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Abstract
Dimensional variation in aircraft panel assembly is one of the most critical issues that affect the aerodynamic perfor-
mance of aircraft, due to elastic deformation of parts during the positioning and clamping process. This article proposes
an assembly deformation prediction model and a variation propagation model to predict the assembly variation of air-
craft panels, and it derives consecutive three-dimensional deformation expressions which explicitly describe the non-
linear behavior of physical interaction occurring in compliant components assembly. An assembly deformation prediction
model is derived from equations of statics of elastic beam to calculate the elastic deformation of panel component
resulted from positioning error and clamping force. A variation propagation model is used to describe the relationship
between local variations and overall assembly variations. Assembly variations of aircraft panels due to positioning error
are obtained by solving differential equations of statics and operating spatial transformations of the coordinate. The cal-
culated results show a good prediction of variation in the experiment. The proposed method provides a better under-
standing of the panel assembly process and creates an analytical foundation for further work on variation control and
tolerance optimization.
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Introduction

A large aircraft is commonly assembled by fuselage seg-
ments and wings, which are constructed by individual
panels. Panel assembly is the first stage of the aircraft
assembly, in which a skin has been riveted or bolted
with longitudinal stiffeners (stringers) and circumferen-
tial stiffeners (frames). Each stringer–fame intersection
is joined by small pieces called chips. The level of
dimensional variation in panel assembly directly affects
the final performance and capabilities of aircraft.
However, it is difficult to predict and control the assem-
bly variations of aircraft panels, since it is a semi-
monocoque structure in large size, and the natural
characteristics and assembly manners of panels often
induce different degrees of deformation during assem-
bly. Especially in panel assembly, positioning error and
clamping force of stringers and frames are of severe
effects to the dimensional variation of panels. It is
essential to develop a mathematical model of panel
assembly variation to describe these effects.

The analysis of assembly variation propagation is
divided into two steps. The first step establishes an
assembly model that simulates the assembly process to
describe the interactions between parts and fixtures and
the changes of product characteristics after assembly.
The second step introduces the variations of the
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individual components into the assembly model and
uses the variation propagation model to estimate the
dimensional change of the final product.

In the first step, some assembly models have been
established in several major categories in recent indus-
trial and academic research. Based on coordinate trans-
formation theory, Chang and Gossard1 proposed a
geometric model ignoring components deformation,
which can only be applied to the rigid assembly of com-
ponents with the simple geometrical profile. Liu and
Hu2,3 presented a mechanical model to simplify assem-
bly parts as one-dimensional (1D) cantilevered beams
and derivate in-plane distortion formula of assembly
joints with linear mechanics theories. A structural
model proposed by Dahlstrom and Soderberg4 is
applied on early evaluation of conceptual assembly
design based on a hierarchical product description and
constraint decomposition. Contrarily, Cai et al.5 pre-
sented digital panel assembly methodologies to predict
assembly dimensions with operational assembly process
simulation. A virtual assembly model was utilized by
Vichare et al.6 to integrate physical in-process measure-
ment data into wing-box assembly variation analysis
with computer-aided design (CAD) and finite element
method (FEM) commercial software. The FEMs have
been extensively utilized as the growing complexity
of assembly simulation. To improve the efficiency of
FEM analysis, Lin et al.7 used the substructures of
identical parts to simplify the deviation propagation
model of aeronautical panel assembly, which is suitable
for assembly model with numerous interchangeable
parts.

The second step of assembly variations prediction is
the variation propagation simulating phase. The tradi-
tional variation simulation methods include worst case
analysis and root sum of squares which are overesti-
mating variation spread. Subsequently, assembly varia-
tion models considering part deformation during the
assembly process are paid more attention to analytical
study. Method of influence coefficients (MIC)8 adopted
FEMs to construct sensitivity matrix that describes a
linear relationship of input part variation and the out-
put assembly variation. Principal component analysis
(PCA)9 extracted the deformation patterns from the
production data by decomposing the component covar-
iance into the individual contributions of several defor-
mation patterns. Liao and Wang10 applied wavelets
transform to decompose assembly variations into dif-
ferent scale components and calculated the correspond-
ing deformation of non-rigid assemblies using FEM.
To solve the variation synthesis optimization problems,
the statistical analysis and quality engineering methods
are generally used, aiming to integrate the key produc-
tion characters (KPCs) and key control characters
(KCCs) to ensure the minimum assembly variation.11

Bowman12 utilized Monte Carlo simulation to select
design tolerances for component dimensions of a
mechanical assembly to minimize manufacturing cost.

