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In Parkinson’s disease (PD) the loss of the neurotransmitter dopamine (DA) results in 
abnormal oscillations of the cortico-basal ganglia network, the emergence of which 
correlate with symptoms. Increased oscillatory power in the primary motor cortex (M1) is 
reduced by dopamine replacement therapy and by targeted stimulation, suggesting that 
M1 plays an important role in the pathology of PD. In this study we have investigated, 
using pharmacology, the mechanisms by which oscillatory activity in rat M1 is generated 
and determined the power changes associated with DA depletion and DA receptor 
modulation. 
 
Extracellular local field potential recordings were made in brain slices of M1 which were 
prepared using a modified protocol to improve viability. Co-application of carbachol (5 µM) 
and kainic acid (100 nM) elicited simultaneous theta (4-8 Hz) and gamma (30-40 Hz) 
oscillations in layer V of M1. These oscillations displayed phase-amplitude coupling; the 
first report of such findings in vitro. These oscillations were found to be pharmacologically 
distinct with theta oscillations generated by intrinsic non-synaptic mechanisms while 
gamma oscillations required contributing excitatory and inhibitory networks. 
 
Following successful unilateral lesions using 6-hydroxydopamine (6-OHDA), as 
determined by the adjusting step test, DA-depleted (ipsilateral) and DA-intact 
(contralateral) slices were obtained. Although no difference in the oscillatory profile of M1 
ipsilateral, contralateral or age-matched control (AMC) slices was found, bath application 
of DA reduced gamma power only in the ipsilateral slices and amphetamine only 
decreased gamma power in contralateral slices. Furthermore, D2-like receptor activation 
consistently increased both theta and gamma power in contralateral and AMC slices, 
while only theta power was increased in ipsilateral slices. Overall, these data suggest that 
DA, through action at multiple sites, differentially modulates the power of both theta and 
gamma oscillations in M1. 
 
Using the 6-OHDA model, the oscillatory activity of M1 in vivo was investigated. 
Successful lesions were determined by using the rotometer, the locomotor activity and the 
adjusting stepping tests at 2-4 weeks post-surgery. Further testing at 22 weeks post-
surgery indicated the long-term stability of the lesions. Using depth electrode and EEG 
recordings, oscillatory activity in the 2-10 Hz range was found in the ipsilateral and 
contralateral hemispheres of both lesioned and sham animals. However, only in the 
ipsilateral hemisphere of DA-depleted animals did we detect a 30-40 Hz oscillatory peak, 
which was localised to layer V of M1. In EEG recordings this led to a significant increase 
in the interhemispheric ratio. Using depth electrode recordings, the ipsilateral 30-40 Hz 
oscillation (but not 2-10 Hz oscillation) was reduced by the administration of L-DOPA (6 
mg/kg) with a reduction in interhemispheric ratio. However, administration of zolpidem (0.3 
mg/kg), which previously reduced abnormal beta oscillatory activity in vivo and in vitro 
resulting in the rebalancing of interhemispheric beta power (Hall et al., 2014; Prokic et al., 
2015), was without effect. 
 
Overall, these studies demonstrate that M1 alone can generate multiple, 
pharmacologically distinct, but interacting oscillations, which contribute to pathological 
activity in the DA-depleted state. 
 
Key Words: Parkinson’s disease, motor cortex, oscillations, theta, gamma.  



3 
 

Acknowledgements 

 

I would first like to thank my supervisors, Prof. Ian Stanford and Prof. Gavin Woodhall for 

their continued help and support throughout my PhD, and for providing me with the 

opportunity to work in such a great lab. Additionally, I would also like to thank my industrial 

supervisors, Dr. Mike O’Neill and Dr. Keith Wafford, at Eli Lilly, for always being available 

to discuss and help me with my research over these 4 years, as well as providing me with 

a memorable 9 months during my placement at Erl Wood. 

 

I also would like to thank everyone who’s been in the lab throughout my PhD and for 

being there to share in the fun and frustrations. I would particularly like to thank Dr. Emma 

Prokic for providing invaluable support when I first started and in teaching me to use and 

understand MATLAB. Additionally, and perhaps more importantly, I want to thank Mazhar 

for working with, and putting up with me for almost a year, I could not have completed this 

thesis without your help. 

 

Furthermore, I want to thank my friends who have put up with my busy schedule these 

last 4 years (especially the last 6 months!), you’ve always been there for a drink or a catch 

up when I have had the time. Likewise, to the other CASE students with me at Eli Lilly, 

Becky and Christian, you understood being away from friends and colleagues during 

those 6-9 months and you helped to make that time enjoyable. 

 

I would like to thank my family for their ongoing support throughout and always being a 

phone call away, even if you still think I’m a neurosurgeon! And finally, I want to thank 

Jane for sharing this experience with me, for being there during the highs and lows you go 

through during a PhD and still wanting to see me in the evening! Thanks for all your help 

and support through these 4 years. 

 

  



4 
 

Table of Contents 

Acknowledgements .............................................................................................. 3 

Table of Contents .................................................................................................. 4 

List of Figures ....................................................................................................... 8 

Abbreviations ...................................................................................................... 12 

Chapter 1 Introduction ........................................................................................ 15 

1.1 Primary motor cortex (M1) .................................................................................. 16 

1.1.1 Overview ......................................................................................................... 16 

1.1.2 Laminar organisation ....................................................................................... 16 

1.1.2.1 Layer I ....................................................................................................... 17 

1.1.2.2 Layer II/III .................................................................................................. 17 

1.1.2.3 Layer V ..................................................................................................... 17 

1.1.2.4 Layer VI .................................................................................................... 18 

1.1.3 M1-S1 connectivity .......................................................................................... 18 

1.1.4 The basal ganglia ............................................................................................ 19 

1.2 Network oscillatory activity ................................................................................. 22 

1.2.1 Overview ......................................................................................................... 22 

1.2.2 Theta oscillations ............................................................................................. 22 

1.2.3 Beta oscillations .............................................................................................. 24 

1.2.4 Gamma oscillations ......................................................................................... 25 

1.2.4.1 Interneuron network gamma (ING) ............................................................ 25 

1.2.4.2 Pyramidal-interneuron network gamma (PING) ......................................... 26 

1.2.5 Phase-amplitude coupling ............................................................................... 28 

1.3 Parkinson’s disease (PD) .................................................................................... 29 

1.3.1 Overview ......................................................................................................... 29 

1.3.2 Aetiology and pathophysiology ........................................................................ 29 

1.3.2.1 Pathological oscillatory activity .................................................................. 30 

1.3.3 Treatments ...................................................................................................... 31 

1.3.3.1 Pharmacological treatment ....................................................................... 31 

1.3.3.2 Surgical lesioning ...................................................................................... 32 

1.3.3.3 Deep brain stimulation (DBS) .................................................................... 32 

1.4 Final summation .................................................................................................. 34 

1.5 Aims and Objectives ............................................................................................ 35 

 

 



5 
 

Chapter 2 Methods .............................................................................................. 36 

2.1 In vitro recordings ............................................................................................... 37 

2.1.1 Cortical Slice Preparation ................................................................................ 37 

2.1.2 Electrophysiological Recordings ...................................................................... 39 

2.1.2.1 Local field potential (LFP) ......................................................................... 39 

2.1.2.2 Extracellular Recordings ........................................................................... 39 

2.1.3 Noise concerns................................................................................................ 40 

2.1.4 Drug preparation ............................................................................................. 41 

2.1.5 Data collection and analysis ............................................................................ 41 

2.1.5.1 Data analysis ............................................................................................ 41 

2.1.5.2 Waveform correlations .............................................................................. 42 

2.1.5.3 Spectrogram analysis................................................................................ 42 

2.1.5.4 Phase-amplitude coupling ......................................................................... 42 

2.1.5.5 Statistical analysis ..................................................................................... 43 

2.2 In vivo recordings ................................................................................................ 44 

2.2.1 6-OHDA Lesions ............................................................................................. 44 

2.2.1.1 The 6-hydroxydopamine (6-OHDA) model of PD ...................................... 44 

2.2.1.2 Surgical Procedures .................................................................................. 45 

2.2.2 Motor Behavioural Tests .................................................................................. 46 

2.2.2.1 The Adjusting Step Test ............................................................................ 46 

2.2.2.2 The Rotometer test ................................................................................... 46 

2.2.2.3 Locomotor activity (LMA) test .................................................................... 47 

2.2.3 Depth Electrode Recording ............................................................................. 49 

2.2.3.1 Surgical Procedures .................................................................................. 49 

2.2.3.2 Open field depth-electrode recording ........................................................ 50 

2.2.3.3 Data analysis ............................................................................................ 51 

2.2.4 EEG experiments ............................................................................................ 52 

2.2.4.1 Surgical procedures .................................................................................. 52 

2.2.4.2 Recording environment ............................................................................. 53 

2.2.4.3 Treatment and study design ...................................................................... 54 

2.2.4.4 EEG Data Collection and Analysis ............................................................ 54 

Chapter 3 Theta-Gamma Pharmacology in vitro .............................................. 57 

3.1 Introduction .......................................................................................................... 58 

3.2 Results .................................................................................................................. 60 

3.2.1 Induction of network oscillations in M1 ............................................................ 60 

3.2.2 Phase-amplitude coupling (PAC) of M1 network activity .................................. 63 



6 
 

3.2.3 Pharmacological profile of oscillations ............................................................. 64 

3.2.3.1 GABAergic pharmacology ......................................................................... 64 

3.2.3.2 Ionotropic glutamate receptors (iGluRs) .................................................... 71 

3.2.3.3 Metabotropic glutamate receptors (mGluRs) ............................................. 76 

3.2.3.4 Cholinergic pharmacology ......................................................................... 80 

3.2.3.5 Gap junction pharmacology ...................................................................... 81 

3.3 Discussion ........................................................................................................... 82 

3.3.1 Generation of theta and gamma oscillations in M1 .......................................... 82 

3.3.2 Phase-amplitude coupling ............................................................................... 84 

3.3.3 Pharmacological profile ................................................................................... 86 

3.3.3.1 GABAergic pharmacology ......................................................................... 86 

3.3.3.2 Ionotropic glutamate receptor (iGluR) pharmacology ................................ 89 

3.3.3.3 Metabotropic glutamate receptor (mGluR) pharmacology ......................... 90 

3.3.3.4 Gap junction pharmacology ...................................................................... 91 

3.4 Conclusion ........................................................................................................... 92 

Chapter 4 Dopamine Pharmacology of M1 Oscillations .................................. 95 

4.1 Introduction .......................................................................................................... 96 

4.1.1 Dopamine Receptors ....................................................................................... 96 

4.1.2 Dopamine and neuronal activity ...................................................................... 97 

4.2 Results .................................................................................................................. 98 

4.2.1 Basic dopaminergic pharmacology .................................................................. 98 

4.2.1.1 General DA receptor activation ................................................................. 98 

4.2.1.2 D1-like receptor pharmacology ................................................................. 99 

4.2.1.3 D2-like receptor pharmacology ............................................................... 102 

4.2.2 Dopaminergic pharmacology in 6-OHDA lesioned rats .................................. 104 

4.2.2.1 General DA receptor activation ............................................................... 106 

4.2.2.2 D1-like receptor pharmacology ............................................................... 110 

4.2.2.3 D2-like receptor pharmacology ............................................................... 114 

4.3 Discussion ......................................................................................................... 118 

4.3.1 Dopamine-depletion on oscillatory profiles .................................................... 118 

4.3.2 Dopamine receptors on neuronal activity ....................................................... 119 

4.3.2.1 General effects of DA application ............................................................ 119 

4.3.2.2 DA application significantly decreases gamma oscillatory power in DA-

depleted slices .................................................................................................... 120 

4.3.2.3 AMPH decreases gamma oscillations in DA-intact slices ........................ 121 

4.3.2.4 Application of DA, apomorphine or amphetamine increases theta oscillatory 

power .................................................................................................................. 121 



7 
 

4.3.2.5 D2-like mediated increase in gamma power is lost in DA-depleted slices 123 

4.3.2.6 Age-related effects .................................................................................. 123 

4.3.2.7 Limitations ............................................................................................... 124 

4.4 Conclusions ....................................................................................................... 125 

Chapter 5 In vivo oscillations in M1 of 6-OHDA lesioned animals ................ 128 

5.1 Introduction ........................................................................................................ 129 

5.2 Results ................................................................................................................ 131 

5.2.1 Evaluation of 6-OHDA lesions ....................................................................... 131 

5.2.1.1 The rotometer test ................................................................................... 131 

5.2.1.2 Locomotor activity (LMA) test .................................................................. 134 

5.2.1.3 Adjusting step test ................................................................................... 135 

5.2.2 Frequency profile of 6-OHDA lesions ............................................................ 136 

5.2.2.1 Depth recordings ..................................................................................... 136 

5.2.2.2 EEG recordings....................................................................................... 139 

5.2.3 L-DOPA and zolpidem in depth electrode recordings .................................... 141 

5.2.3.1 L-DOPA vehicle (glucose 5%) ................................................................. 141 

5.2.3.2 L-DOPA (6 mg/kg) .................................................................................. 142 

5.2.3.3 Zolpidem (0.3 mg/kg) .............................................................................. 143 

5.2.4 L-DOPA and zolpidem in EEG recordings ..................................................... 144 

5.2.4.1 L-DOPA (6 mg/kg) .................................................................................. 144 

5.2.4.2 Zolpidem (0.3 and 1 mg/kg) .................................................................... 146 

5.3 Discussion ......................................................................................................... 149 

5.3.1 Testing 6-OHDA lesions ................................................................................ 149 

5.3.1.1 Short-term testing ................................................................................... 149 

5.3.1.2 Long-term testing .................................................................................... 150 

5.3.2 In vivo oscillatory profile ................................................................................ 151 

5.3.3 L-DOPA ......................................................................................................... 152 

5.3.4 Low-dose zolpidem ....................................................................................... 153 

5.3.5 Limitations ..................................................................................................... 154 

5.4 Conclusion ......................................................................................................... 155 

Chapter 6 General Discussion and Future Experiments ............................... 156 

References ......................................................................................................... 163 

 



8 
 

List of Figures 

Figure 1.1 M1-S1 connectivity ......................................................................................... 19 

Figure 1.2 Simplified schematic of BG nuclei................................................................... 20 

Figure 1.3 Hyperdirect, direct and indirect pathways involved in movement .................... 21 

Figure 2.1 M1-S1 sagittal slice ........................................................................................ 38 

Figure 2.2 A schematic diagram of an interface extracellular recording tissue bath ......... 38 

Figure 2.3 Extracellular rig hardware set up .................................................................... 40 

Figure 2.4 Schematic representation of a rotometer chamber. ........................................ 47 

Figure 2.5 The LMA test. ................................................................................................. 48 

Figure 2.6 Schematic of depth electrode placement. ....................................................... 50 

Figure 2.7 SCORE EEG implant...................................................................................... 52 

Figure 2.8 Standard SCORE chamber set-up. ................................................................. 54 

Figure 2.9 Example graphs demonstrating outliers in cumulative power. ......................... 56 

Figure 3.1 Co-application of CCh and KA produces simultaneous theta and gamma 

oscillations in layer V of M1 .................................................................................... 60 

Figure 3.2 Application of CCh or KA alone does not produce coherent theta and gamma 

oscillatory peaks. .................................................................................................... 61 

Figure 3.3 Layer specific frequency and power changes in M1 with cross-correlations of 

oscillatory timing ..................................................................................................... 62 

Figure 3.4 Local phase-amplitude coupling is present between theta-gamma oscillations in 

the majority of cases .............................................................................................. 63 

Figure 3.5 Gabazine increases the power of theta and decreases the power of gamma 

oscillations in LV of M1 ........................................................................................... 64 

Figure 3.6 Picrotoxin increases the power of theta and decreases the power of gamma 

oscillations in LV of M1 ........................................................................................... 65 

Figure 3.7 Diazepam increases the power of theta and gamma oscillations in LV of M1 . 66 

Figure 3.8 Zolpidem increases the power of theta and gamma oscillations in LV of M1 .. 67 

Figure 3.9 Flumazenil increases the power of gamma oscillations in LV of M1 ................ 68 

Figure 3.10 Pentobarbital decreases gamma oscillatory power in LV of M1 .................... 69 

Figure 3.11 LSN3074113 increases theta oscillatory power in LV of M1 ......................... 70 

Figure 3.12 CGP55845 increases the power of both theta and gamma oscillations in LV of 

M1 .......................................................................................................................... 71 

Figure 3.13 SYM 2206 increases the power of theta and abolishes gamma oscillations in 

LV of M1................................................................................................................. 72 

Figure 3.14 NBQX increases the power of theta and abolishes gamma oscillations in LV of 

M1 .......................................................................................................................... 73 



9 
 

Figure 3.15 AP5 increases the power of gamma oscillations in LV of M1 ........................ 74 

Figure 3.16 CPP increases the power of gamma oscillations in LV of M1 ....................... 74 

Figure 3.17 MK-801 increases the power of both theta and gamma oscillations in LV of 

M1 .......................................................................................................................... 75 

Figure 3.18 Ketamine increases the power of both theta and gamma oscillations in LV of 

M1 .......................................................................................................................... 76 

Figure 3.19 Effect of group I mGluR agonists and antagonists on theta and gamma 

oscillations in LV of M1. .......................................................................................... 77 

Figure 3.20 LY341495 increases the power of theta and gamma oscillations in LV of M178 

Figure 3.21 Effect of group II and III mGluR agonists on theta and gamma oscillations in 

LV of M1. ................................................................................................................ 79 

Figure 3.22 Atropine abolishes both theta and gamma oscillations in LV of M1 ............... 80 

Figure 3.23 Carbenoxolone decreases both theta and gamma oscillations in LV of M1 .. 81 

Figure 4.1 Dopamine application has no effect on oscillations in layer V of M1 ............... 98 

Figure 4.2 Apomorphine significantly increases theta oscillations in LV of M1 ................. 99 

Figure 4.3 D1-like receptor agonist SKF 38393 significantly increases both theta and 

gamma oscillations in LV of M1 ............................................................................ 100 

Figure 4.4 D1-like receptor antagonist SCH 23390 significantly increases the power of 

both theta and gamma oscillations in LV of M1 .................................................... 101 

Figure 4.5 D2-like receptor agonist quinpirole significantly increases both theta and 

gamma oscillations in LV of M1 ............................................................................ 102 

Figure 4.6 D2-like receptor antagonist sulpiride significantly increases theta but not 

gamma oscillations in LV of M1 ............................................................................ 103 

Figure 4.7 Pooled mean results of stepping test ............................................................ 104 

Figure 4.8 Normalised power spectra of AMC, ipsilateral and contralateral generated 

oscillations in LV of M1 ......................................................................................... 105 

Figure 4.9 Application of DA (30 µM) to AMC slices results in no significant differences to 

oscillations in LV of M1 ......................................................................................... 106 

Figure 4.10 Application of DA (30 µM) to ipsilateral and contralateral hemispheres of 6-

OHDA lesioned animals ....................................................................................... 107 

Figure 4.11 Amphetamine (20 µM) has opposing effects on theta and gamma oscillations 

in LV of M1 in AMC .............................................................................................. 108 

Figure 4.12 Application of amphetamine (20 µM) to 6-OHDA lesioned slices of M1 results 

in a differential response between hemispheres ................................................... 109 

Figure 4.13 Application of D1-like agonist SKF 38393 (10 µM) results in increases to both 

oscillations in LV of M1 ......................................................................................... 110 



