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We study the synchronization of chaotic units connected through time-delayed fluctuating interac-
tions. Focusing on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone,
we compare the synchronization properties of static and fluctuating networks in the regime of large
delays. We find that random network switching may enhance the stability of synchronized states.
Synchronization appears to be maximally stable when fluctuations are much faster than the time-
delay, whereas it disappears for very slow fluctuations. For fluctuation time scales of the order
of the time-delay, we report a resynchronizing effect in finite-size networks. Moreover, we observe
characteristic oscillations in all regimes, with a periodicity related to the time-delay, as the system
approaches or drifts away from the synchronized state.
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I. INTRODUCTION

Cooperative behavior of chaotic systems in interaction
can lead to the emergence of partial and local synchro-
nization [1]. An interesting problem in this context is
the stability of the synchronized state, which is ruled by
the topology of the interaction [2, 3]. In most settings,
the coupling terms carry a finite time-delay due to the fi-
nite velocity of transmission of information. Yet, even for
infinitely large time-delay the units can achieve zero-lag
synchronization [4]. The paradigmatic time-delayed cou-
pled systems capable of chaos synchronization are semi-
conductor lasers [5–8], with interesting applications in
secure communication [9, 10]. The phenomenon might
have relevance as well in neuroscience [11, 12].

A better understanding of chaos synchronization can
be gained by studying simple chaotic systems, such as
Bernoulli maps under single [13] or multiple [14] time-
delays, for which the conditions for a stable synchronized
state can be obtained analytically. These studies gen-
erally perform a stability analysis of the synchronized
state on a fixed interaction network. Additionally, a gen-
eral formalism has been developed for ensembles of static
random interaction networks [15].

Currently, there is an increasing interest in studying
networks as time-varying entities [16]. In fact, network
fluctuations are essential features of some systems such
as, for instance, interacting neurons, where synaptic plas-
ticity continuously changes the topology [17]. It is inter-
esting then to inquire how a fluctuating network affects
synchronization stability [18]. Recently, there has been
a number of studies concerning synchronization on time-
varying contact networks, where the topology changes
due to the random motion of the agents, and the cou-
plings are instantaneous. Most of them consider diffu-
sive coupling of moving oscillators [19, 20, 22], but also
chaotic units [21]. This problem has also been tackled
for genetic oscillators moving on lattices [23, 24].

In this paper we study the effect of a fluctuating topol-
ogy on the synchronization of chaotic units with non-
diffusive, time-delayed couplings. There has been a re-
cent work concerning the case of chaotic maps interacting
on fluctuating topologies with short time-delays [25]. In
our work, in contrast, we focus on the case of large time
delays [3, 7], and explore synchronization stability on the
full range of possible scalings between the time-delay and
the network switching time scale.

We consider a system of coupled chaotic maps with
a single coupling delay, Td, where the coupling network
fluctuates with a characteristic switching time Tn. These
network fluctuations are random, and not adaptive, i.e.,
the network evolution is not linked to the state in any
way. A general description of our system, as well as the
chosen synchronization measures, are given in Section II.
In order to understand the implications of a fluctuat-
ing topology, we first study the synchronization stabil-
ity of static small-world networks in section III. Then,
we thoroughly explore the case of time varying networks
in section IV. The slow fluctuations regime, Tn � Td,
where the dynamics always have enough time to adapt to
the current network, is described in section IV A. Section
IV B presents the fast fluctuation regime, Tn � Td, where
we observe an enhancement of synchronization stability.
This phenomenon has not previously been reported on
weakly chaotic systems, and is in qualitative agreement
with the fast switching approximation for diffusively cou-
pled systems [26]. A synchronizing finite-size effect when
Tn is larger than Td is reported in section IV C. In all
regimes we have observed the presence of characteris-
tic oscillations on the synchronization level. These are
described and studied on section IV D. Finally, the last
section is devoted to the conclusions and further work.
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II. SYNCHRONIZATION OF DELAYED
CHAOTIC NETWORKS

Let us consider N classical units, characterized by a
single degree of freedom ui(t), i ∈ {1, · · · , N} and time
t ∈ N, whose evolution is given by

ui(t+1) = (1−ε)f(ui(t))+ε
∑
j

Gij(t)f(uj(t−Td)). (1)

Here, ε ∈ [0, 1] is a real parameter which measures the
strength of the interaction, Td, is the coupling delay and
f : [0, 1] 7→ [0, 1] is a chaotic map. We consider the
Bernoulli map, modeled as

f(x) = ax mod 1, (2)

with a ∈ R+, and the Logistic map, given by

f(x) = rx(1− x), (3)

with r ∈ R+. The coupling topology is encoded in the
network adjacency matrix G. The only requirement at
this point for the coupling weights is to satisfy a stochas-
ticity condition, such that the existence of a synchronized
solution ui(t) = s(t) is guaranteed,∑

j

Gij(t) = 1, (4)

for all i and all times t. Nonetheless, this does not inform
us about the stability of such synchronized state.