However, sample size has a major influence on the
accuracy of Monte Carlo simulation. Wang13 employed
design of experiment (DOE) method to analyze the
interactive relationship between edge’s and rib’s distor-
tion. Moreover, some stochastic search methods were
used to analyze variation propagation models and solve
the tolerance synthesis problems with non-normal dis-
tribution, such as simulated annealing, genetic algo-
rithms,14 ant colony optimization algorithms and
particle swarm optimization.15 However, it is noted
that such searching methods cannot guarantee global
optima.

Meanwhile, the focus of variation analysis of the
multi-station hierarchical assembly processes is the
establishment of the relationship between the tolerances
of process elements across multiple stages and the var-
iation of the final product. Among the models of multi-
station assembly variation propagation, the state space
method16,17 and stream of variation methodology18 are
explored in much greater depth due to their linear
structure and the automatic handling of complicated
stage-wise interaction. In aircraft assembly process,
assembly variation is affected not only by positioning,
clamping,19 joining2,3,13,20 and so on, but also by part
distortion in manufacture.21 Chantzis et al.,21 D’Alvise
et al.22 and Sim23 presented an industrial solution based
on years of fundamental research to minimize part dis-
tortion due to residual stresses for machining of large
monolithic components in aerospace industry. This
solution would help reduce the impact of part distor-
tion on assembly variation.

Most of the above-proposed mathematical models of
assembly variation analysis utilized the linear combina-
tion of displacement of discrete KCCs to represent
assembly variations of KPCs. Since the nonlinear beha-
vior of the physical interaction between components
and tooling is not taken into consideration in the sim-
plified linear model, the calculated values distinctly vary
from the actual assembly variations. Although FEM
can simulate the nonlinear assembly process, the non-
linear relationship between input dimensional variation
(before assembly) and output dimensional variation
(after assembly) described by FEM is implicit, which
makes nonlinear analytical mathematic efforts useless.24

In summary, it is necessary to study a nonlinear model
to predict variation propagation in the assembly pro-
cess. Based on minimum potential energy principle, this
article first presents a deformation prediction model to
obtain the analytical solutions of the differential equa-
tions for deformation function with panel positioning
variations. Second, the propagation relationships
between the dimensional variations of differential ele-
ments and the part entity are established by introducing
spatial transformations as an innovative point of this
work. Finally, the calculated assembly variation propa-
gation results with the proposed method are analyzed
and compared with the simulation results using FEM
and the measured variation data in experiments.
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Deformation prediction model and
variation propagation model

The assembly process of fuselage panel includes posi-
tioning, drilling, countersinking, sealing and riveting, in
which the positioning accuracy of structural parts such
as frames and stringers, directly affects the subsequent
steps. Dimension accuracy of the panel chiefly depends
on the positioning accuracy of frames and stringers
rather than skin because of their stronger stiffness.
Therefore, positioning variations of stringers are inves-
tigated in the following sections.

In the aircraft assembly, stringers, frames and skin
shown in Figure 1 are assembled in a fixture and tacked
together with temporary fasteners or fastened together
with puller straps before being riveted together. The fix-
ture is composed of fixture base, fixture boards which
are used to locate the stringers and preserve the shape
of skin, and puller straps. Clamping mechanisms fixed
on the fixture board are utilized to position and clamp
the stringers, as shown in Figure 2.

Deformation prediction model for stringer positioning
assembly

The stringer is simplified into a beam since its cross-
sectional width is much smaller than the length. When

the stringer is positioned and clamped, the positional
variation is simplified to the displacement of the anchor
point to clarify how the variations of anchor points
affect the stringer deformation. First, the stringer and
positioning elements (as shown in Figure 2) are simpli-
fied in panel assembly fixture to analyze anchor point
variations and stringer deformation. In Figure 3, nom-
inal position of a stringer is shown in Figure 3(a);
anchor point variation and stringer deformation are
shown in Figure 3(b).

