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Abstract 

G protein-coupled receptors (GPCRs) play a vital role in signal transduction. It is 

now clear that numerous other molecules within the cell and at the cell surface 

interact with GPCRs to modulate their signalling properties. Receptor activity 

modifying proteins (RAMPs) are a group of single transmembrane domain 

proteins which have been predominantly demonstrated to interact with Family B 

GPCRs, but interactions with Family A and C receptors have recently begun to 

emerge. These interactions can influence cell surface expression, ligand binding 

preferences and G protein-coupling, thus modulating GPCR signal transduction. 

There is still a great deal of research to be conducted into the effects of RAMPs 

on GPCR signalling; their effects upon Family B GPCRs are still not fully 

documented, in addition to their potential interactions with Family A and C 

GPCRs. New interactions could have a significant impact on the development of 

therapeutics 
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Abbreviations 

AM, adrenomedullin; AMY, amylin; CaSR, calcium-sensing receptor, CGRP, 

calcitonin gene-related peptide; CHO, chinese hamster ovary; CLR, calcitonin 

receptor-like receptor; CT, calcitonin; CTR, calcitonin receptor; CRF, 

corticotrophin releasing factor; ECD, extracellular domain; ECL, extracellular 

loops; GCGR, glucagon receptor; GLP, glucagon-like peptide; GLP, GLP2R, 
glucagon-like peptide receptor 2; GPCR, G protein-coupled receptor; GPR30, G 
protein coupled estrogen receptor 1; GRKs, G protein-coupled receptor kinases; h, 

human; HEK, human embryonic kidney; m, mouse; NHERF-1, Na+/H+ exchanger 

regulatory factor-1;  PTX, pertussis toxin; PTH, parathyroid hormone; PTHR, 

parathyroid hormone receptor; PTHrP, parathyroid hormone related peptide; r, 

rat; RAMP, receptor activity modifying protein; s, salmon; VPAC, vasoactive 

intestinal peptide. 

 

1. Introduction 

In order to communicate and respond to their surrounding environment, cells 

utilise a vast array of signalling molecules ranging from neurotransmitters, 
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photons of light, lipids and hormones. Signals from many of these molecules are 

transduced by G protein-coupled receptors (GPCRs) which comprise the largest 

family of membrane proteins, with more than 800 of these seven 

transmembrane domain receptors now identified in the human genome[1]. As 

such, these receptors play a crucial role in mediating most physiological 

responses and are implicated in many disease states, making them valuable 

targets for drug development.  

  

In the classical model, upon receptor activation, GPCRs undergo a 

conformational change and activate an associated heterotrimeric G protein. GDP 

is exchanged for GTP on the Gα subunit, which dissociates from the βγ subunit. 

These liberated subunits then activate downstream effector molecules such as 

adenylyl cyclase and phospholipase C, resulting in stimulation or inhibition of an 

intricate web of signalling pathways within the cell to control processes 

including transcription, translation and metabolism [2, 3](Fig. 1). There are 16 

known Gα subunits, 5β and 12γ in humans, with the potential of hundreds of 

combinations[4]. In addition, there are thought to be G protein-independent 

signalling pathways activated by GPCRs[2] such as through β arrestins[5] and G 

protein-coupled receptor kinases (GRKs)[6]. 

 

GPCRs are much more complex than first envisioned; they were initially thought 

to behave like switches, with an inactive state and no signalling, or an active 

state initiating a signalling cascade. It is now clear that GPCRs occupy numerous 

conformations, which are associated with the activation of a range of signalling 

pathways. These conformations are stabilised by ligands, therefore certain 

agonists bias the receptor for a particular pathway or combination of pathways 

in comparison to another[3]. Complicating this system further, many GPCRs have 

been shown to interact with additional components[7]. Allosteric modulators 

bind to the receptors at a different location to the orthosteric ligand binding site. 

This further influences the pharmacology by altering orthosteric ligand affinity 

or efficacy, and in some cases may themselves act as allosteric agonists or 

antagonists[8, 9]. 