As a measure of the (zero-lag) synchronization in the
network, we have chosen the logarithm of the spatial de-
viation over the network nodes. Let us explain in detail
the meaning of this observable. Consider the spatial av-
erage of the unit states for a given time as

µ(t) ≡ 1

N

N∑
i=1

ui(t), (5)

and the corresponding spatial standard deviation as

σ ≡

√√√√ 1

N

N∑
i=1

(ui − µ)2. (6)

Then, the synchronization level is defined as

S ≡ − ln(σ). (7)

A perfectly synchronized state would have S → +∞,
but in practice this value is bounded by the machine pre-
cision. In our calculations, using double precision float-
ing point numbers, the maximal synchronization level

corresponds approximately to S ∼ 35, which implies
a deviation of order σ ∼ exp [−35] ∼ 10−15. On the
other extreme, in a desynchronized state each unit be-
haves independently and S = O(1). The minimal com-
puted value of S is close to 1.95, which is close to
the mean deviation for a uniform distribution on [0, 1]:
− lnσ = ln(12)/2 ≈ 1.24.

We initialize the network close to the synchronized
state: all units evolve in unison for Td time steps and,
at t = 0, we apply a random point-like perturbation,
ξ = A · r, where A = 10−10 and r is a vector of random
numbers drawn uniformly from [0, 1]. Thus, the synchro-
nization level at t = 0 is always around 24, instead of
the machine precision value of 35. We will denote by 〈·〉
the realization average over such initial conditions. Our
most relevant observable, therefore, will be 〈S(t)〉.

We define a synchronization Lyapunov exponent (SLE)
as the average linear rate at which the synchronization
level increases or decreases with time:

〈S(t)〉 ∼ S0 − λt. (8)

By this definition, λ is equivalent to the maximal Lya-
punov exponent transverse to the synchronization man-
ifold, given by the master stability function [2], which
approximates the evolution of a perturbation from the
synchronized state σ ∼ (ui − µ) ∝ eλt. A negative SLE
value implies stable synchronization, as perturbations de-
cay exponentially towards the synchronized state, while
a positive SLE makes the synchronized state unstable.
We will refer to networks with negative (positive) SLE
as synchronizing (non-synchronizing).

The stability of the synchronized state is related to the
second largest eigenvalue of the adjacency matrix G. Let

{γi}Ni=1 be the eigenvalues ofG sorted in descending order
of their modulus, |γ1| ≥ |γ2| ≥ · · · ≥ |γN |. Gerschgorin
circle theorem [27] can be applied, showing that |γi| ≤ 1,
and the unit row sum guarantees that |γ1| = 1, with
eigenvector v1 = [1, . . . , 1]. Hence, a perturbation along
this mode preserves synchronization as it affects every
unit equally. The evolution of a perturbation away from
the synchronization manifold will then evolve according
to the mode with second largest eigenvalue [2].

In networks coupled with a large interaction delay, syn-
chronization is only possible in the weak chaos regime.
Bernoulli maps are weakly chaotic if a(1 − ε) < 1 holds
[7]. In this case the SLE can be approximated by the
following expression [28].

λ ≈ 1

Td
ln

∣∣∣∣ aεγ2

1− a(1− ε)

∣∣∣∣ (9)

This expression is derived from the linear stability anal-
ysis of the perturbation mode associated with the second
largest eigenvalue. Such a procedure is undertaken in the
appendix B, and Eq. (9) can be derived from Eq. (B3).
From the stability condition, λ < 0, we get a time-delay
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Figure 1: (a) A N = 30 network with a clockwise rotating
backbone and p = 0.3, so the number of shortcuts is Ns = 9.
The strength of each link is denoted by its color: black is 1
and gray is 1/2. Notice that the sum of input links on any
node is always 1, as imposed in Eq. (4). (b) Average fraction
of the networks having GCD = 1 in the N × p space. For
high enough number of units and shortcuts the probability of
GCD > 1 is negligible.

independent stability constraint for the coupling:

ε >
a− 1

a∆
, (10)

where ∆ = 1− |γ2| is the spectral gap or eigengap.

For other chaotic maps, the stretch factor of the map
|f ′(x)| is not constant, and the SLE is not analytically
accessible. However, it has been shown that fluctuations
in the term |f ′(x)| along the chaotic trajectory result in
a larger spectrum of Lyapunov exponents and thus in a
smaller parameter region that sustains stable synchro-
nization [29]. We will study synchronization stability on
fluctuating networks of coupled Bernoulli maps in order
to be able to compare with the analytical results for static
networks. We will also study networks of Logistic maps
in order to assess the generality of our results.

III. SYNCHRONIZATION OF SMALL-WORLD
STATIC NETWORKS

We have studied the stability of the synchronization
manifold on statistical ensembles of small world net-
works, which constitute a standard benchmark for net-
work synchronization [18, 30–32]. Here, we consider a
family of Newman-Watts networks [33], similar to the
standard small-world networks [34] but keeping the out-
side ring fixed, so that it is guaranteed that the network
is always connected. We will refer generically to these
networks as small world (SW).