10 
 

Figure 4.14 Application of D1-like agonist SKF 38393 (10 µM) to 6-OHDA lesioned slices 

increased the power of all oscillations .................................................................. 111 

Figure 4.15 Application of D1-like antagonist SCH 23390 (2 µM) to slices from AMC 

results in no significant changes to oscillatory power ........................................... 112 

Figure 4.16 Application of D1-like antagonist SCH 23390 (2 µM) to 6-OHDA lesioned 

slices has differential effects on theta and gamma oscillations ............................. 113 

Figure 4.17 The D2-like agonist quinpirole (10 µM) results in increased oscillations in AMC 

slices of LV in M1 ................................................................................................. 114 

Figure 4.18 Quinpirole (10 µM) showed differential effects on the power of theta and 

gamma oscillations in layer V of M1 from 6-OHDA animals between hemispheres

 ............................................................................................................................. 115 

Figure 4.19 D2-like antagonist sulpiride (10 µM) increases the power of theta and gamma 

oscillations in LV of M1 in AMC animals ............................................................... 116 

Figure 4.20 In 6-OHDA lesioned rats, sulpiride (10 µM) increases the power of 

contralateral oscillations and only gamma oscillations in ipsilateral slices ............ 117 

Figure 5.1 Rotometer testing demonstrated significant differences between the lesioned 

and sham animals ................................................................................................ 131 

Figure 5.2 Long-term rotometer testing demonstrated lesions persisted after 22 weeks 133 

Figure 5.3 LMA testing demonstrated differences between the lesioned and sham animals

 ............................................................................................................................. 134 

Figure 5.4 Adjusting step test identified significant forelimb bias in the 6-OHDA lesioned 

rats ....................................................................................................................... 135 

Figure 5.5 Approximation of depth electrode positioning within M1 ............................... 136 

Figure 5.6 Comparison of depth electrode recordings from contralateral and ipsilateral 

hemispheres in a 6-OHDA rat .............................................................................. 138 

Figure 5.7 Current-source density analysis demonstrated a 30-40 Hz oscillation originating 

in the deeper channels of M1 ............................................................................... 139 

Figure 5.8 Power spectra of 6-OHDA and sham lesioned animals’ baseline recordings 

demonstrates differences between ipsilateral hemispheres in 6-OHDA animals. .. 140 

Figure 5.9 Administration of vehicle (glucose 5%) results in no changes to 30-40 Hz 

oscillations ........................................................................................................... 141 

Figure 5.10 Administration of L-DOPA decreases the power of ipsilateral 30-40 Hz 

oscillations ........................................................................................................... 142 

Figure 5.11 Administration of zolpidem (0.3 mg/kg) does not result in a significant change 

in the power of the ipsilateral hemisphere relative to the contralateral hemisphere

 ............................................................................................................................. 143 



11 
 

Figure 5.12 Cumulative power graphs of 30-40 Hz oscillations with L-DOPA showed no 

significant effects on 6-OHDA or sham animals.................................................... 144 

Figure 5.13 Ipsilateral/contralateral ratios after L-DOPA and vehicle dosing demonstrate 

no significant differences ...................................................................................... 145 

Figure 5.14 Average cumulative power and inter-hemispheric ratio of 30-40 Hz oscillations 

in post-vehicle dosing demonstrates significantly higher power in 6-OHDA ipsilateral 

hemispheres ........................................................................................................ 146 

Figure 5.15 Cumulative power graphs of 30-40 Hz oscillations with 0.3 and 1 mg/kg 

zolpidem showed no significant effect on 6-OHDA or sham animals .................... 146 

Figure 5.16 Ipsilateral/contralateral ratios after 0.3 and 1 mg/kg zolpidem and vehicle 

dosing demonstrate no significant differences ...................................................... 147 

Figure 5.17 Average cumulative power and interhemispheric ratio of 30-40 Hz oscillations 

in post-vehicle dosing demonstrates significantly higher power in 6-OHDA ipsilateral 

hemispheres but no difference in interhemispheric ratio ....................................... 148 



12 
 

Abbreviations 

µl   - Microlitre 

µM   - Micromolar 

5-HT   - 5-hydroxytryptamine 

6-OHDA - 6-hydroxydopamine 

AC  - Adenylate Cyclase 

aCSF  - Artificial Cerebrospinal Fluid 

AED  - Animal Equivalent Dose 

AMC  - Age-Matched Control 

AMPA  - 2-amino-3-(5-methyl-3-oxo-1, 2-oxazol-4-yl) propanoic acid 

AMPH  - Amphetamine 

AP-5  - D-(-)-2-Amino-5-phosphonopentanoic acid 

ATR  - Atropine 

BG  - Basal Ganglia 

BL  - Baseline 

Ca2+  - Calcium Ion 

CA3  - Cornu Ammonis 3 

CaCl2  - Calcium Chloride 

cAMP   - Cyclic Adenosine Monophosphate 

CBX  - Carbenoxolone 

CCh  - Carbachol 

CCK  - Cholecystokinin 

CFC  - Cross-Frequency Coupling 

Cl-  - Chloride Ion 

DA  - Dopamine 

DBS  - Deep Brain Stimulation 

DHPG  - (S)-3,5-Dihydroxyphenylglycine 

DYN  - Dynorphin 

DZP  - Diazepam 

EEG  - Electroencephalogram 

ENK  - Enkephalin 

EPSC  - Excitatory Postsynaptic Current 

EPSP  - Excitatory Postsynaptic Potential 

ERD  - Event Related Desynchronisation 

FFT  - Fast Fourier Transform 

FIR  - Finite Impulse Response 



13 
 

FS  - Fast Spiking 

g  - grams 

GABA  - Gamma (γ)-Aminobutyric Acid 

GBZ  - Gabazine 

GP  - Globus Pallidus 

GPCR  - G-Protein Coupled Receptor 

GPe  - External Globus Pallidus 

GPi  - Internal Globus Pallidus 

Hz  - Hertz 

i/m  - Intramuscular 

i/p  - Intraperitoneal 

iCSD  - Inverse Current Source Density 

iGluR  - Ionotropic Glutamate Receptor 

iNOS  - Inducible Nitric Oxide Synthase 

IIR  - Infinite Impulse Response 

ING  - Interneuron Network Gamma 

IPSC  - Inhibitory Postsynaptic Current 

IPSP  - Inhibitory Postsynaptic Potential 

K+  - Potassium Ion 

KA  - Kainic Acid 

KCl  - Potassium Chloride 

KET  - Ketamine 

KO  - Knock Out 

LI/II/III/V/VI - Layer I, II, III, V, VI 

L-DOPA - L-3,4-dihydroxyphenylalanine 

LFP  - Local Field Potential 

LID  - Levodopa Induced Dyskinesia 

LS  - Late Spiking 

LTS  - Low Threshold Spiking 

M1  - Primary Motor Cortex 

mAChR - Muscarinic Acetylcholine Receptor 

MAO  - Monoamine Oxidase 

MEG  - Magnetoencephalography 

mg  - milligram 

Mg2+  - Magnesium Ion 

mGluR  - Metabotropic Glutamate Receptor 

MgSO4  - Magnesium Sulphate 



14 
 

min  - Minute 

ml  - Millilitre 

mM  - Millimolar 

MPTP  - 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

MSN  - Medium Spiny Neuron 

MΩ  - Megaohm 

Na+  - Sodium Ion 

NAC  - N-Acetylcysteine 

NaCl  - Sodium Chloride 

NaH2PO4 - Sodium Dihydrogen Orthophosphate 

NaHCO3 - Sodium Hydrogen Carbonate 

nM  - Nanomolar 

NMDA  - N-Methyl-D-Aspartic Acid 

PAC  - Phase-Amplitude Coupling 

PBS  - Phosphate Buffered Saline 

PD  - Parkinson’s disease 

PFC  - Pre-Frontal Cortex 

PIC  - Picrotoxin 

PING  - Pyramidal-Interneuron Network Gamma 

PKA  - Protein Kinase A 

PLC  - Phospholipase C 

PMBR  - Post-Movement Beta Rebound 

PV  - Parvalbumin 

RAS  - Rotational Asymmetry Score 

RSNP  - Regular-Spiking Non-Pyramidal 

s  - Second 

s/c   - Sub-Cutaneous 

S1  - Somatosensory Cortex 

SEM  - Standard Error of the Mean 

SMA  - Supplementary Motor Area 

SNc  - Substantia Nigra pars compacta 

SNr  - Substantia Nigra pars reticulata 

SP  - Substance P 

STN  - Subthalamic Nucleus 

SYM  - SYM 2206 

TMS  - Transcranial Magnetic Stimulation 

VTA  - Ventral Tegmental Area  



15 
 

Chapter 1 Introduction 

  



16 
 

1.1 Primary motor cortex (M1) 

 

 1.1.1 Overview 

 

The primary motor cortex (M1) along with the pre-motor cortex and supplementary motor 

area (SMA) comprise approximately one third of the frontal lobe. M1, also known as 

Brodmann area 4, is located adjacent to the central sulcus and is believed to be 

associated with the control and execution of voluntary movement (Eccles, 1981).  

 

In 1870, Hitzig and Fritsch were the first to show that specific brain areas of dogs, when 

stimulated, resulted in muscular contractions in the body. The first maps of the human 

motor cortex were produced by Alfred Campbell in 1905 and these were improved upon 

by Penfield and Boldrey (1937). They observed that M1 contained a functional map 

organised somatotopically, with body parts corresponding to specific areas, thus 

developing the ‘motor homunculus’. The motor map of M1 revealed that the greater the 

necessity for complex or fine movements (such as by the fingers), the more space is given 

over to this body area in M1. Following these studies, Stoney et al. (1968) performed 

intra-cortical electrical stimulation of specific body parts in cat sensorimotor cortex to 

further identify the somatotopic map of M1. More recently, many studies have shown that 

different body part areas can overlap (Sanes and Donoghue, 1997, 2000). In addition, 

certain areas (such as those which control individual digits) have been shown to be 

surrounded by areas controlling spatially adjacent limbs, in a core and circular manner 

(Kwan et al., 1978). Furthermore, the size and organisation of specific motor areas can 

vary between subjects depending on preference or movement bias, suggesting a level of 

dynamic plasticity within M1 (Nudo et al., 1992). The somatotopic assembly of human M1 

has been further refined to include the idea that multiple areas of M1 control specific body 

parts (Binkofski et al., 2002). 

 

 1.1.2 Laminar organisation 

 

M1 is arranged in cortical columns and consists of five layers; layers I, II, III, V and VI. 

Traditionally, layers I and II/III comprise the superficial layers and layers V and VI the 

deep layers. Unlike other brain areas, M1 contains no layer IV and therefore is described 

as agranular (Donoghue and Wise, 1982). Thus, it lacks what is considered to be a major 

processing pathway to higher motor areas, such as to the pre-motor cortex (Shipp, 2005). 

However, recent studies in primates and rodents suggest there are subsets of cells at the 
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layer III-V boundary in M1 which have the characteristics of layer IV neurons (Garcia-

Cabezas and Barbas, 2014; Yamawaki et al., 2014). 

 

 1.1.2.1 Layer I 

Layer (L) I of M1 is sparsely populated by pyramidal cell bodies and is predominantly 

composed of reciprocal axons branching from LII-LVI, as well as input connections from 

other motor areas (Ueta et al., 2014). The cells which populate this layer have been 

shown to be approximately 95% inhibitory and can be broadly organised into two main 

types; those which have dendritic connections confined to LI and those which project to 

LII-VI (Gabbott and Somogyi, 1986; Zhou and Hablitz, 1996; Chu et al., 2003). 

 

 1.1.2.2 Layer II/III 

LII/III contains both pyramidal excitatory cells and non-pyramidal inhibitory cells. The non-

pyramidal cell types present within LII/III can be separated into four groups based on their 

electrophysiological properties. These include fast-spiking (FS), late-spiking (LS), low-

threshold spiking (LTS) and regular-spiking non-pyramidal (RSNP) cells. The most 

common are the FS and RSNP cells, which project mostly local connections within LII/III, 

with only a few cells projecting or receiving input from other layers (Kawaguchi, 1995). 

The input to LII/III is provided by LI and reciprocally from LVI, whilst LII/III cells have 

outputs that either remain in LII/III or output to LV and other brain areas (Shipp, 2007; 

Ueta et al., 2014). 

 

 1.1.2.3 Layer V 

LV in M1 is the largest of the layers present and is often characterised by the presence of 

large pyramidal cells, known as Betz cells. Smaller pyramidal neurons (cortico-spinal), 

similar to those seen in previous layers are also present (Cho et al., 2004). 

 

LV can be separated into upper (Va) and lower (Vb) domains, depending on the 

predominant cell size. In LVa, the majority of neurons, called Betz cells, have a soma 

volume approximately 20.4x more than the smaller neurons which occupy LVb (Rivara et 

al., 2003). Furthermore, Betz cells that represent the foot and leg have a greater somatic 

volume suggesting a relationship between their size and the extent of the body parts 

which they control (Lassek, 1940; Rivara et al., 2003). Betz cells are further subdivided 

into two groups based on their morphology, projection areas and electrophysiological 

properties. Type 1 Betz cells have thick branching apical dendrites, project primarily to the 

spinal cord, pons and striatum and have a burst firing pattern in response to membrane 

depolarisation. Type 2 Betz cells have thin apical dendrites that usually terminate in LII/III, 
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project to the striatum and the contralateral cortical hemisphere and have a regular non-

bursting pattern in response to membrane depolarisation (Molnar and Cheung, 2006). 

 

 1.1.2.4 Layer VI 

LVI of M1 contains a large population of cortico-thalamic neurons (Yamawaki and 

Shepherd, 2015) which receive inputs from LVa and LVb (Kim et al., 2014; Yamawaki and 

Shepherd, 2015). 

 

 1.1.3 M1-S1 connectivity 

 

M1 and somatosensory cortex (S1) are often grouped together under the name 

sensorimotor cortex. These areas lie adjacent to each other and are highly interconnected 

(Fig 1.1). The co-ordination between M1, S1 and other brain structures, such as the basal 

ganglia and the spinal cord, is thought to result in precise control of movement (Wichmann 

and DeLong, 1999). The connections between M1 and S1 are also organised 

somatotopically and this may be important for the integration of movement and sensory 

information (Porter and Sakamoto, 1988). For example, the whiskers of rodents are used 

to provide sensory feedback, which results in a high level of intercommunication between 

M1 and S1 which facilitates further movement and exploration (Nguyen and Kleinfeld, 

2005; Ferezou et al., 2007). Similarly, primate studies have shown that both M1 and S1 

generate synchronous oscillatory activity during movement tasks allowing the integration 

of movements with environmental stimuli (Murthy and Fetz, 1996; Nguyen and Kleinfeld, 

2005). Furthermore, a study by Sakamoto et al. (1989) in cats, demonstrated that 

destruction of S1 and its connections to M1 resulted in decreased motor learning during 

complex motor tasks.  
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Figure 1.1 M1-S1 connectivity Schematic demonstrating the main circuits connecting M1 and S1. 

Blue lines represent connections from M1 to S1. Red lines represent connections from S1 to M1. 

Thickness of line represents increasing strength of connection. Adapted from Mao et al. (2011). 

 

 1.1.4 The basal ganglia 

 

The basal ganglia (BG) are a group of highly interconnected, primarily GABAergic (γ-

aminobutyric acid) nuclei (Fig 1.2) (Brown and Marsden, 1998). The primary input station 

of the BG is the striatum (in rodents), which is known as the caudate putamen in primates  

(McGeorge and Faull, 1989). Cortical information is integrated in the BG before being 

relayed back to the thalamus and cortex from the internal globus pallidus (GPi) and 

substantia nigra pars reticulata (SNr). The nuclei of the external globus pallidus (GPe) and 

the subthalamic nucleus (STN) act as further integration sites. Information flow through 

the BG is controlled by dopamine (DA) which is released by neurons of the substantia 

nigra pars compacta (SNc). These neurons primarily project to the striatum although the 

SNc also projects to other BG nuclei including GPe, GPi, STN and M1 (Lindvall and 

Bjorklund, 1979; Gaspar et al., 1995; Gauthier et al., 1999; Hosp et al., 2009).  
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Figure 1.2 Simplified schematic of BG nuclei Schematic detailing the synaptic connections and 

connection types between the BG nuclei, cortex and thalamus. ENK labels the enkephalin group 

medium-spiny neurons (MSNs) which target the GPe. SP/DYN labels the substance P/dynorphin 

group MSNs that target the GPi/SNr. Red arrows indicate glutamatergic excitatory connections; 

blue circles indicate GABAergic inhibitory connections; green diamonds indicate dopaminergic 

connections. Grey box indicates the nuclei that make up the BG. 

 

Two primary pathways project from the striatum; the ‘direct’ pathway couples dynorphin 

(DYN) containing MSN neurons with the GPi/SNr and the ‘indirect’ pathway couples 

enkephalin (ENK) containing MSNs and the GPe (see Fig 1.3) (Albin et al., 1989; Delong, 

1990). The direct pathway’s activity is facilitated by DA D1-like receptors and the indirect 

pathway’s activity is inhibited by DA D2-like receptors (Gerfen et al., 1990; Parent et al., 

2000; Parent et al., 2001). Though studies have suggested this distinction between the 

pathways was incorrect, whereby D1 and D2 receptors were observed to co-localise on 

striatal neurons in rodent brain slices (Aizman et al., 2000). However, these did not take 

into account specific targets of striatal projection neurons investigated. Thus, recent 

evidence using transgenic fluorescent proteins in mice has reaffirmed the original 

hypothesis. Studies demonstrated that in striatal projection neurons that serve either the 

direct or indirect pathways there is a prominent segregation in receptor expression 

(Gertler et al., 2008; Valjent et al., 2009; Gerfen and Surmeier, 2011). 

 

From the GPe signals are passed to the STN and then on to the SNr and GPi (Smith and 

Bolam, 1989; Bolam and Smith, 1992; Kita and Kitai, 1994). The STN is the only 

glutamatergic nuclei in the BG and receives a direct glutamatergic input from the cortex, 
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which has been termed the ‘hyperdirect’ pathway (see Fig 1.3) (Monakow et al., 1978; 

Nambu et al., 2000; Tokuno and Nambu, 2000; Nambu et al., 2002). In addition, 

reciprocal connections exist between the GPe and the striatum, the striatum and the SNc 

and the GPe, GPi and STN (Kita et al., 1983; Haber et al., 2000; Sato et al., 2000; Obeso 

et al., 2006). 

 

The process of movement selection and execution in the BG has been extensively 

studied. The discovery of the hyperdirect pathway resulted in the suggestion of a ‘centre-

surround model’ of BG function (Nambu et al., 2002), involving the specific selection and 

inhibition of motor programs (Mink and Thach, 1993; Mink, 1996; Hikosaka et al., 2000). 

The three pathways (hyperdirect, direct and indirect) work together to specifically select 

and initiate appropriate movement whilst inhibiting other motor programs (Chevalier and 

Deniau, 1990). Thus, the hyperdirect cortico-STN pathway provides ultra-fast activation of 

GPi neurons which then inhibit the thalamus and cortex (Nambu et al., 2000). The direct 

striatum-GPi pathway is then activated which inhibits neurons specifically related to the 

selected movement. Subsequently, these neurons are inhibited by the indirect pathway. In 

this way highly selective movements are executed and terminated appropriately. 

