluoromethyl-substituent forms hydrogen bonds with His79 (to N ϵ 2) and Gln103 (to O ϵ 1 and N ϵ 2), with an additional vdW contact to Ile76 (C δ 1) (Fig. 6c). 286 287 The ethylphenyl group forms hydrophobic contacts with Trp133, the β -carbon of 288 Asp83 and the δ -carbon of Gln107 (Fig. 6c). For GSK951A, the terminal benzodioxol 289 group stacks on top of Phe216, with additional vdW contacts with the α -carbon of 290 Lys213 and the β -carbon of Ala208.

294 Target identification by stereoselective quantitative pull-downs points to EchA6 as 295 the target of THPPs and is supported by a string of orthogonal evidence. This is in contrast to the recent target assignment of THPPs as MmpL3¹², exposing an inherent 296 297 weakness of target identification by WGS of THPP-resistant mutants. Resistance-298 conferring mutations against THPPs have not yet been observed in echA6, however, 299 our targeted mutagenesis studies have induced resistance, which strongly supports 300 THPPs acting through EchA6. The absence of SNPs in echA6 in spontaneous resistant 301 mutants is not unexpected, since INH-resistance is caused by mutations in *inhA* in only 2% of clinical isolates²⁶. 302

303

304 We demonstrate that THPPs potently suppress mycolic acid biosynthesis (Fig. 3 and 305 Supplementary Fig. 1). This phenotypic effect is distinct from other WGS-confirmed MmpL3 inhibitors, such as SQ109¹³ and BM212⁸ (Supplementary Fig. 2). Previous 306 307 studies have used high concentrations of MmpL3 inhibitors (ranging from $3 \times to 10 \times 10^{-10}$ 308 MIC) and it is conceivable that the significant accumulation of TMM may be a result 309 of a stress response. However, the frequency of the MmpL3 resistance phenotype and 310 the increased sensitivity to THPPs upon overexpression of *mmpL3* gives credence to 311 the possibility of MmpL3 moonlighting as a drug importer.

312

Importantly, we demonstrate that *echA6* is essential in mycobacteria and is conserved across several mycobacterial genomes (**Supplementary Table 6**), including the 'essential' minimal *M. leprae* genome²⁷. Although the exact function of EchA6 remains to be established, we show that EchA6 has a distinct preference for long317 chain acyl-CoAs and interacts with selective components of FAS-II. We postulate that EchA6 acts as a shuttle for fatty acid transfer, bypassing the non-essential FabH²⁸. 318 Overall, this would be compatible with its catalytically silent state, potential partners 319 identified by STRING analysis (Supplementary Fig. 5)²⁹ and its unique extended 320 321 acyl-CoA binding groove relative to the other 20 mycobacterial EchAs. The diversity of crotonase family members in terms of enzymatic activity and substrates (albeit all 322 323 CoA-linked) leaves the door open to an alternative, as yet unidentified catalytic activity. Emerging from these considerations is a model (Fig. 3f) that places EchA6 at 324 a critical junction between FAS-I, β-oxidation and FAS-II pathways. 325

326

In conclusion, we have shown that THPPs mediate bactericidal activity in a mouse infection model of tuberculosis and that these compounds act on the catalytically silent enoyl-CoA hydratase-like EchA6 protein. This surprising result of our alternative target deconvolution approach suggests that spontaneous resistanceconferring mutations can potentially obscure the actual target or alternative targets of inhibitors emerging from phenotypic screening campaigns.

333

Supplementary information is linked to the online version of the paper.

335

336 Acknowledgements: GSB acknowledges support in the form of a Personal Research Chair from Mr. James Bardrick and a Royal Society Wolfson Research Merit Award. 337 The research leading to these results has received funding from the European Union's 338 7th framework programme (FP7- 2007-2013) under Grant Agreement No 261378 and 339 340 the BBSRC through an Industrial CASE studentship. We thank Nico Zinn and Toby 341 Mathieson for mass spectrometry and database design, Sarah Batt, Patrick Moynihan 342 and Luke Alderwick for technical support. We also thank the TB Alliance for their 343 helpful discussions and expertise in the field.

344

Author contributions: Conceived and designed the experiments: JAGC, KAA, SGD,
UK, MB, GD, NCC, AB, LB, DB, KF, GSB. Performed the experiments: JAGC,
KAA, IAB, SB, CA, AB, AS, PJJ, SGD, VN, SSG, MJR, LE, JR. Analyzed the data:
KAA, JAGC, JR, SB, SGD, UK, MB, SGD, DB, LB, KF, GSB. Contributed
reagents/materials/analysis tools: LB, MJP, GSB. Wrote the paper: JAGC, KAA, LB,
DB, SGD, GD, CA, AB, KF, GSB.

351

Author information: Data deposition: The atomic coordinates and structure factors
reported in this paper are deposited in the Protein Data Bank and shown in
Supplementary Table 5.

355

356 Competing financial interests: The authors declare no competing financial interests.357

359 Figure 1. THPP chemical structures and *in vivo* anti-tubercular activity. (a) 360 Synthesis of THPPs. (b) M. tuberculosis H37Rv, M. bovis BCG, anti-bacterial and cytotoxicity profile of THPPs. The human biological samples were sourced ethically 361 362 and their research use was in accordance with the terms of informed consent. (c) 363 Efficacy of GSK951A against an established murine model of *M. tuberculosis* chronic 364 infection. Mean \pm SD is shown for each treated mice group (n = 3-7 mice/group). (d) The ED₉₉ of GSK951A and INH in a murine model of *M. tuberculosis* acute 365 infection²² using *M. tuberculosis* transformed with either a multi-copy plasmid-borne 366 empty vector control, echA6 or $echA6^{W133A}$. LogCFU counts are shown as the 367 difference with respect to the untreated control group infected with each strain 368 (Δ logCFU/mouse). (e) The relative growth of each strain used in panel d. For both 369 370 panels (d.e), each data point represents an individual mouse. All animal studies were 371 ethically reviewed and carried out in accordance with European Directive 210/63/EU and the GSK Policy on the Care, Welfare and Treatment of Animals. 372

373

Figure 2: Chemoproteomics profiling identifies the putative enoyl-CoA hydratase EchA6 as target of the THPP series. (a) EchA6 is captured from *M. bovis* BCG extracts with beads derivatized with GSK729. (b) EchA6 binds to beads derivatized with the active enantiomer analogue GSK729 but not the inactive enantiomer analogue GSK730. Binding is only competed by the active enantiomer (Supplementary Table 1 and 2). (c) Estimation of the affinity of GSK729 for EchA6 (Supplementary Table 3).

382 Figure 3. GSK951A inhibition of mycolic acid biosynthesis, resistance and protein-protein interaction studies. (a,b) $[^{14}C]$ -Acetate labeling and dose-response 383 of GSK951A, INH and TLM against *M. bovis* BCG. Total MAMES and FAMES (a, 384 left and right panels, n = 3 biological replicates), reverse-phase TLC (b, n = 2385 386 biological replicates) and cell wall bound MAMES (a, middle panel, n = 2 biological replicates) were isolated and equal counts for the former two, and an equal aliquot for 387 the latter were analysed by $TLC^{13,14,30}$. (c) SDS-PAGE (left panel) and Western blot 388 389 (right panel) analysis of pVV16 and pVV16-*echA6* cytosolic lysates (n = 3 biological 390 replicates). (d) Overexpression of *M. tuberculosis* EchA6 using pVV16-echA6 in *M.* 391 *bovis* BCG (n = 5 biological replicates). (e) Protein-protein interaction screen using 392 the bacterial two-hybrid system BACTH and EchA6 with components of FAS-II (n =393 3 biological replicates). (f) Proposed biosynthetic model linking FAS-I, FAS-II and 394 the β -oxidation pathways, providing a key role for EchA6 as a conduit for supplying acyl-CoA primers for mycolic acid biosynthesis. 395

396

Figure 4. Saturation binding assay using intrinsic tryptophan fluorescence to quantify association of EchA6 with acyl-CoAs and THPPs. (a) Saturation binding curves for C₄-CoA, C₁₂-CoA, and C₂₀-CoA. (b) Comparison of saturation binding of GSK951A between EchA6 and EchA6^{W133A}. (c,d) Competition binding assay of C₂₀-CoA and C₄-CoA in the presence of 0–10 μ M GSK951A. *K_d* values (mean \pm SD) resulting from non-linear least squares fitting of a single-site binding model are listed in **Supplementary Table 4**. Data were fitted using GraphPad Prism.

405 Figure 5. Structural features of EchA6 in the free and C₂₀-CoA bound state. (a)
406 Ribbon diagram of the EchA6 monomer, bound to C₂₀-CoA (yellow sticks).

Secondary structure elements are labeled analogous to the structure of $RnECH^{23}$. (b) 407 408 Ribbon diagram of the EchA6 trimer superimposed with the structure of R. 409 norvegicus enoyl-CoA hydratase (RnECH). EchA6 subunits are beige, green and 410 blue, RnECH is cyan. (c) Molecular surface of the 'front' and 'back' face of the 411 EchA6 trimer bound to C_{20} -CoA (subunit A in green). The binding sites of the 412 inhibitor GSK951A are indicated for subunits B and C by the stick model in cyan. (d) 413 Superposition of the active sites of RnECH (cyan) and EchA6 (yellow). Dashed lines 414 indicate the H-bond interactions that mediate polarization of the keto-moiety of CoA 415 in the hydratase reaction.

416

417 Figure 6. Binding site of GSK951A in EchA6. (a) The molecular surface of EchA6 is shown in translucent rendering and amino acid side chains within a 4 Å radius 418 around the ligand are shown as sticks. The σ_A -weighted 2Fo-Fc density map is 419 420 contoured at 1.0 σ and was calculated with coordinates of GSK951A included in the 421 model. (b) Superposition of GSK951A (carbon atoms in cyan) and CoA-bound structure of EchA6. The thioester sulfur (green) of C_{20} -CoA is indicated. (c) 422 Schematic diagram of contacts between GSK951A and EchA6. Polar contacts are 423 424 indicated with a dashed line, vdW and hydrophobic contacts with a hashed line.

479 General information for chemical synthesis

480

481 Automated flash chromatography was performed on a Biotage FlashMaster II system with peak detection at 254 nm. ¹H NMR spectra were recorded at 400 MHz on a 482 483 Bruker Ultrashield DPX 400 spectrometer. Chemical shifts (δ) are given in ppm relative to the solvent reference as an internal standard (DMSO-d₆, $\delta = 2.50$ ppm; 484 $CDCl_3$, $\delta = 7.27$ ppm). Data are reported as follows: chemical shift (multiplicity (s for 485 486 singlet, d for doublet, t for triplet, q for quartet, m for multiplet, br for broad), 487 integration, coupling constant(s) in Hz). HPLC-MS analyses were conducted on an 488 Agilent 1100 instrument equipped with a Sunfire C18 column ($30 \times 2.1 \text{ mm i.d.}$, 3.5 489 mm packing diameter) at 40°C coupled with a Waters ZMD2000 mass spectrometer; 490 the method of ionization was alternate-scan positive and negative electrospray. Semi-491 preparative chiral HPLC was conducted on an Agilent 1100 instrument equipped with 492 a Chiralpak IC column (250 mm x 20 mm). Preparative chiral HPLC was conducted 493 on a Varian SD-2 prep HPLC instrument equipped with a Chiralpak IC column (250 mm x 50 mm i.d, 20 µm packing diameter). Compounds had a purity of >95 %, as 494 495 determined by HPLC and ¹H NMR analysis.

- 496
- 497 Ethyl 7-(4-ethylphenyl)-7-methylpyrazolo[1,5-a]pyrimidine-3-carboxylate. A
 498 mixture of ethyl 3-aminopyrazole-4-carboxylate (2.99 g, 19.24 mmol), 1-(4499 ethylphenyl)-1,3-butanedione (3.66 g, 19.24 mmol) and acetic acid (15 ml) was
 500 heated at reflux for 6 h. LC-MS analysis showed an 80/20 mixture of two products.
- 501 After cooling to room temperature, the reaction mixture was poured onto ice (60 g).

502 The solid formed was filtered off, triturated with hexane and dried to afford a pale 503 yellow solid. The crude product was added to a silica gel column (40 g) and eluted 504 with a mixture of EtOAc/hexane (gradient 0-20 %). Collection of the appropriate 505 fractions afforded the desired compound (747 mg, 2.42 mmol, 13 %) as a white solid along with a regioisomeric by-product (2.98 g, 9.63 mmol, 50 %). ¹H NMR (400 506 507 MHz, CDCl₃+D₂O) δ ppm: 8.58 (s, 1H), 8.15-8.17 (m, 2H), 7.35-7.37 (m, 2H), 7.33 508 (s, 1H), 4.46 (q, 2H, *J*=7.1), 2.89 (s, 1H), 2.74 (q, 2H, *J*=7.6), 1.48 (t, 3H, *J*=7.1), 1.30 509 (t, 3H, *J*=7.6).

510

5-(4-ethylphenyl)-7-methyl-4,5,6,7-tetrahydropyrazolo[1,5-511 *cis*-Ethyl alpvrimidine-3-carboxvlate. To a solution of ethyl 5-(4-ethylphenyl)-7-512 513 methylpyrazolo[1,5-a]pyrimidine-3-carboxylate (710 mg, 2.30 mmol) in anhydrous 514 methanol (10 ml), 10 % Pd/C (244 mg, 0.23 mmol) was added. The reaction was 515 hydrogenated at 40 psi for 24 h. LC-MS showed completion of the reaction. The 516 mixture was filtered over celite and concentrated in vacuo affording the desired 517 compound (714 mg, 2.23 mmol, 99 %) as a white solid. The product was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃+D₂O) δ ppm: 7.66 518 519 (s, 1H), 7.33-7.35 (m, 2H), 7.22-7.24 (m, 2H), 5.93 (bs, 1H), 4.56 (dd, 1H, J=11.6 and 520 2.8), 4.28-4.36 (m, 1H), 4.24 (q, 2H, J=7.1), 2.68 (q, 2H, J=7.6), 2.29-2.35 (m, 1H), 521 2.00 (dt, 1H, J=13.4 and 11.1), 1.61 (d, 3H, J=6.3), 1.32 (t, 3H, J=7.1), 1.26 (t, 3H, 522 J=7.6).

523

524 cis-5-(4-Ethylphenyl)-7-methyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-

525 carboxylic acid. To a solution of *cis*-ethyl 5-(4-ethylphenyl)-7-methyl-4,5,6,7526 tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxylate (700 mg, 2.23 mmol) in ethanol
527 (5 ml), a 1.5 M KOH aqueous solution (5.21 ml, 7.82 mmol) was added and the

528 reaction was stirred at 60°C for 12 h. The reaction was concentrated in vacuo to 529 remove the organic solvent and a saturated citric acid solution was then added until 530 acidic pH. The solid was collected by filtration, washed with water and dried to afford 531 the desired compound (539 mg, 1.89 mmol, 85 %) as a white solid. ¹H NMR (400 532 MHz, DMSO-d₆) δ ppm: 11.8 (bs, 1H), 7.49 (s, 1H), 7.33-7.35 (m, 2H), 7.22-7.24 (m, 533 2H), 6.04 (bs, 1H), 4.58 (dd, 1H, J=11.1 and 2.3), 4.22-4.32 (m, 1H), 2.61 (q, 2H, 534 J=7.6), 2.25-2.35 (m, 1H), 1.87 (dt, 1H, J=13.1 and 10.9), 1.43 (d, 3H, J=6.3), 1.18 (t, 535 3H, J=7.6). [ES+MS] m/z 286 (M+H)+.

536

537 (5*R*,7*R*)-*N*-(4-fluorobenzyl)-5-(4-ethylphenyl)-7-methyl-4,5,6,7-

538 tetrahydropyrazolo-[1,5-a]pyrimidine-3-carboxamide (GSK059A). To a solution

539 of cis-5-(4-ethylphenyl)-7-methyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-540 carboxylic acid (100 mg, 0.35 mmol) in N,N-dimethylformamide (3 ml), HATU (160 541 mg, 0.42 mmol) and N,N-Disopropylethylamine (0.306 ml, 1.75 mmol) were added. 542 The mixture 30 was stirred at room temperature for min. (4-543 fluorophenyl)methanamine hydrochloride (85 mg, 0.53 mmol) was added and the mixture was stirred at 60°C for 3 days. LC-MS showed the desired product as major 544 545 and no starting material. After cooling to room temperature, the reaction mixture was 546 diluted with TBME and washed with saturated NH₄Cl aqueous solution and brine. The organic layers were concentrated and the residue was added to a silica gel column 547 (5 g) and eluted with a mixture of EtOAc/cyclohexane (gradient 0-60 %). Collection 548 549 of the appropriate fractions afforded the desired racemic compound (116 mg, 0.296 550 mmol, 84 %) as a white solid. The enantiomers were separated by semipreparative 551 HPLC (flow: 18 ml/min; solvent: hexane/EtOH 90/10; column: Chiralpak IC, 250 552 mm x 20 mm). The desired enantiomer eluted at 15 min and the opposite at 23 min.