 

One such group of proteins that can have a significant impact upon GPCR 

location, ligand binding and signalling are the receptor activity modifying 

proteins (RAMPs), which were first identified through research into possible 

CGRP (calcitonin gene-related peptide) receptors.  One of the candidates, the 

then orphan Family B GPCR calcitonin receptor-like receptor (CLR), was difficult 

to study and responses to CGRP only appeared to occur in HEK293T cells and not 

others such as COS7 cells lines[10]. This information suggested the requirement 

of another component for a functional receptor, which was present in HEKs.  The 

elusive component was discovered 1998, when McLatchie et al injected Xenopus 

oocytes with the cDNA of SK-N-MC cells, which contain endogenous CGRP 

receptors.  They identified a population of cells with larger responses to CGRP 

and isolated the cDNA of a 148 amino acid single-pass membrane protein, which 

they named RAMP1[11]. Upon co-expression of CLR with RAMP1 in cells that did 

not contain endogenous CGRP receptors, a response to CGRP was observed  
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Figure 1. Signalling pathways of GPCRs. 
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equivalent to that seen in SK-N-MCs. Further investigation demonstrated that 

RAMP1 was required to transport CLR to the cell surface in order to form a 

functional receptor able to become bound and activated by CGRP[11]. Database 

searches identified two RAMP-like proteins named RAMP2 and RAMP3 with 

31% homology to one another. RAMP2 and RAMP3 were found to form the 

adrenomedullin 1 and 2 receptors (AM1R, AM2R) together with CLR[11, 12]. The 

RAMPs by themselves, like CLR, show only poor cell surface expression; however 

the RAMP/CLR heterodimers are efficiently trafficked to the outside of the cell. 

 

The interactions of the RAMPs with CLR and calcitonin receptor (CTR) are now 

well studied, providing us with better insight into the role of these accessory 

proteins[13]. It is now known that RAMPs can interact with some GPCRs to alter 

the pharmacology of the receptors by allosterically affecting the structure, 

altering ligand specificity and pharmacology, and in trafficking certain receptors. 

Several Family B receptors have now been shown to interact with the RAMPs, in 

addition to emerging interactions with GPCRs from Family A and C (summarised 

in Table 1). The consequences of these interactions in many cases are still 

unclear. Here we discuss research that has been conducted to investigate the 

role of RAMPs upon GPCR signalling; these findings are highlighted in Table 2. 

Other aspects of RAMPs have been recently reviewed elsewhere[14]. 

 

 

2. RAMP interactions with Family B GPCRs 

 

2.1 CLR 

The role of RAMPs in translocating CLR to the cell surface have been described 

above; it should further be noted that CLR by itself appears to be unable to bind 

with appreciable affinity any of the endogenous peptide ligands within the 

CGRP/calcitonin family. Two recent studies have cast some light on how RAMPs 

can influence peptide binding to CLR. Crystal structures of the extracellular 

domain (ECD) of CLR in combination with either the ECD of RAMP1 and a CGRP 

analogue or RAMP2 and an adrenomedullin (AM) fragment show that the RAMPs 

interact with the C-terminal residue of the peptide (F37-amide for CGRP, Y52-

amide for AM). For CGRP, F37 contacts W84 of RAMP1. (Fig. 2a). In RAMP2, the 

equivalent residue, F111 cannot make the necessary contact but instead there is 

an interaction with E101and Y52 of AM (Fig. 2b). In RAMP1, the equivalent of 

E101, W74, fails to contact CGRP.There are no further direct contacts between 

either peptide and the RAMPs. Instead the peptides have turn structures, not 

seen in other peptide ligands for family B GPCRs which contact CLR. There is 

evidence for some small but potentially significant RAMP-dependant shifts in the 

conformation of the contact residues on CLR, suggesting that the RAMPs act in 

part by allostery[15]. 

 

The RAMPs also seem to exert an effect on the extracellular loops (ECLs) of CLR. 

This has been investigated by mutagenesis; for each RAMP a different set of 

residues within the ECLs appear to be important. On the basis of molecular 

modelling, it has been suggested that RAMP-induced conformational changes in 

ECL3 may be particularly important[16]. 
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Table 1: Summary of known RAMP interactions with GPCRs 

 

 GPCR RAMP 

interaction 

partner 

Required for/ enhances 

receptor trafficking 

Influences peptide binding 

affinity 

Modulates signalling 

RAMP1 RAMP2 RAMP3 RAMP1 RAMP2 RAMP3 RAMP1 RAMP2 RAMP3 

CaSR RAMPS 1 and 3 X  X    X   

CLR RAMPS ,  and  X X X X X X X X X 

CTR RAMPS ,  and     X X X X  X 

CRF1R RAMP 2  X      X  

Glucagon RAMP 2     X   X  

GPR30 RAMP 3   X       

GLP2R RAMPS ,  and        X X X 

PTHR1 RAMP 2          

PTHR2 RAMP 3          

Secretin RAMP 3   X       

VPAC1 RAMPS ,  and         X  

VPAC2 RAMPS ,  and        X X  
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Table 2: RAMP modulation of GPCR signalling 

 

GPCR Family Agonists 

investigated 

G-proteins 

modulated 

by RAMPs 

RAMP 

interaction 

Effect upon signalling Other effects Refs 

GPR30 or 

GPER 

A Estrogen 

Tamoxifen 

G-1 

 RAMP3 Unknown Trafficking to cell surface [17, 18] 

CLR 

 

 

B CGRP 

AM1 

AM2 

Gαs, Gαi/o RAMP1 

RAMP2 

RAMP3 

RAMP1 promotes Gαs 

coupling of CGRP and Gαi 

coupling of AM and AM2. 