 

 

Figure 1.3 Hyperdirect, direct and indirect pathways involved in movement Schematic 

detailing the synaptic connections of the hyperdirect, direct and indirect pathways. Red arrows 

indicate glutamatergic excitatory connections; blue circles indicate GABAergic inhibitory 

connections. Grey box indicates the nuclei that make up the BG.  
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1.2 Network oscillatory activity 

 

 1.2.1 Overview 

 

Groups of neurons arranged in local networks can generate patterns of activity which are 

termed neuronal oscillations. Hans Berger in 1929 was the first to use 

electroencephalography (EEG) to observe an oscillation at 10 cycles a second (10 Hz) in 

a human subject, which he termed the alpha rhythm. A second, faster, oscillation (12-30 

Hz) was termed beta. Subsequent studies have observed oscillations in multiple 

frequency bands, and correlated these to different functional states. However, it is now 

understood that specific frequency bands are not limited to a single behaviour but that the 

frequency of activity is dynamic and able to contribute to multiple behavioural states. 

These frequency bands include delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (12-

30 Hz) and gamma (30-80 Hz). Delta oscillations are observed most commonly during 

sleep, whilst alpha oscillations are associated with wakefulness when eyes are closed 

(Buzsaki and Draguhn, 2004). Theta oscillations appear to have many roles including 

voluntary and non-voluntary (automatic) motor actions (Vanderwolf, 1969; Bland, 1986), 

whilst gamma oscillations have roles in the processing of movement (Crone et al., 1998; 

Cheyne et al., 2008; Muthukumaraswamy, 2010), sensory information (Gray et al., 1989), 

attention and memory (Jensen et al., 2007). 

 

 1.2.2 Theta oscillations 

 

Theta oscillations (4-8 Hz) were originally defined and studied in the hippocampus (Walter 

and Dovey, 1944; Green and Arduini, 1954) and have been shown to be associated with 

spatial navigation and learning (Winson, 1974, 1978; Hasselmo et al., 2002), navigation 

by place fields (O'Keefe and Recce, 1993; Cacucci et al., 2004), sleep (Cantero et al., 

2003) and movement (Vanderwolf, 1969, 1975). 

 

Early studies in vivo demonstrated two types of theta oscillations; type 1 or atropine-

sensitive (4-9 Hz) and type 2 or atropine-resistant (6-12 Hz) (Vanderwolf, 1969; Kramis et 

al., 1975; Vanderwolf, 1975; Montoya and Sainsbury, 1985). Type 1 theta was 

predominantly observed during the complete absence of movement or during periods of 

automatic instinctive activity such as licking and chewing, while type 2 theta was 

associated with voluntary behaviours such as walking, running and rearing (Vanderwolf, 

1969, 1971; Kramis et al., 1975). Thus distinct theta activity is believed to be associated 
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with specific motor function (Vanderwolf, 1969; Bland, 1986). However, a review by Bland 

and Oddie (2001) suggested that theta provided continual feedback between brain areas, 

such as the hippocampus and motor systems, resulting in the ability to adapt to 

continuously changing sensory stimuli. Theta oscillations are also thought to play an 

important role in spatial memory. When a rat enters a set location, place cells in the 

hippocampus fire in a specific pattern at theta frequency which correspond to visual cues 

(O'Keefe, 1976). Furthermore the theta activity of the place cells also shifted in phase 

depending on the location within the place field demonstrating that theta oscillations can 

be both dynamic and adaptable (O'Keefe and Recce, 1993). 

 

The cholinergic and GABAergic system are believed to be involved in the generation of 

theta oscillations as the hippocampus receives innervation from the medial septum 

(Petsche et al., 1962; Konopacki and Golebiewski, 1993; Vinogradova, 1995). 

Histochemical studies in the hippocampus of rats have shown that the GABAergic fibres 

from the medial septum terminate on specific populations of GABAergic interneurons, 

including those containing PV, cholecystokinin (CCK) and calbindin (Freund and Antal, 

1988; Gulyas et al., 1991). These interneurons have been termed theta-off cells and have 

been shown to be active during the troughs and silent during peaks of the theta oscillation. 

In contrast, septo-hippocampal cholinergic fibres innervate hippocampal pyramidal cells, 

known as theta-on cells, are active during the peaks of the oscillation. These cells had a 

co-ordinated pattern of activity that coincided with the troughs and peaks of the theta 

oscillation, thus were believed to be responsible for its generation (Colom et al., 1991; 

Smythe et al., 1992). However intracellular experiments in rodent hippocampus and cortex 

have suggested that the joint cholinergic and GABAergic rhythmic control of networks can 

generate intrinsic membrane potential oscillations, which are believed to account for in 

vitro theta oscillations (Bland and Colom, 1993; Bland and Oddie, 2001; Bland et al., 

2002) 

 

Theta oscillations in vitro, elicited by the bath application of carbachol (CCh, an 

acetylcholine receptor agonist), were first described in the hippocampus by MacIver et al. 

(1986) and Konopacki et al. (1987). Additional block of GABAA receptors with bicuculline 

also produced robust theta oscillations (Konopacki and Golebiewski, 1993). Subsequent 

studies have demonstrated in vitro theta oscillations in other brain areas such as the 

neocortex (Lukatch and MacIver, 1997; Castro-Alamancos, 2013) and entorhinal cortex 

(Konopacki and Golebiewski, 1992; Konopacki et al., 1992a; Cunningham et al., 2003). 

Furthermore, theta oscillations have the ability to entrain faster oscillations (such as 

gamma oscillations) to their oscillatory phase. This is known as phase-amplitude coupling 
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and it is believed to play a role in entraining network oscillations between brain areas 

(Bragin et al., 1995; Chrobak and Buzsaki, 1998; Sirota et al., 2008) (see section 1.2.5). 

 

 1.2.3 Beta oscillations 

 

Beta oscillations (12-30 Hz) have been observed in many cortical areas including the 

olfactory bulb, visual cortex, M1 and S1 (Adrian, 1942; Jasper and Penfield, 1949; 

Freeman, 1978; Gray and Singer, 1989; Murthy and Fetz, 1992; Gray, 1994; Roopun et 

al., 2006; Yamawaki et al., 2008) during a variety of behavioural states and exploratory 

activities. The beta oscillations observed in M1 and S1 are some of the most studied, due 

to their role in movement execution (Pfurtscheller and Berghold, 1989; Pfurtscheller and 

Neuper, 1992; Baker et al., 1997; Pfurtscheller et al., 2003). 

 

The presence of beta oscillations has been described as a stable or ‘idling’ state 

responsible for the maintenance of current state between movement activities (Brown and 

Marsden, 1998; Brown and Williams, 2005; Engel and Fries, 2010; Brittain and Brown, 

2014; Brittain et al., 2014). Such a view suggests that beta oscillations are involved in the 

maintenance of posture or tonic contraction (Baker et al., 1997; Jenkinson and Brown, 

2011). Beta oscillations undergo event-related desynchronisation (ERD) prior to 

movement execution and post-movement beta rebound (PMBR) is observed once the 

movement has been completed (Pfurtscheller et al., 1993; Brown et al., 1998; 

Pfurtscheller et al., 2003; Jurkiewicz et al., 2006; Cheyne et al., 2008). 

 

The degree of synchronous beta oscillations are believed to be important for the level of 

cortical processing able to be completed by the neuronal network, thus affecting the ability 

of cortical networks to quickly adjust to new sensory input and movements. Brittain et al. 

(2014) suggested that there is an precise level of beta oscillation synchrony which allows 

the computational ability of the network to remain optimal and adaptable during 

movement, thus allowing appropriate ERD (Kuhn et al., 2004). As such, excessive levels 

of synchrony throughout the cortico-BG network have been shown to contribute to motor 

impairments in Parkinson’s disease (PD) resulting in bradykinesia and rigidity (Brown and 

Marsden, 1998; Magill et al., 2000; Brown and Williams, 2005; Brittain et al., 2014) (see 

section 1.3.2.1 for further details). 
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 1.2.4 Gamma oscillations 

 

Gamma oscillations (30-80 Hz) have been thoroughly studied in many cortical regions and 

the hippocampus and have been associated with many different processes and 

behaviours, including memory and sensory processing (Gray and Singer, 1989; Traub et 

al., 1996b; Traub et al., 1999), motor function (Pfurtscheller and Berghold, 1989; 

Pfurtscheller and Neuper, 1992; Pfurtscheller et al., 1993; Crone et al., 1998; Pfurtscheller 

et al., 2003), olfactory function (Eeckman and Freeman, 1990) and visual processing 

(Singer and Gray, 1995). 

 

Gamma oscillations can be generated in several ways involving different networks, 

mechanisms and temporal scales. For instance, in vivo studies have characterised 

sensory and motor gamma as bursts or waves (Gray et al., 1989; Pfurtscheller et al., 

1993), whereas in hippocampal CA3 and dentate gyrus (DG) regions it has been 

described more as a persistent oscillation (Csicsvari et al., 2003).  

 

A variety of in vitro preparations have been developed to provide a pharmacological and 

mechanistic insight (Whittington et al., 1995; Fisahn et al., 1998; Fisahn et al., 2004). The 

majority of these have used a combination of carbachol (CCh) and the ionotropic 

glutamate receptor agonist kainic acid (KA) to elicit oscillations, although metabotropic 

glutamate receptor (mGluR) agonists and tetanic stimulation have also been used. All of 

these methods result in gamma oscillations that vary in their frequency, pharmacology 

and persistence, though the involvement of GABAA receptors and gap junctions are 

essential to all. There are two widely accepted models of gamma generation; the 

interneuron network gamma (ING) and pyramidal-interneuron network gamma (PING) 

models. It has been suggested that the generation of beta oscillations in M1 are similar to 

the ING model of oscillations (Yamawaki et al., 2008). 

 

 1.2.4.1 Interneuron network gamma (ING) 

The ING model of gamma oscillations was first proposed by Traub et al. (1996b) to 

describe an oscillatory network sensitive to the block of GABAA receptors but persisted 

during the block of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

glutamate receptors with NBQX. Mechanistically, the ING model relies upon the 

interconnectivity of GABAergic interneurons, resulting in sustained mutual inhibition 

amongst the interneuronal network (Whittington et al., 2000). The network requires 

excitatory input to initially bring the interneuronal population to a threshold level of activity. 

This will increase interneuron activity and promote enhanced synchrony of inhibitory post 
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synaptic potentials (IPSPs) along with rebound spikes (Wang and Rinzel, 1993). Thus, 

once the network is activated, the oscillation is generated through the mutual inhibition 

between the interneurons which will then discharge together and generate synchronous 

IPSPs (Buzsaki and Wang, 2012). The frequency of the oscillation is primarily determined 

by the decay time constant of the IPSP, thus the longer the decay time the slower the 

frequency of the oscillations. This generally produces oscillations in the gamma range and 

varying the kinetics of GABAA receptors pharmacologically or in a computer generated 

model of ING can alter the frequency of the oscillation (Traub et al., 1996b; Wang and 

Buzsaki, 1996; Bartos et al., 2002). Whilst ING is interneuronal driven they are often 

connected to excitatory pyramidal neurons. Indeed, pyramidal cell networks can report the 

oscillation generated in the inhibitory network since they are gated by the same rhythmic 

IPSPs. This gating means that pyramidal cells have the chance to fire in the periodic 

intervals when inhibition is low (Whittington et al., 2000).  

 

 1.2.4.2 Pyramidal-interneuron network gamma (PING) 

Early studies of gamma oscillations in vivo demonstrated networks composed of both 

excitatory and inhibitory connections (Leung, 1982; Jagadeesh et al., 1992). If the 

pyramidal neurons also provided a reciprocal driving force to the interneuronal network 

then another model would begin to appear, known as PING. Thus in this model, excitatory 

neurons are intimately involved in the generation and regeneration of network oscillatory 

activity (Whittington et al., 2000). 

 

The excitation delivered to interneurons and the feedback inhibition provided to the 

excitatory population alternate in the PING model. This improves network stability and 

coherence (Traub et al., 1996a; Wang and Buzsaki, 1996; White et al., 1998) as shown by 

the resultant long lasting (persistent) oscillations (Buzsaki and Wang, 2012). AMPA 

receptor mediated excitatory post-synaptic potentials (EPSPs) provide this excitatory input 

as PING is sensitive to AMPA receptor block (Whittington et al., 1998; Traub et al., 1999; 

Fuchs et al., 2007). Thus the EPSPs generated by pyramidal neurons are believed to be 

the primary drivers of the interneuron population and are also important for the temporal 

integration of the network (Whittington et al., 1998; McBain et al., 1999). As mentioned 

previously, the oscillatory frequency of the ING model can be altered by changing the 

IPSP decay time using GABAA receptor modulators. In a network involving pyramidal 

neurons, this can still occur but there degree of change that can be elicited is reduced 

(Whittington et al., 1996; Faulkner et al., 1998). 
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In a PING model the excitatory neurons recover from IPSPs before the inhibitory cells. 

This allows the pyramidal cells to fire EPSPs onto inhibitory cells before they are inhibited 

by another IPSP. Essentially the activity of the excitatory and inhibitory cells alternates. 

The pyramidal neurons excite the interneuronal population to threshold through co-

ordinated synchronous input. Following this, the interneuronal population inhibits the 

pyramidal cells involved in the network, whereby the decay time of the IPSP determines 

the frequency of the oscillation. Therefore, in the intervals when the inhibition in the 

pyramidal cells has sufficiently decayed, they can generate another EPSP to excite the 

interneuronal population. This interplay between the populations essentially switces the 

population in control of the timing of the oscillation from solely the interneurons, to both 

pyramidal cells and interneurons. However, as in ING networks, not all pyramidal cells 

involved in a network fire on every cycle of an oscillation. Recordings have shown that 

pyramidal cells only fired at low frequencies (~3 Hz) but they were always prior to 

interneurons involved in the network (Fisahn et al., 1998; Hajos et al., 2004). 

 

The involvement of excitatory pyramidal cells in the PING model also results in the ability 

of the network to synchronise over distances of up to 3.5 mm (Traub et al., 1996a). Using 

dual site tetanic-stimulation and in computational models, it was shown that spatially 

distinct regions were able to oscillate together with little phase-lag (Traub et al., 1996a; 

Whittington et al., 1997; Ermentrout and Kopell, 1998). The basis of long-range oscillation 

generation by EPSPs relies on the generation of interneuron spike doublets, two EPSPs 

that arrive onto interneurons within a short space of time gradually resulting in a reduction 

of the phase-lag between the distant networks. However, this can only occur in two 

networks that are approximately in phase with each other to begin with (~2 ms), since an 

interneuron has to have been depolarised by a local EPSP within a few ms prior to a 

second spike arriving from the distant network (Bibbig et al., 2002). Additionally, the 

strength of the second EPSP has to be strong enough to overcome any after-

hyperpolarisation potentials activated after the initial spike. The doublet on the interneuron 

can then summate and fire a stronger IPSP onto its local pyramidal and interneuronal 

populations that it ordinarily would, increasing the length of decay time for the local 

pyramidal neurons so reducing the phase lag between the two populations (Whittington et 

al., 1998; McBain et al., 1999). 
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 1.2.5 Phase-amplitude coupling 

 

Bragin et al. (1995), was the first to report gamma oscillations in the hippocampus in vivo 

were positively correlated to theta oscillations and the amplitude of the gamma oscillation 

is dynamically modulated on the phase of a theta oscillatory cycle (Canolty et al., 2006). 

This phenomenon has become known as phase-amplitude coupling (PAC) or cross-

frequency coupling (CFC). Further in vivo and computer modelling studies have 

suggested that one of the roles of theta oscillations in the brain is to activate and entrain 

large spatially distinct areas, allowing for modulation of local faster oscillations (Chrobak 

and Buzsaki, 1998; Lakatos et al., 2005; Onslow et al., 2014). This is possible due to the 

longer temporal window evident in slower oscillations, which enables the entrainment of 

oscillations over a large area (von Stein and Sarnthein, 2000). Furthermore, gamma 

oscillations alone do not appear to have the ability to integrate and generate 

synchronisation over long distances (>8-10 mm), since synchronous activity in this range 

has been shown to decline with distance (Eckhorn, 1994). This suggests gamma 

oscillations are primarily involved in higher interactions that take place on a local scale 

(Kopell et al., 2000).  

 

It may be that hippocampal theta specifically entrains networks of gamma oscillation 

generating neurons throughout cortical areas as a form of centralised temporal and spatial 

co-ordination in the brain (Hyman et al., 2005; Jones and Wilson, 2005; Siapas et al., 

2005; Sirota et al., 2008). This is supported by evidence that coupling between brain 

areas is an essential form of neuronal computation and processing (Engel et al., 2001; 

Fries, 2005; Canolty and Knight, 2010), which is particularly important in the integration of 

motor and sensory related events (Luo and Poeppel, 2007; Lakatos et al., 2008; Saleh et 

al., 2010; Schroeder et al., 2010; Onslow et al., 2014). PAC may therefore be used to 

organise fast oscillations within a single brain structure and/or across multiple cortical 

layers (Quilichini et al., 2010). For example, in a T-maze task, it has been shown that the 

power of PAC across different frequency bands is dynamically modulated during distinct 

behaviours and between brain areas (Tort et al., 2008) and can occur transiently during 

task related activity, resulting in different patterns of coupling and processing (Canolty et 

al., 2006). This suggests that PAC may be used to co-ordinate decision making and 

movement during exploration. PAC can also be observed during motor behaviour, 

whereby communication between M1 and other cortical areas during specific motor tasks 

alters the power and frequencies of network activity (Igarashi et al., 2013; von Nicolai et 

al., 2014). 
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1.3 Parkinson’s disease (PD) 

 

 1.3.1 Overview 

 

Parkinson’s disease (PD) is a hypokinetic neurodegenerative disorder, which affects 

voluntary movement through the destruction of dopaminergic neurons of the substantia 

nigra in the BG. It was first characterised by Dr. James Parkinson in 1817 in a report titled 

“An Essay on the Shaking Palsy”, in which he detailed how the disease progressed over 

time and outlined the classic symptoms of the disease, which include bradykinesia 

(slowness in movement execution), akinesia (difficulty executing a movement), rigidity 

(resistance to passive movement) and resting tremor (rhythmical contraction and 

relaxation of body parts). With a mean age of onset around 60 years old the lifetime risk of 

developing PD is 2%, which makes it the second most common neurodegenerative 

disorder behind Alzheimer’s disease (de Lau and Breteler, 2006; Schapira, 2009). The 

risk rises to 4% in people over 80 years old and is only rarely seen in patients beneath the 

age of 50 years (de Lau and Breteler, 2006).  

 

Diagnosis of PD is based on clinical assessment, relying on the identification of one or 

more major symptoms, however approximately 25% of patients are mistakenly 

misdiagnosed with the disease (Hughes et al., 1992). Unfortunately in many cases, by the 

time motor symptoms of PD are apparent, more than 70% of the dopaminergic terminals 

have already been lost (Bernheimer et al., 1973; Yuan et al., 2005; Willard et al., 2015). 

Whilst this does suggest a level of resilience and redundancy within the motor system, it 

often means that therapeutic intervention is not initiated until substantial DA loss has 

already taken place. In fact it has been suggested that the prodromal phase (non-

symptomatic phase) of PD can occur up to 20 years before the onset of motor symptoms, 

affecting multiple areas of the brain and periphery (Braak et al., 2003; Postuma et al., 

2012; Kalia and Lang, 2015). 