The title compound was obtained (35 mg, 0.089 mmol) as a white solid enantiomerically pure by HPLC. ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.50 (bs, 1H), 7.27-7.34 (m, 4H), 7.20-7.22 (m, 2H), 6.99-7.04 (m, 2H), 6.47 (bs, 1H), 5.94 (bs, 1H), 4.44-4.58 (m, 3H), 4.27-4.37 (m, 1H), 2.66 (q, 2H, *J*=7.6), 2.28-2.36 (m, 1H), 1.96-2.08 (m, 2H), 1.61 (d, 3H, *J*=6.1), 1.25 (t, 3H, *J*=7.8). [ES+ MS] m/z 393 (M+H)+.

558

559 (5-Fluoropyridin-2-yl)methanamine dihydrochloride. А mixture of 5fluoropicolinonitrile (300 mg, 2.457 mmol), 10 % wt. palladium on carbon (60 mg, 560 561 0.056 mmol), methanol (25 ml) and concentrated HCl (1 ml, 11.70 mmol) was stirred at room temperature under 30 psi of hydrogen. After 4 h the reaction was filtered 562 563 through celite washing with 200 ml of methanol. Evaporation afforded the desired 564 compound (500 mg, 2.39 mmol, 97%) as an off-white solid. ¹H NMR (400 MHz, 565 DMSO-d₆) δ ppm: 8.32-9.32 (m, 4H), 8.63 (d, 1H, J=2.8), 7.84 (td, 1H, J=8.8 and 566 3.0), 7.64 (dd, 1H, J=8.6 and 4.3), 4.17 (bg, 2H, J=5.8).

567

```
568 (5R,7S)-5-(4-ethylphenyl)-N-((5-fluoropyridin-2-yl)methyl)-7-(trifluoromethyl)-
```

569 4,5,6,7-tetrahvdropyrazolo[1,5-a]pyrimidine-3-carboxamide (GSK572A). To a 570 solution of *cis*-5-(4-ethylphenyl)-7-(trifluoromethyl)-4,5,6,7-tetrahydropyrazolo[1,5-571 alpyrimidine-3-carboxylic acid (200 mg, 0.589 mmol) in N,N-dimethylformamide (5 572 ml) at room temperature under nitrogen, HATU (269 mg, 0.707 mmol) was added 573 followed by N,N-diisopropylethylamine (0.309 ml, 1.768 mmol). The mixture was 574 stirred at room temperature for 15 min and then a solution of (5-fluoropyridin-2-575 yl)methanamine dihydrochloride (153 mg, 0.766 mmol) and N.N-576 diisopropylethylamine (0.309 ml, 1.768 mmol) in N,N-dimethylformamide (3 ml) was 577 added. The mixture was stirred at room temperature for 3 days. The reaction mixture

578 was diluted with EtOAc (30 ml) and washed with saturated aqueous NaHCO₃ (3 x 40 579 ml), water (40 ml) and 1M NH₄Cl (3 x 40 ml). The organic layer was dried, filtered 580 and evaporated. The residue was added to a silica gel column and eluted with a 581 mixture of EtOAc/cyclohexane (gradient 0-100 %). Collection of the appropriate fractions afforded the desired racemic compound (221 mg, 0.469 mmol, 80 %) as an 582 583 off-white solid. The enantiomers were separated by semipreparative HPLC (flow: 18 584 ml/min; solvent: hexane/EtOH 90/10; column: Chiralpak IC, 250 mm x 20 mm). The 585 desired enantiomer (GSK572A) eluted at 15 min and the opposite (GSK573A) at 23 586 min. The title compound was obtained (93 mg, 0.197 mmol) as a white solid enantiomerically pure by HPLC. ¹H NMR (400 MHz, CDCl₃) δ ppm: 8.42 (d, 1H, 587 J=2.8), 7.63 (s, 1H), 7.31-7.42 (m, 4H), 7.22-7.24 (m, 2H), 6.60-6.64 (m, 2H), 4.81-588 589 4.89 (m, 1H), 4.66 (dd, 1H, J=16.7 and 5.3), 4.62 (dd, 1H, J=16.7 and 5.3), 4.54 (dd, 590 1H, J=11.6 and 2.5), 2.67 (g, 2H, J=7.6), 2.50-2.56 (m, 1H), 2.33-2.42 (m, 1H), 1.25 591 (t, 3H, J=7.8). [ES+ MS] m/z 448 (M+H)+.

592

593 General methods

594

595 The measurement of the MIC for each tested compound, general antimicrobial 596 activity, microsomal fraction stability, pharmacokinteic studies, HepG2 cytotoxicity assay, SDS-PAGE and Western blot were performed as described previously^{2,19,30}. 597 598 EchA6 (Rv0905) was cloned into the mycobacterial multi-copy plasmid pMV261 and its derivatives³⁰; the site-directed mutant EchA6^{W133A} was generated using the 599 600 plasmids containing wild-type echA6 and QuikChange II (Agilent Technologies). 601 MmpL3 (Rv0206c) was cloned into pMV261. The constructs were electroporated into either *M. bovis* BCG or *M. tuberculosis*. The primers are described in **Supplementary** 602

603 Table 7. The *in vitro* effect of GSK951A, TLM, and INH was studied by treating M. *bovis* BCG cultures at OD_{600} of 0.4 with inhibitor for 24 hours, followed by [¹⁴C]-604 acetate labeling for 24 hours, and subsequent analysis of either total FAMES and 605 606 MAMES (equal counts, typically 30,000 cpm), cell wall bound MAMES (equal volumes, 5 % aliquot), or cell envelope lipids (equal counts, typically 30,000 cpm) as 607 described previously^{13,14,19,30-32}. Protein-protein interactions were studied using the 608 609 bacterial adenylate cyclase based two-hybrid system as described³³. Briefly, *echA6* (Rv0905) was cloned using the primers described in Supplementary Table 7 into 610 pUT18 in-frame with the T18 fragment, and the FAS-II genes cloned into pKT25 in-611 612 frame with the T25 fragment. The positive control pKT25 was fused to the Leucine 613 Zipper of GCN4 co-transformed with pUT18C of the Leucine Zipper GCN4. The 614 negative control was pKT25 Zip co-transformed with empty pUT18 vector. The GSK 615 in-house hydrophobicity assay was performed using 10 µl of a 10 mM DMSO stock 616 solution diluted to 750 μ l with octanol saturated phosphate buffer pH 7.4 and 160 μ l buffer saturated octanol in a 96-well deep well block. Blocks were sealed and inverted 617 618 for 3 sets of 50 inversions, then centrifuged at 300 g for 20 min. Both phases were quantified using generic gradient UV-HPLC. 619

620

621 Assessment of chronic and acute efficacy in murine TB models

622

The assessment of the chronic and acute efficacy in murine TB models was performed using specific pathogen-free, 8-10 week-old female C57BL/6 mice purchased from Harlan Laboratories and allowed to acclimate for one week. In the chronic model, mice (n = 3-7 mice per dose level, a total of 27/28 mice per compound) were intratracheally infected with 100 CFU/mouse and GSK951A formulated in 1 % 628 aqueous methylcellulose and administered daily for 8 consecutive weeks, starting 6 weeks after infection. Lungs were harvested 24 h after the last administration. All 629 lung lobes were aseptically removed, homogenized and frozen. Homogenates were 630 631 plated on 10 % OADC-7H11 medium supplemented with activated charcoal (0.4 %) for 18 days at 37°C. In the acute model²², mice were intratracheally infected with 632 633 50,000 CFU/mouse with all strains, and lungs harvested on day 9. GSK951A and INH 634 (in water) were administered daily for 8 consecutive days, starting on day 1 after infection. All lung lobes were aseptically removed, homogenized, and plated in 10 % 635 636 OADC-7H11 medium supplemented with activated charcoal (0.4 %) and grown for 637 18-25 days at 37°C. Lung logCFUs vs dose was fitted to a logistic equation (sigmoidal 638 dose response, variable slope, GraphPad Prism software). Effective dose 99 % (ED₉₉), defined as the dose in mg/kg that reduced lung bacterial burden at day 9 after 639 640 infection by 99 % (2 logCFU) with respect to untreated, was calculated by interpolation in the sigmoidal curve. The number of mice was selected as the 641 642 minimum number of mice that is necessary to detect a 3-fold difference in the ED₉₉ of 643 two different products. Mice were randomly allocated to the different experimental 644 groups immediately after the infection.

645

646 Preparation of *M. bovis* BCG cytosolic extract

647

M. bovis BCG cell pellets were resuspended in lysis buffer (50 mM Tris-HCl, pH 7.4,
1 mM EDTA, 7.5 % glycerol, 150 mM NaCl, 25 mM NaF, 1 mM Na₃VO₄, 1 mM
DTT, and 1 complete EDTA-free protease inhibitor tablet (Roche) *per* 25 ml). After
sonication the samples were adjusted to 0.8 % Igepal-CA630 and extraction was
completed by homogenization using a Dounce homogenizer. After 45 min rotation at

4°C, the samples were subjected to centrifugation for 10 min at 20,000 g at 4°C. The supernatant was kept on ice, while the pellet was re-extracted with 1 volume of lysis buffer adjusted to 0.8 % Igepal-CA630. The pellet was resuspended using a long 20 gauge needle (2x), followed by rotation for 30 min at 4°C. After a centrifugation step as described above, both supernatants were pooled and subjected to centrifugation at 100,000 g for 1 h at 4°C. The final supernatant was snap frozen in liquid nitrogen and stored at -80°C.

660

661 Chemoproteomics

662

663 Sepharose beads were derivatized with GSK729A at various concentrations from 0.05 664 mM to 2 mM. Beads (35 µl) were washed and equilibrated in lysis buffer incubated at 4°C for 1 h with 1 ml (1 mg) M. bovis BCG cytosolic extract, which was pre-665 incubated with compound or buffer. Beads were transferred to disposable columns 666 (MoBiTec), washed extensively with lysis buffer and eluted with SDS sample buffer. 667 668 Proteins were alkylated, separated on 4-12 % NuPAGE (Invitrogen), stained with 669 colloidal Coomassie, and quantified by isobaric tagging and LC-MS/MS. Digestion, 670 labeling with TMT isobaric mass tags, peptide fractionation, and mass spectrometric analyses were performed essentially as described¹⁶. The proteins fasta file for M. 671 672 bovis BCG downloaded 11th from was (May 2011) 673 http://genome.tbdb.org/annotation/genome/tbdb/MultiDownloads.html and 674 supplemented with the sequences of bovine serum albumin, porcine trypsin and 675 mouse, rat, sheep and dog keratins. Decoy versions of all proteins were created and added. The search database contained a total of 11,492 protein sequences, 50 % 676 677 forward, 50 % reverse. Criteria for protein quantification were: a minimum of 2

678 sequence assignments matching to unique peptides (FDR for quantified proteins 679 <<0.1 %). Mascot ion score > 15, signal to background ratio of the precursor ion > 4, signal to interference $> 0.5^{34}$. Reporter ion intensities were multiplied with the ion 680 681 accumulation time yielding an area value proportional to the number of reporter ions present in the mass analyzer. Peptide fold changes were corrected for isotope purity as 682 683 described and adjusted for interference caused by co-eluting nearly isobaric peaks as estimated by the signal-to-interference measure³⁵. Protein quantification was achieved 684 using a sum-based bootstrap algorithm³⁶. 685

686

687 Generation and characterisation of a conditional *echA6* mutant in *M. bovis* BCG

688

689 A conditional mutant in the *M. bovis* BCG homologue of *M. tuberculosis echA6* was generated using the genetic tool CESTET^{17,18}. First, a recombinant *echA6* knockout 690 691 phage was designed to replace the *M. bovis* BCG echA6 homologue. The primers used for amplifying the left and right flanks to generate the allelic exchange substrate^{17,18} 692 are provided in Supplementary Table 7. Next, Rv0905 was PCR amplified using the 693 694 primers mdRv0905 F and mdRv0905 R (Supplementary Table 7) and cloned 695 downstream of the tetracycline promoter into the integrating vector pTIC6a to generate the plasmid pTIC6a- $Rv0905^{17,18}$. A merodiploid strain was then constructed 696 697 by electroporating pTIC6a-Rv0905 into M. bovis BCG. The resultant strain 698 BCG:: Rv0905 was then transduced with echA6 knockout phage. Transductants were 699 selected on 7H10-agar plates containing 25 µg/ml kanamycin, 75 µg/ml hygromycin 700 and 50 ng/ml anhydrotetracycline (ATc). One confirmed knockout strain was called $\Delta BCG0957$ and was used in a conditional depletion experiment to detect cell death as 701 shown previously in minimal medium^{17,18}. 702

704 **Recombinant production and purification of EchA6 and EchA6**^{W133A}

705

706 The gene echA6 (Rv0905) was amplified by PCR (Supplementary Table 7) and 707 cloned into plasmid pET28a (Novagen). Briefly, E. coli BL21 (DE3) transformed with pET28a-echA6 or pET28a-echA6^{W133A} (through site-directed mutagenesis of 708 709 pET28a-echA6; the primers are described in Supplementary Table 7) were grown in 710 Luria Bertani (LB) broth from a glycerol stock (37°C, 180 rpm, shaking), grown 711 overnight and used to inoculate flasks containing 1 L of LB media containing 50 μ g/ml kanamycin. Bulk cultures were grown (37°C, 180 rpm) shaking to OD₆₀₀ = 0.4-712 713 0.6, and induced with 1 mM IPTG, reducing the incubation temperature to 16°C. 714 Batch culture was continued at 16°C until 24 h post-induction at which point cultures were harvested by centrifugation at 5,000 rpm at 4°C and the pellets stored at -20°C. 715 716 Cell pellets were defrosted and resuspended in 20 ml of lysis buffer (50 mM sodium 717 phosphate, 600 mM sodium chloride and 10 mM imidazole, pH 8) with a complete 718 EDTA-free Protease Inhibitor Cocktail Tablet (Roche), and sonicated on ice with 10 719 cycles of 30 sec sonication and 30 sec cooling, and centrifuged (40 min, 15,000 rpm, 4°C). For purification of the His₆-tagged EchA6 (and EchA6^{W133A}) protein, a His-trap 720 721 HP column (GE Healthcare Life Sciences) was used following the manufacturers 722 guidelines using a step-wise gradient of 50 mM, 125 mM, 150 mM and 200 mM imidazole in buffer. Eluates were analyzed by 12 % SDS-PAGE (Bio-Rad) run at 200 723 V, 50 mA for 40 min. Gels were stained with Instant Blue (Expedeon). Fractions 724 725 containing pure protein were dialyzed overnight in 2 L of dialysis buffer (25 mM 726 HEPES, 10 % glycerol and 300 mM NaCl, pH 8). EchA6 was then concentrated by

centrifugation to >30 mg/ml using a spin column (Thermo Scientific) and the
concentration of protein was determined by absorption spectroscopy at 280 nm.