This article adopts the energy method to calculate
deformation potential of the stringer caused by varia-
tion of anchor point. Based on energy conservation
theory, deformation potential is irrelevant with the
sequence of forces applied on the elastomer. Instead, it
is totally determined by the eventual stress and defor-
mation. Therefore, it can be assumed that the six inde-
pendent quantities of stress and their corresponding
deformation components simultaneously reach the final
state. An overall strain energy density can be obtained
by figuring out strain energy density of each compo-
nent and then stacking them up. The work applied on
each strain is deformation potential.

The local coordinate system is displayed in Figure 4.
Axis x1 of the stringer is the locus of the centers of iner-
tia of the cross section. Axes x2 and x3 which are per-
pendicular to each other, lying in the cross-sectional
plane, are shown in Figure 4. Displacement is
ui = ui(x1), i=1, 2, 3. ui is the displacement in xi-
direction. Longitudinal displacement is u1; lateral dis-
placements are u2, u3. Since the cross area is quite
small, it is assumed that the lateral displacements of the
points on the same cross area are consistent, which
means u2 and u3 are equal to deflection in two direc-
tions of x2 and x3 along the axis x1

u2(x1, x2, x3)’u
(0)
2 (x1), u3(x1, x2, x3)’u

(0)
3 (x1) ð1Þ

Rotation is vi = u3+ i, i=1, 2, 3, where vi is the
angle rotating around axis xi, and defined by

Figure 1. Panel assembly fixture.

Figure 2. Stringer positioning element.

Figure 3. Mechanical simplification of the stringer and
positioning element: (a) nominal position of a stringer and (b)
anchor point variations and stringer deformation.
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v1 = u4, v2 =�
du3
dx1

, v3 =
du2
dx1

ð2Þ

Strain energy separately caused by tension, bending
moment, torque and shear force applying on the strin-
ger is discussed below. For the convenience of calcula-
tion, components of stress and corresponding
directions are defined in Figure 5. With tension
applied, elongation of displacement u1 in the direction
of x1 is positive strain, which is given by

e11 = e11(u)=
du1
dx1

= u01 ð3Þ

Since stringer deformation is elastic, based on
Hooke’s law, the internal force of cross section is calcu-
lated by

Q1 =EAe11(u)=EAu01 ð4Þ

Strain energy25 occurring in the process of extension
and contracting of the stringer is calculated by

1

2
D1(u, u)=

1

2

ð
Q1(u)e11(u)dx1 =

1

2

ð
EAe211(u)dx1

ð5Þ

With bending moment applied, curvatures around
axis x2 and x3 are, respectively, given by

K2 =K2(u)=
dv2

dx1
=� d2u3

dx21
=� u003 ð6Þ

K3 =K3(u)=
dv3

dx1
=

d2u2

dx21
= u002 ð7Þ

For the bending moment, the following equations
are deduced

M2 =M2(u)=EI22K2 +EI23K3 =� EI22u
00
3 +EI23u

00
2

ð8Þ

M3 =M3(u)=EI32K2 +EI33K3 =� EI32u
00
3 +EI33u

00
2

ð9Þ

where EIij is the bending stiffness, Iij is an inertia
moment of the cross section. Furthermore, transversal
shear forces generated by shear stress s21 and s31 on
each cross section along axis x1 are, respectively, given
by

Q2 =Q2(u)=�
dM3(u)

dx1
=�M03 =EI32u

(3)
3 � EI33u

(3)
2

ð10Þ

Q3 =Q3(u)=
dM2(u)

dx1
=M02 =� EI22u

(3)
3 +EI23u

(3)
2

ð11Þ

Strain energy occurring in the process of stringer
bending is calculated by

1

2
D23(u, u)=

1

2

ðX3
i=2

Mi(u)Ki(u)dx1

=
1

2

ð X3
i, j=2

EIijKi(u)Kj(u)dx1

ð12Þ

With torsion applied, rate of torsion and torque are
calculated from the following equations

K1 =K1(u)=
dv1

dx1
=

du4
dx1

= u04 ð13Þ

M1 =M1(u)=
E

2(1+ n)
JK1

=GJK1 =
E

2(1+ n)
Ju04 =

E

2(1+ n)
Jv01

ð14Þ

where n is Poisson’s ratio, G is the elastic shear modulus
and J is the geometric torsional stiffness. Strain energy
occurring in the process of stringer torsion is calculated
by

1

2
D4(u, u)=

1

2

ð
M1(u)K1(u)dx1 =

1

2

ð
GJK2

1(u)dx1

ð15Þ

Thus, total strain energy is given by

Figure 4. Local coordinate system.