 

 1.3.2 Aetiology and pathophysiology 

 

Whilst the majority of patients (approximately 90%) that present with PD are idiopathic 

(that is, the cause is unknown), there are a rising number of genetic mutations which have 

been shown to be associated with an inherited form of PD (Weintraub, 2008). The original 

gene to be associated with inherited PD was SNCA, which encodes for the protein α-

synuclein, a component of Lewy bodies (Polymeropoulos et al., 1997). Other significant 
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genetic markers associated with PD include LRRK2, parkin, GBA and PINK1 (Kalia and 

Lang, 2015). Studies have also shown that there are several environmental risk factors 

which contribute to the development of PD. The highest risk is carried by pesticide 

exposure, followed by head injury, rural living, β-blocker use, agricultural work and well-

water drinking (Noyce et al., 2012). Some of these genetic and environmental risk factors 

have been shown to increase mitochondrial stress and damage, in particular in the SNc of 

the BG, which is the area of key pathological importance within PD (Bueeler, 2009; Zuo 

and Motherwell, 2013). 

 

The pathophysiological hallmark of PD is the loss of the dopaminergic neurons of the 

SNc. Dopaminergic loss progresses from the ventral SNc laterally, which eventually 

results in the loss of DA innervation of the striatum (Ehringer and Hornykiewicz, 1960; 

Bernheimer et al., 1973; Hirsch et al., 1988; Goto et al., 1989; Fearnley and Lees, 1991). 

The loss of D2 receptor mediated inhibition of striatal MSNs is believed to result in 

increased inhibition and decrease in activity of the GPe (Miller and Delong, 1988; Delong, 

1990; Filion and Tremblay, 1991). The decrease in GPe activity has the overall effect of 

increasing the glutamatergic output of the STN (Wilson and Bevan, 2011). The increased 

excitation from the STN onto the GPi/SNr, results in an excessive inhibition of the 

thalamus and therefore a decrease in output to the cortex, which presents as the motor 

symptoms akinesia and bradykinesia (Wichmann et al., 2011; Wichmann and Dostrovsky, 

2011). In addition, studies have shown that there are changes to the firing rates of BG 

nuclei, from regular tonic activity to a bursting-like pattern of activity which is believed to 

contribute to the changes in observed neuronal output (Miller and DeLong, 1987; Filion 

and Tremblay, 1991; Wichmann and Soares, 2006).  

 

 1.3.2.1 Pathological oscillatory activity 

Studies involving PD patients have shown that excessive synchronisation occurs within 

the 12-30 Hz (beta) band in the BG, primarily between the GPi and the STN (Brown et al., 

2001; Brown and Williams, 2005). This is also evident in rodent and primate models of PD 

(Nini et al., 1995; Sharott et al., 2005; Hammond et al., 2007; Mallet et al., 2008a; Mallet 

et al., 2008b). Coherence between the BG and M1 at this frequency has also been 

observed (Murthy and Fetz, 1992; Donoghue et al., 1998; Hohlefeld et al., 2015). The 

exaggerated beta frequency was shown by Brown et al. (2001) and Kuhn et al. (2006) to 

be correlated to the severity of PD symptoms. Thus, the treatments L-3,4-

dihydroxyphenylalanine (L-DOPA) and deep brain stimulation (DBS) reduced the 

oscillatory power and the severity of the PD symptoms, as well as reducing the 

synchronisation and coherence of beta oscillations in the cortico-basal ganglia network 
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(Marceglia et al., 2006; Wilson et al., 2011; Brittain et al., 2014). This suggests that the 

beta oscillations observed throughout the cortico-BG are not just a symptom of PD but 

may be causally linked to the hypokinetic symptoms. Furthermore, synchronised theta 

oscillations (4-10 Hz) have also been observed within the BG in PD and have been shown 

to be correlated to the emergence of tremor in patients and animal models (Volkmann et 

al., 1996; Hutchison et al., 1997; Raz et al., 2000; Amtage et al., 2008). 

 

The implications of synchronous activity in the BG have been widely studied in both PD 

patients and animal models. The main belief is that the intrinsic activity of the BG nuclei 

are kept tightly controlled by the dopaminergic modulatory input (Wichmann et al., 2011). 

When this modulation is lost, there are increases in coupling between the nuclei (Brown et 

al., 2001), which has a negative effect on the ability to initiate voluntary movement. 

Ordinarily, co-ordinated gamma oscillations throughout the cortico-BG would be present 

during the movement phase (Crone et al., 1998; Brown et al., 2001; Cassidy et al., 2002; 

Williams et al., 2002; Pfurtscheller et al., 2003). However in the PD state, synchronisation 

within the beta oscillatory band results in a difficultly in dynamically switching to a different 

oscillatory pattern to transfer movement information (Brown and Williams, 2005), as 

outlined in section 1.2.3. 

 

 1.3.3 Treatments 

 

 1.3.3.1 Pharmacological treatment 

The gold standard treatment for PD is the administration of L-DOPA, a precursor to DA 

which can cross the blood-brain barrier. Treatment with L-DOPA is still considered the 

most effective non-invasive treatment, though other treatments include DA agonists (e.g. 

pramipexole), monoamine oxidase-B (MAO-B) inhibitors (e.g. selegiline) and catechol-o-

methyltransferase (COMT) inhibitors (e.g. entacapone), which prevent the breakdown of 

DA in the synaptic cleft and increase DA’s effective time, and DA releasing agents (e.g. 

amantadine) (Davie, 2008; Schapira, 2009). 

 

In the early stages of PD, L-DOPA is taken up by the remaining nigrostriatal terminals, 

where it is converted to DA and gradually released. However, as the disease progresses, 

the remaining nigrostriatal terminals deteriorate, reducing the continuous effect of L-DOPA 

resulting in fluctuating concentrations leading to detrimental ‘on-off’ effects (Gancher et 

al., 1987; Kempster et al., 1989). After being on L-DOPA for several years many patients 

also develop L-DOPA induced dyskinesia’s (LIDs) (Fabbrini et al., 2007, for review see 
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Jenner, 2008 and Calabresi et al., 2010). LIDs have also been linked to inconsistent levels 

of L-DOPA which may facilitate the super-sensitivity of the remaining DA receptors  

(Halje et al., 2012). Recent studies also suggest that the uptake of L-DOPA by 

serotonergic fibres (which can also convert L-DOPA into DA) can contribute to higher than 

physiological levels of DA, which result in the generation of LIDs (Keber et al., 2015). 

 

 1.3.3.2 Surgical lesioning 

Prior to the development of pharmacological therapies for PD in the 1960s and 1970s 

surgical interventions were widely used. The first of these was the development of the 

pallidotomy, involving the electrolytic destruction of the GP (Svennilson et al., 1960). 

Following this, surgeries were developed which lesioned parts of the thalamus and the 

STN (Selby, 1967; Narabayashi, 1982; Bergman et al., 1990). Whilst these surgeries often 

resulted in an alleviation of PD symptoms, they were also prone to side-effects due to 

inaccurate lesioning. These included post-operative chorea (involuntary movements), 

hemiballism (flailing movements of limbs), increased chance of stroke and infection, 

depression, memory impairments and potentially visual deficits (Walter and Vitek, 2004). 

 

 1.3.3.3 Deep brain stimulation (DBS) 

In the last 10 years a new surgical treatment for PD has been developed based on the 

benefits associated with subthalamotomy. Deep brain stimulation (DBS) creates a 

reversible lesion. The procedure requires the surgical implantation of a stimulating 

electrode into a BG structure to administer electrically controlled chronic stimulation. The 

main targets of DBS are the STN and GP (Miller and DeLong, 1987; Bergman et al., 

1994). Also, based on in vivo studies in rodent models of PD, DBS of the SNr has been 

shown to be effective in reducing akinesia (Sutton et al., 2012). 

 

DBS is reserved for patients who have advanced PD, with disabling LIDs or tremor, as 

previous to this point the symptoms of the disease can be managed pharmacologically. 

For clinical benefit it is necessary for stimulation protocols to be above 50 Hz (common 

clinical stimulation is 130 Hz); while low-frequency stimulation either has no effect or 

results in enhanced PD symptoms (Moro et al., 2002; Garcia et al., 2005; Kuhn et al., 

2006; Hammond et al., 2007; Eusebio et al., 2008; Timmermann and Florin, 2012). The 

treatment of PD using DBS has time-related effects on different symptoms, with tremor 

and rigidity being alleviated within a minute, and bradykinesia and akinesia taking a few 

minutes to days (Krack et al., 2002). 
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How DBS reduces pathological activity in the BG is still being debated. One study 

compared the effects of L-DOPA and DBS on pathological oscillations in the STN. They 

found that L-DOPA completely abolished the excessive beta activity, whilst DBS 

stimulation only reduced the beta activity and that combining the treatments provided no 

additional benefits (Giannicola et al., 2010). This suggests that the presence of beta 

oscillations themselves is not pathological, but rather the excessive power and 

synchronisation of them in the network that contributes to or is the result of the movement 

deficits observed in PD. Other studies have suggested that DBS acts to inhibit the output 

of the targeted structure, similar to permanent lesioning studies (Bergman et al., 1990; 

Aziz et al., 1991; Hamada and Delong, 1992). However, studies in vitro using high 

frequency stimulation protocols resulted in the synaptic depression of cortico-STN 

synapses in DA-depleted tissue, suggesting that part of the clinical effect of DBS could be 

mediated by the reduction in glutamatergic inputs from the cortex to the STN (Yamawaki 

et al., 2012) (also see Gradinaru et al., 2009). 

 

Recent studies have also begun to look at stimulation of M1 as a less invasive option to 

STN/GP DBS. M1 input to the STN has been suggested to play a role in the pathological 

oscillations generated during PD (Magill et al., 2001; Bevan et al., 2002). Pagni et al. 

(2003) and Drouot et al. (2004) both demonstrated that stimulation of M1 resulted in a 

reduction in PD symptoms, producing immediate improvements in tremor and rigidity, as 

well as long-term improvements in bradykinesia and akinesia. It was also found that M1 

stimulation restored normal firing rates in GPi and STN structures, similar to that seen in 

DBS (Drouot et al., 2004). Further studies have begun to investigate the use of 

transcranial magnetic simulation (TMS). Stimulation at 5 Hz or greater produced an 

excitatory effect in the cortex that, with repeated sessions, could last several months, 

effects which correlated with a reduction in symptoms in PD patients (Khedr et al., 2003; 

Lefaucheur et al., 2004; Fitzgerald et al., 2006; Wu et al., 2008). 
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1.4 Final summation 

 

Overall, the involvement of M1 in PD is suggested to be important for future studies of the 

disease. This is particularly relevant when considering the pathophysiological involvement 

of excessive beta oscillations in the cortico-BG and the benefits of M1 stimulation in the 

alleviation of Parkinsonian symptoms. The study of oscillatory activity in M1 in vitro and 

the elucidation of mechanisms underlying physiological and pathological activity could 

identify potential targets for pharmacological or surgical interventions in PD. Furthermore, 

the use of in vivo animal studies and PD models of the disease affords the opportunity to 

identify the involvement of M1 in global network activity and observe changes that occur 

upon DA-depletion.  
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1.5 Aims and Objectives 

 

To investigate the role of DA in M1 neuronal network oscillations in vitro and in vivo. 

 

 Using LFP recordings in vitro to pharmacologically investigate the basis of theta 

and gamma oscillations in M1. 

 To assess the evidence for or against phase-amplitude coupling in vitro. 

 To investigate the power, frequency and pharmacology of M1 oscillations in vitro 

using the 6-OHDA model of PD. 

 Using depth electrode and EEG recordings in vivo to investigate the neuronal 

networks and interhemispheric power of M1 in a DA-depleted animal. 
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Chapter 2 Methods 
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2.1 In vitro recordings 

 

 2.1.1 Cortical Slice Preparation 

 

Sagittal slices were prepared from male Wistar rats (weight 50-150 g). Each rat was 

anaesthetised with 4% isoflurane in N2/O2, and injected with pentobarbital (~600 mg/kg 

s/c) and xylazine (10 mg/kg i/m) until no paw pinch or corneal response reflex was 

detected (following the Animals Scientific Procedures Act 1986, U.K.). The rat was then 

transcardially perfused via the left ventricle with ice-cold sucrose-based artificial 

cerebrospinal fluid (aCSF), which contained (in mM): 180 sucrose, 2.5 KCl, 10 MgSO4, 

1.25 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 10 glucose, 20 ethyl pyruvate, 1 L-ascorbic acid 

(Rice, 2000), 2 N-acetyl-L-cysteine (Tian et al., 2003), 1 taurine (Ellren and Lehmann, 

1989), saturated with carbogen (95% O2/5% CO2) and with an osmolarity 300-310 mOsm. 

To improve cell viability indomethacin (22.5 µM), a cyclo-oxygenase inhibitor (Pakhotin et 

al., 1997), uric acid (400 µM), an anti-oxidant (Proctor, 2008), and aminoguanidine (40 

µM), an inducible nitric oxide synthase (iNOS) inhibitor (Griffiths et al., 1993; Sun et al., 

2010), were also added to the solution. After transcardial perfusion was complete, using a 

loss of colour in the extremities as an indicator, the brain was rapidly extracted and 

incubated in the same sucrose-based aCSF. For extracellular recordings, 450 µm thick 

sagittal slices were cut at room temperature using a HM 650 V microslicer (Microm 

GMBH, Germany). Slices containing M1, S1 and striatum (Fig 2.1) were then transferred 

to an interface chamber of glucose-based aCSF which contained (in mM): 126 NaCl, 3 

KCl, 1.6 MgSO4, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 10 glucose, saturated with 

carbogen (95% O2/5% CO2) and with an osmolarity 300-310 mOsm. The glucose-based 

aCSF also contained indomethacin (22.5 µM) and uric acid (400 µM). Slices were stored 

at room temperature (20-25°C) for at least an hour before use. Slices were then 

transferred to a recording chamber (Scientific System Design Inc., Canada, Fig 2.2) 

where they were perfused with glucose-based aCSF (not containing indomethacin or uric 

acid) at 1-2 ml/min. Slices were kept in a humid atmosphere and solutions were saturated 

with carbogen (95% O2/5% CO2) and maintained at 32-34°C by a PTC03 proportional 

temperature controller (Scientific System Design Inc., Canada). 
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Figure 2.1 M1-S1 sagittal slice Nissl stained slides showing the locations of the primary motor 

cortex (M1), somatosensory cortex (S1) and striatum (Str) in the sagittal section of a rat brain slice. 

The thick black dashed line denotes the approximate locations where cuts were made.  

Adapted from The Rat Brain Atlas (Paxinos and Watson, 1998) 

 

 

Figure 2.2 A schematic diagram of an interface extracellular recording tissue bath. The 

tissue bath consists of two chambers. Brain slices were placed in the upper chamber and perfused 

with glucose-based aCSF and humidified carbogen (95% O2/5% CO2). The lower chamber was 

filled with distilled water, heated to 32-34°C and continually bubbled with carbogen. A) Top view.  

B) Side view. Red arrows indicate direction of gas flow. Blue arrows indicate direction of aCSF 

flow. 1. aCSF solution entry point, 2. gas entry point, 3. Port holes for humidified gas, 4. waste 

aCSF outflow, 5. slices, 6. temperature controller/heater, 7. air stone, 8. acrylic lid to maintain high 

humidity environment. 
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 2.1.2 Electrophysiological Recordings 

 

 2.1.2.1 Local field potential (LFP) 

The local field potential (LFP), is the summation of the electrical activity of nearby 

neuronal networks (for review see Buzsaki et al. 2012). When current enters or leaves a 

cell it must be balanced by current flow in the opposite direction at a spatially distinct site 

(Leung, 2011). Thus, the movement of positive current across a membrane can result in 

either a current source (current flow entering the extracellular medium) or a current sink 

(current flow exiting the extracellular medium), which is reversed for negative current. 

Therefore, LFPs result from synchronous dendro-somatic dipole activity which can be 

recorded within 0.5-3 mm of the electrode tip (Mitzdorf, 1985; Logothetis, 2003). Most 

commonly these changes arise through synchronous IPSP and EPSP activity which can 

be recorded as oscillatory changes (Buzsaki et al., 2012). Changes in power and 

frequency in response to drug application can then be analysed to provide mechanistic 

insight (Elul, 1971; Logothetis, 2003). However, using LFP recordings alone, it is not 

possible to determine whether the positive or negative potentials results from EPSPs 

and/or IPSPs. Furthermore, it is not possible to determine the exact origin of the activity 

recorded. The changes in the LFP may result from activity generated away from the 

recording site as extracellular changes can spread through a conductive medium (such as 

the brain) from their source. This spread of the field potential is known as volume 

conduction (Lorente de No, 1947). 

 

 2.1.2.2 Extracellular Recordings 

Borosilicate glass microelectrodes were pulled using a Flaming/Brown micropipette puller 

(P-97, Sutter instrument Co. U.S.A.) with an open tip resistance of 1-3 MΩ. 

Microelectrodes were filled with glucose-based aCSF and inserted into electrode holders 

containing a silver chloride coated wire. Using manually-operated micromanipulators 

(Kanetec, Japan) and a stereomicroscope (Leica Wild M3Z, U.K.), microelectrodes were 

inserted into layer V of M1, located using the rat brain atlas of Paxinos and Watson (1998) 

as a reference guide (Fig 2.1). The recorded potential was passed through an EXT 

amplifier headstage (NPI, Germany). The signal was then amplified x100 through an 

EXT10-2F amplifier (NPI, Germany) and then further amplified x10, high-pass filtered at 

0.5 Hz and low-pass filtered at 700 Hz through a LHBF-48X amplifier/filter (NPI, 

Germany). Environmental line noise (50 Hz) was reduced by passing the signal through a 

HumBug 50/60 Hz noise eliminator (Quest Scientific Instruments Inc., Canada). Signals 

were digitized at 10 kHz using a CED micro-1401 mkII and recorded using Spike2 
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software (version 7.0, Cambridge Electronic Design, U.K., Fig 2.3). Data was saved to 

disk and analysed using Spike2 (version 7.0, Cambridge Electronic Design, U.K.), 

GraphPad Prism 5 (GraphPad software Inc., U.S.A.) and MATLAB R2015b software 

(MathWorks, U.S.A.). 

 

 

Figure 2.3 Extracellular rig hardware set up. Electrophysiology rig setup for LFP recording. 

 

 2.1.3 Noise concerns 

 

Electrical interference (noise) and physical interference are important concerns when 

undertaking any electrophysiological recordings. However, there are multiple methods 

which can minimise the impact of noise. Physical interference mainly comes from 

vibrations which reduce electrode stability. These were negated through the use of an 

anti-vibration isolation table (TMC, U.S.A.) and strong magnets on the bases of 

micromanipulators to prevent any movement. Electrical interference is primarily derived 

from external sources, such as lights/power sockets (which provide 50 Hz noise) or 

electromagnets in pieces of equipment. This form of interference was negated by 

shielding the electrophysiological recording equipment with a Faraday cage (TMC, U.S.A.) 

and connecting this to a common ground. In addition recording signals are passed 

through HumBugs (Quest Scientific, Canada), which are filters that provide immediate 50 
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Hz noise cancellation without affecting the phase and amplitude of the recording which 

would occur if standard filtering systems were used. 

 

 2.1.4 Drug preparation 

 

All drugs were purchased from Sigma, Tocris or Abcam. Stock solutions were prepared at 

a known concentration and stored at -20°C. Stock solutions were bath applied directly to 

the circulating aCSF to achieve desired concentrations. Drugs were applied after a stable 

period of recording which was used as a baseline (usually 30-40 mins). Subsequent 

neuronal oscillatory activity was then recorded for at least 40 mins. 