729

730 X-ray crystallographic structure determination

731

Crystals of EchA6 in the ligand-free form and bound to THPP compounds or C₂₀-732 733 CoA were obtained by vapour diffusion at 18°C, using commercial sparse matrix 734 screens JCSG-plus and MIDAS (Molecular Dimensions) in 96-well sitting drop plates 735 (SWISSCI 3-lens). A liquid handling robot (Mosquito) was used to dispense 300 nl 736 drops consisting of 150 nl protein at concentrations between 20 and 30 mg/ml plus 737 150 nl reservoir solution. Complexes with ligands (C₂₀-CoA, THPPs) were grown in 738 the presence of 3-fold molar excess of ligand over protein. Reservoir conditions 739 leading to diffraction-quality crystals are: 0.1 M Tris pH 8.0 with 60 % v/v polypropylene glycol 400 (apo EchA6); 0.17 M ammonium sulfate, 25.5 % w/v PEG 740 741 4K, 15 % v/v glycerol (EchA6:C₂₀-CoA); 0.1 M Tris pH 8.5 with 20 % v/v ethanol 742 (EchA6:366A); 0.6 M tri-sodium citrate cryoprotected with a 10 % glycerol additive 743 (EchA6:059A); 0.2 M sodium chloride, 0.1 M sodium cacodylate pH 6.5, 2 M 744 ammonium sulfate, cryoprotected with a 10 % ethylene glycol additive 745 (EchA6:572A); 0.1 M sodium cacodylate pH 6.5, 1.0 M tri-sodium citrate 746 cryoprotected with a 20 % glycerol additive (EchA6:951A). X-ray diffraction data 747 were recorded at the Diamond Light Source and on our in-house X-ray source 748 (Rigaku MicroMax 007HF, VariMax optics, Saturn 944 CCD detector). Details of the 749 X-ray data statistics are given in Supplementary Table 5. Data were reduced using XDS, XSCALE³⁷ and analysed using the CCP4 suite of crystallographic software³⁸. 750 751 Using M. tuberculosis EchA6 (PDB entry 3HE2) as a search model, we determined

initial phases by molecular replacement (PHASER³⁹). The models were rebuilt and 752 refined (COOT⁴⁰, REFMAC5⁴¹, PHENIX, REFINE⁴²), using non-crystallographic 753 symmetry restraints where the asymmetric unit contained 3 or 6 EchA6 subunits. Due 754 755 to the limited resolution of the corresponding X-ray data, grouped B-factors were 756 modelled when refining the complexes of EchA6:C₂₀-CoA, EchA6:GSK059A and EchA6:GSK951A. Ligand geometry restraints were generated using the SKETCHER 757 utility of CCP4³⁸. Figures of the molecular structures of EchA6 were prepared using 758 759 PvMOL (www.pymol.org). Refinement statistics are reported in Supplementary 760 Table 5. The Fo-Fc density maps (Supplementary Fig. 4) indicating the presence 761 and structures of the ligands were generated using phases of the protein model after 762 initial refinement of the molecular replacement solution and prior to incorporation of the ligand in the coordinate model. 763

764

765 Intrinsic tryptophan fluorescence ligand binding assays

766

767 Fluorescence binding assays of EchA6 (3.75 µM) with acyl-CoAs were conducted on 768 a Hitachi F7000 Fluorescence Spectrophotometer using 25 mM HEPES, 10 % 769 glycerol and 300 mM NaCl, pH 8 at 25°C and fluorescence spectra measured at an 770 excitation wavelength 280 nm and emission wavelength 300-400 nm with an 771 excitation and emission slit width of 5 nm using a 500 µl crystal cuvette. Ligands 772 were added at increasing stoichiometric ratios ranging from 0.5 to 8 times the molar 773 concentration of protein. DMSO concentrations were maintained at <0.6 % and <2.0 774 % in the assay mixture for acyl-CoA and THPP, respectively. Data were recorded 775 using Hitachi FL Solutions 4.6 software and analysed in Prism 5 (GraphPad). To compare ligand binding between wild-type EchA6 and EchA6^{W133A}, the proteins were 776

- dialysed against buffer 25 mM HEPES, 10 % glycerol and 300 mM NaCl, pH 8, 2 %
- 778 DMSO (v/v). Changes of fluorescence intensities were corrected for volume
- expansion and for non-specific binding of DMSO.

- 781
- WHO. *Global Tuberculosis Report 2013* (World Health Organization,
 Geneva, 2013).
- Abrahams, K. A. *et al.* Identification of novel imidazo[1,2-a]pyridine
 inhibitors targeting *M. tuberculosis* QcrB. *PloS One* 7, e52951 (2012).
- Gurcha, S. S. *et al.* Biochemical and structural characterization of
 mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target. *PloS One* 9, e113568 (2014).
- Mugumbate, G. *et al.* Mycobacterial dihydrofolate reductase inhibitors
 identified using chemogenomic methods and in vitro validation. *PloS One* 10,
 e0121492 (2015).
- Wang, F. *et al.* Identification of a small molecule with activity against drugresistant and persistent tuberculosis. *Proc. Natl. Acad. Sci. USA* 110, E25102517 (2013).
- Andries, K. *et al.* A diarylquinoline drug active on the ATP synthase of *Mycobacterium tuberculosis. Science* **307**, 223-227 (2005).
- 797 7 Grzegorzewicz, A. E. *et al.* Inhibition of mycolic acid transport across the
 798 *Mycobacterium tuberculosis* plasma membrane. *Nat. Chem. Biol.* 8, 334-341
 799 (2012).
- 800 8 La Rosa, V. *et al.* MmpL3 is the cellular target of the antitubercular pyrrole
 801 derivative BM212. *Antimicrob. Agents Chemother.* 56, 324-331 (2012).
- 802 9 Li, K. *et al.* Multitarget drug discovery for tuberculosis and other infectious
 803 diseases. *J. Med. Chem.* 57, 3126-3139 (2014).

- Li, W. *et al.* Novel insights into the mechanism of inhibition of MmpL3, a
 target of multiple pharmacophores in *Mycobacterium tuberculosis*. *Antimicrob. Agents Chemother.* 58, 6413-6423 (2014).
- Rao, S. P. *et al.* Indolcarboxamide is a preclinical candidate for treating
 multidrug-resistant tuberculosis. *Sci. Transl. Med.* 5, 214ra168 (2013).
- Remuinan, M. J. *et al.* Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide
 and N-benzyl-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] analogues
- with bactericidal efficacy against *Mycobacterium tuberculosis* targeting
 MmpL3. *PloS One* 8, e60933 (2013).
- Tahlan, K. *et al.* SQ109 targets MmpL3, a membrane transporter of trehalose
 monomycolate involved in mycolic acid donation to the cell wall core of *Mycobacterium tuberculosis. Antimicrob. Agents Chemother.* 56, 1797-1809
 (2012).
- 817 14 Banerjee, A. *et al. inhA*, a gene encoding a target for isoniazid and 818 ethionamide in *Mycobacterium tuberculosis*. *Science* **263**, 227-230 (1994).
- 819 15 Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. The catalase-peroxidase
 820 gene and isoniazid resistance of *Mycobacterium tuberculosis*. *Nature* 358,
 821 591-593 (1992).
- Bantscheff, M. *et al.* Chemoproteomics profiling of HDAC inhibitors reveals
 selective targeting of HDAC complexes. *Nat. Biotechnol.* 29, 255-265 (2011).
- Brown, A. K. *et al.* Identification of the dehydratase component of the
 mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. *Microbiology* 153, 4166-4173 (2007).

- Rana, A. K. *et al.* Ppm1-encoded polyprenyl monophosphomannose synthase
 activity is essential for lipoglycan synthesis and survival in mycobacteria. *PloS One* 7, e48211 (2012).
- Kremer, L. *et al.* Thiolactomycin and related analogues as novel antimycobacterial agents targeting KasA and KasB condensing enzymes in *Mycobacterium tuberculosis. J. Biol. Chem.* 275, 16857-16864 (2000).
- Cantaloube, S., Veyron-Churlet, R., Haddache, N., Daffe, M. & Zerbib, D.
 The *Mycobacterium tuberculosis* FAS-II dehydratases and methyltransferases
 define the specificity of the mycolic acid elongation complexes. *PloS One* 6,
 e29564 (2011).
- Bahnson, B. J., Anderson, V. E. & Petsko, G. A. Structural mechanism of
 enoyl-CoA hydratase: three atoms from a single water are added in either an
 E1cb stepwise or concerted fashion. *Biochemistry* 41, 2621-2629 (2002).
- Rullas, J. *et al.* Fast standardized therapeutic-efficacy assay for drug discovery
 against tuberculosis. *Antimicrob. Agents Chemother.* 54, 2262-2264 (2010).
- 842 23 Engel, C. K., Mathieu, M., Zeelen, J. P., Hiltunen, J. K. & Wierenga, R. K.
 843 Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms
- resolution: a spiral fold defines the CoA-binding pocket. *EMBO J.* 15, 51355145 (1996).
- Hamed, R. B., Batchelar, E. T., Clifton, I. J. & Schofield, C. J. Mechanisms
 and structures of crotonase superfamily enzymes-how nature controls enolate
 and oxyanion reactivity. *Cell. Mol. Life Sci.* 65, 2507-2527 (2008).
- 849 25 Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. *Nucleic*850 *Acids Res.* 38, W545-549 (2010).

- 851 26 Hazbon, M. H. *et al.* Population genetics study of isoniazid resistance
 852 mutations and evolution of multidrug-resistant *Mycobacterium tuberculosis*.
 853 *Antimicrob. Agents Chemother.* 50, 2640-2649 (2006).
- 854 27 Cole, S. T. *et al.* Massive gene decay in the leprosy bacillus. *Nature* 409, 1007-1011 (2001).
- 856 28 Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial
 857 growth defined by high density mutagenesis. *Mol. Microbiol.* 48, 77-84
 858 (2003).
- 859 29 Franceschini, A. *et al.* STRING v9.1: protein-protein interaction networks,
 860 with increased coverage and integration. *Nucleic Acids Res.* 41, D808-815
 861 (2013).
- Kremer, L. *et al.* Mycolic acid biosynthesis and enzymic characterization of
 the beta-ketoacyl-ACP synthase A-condensing enzyme from *Mycobacterium tuberculosis. Biochem. J.* 364, 423-430 (2002).
- 865 31 Besra, G. S. *et al.* Identification of the apparent carrier in mycolic acid
 866 synthesis. *Proc. Natl. Acad. Sci. USA* 91, 12735-12739 (1994).
- 867 32 Hu, Y. *et al.* 3-Ketosteroid 9alpha-hydroxylase is an essential factor in the
 868 pathogenesis of *Mycobacterium tuberculosis. Mol. Microbiol.* 75, 107-121
 869 (2010).
- Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid
 system based on a reconstituted signal transduction pathway. *Proc. Natl. Acad. Sci. USA* 95, 5752-5756 (1998).
- 873 34 Savitski, M. M. *et al.* Targeted data acquisition for improved reproducibility
 874 and robustness of proteomic mass spectrometry assays. *J. Am. Soc. Mass*875 *Spectrom.* 21, 1668-1679 (2010).

- Savitski, M. M. *et al.* Measuring and managing ratio compression for accurate
 iTRAQ/TMT quantification. *J. Proteome Res.* 12, 3586-3598 (2013).
- Savitski, M. M. *et al.* Delayed fragmentation and optimized isolation width
 settings for improvement of protein identification and accuracy of isobaric
 mass tag quantification on Orbitrap-type mass spectrometers. *Anal. Chem.* 83
 881 8959-8967 (2011).
- 882 37 Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr 66, 125-132 (2010).
- 883 38 CCP4. The CCP4 suite: programs for protein crystallography. *Acta*884 *Crystallogr. D Biol. Crystallogr.* 50, 760-763 (1994).
- 885 39 McCoy, A. J. *et al.* Phaser crystallographic software. *J. Appl. Crystallogr.* 40,
 886 658-674 (2007).
- Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and
 development of Coot. *Acta Crystallogr. D Biol. Crystallogr.* 66, 486-501,
 (2010).
- Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of
 macromolecular structures by the maximum-likelihood method. *Acta Crystallogr. D Biol. Crystallogr.* 53, 240-255 (1997).
- Adams, P. D. *et al.* PHENIX: building new software for automated
 crystallographic structure determination. *Acta Crystallogr. D Biol. Crystallogr.* 58, 1948-1954 (2002).

THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria Supplementary Information Guide Supplementary Figure 1. Essentiality of *echA6*, resistance and sensitivity to GSK951A *via echA6* and *mmpL3* overexpression in *M. bovis* BCG. (PDF, 1.3 MB) (a,b) Growth curves of $\Delta BCG0957$ in liquid medium with or without ATc (n = 2biological replicates). One culture of $\Delta BCG0957$ was labeled with [¹⁴C]-acetate at day 15 indicated by the arrow on panel *a* for 24 hours with the corresponding total MAMES and FAMES isolated, and equal counts for each sample subjected to TLC

1

2

3

4

5

6

7

8

9

10

11 MAMES and FAMES isolated, and equal counts for each sample subjected to TLC and exposed to Kodak X-Omat film as shown in panel b (n = 1 technical replicate). 12 13 The second culture was monitored until cell lysis was observed and is shown in the inset of panel a (n = 1 technical replicate). (c,d) [¹⁴C]-Acetate labeling of M. bovis 14 BCG pVV16 and pVV16-echA6 strains (n = 4 biological replicates). The 15 16 corresponding total MAMES and FAMES were isolated and equal counts were 17 subjected to either TLC (c, left panel) or reverse-phase TLC (panel d) and exposed to 18 Kodak X-Omat film (n = 1 technical replicate). Cell wall bound MAMES were 19 isolated from *M. bovis* BCG pVV16 and pVV16-echA6 strains treated with GSK951A 20 at 0.32 μ M (1 × MIC, c, right panel, n = 4 biological replicates, 1 technical replicate) 21 and equal volumes subjected to TLC and exposed to Kodak X-Omat film. (e) MIC 22 determination of GSK951A against M. bovis BCG pVV16 and pVV16-echA6 strains 23 in liquid medium. (f) GSK951A sensitivity of M. bovis BCG pMV261 and pMV261mmpL3 strains in liquid medium. It should be noted that the plasmids pVV16 and 24 25 pMV261 used in panels *e* and *f* have different antibiotic selection markers, kanamycin and apramycin respectively, and hence have different synergy levels with THPPs. A
plasmid control is always used to give a base-line MIC for THPPs in plasmid-borne
overexpression studies.

29

Supplementary Figure 2. Synthesis of total MAMES and FAMES, and cell wall
bound MAMES in the presence of GSK951A, GSK540A and MmpL3 inhibitors.
(PDF, 2.2 MB)

³³ [¹⁴C]-Acetate labeling and dose-response of GSK951A, GSK540A, BM212 and ³⁴ SQ109 on the synthesis of FAMES and MAMES (left panel), and cell wall bound ³⁵ MAMES (centre panel) in *M. bovis* BCG. The corresponding total FAMES and ³⁶ MAMES, and cell wall bound MAMES were isolated, and equal counts for the former ³⁷ and equal volumes for the latter were subjected to TLC or reverse-phase TLC ³⁸ (GSK951A, right panel) and exposed to Kodak X-Omat film. The corresponding ³⁹ structures of GSK540A, BM212 and SQ109 are shown.

40

41 Supplementary Figure 3. Lipid-[¹⁴C]-labeling experiments using GSK951A.
42 (PDF, 4.9 MB)

2D-TLC lipid profiles of *M. bovis* BCG (control) and GSK951A treated *M. bovis*BCG (1 × and 4 × MIC). Apolar and polar lipids were isolated, and equal counts for
each sample subjected to TLC in solvent systems A to D1 (apolar lipids) and D2
(polar lipids), and exposed to Kodak X-Omat film. PDIMs, phthiocerol
dimycocerosates; TAG, triacylglycerol; MAT, multi-acylated trehaloses; F, fatty
acids; GroM, monomycolylglycerol; PGL, phenolic glycolipid; GMM, glucose
monomycolate; TMM, trehalose monomycolate.

Supplementary Figure 4. Structural comparison of EchA6, evidence for binding
of GSK951A, and comparison of the mode of binding between THPP
compounds. (PDF, 549 KB)

(a) Superposition of the EchA6 monomer (rainbow colored – N-terminal blue, C-54 terminal red) and Rattus norvegicus enoyl-CoA hydratase (RnECH, grey ribbon, PDB 55 entry $1DUB^{23}$). (b) Superposition of the active sites of RnECH (1DUB, cyan stick 56 model) and M. tuberculosis EchA8 (3PZK, grey sticks). (c) Stereo diagram of 57 58 unbiased Fo-Fc density (contour level 3.0 σ) of C₂₀-CoA in molecule B of the 59 EchA6:C₂₀-CoA complex. Phases were from the initial refinement of the molecular 60 replacement solution for this complex, prior to incorporation of the ligand in the 61 structural model. (d) Stereo diagram of unbiased Fo-Fc density (contour level 2.5 σ) 62 of GSK951A in molecule B of the EchA6 trimer, calculated using model phases prior 63 to incorporation of the ligand model in the coordinates and amplitudes of the 64 EchA6:GSK951A complex. (e-g) Superposition of GSK951A with THPP compounds 65 GSK059A (e), GSK366A (f) and GSK572A (g). GSK059A lacks the trifluoromethyl 66 group and has a methyl instead. (h) Unbiased Fo-Fc density (contour level 3.0 σ) of 67 the bait compound GSK729A, calculated with model phases prior to incorporation of the ligand in the coordinates and structure factor amplitudes of the EchA6:GSK729A 68 69 complex. Color coding of atoms: N, dark blue; O, red; F, pale cyan. Carbon atoms are 70 colored according to inhibitor: GSK951A, cyan; GSK366A, grey; GSK059A, green; 71 GSK572A, orange.