Figure 5. Directions of stress component.
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1

2
D(u, u)=

1

2
½D1(u, u)+D23(u, u)+D4(u, u)� ð16Þ

Strain energy functional in terms of the strain com-
ponents is denoted as follows

D1(u, v)=

ð
Q1(u)e11(v)dx1 =

ð
EAe11(u)e11(v)dx1

ð17Þ

D23(u, v)=

ðX3
i=2

Mi(u)Ki(v)dx1

=

ð X3
i, j=2

EIijKi(u)Kj(v)dx1

ð18Þ

D4(u, v)=

ð
M1(u)K1(v)dx1 =

ð
GJK1(u)K1(v)dx1 ð19Þ

Total strain energy functional is given by

D(u, v)=D1(u, v)+D23(u, v)+D4(u, v) ð20Þ

Based on the formula of integration by parts and
Green’s theorem, the strain energy functional of exten-
sion or contracting stringer is written in the form

D1(u, v)=

ð
Q1(u)e11(v)dx1 =

ð
EAe11(u)e11(v)dx1

=

ð
EAu01v

0
1dx1 = EAu01v1½ �d2d1

�
ðd2
d1

(EAu01)
0v1dx1

ð21Þ

where di denotes the contour of the stringer bounding
the whole region.

Strain energy functional of bending stringer is
extended by

D23(u, v)=

ð
M2(u)K2(v)+M3(u)K3(v)½ �dx1

=

ð
�M2(u)v

00
3 +M3(u)v

00
2

� �
dx1

= M3(u)v
0
2½ �d2d1
�
ðd2
d1

M03(u)v
0
2dx1 � M2(u)v

0
3½ �d2d1

+

ðd2
d1

M02(u)v
0
3dx1

= M3(u)v
0
2 �M2(u)v

0
3 �M03(u)v2 +M02(u)v3½ �d2d1

+

ðd2
d1

M003(u)v2 �M002(u)v3
� �

dx1

= ½(� EI32u
00
3 +EI33u

00
2)v
0
2 � (� EI22u

00
3 +EI23u

00
2)v
0
3 � (� EI32u

(3)
3 +EI33u

(3)
2 )v2

+ (� EI22u
(3)
3 +EI23u

(3)
2 )v3�d2d1

+

ðd2
d1

½(� EI32u
(4)
3 +EI33u

(4)
2 )v2 � (� EI22u

(4)
3 +EI23u

(4)
2 )v3�dx1

ð22Þ

Strain energy functional of torsion stringer is written
as

D4(u, v)=

ð
M1(u)K1(v)dx1

=�
ðd2
d1

M01(u)v4½ �dx1 + M1(u)v4½ �d2d1

ð23Þ

The force loaded on the stringer can be defined as
fi = fi(x1), i=1, 2, 3. fi is the linear force along the axis
xi, then the torque load is the linear force along the axis
xi which is denoted by m1 =m1(x1)= f4(x1). External
work of tensile force, bending force and torsional force
loaded on stringer are, respectively, given by

�F1(v)=�
ð
f1v1dx1 =�

ðd2
d1

f1v1dx1

=�
ðd2
d1

f1v1dx1 � ½f1v1�d1 � ½f2v2�d2

ð24Þ

� F23(v)=�
ð
(f2v2 + f3v3)dx1 =�

ðd2
d1

(f2v2 + f3v3)dx1

=�
ðd2
d1

(f2v2 + f3v3)dx1 � ½f2v2�d1 � ½f3v3�d1 � ½f2v2�d2 � ½f3v3�d2

� ½f5v5�d1 � ½f5v5�d2 � ½f6v6�d1 � ½f6v6�d2 ð25Þ

� F4(v)=�
ð
m1v1dx1 =�

ðd2
d1

f4v4dx1

=�
ðd2
d1

f4v4dx1 � f4v4½ �d1 � ½f4v4�d2

ð26Þ

The potential energy26 of the system is equal to the
difference between the strain energy and the work of
external forces, which can be obtained by