 

 2.1.5 Data collection and analysis 

 

 2.1.5.1 Data analysis 

All extracellular data was converted from analogue to digital waveform and then visualised 

and recorded in Spike2. The sampling rate used was 10 kHz, which provides ample 

bandwidth for the original input signal to be digitally reconstructed without errors. This is 

determined from the Nyquist-Shannon sampling theorem, whereby in order to adequately 

reconstruct the signal the sampling rate must be at least twice the frequency of the 

frequency of interest in the signal (though greater than 10x is often utilised) (Shannon, 

1949). Data was analysed in Spike 2 to produce the frequency power spectra, which uses 

a fast Fourier transform (FFT) algorithm. This algorithm splits the waveform into frequency 

components and the spectral resolution of the power spectrum can be modified by altering 

the FFT size. An FFT size of 8192 was selected to provide a spectral resolution of 0.6104 

Hz per bin, using a Hanning window. This size was selected in order to provide adequate 

frequency resolution to observe the oscillations in our slices, without averaging the power 

spectra (from too small FFT size) or loss of specificity (from too large FFT size). 40 s 

epochs of data were analysed unless otherwise stated. In GraphPad Prism 5 peak power 

changes and pooled data were normalised (using control value as 100%) and presented 

as mean ± standard error of the mean (SEM). All statistical analyses were performed 

using normalised peak power changes. For figures, raw data was filtered in Spike2, using 

Bessel band pass IIR digital filters (3-10 Hz for theta oscillations and 30-45 Hz for gamma 

oscillations). 
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 2.1.5.2 Waveform correlations 

Correlation analysis reveals the temporal relationship between two waveforms. This 

analysis was used determine the temporal lag between simultaneous recordings made in 

layers II/III, Va, Vb of M1. To isolate theta and gamma frequency oscillations, 60s of raw 

data was zero-phase filtered using equiripple FIR filtering between 3-10 Hz (for theta) and 

30-45 Hz (for gamma), using MATLAB (filtfilt). This data was then re-imported into Spike2 

and cross-correlations produced, the results being expressed in terms of cross-correlation 

coefficient. 

 

 2.1.5.3 Spectrogram analysis 

MATLAB was used to conduct further time-frequency analysis using a Morlet-Wavelet 

approach to create spectrograms from 0.5 Hz to 60 Hz, with a frequency bin width of 0.5 

Hz, and a wavelet width of 5. This provides a time-frequency representation of the 

waveform. Spectrograms utilise a “hot” (red/orange/yellow) or “cold” (blue/green/purple) 

colour representation to denote the power of the activity. 10 s of data recorded at the end 

of the epochs as used in FFT analysis were selected and stored as a text file from Spike2. 

These data were then converted and analysed in MATLAB (MathWorks) using a script 

(‘invitrospec.m’, written by Dr. S.D. Hall, Plymouth University) to create a Morelet-Wavelet 

spectrogram. 

 

 2.1.5.4 Phase-amplitude coupling 

PAC analysis of concurrent theta and gamma oscillatory activity utilised a custom-made 

MATLAB script (CallerRoutine.m) provided by Dr. A.B.L. Tort (Brain Institute, UFRN, 

Brazil). This analysis determines the modulation index (MI) which is a measure of the 

intensity of the coupling. We used 40 s epochs of control data for this analysis, exported 

to a text file with a sampling rate of 1000 Hz. A detailed outline of the mathematical 

processes that are used in the script can be found in Tort et al. (2010). In brief, the data 

was zero-phase filtered between 3-10 Hz; for phase, and 30-45 Hz; for amplitude. The 

time-series of the phase angles and amplitude envelope was then obtained using 

separate Hilbert transforms. These data were then used to produce a normalised phase-

amplitude plot, providing the mean amplitude of the 30-45 Hz oscillation across the phase 

(0-360o) of the 3-10 Hz rhythm. MI was then calculated by identifying deviations of the 

phase-amplitude from a uniform distribution. Therefore, the greater the variation of the 

amplitude distribution from the uniform result, the greater the MI. 

 

The MI values were sorted numerically and a split was observed between the groups with 

an order of magnitude difference in numerical value. According to the original paper by 
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Tort et al. (2010), with a perfectly coupled model dataset an MI value in the range of 10-2 

could be obtained. However the highest MI we observed with our data was 10-4, an order 

of magnitude lower than the mode data. Therefore, while it was not within the same range 

of the sample data, it was upon this basis that the groups MI+ (10-4) and MI- (10-5) were 

determined. 

 

 2.1.5.5 Statistical analysis 

In order to determine the correct statistical tests to use when analysing our data, we 

utilised the Kolmogorov-Smirnov and Shapiro-Wilk normality tests. These determine 

whether our data can be matched to a Gaussian distribution (or was normally distributed). 

We determined that while some data sets were normally distributed, they did not all 

display this property. As such, in order to maintain fewer differences between interpreting 

our data as possible, we performed only non-parametric tests to determine statistical 

significance (p<0.05). Furthermore, as all our data concerns a control value, followed by a 

drug condition change in power, our data is considered paired, in the context of statistical 

analyses. 

 

Thus, when analysing experiments concerning only control and a single drug 

concentration (e.g. SYM 2206 or quinpirole) we used the Wilcoxon matched-pairs signed 

rank test, as this takes into account the paired and non-parametric nature of the 

recordings. Accordingly, when analysing the effects of experiments with control and 

multiple drug concentrations (e.g. diazepam), we used the Friedman test with Dunn’s 

multiple comparison post-hoc analysis, as this concerns the repeated and non-parametric 

nature of our recordings. However, in the gabazine and zolpidem experiments (in chapter 

3), the pooled data for each drug condition resulted in unequal sample sizes as some 

experiments were only run on a smaller selection of doses than the total pooled 

experiment. As a result, in order to analyse the data we performed the Kruskal-Wallis test 

with Dunn’s multiple comparisons, which does not take into account repeated measures, 

and this should be taken into account when interpreting this data. 

 

Power analysis was performed on already completed experiments using GraphPad 

StatMate (v 2.00). This utilises the number of samples in the desired experiment and the 

standard deviation of the differences to produce a table of power for the experiment. 

 

All data is shown normalised to control (using control as 100%) and presented as mean ± 

SEM unless otherwise stated. Statistical significance of p < 0.05 is denoted by *, p < 0.01 

is denoted by ** and p < 0.001 is denoted by ***.  
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2.2 In vivo recordings 

 

 2.2.1 6-OHDA Lesions 

 

 2.2.1.1 The 6-hydroxydopamine (6-OHDA) model of PD 

The 6-OHDA rat model of PD was developed by Ungerstedt (1968). In this model 6-OHDA 

is injected directly into a targeted brain structure (since it cannot cross the blood-brain-

barrier). Injection can be made bilaterally but for our purposes we made unilateral lesions 

so that the contralateral hemisphere could serve as a control for the ipsilateral (lesioned) 

hemisphere. To test for adequate lesioning, animals can be dosed with either 

amphetamine (to enhance DA release in the intact hemisphere) or apomorphine (an 

agonist of DA receptors, acting on the depleted hemisphere) to induce ipsiversive (turning 

towards lesioned hemisphere) and contraversive (turning towards control hemisphere) 

rotations, respectively (Ungerstedt and Arbuthnott, 1970; Ungerstedt, 1971; Perese et al., 

1989). The 6-OHDA lesion can be targeted to the SNc itself, the medial forebrain bundle 

(MFB) or the striatum to induce the degeneration of the dopaminergic neurons (Sauer and 

Oertel, 1994; Blum et al., 2001). 

 

The 6-OHDA model of PD has several advantages for our experiments over other 

established models, such as the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

model. Primarily, we can target the 6-OHDA toxin to a particular brain area, through intra-

cerebral injection, which also allows us to lesion only a single brain hemisphere to create 

a unilateral lesion. Whereas, the MPTP model is injected peripherally into the animal, 

creating a non-targeted bilateral lesion, resulting in widespread dopaminergic neuron 

damage (Forno et al., 1986; German et al., 1988; Seniuk et al., 1990). Furthermore, 

rodents have been shown to be resistant to the dopaminergic neuron damage resulting 

from MPTP administration (Boyce et al., 1984; Chiueh et al., 1984; Sahgal et al., 1984) 

and considering that our control work has focused on rodent M1, switching species is not 

a viable or sensible option. 

 

6-OHDA acts specifically upon catecholaminergic neurons via dopamine transporters and 

noradrenaline transporters (Porter et al., 1963; Porter et al., 1965). To increase specificity 

6-OHDA was co-administered with injections of desipramine (a noradrenaline and 

serotonin reuptake inhibitor) to prevent reuptake of the 6-OHDA into non-dopaminergic 

neurons and pargyline (a MAO inhibitor) to prevent catabolism of the 6-OHDA. 6-OHDA 

has been suggested to cause cell death via oxidative stress, through the generation of 
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hydrogen peroxide (H2O2) and hydroxyl group free radicals (OH•) (Breese and Traylor, 

1971; Heikkila and Cohen, 1971, 1972a; Heikkila and Cohen, 1972b; Karoum et al., 

1993). 

 

 2.2.1.2 Surgical Procedures 

5 mg of 6-OHDA HBr powder containing 0.1% ascorbic acid (Sigma Aldrich, UK) was 

dissolved in 0.676 ml 0.9% saline to a final concentration of 5 mg/ml. Six aliquots of 100 µl 

were then stored in at -20°C in foil covered vials. On the day of surgery, one aliquot was 

stored in a +2°C fridge until needed. When required, 25 µl of 6-OHDA solution was drawn 

into a 700 series Hamilton syringe (Hamilton, Switzerland) and covered with tin foil to 

prevent exposure to light. The colour of the solution was regularly monitored and replaced 

if oxidation (pink/brown discolouration) occurred. Desipramine was prepared to a final 

concentration of 12.5 mg/kg dissolved in saline, and pargyline, dissolved in saline to a 

final concentration of 75 mg/kg. Animals received intraperitoneal (i/p) injections of 

desipramine (2 ml/kg) and pargyline (1 ml/kg) 30 mins prior to 6-OHDA infusion. 

 

Wistar (in house breeding at Aston University for chapter 4 experiments) and Sprague-

Dawley (from Harlan (Italy) for chapter 5 experiments completed at Lilly U.K.) rats (290-

310 g) were anaesthetised using 4% isoflurane with 1.5 L/min O2. Once fully unconscious 

the rats heads were shaved, cleaned with iodine and mounted in a stereotaxic frame 

(Kopf Instruments, U.S.A.), secured with blunt ear bars and a toothbar set to -3.3 mm. 

Anaesthesia was maintained by isoflurane (2%).  

 

Co-ordinates for injection of 6-OHDA were calculated from bregma (0, 0). The medial 

forebrain bundle (MFB) was identified at AP -2.8 mm, ML +2.0 mm and marked. At this 

location a small hole was drilled in the skull and a 28 gauge steel cannula, attached to the 

Hamilton syringe via FEP tubing, was lowered to a depth of 9.0 mm (from skull surface). 

The Hamilton syringe was attached to a syringe infusion pump (WPI, U.S.A.) and 6-OHDA 

was infused at a rate of 0.5 µl/min over 5 min to a total volume of 2.5 µl. After infusion, the 

cannula was left in place for a further 5 minutes before retraction to allow full diffusion of 

the toxin. Skull incisions were sutured using vicryl sutures (Ethicon) and to aid rehydration 

animals received a subcutaneous (s/c) injection of 5 ml 0.9% saline. Rats were placed in 

heated recovery cages for a minimum of 2 hours, and were checked at least four times 

during this period. Following this, rats were moved into recovery cages with food, treats 

and hydrogel available ad libitum and their weights were monitored daily for 2 weeks. 

Analgesia was not provided post-surgery, since it can act as a protectant from the 6-
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OHDA toxin and prevent the formation of a stable lesion. Animals were allowed 2 weeks 

recovery time post-surgery before lesion testing. 

 

For chapter 5 experiments similar procedures were conducted on 10 sham-control 

animals. In these animals phosphate buffered saline (PBS) was infused instead of 6-

OHDA. All other manipulations, injections and surgical procedures were identical. 

 

 2.2.2 Motor Behavioural Tests 

 

 2.2.2.1 The Adjusting Step Test 

The adjusting step test was first outlined by Olsson et al. (1995) to measure akinesia in 

the forelimbs of a hemi-parkinsonian rat model. This test was used in the experiments 

outlined in chapter 4 and 5. 

 

The adjusting step tests were performed over three consecutive days. Rats were left to 

acclimatise to the testing room for at least 5 min prior to the start of each test in order to 

reduce the impact of stress. Rats were restrained by the experimenter so that only a 

single forelimb could be used. Rats were then moved across a level surface for a distance 

of 1 m in both the forehand and backhand direction to assess the motor ability of each 

forelimb. On each of the three days, the tests were completed twice. The total number of 

adjusting steps made by each forelimb in each direction was counted and the average 

determined. 

 

Each animal was considered individually in order to determine the success of the lesion. 

For a successful lesion a drastic reduction in adjustment steps for the contralateral 

(opposite to the lesioned hemisphere) limb was observed. All data was averaged and 

presented as mean ± SEM. 2-way ANOVA was used to determine statistical significance 

between groups, with Bonferroni post-hoc test to correct for multiple comparisons. 

Statistical significance was denoted by *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

 

 2.2.2.2 The Rotometer test 

Rotometers, manufactured by Med Assosciates Inc., (U.S.A), use spherical bowls which 

are designed to promote rotational activity (Fig 2.4). Prior to testing rats were left to 

habituate to the experiment room in home cages for 5 min. Rats were then secured to the 

elastic tethers allowing them free use of both their fore and hind limbs. Rats were then 

placed within the bowl and the lights in the room were dimmed to promote activity. The 
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elastic tethers were attached to a freely moving rotational sensor and movement recorded 

in real-time. 

 

Basal ‘spontaneous’ rotations were recorded over a 40 min period. Contraversive and 

ipsiversive rotations were recorded and the data was divided into 5 min bins. For our 

analysis only full rotations (360°) were taken into account. The system also takes into 

account jitters or other movements when counting less than full rotations, which may or 

may not be the result of lesions, so using only the full rotations as a measure keeps this 

test specific to our data. Data was presented as a rotational asymmetry score (RAS), 

which was calculated by subtracting the contraversive from the ipsiversive rotations. Thus, 

a successful lesion was demonstrated by a strongly negative score, whilst sham or failed 

animals had a score closer to zero. Results were averaged per bin (mean ± SEM) in each 

rotational direction. Statistical significance between lesioned and sham animals was 

verified using 2-way ANOVA (repeated measures), with Bonferroni post-hoc test used to 

correct for multiple comparisons. Statistical significance was denoted by *, p < 0.05; **, p 

< 0.01; ***, p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic representation of a 

rotometer chamber. 

 

 2.2.2.3 Locomotor activity (LMA) test 

Ethovision XT video tracking software (Noldus Information Technology, Netherlands) was 

used to measure basal rotations in an open field environment. This software utilises an 

infrared camera to record the locomotor activity of rats in a dark or light environment. A 

single camera recorded the activity within four transparent chambers, positioned in a 2 x 2 

design; each chamber being 40 x 40 cm in size (Fig 2.5).  
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Animals were left in home cages in the recording room for 5 min prior to the experiment. 

This is especially crucial for these experiments, as they are performed in a dark room, so 

that the animals can adjust to the change in light to produce the best potential activity. 

Movements were tracked via a 2-point system (using head-centre axis) in order to 

determine frequency of rotational behaviour. As this system uses more tracking software 

to determine rotations, rather than a mechanical tether (as in the rotometer recordings), 

we were able to use turns greater than 90o to determine rotational frequency as there is 

greater recording accuracy. Each recording lasted for 40 min and 5 min bins of activity 

were used to determine contraversive and ipsiversive rotations. 

 

The success or failure of the lesion for each animal was once again determined by 

calculating the RAS obtained by subtracting the number of contraversive from ipsiversive 

turns. Statistical significance between lesioned and sham animals was calculated using 2-

way ANOVA (repeated measures), with Bonferroni post-hoc test used to correct for 

multiple comparisons. Statistical significance was denoted by *, p < 0.05; **, p < 0.01; ***, 

p < 0.001. 

 

 

Figure 2.5 The LMA test. Picture showing twelve experiments running concurrently, the 

movement of each rat was tracked within a separate chamber. Experiments were run in the dark 

using an infrared camera, therefore white Sprague-Dawley rats showed up as black against the 

light background. 
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 2.2.3 Depth Electrode Recording 

 

 2.2.3.1 Surgical Procedures 

Following two weeks recovery from surgery, 6-OHDA-lesioned and sham animals were 

prepared to receive 2x depth electrodes which were implanted bilaterally (schematic 

shown in Fig 2.6). Depth electrodes were purchased from Neuronexus (U.S.A) and were 

a CM16 electrode package connected to an A1x16-3mm-100-703 electrode array (16-

channel electrode array 3 mm in length with 703 µm2 probe areas spaced 100 µm apart). 

 

Animals were anaesthetised with 4% isoflurane and their heads subsequently shaved and 

cleaned. Animals were secured in a stereotaxic frame using blunt ears and fixed to a teeth 

bar. A single incision was made and the skull and bregma (0, 0) located and marked using 

a cauteriser, along with the two locations above each M1 to determine the site for the 

implantation of the depth electrodes (AP +1.5 mm, ML ±2.5 mm) in each hemisphere. 

Prior to depth electrode implantation, a hand operated manual drill bit was used to make 

three holes for skull screws, which acted as anchor points for the head cap. Three screws 

were also implanted above the cerebellum, one at the midline-point and one either side 

used for grounding and reference (Fig 2.6). Once all screws were secured, a high-speed 

hand-drill was used to make holes at each point previously marked above each M1. Depth 

probes were inserted to a depth of 2.1 mm from the surface of the brain and secured in 

place using hybrid resin composite which was hardened using a UV light source (Kerr 

Revolution Formula 2 - A2, Kerr Corporation, U.S.A.). To the cerebellum screws the two 

reference wires (screws either side of midline) and the two ground wires (both to the 

central midline screw) were attached, one wire of each was provided from each depth 

probe. The skull, implants and wires were fully covered by the hybrid resin composite to 

form a solid head cap. Once secure, the surrounding skin was sutured using vicryl 

dissolvable thread in a simple interrupted stitch. 

 

Post-surgery, animals were administered an analgesic, carprofen (5 mg/kg - brand name 

Rimadyl), and an antibiotic, cefovecin (8 mg/kg - brand name Convenia). Animals were 

moved to a heated recovery cage and monitored at least four times for 2 hours before 

being returned to clean home cages. Animals were given another dose of carprofen the 

day following surgery, as well as daily administration of meloxicam (0.15 mg/kg) for 7 days 

post-surgery to help with pain relief. Animals were allowed two weeks to recover prior to 

the commencement of experimental testing. 
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Figure 2.6 Schematic of depth electrode placement. A diagram showing the placement of the 

depth electrodes in a top down schematic of a rat skull. LM1 and RM1 show the locations of the left 

and right probes in M1 (outlined in red). Open circles denote locations of anchor screws in the 

skull. The star symbol shows the location of the 6-OHDA injection site. R1, R2 and solid lines, 

denote reference screw locations in the cerebellum. G and dotted lines denote the shared ground 

screw in the cerebellum. 

 

 2.2.3.2 Open field depth-electrode recording  

Following the two week recovery period from surgery, animals were placed onto a food 

deprivation regimen. Water was available ad libitum. Animal’s pre-food deprivation 

weights were recorded and used to calculate a deprivation weight loss. Weights were 

monitored on a daily basis and animals were fed accordingly to keep them within the limits 

of 5-10% of their pre-deprivation weight. 