RAMP2 promotes Gαs 

coupling of AM. 

Confer ability to bind 

endogenous peptide 

ligands. Traffic receptor to 

the cell surface. 

RAMP3 decreases CLR 

internalisation. 

[19-21] 

CTR B Calcitonin 

Amylin 

CGRP 

Gαs, Gαq RAMP1 

RAMP2 

RAMP3 

RAMPs 1 and 3 increase 

Gαs coupling relative to 

Gαq and erk activation 

Enhance affinity for amylin 

and CGRP 

[22-26] 

CRF1R B CRF 

Urocortin 

Sauvagine 

Gαi/o, Gαq, 

Gα12/13 

RAMP2 No effect with Gαs. 

Enhanced basal and Emax 

with Gαi/o. 

Enhanced Emax with Gq. 

Enhanced agonist potency 

with Gα12/13 

Enhanced Ca2+ signalling 

with CRF and urocortin 

but not sauvagine. 

Enhanced trafficking to cell 

surface 

[27] 

Glucagon B Glucagon 

GLP1 

Oxyntomodulin 

Gαs, Gαi RAMP2 Reduced coupling to Gαi 

when activated by 

glucagon but not 

Binding of GLP-1 abolished [28-30] 
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oxyntomodulin. 

Enhanced Gαs coupling 

with oxyntomodulin 

GLP2R B GLP2 Gαs RAMP1 

RAMP2 

RAMP3 

RAMPs may alter basal 

signalling. 

 Unpublish

ed data 

PTH1 B   RAMP2 Not determined  [31] 

PTH2 B   RAMP3 Not determined  [31] 

Secretin B Secretin  RAMP3 No effect on cAMP, 

ERK1/2 phosphorylation, 

intracellular Ca2+ or 

internalization 

Trafficking [32] 

VPAC1 B VIP 

 

Possible 

Gαq 

coupling 

RAMP1 

RAMP2 

RAMP3 

RAMP2 enhances Emax for 

inositol phosphate 

production  

 [31] 

VPAC2 B VIP Gαi/o 

 

RAMP1 

RAMP2 

RAMP3 

RAMP 1and 2 enhanced  

basal coupling to Gαi/o 

and VIP potency 

 [27] 

Calcium 

sensing 

C Cinacelcet, 

neomycin 

Possible 

Gαq 

coupling 

RAMP1  

RAMP3 

RAMP1 may enhance Ca2+ 

signalling. 

Enhanced trafficking to cell 

surface.  

[33, 34] 
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Figure 2. Structure of ligand-bound RAMP-CLR complexes. (a) RAMP1/CLR (white) 

with CGRP27-37 [D31,P34,F35] (blue) bound (4RWG); (b) RAMP2/CLR (white) with AM22-52 (green) 

(4RWF). The key residues involved in RAMP/ligand interactions are shown. 

b) 

E101 

Y52 

a) 

W84 

F37 
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Little work has been done to investigate if RAMPs influence G protein selectivity 

of CLR. However, in both HEK293 cells and a model yeast system, they alter 

Gαs/Gαi/ Gαq coupling in a ligand-dependent manner[21]. It has been 

demonstrated that RAMP3 can interact with Na+/H+ exchanger regulatory 

factor-1 (NHERF-1) and this prevents receptor internalisation. This remains the 

only detailed study to investigate the effect of RAMPs on receptor 

internalisation[20].  

 

2.2 CTR 

The CTR was first cloned in 1991[35], and is known to have several isoforms 

with distinct pharmacology and signalling properties [24, 36, 37]. The most 

commonly expressed splice variant has a 16 amino acid insert in the first 

intracellular loop either present (denoted CTb receptor) or absent (denoted the 

CTa receptor)[24].  Differences in these two isoforms include reduced 

internalization in addition to reduced Gs and Gq signalling of the CTb 

isoform[24]. Activation of CTRs leads to effects in the bone, CNS, gastrointestinal 

and reproductive systems[36].   