To construct our networks, we consider a chiral 1D ring
of N sites, where the only non-zero entries are Gi,i+1 for
i = 1, . . . N -1, and GN,1. Then, we add to the network
〈pN〉 shortcuts, with p ∈ [0, 1]. That is, for every node
we establish a directed link to another randomly chosen
node with probability p. An example of such a SW net-
work, with N = 30 and p = 0.3 is shown in Fig. 1 (a).
The resulting adjacency matrix is then row-normalized
according to Eq. (4).

A well known result in delayed networks states that
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Figure 2: (a) Spectrum of the adjacency matrix of two SW
networks, using N = 500, and p = 1/5 (left) and 1/2 (right).
Most of the eigenvalues are contained within a ring whose
outer radius scales as p/4. (b) spectral gap for different values
of N as a function of p of our SW networks, which grows
approximately as p/4. A more accurate fit, with exponent
1.2 is also shown. Inset: Standard deviation of the eigengap,
scaling as the square root of p.
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the number of possible stable synchronized subnetworks
is equal to the Greatest Common Divisor (GCD) of the
loop lengths of the network [13]. Hence, complete syn-
chronization is only possible if the GCD of the lengths of
all cycles in the network is unity. This is almost always
the case for large enough networks with a finite num-
ber of shortcuts, as can be seen in Fig. 1 (b). When
the GCD condition is met, the stability of the synchro-
nization manifold is still determined by the eigengap, as
stated in Eq. (10) for the specific case of Bernoulli maps.

The adjacency matrices G of directed networks are not
hermitian, and their spectrum need not be real. Let us
discuss the statistical properties of their spectra, in sim-
ilarity to the studies of [32, 35]. Fig. 2 (a) shows the
eigenvalues {γi} on the complex plane for two SW net-
works, using N = 500 and p = 1/5 (left) and 1/2 (right).
Notice that, following Gerschgorin theorem, they are al-
ways contained within the unit circle. Except for the
γ1 = 1 eigenvalue, which is a consequence of the row-
sum condition, the phases of the eigenvalues seem to be
homogeneously distributed. Moreover, they seem to be
contained within a ring, whose radius we would like to
characterize.

An interesting approach to estimate the properties of
the spectrum of random matrices describing SW net-
works was developed in [32], using a mean-field approach:
write down the average matrix, whose entries are given
by the average of the matrix entries. Due to transla-
tion invariance, the resulting matrix is a circulant ma-
trix, whose spectrum can be found analytically. We have
followed this approach in order to find the mean field
spectrum of our SW networks. In the appendix A we
show that the spectrum of this average matrix lies in the
vicinity of a circumference of radius

|γmfm | ≈
1− e−p

p
, (11)

where p is the shortcut probability. This expression is
plotted in Fig. 2 (a) as mean-field line. However, the
mean-field theory does not describe accurately the ring
structure of the spectrum. We have found numerically
that the outer circumference has an approximate radius
of (1 − p/4), independent of N . Thus, our estimate for
the gap is

∆ ≈ p/4 . (12)

Fig. 2 (b) shows the numerical evidence for expression
(12), plotting the average spectral gap as a function of p
for different system sizesN . Interestingly, the inset shows
that the standard deviation of the spectral gap among
samples only grows like the square root of p, σ∆ ∼ p1/2/2.

Once the spectral properties of our networks have been
elucidated we can proceed to study their dynamics. We
have simulated the dynamical system Eq. (1) and ob-
tained numerically the synchronization Lyapunov expo-
nent (SLE) for 105 different SW networks with N = 40,
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Figure 3: Measurement of the synchronization Lyapunov
exponent (SLE) along with the spectral gap for 105 samples
of two SW network ensembles with N = 40 sites, ε = 0.7,
and p = 0.5 and p = 0.8, for two different dynamical sys-
tems: Bernoulli and Logistic, with parameters a = 1.1 and
r = 3.577, respectively. (a) Relation between the SLE and
the spectral gap. The black line corresponds to the theoreti-
cal expression Eq. (9) for coupled Bernoulli maps with long
delays, and captures correctly the measured SLE, specially at
values close to zero. For the Logistic maps, the correlation is
still strong, but much more involved. (b) SLE histogram for
the same four cases, in log-scale. Notice that, for Bernoulli
we obtain an approximately Gaussian behavior, with non-zero
skewness. For the Logistic case, the SLE are distributed in
a much more complicated way. The vertical black bar marks
the zero SLE.

Td = 100, ε = 0.7, two values of p = 0.5 and 0.8, and two
maps: Bernoulli, Eq. (2), and Logistic, Eq. (3). We have
chosen the numerical values of the parameters such that
a = 1.1 and r = 3.577 so both maps have comparable
Lyapunov exponents when considered in isolation [41].

In Fig. 3 (a) we plot the values of the SLE against
the spectral gap of each network. In the Bernoulli case
we find a tight relationship which follows approximately
the theoretical expression for long delays Eq. (9). The
Logistic case is more convoluted, but the negative corre-
lation between both magnitudes is still clear. We can see
that Logistic systems synchronize better than Bernoulli
ones as they show a higher number of negative SLE val-
ues. Generally, networks with a larger spectral gap syn-
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Figure 4: Average SLE for our SW networks as a function of
both ε and p, using 100 samples for each point. (a) Bernoulli
map, with a = 1.1. (b) Logistic map with r = 3.577. The
white line delimits the theoretical synchronization region, Eq.
10, for a static network of Bernoulli maps and eigengap ∆ =
p/4.

chronize better. Also, there is a higher probability of
synchronization for higher p values, since these networks
present a larger eigengap.