 

The open field environment consisted of a circular transparent chamber (80 cm diameter) 

located in a dimmed room. Prior to an experiment, animals were moved to the testing 

room in home cages and allowed to habituate for 5 min. Subsequently animals were 

tethered to the recording probes, placed within the open field space and recording was 

initiated. A 30 min control period was allowed before drug administration, followed by a 1 

hr drug period. In order to promote movement and exploratory behaviour from the animal 

during the experiment, sugar pellets (~0.5 g in weight each) were dropped into the 

recording environment every 20 s. 

 

LFP signals from each channel were digitised using a Neuralynx Digital Lynx 16SX and 

recorded using Neuralynx Cheetah5 software (Neuralynx Inc., Montana, U.S.A.). Activity 

recorded in channels 1-16 corresponded to the probe situated in the lesioned hemisphere 

and activity recorded in channels 17-32 corresponded to the probe situated in the non-

lesioned hemisphere. Signal data was saved to individual Neuralynx files and was 

imported to Spike2 and MATLAB for further analysis. 
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 2.2.3.3 Data analysis 

FFTs were generated from 60 s of uninterrupted data selected every 10 min. In some 

cases, this period coincided with a high amount of movement artefacts, affecting the FFTs 

generated. As such, the period of time closest to the 10 min target containing 

uninterrupted data was selected to generate the next FFT. An FFT size of 8192 was 

selected to provide a spectral resolution of 0.1436 Hz per bin, using a Hanning window. 

Again this FFT size was selected to provide optimum resolution for the power spectra 

without subjecting the signal to averaging (with too small FFT) or loss of specificity (with 

too large FFT) related issues. 

 

CSD analysis was carried out based on inverse CSD (iCSD) scripts outlined in Pettersen 

et al. (2006) and the CSDplotter toolbox (http://software.incf.org), which allows for the 

prediction of CSD at the boundary electrodes and has greater flexibility when using 

different probe sizes and geometries. After the data was imported into MATLAB, it was 

zero-phase (forward and backwards) filtered between 20 and 45 Hz, in order to isolate the 

specific frequency of the observed oscillations. Following this a 1 min section from the end 

of the recording, from when the animal would have adjusted to being attached to the 

tether and resumed normal behaviour, was isolated for each channel. This data was split 

into epochs of 235 ms (based on epochs of 0.2 s x sampling rate of 1176) and the peak 

maxima of the oscillatory events categorised. These peaks were sorted and aligned for 

each epoch and subsequently averaged across the 1 min recording. The array of the 

peaks in the recording formed the basis of the CSD analysis. The final CSD is determined 

by taking into account the position of each electrode and cortical conductivity of the 

extracellular medium (standard is set to 0.3). The analysis uses polynomial equations to 

map the electrode positions in relation to the oscillatory peaks determined previously to 

generate the pattern current sources and sinks across the probe. This generates the CSD 

graph, which demonstrates a pattern of sources (in red) and sinks (in blue) across the 

averaged 235 ms epoch. 
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 2.2.4 EEG experiments 

 

 2.2.4.1 Surgical procedures 

After recovery from 6-OHDA surgery, a cohort of animals were prepared to receive a 

custom made cranial implant (Fig 2.7) that allowed for chronic electroencephalogram 

(EEG) recordings. At least 24 hours pre-surgery and immediately prior to surgery animals 

were given oral antibiotics (SeptrinTM – Sulfamethoxazole (40 mg/ml) and Trimethoprim (8 

mg/ml)). Animals were anaesthetised in an induction chamber (4% isoflurane) and once 

unconscious their head and abdomen were shaved. The isoflurane concentration was 

reduced (2%) at this point, and the hind limb pinch was used to test for the absence of 

reflexes before surgery began. 

 

 

Figure 2.7 SCORE EEG implant Schematic showing placement of the SCORE EEG recording 

implant on the skull of a rat. LF, left frontal EEG; RF, right frontal EEG; LO, left occipital EEG; RO, 

right frontal EEG; C, cerebellum ground screw; LT, left trapezoid EMG; RT, right trapezoid EMG; 

Star symbol shows the location of the 6-OHDA injection site. 

 

Initial preparations for the head implant surgery were the same as in section 2.2.3.1. Once 

the skull was exposed, bregma (0, 0) was located and marked using the tip of a 

cauteriser. Locations for the EEG screws were determined (two frontal [AP +3.5 mm, ML 

±2.0 mm] and two occipital [AP -6.4 mm, ML ±5.2 mm]; see Fig 2.7), marked and 

subsequently holes were made using a hand-held high-speed micro-drill. Five screws 

were inserted; one for each EEG recording wire and the SCORE EEG implant was 

secured to the skull using cyanoacrylate. One screw was also implanted above the 

cerebellum at the midline-point to act as a ground. The entire assembly was then secured 

in place and covered by the application of dental acrylic (1 g acrylic powder to 1 ml resin), 
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to form a complete cap. The skin was then sutured loosely over the acrylic head cap using 

simple interrupted stitches. 

 

Following surgery animals were given 5 ml 0.9% saline s/c to aid re-hydration and 

transferred to a heated recovery cage. Animals were monitored at least four times over 

the course of 2 hours before being placed in clean home cages. The animals were 

administered an analgesic (buprenorphine 0.05 mg/kg) s/c at the end of the surgical day 

and the first morning post-operatively. For 6 days post-surgery, animals were given 0.15 

mg/kg meloxicam orally twice daily and further doses of antibiotic (Septrin) were also 

provided twice daily for 7 days. Animals were given 2 weeks to fully recover from surgery 

before any experiments or further tests took place. 

 

 2.2.4.2 Recording environment 

Upon completion of the two week recovery period animals were transferred from the post-

surgery recovery room to a light-reversed holding room (lights on: 7 pm, lights off: 7 am, 

GMT). Since our experiments were analysing the pharmacological effect of drugs on the 

movement deficits of the 6-OHDA lesion, animals were light reversed so experiments 

would take place during the dark phase. This ensured that the point of drug administration 

would be at their peak awake period. Following 2 weeks habituation to light reversal 

animals were moved to the SCORE chamber. Each SCORE chamber was a modified 

AncareTM microisolator cage (Ancare, U.S.A.), complete with a custom polycarbonate 

filter-top riser which dispended food and drink. The riser also contained infrared sensors 

to determine when exactly animals were eating or drinking. Each chamber was housed in 

separately ventilated, square stainless-steel compartments (Fig 2.8). Each chamber had 

an infrared light source and digital camera, which allowed for 24 hour monitoring of the 

animal, with at least two remote checks carried out every day. Food and water were 

available ad libitum and the ambient temperature was maintained at 23 ± 2°C. Throughout 

the study individual strip lighting within each chamber was used to maintain equal lighting 

per cage and a 12/12 hour light/dark cycle (7pm/7am, respectively). 

 

EEG head implants were connected using a custom-engineered flexible tether and ultra-

low torque slip-ring commutator (Hypnion, U.S.A) giving the animals free movement. In 

order to prepare animals for treatments that would involve an oral gavage (i.e. zolpidem), 

a control vehicle solution (methylcellulose 0.25%, 1 ml/kg) adaption dose was initially 

administered. 
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Figure 2.8 Standard SCORE chamber set-up. Photograph of a standard SCORE cage for an 

individually housed rat. Showing food and drink riser at the back of the cage 

 

 2.2.4.3 Treatment and study design 

Each drug to be administered was pre-weighed by the Sample and Reagent Management 

team at Lilly U.K. Each drug was formulated to a stock solution and diluted to required 

doses from the stock using a designated vehicle. Before each treatment, animals were left 

undisturbed for 48 hours to provide a baseline set of data. Animals were removed from 

recording cages for 60-90 s, weighed and dosed before being returned to cages and 

monitored undisturbed for at least 48 hours post-treatment time. Studies were run using a 

full-crossover protocol. All drugs studied were given at 6 hours after the lights off time. 

 

 2.2.4.4 EEG Data Collection and Analysis 

EEG signals were amplified (x10,000), bandpass filtered (between 1-100 Hz) and digitised 

(at 400 Hz) (Grass Corp, Quincy, MA, USA). Using EEG and EMG amplitude features to 

form templates, the scoring system classified 10 s epochs of data as different states of 

arousal, NREM sleep, REM sleep, wake and theta-dominated wake. Data was digitised 

and written to CD-R before being exported as required into Spike2 for further analysis. 

 

Digital camera 

Food/drink riser 

ER4000 telemeter 
sensor 
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Initial data analysis was performed both on-line, during daily inspections of animal welfare, 

and off-line by expert analysts (DSR team, Lilly, U.K.) using a specialised suite of 

programs (ScoreViewTM, Eli Lilly proprietary software). This suite of programs allows for 

the visual examination of raw EEG data files, construction of hourly mean time series and 

use of graphical and statistical assessments to provide group mean time series data. This 

provided an assessment as to the quality of the data recorded for each treatment and 

helped to guide future studies.  

 

Exported data was organised into different dosing and experimental groups (ipsilateral vs 

contralateral and 6-OHDA lesioned vs sham). Data was analysed in MATLAB using a 

custom-made cumulative power script (CumPower.m), written by Dr. E. J. Prokic 

(University of Helsinki, Finland). Based upon pre-defined time information, the disrupted 

dosing period was removed to provide a continuous (pre- and post-dosing) signal. The 

data was zero-phase filtered (using MATLAB function filtfilt) to the target frequency band 

(25-40 Hz) and a Hilbert transform applied. This was used to determine the absolute 

power and generate the power envelope of the signal over time. Data was separated into 

pre- and post-drug epochs of 30 mins each and the cumulative power change of the 

amplitude over each epoch determined from the envelope. Cumulative changes in 

amplitude over each 30 min epoch were then displayed graphically for each individual file 

recording in a treatment group (an example of which is shown in Fig 2.9). This allowed for 

the removal of outlier recordings, which did not demonstrate a stable accumulation of 

power over time and differed substantially from the rest of the treatment group. These 

were removed after visual inspection, specifically looking for those which clearly deviated 

from the trend of the data set. Visual inspection of the raw data traces of these removed 

data sets, usually showed clear signal artefacts or sudden shifts in the power of the data 

which would not normally be representative of a biological recording. The mean of the 

remaining data was determined for each epoch and condition and presented as changes 

to cumulative power values in bar graphs using GraphPad Prism 5. 

 

These results were analysed using 2-way repeated measures ANOVAs, as we wanted to 

discover the statistical significance of not only the changing drug concentration, but also if 

this changed over time. Therefore, we could not perform a 1-way ANOVA, which only 

compares the statistical effect of a single factor. Statistical significance of p < 0.05 is 

denoted by *, p < 0.01 is denoted by ** and p < 0.001 is denoted by ***. 
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Figure 2.9 Example graphs demonstrating outliers in cumulative power. Visual display of 

each 30 min epoch in a data set which demonstrates an individual cumulative power value for each 

animals recording. This allows for the visual examination and removal of outlier data prior to the 

generation of the mean cumulative power value. For example, the blue (1) trace in these graphs 

shows clear aberrant deviations from the trend of the rest of the data in each epoch and was 

removed from the average. 
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Chapter 3 Theta-Gamma Pharmacology in vitro 
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 3.1 Introduction 

 

Neuronal network oscillations have been studied in vivo (whole animal) and in vitro (brain 

slices). The advantage of studying oscillations in vivo is the ability to observe them 

physiologically and provide an insight into their functional relevance. However, using in 

vitro techniques the recording environment can be directly controlled allowing mechanistic 

and pharmacological investigation, thus allowing a thorough analysis of the cells and 

receptors which contribute to the network activity. 

 

In vitro studies of gamma oscillations (30-80 Hz) have taken place in many areas of the 

brain, including hippocampal CA1 and CA3 (Whittington et al., 1995; Fisahn et al., 1998), 

dentate gyrus (Towers et al., 2002), entorhinal cortex (Cunningham et al., 2003), 

somatosensory cortex (Buhl et al., 1998; Roopun et al., 2006) and auditory cortex 

(Cunningham et al., 2004; Traub et al., 2005). Early work established protocols for the 

induction of oscillatory activity which involved the addition of the mGluR agonists (such as 

DHPG) or tetanic electrical stimulation (Whittington et al., 1995; Whittington et al., 1997), 

to elicit transient (~200-800 ms) gamma oscillations. The induction of persistent gamma 

oscillations was found to be elicited through the bath application of CCh and KA (Buhl et 

al., 1998). However, persistent oscillations have also been induced by application of either 

CCh or KA (Fisahn et al., 1998; Hajos et al., 2000; Fisahn et al., 2004; Modebadze, 2014). 

 

First described in the hippocampus by MacIver et al. (1986) and Konopacki et al. (1987), 

theta oscillations in vitro were elicited by the bath application of CCh (50 µM). More recent 

studies in the hippocampus (MacIver et al., 1986; Konopacki et al., 1987; Konopacki et al., 

1997; Cobb et al., 2000; Scanziani, 2000), entorhinal cortex (Cunningham et al., 2003) 

and neocortex (Lukatch and MacIver, 1997; Castro-Alamancos, 2013) have focused on 

the mechanism and pharmacology of theta oscillations.  

 

Previously, application of CCh and KA to brain slices of M1 has been shown to elicit beta 

frequency oscillations (Yamawaki et al., 2008). These investigations used CCh and KA at 

concentrations of 50 µM and 400 nM respectively, which produced high power, narrow 

band oscillations around 28 Hz. Due to the uncertainty of DA concentrations in slice 

preparations, this was presumed to be analogous to the pathological beta frequency (12-

30 Hz) oscillations observed in patients and in vivo animal models of PD (Magill et al., 

2000; Kuhn et al., 2006; Chen et al., 2007; Mallet et al., 2008b). 
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However, the development of modified slice preparation protocols using neuroprotectants 

in a sucrose-based aCSF (see methods section 2.1.1) has allowed for lower doses of CCh 

(5 µM) and KA (100 nM) to be used in order to promote gamma range activity (~37 Hz). 

This is presumably due to the improved slice viability of network elements. The network 

activity observed in these slices was found to be broad band (complex) and include both 

theta and gamma peaks. This allowed for the simultaneous pharmacological investigation 

of both oscillations and also the determination of PAC which has previously only been 

observed in vivo during motor or waking behaviours (Bragin et al., 1995; Canolty et al., 

2006; Sirota et al., 2008; Quilichini et al., 2010; Igarashi et al., 2013; von Nicolai et al., 

2014). 
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 3.2 Results 

 

 3.2.1 Induction of network oscillations in M1 

 

Previous studies demonstrated that LV was the source of beta oscillations in M1 

(Yamawaki et al., 2008). Application of 5-10 µM CCh and 100-150 nM KA resulted in the 

generation of two distinct, persistent rhythms at 6.61 ± 0.12 Hz and 36.55 ± 0.37 Hz (Fig 

3.1, n=169 slices), which we have termed theta and gamma oscillations respectively. 

These oscillations appeared within 30 minutes following drug application with the 

oscillatory power peaking after approximately 1-2 hours. 

 

Figure 3.1 Co-application of CCh and KA produces simultaneous theta and gamma 

oscillations in layer V of M1 (A) Raw data after application of CCh and KA (i) low-pass filtered at 

60 Hz and (ii) presented as a Morlet-wavelet time-frequency spectrogram. (B) Band-passed raw 

data of (i) theta (3-10 Hz) and (ii) gamma (30-45 Hz) oscillations before (ctrl) and after the 

application of CCh (5 µM) and KA (100 nM). (C) Typical power-spectra demonstrating emergence 

of theta and gamma peaks before drug application (ctrl - solid line) and after application of CCh 

and KA (dashed line). (D) Peak power changes of theta (grey bars) and gamma (red bars) 

oscillations normalised to control. ***, p<0.001. 
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CCh and KA were first applied alone and then in combination (Fig 3.2). Initial application 

of CCh (5-10 µM) resulted in a significant increase in the baseline power of both theta and 

gamma oscillations (theta: 586 ± 152% of control, n=11 slices, p<0.05. gamma: 448 ± 

92% of control, n=11 slices, p<0.05, Fig 3.2A), however this did not result in the 

emergence of coherence peaks in the FFT. Subsequent addition of KA (100-150 nM) 

resulted in the appearance of robust, coherent and simultaneous theta, to 1970 ± 591% of 

control (n=11 slices, p<0.001, Fig 3.2A), and gamma, to 5784 ± 1124% of control (n=11 

slices, p<0.001, Fig 3.2A) oscillations. The initial application of KA (100 nM) to baseline 

resulted in a significant increase in the power of theta oscillations to 162.2 ± 31.1% of 

control (n=12 slices, p<0.05, Fig 3.2B), without a significant increase in the power of 

gamma oscillations (to 134.9 ± 14.3% of control, n=12 slices, ns, Fig 3.2B), again 

however these were not coherent oscillatory peaks. Subsequent addition of CCh (5 µM), 

resulted in a substantial increase in both theta and gamma oscillations, to 2384 ± 825% of 

control (n=12 slices, p<0.001, Fig 3.2B) and to 3348 ± 897% of control (n=12 slices, 

p<0.001, Fig 3.2B) respectively. Hence, co-application of both KA and CCh was found to 

be required for the reliable induction of both theta and gamma oscillations. Such induction 

protocols were used for all further experiments. 

 

Figure 3.2 Application of CCh or KA alone does not produce coherent theta and gamma 

oscillatory peaks. Peak power changes of theta (grey bars) and gamma (red bars) oscillations 

normalised to control after initial application of (A) CCh followed by subsequent addition of KA and 

(B) KA followed by subsequent addition of CCh. 

 

Three recording electrodes were placed into superficial (LII/III) and deep (LVa and LVb) 

layers of M1. The greatest oscillatory power of theta (61.49 ± 3.01% of total theta power, 

n=6 slices, p<0.001; Fig 3.3Aii) and gamma (51.52 ± 3.59% of total gamma power, n=6 

slices, p<0.05; Fig 3.3Bii) oscillations was recorded in LVa. Furthermore, using the 

electrode in LVa as a reference, we observed that theta oscillations in LII/III and LVb were 

led by those in LVa (LII/III: 6 ms lag, 0.22 ± 0.07 cross-correlation coefficient; LVb: 5 ms 

lag, 0.12 ± 0.04 cross-correlation coefficient; n=6 slices; Fig 3.3Aiii), however this 



62 
 

distinction is only individually present in 4/6 slices. In contrast, in the case of gamma 

oscillations, the waveform in both LVa and LII/III lagged LVb by an average of 3 ms and 7 

ms respectively and correlation was much stronger across layers (LII/III versus LVa - 0.38 

± 0.05; LVb versus LVa - 0.29 ± 0.07; n=6 slices; Fig 3.3Biii), and this distinction is 

individually present in all (6/6) slices recorded. 

 

 
 

Figure 3.3 Layer specific frequency and power changes in M1 with cross-correlations of 

oscillatory timing (A) Theta and (B) gamma laminar specific oscillatory changes in M1 

demonstrating (i) frequency changes, (ii) power changes and (iii) cross-correlations between LII/III, 

LVa and LVb. ***, p<0.001. *, p<0.05. 
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 3.2.2 Phase-amplitude coupling (PAC) of M1 network activity 

 

Using scripts generated and published by Tort et al. (2010), we analysed the emergent 

simultaneously recorded theta and gamma oscillations, in order to determine whether any 

PAC existed. PAC analysis was conducted on 40 s epochs of control data. We organised 

our results based on those which demonstrated a modulation index (MI) within the same 

order of magnitude. Thus, in the majority of cases we believe that theta (3-10 Hz) and 

gamma (30-45 Hz) oscillations in M1 were coupled (2.9 x 10-4 ± 0.3 x 10-4, n=6 slices, Fig 

3.4Ai, B, C), although three recordings demonstrated less coupling in the chosen 

frequency bands by an order of magnitude (5.0 x 10-5 ± 0.1 x 10-4, n=3 slices, Fig 3.4Aii, 

C).  