 

Amylin is a peptide with substantial homology to CT, CGRP and adrenomedullin. 

Levels of amylin in circulation increase upon eating and physiological effects 

include the inhibition of glucagon secretion, gastric emptying and food 

consumption[22]. Two groups discovered that the CTR interacts with the RAMPs 

to form a receptor for amylin[22, 38]. In the most comprehensive study, it was 

found that COS-7 cells expressing the CTa receptor isoform in association with 

RAMP1 or RAMP3 led to formation receptors for amylin with differing 

affinities[22], and later found that RAMP2 together with CT also resulted in an 

amylin receptor distinct from the RAMP1 and RAMP3 phenotypes, although 

these findings were influenced by the cell line and also the isoform of CTR 

expressed[23]. All three RAMPs couple to CTa and CTb, however creation of an 

AMY receptor with RAMP2 appears to favour the CTb variant[23, 24]. Unlike 

CLR, CTR does not require association with RAMPs for cell surface 

expression[22].  

 

It has now been demonstrated that the AMY1 receptor has highest affinity for 

salmon CT (sCT), followed by amylin and CGRP and low affinity for mammalian 

CT. The AMY2 and 3 receptors parallel this pharmacology with lower affinities 

for CGRP[39]. Since the CTR signals through Gs and Gq, it is assumed that the 

AMY receptors also couple to these G proteins, although coupling of G proteins 

with the CTb isoforms may be reduced[39].  

 

Several studies have provided mechanistic insight into how RAMPs alter ligand 

binding to CTR. An extensive mutagenesis screen of the ECD of CTR[40] 

suggested that the RAMPs had allosteric actions; on the basis of molecular 

modelling, it was suggested that the RAMPs might influence the dynamics of loop 

5 and residues immediately C-terminal of the CTR. Similarly, based on the 

structure of the ECD of the CTR in complex with a salmon calcitonin analogue, it 

has been suggested that the RAMPs change the orientation of R126 in loop 5 of 

CTR to enhance the affinity of the receptor for amylin[41]. The structure 

suggests that the C-terminus of calcitonin is unlikely to be able to interact with 
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the RAMPs. In view of the key role of the C-terminal residues of CGRP and AM, it 

is surprising that the equivalent residue of amylin, Y37, is of little importance for 

binding[42]. This raises questions as to the importance of direct RAMP contacts 

with amylin. It is also interesting that RAMPs enhance the affinity of a CTR/CLR 

orthologue from Branchiostoma floridae to bind its calcitonin/CGRP 

orthologues[43]. Whilst the authors of this study interpret their results in terms 

of the RAMPs enhancing cell surface expression of the CTR/CLR orthologue, the 

peptides which it binds appear much closer to calcitonin than CGRP at their C-

termini and so it is not clear that they make direct contact with the RAMPs. If this 

is correct, it would further strengthen the case for an allosteric role of RAMPs. 

 

A study into the role of the C-terminus of the RAMPs upon interaction of the 

CTRa isoform was conducted by Sexton et al in 2006, and was the first study to 

illustrate that the C-terminus is involved in signalling. Chimeric RAMPs with C-

terminal domains swapped were created; RAMP1 with the C-terminus of RAMP2, 

and RAMP2 with the C-terminus of RAMP1. CTRa co-expressed with chimeras 

containing a RAMP1 C-terminus exhibited similar cAMP signalling profiles to 

RAMP1 and CTRa with high affinity for hCT, hCGRP and rAMY (rat amylin), 

despite the RAMP2-CTRa receptor having lower affinities for CGRP[44].  

 

The RAMP2 C-terminus-containing chimeras also had similar signalling profiles 

to RAMP2 and CTRa [44]. These findings suggested that while the N-terminus 

contributes to the peptide binding site and the TMD to receptor-RAMP stability, 

the C-terminus, although relatively short at 10 amino acids, is involved in 

determining the signalling profile of amylin receptors generated from the CTR. 

Deletion of a large proportion of the C-terminus results in a loss of high affinity 

amylin receptors[25]. Following on from this, RAMP1 and RAMP3 were found to 

significantly increase the potency of AMY at AMY1 and AMY3 receptors via Gs 

mediated cAMP production, but only slight increases in Ca2+ and ERK1/2 

activation were observed when compared to CTRa without RAMPs. This implies 

that RAMPs affect G protein-coupling efficiency of the AMY receptors, and induce 

more efficient coupling to Gαs than other G proteins[26]. 