Fig. 3 (b) shows the histogram of the SLE for Bernoulli
and Logistic systems, using alwaysN = 40, Td = 100, ε =
0.7 and two values of p = 0.5 and 0.8. The black vertical
bar marks the zero value: points on its left correspond to
networks in which the synchronized state is stable. The
histograms for the Bernoulli case have a nearly Gaussian
shape, but with finite skewness and kurtosis [36]. The
histograms are much more complex for the Logistic case.

We have also performed a thorough exploration of the
(ε, p)-parameter space. In Fig. 4, we plot the average
value of the SLE after 100 samples for each point, for the
Bernoulli (top) and for the Logistic (bottom) maps. Neg-
ative SLE allows for stable synchronization, while posi-
tive values drive the system away from the synchronized
state. The white line represents the theoretical synchro-
nization line for networks of Bernoulli maps, Eq. (10),
for an eigenvalue gap of ∆ = p/4, and follows the zero
average SLE accurately.
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Figure 5: Synchronization level histories for a fluctuating SW
network of Bernoulli maps with different fluctuation times.
Parameter values are a = 1.1, N = 40, p = 0.5, Td = 100 and
ε = 0.7.

IV. FLUCTUATING NETWORKS

Let us allow our networks to fluctuate, making G
time-dependent with a network switching period Tn: the
coupling topology will switch from the current network,
Gcurr, to a newly sampled Gnext every Tn time steps. We
sample from the ensemble of all SW graphs with fixed N
and p as defined in section III.

As a first attempt, we see in Fig. 5 a few time traces
of the synchronization level, S, for fluctuating SW net-
works of Bernoulli maps with different fluctuation times:
Tn = 10, 102, 103 and 104. For this parameters choice
the average SLE is positive albeit small: λ = 0.00022.
Unless otherwise stated, we will always choose Td = 100
for the time-delay. For Tn = 104, the synchronization
level decays to its minimal value fast. For Tn = 1000,
we observe strong fluctuations in the state deviation, but
an ultimate synchronization. For Tn = 100, when the
fluctuation time-scale coincides with the delay, the sys-
tem desynchronizes, although more slowly. Finally, for
Tn = 10, the system synchronizes fully quite fast.

In order to better understand the phenomenology, let
us average the synchronization level for a large number
of realizations, Ns = 1000. Fig. 6 shows the results for
three different systems of coupled Bernoulli maps. Fig. 6
(a) shows the average synchronization for the same sys-
tem as in Fig. 5, in order to assess whether those re-
sults are generic. We see that for very short fluctuation
time Tn = 1 or 10, the average synchronization level re-
mains close to its maximum value. Hence the system syn-
chronizes completely for all realizations independently of
the sign of the SLE of the instantaneous networks. For
Tn = 50 the synchronization level decays very slowly with
time, and it decays much faster for Tn = 100. As we
increase the fluctuation time, for Tn = 500, the synchro-
nization decay is again a bit slower, and for Tn = 1000
or 2000 we can see that the system does not seem to



6

0

5

10

15

20

25

30

35

40
Tn = 1 and Tn = 10

Tn = 50

Tn = 100

Tn = 500

Tn = 1000

Tn = 2000

Tn = 5000

0

5

10

15

20

25

30

35

40
Tn = 1

Tn = 50

Tn = 100

Tn = 1000

Tn = 10000

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Tn = 1

Tn = 100

Tn = 1000

Tn = 10000

〈S
(t

)〉
〈S

(t
)〉

〈S
(t

)〉

105 Time

(a)

(b)

(c)

Figure 6: Realization average of the synchronization level,
〈S(t)〉, Eq. (7), over Ns = 1000 samples, as a function of time
for different systems. (a) Bernoulli system, a = 1.1, N = 40,
p = 0.5 and ε = 0.7 (on average, non-synchronizing), for
different values of Tn. (b) Bernoulli system with a = 1.1, N =
40 sites, p = 0.8 and ε = 0.47 (in average, synchronizing),
for different values of Tn. (c) Logistic system, r = 3.577,
N = 40, p = 0.5 and ε = 0.4 (in average, non-synchronizing).
In all cases, Td = 100, and we only show time steps which are
multiples of 100.

desynchronize, but stays at a lower level of synchroniza-
tion. For even slower fluctuations, Tn = 5000, the system
desynchronizes again quite fast. We also remark the pres-
ence of oscillatory behavior for the synchronization level
at short times after the initial perturbation.

Fig. 6 (b) shows the average synchronization level for
a fluctuating SW network of Bernoulli maps at param-
eter values for which the average SLE is negative. The
main difference we can observe is that for Tn = 100 the
system does not desynchronize, even though the asymp-
totic synchronization level is lower than for Tn = 50
and Tn = 1000. However, for very slow fluctuation time
Tn = 10000 the system still desynchronizes. The short
time oscillations that we observed in the previous case
are still present, but attenuated.