 

Figure 3.4 Local phase-amplitude coupling is present between theta-gamma oscillations in 

the majority of cases (A) (i) Phase-amplitude relationships in (i) modulated and (ii) unmodulated 

recordings. (B) Example co-modulogram showing areas of high modulation index (MI) and coupling 

in red. (C) Bar graph showing the average modulation index (MI) score for recordings showing 

phase-amplitude coupling (black bar) and those showing no coupling (red bar). 
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 3.2.3 Pharmacological profile of oscillations 

 

 3.2.3.1 GABAergic pharmacology 

We initially investigated the involvement of GABAA
 receptors using the competitive-

antagonist gabazine (GBZ) at two concentrations (250 nM and 2 µM), in order to 

differentiate between both the synaptic (phasic) and extrasynaptic (tonic) GABAergic 

inhibition (Farrant and Nusser, 2005; Roopun et al., 2006). 

 
Figure 3.5 Gabazine increases the power of theta and decreases the power of gamma 

oscillations in LV of M1. (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after 

induction with CCh and KA (ctrl) and after drug application. (B) Typical power spectra 

demonstrating peak responses before (solid line) and after 250 nM (dashed line) and 2 μM (dotted 

line) GBZ application. (C) Peak power changes of theta (grey bars) and gamma (red bars) 

oscillations normalised to control. ***, p<0.001, **, p<0.01, *, p<0.05. 
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Theta power was significantly increased by the application of 250 nM GBZ (to 147.9 ± 

10.2% of control, n=7 slices, p<0.05, Fig 3.5Ai, B, C) and further increased by 

consecutive application of 2 µM GBZ (to 181.0 ± 11.6% of control, n=7 slices, p<0.001, 

Fig 3.5Ai, B, C). In contrast, gamma power was significantly reduced by both 250 nM 

GBZ (32.3 ± 4.9% of control, n=16 slices, p<0.001, Fig 3.5Aii, B, C) and by 2 µM GBZ 

(27.5 ± 7.5% of control, n=7 slices, p<0.01, Fig 3.5Aii, B, C). To support this result, we 

used picrotoxin (PIC), also a GABAA receptor antagonist, which binds within the channel 

itself. Application of 50 µM PIC mimicked the changes in power of the oscillations 

produced by GBZ, resulting in an increase in theta power (to 239.8 ± 61.5% of control, 

n=8 slices, p<0.01, Fig 3.6Ai, B, C) and decrease in gamma power (28.3 ± 7.4% of 

control, n=8 slices, p<0.01, Fig 3.6Aii, B, C). 

 

Figure 3.6 Picrotoxin increases the power of theta and decreases the power of gamma 

oscillations in LV of M1. (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after 

induction with CCh and KA (ctrl) and after drug application. (B) Typical power spectra 

demonstrating peak responses before (solid line) and after 50 µM (dashed line) PIC application. (C) 

Peak power changes of theta (grey bars - left y-axis) and gamma (red bars - right y-axis) 

oscillations normalised to control. **, p<0.01. 
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To investigate the effects of GABAA receptor positive modulation on the oscillatory 

network we applied modulators of the benzodiazepine binding site. We used diazepam 

(DZP), a non-specific benzodiazepine, which acts at α1-3,5 subunit-containing GABAA 

receptors. The binding of DZP results in increased frequency of channel opening when 

GABA binds (Rogers et al., 1994; Eghbali et al., 1997; Barnard et al., 1998). Application of 

30 nM DZP resulted in no significant changes in the power of either theta or gamma 

oscillations (theta: to 174.0 ± 43.9% of control, n=8 slices, ns; gamma: to 121.9 ± 12.9% 

of control, n=8 slices, ns; Fig 3.7). However application of 100 nM DZP resulted in a 

significant increase in the power of both theta (to 188.8 ± 26.1% of control, n=8 slices, 

p<0.05, Fig 3.7Aii, B, C) and gamma (to 142.2 ± 22.3% of control, n=8 slices, p<0.05, Fig 

3.7Aii, B, C) oscillations. 

 

Figure 3.7 Diazepam increases the power of theta and gamma oscillations in LV of M1 (A) 

Band-passed raw data of (i) theta and ii) gamma oscillations after induction with CCh and KA (ctrl) 

and after drug application. (B) Typical power spectra demonstrating peak responses before (solid 

line) and after application of 30 nM (dashed line) and 100 nM (dotted line) DZP. (C) Peak power 

changes of theta (grey bars) and gamma (red bars) oscillations normalised to control. *, p<0.05. 
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Figure 3.8 Zolpidem increases the power of theta and gamma oscillations in LV of M1. (A) 

Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) 

and after drug application. (B) Typical power spectra demonstrating peak responses before (solid 

line) and after application of 10 nM (dashed line), 30 nM (dotted line) and 100 nM (hybrid line) 

ZOLP. (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations normalised 

to control. ***, p<0.001, *, p<0.05. 

 

Zolpidem (ZOLP) is a α1-subunit specific positive modulator of GABAA receptors. Previous 

work has shown that a low-dose of ZOLP (10 nM) resulted in a desynchronisation of 

pathological beta oscillations in M1, observed in stroke (Hall et al., 2010) and PD (Hall et 

al., 2011; Hall et al., 2014) patients. In addition, ZOLP (10 nM) resulted in decreased beta 

oscillations in vitro (Prokic et al., 2015). 
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Here we investigated the effect of 10, 30 and 100 nM ZOLP on our oscillations. A 

significant effect of ZOLP on the power of theta oscillations was only seen in 100 nM (to 

160.7 ± 16.0% of control, n=8 slices, p<0.001, Fig 3.8Ai, B, C), no change was observed 

at 10 or 30 nM. However gamma oscillations showed significant increases in power at all 

doses (10 nM: to 148.5 ± 10.1% of control, n=14 slices, p<0.05; 30 nM: to 187.1 ± 14.4% 

of control, n=14 slices, p<0.001; 100 nM: to 276.3 ± 28.0% of control, n=8 slices, p<0.001; 

Fig 3.8Aii, B, C). The application of flumazenil (FLU; 500 nM and 1 µM), an antagonist at 

the benzodiazepine binding site, resulted in no significant effect on theta oscillations. 

However, we did observe a significant increase in gamma oscillations at both 

concentrations (500 nM: to 176.4 ± 14.4% of control, n=15 slices, p<0.001; 1 µM: to 243.4 

± 40.0% of control, n=15 slices, p<0.001; Fig 3.9Aii, B, C). 

 

Figure 3.9 Flumazenil increases the power of gamma oscillations in LV of M1. (A) Band-

passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and 

after drug application. (B) Typical power spectra demonstrating peak responses before (solid line) 

and after application of 500 nM (dashed line) and 1 µM (dotted line) FLU. (C) Peak power changes 

of theta (grey bars) and gamma (red bars) oscillations normalised to control. ***, p<0.001. 
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We also investigated the effects of the GABAA receptor allosteric modulator pentobarbital 

(PENTO; 10 µM), which binds at the β-subunit increasing the duration of channel opening 

(Macdonald and Barker, 1979). Application of 10 µM PENTO had no significant effect on 

the power of theta oscillations. However, we observed a significant decrease in gamma 

oscillatory power (77.7 ± 7.2% of control, n=7 slices, p<0.05, Fig 3.10Aii, B, C). There 

was also a significant reduction in frequency of the gamma oscillations (to 88.0 ± 1.6% of 

control, n=7 slices, p<0.05, data not shown). 

 

Figure 3.10 Pentobarbital decreases gamma oscillatory power in LV of M1 (A) Band-passed 

raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and after 

drug application. (B) Typical power spectra demonstrating peak responses before (solid line) and 

after application of 10 µM (dashed line) PENTO. (C) Peak power changes of theta (grey bars) and 

gamma (red bars) oscillations normalised to control. *, p<0.05. 

 

LSN3074113 (LSN307), a specific GABAA receptor α3-subunit agonist was applied in five 

consecutive doses ranging from 100 nM to 10 µM. Theta oscillatory power was 

significantly increased by 3 µM LSN307 (to 266.9 ± 30.6% of control, n=7 slices, p<0.05, 

Fig 3.11Ai, B, C) and 10 µM LSN307 (to 455.7 ± 96.0% of control, n=7 slices, p<0.001, 

Fig 3.11D). Though no specific dose effect on gamma oscillatory power was observed, 

there was a trend towards an increase at 1 µM before decreasing in power at subsequent 

doses. 
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Figure 3.11 LSN3074113 increases theta oscillatory power in LV of M1 (A) Band-passed raw 

data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and after drug 

application. (B) Typical power spectra demonstrating peak responses before (black line) and after 

application of 100 nM - 10 µM LSN307. (C) Normalised power change (%) of theta (black line) and 

gamma (red line) oscillations across all doses given. (D) Peak power changes at 10 µM of theta 

(grey bars) and gamma (red bars) oscillations normalised to control. ***, p<0.001, *, p<0.05. 

 

To test the involvement of GABAB receptor inhibition, we used 5 µM CGP55845 (CGP), a 

competitive antagonist. Unlike the differing effects observed when blocking GABAA 

receptors, both theta and gamma oscillations showed significant increases in power after 

5 µM CGP application. Theta oscillations increased in power to 131.8 ± 10.6% of control 

(n=17 slices, p<0.01, Fig 3.12Ai, B, C) and gamma oscillations increased in power to 

149.4 ± 10.9% of control (n=17 slices, p<0.001, Fig 3.12Aii, B, C).  
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Figure 3.12 CGP55845 increases the power of both theta and gamma oscillations in LV of 

M1. (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and 

KA (ctrl) and after drug application. (B) Typical power spectra demonstrating peak responses 

before (solid line) and after 5 µM (dashed line) CGP application. (C) Peak power changes of theta 

(grey bars) and gamma (red bars) oscillations normalised to control. ***, p<0.001, **, p<0.01. 

 

 3.2.3.2 Ionotropic glutamate receptors (iGluRs) 

The importance of ionotropic excitatory transmission in oscillations has been firmly 

established in previous studies of oscillations in other brain areas (Buhl et al., 1998; 

Fisahn et al., 1998; Traub et al., 2000). Even though the involvement of KA receptors is 

important for inducing oscillations, the majority of the ionotropic excitatory communication 

between neurons is via AMPA and N-methyl-D-aspartate (NMDA) receptors. 
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Figure 3.13 SYM 2206 increases the power of theta and abolishes gamma oscillations in LV 

of M1. (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh 

and KA (ctrl) and after drug application. (B) Typical power spectra demonstrating peak responses 

before (solid line) and after 20 µM (dashed line) SYM 2206 application. (C) Peak power changes of 

theta (grey bars) and gamma (red bars) oscillations normalised to control. ***, p<0.001. 

 

To explore the involvement of AMPA receptors in theta and gamma oscillations, the 

specific antagonist, SYM 2206 (SYM) was applied. 20 µM SYM resulted in a significant 

increase in the power of theta oscillations (to 333.8 ± 51.6% of control, n=20 slices, 

p<0.001, Fig 3.13Aii, B, C) and the significant block of gamma oscillations (20.2 ± 3.2% 

of control, n=20 slices, p<0.001, Fig 3.13Aii, B, C). We also used NBQX at an AMPA 

specific concentration (2.5 µM), which resulted in a significant increase in theta 

oscillations (to 131.6 ± 15.1% of control, n=9 slices, p<0.05, Fig 3.14Ai, B, C) and a 

significant reduction of gamma oscillations (24.9 ± 5.3% of control, n=9 slices, p<0.01, Fig 

3.14Aii, B, C). 
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Figure 3.14 NBQX increases the power of theta and abolishes gamma oscillations in LV of 

M1. (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and 

KA (ctrl) and after drug application. (B) Typical power spectra demonstrating peak responses 

before (solid line) and after 2.5 µM (dashed line) NBQX application. (C) Peak power changes of 

theta (grey bars) and gamma (red bars) oscillations normalised to control. **, p<0.01, *, p<0.05. 

 

We also investigated the role of NMDA receptors, which have slower receptor activation 

kinetics than AMPA receptors and allows the passage of Ca2+ ions across the membrane. 

Our initial investigation used DL-AP5 (AP5), a competitive antagonist of NMDA receptors. 

Application of 50 µM AP5 had no effect on theta oscillations but resulted in a significant 

increase in gamma oscillatory power (to 166.3 ± 13.6% of control, n=15 slices, p<0.001, 

Fig 3.15Aii, B, C). We also used another competitive and selective NMDA receptor 

antagonist in order to confirm this result, (R)-CPP (CPP; 5 µM). This produced the same 

result with no significant change in theta oscillation power and a significant increase in the 

power of gamma oscillations (to 179.5 ± 15.2% of control, n=11 slices, p<0.01, Fig 

3.16Aii, B, C). 
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Figure 3.15 AP5 increases the power of gamma oscillations in LV of M1. (A) Band-passed raw 

data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and after drug 

application. (B) Typical power spectra demonstrating peak responses before (solid line) and after 

50 µM (dashed line) AP5 application. (C) Peak power changes of theta (grey bars) and gamma 

(red bars) oscillations normalised to control. ***, p<0.001. 

 

 

Figure 3.16 CPP increases the power of gamma oscillations in LV of M1. (A) Band-passed raw 

data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and after drug 

application. (B) Typical power spectra demonstrating peak responses before (solid line) and after 5 

µM (dashed line) CPP application. (C) Peak power changes of theta (grey bars) and gamma (red 

bars) oscillations normalised to control. **, p<0.01. 
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As a high glutamate concentration resulting from the increased activity of the excitatory 

neuronal network could out-compete a competitive antagonist, we tested the effect of 

NMDA receptor channel blockers, MK-801 and ketamine. These experiments were run 

over the course of 40 mins, allowing the drug effect time and for the effect to stabilise, the 

same as is seen and used in other experiments. This is important to note, since channel 

blockers require the activation and opening of the channel in order to access their binding 

site. The addition of 20 µM MK-801 resulted in increases in the power of both theta (to 

201.3 ± 22.5% of control, n=12 slices, p<0.001, Fig 3.17Ai, B, C) and gamma (to 254.7 ± 

36.5% of control, n=12 slices, p<0.001, Fig 3.17Aii, B, C) oscillations. Application of 20 

µM KET resulted in similar significant power increases seen in MK-801 in both theta (to 

146.6 ± 9.2% of control, n=7 slices, p<0.05, Fig 3.18Ai, B, C) and gamma (to 201.2 ± 

23.6% of control, n=7 slices, p<0.05, Fig 3.18Aii, B, C) oscillations. 

 

Figure 3.17 MK-801 increases the power of both theta and gamma oscillations in LV of M1. 

(A) Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA 

(ctrl) and after drug application. (B) Typical power spectra demonstrating peak responses before 

(solid line) and after 20 µM (dashed line) MK-801 application. (C) Peak power changes of theta 

(grey bars) and gamma (red bars) oscillations normalised to control. ***, p<0.001. 
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Figure 3.18 Ketamine increases the power of both theta and gamma oscillations in LV of M1. 

(A) Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA 

(ctrl) and after drug application. (B) Typical power spectra demonstrating peak responses before 

(solid line) and after 20 µM (dashed line) KET application. (C) Peak power changes of theta (grey 

bars) and gamma (red bars) oscillations normalised to control. *, p<0.05. 

 

 3.2.3.3 Metabotropic glutamate receptors (mGluRs)  

The three groups of mGluRs, groups I, II and III, each have distinct localisation and 

receptor effects. As such, activation of each type of receptor group could have very 

different effects on the neuronal networks generated in the brain. We initially investigated 

the role of mGluR1 using CPCCOEt (20 µM), a non-competitive antagonist. Application of 

CPCCOEt resulted in an increase in power of both theta and gamma oscillations (theta: to 

184.3 ± 22.5% of control, n=7 slices, p<0.05; gamma: to 216.1 ± 22.4% of control, n=7 

slices, p<0.05; Fig 3.19A). Application of 20 µM MPEP or 100 nM MTEP, both non-

competitive antagonists of mGluR5 also resulted in the significant increase in the power of 

both theta (MPEP: to 138.4 ± 8.9% of control, n=10 slices, p<0.01, Fig 3.19B; MTEP: to 

168.4 ± 18.5% of control, n=8 slices, p<0.01, Fig 3.19C) and gamma (MPEP: to 154.0 ± 

7.5% of control, n=10 slices, p<0.01, Fig 3.19B; MTEP: to 163.7 ± 10.8% of control, n=8 

slices, p<0.01, Fig 3.19C) oscillations. To test the non-specific effect of mGluR group I 

activation, we applied the agonist DHPG (10 µM), which produced a significant decrease 

of theta oscillatory power to 79.9 ± 4.0% of control (n=10 slices, p<0.01, Fig 3.19D), with 

no effect on gamma oscillatory power. 
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Figure 3.19 Effect of group I mGluR agonists and antagonists on theta and gamma 

oscillations in LV of M1. Peak power changes of theta (grey bars) and gamma (red bars) 

oscillations normalised to control. (A) Application of 20 µM mGluR1 antagonist CPCCOEt 

significantly increased both theta and gamma oscillations. (B) Application of 20 µM mGluR5 

antagonist MPEP significantly increased theta and gamma oscillations. (C) Application of 100 nM 

mGluR5 antagonist MTEP significantly increased theta and gamma oscillations. (D) Application of 

10 µM mGluR1/5 agonist DHPG significantly reduced theta oscillations without an effect on gamma 

oscillations. **, p<0.01, *, p<0.05. 
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Figure 3.20 LY341495 increases the power of theta and gamma oscillations in LV of M1. (A) 

Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) 

and after drug application. (B) Typical power spectra demonstrating peak responses before (solid 

line) and after application of 100 nM (dashed line) and 5 µM (dotted line) LY341495. (C) Peak 

power changes of theta (grey bars) and gamma (red bars) oscillations normalised to control. ***, 

p<0.001, **, p<0.01. 

 

Following this we applied LY341495, an antagonist of group II and III receptors at 

nanomolar and micromolar concentrations respectively (Wright et al., 2000; Lavreysen 

and Dautzenberg, 2008). At 100 nM (specific for group II receptors) an increase in the 

power of theta oscillations was observed (to 156.9 ± 15.3% of control, n=9 slices, p<0.05, 

Fig 3.20Ai, B, C), with no significant change to gamma oscillations. Increasing the dose to 

5 µM (to include group III receptors) resulted in further significant increases in power to 

both theta and gamma oscillations (theta: to 280.3 ± 34.1% of control, n=9 slices, 
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p<0.001; gamma: to 287.3 ± 43.3% of control, n=9 slices, p<0.001; Fig 3.20). To complete 

our investigation of the role that mGluRs play in the neuronal network oscillations of M1, 

we applied LY379268 (an agonist of group II receptors) and L-AP4 (AP4, an agonist at 

group III receptors). Application of 1 µM LY379268 resulted in a significant decrease in 

power of both theta and gamma oscillations (theta: 72.2 ± 5.3% of control, n=8 slices, 

p<0.01; gamma: 67.6 ± 5.5% of control, n=8 slices, p<0.01; Fig 3.21A). Application of 50 

µM AP4 resulted in an increase in both theta (to 164.8 ± 15.4% of control, n=8 slices, 

p<0.01, Fig 3.21B) and gamma (to 139.2 ± 11.4% of control, n=8 slices, p<0.01, Fig 

3.21B) oscillatory power. 