J(u)=
1

2
D(u, u)� F(u) ð27Þ

Wang et al. 5



Based on the principle of minimum potential energy
of the system, the stationary value of functional J(u) in
the equilibrium position is a minimum, which is equiva-
lent to D(u, v)� F(v)=0 for all v, namely

D(u, v)� F(v)=D1(u, v)+D23(u, v)+D4(u, v)� F1(v)� F23(v)� F4(v)

=�
ðd2
d1

½Q1(u)+ f1�v1dx1 + ½Q1(u)� f1�d2 ½v1�d2 � ½Q1(u)+ f1�d1 ½v1�d1

+

ðd2
d1

½M003(u)� f2�v2dx1 �
ðd2
d1

½M002(u)+ f3�v3dx1

+ ½M3(u)� f6�d2 ½v6�d2 + ½M2(u)� f5�d2 ½v5�d2 � ½M
0
3(u)+ f2�d2 ½v2�d2

+ ½M02(u)� f3�d2 ½v3�d2 � ½M3(u)+ f6�d1 ½v6�d1 � ½M2(u)+ f5�d1 ½v5�d1
+ ½M03(u)� f2�d1 ½v2�d1 � ½M

0
2(u)+ f3�d1 ½v3�d1

�
ðd2
d1

½M01(u)+ f4�v4dx1 + ½M1(u)� f4�d2 ½v4�d2 � ½M1(u)+ f4�d1 ½v4�d1

= 0

ð28Þ

When the stringer is free from geometric constraint,
based on variation principle, u in an equilibrium state
makes the equation true for all v (including vi), which is
equivalent to the equilibrium equation with the expres-
sion in brackets of the above equation equal to 0. All
equilibrium equations are listed as follows

d1 \ x1 \ d2 : � dQi(u)

dx1
= fi i=1, 2, 3 ð29Þ

� dM1(u)

dx1
= f4 ð30Þ

which is

d1 \ x1 \ d2 :

� EAu001 = f1

� EI32u
(4)
3 +EI33u

(4)
2 = f2

EI22u
(4)
3 � EI23u

(4)
2 = f3

� E

2(1+ n)
Jv001 =m1

8>>>>>><
>>>>>>:

ð31Þ

x1 = d1 :
�Qi(u)= ½fi�d1
�Mi(u)= ½f3+ i�d1

(
i=1, 2, 3 ð32Þ

x1 = d2 :
�Qi(u)= ½fi�d2
�Mi(u)= ½f3+ i�d2

(
i=1, 2, 3 ð33Þ

The above formulae with x1 = d1, x1 = d2 satisfies
boundary compatibility conditions and also natural
boundary condition, indicating the balance of shearing
force, tension, bending moment and torque at the end-
point. When the boundary of stringer is applied with
any known generalized displacement ui, replace equa-
tions of load fi that have the same subscript. Imposed
boundary conditions is as follows

x1 = dx :
ui = �udx

i

vi = �vdx
i

�
, i=1, 2, 3 ð34Þ

The function expression of stringer deformation
ui(x1) (i=1, 2, 3, 4) can be solved by simultaneous
equations above. Furthermore, the relationship of
assembly variations and anchor point variations can be
obtained with a concrete function expression.

Propagation model of variation resulted from
assembly deformation

Assembly variation indicates the offset that a part’s
actual assembled position deviates from designed
assembly specification or its nominal position required
in each assembly process. Moreover, the variations of
the point on axis x1 of the stringer due to positioning
variation is denoted by

Dui(x1)= ui(x1)� 0ui(x1) (i=1, 2, 3) ð35Þ

where ui(x1) (i=1, 2, 3) are coordinate values for the
actual positions of the points on axis x1 of the posi-
tioned stringer. 0ui(x1) (i=1, 2, 3) are coordinate val-
ues for their nominal positions. Thus,
0ui(x1)=0 (i=1, 2, 3) can be obtained.