In Fig. 6 (c) we see the average synchronization level

for a fluctuating network of logistic elements at a param-
eter choice laying a positive average SLE. The system
synchronizes for fast network fluctuations Tn = 10, and
for intermediate network times Tn = 1000, but not for
Tn ∼ Td. Again, in the slow fluctuations regime, the
synchronized state is unstable. Finally, we report much
stronger oscillations for this case than for the Bernoulli
system.

The analysis of figure 6 illustrates the phenomenol-
ogy of our system in its different regimes. Generally, we
observe desynchronization for slow fluctuations and syn-
chronization enhancement in the fast switching regime.
The case where Tn ∼ Td is more complicated, showing
a recovery of the synchronization level when Tn is larger
than Td. We argue that this is a finite-size effect, that
is no longer present when studying larger networks. Fi-
nally, we observe characteristic oscillations which decay
after the initial perturbation. We analyze separately each
of these cases in the subsequent sections.

A. Slow fluctuations

We have found out that, with all other parameters
fixed, there is always a critical value ε∗ such that, if
ε > ε∗ the system stays synchronized almost surely. We
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Figure 7: Synchronization regions in the parameter space for
fluctuating networks of Bernoulli maps in different regimes
(a = 1.1, Td = 100). The blue x’s line denotes the ε∗ val-
ues as a function of p for fast fluctuations, Tn = 10. The
white, open-squares line denotes the ε∗ value for very slow
fluctuations, Tn = 104. The dashed line denotes the mean-
field approximation given by Eq. (11). For comparison with
the static case, we have kept the background colormap cor-
responding to the static SLE from Fig. 4 (a), and the black
continous line is the theoretical synchronization line from Eq.
10.
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use the expression almost surely meaning that out of the
Ns = 1000 samples launched, all of them stayed synchro-
nized up to time 106. Figure 7 shows the critical ε∗ curves
as a function of p for a system of Bernoulli maps for dif-
ferent network fluctuation times, Tn. The white, open-
squares line in Fig. 7 shows the ε∗ line for Tn = 104. This
corresponds to the slow fluctuations regime, Tn � Td. In
this regime the synchronization region shrinks to higher
ε∗ values, something that we anticipated from the slow
fluctuations trajectories in Fig. 6. In this regime the
coupling topology seen by the system is static during
long periods. Then, one might expect the synchroniza-
tion region to be identical to that corresponding to the
static case, delimited by the white continuous line. How-
ever, the system does not synchronize even in regions
where the average SLE is negative. The reason is that,
for Bernoulli systems, desynchronization is irreversible in
practice. When a non-synchronizing network is sampled
the system will start to desynchronize. Once the sys-
tem has evolved sufficiently far away from the synchro-
nized state, the probability that a subsequently sampled
synchronizing network takes the system back to synchro-
nization is negligible. Thus, we may regard the long term
dynamics as desynchronized whenever the probability of
reaching a non-synchronizing network is finite.

B. Fast fluctuations

The blue x’s line in Fig. 7 delimits the synchroniza-
tion region for Tn = 10, illustrating the fast fluctuation
regime Tn � Td. Interestingly, the critical line is be-
low the average synchronization line for static networks,
meaning that synchronization is stable for fast enough
fluctuations even when the average SLE of the individ-
ual sampled networks is positive. This enhancement of
the synchronization stability for rapidly fluctuating net-
works has been reported for a variety of systems with
diffusive coupling [19–21]. Moreover, the fast switching
approximation states that when the time-scale of the fluc-
tuations is much larger than the typical time-scale of the
oscillator dynamics, the synchronization properties are
well described by a mean-field network [26]. That is not
the case in the framework of time-delayed weakly chaotic
systems: the dashed line in Fig. 7 delimits the synchro-
nization region expected from the mean-field spectrum in
Eq. (11). As we can see, it differs from the blue curve for
fast network fluctuations, hence in our setting the mean-
field curve does not provide a good approximation for the
synchronization region of the fast switching regime.

In order to explain this synchronization enhancement
by fast network fluctuations we might conjecture that
networks with large eigengap pull the system towards
the synchronization manifold, while low gap ones push it
away. However, we have found that sufficiently fast fluc-
tuations are able to synchronize the network even when
every individually sampled network have a positive SLE.
In Fig. 8 we consider the average synchronization level of

SW networks with ε < ε∗. Specifically, we reject all SW
networks whose with eigengap ∆ > 0.1, which gives a
lower bound of at least ε∗ > 0.909 for the individual net-
works. Yet, for fast network switching the system almost
surely synchronizes.
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Tn = 1000
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(t
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Figure 8: Average synchronization for a Bernoulli system
with large SLE for different Tn values. The parameter are a =
1.1, ε = 0.7, Td = 100, N = 40 and p = 1/2 but we restrict
the sampled networks such that ∆ < 1/10. This corresponds
to a lower bound for ε∗ > 0.909. Despite having ε < ε∗, the
system synchronizes in the fast fluctuations regime.