73 Supplementary Figure 5. Predicted functional partners of EchA6 based on
 74 database mining by STRING²⁹. (PDF, 1.0 MB)

75	(a) Interaction network for EchA6 of <i>M. tuberculosis</i> H37Rv. FadB2 and FadB3, 3-
76	hydroxybutyryl-CoA dehydrogenases; FadB, fatty oxidation protein; FadD11, fatty
77	acid-CoA ligase; AccBC, acetyl-/propionyl-CoA carboxylase β-subunit; FadE5,
78	FadE15, FadE24, FadE25 and FadE36, acyl-CoA dehydrogenases. (b) Interaction
79	network for EchA6 of M. leprae Br4923. B1306.06c, 3-hydroxyisobutyryl-CoA
80	hydrolase; FadE23, putative acyl-CoA dehydrogenases; FadA and FadA4, acetyl-CoA
81	acetyltransferases; EftB, electron transfer flavoprotein β -subunit. All other proteins as
82	in panel a. Connecting lines are color coded as follows: green, genome
83	neighbourhood; red, gene fusion; blue, co-occurrence; black, co-expression;
84	turquoise, databases; yellow-green, text mining.
85	
86	Supplementary Figure 6. Original scans for all Western and TLC data. (PDF, 8.8
87	MB)
88	
89	Supplementary Table 1. 6-plexed Chemoproteomics Experiment #1 (.xlsx, 225
90	KB)
91	
92	Supplementary Table 2. 6-plexed Chemoproteomics Experiment #2 (.xlsx, 193
93	KB)
94	
95	Supplementary Table 3. 6-plexed Chemoproteomics Experiment #3 (.xlsx, 184
96	KB)
97	
98	Supplementary Table 4. Ligand binding for EchA6 and EchA6 ^{W133A} probed by
99	intrinsic tryptophan fluorescence. (PDF, 75.0 KB)

100 N.D. – not determined due to failure of non-linear fitting

101

102 Supplementary Table 5. Crystallographic data and refinement statistics. (PDF,

- 103 88.0 KB)
- ¹⁾Values in parenthesis refer to the high resolution shell. ²⁾ The Ramachandran plot
- 105 distribution was calculated using Molprobity.

106

107 Supplementary Table 6. EchA paralogues across mycobacterial genomes. (PDF,

- 108 78.0 KB)
- 109 ¹⁾ EchA paralogues with conserved catalytic carboxylates required for enoyl-CoA
- 110 hydratases activity in bold.
- 111
- 112 Supplementary Table 7. The primers used in this study. (PDF, 51.0 KB)

Figure 3a (left panel)

Figure 3c (left panel)

Figure 3c (right panel)

Supplementary Figure 2 GSK540A (left panel)

Supplementary Figure 2 BM212 (left panel)

Supplementary Figure 2 SQ109 (left panel)

Figure 3a (right panel)

Supplementary Figure 1c (left panel)

Supplementary Figure 2 GSK540A (right panel)

-

Supplementary Figure 1b

Supplementary Figure 2 BM212 (right panel)

Supplementary Figure 2 SQ109 (right panel)

Figure 3b Supplementary Figure 2 GSK951A (right panel)

Supplementary Figure 1c (right panel)

Supplementary Figure 1d

Supplementary Figure 2 GSK951A (left panel)

Supplementary Figure 3

	Supplementary Table 2: 6-plexed Chemoproteomics Experiment #2				sample 1 immobilized cpd: GSK72	9, 0.05 mM	im	mobilized (replic	sample 2 cpd: GSK729, 0.05 mM cate of sample 1)		immobilized rebinding of non	sample 3 I cpd: GSK729, 0.05 mM bound fraction from sam	M mple 1	immobilized rebinding of nonb	sample 3 cpd: GSK729, 0.05 mM ound fraction from sample	2	immobilized competing	sample 5 cpd: GSK729, 0.05 mM cpd: GSK729 100 µM	immobi	sample 6 ized cpd: GSK729, 0.05 eting cpd: GSK729 10 µ	mM M
Name	Protein description MW	no_of_Qu Spectra	ant. no_of_Qu Uniq. Pep	ant. fold ch tides sample	nange vs. sum ion area e 6	peptides	fold chan sample 6	ge vs su	m ion area peptides	fo sa	old change vs si ample 6	um ion area peptide:	es fo	old change vs su ample 6	n ion area peptides	fold cl sampl	hange vs. su le 6	im ion area peptides	fold change v sample 6	s sum ion area pept	ides
BCG_0957	PUTATIVE ENOYL-COA HYDRATASE ECHA6	26029	112	25	3.3 584,436,13	0 3	40	4.4	779,484,564	340	3.62	640,389,271	340	4.03	713,406,153	340	0.19	34,856,268	340	1 176,632,181	340
BCG_0717	DNA-DIRECTED RNA POLYMERASE (BETA' CHAIN)	146710	42	40	0.81 115,893,70	2	77	0.87	124,513,275	77	0.66	94,378,346	77	0.9	129,054,177	77	1.17	167,282,340	77	1 143,616,796	77
BCG_2801C	BIFUNCTIONAL PROTEIN POLYRIBONUCLEOTIDE	79735	33	25	0.87 147,364,5	0	60	0.84	143,354,793	60	0.76	129,221,064	60	0.77	130,357,722	60	0.99	168,159,585	60	1 169,721,489	60
BCG_0716	DNA-DIRECTED RNA POLYMERASE SUBUNIT BET/	129236	28	25	0.92 99,227,5	1	55	0.84	90,077,159	55	0.7	74,775,026	55	0.9	95,828,154	55	1.13	120,927,401	55	1 107,201,170	55
BCG_0956C	PUTATIVE ACETYL-COENZYME A CARBOXYLASE (51772	17	17	0.94 44,883,4	6	31	1.29	61,734,500	31	0.75	35,753,984	31	0.9	42,798,433	31	1	47,836,684	31	1 47,929,367	31
BCG_3522C	PUTATIVE DNA-DIRECTED RNA POLYMERASE (ALI	37706	16	13	0.91 74,985,1	2	32	0.99	80,420,382	32	0.89	72,501,204	32	0.96	78,128,799	32	1.03	84,533,153	32	1 81,680,675	32
BCG_3323C	DUTATIVE SUS REDOJONE PROTEIN DNAK	23470	10	12	0.89 93,779,24		24	1.00	47 462 820	21	0.92	30,6323,002	21	0.02	107,200,242	21	1.03	38,088,048	24	42,004,752	21
BCG_0389	UVDOTWETICAL INTEGRAL MEMBRANE PROTEIN	63512	14	14	0.72 31,002,0	6	34	0.94	47,102,029 32,652,606	34	0.91	27 004 773	34	0.93	31 024 608	34	0.00	30,000,010	34	1 24 764 206	34
BCG 2464C	PUTATIVE RIBONUCLEASE E RNE	103390	13	11	1.16 28.300.3	3	28	1.15	28.226.678	28	0.93	22.680.779	28	0.99	24.389.859	28	1.41	34.361.847	28	1 24.483.122	28
BCG 1357	PUTATIVE TRANSCRIPTION TERMINATION FACTO	65133	12	12	0.68 19.876.8	6	32	0.67	19.644.476	32	0.65	18.978.875	32	0.78	22.865.620	32	1.11	32,777,350	32	1 29.403.035	32
BCG_1668	PUTATIVE RIBOSOMAL PROTEIN S1 RPSA	53232	12	9	0.67 31,267,98	1	24	0.94	44,262,614	24	0.98	46,213,597	24	0.85	39,405,984	24	1.13	52,580,500	24	1 46,991,599	24
BCG_0437C	PUTATIVE ACYL-COA DEHYDROGENASE FADE7	42297	11	9	0.85 72,867,8	6	16	1.01	86,587,245	16	0.87	74,909,461	16	1.21	103,918,626	16	0.99	85,183,072	16	1 85,974,492	16
BCG_3007C	PUTATIVE DNA-BINDING PROTEIN HU HOMOLOG F	21292	10	6	1.72 154,913,93	0	20	1.24	111,374,044	20	0.85	76,428,523	20	1.14	102,188,980	20	1.17	104,899,060	20	1 89,894,527	20
BCG_3238	PUTATIVE ATP-DEPENDENT RNA HELICASE RHLE	56703	10	10	0.92 27,581,00	6	17	1.01	29,995,584	17	0.95	28,532,792	17	0.99	29,450,561	17	1.37	40,982,989	17	1 29,821,454	17
BCG_3524C	PUTATIVE 30S RIBOSOMAL PROTEIN S11 RPSK	14771	8	6	1.02 74,808,93	1	13	1.11	81,029,220	13	1.01	74,437,798	13	1.3	95,093,512	13	1.21	88,657,921	13	1 73,614,113	13
BCG_0757	PUTATIVE 30S RIBOSOMAL PROTEIN S3 RPSC	30020	8	8	1 25,777,2	2	22	1.44	38,198,563	22	1.35	34,856,935	22	1.69	44,077,197	22	1.43	36,857,830	22	1 25,843,896	22
BCG_3488C	10 KDA CHAPERONIN GROES	10804	8	8	1.98 82,438,2	0	9	2.37	99,127,695	9	1.42	59,145,809	9	1.35	55,864,346	9	1.82	75,887,902	9	1 41,687,542	9
BCG_2859C	PUTATIVE TRANSLATION INITIATION FACTOR IF-2	94041	8	4	1.05 17,392,18	0	23	1.04	17,080,778	23	0.95	15,553,029	23	1.4/	24,207,357	23	1.85	30,516,723	23	1 16,521,695	23
BCG_04/9	50 KDA CHAPERONIN 2 GROEL2	56/2/ 34500	-	-	0.56 18,020,2	3 . F	29	0.59	18,975,455	29	0.51	16,217,001	29	0.87	27,753,061	29	1.14	36,644,112	29	1 32,285,669	29
BCG_2447	DUTATIVE FOR DIROPONAL DROTEINLA DRIA	21000	6	6	0.00 0.001.01	0	17	1.13	23,000,014	42	1.02	21,412,030	42	1.00	22,007,920	49	0.05	0.440.070	17	1 20,047,007	12
BCG_0090	DITATIVE 3.0YOACYL.ACYL.CAPPIER PROTEINT	46930	6	6	0.89 0,961,0	5 6	10	0.55	6 842 445	10	0.0	6,113,000	10	1.19	15,035,012	10	1.04	12 042 185	10	1 12 571 801	10
BCG_0006	DI ITATIVE 30S DIBOSOMAL DROTEIN \$18.1 DOSP1	9543	6	6	1 12 28 873 2	3	10	0.97	24 202 124	10	0.43	22 221 072	10	1.41	26 250 262	10	1.15	20,025,572	10	1 25 661 379	10
BCG_0752	PUTATIVE 50S RIBOSOMAL PROTEIN L4 RPLD	23743	6	6	0.76 12.963.16	5	12	0.98	16 747 963	12	1.09	18 466 335	12	0.98	16 874 198	12	1.26	21 576 211	12	1 17 140 946	12
BCG_3269C	PUTATIVE PREPROTEIN TRANSLOCASE SUBUNIT	106022	6	6	1.04 5,991,30	7	16	0.8	4,667,807	16	0.82	4,707,328	16	1.04	5,998,369	16	1.31	7,652,388	16	1 5,785,030	16
BCG_3863C	PUTATIVE FATTY-ACID-COA LIGASE FADD32	69260	5	5	1 5,763,98	1	12	0.74	4,265,874	12	1.01	5,858,425	12	0.99	5,711,968	12	0.78	4,459,127	12	1 5,783,282	12
BCG_3008C	PUTATIVE 3-ISOPROPYLMALATE DEHYDRATASE \$	21780	5	5	0.84 6,810,68	5	5	0.93	7,533,575	5	0.76	6,181,259	5	0.97	7,903,264	5	0.87	7,095,900	5	1 8,126,149	5
BCG_1595	PUTATIVE FATTY ACYL-COA REDUCTASE	36821	5	5	0.92 20,096,15	δ	9	0.81	17,693,711	9	0.71	15,488,336	9	1.23	26,906,753	9	1.04	22,635,061	9	1 21,813,354	9
BCG_0516	HEPARIN BINDING HEMAGGLUTININ HBHA	21534	5	5	0.87 17,425,2	7	9	0.97	19,428,798	9	0.73	14,551,654	9	0.89	17,836,914	9	1.11	22,141,638	9	1 20,004,495	9
BCG_0780	HYPOTHETICAL PROTEIN	25980	5	5	1.07 13,375,0	6	9	1.29	16,089,333	9	0.8	10,012,397	9	1.15	14,373,935	9	1.18	14,776,931	9	1 12,517,917	9
BCG_3704C	DNA TOPOISOMERASE I TOPA	102370	5	5	1.08 12,079,16	6	26	1.11	12,184,585	26	0.82	9,230,913	26	1.02	11,376,411	26	1.22	13,679,046	26	1 11,233,520	26
BCG_1680	PUTATIVE INITIATION FACTOR IF-3 INFC	22349	5	5	1.06 16,060,49	7	10	0.78	11,867,874	10	0.84	12,705,926	10	1.11	16,778,180	10	1.3	19,706,601	10	1 15,164,761	10
BCG_3127C	PUTATIVE CELL DIVISION ATP-BINDING PROTEIN I	25596	5	5	1.03 6,357,93	5	9	0.85	5,208,584	9	1.21	7,477,020	9	1.35	8,289,120	9	1.41	8,664,997	9	1 6,158,589	9
BCG_0084	PUTATIVE 30S RIBOSOMAL PROTEIN S6 RPSF	10935	4	4	0.85 2,489,22	1	7	1.38	4,016,916	7	0.69	1,997,838	7	1.42	4,130,902	7	0.84	2,451,107	7	1 2,914,120	7
BCG_3662C	PUTATIVE LSR2 PROTEIN PRECURSOR	12098	4	4	0.99 4,728,38	1	10	0.85	4,058,255	10	1.06	5,080,533	10	1.15	5,508,663	10	0.89	4,282,565	10	1 4,791,310	10
BCG_3904	PUTATIVE BACTERIOFERRITIN BERB	20442	4	3	1 6,603,04	2	4	1.12	7,360,748	4	0.91	6,021,977	4	1.19	7,856,254	4	0.96	6,348,024	4	1 6,587,410	-
BCG_0750	305 RIBUSUMAL PROTEIN STURPSJ (TRANSCRIPT	11431	4	3	1.23 13,129,4	U 6	-	1.07	11,404,262		0.95	7 804 445		1.19	12,771,723	-	1.05	11,231,300		1 10,700,139	
BCG_0751	DI ITATIVE 202 DIBOSOMAL PROTEIN 22 DDSB	23090	4	7	0.85 5.006.7	3	10	0.88	6 253 702	10	0.91	6 226 680	10	1.06	7 500 075	10	1.26	9,470,902	10	1 7.046.409	10
BCG 2852	DUTATIVE SHOPT, CHAIN TYPE DEHYDROGENASE	27469	4	-	1 16 2 655 7	8	4	0.31	717 105	4	0.75	1 716 898	4	1.00	2 693 003	4	13	2 957 521	4	1 2 281 981	10
BCG 2243	HYPOTHETICAL PROTEIN	56332	4	4	1.67 2.713.4	9	7	1.84	2.996.500	7	0.42	678.269	7	1.78	2.892.943	7	1.56	2.538.273	7	1 1.626.615	7
BCG 1676	EXCINUCLEASE ABC. SUBUNIT A UVRA	106132	3	3	0.19 380.2	3	10	0.68	1.338.692	10	0.27	538.015	10	0.38	747.802	10	0.32	627.849	10	1 1.963.700	10
BCG_0504C	HYPOTHETICAL PROTEIN	21305	3	3	1.01 9,633,36	8	3	0.63	5,985,824	3	0.82	7,801,373	3	1.36	12,957,745	3	0.77	7,400,899	3	1 9,548,433	3
BCG_2768C	HYPOTHETICAL PROTEIN	59532	3	3	0.72 8,076,25	9	3	0.8	9,027,629	3	0.54	6,096,935	3	0.82	9,177,268	3	0.94	10,604,054	3	1 11,241,319	3
BCG_0183	PUTATIVE ALDEHYDE DEHYDROGENASE (NAD+) [55035	3	3	0.62 3,569,50	0	13	1.07	6,110,749	13	0.88	5,034,746	13	0.73	4,150,407	13	0.95	5,452,738	13	1 5,715,073	13
BCG_3487C	60 KDA CHAPERONIN 1 GROEL1	55877	3	3	0.84 3,569,55	1	8	0.46	1,939,798	8	0.42	1,794,534	8	0.82	3,469,544	8	0.99	4,188,503	8	1 4,241,954	8
BCG_2962C	PUTATIVE MULTIFUNCTIONAL MYCOCEROSIC ACI	224396	3	3	0.71 4,148,43	8	11	1.13	6,549,409	11	0.53	3,108,438	11	0.87	5,045,389	11	1.02	5,941,255	11	1 5,814,896	11
BCG_3521C	PUTATIVE 50S RIBOSOMAL PROTEIN L17 RPLQ	19475	3	3	0.79 5,605,73	4	4	0.93	6,561,208	4	0.86	6,082,612	4	0.92	6,494,061	4	1.15	8,127,840	4	1 7,073,952	4
BCG_0767	PUTATIVE 30S RIBOSOMAL PROTEIN S14 RPSN1	6825	3	1	2.19 5,437,5	6	4	2.22	5,510,842	4	1.45	3,600,908	4	2.69	6,678,362	4	1.43	3,537,849	4	1 2,477,486	4
BCG_260/C	ADENINE PHOSPHORIBUSTLI RANSFERASE APT	23240	3	3	1.03 3,956,98	9	5 40	1.68	6,490,680	40	0.78	3,018,986	40	1.23	4,743,091	40	1.46	5,613,897	D 40	1 3,856,162	40
BCG_0771	MEROMACOLATE EXTENSION ACVL CARRIER DRC	12524	3	2	2.4 20.267.2	6 6	4	3.43	28 950 202	12	1.63	12,473,039	12	2.97	10,442,270	4	2.08	17 521 802	4	1 12,041,404	12
BCG_0022C	DITATIVE CHROMOSOME PARTITIONING PROTEIN	37018	2	2	0.95 1.717.7	6		0.62	1 134 202		1.00	0		1.82	3 304 326		2.00	0		1 1 816 704	
BCG_0622	HYPOTHETICAL PROTEIN TR27.3	27343	2	2	0.87 866.0	2	3	0.02	0	3	2.52	2 523 344	3	0.93	935 754	3	0	0	3	1 1 001 119	3
BCG_0772	PUTATIVE 50S RIBOSOMAL PROTEIN L30 RPMD	7347	2	2	1.94 873,22	1	2	1.48	667,318	2	2.11	953,019	2	2.28	1,027,885	2	0	0	2	1 450,487	2
BCG_3270C	HYPOTHETICAL PROTEIN	24567	2	2	1.86 2,082,76	3	4	1.16	1,306,045	4	0.43	487,281	4	1.97	2,212,882	4	0	0	4	1 1,121,868	4
BCG_2183C	HYPOTHETICAL PROTEIN	15912	2	2	0.38 585,85	1	5	0.8	1,213,064	5	1.05	1,605,428	5	1.5	2,280,626	5	0.11	172,009	5	1 1,522,500	5
BCG_0770	PUTATIVE 50S RIBOSOMAL PROTEIN L18 RPLR	13184	2	2	0.65 5,269,74	2	4	0.69	5,581,176	4	0.7	5,693,091	4	0.69	5,598,605	4	0.51	4,112,493	4	1 8,105,754	4
BCG_0963	HYPOTHETICAL PROTEIN	27627	2	2	0.87 3,624,3	7	5	0.72	2,976,761	5	0.76	3,156,759	5	0.88	3,631,703	5	0.59	2,440,274	5	1 4,142,748	5
BCG_0701	PUTATIVE 50S RIBOSOMAL PROTEIN L7/L12 RPLL	13440	2	2	0.3 622,9	8	4	0.85	1,746,389	4	1.64	3,374,214	4	0.56	1,148,538	4	0.68	1,390,819	4	1 2,059,831	4
BCG_3009C	PUTATIVE 3-ISOPROPYLMALATE DEHYDRATASE L	50199	2	2	0.47 2,661,0	7	7	0.76	4,327,239	7	0.83	4,705,067	7	0.8	4,523,338	7	0.7	3,981,023	7	1 5,676,117	7
BCG_3915	PUTATIVE HISTONE-LIKE PROTEIN HNS	13823	2	2	0.84 3,553,10	0	2	0.87	3,664,132	2	0.72	3,042,144	2	1.02	4,299,548	2	0.81	3,429,665	2	1 4,230,022	2
BCG_3142	PUTATIVE THIOSULFATE SULFURTRANSFERASE (35999	2	2	0.84 6,073,80	9	6	0.96	6,927,817	6	0.95	6,852,531	6	1.11	8,035,866	6	0.82	5,952,770	6	1 7,225,872	6
BCG_1798	PUTATIVE CUTINASE CUT1	21999	2	1	0.96 3,018,3	2	2	0.91	2,883,511	2	0.83	2,607,175	2	0.96	3,016,357	2	0.83	2,622,816	2	1 3,151,752	2
BCG_1964	PUTATIVE AUTL-CUA LIGASE FADD31	66310	2	2	0.51 1,758,3	-	4	U.67	2,335,956	4	0.81	2,828,664	4	0.59	2,054,499	4	0.89	3,034,359	4	1 3,481,750	4
BCG_0/34	DUTATIVE ELONGATION PACTOR TO TUP (EP-TU)	43034	4	4	0.09 4,453,9	0 ¢	-	0.00	4,200,000	4	0.55	3,034,040	4	0.27	1,700,300	-	1.05	0,011,100	*	1 0,4d0,318	4
BCG_2462C	PUTATIVE JUS RIBUSUMAL PROTEIN L21 RPLU	20825	2	2	0.5 3,544,10	6 6	4	1.11	⇒,6/8,585 8 337 887	2	1	6 357 036	2	0.87	0,031,105	2	1.14	0,039,184	4	1 7,041,483	2
BCG 2017	UVDOTHETICAL PROTEIN	50805	2	2	0.00 0,000,00		6	1.27	1 550 028		0.63	649 510		1.21	1 602 216	6	1.61	1 063 506	6	1 1 219 220	
BCG 0050C	HYPOTHETICAL PROTEIN TB39 8	56003	2	2	1.02 1.095 38	6	7	2.02	2.164.298	7	2.04	2.180.517	7	2.49	2.661.116	7	2.1	2.247.070	7	1 1.069.946	7
BCG_3118C	PUTATIVE OXIDOREDUCTASE	34649	2	2 n.d.	1,023.6	9	2 n.d.		0	2 n.	d.	0	2 n	.d.	750,346	2 n.d.		681,318	2 n.d.	0	2