 

 

2.3 CRF1R 

There are two subtypes of corticotrophin releasing factor (CRF) receptor in 

humans. When activated, these receptors predominantly signal through Gs and 

are involved in the synthesis and release of adrenocorticotropic hormone 

(ACTH) and β-endorphins from pituitary glands. They have been implicated in 

stress and anxiety-related endocrine responses[45]. A RAMP2 interaction has 

been demonstrated for the type 1 receptor (CFR1). A study by Wootten et al 

demonstrated that this interaction leads to the improved trafficking of the 

receptor to the cell surface, as well as affecting signalling[27]. There was no 

effect of RAMP2 to coupling of the receptor to Gαs upon challenge with the 

agonists CRF, urocortin 1 and sauvigne. However, GTPγS binding revealed 

improved coupling of CRF1 to Gαi/o/t/z, Gαq/11 and Gα12/13 in the presence 

of RAMP2. Improvements in G protein coupling were not found to be a result of 

enhanced trafficking of the receptor to the cell surface. RAMP2 interactions 

resulted in greater basal coupling of CRF1 to Gi/o/t/z and a higher maximum 
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response when stimulated by CRF. Improved Gq/11 coupling led to an increase 

in maximum Ca2+ with both CRF and urocortin 1, but not sauvagine. This 

demonstrates that the signalling effects of RAMP-receptor interactions may be 

ligand dependent. Investigations with inhibitors suggested that the elevated Ca2+ 

in the presence of RAMP2 came from extracellular sources in addition to 

intracellular pools, whereas the CRF1 alone mobilized intracellular stores[27]. 

 

 

2.4 Glucagon receptor 

Glucagon is a peptide involved in blood glucose regulation and generally opposes 

the effects of insulin. Activation of its receptor leads to conversion of glycogen to 

glucose in the liver where it is released into the blood to maintain glucose 

levels[46]. The glucagon receptor (GCGR) couples to Gαs, Gαi/o and Gαq/11[28-

30], and has been shown to traffic RAMP2 to the cell surface[28, 31]. Further 

studies demonstrated that upon co-expression of its receptor with RAMP2, 

glucagon was more potent and Emax was increased[28]. This was not due to 

enhanced cell surface expression of GCGR, or an effect upon ligand affinity.  A 

yeast system developed to allow coupling of human GPCRs and chimeric G 

proteins to activate an endogenous yeast-mating pathway[47] was used to 

investigate coupling of GCGR to Gαs and Gαi. Activation of individual pathways 

can be determined in relation to yeast cell growth, and findings suggested that 

co-expression of RAMP2 with the GCGR in the GPA1/Gαs containing strain 

resulted in an increase in the maximum response and potency of glucagon. When 

expressed in the GPA1/Gαi expressing strain, RAMP2 led to a reduction in 

response. In HEK293 cells, there was no significant change was observed in Gαs 

activation, however Gi coupling was significantly decreased, thereby elevating 

the cAMP response. PTX treatment of cells to prevent activation of Gαi resulted 

in an increase in Gαs coupling with GCGR alone, but did not affect the maximum 

cAMP produced when coexpressed with RAMP2. These results suggest that 

RAMP2 reduced coupling of GCGR to Gαi, and uncovers an important role for the 

RAMPs in modulating G protein coupling and cell signalling[28].  

 

Another significant finding by this study is that this is effect ligand specific. 

Oxyntomodulin is a less potent agonist at the GCGR than its cognate ligand, and 

RAMP2 co-expression also led to increased potency on cAMP production without 

affecting the binding affinity. Here, studies with pertussis toxin (PTX) and in 

yeast suggest the effects are due to augmented coupling of Gs, rather than 

reduced coupling to Gαi[28].  

 

In addition, RAMP2 was capable of abolishing binding of GLP-1, which is a partial 

agonist at the GCGR. Liraglutide, a GLP-1 analogue and weak GCGR agonist used 

in diabetes treatment, was also unable to bind the receptor in the presence of 

RAMP2. This effect is not seen at the GLP-1 receptor, where GLP-1 binding and 

activation is not affected by RAMPs, and is therefore receptor-specific[28, 29]. 

 

 

2.5 GLP2R 

Glucagon-like peptide 2 (GLP-2) is a peptide derived from proglucagon and 

secreted from intestinal enteroendocrine L cells and has a 40% similarity to 
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other proglucagon-derived peptides, GLP-1 and glucagon[48]. Activation of the 

GLP-2 receptor (GLP-2R) by its 33 amino acid peptide causes signalling through 

Gαs, leading to crypt cell proliferation in the small intestine, and has been found 

to improve nutrient absorption in patients with short bowel syndrome and to 

regulate blood glucose[48, 49]. 