Synchronization by fast network fluctuations has not
previously been reported for time-delayed weakly chaotic
sytems. This framework is different from the classic fast
switching approximation framework, which was devel-
oped for linear oscillators with diffusive coupling [26].
Instead, in our setting the couplings are given by the
stochastic adjacency matrix and not by the Laplacian
[7]. Also, the interpretation of the internal time scale
Td for time-delayed systems is not so simple as for the
case of non-delayed oscillators. In the dynamics of our
network we see the interplay of three timescales: the in-
ternal time scale (depending on the instantaneous term
in Eq. (9)), the large coupling delay, Td � 1, and the
time scale of the fluctuations, Tn. The necessary time to
reach synchronization is given by the SLE, whose magni-
tude scales inversely with Td. Hence, for negative SLE a
larger delay time implies a slower decay of the perturba-
tions towards the synchronization manifold. Neverthe-
less, the observed behavior is qualitatively similar to the
fast switching approximation and the stability of syn-
chronization is enhanced as Tn � Td, even for networks
with average positive SLE. This result is also reminis-
cent of the Parrondo games [38], where the alternation
of losing strategies can give rise to a winning one: a ran-
dom sequence of non-synchronizing networks gives rise to
synchronization.
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C. Resynchronization effect in finite size systems

For network switching values of Tn comparable to Td
we observe a loss of synchronization both in systems with
positive and negative average SLE. For this fluctuation
time values the fast switching regime no longer applies.
Indeed, the system will spend time both in synchroniz-
ing and non-synchronizing networks. When the network
reaches a non-synchronizing configuration, it will start
to escape the synchronization manifold. Interestingly, in
the case of negative average SLE, the system synchro-
nizes again for increasing values of Tn ∼ 10Td, before
loosing synchronization completely in the slow fluctua-
tions regime, as can be seen in Fig. 6 (a). We have
investigated this behavior and conclude that the synchro-
nization recovery is a finite-size effect.

We have computed the stationary average synchroniza-
tion level for the whole range of Tn values for Bernoulli
systems of different sizes. The results of our simulations
are depicted on Fig. 9. As we can see, the synchroniza-
tion recovery effect for fluctuation values larger than the
time delay occurs in relatively small systems. The effect
disappears completely when studying systems of size as
large as N = 70. Nevertheless, this synchronizing behav-
ior could have relevance in applications, as experimental
systems rarely consist on more than a dozen units. The
origin of this effect will be topic of further research.

D. Synchronization oscillations

An intriguing feature of the average synchronization
level curves in Fig. 6 is the presence of oscillations, which
decay with time. The oscillations show a periodicity re-
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Figure 9: Long term synchronization level Bernoulli map net-
works of different number of units for a wide range of network
switching times. A resynchronizing region appears for inter-
mediate values Tn

>∼ Td for smaller networks, but the effect
dissapears for larger systems. Each point corresponds to the
average S over 100 trials after 2 · 106 time-steps. In order to
verify that we are in a stationary regime, we have checked that
the graphic does not qualitatively change when using only 106

steps. Parameter values were a = 1.1, Td = 100, ε = 0.5 and
p = 1/2.
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Figure 10: (a) Short-time evolution of the average synchro-
nization level, with time in units of Td, for p = 0.5, for a
Bernoulli system with ε = 0.7 and Tn = 1000, using different
values of Td and N . (b) Long time evolution, with the short
period Td filtered out and time in units of T 2

d . Notice that, in
all cases, the oscillations have the same frequency and phase.
(c) Average synchronization level for two fixed networks with
N = 20, p = 0.7 and ε = 0.83. The ascending greenish se-
quence corresponds to a synchronizing instance, while the de-
scending reddish sequence refers to a non-synchronizing one.
In both cases, we have averaged over random initial pertur-
bations with amplitude A ·10−10. Notice that, in all cases, we
obtain oscillations with the same frequency and phase, but
different amplitudes. The Bernoulli slope is a = 1.1 in all
cases.
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lated to the time-delay Td, and they all have the same
phase for different values of the network switching time
Tn. We illustrated this in further detail in Fig. 10 (a),
which shows the average synchronization level for a short
time-span for all time-steps (not only multiples of 100)
using different values of N and Td. These oscillations are
independent of the network fluctuations, and they appear
as well in fixed networks, as shown in Fig. 10 (c).

Besides this primary oscillation we have found a sec-
ondary oscillation, whose periodicity scales with the
square of the time-delay, T 2

d . In Fig. 10 (b) we have
removed the primary period, by showing only times mul-
tiple of Td, and we represent a longer time span, with
the time axis rescaled to t/T 2

d . Again, these fluctuations
have the same frequency and phase in all cases.

The oscillations are related to our choice of initial con-
dition: we perturb the system at t = 0, and this per-
turbation decays initially. The initial decay is a typical
behavior for weakly chaotic systems [28]. After a de-
lay time the perturbation reappears, and this delay echo
can be related to the observed periodicity equal to the
delay time. For Bernoulli maps the evolution can even
be calculated explicitly. We have included the analytic
calculations in appendix B.