	Supplementary Table 1: 6-plexed Chemoproteomics Experiment #1			immobilize competing	sample 1 ed cpd: GSK729, 2mM cpd: GSK729 100 µM		sample 2 immobilized cpd: GSK729, 2mM competing cpd: GSK730, 100 µM	immobi cr	sample a ilized cpd: GSK729, 2mM ompeting cpd: none		sample 4 immobilized cpd: GSK730, 2mM competing cpd: GSK729, 100 µM		sample 5 immobilized cpd: GSK730, 2mM competing cpd: GSK730 100 µM	imm	sample 6 obilized cpd: GSK730 competing cpd: none
łame	Protein description N	IW no nt.	o_of_Qua no_of_Qua f . Spectra nt. Uniq. Peptides	fold change su vs sample 3	m ion area peptides	fold sam	change vs sum ion area peptides ple 3	fold change vs fold ch sample 6 sample	ange vs sum ion area peptides 3	fold ch sample	nge vs sum ion area peptide 6	s fold sam	change vs sum ion area peptides ple 6	fold change sample 6	rs sumionarea p
CG_0957 CG_1367 CG_3238	PUTATIVE ENOYL-COA HYDRATASE ECHA6 PUTATIVE ATP SYNTHASE DELTA CHAIN ATPH PUTATIVE ATP-DEPENDENT RNA HEI ICASE RHI F	26029 48806 56703	344 26 2 1 26 20	0.08 0.58 1 11	22,561,852 32,943 15.628,958	524 4 35	0.84 227,297,647 0.46 26,093 1.18 16,591 489	524 11.09 4 2.27 35 2.19	1 272,611,013 1 57,247 1 14,006,490	524 4 35	0.49 12,115,720 1.16 29,111 2.56 16,361,831	524 4 35	0.52 12,721,330 1.95 49,022 1.62 10.363.466	524 4 35	1 24,576,703 1 25,192 1 6,390,235
CG_0963 CG_2261	HYPOTHETICAL PROTEIN MEROMYCOLATE EXTENSION ACYL CARRIER PROTEI	27627	3 3 2 1	0.87	1,816,722 380,655	3 2	1.81 3,794,322 1.19 302,892	3 2.06 2 1.94	1 2,091,866 1 254,747	3 2	0.31 312,711 1.64 215,222	3 2	2.05 2,079,214 1.6 209,948	3	1 1,015,038 1 131,455
CG_0751 CG_3965	PUTATIVE 50S RIBOSOMAL PROTEIN L3 RPLC HYPOTHETICAL PROTEIN	23090 27171	15 12 10 10	1.4 1.31	10,675,857 7,664,819	18 10	1.48 11,327,314 1.28 7,496,556	18 1.89 10 1.74	1 7,623,841 1 5,874,225	18 10	2.44 9,878,390 2.25 7,560,717	18 10	1.64 6,625,638 1.47 4,957,715	18 10	1 4,039,291 1 3,381,993
CG_0760 CG_1313	PUTATIVE 50S RIBOSOMAL PROTEIN S17 RPSQ PUTATIVE COLD-SHOCK DEAD-BOX PROTEIN A HOMC	14872 61421	4 3 3 3	1.17	4,988,692 1,270,986	4 5	1.42 6,067,778 1.26 1,467,684	4 1.68 5 1.59	1 4,260,958 1 1,164,843	4 5	1.9 4,824,421 1.59 1,169,044	4	1.43 3,635,661 1.5 1,097,041	4 5	1 2,541,184 1 733,016
8CG_1624 8CG_2768C	HYPOTHETICAL PROTEIN HYPOTHETICAL PROTEIN	18100 59532	4 4 10 10	1.03	1,953,733 7,837,771	7	0.98 1,861,725 0.79 7,356,198	7 1.58 10 1.52	1 1,898,355 1 9,350,016	7	1.53 1,835,953 1.38 8,399,679	7	1.5 1,800,512 1.05 6,416,461	7	1 1,200,192 1 6,137,718
CG_3525C CG_2229	PUTATIVE 30S RIBOSOMAL PROTEIN S13 RPSM PUTATIVE AMINOPEPTIDASE PEPB	14351 53447	21 17	0.76	18,260,366 2,332,491	33 6	1.09 20,013,882 0.78 2,387,504	33 1.52 6 1.42	1 18,195,430 1 3,050,887	33 6	1.5 17,996,864 1.4 3,018,078	33 6	1.17 13,992,606 0.99 2,123,093	33 6	1 11,960,179 1 2,155,107
CG_2801C	BIFUNCTIONAL PROTEIN POLYRIBONUCLEOTIDE NUC	79735	79 43	0.91	52,271,945	116	0.82 46,871,956	116 1.41	1 57,568,748	116	1.3 52,870,601	116	1 40,815,704	116	1 40,756,167
CG_0437C	PUTATIVE ACYL-COA DEHYDROGENASE FADE7	42297	22 17	0.86	17,989,359	30	0.84 17,564,499	4 1.41 30 1.40 55 1.38	1 20,864,561	30 55	1.45 21,834,552 1.76 23,801,397	30	0.98 14,630,595	30	1 14,909,916
CG_2550	HYPOTHETICAL PROTEIN HITATIVE KIS DIBOSOMAL DROTEIN L11 PDLK	50192	8 8 12 11	1.11	7,102,687	9	1.11 29,323,000 1.14 7,245,925 1.07 12,002,970	9 1.38	1 6,364,650	9	1.63 7,549,463	9	1.3 6,023,058	9	1 4,627,183 1 8,175,776
CG_3009C	PUTATIVE 3-ISOPROPYLMALATE DEHYDRATASE LAR(PUTATIVE ACETYL-COENZYME A CARBOXYLASE CAR	50199	4 4	0.78	1,354,743	6	0.57 986,181	6 1.37 23 1.35	1 1,737,418	6	1.11 1,401,610 1.43 10,291,475	6 23	1 1,275,598	6 23	1 1,270,764
CG_0516 CG_2800C	HEPARIN BINDING HEMAGGLUTININ HBHA PUTATIVE ZINC PROTEASE PEPR	21534 47072	5 5	1	6,010,458	9	1 6,026,653 1.16 4.450.095	9 1.35 11 1.34	1 6,024,311 1 3,813,531	9	1.49 6,630,503 1.54 4,369,064	9	1.23 5,524,738 1.21 3,434,410	9	1 4,457,046 1 2,849,518
CG_3904 CG_0389	PUTATIVE BACTERIOFERRITIN BFRB PUTATIVE CHAPERONE PROTEIN DNAK	20442 66831	4 3 22 19	0.97	3,178,911 26.642,757	4	0.9 2,959,060 0.73 21,230,793	4 1.32 42 1.32	1 3,278,110 1 28,963,178	4	0.89 2,201,259	4	0.97 2,411,489	4	1 2,478,522
CG_0701 CG_3277C	PUTATIVE 50S RIBOSOMAL PROTEIN L7/L12 RPLL (SA PUTATIVE ADENOSYLHOMOCYSTEINASE SAHH	13440 54324	9 8 5 5	1.22 1.44	11,697,068 5,432,753	10 9	1.28 12,130,847 0.94 3,555,292	10 1.30 9 1.30	1 9,557,224 1 3,787,110	10 9	1.04 7,598,097 0.92 2,679,529	10 9	1.22 9,019,248 1.18 3,435,480	10 9	1 7,332,765 1 2,923,280
CG_0700 CG_1812C	PUTATIVE 50S RIBOSOMAL PROTEIN L10 RPLJ HYPOTHETICAL INTEGRAL MEMBRANE PROTEIN	18478 63512	13 12 40 28	1 0.91	12,412,153 21,765,889	17 49	1.15 14,206,782 0.79 18,959,698	17 1.29 49 1.29	1 12,327,374 1 23,862,901	17 49	1.04 9,951,194 1.2 22,297,962	17 49	0.96 9,115,494 1.18 22,275,268	17 49	1 9,545,845 1 18,565,322
CG_0929 CG_0773	HYPOTHETICAL PROTEIN PUTATIVE 50S RIBOSOMAL PROTEIN L15 RPLO	27469 15521	3 2 8 8	0.64 1.49	596,200 6,540,582	3 12	0.67 622,696 1.34 5,930,384	3 1.28 12 1.25	1 934,459 1 4,316,657	3 12	0.96 702,673 1.6 5,579,746	3 12	0.64 470,289 1.17 4,095,609	3 12	1 732,563 1 3,451,596
CG_2371C CG_2237	PUTATIVE GLYCYL-TRNA SYNTHETASE GLYS GLUTAMINE SYNTHETASE GLNA1	52938 53570	13 12 4 4	0.81	9,965,212 4,614,839	20 7	0.87 10,709,397 1.02 3,925,938	20 1.24 7 1.24	1 12,315,657 1 3,864,811	20 7	1.15 11,435,330 0.97 3,027,127	20 7	1.01 9,943,903 1.12 3,486,681	20 7	1 9,897,397 1 3,116,077
CG_0758 CG_0732	PUTATIVE 50S RIBOSOMAL PROTEIN L16 RPLP PUTATIVE 30S RIBOSOMAL PROTEIN S7 RPSG	15692 17600	8 6 18 16	2.03 1.02	4,823,549 13,841,494	11 28	2.02 4,835,082 1.13 15,580,505	11 1.23 28 1.23	1 2,429,915 1 13,751,663	11 28	2.72 5,356,343 1.16 12,937,735	11 28	1.51 2,978,556 0.92 10,208,127	11 28	1 1,974,731 1 11,196,927
CG_2859C CG_0227	PUTATIVE TRANSLATION INITIATION FACTOR IF-2 INFI HYPOTHETICAL PROTEIN	94041 10365	25 24 2 2	1.23	22,066,124 1,351,694	38 3	1.06 18,863,769 0.95 1,871,713	38 1.22 3 1.22	1 17,870,667 1 1,978,796	38 3	1.51 21,972,264 0.84 1,354,869	38 3	1.33 19,411,761 0.86 1,393,158	38 3	1 14,610,322 1 1,618,368
CG_3508C CG_2461C	PUTATIVE 30S RIBOSOMAL PROTEIN S9 RPSI PUTATIVE 50S RIBOSOMAL PROTEIN L27 RPMA	16436 8968	7 7 4 4	1.32	7,019,943 5,165,073	10 5	1.77 9,439,799 1.39 5,349,935	10 1.22 5 1.22	1 5,343,784 1 3,849,050	10 5	1.61 6,938,039 1.62 5,114,387	10	1.48 6,441,238 1.25 3,937,725	10	1 4,370,956 1 3,152,236
SCG_1357 SCG_3522C	PUTATIVE TRANSCRIPTION TERMINATION FACTOR RI PUTATIVE DNA-DIRECTED RNA POLYMERASE (ALPHA	65133 37706	24 20 10 7	0.94	16,545,771 5,567,630	31 14	0.87 15,381,229 1.01 5,698,760	31 1.22 14 1.21	1 17,528,236 1 5,666,866	31 14	1.14 16,332,870 1.04 4,841,164	31 14	1.03 14,682,035 1.08 5,049,631	31 14	1 14,406,138 1 4,667,735
CG_2744 CG_0753	HYPOTHETICAL ALANINE AND ARGININE RICH PROTE PUTATIVE 50S RIBOSOMAL PROTEIN L23 RPLW	49796	2 2 8 7	0.94	2,111,825 4,724,966	10	0.87 1,962,867 1.35 5,816,545	3 1.21 10 1.21	1 2,251,046 1 4,315,111	3 10	1.12 2,087,952 1.26 4,490,710	3	1.01 1,879,355 1.13 4,036,410	3	1 1,861,575 1 3,573,696
CG_0613 CG_3118C	PUTATIVE CYTOLCHROME P450 13581 CTP13581 PUTATIVE OXIDOREDUCTASE	34649	4 3	0.56	564,190	5	0.76 554,538 0.88 880,386	6 1.20 5 1.20	1 729,624 1 1,000,700 1 6,511,404	5	1.48 893,309 0.85 706,057	5	0.75 627,091	5	1 605,588 1 832,315
CG_2112C	PUTATIVE ATP-DEPENDENT DNA HELICASE HELY HYPOTHETICAL PROTEIN	99636	20 18	1.05	12,919,583 1 319 639	29 8	0.85 10,365,290	29 1.19 8 1.19	1 12,292,147 1 1538,534	29 8	1.2 12,330,655 0.97 1.268.900	29 8	0.97 9,950,431	29	1 10,305,243 1 1300 Pd 1
CG_2930C	PUTATIVE 30S RIBOSOMAL PROTEIN S16 RPSP PUTATIVE RIBOSOMAL PROTEIN S1 RPSA	17437	5 4 39 30	1.37	2,044,595	8	1.71 2,587,541 0.86 32,301.446	8 1.17 45 1.17	1 1,506,379 1 37,782,880	8 45	1.49 1,907,296 1.1 35,579,990	8 45	1.69 2,160,949	8	1 1,288,521 1 32,346,561
CG_0757 CG_1947C	PUTATIVE 30S RIBOSOMAL PROTEIN S3 RPSC CATALASE-PEROXIDASE-PEROXYNITRITASE T KATC	30020 80562	29 23 2 2	1.15	20,937,601 857.718	38 2	1.27 23,107,598 0.81 634,849	38 1.17 2 1.14	1 18,276,014 1 780,604	38 2	1.72 27,074,385 1.01 690,945	38 2	1.4 22,026,033 0.97 663,829	38 2	1 15,686,041 1 685,885
CG_3008C	PUTATIVE 3-ISOPROPYLMALATE DEHYDRATASE SMA EXCINUCLEASE ABC, SUBUNIT A UVRA	21780 106132	4 3 17 15	0.94	1,310,163 10,811,474	4 20	0.89 1,236,237 0.81 8,941,967	4 1.12 20 1.12	1 1,388,789 1 11,071,180	4 20	0.84 1,040,808 1.31 12,922,185	4 20	0.86 1,068,104 1.03 10,187,747	4 20	1 1,235,320 1 9,879.593
CG_2135C CG_0754	PUTATIVE RNA METHYLTRANSFERASE PUTATIVE 50S RIBOSOMAL PROTEIN L2 RPLB	30123 30577	6 6 12 9	1.45	6,509,639 7,579,456	6 22	1.36 6,069,361 1.75 10,913,730	6 1.11 22 1.11	1 4,487,631 1 6,218,048	6 22	1.54 6,231,228 1.01 5,676,208	6 22	1.24 4,991,770 1.78 9,986,124	6 22	1 4,041,563 1 5,602,194
CG_1389C CG_0690	PUTATIVE GLUCANASE GLGE PUTATIVE 50S RIBOSOMAL PROTEIN L1 RPLA	78640 24726	2 2 20 15	1.01 1.14	428,215 19,793,695	2 24	0.84 355,613 1.14 19,737,280	2 1.10 24 1.09	1 422,510 1 17,238,732	2 24	0.79 302,974 1.22 19,331,895	2 24	0.82 312,832 1.01 16,057,050	2 24	1 382,571 1 15,837,968
CG_3524C	PUTATIVE 30S RIBOSOMAL PROTEIN S11 RPSK PUTATIVE 50S RIBOSOMAL PROTEIN L17 RPLQ	14771 19475	7 6 5 4	0.83	6,671,248 4,173,078	9 8	1.15 9,280,505 1 5,069,807	9 1.09 8 1.09	1 8,170,040 1 5,169,765	9 8	1.29 9,607,126 1.21 5,764,551	9 8	1.08 8,097,439 1.26 6,004,958	9 8	1 7,507,668 1 4,754,621
CG_3704C CG_2843C	DNA TOPOISOMERASE I TOPA HYPOTHETICAL PROTEIN	102370 34432	15 11 3 3	1.02	6,934,540 1,919,446	28 6	0.92 6,222,581 0.94 1,997,631	28 1.07 6 1.07	1 6,745,958 1 2,125,236	28 6	1.14 7,152,820 1.05 2,081,709	28 6	1.06 6,600,118 0.89 1,772,943	28 6	1 6,291,654 1 1,984,763
8CG_0510C 8CG_2607C	MYCOLIC ACID SYNTHASE PCAA ADENINE PHOSPHORIBOSYLTRANSFERASE APT	33028 23246	2 2 4 4	0.97	1,665,742 3,257,115	3 5	0.69 1,175,984 1.2 3,638,814	3 1.07 5 1.07	1 1,709,125 1 3,023,967	3 5	1.1 1,757,500 1.54 4,359,919	3 5	0.92 1,475,331 1.3 3,668,330	3 5	1 1,597,138 1 2,831,654
8CG_0770 8CG_0050C	PUTATIVE 50S RIBOSOMAL PROTEIN L18 RPLR HYPOTHETICAL PROTEIN TB39 8	13184 56003	8 7 4 4	1.03	8,215,926 2,093,896	10 5	1.06 8,418,396 0.67 1,723,078	10 1.06 5 1.06	1 7,939,271 1 2,583,908	10 5	1.07 8,015,276 1 2,434,164	10 5	0.98 7,291,690 0.85 2,071,829	10 5	1 7,462,323 1 2,439,383
CG_0200 CG_1453	HYPOTHETICAL PROTEIN TB18 5 PUTATIVE S-ADENOSYLMETHIONINE SYNTHETASE MI	17738 43019	2 2 2 2	0.84 1.35	695,555 1,183,039	4 2	0.82 680,398 0.86 752,647	4 1.06 2 1.06	1 826,178 1 879,515	4 2	0.81 634,784 0.71 592,691	4 2	0.79 617,881 0.84 697,315	4 2	1 781,024 1 833,555
BCG_1072C BCG_1472C	PUTATIVE 50S RIBOSOMAL PROTEIN L25 RPLY PUTATIVE LIPOPROTEIN LPRG	22441 24548	2 1 3 3	0.68	176,176 2,032,290	3 5	0.73 191,470 0.88 1,959,113	3 1.05 5 1.04	1 260,758 1 2,229,651	3 5	0.51 126,830 0.88 1,869,156	3 5	0.65 161,810 0.93 1,980,264	3 5	1 249,496 1 2,136,484