 

The GLP-2R had previously been investigated for RAMP interaction, but none 

had been detected[31]. We have recently investigated the GLP2R for interaction 

with the RAMPs by cell surface ELISA in HEK293Ts and our preliminary data 

suggests each of the RAMPs were detected at the cell surface upon coexpression 

with GLP2-R. The data also suggest that the RAMPs change either the basal or 

maximum stimulation of cAMP. 

 

 

2.6 PTHR1 and PTHR2 

Parathyroid hormone (PTH) regulates blood calcium levels as well as mineral 

ions and is secreted from the parathyroid cells in response to low extracellular 

Ca2+ and elevated extracellular phosphate[50, 51]. It has two receptors, PTHR1 

and PTHR2. Another similar peptide, parathyroid hormone related peptide 

(PTHrP) is also able to activate PTHR1, but not PTHR2[51]. PTHrP is normally 

involved in lactation where it promotes calcium mobilisation from bone, and in 

long bone development. Secretion is increased in tumours causing a rise in 

serum calcium, resulting in development of humoral hypercalcemia malignancy 

syndrome[51]. 

 

The study by Christopolous et al investigated cell surface expression of the 

RAMPs upon coexpression with the PTHRs for the first time.  An interaction was 

observed with PTHR1 and RAMP2 and with PTHR2 and RAMP3[31], however 

the consequences of these interactions are currently unknown. 

 

2.7 Secretin 

The secretin receptor was the first member of the Family B GPCRs to be cloned, 

and as such represents the model receptor for the family[52]. It was first cloned 

by Ishihara et al in 1991[53], and its biological roles include bile stimulation, 

gastric pepsin secretion and release of insulin from the pancreas upon intake of 

glucose[53, 54]. Secretin receptors are expressed in the brain, stomach, 

pancreas, kidneys and the liver, and are thought to couple to Gαs and Gαq[54, 

55]. 

 

Harikumar et al demonstrated an interaction of the secretin receptor and RAMP3 

for the first time in 2009[32]. The receptor is normally able to traffic to the cell 

surface alone, however RAMP3 restored this ability to a mutant receptor 

(G241C) unable to traffic, suggesting a role for RAMP3 as a chaperone whether 

required for normal expression or not[32]. Investigation into possible effects of 

RAMP3 upon signalling of the secretin receptor were conducted, however no 

changes were observed to cAMP, ERK1/2 phosphorylation, intracellular Ca2+ or 

internalization of the receptor. In addition, RAMP3 appeared to have no effect 

upon binding of secretin to its receptor, and unsurprisingly, no interaction was 
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observed with the N-terminus of the receptor with RAMP3. Instead, interaction 

sites were found to be with TM6 and TM7. Interestingly, the study discovered 

that RAMP3 interacted with a homodimer of the secretin receptor, and that the 

receptor competed for RAMP3 with CLR, thus reducing functional CLR-RAMP3 

generated adrenomedullin receptors at the cell surface[32]. 

 

 

2.8 VPAC1R 

Vasoactive Intestinal Peptide activation of VPAC1 leads to growth and 

development and is involved in immune response[56]. The successful cloning of 

VPAC1R from rat lung cDNA library was published in 1992[57]. VPAC1R has 

been reported to couple to Gαs, Gαi/o and Gαq[58] as well as numerous other 

second messengers such as tyrosine kinases, calcium channels, MAPK and RhoA 

GTPases[59].  Stimulation of VPAC1R with VIP predominantly stimulates cAMP 

production, with lower levels of phosphoinositide (PI) hydrolysis, an indication 

of PLC activation and Gαq coupling[27, 31, 59]. Increases in calcium levels have 

also been observed [58]. Christopoulos et al observed trafficking to the cell 

surface of all three RAMPs upon coexpression with VPAC1R [31].  Following 

upon these findings, they discovered that the RAMPs did not affect ligand 

binding, nor did they alter expression levels of the VPAC1R at the cell 

surface[31].  Upon further investigation into possible effects upon cell signalling, 

it was found that the RAMPs did not affect cAMP production, but RAMP2 

significantly enhanced the hydrolysis of PI[31]. They suggested that RAMP2 may 

improve the signalling efficiency of the receptor.  