This delay echo is transformed each time-delay inter-
val and its shape gradually changes from an exponential
decay to decaying oscillatory motion. In Fig. 11 we show
the analytically calculated evolution of a point-like per-
turbation along a specific direction in a fixed network of
Bernoulli elements. While the initial perturbation decays
exponentially, the consecutive delay echoes are broader,
and reach their maximal amplitude at a later point in
time within the delay interval. However, the exact math-
ematical origin of the observed secondary oscillations re-
mains to be explained.

For general initial conditions in the vicinity of the syn-
chronization manifold, one observes as well one or more
frequency components related to the time-delay. We con-
jecture that they are characteristic for delay systems. We
expect however that the phase of the oscillations (and
thus the fact that they do not average out over multiple
instances) is a result of our choice of initial condition.

V. CONCLUSIONS AND FURTHER WORK

The possibility to enhance the stability of a system
through fast oscillations or fluctuations is a topic of long
tradition, e.g. the Kapitza pendulum [39]. In this work
we have explored the effect of topology fluctuations on
the stability of synchronization in small-world networks
of time-delayed coupled chaotic maps. We have first stud-
ied synchronization of static networks sampled from the
Newman-Watts small world network ensemble with N
nodes and a fraction p of shortcuts. The spectral gap was
found to be approximately given by p/4, independently of
N , and it showed a clear relationship with the synchro-
nization Lyapunov exponent for networks of Bernoulli

Figure 11: Delay echoes of a point-like perturbation applied
at t = 0 along the transverse direction v2, in a network of
delay-coupled Bernoulli maps. We show the synchronization
level − ln |v2(t)| immediately after applying the perturbation,
and the tenth, twentieth, thirtieth, fortieth and fiftieth delay
echo. We normalized with respect to the initial amplitude.
Parameters are Td = 100, a = 3/2, ε = 2/3, γ2 = 2/5

and Logistic maps. The Bernoulli map case followed
closely the theoretical prediction, while the mapping was
more nonlinear for the Logistc maps.

We then studied how the synchronization proper-
ties are affected by a time varying coupling topology.
We found the stability of the synchronized state to be
strongly affected by the interplay between the time-scale
of the delayed interactions, Td, and that of the network
fluctuations, Tn. For the fast switching regime, Tn � Td,
we obtain a strong enhancement of the network’s syn-
chronization stability. Even when we restrict our topol-
ogy fluctuations to only explore those networks which
would not be able to synchronize under static conditions,
we can obtain almost-sure synchronization under fast
enough fluctuations. This result is in qualitative agree-
ment with the fast switching approximation [26]. In all
cases we observe a severe reduction in the synchroniza-
tion level for Tn ∼ Td, where the fast fluctuation regime
no longer applies. Interestingly, small networks with neg-
ative average SLE show a recovery of the synchronization
level when increasing Tn > Td, which is finally lost at
higher Tn values. This synchronization enhancement is
a finite-size effect that is lost when studying networks
with a larger number of nodes. Nonetheless, for Tn � Td
the system will nearly always desynchronize. Moreover,
we observe oscillations in the synchronization level, when
the network is close to the synchronized state. These os-
cillations have a periodicity related to Td and are typical
of the weak chaos regime. For our choice of perturba-
tion, the oscillations can be analytically recovered in a
network of Bernoulli maps. We also report a secondary
oscillation of periodicity scaling with T 2

d .

We have restricted ourselves to the case of small-
world networks, because they are more amenable to a
mean-field approach, but it is relevant to ask whether
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these results also apply to other network ensembles, such
as purely random Erdős-Rényi graphs or scale-free net-
works; as well as to other dynamical systems beyond
Bernoulli or Logistic.
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Appendix A: Mean-field spectrum and eigengap of
the SW networks

Our ensemble is composed of networks consisting on a
directed ring of N nodes, to which we add Np directed
shortcuts. Here we compute the spectrum of the net-
works of this ensemble within the mean-field approxima-
tion of [32], in order to characterize the eigengap. The
strategy is as follows: we obtain the ensemble average of
each adjacency matrix entry, 〈Gij〉, and study the spec-
trum of the resulting matrix, which will be a circulant
matrix,

Gmf =


c0 cN−1 . . . c2 c1
c1 c0 . . . c3 c2
...

...
. . .

...
...

cN−1 cN−2 . . . c1 c0

 . (A1)

The eigenvalues can be computed analytically [27] as

γmfm =
∑
k

ck exp

[−2πimk

N

]
, (A2)

where m = 0, . . . , N − 1. Before the shortcuts are intro-
duced, c1 = 1 and all other entries ci = 0, i 6= 1. When
the shortcuts are introduced, the subdiagonal elements
become Gi,i+1 = 1/(1 + ns), where ns is the number of
shortcuts reaching element i. Thus,

c1 = 〈Gi,i+1〉 =

〈
1

1 + ns

〉
. (A3)

The random variable ns follows a binomial distribution:
each site can be reached by ≈ N possible shortcuts, each
of them with probability ≈ p/N . Thus, its probability
distribution is given by

P (ns) ≈
(
N

ns

)( p
N

)ns (
1− p

N

)N−ns
, (A4)

which, in the limit where p/N � 1 approaches the Pois-
son distribution

P (ns) ≈ e−p
pns

ns!
. (A5)

For this distribution it is possible to obtain the desired
expected value:

c1 =

〈
1

1 + ns

〉
≈

∞∑
ns=0

1

1 + ns
e−p

pns

ns!