8CG_0716 8CG_0357C	DNA-DIRECTED RNA POLYMERASE SUBUNIT BETA RF PUTATIVE GLYCEROPHOSPHORYL DIESTER PHOSPH	129236 28319	24 21 4 4	1.17	19,140,354 2,280,258	32 4	0.92 14,935,702 1.09 2,717,779	32 1.04 4 1.04	1 16,348,024 1 2,497,824	32 4	0.92 14,339,855 1.25 3,008,626	32 4	1.12 17,636,208 1.04 2,503,610	32 4	1 15,699,407 1 2,404,472
8CG_1813 8CG_2360C	HYPOTHETICAL PROTEIN PUTATIVE MOLYBDOPTERIN BIOSYNTHESIS PROTEIN	20457 35271	8 8 2 2	0.97	4,546,990 1,333,566	8	0.88 4,054,309 1.19 1,151,208	8 1.03 2 1.03	1 4,529,471 1 965,136	8	0.84 3,676,553 1.25 1,170,462	8	0.82 3,574,559 1.08 1,016,318	8	1 4,395,150 1 937,547
SCG_2840C SCG_1681	HYPOTHE TICAL PROTEIN 505 RIBOSOMAL PROTEIN L35 RPMI	25773 7220	2 2 3 2	0.91	1,271,738 2,564,481	6	1.15 1,611,893 1.68 3,277,588	3 1.01 6 1.01	1 1,400,525 1 1,955,825	6	1 1,378,834 1.53 2,955,155	6	0.94 1,295,193 1.09 2,104,019	3	1 1,380,514 1 1,930,688
CG_0755	PUTATIVE JUS RIBUSUMAL PROTEIN STERPSS PUTATIVE MULTIFUNCTIONAL MYCOCEROSIC ACID S'	224396	5 5	1.37	4,237,806	8	1.27 10,761,256 0.84 2,587,265	8 1.00 3 0.00	1 3,084,434	8	0.51 1,574,373	8	1.03 8,715,492	8	1 8,454,342 1 3,087,421
CG_3052C	PUTATIVE ELECTRON TRANSFER FLAVOPROTEIN (BE PUTATIVE 20S RIBOSOMAL PROTEIN S6 RPSF	28081	2 2 5 5	2.25	1,224,570	3	1.04 565,385	3 0.99	1 543,515	3	0.75 411,708	3	1.25 688,152 0.87 3.526,453	3	1 551,441
CG_3252	PUTATIVE SHORT-CHAIN DEHYDROGENASE/REDUCT,	29814	2 2	1.39	1,657,685	2	1 1,185,846	2 0.98	1 1,190,836	2	0.94 1,141,262	2	1.27 1,545,314	2	1 1,212,874
CG_3863C	PUTATIVE FATTY-ACID-COA LIGASE FADD32 PUTATIVE 30S RIBOSOMAL PROTEIN S4 RPSD	69260 23476	5 4	0.85	2,009,077	6	0.85 1,996,226	6 0.96 38 0.96	1 2,353,165	6	0.96 2,339,840	6	0.94 2,289,701 0.89 15 584 058	6	1 2,443,937
CG_0183	PUTATIVE ALDEHYDE DEHYDROGENASE (NAD+) DEPI PUTATIVE 30S RIBOSOMAL PROTEIN S2 RPSB	55035 31089	6 6 11 9	1.07	4,146,828 8,519,527	9 13	1.68 6,535,578 1.06 8,217,342	9 0.96 13 0.96	1 3,863,441 1 7,806,554	9	1.64 6,615,281 1.2 9,853,176	9	1.51 6,103,857 1.04 8,562,248	9 13	1 4,028,901 1 8,167,493
CG_2235 CG_1682	PUTATIVE TRANSMEMBRANE PROTEIN 50S RIBOSOMAL PROTEIN L20 RPLT	26830 14527	8 7 6 6	1.39 1.5	5,726,577 4,744,640	9 12	1.78 7,229,363 1.41 4,447,438	9 0.95 12 0.94	1 4,107,477 1 3,162,950	9 12	1.87 8,012,363 1.63 5,475,228	9 12	1.4 5,942,780 1.29 4,317,207	9 12	1 4,342,837 1 3,372,448
CG_1324 CG_0765	HYPOTHETICAL PROTEIN PUTATIVE 50S RIBOSOMAL PROTEIN L24 RPLX	25230 11475	2 2 4 3	0.9	442,469 3,860,189	3 4	0.79 388,482 1.06 3,872,761	3 0.93 4 0.92	1 489,736 1 3,657,991	3 4	0.94 498,504 0.92 3,670,214	3 4	0.89 467,879 0.98 3,883,938	3 4	1 528,125 1 3,973,630
CG_0767 CG_0717	PUTATIVE 30S RIBOSOMAL PROTEIN S14 RPSN1 DNA-DIRECTED RNA POLYMERASE (BETA' CHAIN) RP(6825 146710	2 1 45 40	1.13 1.31	624,589 34,582,153	4 61	1.31 722,706 1.02 26,909,725	4 0.92 61 0.90	1 550,148 1 26,470,689	4 61	1.1 660,156 1.02 29,786,012	4 61	1.09 649,737 1.19 34,888,297	4 61	1 598,284 1 29,299,144
CG_0078C CG_0391	HYPOTHETICAL PROTEIN PUTATIVE CHAPERONE PROTEIN DNAJ1	20408 41315	2 2 3 3	1.11 0.6	1,472,087 904,448	2 7	0.93 1,228,938 0.87 1,309,512	2 0.90 7 0.89	1 1,322,887 1 1,508,886	2 7	1.1 1,619,669 0.57 967,202	2 7	0.9 1,318,349 0.7 1,185,596	2 7	1 1,469,306 1 1,692,749
CG_0691C ICG_0734	METHOXY MYCOLIC ACID SYNTHASE 4 MMAA4 PUTATIVE ELONGATION FACTOR TU TUF (EF-TU)	34636 43594	3 3 5 4	0.82	1,923,288 3,198,519	4 6	0.73 1,720,277 1.02 1,983,955	4 0.89 6 0.88	1 2,344,162 1 1,945,674	4 6	0.66 1,734,446 0.86 1,885,606	4 6	0.6 1,569,411 1.32 2,912,550	4 6	1 2,632,433 1 2,202,899
CG_2929C CG_0504C	HYPOTHETICAL PROTEIN HYPOTHETICAL PROTEIN	8521 21305	7 5	0.79 0.73	1,780,913 979,834	10	0.88 1,983,412 0.73 973,608	10 0.88 4 0.88	1 2,226,202 1 1,340,437	10	0.69 1,732,148 0.7 1,070,754	10 4	0.67 1,695,910 0.7 1,075,850	10 4	1 2,528,948 1 1,530,202
CG_2428	PUTATIVE 30S RIBOSOMAL PROTEIN S20 RPST PUTATIVE 50S RIBOSOMAL PROTEIN L21 RPLU	9405 11151	8 7 7 5	1.58	11,464,267 5,139,659	9	1.56 11,328,324 1.19 6,131,551	9 0.86 8 0.86	1 7,198,387 1 5,129,042	9	1.19 9,990,740 1.09 6,520,674	9	1.13 9,462,682 0.93 5,586,592	9	1 8,383,780 1 5,978,979
CG_2305	PUTATIVE FAILTY ACYL-COA REDUCTASE PUTATIVE CDP-DIACYLGLYCEROL PYROPHOSPHATA:	36821 28608	10 10	0.93	7,890,734 1,528,054	13	1.09 9,231,124 1.14 1,852,639	1.3 0.84 3 0.83	1 8,463,675 1 1,633,024	13 3	0.87 8,690,043	13 3	0.83 8,353,608	13 3	1 10,036,474 1 1,969,295
CG_2925C	PUTATIVE 50S RIBOSOMAL PROTEIN L19 RPLS	+3055 13013 24246	2 2 9 9 11 ***	0.75	6,759,359 3,978,100	4 11 14	0.94 6,604,559	+ 0.82 11 0.82	1 7,044,061	4 11 14	0.97 8,382,849	11	0.74 701,244 0.76 6,583,601 0.84 4,504,670	11	. 946,402 1 8,638,014
CG_3915	PUTATIVE HISTONE-LIKE PROTEIN HNS HYPOTHETICAL PROTEIN	13823	4 4	1.53	3,250,199	4	1.34 2,842,714	4 0.81	1 2,130,673	4	0.98 2,583,215	4	0.9 2,372,222	4	1 2,645,507
CG_3007C	PUTATIVE DNA-BINDING PROTEIN HU HOMOLOG HUP PUTATIVE 50S RIBOSOMAL PROTEIN L38 RDM I	21292 4343	12 11	1.13	12,376,605	15 3	1.13 12,377,556 0.92 1.400,833	15 0.80 3 0.70	1 11,035,752 1 1518,240	15	0.54 7,315,332	15	1.26 17,173,003 0.6 1181,730	15 3	1 13,840,170 1 1920 284
CG_3509C	PUTATIVE 50S RIBOSOMAL PROTEIN L38 RPIM PUTATIVE ACYLTRANSFERASF	-343 16337 28454	5 5	0.94	3,036,712	7	1.05 3,377,329 1.12 3,405,096	7 0.79 4 0.79	1 3,253,703 1 3,048,064	7	0.79 3,267,399 0.86 3,337,813	7	0.87 3,594,451 0.83 3,215,575	7	1 4,128,536 1 3,874 980
CG_3487C	60 KDA CHAPERONIN 1 GROEL1 PUTATIVE 30S RIBOSOMAL PROTEIN S15 RPSO	55877 10475	5 5 4 4	1.19	4,389,211 2,869,586	7	0.96 3,562,371 1.15 3,421.560	7 0.78 5 0.77	1 3,704,160	7	0.58 2,756,237 0.71 2,753.425	7	1.02 4,834,698 0.9 3,462,667	7	1 4,722,366 1 3.866.898
CG_2862C CG_3488C	HYPOTHETICAL PROTEIN 10 KDA CHAPERONIN GROES	19565 10804	5 5 4 4	1.02	3,600,629 1,433,949	6	1.26 4,479,819 6.73 6,734,580	6 0.76 7 0.74	1 3,531,190 1 1,001,070	6 7	1.13 5,239,702 1.46 1,962,296	6	0.95 4,382,316 1.04 1,401,033	6 7	1 4,631,432 1 1,348,917
CG_3270C	HYPOTHETICAL PROTEIN PUTATIVE 50S RIBOSOMAL PROTEIN L14 RPLN	24567 13428	6 6 5 5	1.1 1.15	5,525,830 4,734,734	6 9	1.1 5,533,242 1.1 4,546,263	6 0.74 9 0.73	1 5,061,741 1 4,132,696	6 9	1.16 7,971,083 0.95 5,384,834	6 9	0.95 6,547,180 0.85 4,827,127	6 9	1 6,873,364 1 5,673,893
CG_0752 CG_3727	PUTATIVE 50S RIBOSOMAL PROTEIN L4 RPLD PUTATIVE TRANSMEMBRANE PROTEIN	23743 18919	10 9 3 3	1.26 1.28	9,508,073 716,477	12 3	1.32 10,018,038 1.2 671,182	12 0.72 3 0.72	1 7,508,987 1 558,628	12 3	0.83 8,564,528 1.21 937,759	12 3	0.98 10,243,649 1.08 842,475	12 3	1 10,418,954 1 777,574
ICG_2243 ICG_0479	HYPOTHETICAL PROTEIN 60 KDA CHAPERONIN 2 GROEL2	56332 56727	3 3 23 20	1.17 2.3	1,306,009 34,886,269	6 29	1.16 1,297,125 1.4 21,269,569	6 0.70 29 0.69	1 1,119,628 1 15,192,740	6 29	1.26 2,028,633 0.72 15,945,987	6 29	1.12 1,797,137 1.56 34,444,710	6 29	1 1,608,849 1 21,996,057
CG_0027C CG_2649	PUTATIVE TRANSMEMBRANE PROTEIN PUTATIVE METHYLTRANSFERASE	40944 29542	2 2 6 6	1.4 0.86	1,366,098 3,696,850	3 11	1.49 1,450,130 1.01 4,298,886	3 0.68 11 0.67	1 974,671 1 4,289,676	3 11	1.17 1,688,605 0.76 4,833,424	3 11	1.02 1,465,252 0.58 3,672,613	3 11	1 1,443,710 1 6,438,136
CG_0861 CG_1504C	PUTATIVE PHOSPHORIBOSYLFORMYLGLYCINAMIDINI HYPOTHETICAL PROTEIN	38393 18316	2 2 2 2	0.86 0.85	760,109 1,106,654	2 2	0.87 767,784 0.94 1,223,425	2 0.66 2 0.64	1 884,890 1 1,296,072	2 2	0.81 1,078,233 0.63 1,259,979	2 2	0.98 1,313,762 0.51 1,028,788	2 2	1 1,339,602 1 2,011,858
CG_3127C CG_1951C	PUTATIVE CELL DIVISION ATP-BINDING PROTEIN FTSI PUTATIVE OXIDOREDUCTASE FADB5	25596 35755	5 5 4 4	0.83 0.87	1,945,879 2,582,983	10	1.07 2,511,679 0.9 2,676,188	10 0.64 4 0.64	1 2,357,143 1 2,979,720	10	0.72 2,666,550 0.67 3,163,053	10 4	0.81 2,980,963 0.79 3,702,759	10	1 3,705,012 1 4,692,271
CG_2958	PUTATIVE DAUNORUBICIN-DIM-TRANSPORT ATP-BINE 30S RIBOSOMAL PROTEIN \$10 RPSJ (TRANSCRIPTION	35796 11431	3 3 7 6	1.15	1,312,545 4,810,428	3	1.59 1,811,253 0.91 4,534,791	3 0.63 9 0.62	1 1,136,130 1 4,991,378	3 9	1.1 1,968,305 0.65 5,299,195	3	0.95 1,711,695 0.64 5,149,920	3	1 1,795,083 1 8,074,586
CG_0121 CG_3978C	HYPOTHETICAL PROTEIN HYPOTHETICAL PROTEIN SIMILAR TO JAG PROTEIN	24649 20589	2 2 4 3	0.83	967,831 1,932,475	4	1.37 1,601,897 0.82 1,684,790	4 0.62 4 0.61	1 1,166,566 1 2,050,882	4 4	0.68 1,292,296 0.59 1,957,373	4	0.7 1,322,451 0.78 2,601,765	4 4	1 1,895,484 1 3,338,335
CG_0772 CG_1680	PUTATIVE 50S RIBOSOMAL PROTEIN L30 RPMD PUTATIVE INITIATION FACTOR IF-3 INFC	7347 22349	2 2 3 3	0.93 0.89	908,081 1,180,326	3	0.86 840,822 1.2 1,602,971	3 0.61 5 0.61	1 975,386 1 1,331,702	3	0.56 895,607 0.75 1,641,216	3 5	0.52 830,897 0.75 1,628,107	3	1 1,591,185 1 2,176,508
SCG_0280C	PUTATIVE 3-OXOACYL-ACYL-CARRIER PROTEINJ RED PUTATIVE NADH DEHYDROGENASE NDH	46830 49718	5 4 3 3	1.28 1.38	3,227,141 2,629,029	8	1.26 3,186,302 1.67 3,194,113	8 0.60 4 0.60	1 2,506,473 1 1,907,776	8	0.78 3,237,257 1.05 3,341,014	8	1 4,169,147 0.88 2,809,656	8	1 4,153,488 1 3,192,803
NUG_3876C 8CG_3269C	PUTATIVE ACYLTRANSFERASE PUTATIVE PREPROTEIN TRANSLOCASE SUBUNIT 1 SE	29291 106022	4 4 3 3	1.1	3,697,610 1,396,371	6 5	1.04 3,488,150 1.06 1,411,621	6 0.59 5 0.59	1 3,351,119 1 1,326,419	6 5	0.82 4,646,203 0.85 1,925,390	6 5	0.84 4,783,091 0.86 1,939,686	6 5	1 5,700,220 1 2,265,989
SCG_0771	HYPOTHETICAL PROTEIN PUTATIVE 30S RIBOSOMAL PROTEIN S5 RPSE	32190 22888	2 2 6 6	1	552,992 2,859,676	3	1.1 603,883 2.41 4,156,281	3 0.58 9 0.58	1 550,646 1 1,750,805	3 9	0.65 614,718 1.18 3,581,093	3 9	0.54 511,515 1.11 3,365,213	3	1 943,630 1 3,032,802
SCG_2974 SCG_1908C	HYPOTHETICAL PROTEIN PUTATIVE L-LACTATE DEHYDROGENASE (CYTOCHRC	45104 45328	4 3 9 9	1.19	1,403,035 4,502,537	5 10	0.84 994,895 1.73 7,237,541	5 0.54 10 0.53	1 1,178,584 1 4,145,299	5 10	0.53 1,145,372 0.98 7,567,122	5 10	0.57 1,243,356 1.32 10,275,346	5 10	1 2,167,756 1 7,792,973
NUG_3913 NCG_2973	PUTATIVE METHYLTRANSFERASE	23811 30652	5 5 3 3	1.13	3,408,373 978,829	9	1.57 4,733,018 0.91 941,367	9 0.52 6 0.51	1 3,023,360 1 1,036,669	9	0.84 4,825,267 0.73 1,480,241	9	1.24 7,130,497 0.64 1,290,752	9	1 5,767,262 1 2,032,832
SCG_3662C	PUTATIVE LSR2 PROTEIN PRECURSOR PUTATIVE 30S RIBOSOMAL PROTEIN S18-1 RPSR1	12098 9543	7 5	1.31	2,573,265 8,195,270 2,424,485	10	1.08 2,134,221 1.89 11,282,673	10 0.50 16 0.46	1 1,967,415 1 6,001,012	10	0.84 10,875,689	10 16	1.2 4,777,720 0.99 12,977,724	10 16	1 3,948,870 1 13,159,809
ICG_0756	PUTATIVE 50S RIBOSOMAL PROTEIN L22 RPLV	21912 20380	2 2 3 3	2.12	3,434,181 3,556,369 1,902,204	2 3 2	1.22 1,983,173 3.25 3,711,455 0.75 1,293,235	2 0.45 3 0.37	1 1,619,674 1 1,143,427 1 1,707,207	23	0.61 2,206,831 0.96 2,930,862 0.49 2,224,404	3	0.72 2,569,189 1.22 3,749,139 0.72 3,436,950	2	3,595,275 1 3,062,827
172 DOM-7	1 G LATINE DUO RIDUOUMAL PRUTEIN LS RPLI	101/0	3 3	1.11	2,825,605	3	0.75 1,283,335 0.98 2,653,806	3 0.36	1 2.713.552	3	0.49 2,321,494 0.45 3,433,231	3	0.72 3,430,850 0.53 4.039,461	3	· •,/54,464