 

 

2.9 VPAC2R 

The VPAC2R was first cloned in 1993 by Lutz et al from a rat pituitary cDNA 

library[60]. Initial investigations for interaction of the VPAC2R in HEK293 cells 

did not reveal any interactions[31], but a later study by Wootten et al 

demonstrated trafficking of all three RAMPs to the cell surface when co-

transfected with VCAP2R in HEK293S and CHO-K1 cells, with larger effects seen 

in the former[27]. These findings highlight the variations between cell lines and 

the authors noted that the expression levels of RAMPs in each cell type should be 

considered when interpreting data.  

 

While the study did not find any significant changes to binding of VPAC2 agonists 

VIP, BAY55-9837, PCAP-27 and PHM-27 in the presence of the RAMPs, G protein 

coupling, however, was affected. GTPγS binding assays demonstrated that 

although there were no RAMP-mediated changes to Gαs coupling when 

stimulated with VIP, there were significant increases in basal coupling to Gαi/o 

in HEK293S and CHO-K1 cells with RAMP1 and RAMP2 co-transfection[27]. In 

addition, VIP appeared to increase the potency of this coupling with RAMP1. No 

change to coupling with Gαq/11 or Gα12/13 was observed for VPAC2R alone or 

with any of the RAMPs[27]. 
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2.10 GPR30 
G protein coupled estrogen receptor 1, or GPR30, is expressed in the human and 
rodent heart and activation by estradiol, a form of estrogen, mediates pleiotropic 
function in the cardiovascular system in addition to the endocrine, immune and CNS 
and may be involved in cardioprotection[17]. Lenhart et al recently described for 

the first time the interaction of RAMP3 with GPR30[17], which they theorized 

could interact due to evidence that estrogen regulates Ramp3 gene expression. 

They found that RAMP3 increases GPR30 expression at the cell surface[61]. 

 

At present, there is currently no known effect of RAMPs upon the signalling 

profile of this receptor. 

 

 

2.11 Calcium-sensing receptor 

The calcium-sensing receptor (CaSR) is a Family C GPCR that is able to bind Ca2+ 

and is therefore involved in calcium homeostasis. It is also capable of binding 

Mg2+, Zn2+ and Ni2+ in addition to antibiotics like neomycin[34]. This receptor is 

also involved in PTH and CT secretion[33, 34]. It is capable of coupling to several 

G proteins including Gαs, Gαi, Gαq, and Gα12/13[34]. 

 

It was first shown by Bouschet et al to interact with RAMPs 1 and 3 but not 

RAMP2, making this the first known interaction between a RAMP and a Family C 

GPCR[62]. This has now been demonstrated in both transfected cell lines and 

endogenously expressing cells[34, 62, 63]. RAMP1 and 3 interactions are a 

requirement in order to traffic the receptor to the cell surface[34, 62, 63]. In 

addition, RAMP3 association has been shown to lead to further glycosylation of 

CaSR[62].  

Expanding upon this research, Desai et al demonstrated that RAMP1 also played 

a role in the signalling of the receptor. Knockdown of RAMP1 expression by 

siRNA in medullary thyroid carcinoma TT cells, endogenously expressing RAMP1 

only, resulted in a 50% reduction in Ca2+ signalling by Cinacelcet (a CaSR 

allosteric modulator) and neomycin (a CaSR agonist)[34]. Stoichiometric 

analysis revealed there to be approximately 1.6 times more RAMP3 associated 

with CaSR than with RAMP1; the authors suggested that receptors may interact 

with more than one molecule of RAMP[34], however, this has yet to be fully 

explored. 

 

2.12 The role of RAMPs in pathophysiology 

The upregulation of RAMPs and the modulation of receptor response to ligands, 

in particular to AM, are involved in numerous disease states and several studies 

have investigated knockout mice to better understand their role. In an 

investigation into skin wound healing, RAMP1 (-/-) mice displayed reduced 

wound-induced angiogenesis and lymphangiogenesis and their ability to heal 

wounds was decreased compared to WT mice [64]. RAMP2 (-/-) mice have been 

demonstrated to die in utero as a result of improper vascular development and 

edema, an outcome that is also observed in AM(-/-) mice [65]. Heterozygous 

RAMP2 (+/-) knockout acute and chronic cerebral ischemia models to 
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investigate cerebrovascular disease demonstrated greater upregulation of AM 

gene expression compared to WT mice after induction of infarction. This was 

thought to compensate for reduced RAMP2 expression[65]. The findings 

suggested a protective role for RAMP2 with the AM receptor complex by 

reducing oxidative stress, inflammation and restoring blood flow, thereby 

protecting against brain injury.  