When the stringer is discretized, as shown in
Figure 6, coordinate system {0O} represents the nom-
inal position of stringer while coordinate system {O}
represents the actual position of assembled stringer.
Point 0O is the center of inertia of the cross section and
the principal directions of coordinate system {0O} are
0X1,

0X2, and
0X3, parallel to the axes x1, x2, and x3 as

known. When written in terms of coordinate system
{O}, they are called as X1, X2, and X3. The displace-
ment of any point 0P on the cross section of stringer is
described by vector in system {0O}, which can be calcu-
lated by

6 Proc IMechE Part B: J Engineering Manufacture 0(0)
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OP OO O P

= −
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= ⋅ − +

= − ⋅ −
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0

R

R E

O P O P OO

( ) 0
1

0
1

0x x xP O
22

0
2

0
3

0
3

0
1

0
2

0
3 1

P O P O T

P P P T

x x x

x x x u

− −⎡⎣ ⎤⎦ +

= − ⋅ ⎡⎣ ⎤⎦ +

ΔΔu

R E

i

0( ) [Δ Δuu u T
2 3Δ ]

ð36Þ

where the rotation matrix describes {O} relative to {0O}

0R(v1,v2,v3)=
cv3 � cv2 cv3 � sv2 � sv1 � sv3 � cv1 cv3 � sv2 � cv1 + sv3 � sv1

sv3 � cv2 sv3 � sv2 � sv1 + cv3 � cv1 sv3 � sv2 � cv1 � cv3 � sv1

�sv2 cv2 � sv1 cv2 � cv1

2
4

3
5

ð37Þ

where cvi = cosvi, svi = sinvi, i=1, 2, 3. Thereby,
when the stringer is clamped and positioned, a model
for propagating variation of point 0O (the center of
inertia of the cross section) to variation of point 0P (any
point on the same cross section of stringer) is given by

DuPi =(0R� E) � 0xP1
0xP2

0xP3
� �T

+Du0i , (i=1, 2, 3)

ð38Þ

where ½ 0xP1 0xP2
0xP3 �

T is the position vector of point
0P in system {0O}.

Case study of stringer positioning
deformation and finite element simulation

Case study: theoretical calculation of stringer
positioning deformation

The angle between the direction of gravity and the nor-
mal direction of the locating surface for the stringer, u,
is shown in Figure 7. Figure 8 shows the sectional
dimension of the stringer. Other parameters of the
stringers are presented in Tables 1 and 2.

The parameters are substituted into the equilibrium
equation (31)

10\ x1 \ 485 :

�EAu001 = f1
�EI32u(4)3 +EI33u

(4)
2 = f2

EI22u
(4)
3 � EI23u

(4)
2 = f3

� E
2(1+ n) Jv001 =m1

8>>><
>>>:

where I32=I23=1:4033104mm4, I33=2:3423104mm4,
and I22=1:4273104mm4 which are calculated based

on the sectional dimension of the stringer shown in
Figure 8. The results of equations are
u(4)2 =constant,u(4)3 =constant. Thus, the displacements
are assumed to be given by ui=aix

4
1+bix

3
1+

cix
2
1+dix1+ei, i=2,3. Similar to the case of the other

Figure 7. Position and direction of stringer in assembly
process.

Figure 8. Sectional dimension of the stringer.

Figure 6. Coordinate transformation of anchor points on the
same cross section of stringer.

Wang et al. 7



displacement and rotation, they are expressed by
ui=dix1+ei, i=1,4, in terms of their constant second
derivative which is 0, namely u(2)1 =0,u(2)4 =0. Values of
coefficients of the function expressions are calculated
and shown in Table 3.

Finite element simulation

Finite element (FE) model of a lateral fuselage panel
component stringer is created using Abaqus� CAE as
the pre-processor. The FE analysis (FEA) is carried out
using the general purpose FEA package Abaqus
Standard. Solid elements are adapted to general mod-
els. Since the obtained result of displacement cannot
directly show the rotation of stringer deformation with
torsion applied, so beam elements are required for
stringer modeling to obtain rotation displacements at
each point of stringer around the axis x1. B31 elements
are adopted to mesh the grids of stringer. The material
parameters are shown in Table 2. Applied displacement

boundary conditions are presented in Table 1 and grav-
ity is also included in the model. FE results of beam
deformation caused by variations of anchor point and
gravity are shown in Figure 9.

Comparisons between results from the proposed the-
oretical model calculation and Abaqus� simulation are
demonstrated in Figure 10. The corresponding variables
u2, u3, v2 and v3 are the polynomial functions of the
independent variable x1, while the relationships between
u1, v1 and x1 are linear. It is clear that the results of the-
oretical calculation and FEA are consistent.