Supplementary Table 3: 6-plexed Chemoproteomics Experiment #3

Name	Protein description N	1W	no_of_Quant. Spectra	no_of_Quant. Uniq. Pentides	IC50 (µM)	Hill Slope
BCG_0957	PUTATIVE ENOYL-COA HYDRATASE ECHA6	26029	73	21	1.81	0.93
BCG_0023C	PUTATIVE CHROMOSOME PARTITIONING PROT	37018	2	2	>30	
BCG_0027C	PUTATIVE TRANSMEMBRANE PROTEIN	40944	2	2	>30	
BCG_0050C	HYPOTHETICAL PROTEIN TB39 8	56003	2	2	>30	
BCG_0085	PUTATIVE SINGLE-STRAND BINDING PROTEIN S	17353	38	7	>30	
BCG_0086	PUTATIVE 30S RIBOSOMAL PROTEIN S18-1 RPS	9543	4	3	>30	
BCG_0389	PUTATIVE CHAPERONE PROTEIN DNAK	66831	6	6	>30	
BCG_0437C	PUTATIVE ACYL-COA DEHYDROGENASE FADE7	42297	4	4	>30	
BCG_0479	60 KDA CHAPERONIN 2 GROEL2	56727	12	12	>30	
BCG_0504C	HYPOTHETICAL PROTEIN	21305	3	3	>30	
BCG_0516	HEPARIN BINDING HEMAGGLUTININ HBHA	21534	10	9	>30	
BCG_0573	HYPOTHETICAL PROTEIN	43055	3	3	>30	
BCG_0590C	HYPOTHETICAL PROTEIN	14346	2	2	>30	
BCG_0691C	METHOXY MYCOLIC ACID SYNTHASE 4 MMAA4	34636	3	3	>30	
BCG_0716	DNA-DIRECTED RNA POLYMERASE SUBUNIT BE	129236	18	14	>30	
BCG_0717	DNA-DIRECTED RNA POLYMERASE (BETA' CHAI	146710	16	16	>30	
BCG_0734	PUTATIVE ELONGATION FACTOR TU TUF (EF-TL	43594	6	5	>30	
BCG_0750	30S RIBOSOMAL PROTEIN S10 RPSJ (TRANSCRI	11431	4	4	>30	
BCG_0755	PUTATIVE 30S RIBOSOMAL PROTEIN S19 RPSS	10804	2	1	>30	
BCG_0757	PUTATIVE 30S RIBOSOMAL PROTEIN S3 RPSC	30020	9	8	>30	
BCG_0767	PUTATIVE 30S RIBOSOMAL PROTEIN S14 RPSN ⁷	6825	2	1	>30	
BCG_0770	PUTATIVE 50S RIBOSOMAL PROTEIN L18 RPLR	13184	3	3	>30	
BCG_0780	HYPOTHETICAL PROTEIN	25980	5	5	>30	
BCG_0956C	PUTATIVE ACETYL-COENZYME A CARBOXYLASI	51772	9	9	>30	
BCG_0963	HYPOTHETICAL PROTEIN	27627	3	3	>30	
BCG_1463	PUTATIVE PRIMOSOMAL PROTEIN N' PRIA	69839	4	4	>30	
BCG_1472C	PUTATIVE LIPOPROTEIN LPRG	24548	2	2	>30	
BCG_1595	PUTATIVE FATTY ACYL-COA REDUCTASE	36821	7	7	>30	
BCG_1668	PUTATIVE RIBOSOMAL PROTEIN S1 RPSA	53232	4	4	>30	
BCG_1676	EXCINUCLEASE ABC, SUBUNIT A UVRA	106132	4	4	>30	
BCG_1798	PUTATIVE CUTINASE CUT1	21999	2	1	>30	
BCG_1812C	HYPOTHETICAL INTEGRAL MEMBRANE PROTEII	63512	12	12	>30	
BCG_2142	HYPOTHETICAL PROTEIN	31871	9	6	>30	
BCG_2299	PUTATIVE ESTERASE LIPM	46681	2	2	>30	
BCG_2314	HYPOTHETICAL PROTEIN	34986	2	2	>30	
BCG_2447	ALKYL HYDROPEROXIDE REDUCTASE C PROTE	21566	7	6	>30	
BCG_2607C	ADENINE PHOSPHORIBOSYLTRANSFERASE AP	23246	2	2	>30	
BCG_2616C	PUTATIVE HOLLIDAY JUNCTION DNA HELICASE	20189	7	7	>30	
BCG_2724	IRON-DEPENDENT REPRESSOR AND ACTIVATO	25233	2	2	>30	
BCG_2767	HYPOTHETICAL PROTEIN	33610	2	2	>30	
BCG_2801C	BIFUNCTIONAL PROTEIN POLYRIBONUCLEOTID	79735	18	16	>30	
BCG_2859C	PUTATIVE TRANSLATION INITIATION FACTOR IF	94041	3	3	>30	
BCG_2925C	PUTATIVE 50S RIBOSOMAL PROTEIN L19 RPLS	13013	2	2	>30	
BCG_3007C	PUTATIVE DNA-BINDING PROTEIN HU HOMOLO(21292	6	5	>30	
BCG_3008C	PUTATIVE 3-ISOPROPYLMALATE DEHYDRATASE	21780	2	2	>30	
BCG_3009C	PUTATIVE 3-ISOPROPYLMALATE DEHYDRATASE	50199	4	4	>30	
BCG_3142	PUTATIVE THIOSULFATE SULFURTRANSFERASI	35999	4	4	>30	
BCG_3222C	PUTATIVE DNA HELICASE II HOMOLOG UVRD2	75604	14	13	>30	
BCG_3277C	PUTATIVE ADENOSYLHOMOCYSTEINASE SAHH	54324	3	3	>30	
BCG_3487C	60 KDA CHAPERONIN 1 GROEL1	55877	2	2	>30	
BCG_3488C	10 KDA CHAPERONIN GROES	10804	2	2	>30	
BCG_3521C	PUTATIVE 50S RIBOSOMAL PROTEIN L17 RPLQ	19475	2	2	>30	
BCG_3522C	PUTATIVE DNA-DIRECTED RNA POLYMERASE (#	37706	9	8	>30	
BCG_3523C	PUTATIVE 30S RIBOSOMAL PROTEIN S4 RPSD	23476	8	8	>30	
BCG_3524C	PUTATIVE 30S RIBOSOMAL PROTEIN S11 RPSK	14771	6	5	>30	
BCG_3662C	PUTATIVE LSR2 PROTEIN PRECURSOR	12098	4	4	>30	
BCG_3704C	DNA TOPOISOMERASE I TOPA	102370	45	40	>30	
BCG_3743	PUTATIVE LYASE	37641	2	2	>30	
BCG_3863C	PUTATIVE FATTY-ACID-COA LIGASE FADD32	69260	5	5	>30	
BCG_3904	PUTATIVE BACTERIOFERRITIN BFRB	20442	2	2	>30	
BCG_3915	PUTATIVE HISTONE-LIKE PROTEIN HNS	13823	3	3	>30	