=
e−p

p

∞∑
x=1

px

x!

=
1− e−p

p
, (A6)

where we choose x = ns + 1. The rest of the entries of
the circulant matrix are all equal, ci = c̃ for i 6= 1, and
can be found by normalization:

c̃ ≈ 1

N − 1

(
1− 1− e−p

p

)
. (A7)

Thus, applying (A2) we have

γmfm = c̃+ c1e
2πim
N + c̃

N−1∑
k=2

e
2πikm
N . (A8)

If m = 0, we obtain γ0 = 1. The last term can be
evaluated as a geometric sum or, alternatively, we can
realize that if k was extended from 0 to N − 1, it would
yield zero. In both cases, we obtain

γmfm = (c1 − c̃)e−
2πim
N . (A9)

Thus, the modulus of all eigenvalues for m > 0 is equal:

|γmfm | ≈ c1 − c̃ =
1− e−p

p
− 1

N − 1

(
1− 1− e−p

p

)
.

(A10)
Neglecting corrections of order N−1, the eigenvalue

gap is:

∆ = 1−max
{
|γmfm6=0|

}
≈ 1− 1− e−p

p
. (A11)

Appendix B: Analytic explanation of the
synchronization oscillations

We show in this appendix how synchronization oscil-
lations arise generically, as the network decays towards
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or drifts away from the synchronization manifold. We
consider a network of Bernoulli maps and the network
structure to be fixed.

In this case, we consider a small perturbation around
the synchronization manifold, ui(t) = µ(t) + ξi(t). The
evolution of the network is then given by

ξi(t+ 1) = (1− ε)f ′(µ(t))ξi(t)+

ε
∑
j

Gijf
′(µ(t− Td))ξj(t− Td) . (B1)

After decomposition along the eigenvectors {vk} of G,
we can rewrite Eq. (B1) as

vk(t+ 1) = (1− ε)f ′(µ(t))vk(t)+

εγkf
′(µ(t− Td))vk(t− Td) , (B2)

where γk denotes the eigenvalue of G along the eigen-
vector vk. For Bernoulli maps, the derivative along the
chaotic trajectory is constant, f ′(u(t)) = a, and we can
simplify Eq. (B2) as

vk(t + 1) = (1 − ε)avk(t) + εγkavk(t − Td) . (B3)

The exponential decay of a perturbation is slowest (or
the growth is fastest) along the direction with the small-
est eigenvalue gap 1 − |γ2|, we thus only consider the
direction v2(t). To find the evolution along a direction
vk, one can simply replace γ2 by γk in the calculations.
In the simulations we applied a perturbation ξ(t) only at
t = 0, with a randomized magnitude over the network
nodes. For simplicity, we will assume this magnitude
along the direction v2(0) = 1, while v2(t < 0) = 0. We
can then solve Eq. (B3) directly, and we find for the first
delay interval, 0 ≤ t < Td,

v2(t+ 1) = (1− ε)av2(t) , (B4)

which is solved by

v2(t) = ((1− ε)a)
t

for 0 < t ≤ Td . (B5)

The perturbation initially evolves with a rate given by
ln |(1−ε)a|, which corresponds to the instantaneous Lya-
punov exponent [7, 28]. We only consider networks in the
weakly chaotic regime, meaning that the instantaneous
Lyapunov exponent is negative and that the perturbation
initially decays.

Using Eq. (B5) as initial function for the next delay
interval Td ≤ t < 2Td + 1, this leads to an equation of
motion

v2(t+ 1) = (1− ε)av2(t) + εaγ2((1− ε)a)
t
. (B6)

Imposing continuity, v2(Td) = ((1− ε)a)
Td , this differ-

ence equation is solved by

v2(t) = ((1− ε)a)
t
+(t−Td)εaγ2((1− ε)a)

t−Td−1
, (B7)

for Td < t ≤ 2Td+1. Hence, the initial perturbation reap-
pears after a time Td+1, but the delay echo is broadened.
In general, we find for n(Td + 1) ≤ t < (n+ 1)(Td + 1)

v2(t) =

n∑
k=0

1

k!
((1− ε)a)

t−kTd−k (aεγ2)k
k−1∏
l=0

(t− kTd − l) .

(B8)

We find additional delay echoes appearing at multiples
of Td + 1, each one broader than the previous. After
several cycles the resulting motion indeed resembles an
oscillation, with a periodicity approximated as

T ≈ Td + 1/2− 1/ ln |a(1− ε)|, (B9)

in the limit of large delay Td →∞. This is illustrated in
Fig. 11. We remark here that in general, γ2 is a complex
number, which could lead to additional oscillations with
a periodicity related to the delay time and the phase of
γ2.
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