Experimental verification

Measurement of the stringer deformation

The stringer is positioned with a dedicated fixture for
positioning and clamping, with a distance of 475mm
between the two clamping elements, as illustrated in
Figure 2. Leica AT901-LR� laser tracker is adopted to

Table 1. Boundary conditions of theoretical model.

Variable x1 (mm) u1(x1) (mm) v1(x1) (rad) u2(x1) (mm) v2(x1) (rad) u3(x1) (mm) v3(x1) (rad)

d1 10 0 0 0 0 0 0
d2 485 0.458 20.0897 21.856 0 22.439 20.0437

Table 2. Physical and mechanical property parameters of the materials.

Part Material Density, r (g cm23) Cross-sectional area, A (mm2) Young’s modulus, E (GPa) Poisson’s ratio, n

Stringer 7050-T7651 2.83 166.5 72 0.33

Table 3. Calculated values of coefficients of the function expressions.

Coefficient ai bi ci di ei

i = 1 9.641 3 1024 29.641 3 1023

i = 2 23.477 3 10213 21.588 3 1027 7.205 3 1025 21.393 3 1023 6.8875 3 1023

i = 3 25.189 3 10213 4.603 3 1028 23.393 3 1025 6.6476 3 1024 23.301 3 1023

i = 4 21.8884 3 1024 1.8884 3 1023

Figure 9. FE results of beam deformation.

8 Proc IMechE Part B: J Engineering Manufacture 0(0)



Figure 10. Comparison between results from theoretical model calculation and Abaqus� simulation.

Figure 11. The location of surface points of stringer to be measured.
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measure the surface of the stringer deformation arising
in assembly. Displacements of all points and positions
measured in the experiments are shown in Figure 11.
The edge reflector holder and the shankless reflector
holder are, respectively, allocated on the edge and the
offset line of the edge to measure the coordinate values
of all points.

Constraint displacements of Du1, Du2, Du3 and rota-
tion angles of Dv1, Dv2, Dv3 are applied to the clamped
location by adding shims between clamping element
rectangular block 2 and stringer surface. As shown in
Figure 12, rotation angle v is calculated by

v=arctan
d

l

� �
ð39Þ

Constraints of displacements and rotation angles
adopted in the experiments are listed in Table 4.

Applications of boundary conditions in the experi-
ments are shown in Figure 13.

As a benchmark, the nominal coordinate system of
the stringer serves as an initial position in the actual
coordinate system. Since this article takes no account of
manufacturing errors, we have 0ui(x1)=0 (i=1, 2, 3).
Variation values of the central axis of inertia of the
stringer cross section are displacement values of their
deformation. With the use of the model, which propa-
gates variations of the central axis of inertia of the cross
sections to the variations of all points on the stringer,
theoretical variation values of points on the stringer are
available.

Results and discussion

Comparisons between measured values of u1, u2, u3
(actual variations) on the offset lines of bb1, cc1, dd1
and calculated theoretical variation values are made as
shown in Figure 14.

The first three experiments are single factor experi-
ments, of which varying parameters are, respectively,
the constraints of displacements Du3 and Du2, aside
from the constraints of rotation angles. As shown in
Figure 14(a), the corresponding variable u3 is approxi-
mately the polynomial function of the independent
variable x1. The relative deformation of different parts
of the entity does not change obviously with the

Table 4. Input values of variations in single and multi-factor experiments.

Constraints Du1 (mm) Du2 (mm) Du3 (mm) Dv1 (rad) Dv2 (rad) Dv3 (rad)

I 0 0 21.68 0 0 0
II 0 22 0 0 0 0
III 0 2 0 0 0 0
IV 0.195 20.952 0 0 0 20.0187
V 0.458 21.856 22.439 20.0897 0 20.0437

Figure 12. Methods and rotation angles applied to create
variations in stringer assembly.