 

RenTgMK mice, used to model cardiac hypertrophy and chronic hypertension 

where male mice have increased cardiac hypertrophy and reduced survival 

compared to females, were investigated in addition to RAMP3 (-/-) 

knockout[61]. An increase in AKT activation (a regulator of cardiomyocyte cell 

survival and apoptosis) was observed in male RenTgMK; RAMP 3 (-/-) mice 

when compared to female RenTgMK and RenTgMK; RAMP 3 (-/-) mice, with an 

associated increase in cardiac apoptosis. The males also exhibited significant 

depressed systosolic function and renal damage when compared to the females. 

In addition, female mouse hearts displayed increased Ramp3 gene expression 

during cardiovascular stress[61]. These findings suggest that there is a sex-

dependent role for RAMP3 as a cardioprotectant, linked to oestrogen-regulated 

Ramp3 gene expression [61]. A study on RAMP-receptor trafficking found that 

the interaction of the RAMP3 PDZ type 1 motif with NSFs (N-ethylmaleimide-

sensitive factor) promoted targeting of the CLR-RAMP3 complex for recycling 

after internalization upon agonist stimulation. The authors suggest that since 

RAMP3 expression is increased the myocardium of rats with chronic heart 

failure, this may then allow for improved recycling of AM receptors and 

therefore extend exposure to the protective effect of AM in this condition and 

others such as type 1 and 2 diabetes and chronic glomerulonephritis where AM 

is elevated[20]. 

 

 

3. Conclusions 

RAMPs modulate GPCRs in numerous ways. The simplest of these is by acting as 

molecular chaperones and this may have been the first function to appear in 

evolution[43] and is seen across Families A, B and C of GPCRs. However, beyond 

this, they can also modulate ligand binding and cell signalling. Although first 

characterised for their effects on conferring the ability of CLR to bind to its native 

peptide agonists, the most common effect across GPCRs seems to be modulation 

of cell signalling. These effects can manifest themselves as changes in agonist 

potency (without any change in affinity), the size of the maximum response and 

basal activity. Furthermore, the effects are frequently agonist-specific. These 

suggest that the RAMPs work by altering the conformation of the 

transmembrane domain of the GPCRs (Figure 3). The ECD of the RAMPs may 

influence the ECD of the GPCR and, through this, the transmembrane domain; for 

some Family B GPCRs, the ECD is an allosteric regulator of signalling[66]. There 

are also likely to be direct interactions of the RAMPs with the ECLs of the GPCRs, 

which will change alter the conformation of the transmembrane helices. The 

transmembrane domain of the RAMP must pack against the transmembrane 

helices of the GPCRs and this may alter either their conformation or their 

movements during receptor activation. Finally the C-termini of the RAMPs can 

interact with the intracellular loops of the GPCRs and possibly the G proteins 
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themselves. All these provide potential mechanisms allowing RAMPs to tune 

GPCR signalling. 

 

For the future, there is still significant work to document the full range of RAMP 

interactions with all of the Family B GPCRs. The recent work showing that 

RAMP1 can influence calcium signalling at the CaSR suggests that the effects on 

signal transduction may extend at least to Family C GPCRs. Very little work has 

been done to investigate the influence of RAMPs on β-arrestins or the interaction 

of other proteins with GPCRs, but the influence of RAMP3 on CLR internalisation 

illustrates that this may be significant[20]. The effects of RAMPs depend heavily 

on the cell line in which the receptor is expressed; the molecular basis for this is 

not clear but it implies that the physiological consequences of RAMP expression 

are crucially dependant on the cells in which they are expressed. If this is 

understood, then there is considerable potential to develop drugs that are 

targeted against specific RAMP/GPCR complexes.  
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Figure 3. Mechanisms of RAMP interactions
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Figure Legends 

 

Figure 1. Signalling pathways of GPCRs. 

 

Figure 2. Structure of ligand-bound RAMP-CLR complexes. (a) RAMP1/CLR 

(white) with CGRP27-37 [D31,P34,F35] (blue) bound (4RWG); (b) RAMP2/CLR 

(white) with AM22-52 (green) (4RWF). The key residues involved in RAMP/ligand 

interactions are shown. 

 

Figure 3. Mechanisms of RAMP interactions 
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Highlights 

 

• RAMPs have been shown to interact predominantly with Family B GPCRs, 

and recently with Family A and Family C GPCRs. 

• RAMPs enhance trafficking to the cell surface of several GPCRs 

• RAMPs can alter GPCR signalling including enhancing coupling to certain 

G-proteins. 