Ligand	$K_d (\mu { m M})$		B _{max}	\mathbf{R}^2
C ₄ -CoA	10.4 ± 2.4		3476 ± 175	0.921
C ₁₂ -CoA	3.0 ± 1.1		2759 ± 135	0.87
C ₁₄ -CoA	3.1 ± 0.9		2916 ± 97	0.935
C ₁₆ -CoA	2.8 ± 1.4		2321 ± 136	0.819
C ₁₈ -CoA	1.4 ± 1.3		2971 ± 203	0.777
C ₂₀ -CoA	3.5 ± 0.4		2222 ± 199	0.671
GSK951A	0.45 ± 0.06		169 ± 2	0.957
GSK366A	5.6 ± 0.9		1947 ± 108	0.954
GSK059A	9.6 ± 1.9		2653 ± 240	0.937
GSK572A	1.9 ± 0.6		2506 ± 156	0.837
GSK573A	285.8 ± 68.9		21827 ± 4074	0.980
Competition C ₂₀ -CoA with GSK951A		Fold increase of <i>K_d</i> relative to no drug		
0.25 μM drug	2.6 ± 0.9	0.7	2278 ± 104	0.92
2.5 μM drug	13.6 ± 2.1	3.8	994 ± 52	0.968
10 μM drug	10.2 ± 5.5	2.9	917 ± 144	0.709
Competition C4-CoA with GSK951A			1 1	
0.25 µM drug	8.9 ± 2.7	0.86	4665 ± 381	0.887
2.5 µM drug	23.1 ± 2.8	2.2	3154 ± 162	0.985
10 μM drug	N.D.	-	N.D.	
Binding of point mutant				
EchA6 ^{W133A} + GSK951A	N.D.	-	N.D.	
$EchA6^{W133A} + C_{20}$ -CoA	141.7 ± 15.3	-	1196 ± 67	0.951

N.D. - not determined due to failure of non-linear fitting.

X-ray diffraction data							
	apo EchA6	EchA6:C20-CoA	EchA6:GSK366	EchA6:GSK059	EchA6:GSK572	EchA6:GSK951	EchA6:GSK729
PDB accession code	5DTP	5DTW	5DU4	5DU6	5DU8	5DUC	5DUF
X-ray source	Diamond I04	Diamond I03	Diamond I04-1	Diamond I03	Diamond I03	In-house	Diamond I04-1
Wavelength (Å)	0.9795	0.9763	0.92	0.9763	0.9762	1.5414	0.92
Space group	P3 ₂ 21	<i>P</i> 2 ₁	НЗ	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	<i>P</i> 6 ₃
Cell parameters <i>a</i> , <i>b</i> , <i>c</i> (Å)	103.1, 103.1,	113.7, 51.4, 156.9,	94.83, 94.83,	51.4, 116.6,	51.4, 116, 171.5	51.4, 119.2,	103.9, 103.9,
	143.4	$\beta = 106.7^{\circ}$	87.51	171.8		171.6	54.4
Molecules in asymmetric unit	3	6	1	3	3	3	1
Resolution (last shell) (Å)	89.3 - 1.91	108.9 - 2.4	47.4 - 1.7	85.9 - 2.61	96.1 - 2.23	48.9 - 2.7	51.9 - 1.43
	(1.96 - 1.91)	(2.46 - 2.40)	(1.75 - 1.70)	(2.68 - 2.61)	(2.29 - 2.23)	(2.85 - 2.70)	(1.47 - 1.43)
Rmerge $(\%)^{1}$	6.5 (70.4)	8.4 (49.9)	6.4 (53.0)	10.5 (59.2)	9.4 (67.4)	9.8 (35.9)	4.5 (67.5)
Total/unique observations	505752 / 68929	246225 / 68420	175974 / 31804	135533 / 31967	322214 / 50922	338678 / 29564	696415 / 61860
$I/\sigma(I)^{(1)}$	15.9 (2.7)	9.6 (2.1)	12.6 (2.7)	8.7 (2.0)	11.9 (2.9)	25.8 (7.3)	26.2 (3.5)
Completeness (%) ¹⁾	100 (100)	99.4 (99.5)	98.9 (99.3)	99.0 (99.4)	99.9 (99.8)	99.6 (97.5)	100 (99.9)
Multiplicity ¹⁾	7.3 (7.4)	3.6 (3.3)	5.5 (5.7)	4.2 (4.3)	6.3 (6.2)	11.5 (11.1)	11.3 (11.1)
Refinement							
Resolution range	89.3 - 1.91	108.93 - 2.4	47.4 - 1.7	85.9 - 2.6	96.07 - 2.23	48.9 - 2.7	51.9 - 1.50
Unique reflections	65376	64285	31794	31907	48273	29498	53631
Rcryst / Rfree (%)	18.2 / 20.1	23.7 / 27.6	19.3 / 21.5	19.3 / 24.0	21.9 / 25.4	18.7 / 23.4	17.3 / 18.4
No of non-hydogen atoms	5610	11052	1927	5608	5606	5729	2096
Protein / Ligand / Solvent	5284 / - / 326	10793 / 138 / 121	1800 / 33 / 94	5419 / 87 / 102	5344 / 96 / 163	5452 / 168 / 109	1801 / 24 / 271
RMSD bonds / angles (Å / °)	0.006 / 0.976	0.009 / 1.24	0.006 / 1.2	0.009 / 1.13	0.009 / 1.38	0.009 / 1.38	0.006 / 1.14
Wilson B-factor (Å ²)	28.4	32.9	30	40.2	31.6	41.6	19.1
Overall average B-factor (Å ²)	32.5	31.1	34.5	47.8	40.4	27.6	23.2
Protein / Ligand / Solvent (Å ²)	32.5 / - / 33.5	31.2 / 35.4 / 24.2	34.7 / 34.8 / 31.5	47.9 / 49.2 /	40.4 / 38.5 /	26.7 / 56.6 / 23.7	21.7 / 20.6 /
				36.1	39.7		33.4
RMSD B-factors (Å ²)	0.95	4.4	1.3	3.2	1.4	3.3	1.9
Ramachandran plot ²⁾	97.4 / 2.5/ 0.1	96.7 / 3.6 / 0.1	97.1 / 2.9 / 0	95.8 / 4.0 / 0.2	96.9 / 3.0 / 0.1	95.6 / 4.4 / 0.0	97.9 / 2.1 / 0
Favoured / allowed / disallowed							
(%)							

⁽⁷⁰⁾Values in parentheses refer to the high resolution shell.²⁾ The Ramachandran plot distribution was calculated using Molprobity.

	M. tuberculosis H37Rv		M. bovis BCG		М	. smegmatis	İ	M. marinum	M. leprae		
	% seq id	Accession	% seq id	Accession	% seq id	Accession	% seq id	Accession	% seq id	Accession	
EchA6	100	<u>CCP43653.1</u>	100	<u>NP_854586.1</u>	74	<u>YP_889873.1</u>	74	EPQ74024.1	86	<u>NP_302400.1</u>	
EchA1 ¹⁾	100	CAB06989.1	-		66	YP_886579.1	92	YP_001848785.1	-		
EchA2	100	CAB09570.1	100	<u>NP_854127.1</u>	-		91	<u>WP_020731738.1</u>	-		
EchA3	100	<u>CAB07121.1</u>	100	<u>NP_854307.1</u>	56	<u>YP_885721.1</u>	85	<u>EPQ73703.1</u>	-		
EchA4	100	<u>CAA17470.1</u>	100	<u>NP_854350.1</u>	90	<u>YP_885774.1</u>	93	<u>YP_001849314.1</u>	-		
EchA5	100	<u>CCP43418.1</u>	100	<u>P_854352.1</u>	82	<u>YP_885776.1</u>	89	<u>WP_020731927.1</u>	-		
EchA7	100	<u>CCP43720.1</u>	100	<u>NP_854653.1</u>	72	<u>YP_889733.1</u>	83	EPQ74105.1	-		
EchA8 ¹⁾	100	<u>CCP43821.1</u>	100	<u>NP_854754.1</u>	82	<u>YP_889523.1</u>	91	<u>YP_001852658.1</u>	86	<u>NP_302555.1</u>	
EchA9	100	<u>CCP43822.1</u>	100	<u>NP_854755.1</u>	68	<u>YP_889522.1</u>	83	<u>WP_020729788.1</u>	78	<u>NP_302554.1</u>	
EchA10	100	<u>CCP43897.1</u>	100	<u>NP_854830.1</u>	64	<u>YP_889431.1</u>	70	<u>YP_001852570.1</u>	-		
EchA11	100	<u>CCP43896.1</u>	100	<u>NP_854829.1</u>	61	<u>YP_889431.1</u>	61	<u>WP_020729866.1</u>	-		
EchA12	100	<u>CCP44231.1</u>	99	<u>NP_855159.1</u>	82	<u>YP_006567817.1</u>	90	<u>WP_020724991.1</u>	72	<u>NP_301896.1</u>	
EchA13	100	<u>CCP44702.1</u>	100	NP_855620.1	62	<u>YP_006570456.1</u>	86	<u>YP_001851158.1</u>	-	-	
EchA14	100	CCP45280.1	100	NP_856158.1	75	YP_888969.1	43	YP_001852883.1	-		
EchA15	100	<u>CCP45477.1</u>	100	<u>NP_856344.1</u>	33	<u>YP_889854.1</u>	88	<u>YP_001850341.1</u>	-		
EchA16	100	<u>CCP45632.1</u>	100	<u>YP_978935.1</u>	81	<u>YP_886978.1</u>	90	<u>YP_001850207.1</u>	-		
EchA17	100	<u>CCP45848.1</u>	100	<u>NP_856710.1</u>	67	<u>YP_885445.1</u>	82	WP_020724610.1	86	<u>NP_302187.1</u>	
EchA18	100	<u>CCP46194.1</u>	100	<u>NP_857049.1</u>	-		-		-		
EchA19 ¹⁾	100	<u>CCP46338.1</u>	99	<u>NP_857184.1</u>	84	<u>YP_890141.1</u>	91	<u>YP_001853261.1</u>	-		
EchA20	100	<u>CCP46372.1</u>	100	<u>NP_857219.1</u>	88	<u>YP_890227.1</u>	94	WP_020730809.1	-		
EchA21 ¹⁾	100	<u>CCP46603.1</u>	100	<u>NP_857440.1</u>	80	<u>YP_890568.1</u>	90	<u>YP_001853588.1</u>	88	<u>NP_301216.1</u>	

¹⁾EchA paralogues with conserved catalytic carboxylates required for enoyl-CoA hydratases activity are in bold.

Genes	Primer Sequence (5'-3')	Restriction
		site
EchA6 F 28a	CATGCATGCATATGATCGGTATCACCCAGGCAGA	NdeI
EchA6 R 28a	CATGCATGAAGCTTTTAAGCCCCTTGGAACTTCG	HindIII
TH EchA6 F	CATGCATGTCTAGAAATGATCGGTATCACCCAGGC	XbaI
TH EchA6 R	CATGCATGGGATCCTCAGCCCCTTGGAACTTCG	BamHI
TH FabH F	ACTCTAGAGATGACGGAGATCGCCACGACC	XbaI
TH_FabH R	ATACGGTACCCGACCCTTCGGCATTCGCACCAC	KpnI
TH_KasA F	ACTCTAGAGGTGAGTCAGCCTTCCACCGC	XbaI
TH_KasA R	ATACGGTACCCGGTAACGCCCGAAGGCAAG	KpnI
TH_KasB F	ACTCTAGAGGTGGGGGGTCCCCCGCTTGC	XbaI
TH_KasB R	ATACGGTACCCGGTACCGTCCGAAGGCGATTGC	KpnI
TH_InhA F	ACTCTAGAGATGACAGGACTGCTGGAC	XbaI
TH_InhA R	ATACGGTACCCGGAGCAATTGGGTGTGCGC	KpnI
TH_MabA F	ACTCTAGAGGTGACTGCCACAGCCAC	XbaI
TH_MabA R	ATACGGTACCCGGTGGCCCATACCCATGCC	KpnI
TH_HadA F	ACTCTAGAGGTGGCGTTGAGCGCAGAC	XbaI
TH_HadA R	ATACGGTACCCGCGCAGCGCCATCAGAAAATCC	KpnI
TH_HadB F	ACTCTAGAGATGGCGCTGCGTGAGTTC	XbaI
TH_HadB R	ATACGGTACCCGCGCTAACTTCGCCGAGGC	KpnI
TH_HadC F	ACTCTAGAGATGGCGCTCAAGACCGATATC	XbaI
TH_HadC R	TAC CCG GGG CGC GGT CCT GAT GAC CTG CCC	SmaI
BCG_0957_LL	TTTTTTTCCATAAATTGGTCCCATGCCGCCGTAGATTCTC	Van91I
BCG_0957_LR	TTTTTTTCCATTTCTTGGTCCAGGGCCAGACCGTATTTCG	Van91I
BCG_0957_RL	TTTTTTTCCATAGATTGGTCAACGACGACGGCGCTATC	Van91I
BCG_0957_RR	TTTTTTTCCATCTTTTGGTCAGGAACCGTCCCGAGAAG	Van91I
mdRv0905_F	GATCGATCAAGCTTATGATCGGTATCACCCAGGC	HindIII
mdRv0905_R	GATCGATCATCGATTTAAGCCCCTTGGAACTTCG	ClaI
EchA6 F_pVV16	CATGCATGCATATGATCGGTATCACCCAGGCAGA	NdeI
EchA6 R_pVV16	CATGCATGAAGCTTAGCCCCTTGGAACTTCGGCG	HindIII
EchA6	GATCGATCTGGCCAAGATGATCGGTATCACCCAGGC	MscI
F_pMV261		
EchA6	GATCGATCAAGCTTTTAAGCCCCTTGGAACTTCG	HindIII
<u>R_pMV261</u>		
MmpL3	GGCTGGAATTCATGTTCGCCTGGTGGGGGTCG	EcoRI
F_pMV261		
MmpL3	GGCAAGCTTTTAAAGGCGTCCTTCGCGGC	HindIII
R_pMV261		
EchA6 ^{w133A}	GCCCTGGATAACGCGAGCATCCGCCG	-
F_SDM		
EchA6 ^{w133A}	CGGCGGATGCTCGCGTTATCCAGGGC	-
R_SDM		