Figure 13. Applications of boundary conditions in the experiments.
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Figure 14. Calculated theoretical variation values and measured values (actual variations) of the offset lines bb1, cc1, dd1: (a)
theoretical and measured values of the position variations of bb1, cc1, dd1 with the change of x1 on the direction of x2, x3 in
experiment I, (b) theoretical and measured values of the position variations of bb1, cc1, dd1 with the change of x1 on the direction of
x2, x3 in experiment II, (c) theoretical and measured values of the position variations of bb1, cc1, dd1 with the change of x1 on the
direction of x2, x3 in experiment III, (d) theoretical and measured values of the position variations of bb1, cc1, dd1 with the change of
x1 on the direction of x2, x3 in experiment IV and (e) theoretical and measured values of the position variations of bb1, cc1, dd1 with
the change of x1 on the direction of x2, x3 in experiment V.
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location of the measured point. The functions of x1,
which are u2 in experiment II and u3 in experiment I,
have the same tendency and has negative correlation
with u2 in experiment III, as shown in Figure 14(b) and
(c). Furthermore, u2 in experiments II and III are only
determined by Du2. In experiment IV, both the con-
straints of displacements and rotation angles are
adopted. The curvature of stringer changes greatly with
the increased bending moment on the boundary, as
shown in Figure 14(d). Compared with that in experi-
ment I, however, u3, the x3-direction deformations of
different parts of the stringer in experiment V, changes
significantly with the locations of the measured points,
which is due to the different values of
(0R� E) � ½ 0xP1 0xP2

0xP3 �
T in equation (38) for dif-

ferent experiments.
From u2, u3, the actual values of dd1’s variations on

the direction of x2, x3, as shown in Figure 14(a)–(d), it
can be seen that u2, x2-direction deformations of each
point on the stringer, is exclusively determined by Du2
and Dv3, uncorrelated with deformations on the other
two coordinate directions. In the statistical analysis of
actually measured values of dd1 in multi-factor experi-
ment V, as seen in Table 5, the result Sig. . 0.1 indi-
cates u2 and u3 are uncorrelated. Therefore, basic
hypotheses of the proposed method in section
‘‘Deformation prediction model for stringer positioning
assembly,’’ have been proven consistent with practice.
Because of the random error occurs in the experiment
process, a few actually measured data deviate from the-
oretical values which are zero as shown in Figure 14.
According to means and standard deviations of the
variations between experimental and theoretical values
of dd1, as listed in Table 6, combining with the simula-
tion result in previous sections, it can be concluded that

theoretical variation model is consistent with simula-
tion result, confirming to the tendency of experimental
values and applicable to engineering purpose. It can
also be derived that theoretical result calculated by var-
iation propagation model is consistent with actual mea-
surement from comparison among actually measured
values on multiple positions of bb1, cc1, dd1.

Conclusion

Dimensional variation caused by deformation of the
large component is a major problem for aircraft indus-
try. This article analyzes the deformation caused by
positioning variation based on elasticity theory of the
principle of minimum potential energy and spatial trans-
formations of coordinate. A theoretical model for pre-
dicting deformation of compliant part and a variation
propagation model for determining the relationship
between local variations and the whole assembly varia-
tions are presented. Main conclusions are as follows:

1. Compared with the measured values of the points
on the surface of the deformed stringer in the posi-
tioning and clamping process and the FE simula-
tion analysis results, the proposed deformation
prediction model and variation propagation model
have been proven accurate and the proposed
method satisfies the practical application.

2. The nonlinear relationships between anchor point
variation and assembly deformation are influenced
by boundary conditions, including the displace-
ments and rotation angles of the anchor points,
and the relative locations of the different deforma-
tion parts of the entity.

Table 5. Statistical analysis results for experiment V.

u2 u3

u2 Pearson correlation 1 0.296
Sig. (two-tailed) 0.377
N 11 11

u3 Pearson correlation 0.296 1
Sig. (two-tailed) 0.377
N 11 11

Table 6. Means and standard deviations of the variations between experimental and theoretical values of dd1 in the experiment.

Conditions Means of variations (mm) Standard deviations of variations (mm)

du2
du3

su2
su3

I 0.0549065 0.1118076 0.136257 0.147843
II 0.014618 20.08415 0.16724 0.125298
III 0.234211 0.099978 0.252261 0.153608
IV 20.215753 0.095336 0.181135 0.085481
V 20.355435 0.282771 0.380336 0.206827
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The study of stringer assembly deformation caused
by variation arising in the positioning and clamping
process is a preliminary to panel assembly variation
research. To meet with design requirement, variations
present in the joining assembly of panel components
including stringer, frame and skin need further investi-
gation. Calculation results derived from the proposed
theoretical model for predicting stringer deformation
can be used as input conditions in the subsequent study
of panel assembly variation and can also provide a basis
for error sources investigation and mechanism study on
how the assembly technology influents the assembly
quality.
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