 

Figure 3.21 Effect of group II and III mGluR agonists on theta and gamma oscillations in LV 

of M1. Peak power changes of theta (grey bars) and gamma (red bars) oscillations normalised to 

control. (A) Application of 1 µM mGluR group II agonist LY379268 significantly decreased both 

theta and gamma oscillations. (B) Application of 50 µM mGluR group III agonist L-AP4 significantly 

increased theta and gamma oscillations. **, p<0.01. 
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 3.2.3.4 Cholinergic pharmacology 

Since these oscillations rely on CCh for their generation it would stand to reason that they 

are dependent on cholinergic networks. Application of the non-specific cholinergic 

antagonist atropine (5 µM), resulted in near complete abolition of both the theta and 

gamma oscillatory power (theta: 24.9 ± 9.0% of control, n=7 slices, p<0.05; gamma: 9.1 ± 

3.3% of control, n=7 slices, p<0.05; Fig 3.22). 

 

Figure 3.22 Atropine abolishes both theta and gamma oscillations in LV of M1. (A) Band-

passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and 

after drug application. (B) Typical power spectra demonstrating peak responses before (solid line) 

and after application of 5 µM (dashed line) ATR. (C) Peak power changes of theta (grey bars) and 

gamma (red bars) oscillations normalised to control.*, p<0.05. 
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 3.2.3.5 Gap junction pharmacology 

In order to assess the importance of gap junctions in the generation of M1 neuronal 

network oscillations, carbenoxolone (CBX) was added at 200 µM. Due to the known slow 

response of gap junction block (Konopacki et al., 2004), oscillations were recorded for a 

period in excess of 1.5 hrs following CBX application and a significant reduction in theta 

(40.6 ± 5.1% of control, n=13 slices, p<0.001, Fig 3.23Ai, B, C) and gamma (28.7 ± 5.7% 

of control, n=13 slices, p<0.001, Fig 3.23Aii, B, C) oscillatory power was observed. 

 

Figure 3.23 Carbenoxolone decreases both theta and gamma oscillations in LV of M1. (A) 

Band-passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) 

and after drug application. (B) Typical power spectra demonstrating peak responses before (solid 

line) and after application of 200 µM CBX (dashed line). (C) Peak power changes of theta (grey 

bars) and gamma (red bars) oscillations normalised to control. ***, p<0.001. 
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 3.3 Discussion 

 

In this chapter we have shown that simultaneous theta (4-8 Hz) and gamma (30-45 Hz) 

oscillations can be elicited in LV of M1. We found that application of both KA and CCh 

was required to induce these oscillations, which exhibit phase-amplitude coupling (PAC). 

Pharmacologically, both oscillations were sensitive to the block of cholinergic receptors 

and gap junctions. However, only gamma oscillations were reduced by block of synaptic 

GABAA and AMPA receptors, while theta oscillatory power was augmented. Both 

oscillations were amplified by increased GABAA receptor modulation, with the exception of 

pentobarbital, which reduced gamma oscillatory power, and LSN3074113, which solely 

increased theta oscillatory power. Theta oscillations were also largely unresponsive to 

NMDA receptor block, unlike gamma oscillations which were consistently increased in 

power. Agonists of group I and II mGluRs depressed theta and gamma oscillations, whilst 

block of mGluRs resulted in increases to oscillatory power. Overall, we demonstrate the 

presence of coexistent but pharmacologically distinct theta and gamma oscillations in LV 

of M1. 

 

 3.3.1 Generation of theta and gamma oscillations in M1 

 

Previous research in our laboratory investigated beta oscillations (12-25 Hz), produced in 

M1 using 400 nM KA and 50 µM CCh (Yamawaki et al., 2008). Since then a modified 

sucrose-based cutting solution was developed, which incorporated neuroprotectants (to 

prevent excitotoxicity and cell death) and anti-oxidants (to prevent damage from reactive 

oxygen species and free radicals), such as indomethacin, uric acid, ascorbic acid, N-

acetyl cysteine (NAC), taurine and amino-guanidine (Griffiths et al., 1993; Pakhotin et al., 

1997; Rice, 2000; Kreisman and Olson, 2003; Tian et al., 2003; Tutak et al., 2005; 

Proctor, 2008; Prokic, 2011). We believe that this enhanced slice preparation protocol 

presumably resulted in increased slice viability and allowed the use of reduced 

concentrations of KA (100-150 nM) and CCh (5-10 µM) to be used to elicit oscillatory 

activity in M1. Oscillations could be elicited through the use of the lower ranges of both KA 

and CCh, however these concentrations were increased in some experiments to the 

higher end of the ranges to facilitate the emergence of oscillations. We observed that the 

range of KA and CCh concentrations produced oscillations with the same frequency, 

power and pharmacology. It is important to note that drug groups were not split by use of 

a single concentration of KA and CCh over another and that use of the whole range was 

used on average throughout all experiments. This suggests that there were no adverse 
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differences in pharmacology or frequency in our oscillations, as a result of the different 

concentrations used. 

 

Furthermore care should be taken when interpreting these results as there may be 

unknown effects from the use of the various neuroprotective drugs in the generation of 

more physiological activity in the brain slice. Even though the protocol used does provide 

time between slicing and recording to wash out the neuroprotectants, it is possible that the 

action of specific pathways and oxidising compounds is important for the natural function 

of certain cells and the neuronal network as a whole. Further histological studies, using 

cell counts or staining for specific cellular markers should be completed to ascertain what 

(if any) changes in cells and network components are being altered between slicing 

protocols. This may help to inform on the changes that are taking place and allow us to 

create a more controlled recording environment and slice preparation that is more akin to 

an in vivo recording. 

 

Previous work by Prokic et al. (2015), as referenced several times throughout this chapter, 

has demonstrated the emergence of 25-30 Hz beta oscillations in M1, which were 

sensitive to both GABAA receptor block and the application of a low-dose (10 nM) of 

zolpidem. Both the study by Prokic et al. and the work presented here use lower 

concentrations of KA and CCh to elicit oscillatory activity, than previously used by 

Yamawaki et al. (2008), as well as a similar slice preparation protocol. Therefore, it should 

be noted that the distinction between what this paper noted as a “beta” oscillation and 

what we call a “gamma” oscillation is only a difference of ~6 Hz. However, aside from the 

differences we observe in the response of our “gamma” oscillations to low-dose zolpidem, 

the slice preparation protocol we utilise here includes aminoguanidine, which is an iNOS 

inhibitor included in the sucrose-based aCSF. Nitric oxide is a short-lived free radical that 

has roles in apoptosis and swelling, which results from ischemia, results which have been 

shown to be reduced by the inhibition of iNOS by aminoguanidine (Griffiths et al., 1993; 

Sun et al., 2010). It is our belief that in the slice preparation used by Prokic et al. there 

was a subset of cells or network connections which were being damaged during the 

slicing protocol, which resulted in the altered frequency and pharmacology observed 

during these studies. Thus the use of aminoguanidine in our slice preparation may result 

in the prevention of this damage and contribute towards the generation of theta and 

gamma oscillations in our slices. 

 

Application of both CCh and KA were required for high power, persistent oscillations. 

Previous work has demonstrated that the application of KA results in increased axonal 
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excitability in both interneurons and pyramidal cells, inducing a depolarised state that can 

produce spontaneous action potentials (Cossart et al., 1998; Semyanov and Kullmann, 

2001). CCh is an agonist of the muscarinic acetylcholine (mACh) receptor, a GPCR 

coupled to several K+- and Ca2+-currents (Lucas-Meunier et al., 2003), which also 

increases glutamate and GABA release in interneurons and pyramidal cells. One K+-

current is the M-current (IM), which is inhibited when the mACh receptor is activated. The 

IM channel is usually open at rest and generates an outward hyperpolarising current 

(Halliwell and Adams, 1982). Furthermore, the mACh receptor also increases certain non-

specific cation currents, such as the Ih current (hyperpolarisation activated current), which 

have been demonstrated to be important for oscillatory activity (Traub et al., 2000; Fisahn 

et al., 2002; Neymotin et al., 2013). Thus, increased activation of the mACh receptor, 

results in an overall membrane depolarisation and as a result the network is more 

excitable (Halliwell and Adams, 1982; Wang and McKinnon, 1995). This increased 

excitability in the interneuronal and pyramidal cell network results in neuronal network 

oscillations (Whittington et al., 1997). 

 

Two distinct but simultaneous oscillations, at theta (6.6 Hz) and gamma (36.6 Hz) 

frequency were observed. Since application of CCh is required for the generation of both 

theta and gamma oscillations in M1, it is possible that the neuronal networks required to 

generate each oscillation are similar or overlap. Consistent with this hypothesis, we 

observed that blocking of mAChRs with atropine, results in the abolition of both 

oscillations. This also suggests that the theta oscillations induced in M1 are 

pharmacologically similar to previously studied atropine-sensitive theta oscillations 

observed in the hippocampus (Konopacki and Golebiewski, 1993; Gillies et al., 2002).  

 

 3.3.2 Phase-amplitude coupling 

 

Oscillations in neuronal networks are known to interact between brain areas and are 

theorised to be required for spatial and temporal co-ordination between different regions 

(Gray and Singer, 1989; Jensen and Colgin, 2007). Early research in the hippocampus 

and entorhinal cortex focused on the interaction of the theta oscillation phase with the 

gamma oscillatory power (Bragin et al., 1995; Chrobak and Buzsaki, 1998; Csicsvari et 

al., 2003; Mormann et al., 2005; Tort et al., 2008; Quilichini et al., 2010). Igarashi et al. 

(2013) also demonstrated the involvement of theta-gamma coupling in the sensorimotor 

area in vivo during different behavioural and movement phases. Recent advances in 

computer processing power have allowed for complex and rapid analysis of data to 

determine coupling between theta and gamma oscillations, including in silico modelling 
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(Neymotin et al., 2013) and a measure of coupling called the ‘modulation index’ (Canolty 

et al., 2006; Canolty and Knight, 2010; Tort et al., 2010; Kramer and Eden, 2013). This 

compares the mean amplitude of a higher frequency oscillation and where it falls on the 

phase of a lower frequency oscillation, then calculates what is known as the modulation 

index as a measure of the deviation of the mean phase-amplitude distribution from a 

uniform distribution. Additionally, studies have begun to determine the underlying 

mechanisms that allow the facilitation of coupling between networks. Fast spiking (FS) 

inhibitory interneurons, known to be important in gamma and theta oscillations (Bragin et 

al., 1995; Bartos et al., 2002; Buzsaki, 2002; Tort et al., 2007), are believed to be involved 

in phase-amplitude coupling. Using mice with a genetic KO of these interneurons, studies 

have shown that this attenuated theta oscillatory power in vivo and reduced coupling with 

gamma oscillations (Wulff et al., 2009). 

 

Interestingly however, not all of our recordings demonstrated the same intensity of phase-

amplitude coupling, there was an order of magnitude difference between groups. 

Furthermore, the level of coupling in our slices was 2 orders of magnitude smaller than the 

MI value obtained by perfectly coupled model data used in the Tort et al. (2010) paper. It 

is therefore important to consider the potential differences between our data and theirs. 

One important consideration is that in modelled data using a computer there would be no 

noise or other biological variation within the recording, this could interfere with the MI 

calculation resulting in lower MI values. Additionally the paper by Tort et al. (2008), which 

observed PAC in in vivo recordings of rat hippocampus and striatum during a T-maze 

task, found that they only obtained MI values at 10-3; an order of magnitude lower than the 

perfect data used in the 2010 paper. Therefore, it is possible that the results we obtained 

are actually a product of looking at PAC in an in vitro setting. After all, experiments 

performed in vivo are conducted on networks and oscillations in a fully intact brain, with 

specific cues and behaviours which are directing these oscillations together. Thus it would 

make sense that successfully coupled oscillations in an in vitro setting, whereby the 

networks between brain areas are often severed and the slice is being artificially driven 

pharmacologically, would be less modulated than those observed in a physiological 

setting. It is possible that as in vitro slice preparations improve in the future and we are 

able to preserve physiological networks closer to those observed in vivo, we would be 

able to see a higher level of modulation during in vitro recordings. 

 

In our recordings, the differences in MI values between those we considered to be 

positively coupled (MI+) and those negatively coupled (MI-) could be attributed to 

differences in slice viability, resulting in the production of some brain slices that do not 
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have adequate circuitry to produce coupled rhythms. Additionally, the variation in the MI 

between slices could also be due to differences in the time since slicing throughout the 

day or the strength of the initial oscillations to begin with. Though when checked, it was 

observed that 50% of the slices with higher MI were slices used earlier in the day and 

50% were slices used later in the day, suggesting this was not a participating factor. 

However this caveat notwithstanding, the presence of a higher level of coupling in a 

significant number of slices is still important as a demonstration of the ability to generate 

phase-amplitude coupling in M1 in vitro. Further analysis could look at whether significant 

differences in the MI are the result of other factors, such as the initial power of theta and 

gamma oscillations in the slices, which may provide insight into the necessary machinery 

in the slices that allows for coupling between different frequencies to occur. 

 

 3.3.3 Pharmacological profile 

 

In order to gain mechanistic insight into the neuronal networks involved in theta and 

gamma oscillations in M1, we pharmacologically investigated the different inhibitory and 

excitatory networks present. This demonstrated that the oscillations generated are 

pharmacologically distinct, not only from each other, but also from previously presented in 

vitro beta oscillations in M1 (Yamawaki et al., 2008). 

 

 3.3.3.1 GABAergic pharmacology 

We have shown that blockade of GABAA receptors with gabazine and picrotoxin results in 

reduced gamma oscillatory power and the potentiation of theta oscillatory power in M1. 

The sensitivity of gamma oscillations to GABAA receptor block is consistent with previous 

reports in the hippocampus and other cortical areas (Whittington et al., 1995; Traub et al., 

1996b; Traub et al., 1996a; Buhl et al., 1998; Fisahn et al., 1998; Dickson et al., 2000; 

Cunningham et al., 2003; Roopun et al., 2008; Cardin et al., 2009). 

 

The involvement of the GABAergic system in the generation of theta oscillations has been 

shown previously (Golebiewski et al., 1993; Konopacki and Golebiewski, 1993; Konopacki 

et al., 1997; Lukatch and MacIver, 1997). In the hippocampus, theta-on pyramidal neurons 

and theta-off GABAergic interneurons have been observed. In these studies pyramidal 

neurons were tonically excited by a cholinergic drive (via CCh), whilst the inhibitory activity 

of the interneurons was inhibited by the application of a GABAA receptor antagonist (such 

as bicuculline). This was believed to result in a reduction of the inhibition produced by the 

theta-off neurons and release of subsequent excitation from theta-on neurons, producing 
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a robust theta oscillation in rodent recordings of hippocampus (Colom et al., 1991; Smythe 

et al., 1992) and cortex (Lukatch and MacIver, 1997). This is consistent with increases in 

theta oscillatory power in our recordings of M1, observed when applying GABAA receptor 

antagonists, such as gabazine or picrotoxin. Additionally, we applied a higher dose of 

gabazine (2 µM), which blocks extra-synaptic GABAA receptors that regulate tonic 

inhibitory currents (Farrant and Nusser, 2005). We found that the higher concentration of 

gabazine further increased theta oscillatory power, suggesting that the loss of tonic 

inhibition results in increased excitation of interneurons in the neuronal network. 

Furthermore, persistence of the theta oscillation in synaptic GABAA receptor block, 

suggests a non-synaptically coupled network of intrinsic oscillators, potentially similar to a 

non-synaptic beta2 rhythm generated in S2 in vitro (Roopun et al., 2006). 

 

Activation of the benzodiazepine site of the GABAA receptor with diazepam and zolpidem 

application resulted in increases in power of both theta and gamma oscillations, although 

the effect on theta oscillations were only observed at the highest concentrations of either 

drug. These data are consistent with the known synaptic inhibitory components of gamma 

oscillations, and indicate that the theta network may have a synaptic component as well 

as the previously discussed non-synaptic element. The effects of benzodiazepine site 

agonists are suggestive of an increase in oscillatory power following recruitment and 

synchronous activation of pyramidal neurons, and may be related to the enhanced beta 

activity or ‘beta buzz’ seen in vivo (Glaze, 1990). 

 

Zolpidem is a specific modulator of GABAA receptors containing the α1-subunit (Crestani 

et al., 2000) and at low concentrations (10 nM) has been shown to desynchronise beta 

oscillations in vitro (Prokic et al., 2015) and in vivo (Hall et al., 2010; Hall et al., 2014). 

However, we observed significant increases in the power of our gamma oscillations with 

increasing concentrations of zolpidem similar to gamma oscillations in the hippocampus 

(Heistek et al., 2010; Modebadze, 2014) indicating a distinct difference between 

previously observed beta and the gamma oscillatory activity observed here in M1. 

Additionally flumazenil, an antagonist of the benzodiazepine site, resulted in an increase 

in both theta and gamma oscillatory power. It has previously been suggested that 

flumazenil increases the power of beta oscillations in M1 (Prokic et al., 2015) through a 

decrease in a tonic inhibitory current, which is constitutively active in FS interneurons. 

Therefore, this result could be attributed to the presence of endogenous benzodiazepines 

or ‘endozepines’ (Costa and Guidotti, 1985; Farzampour et al., 2015). Alternatively, 

flumazenil may also act as an agonist at α4-subunit containing GABAA receptors, which 

could produce effects similar to diazepam (Whittemore et al., 1996). 
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The GABAA receptor modulator pentobarbital decreased gamma oscillatory frequency and 

power in M1. This is similar to responses observed previously in other cortical areas (Buhl 

et al., 1998; Cunningham et al., 2003). Pentobarbital increases GABAA receptor opening 

time and prolongs the decay time of GABAergic IPSCs (Segal and Barker, 1984). These 

results confirm the roles of IPSP/Cs in the pacing of these oscillations. The decrease in 

oscillatory power could alternatively be due to a non-specific antagonistic effect that 

barbiturates have on AMPA receptors containing GluR2 subunit (Martin et al., 1993; 

Taverna et al., 1994).  

 

Block of metabotropic GABAB receptors increased the power of both our theta and 

gamma oscillations. These receptors are located synaptically and extrasynaptically on 

pre- and post-synaptic elements of both interneurons and pyramidal cells (Vanbrederode 

and Spain, 1995; Gonchar and Burkhalter, 1999; Lopez-Bendito et al., 2002; Bettler et al., 

2004; Lopez-Bendito et al., 2004; Bettler and Tiao, 2006). GABAB receptors activate 

inwardly-rectifying K+-channels, and inhibit voltage-sensitive Ca2+-channels (Newberry 

and Nicoll, 1984; Gage, 1992; Bettler et al., 2004; Couve et al., 2004; Bettler and Tiao, 

2006; Pérez-Garci et al., 2006; Palmer et al., 2012). Therefore, activation of GABAB 

receptors would result in both a postsynaptic membrane hyperpolarisation resulting in a 

reduction of action potential dependent glutamate and GABA release and a presynaptic 

reduction in the probability of release (Luscher et al., 1997; Bettler and Tiao, 2006). With 

regard to theta oscillations, Konopacki et al. (1997) reported that using a combination of 

GABAA and GABAB receptor antagonists in hippocampal slices could elicit such activity. 

Thus, in our studies CGP55845 may be acting to disinhibit a theta-on/theta-off network, 

increasing the oscillatory power of our theta oscillations. 

 

Briefly, studies in the hippocampus of anaesthetised rodents have shown that multiple 

interneuronal types (including those that express PV and CCK) fire at different stages of a 

theta rhythm and are believed to innervate a range of sites across pyramidal neurons, 

from the apical to the distal dendrites, as well as the somatic region (Klausberger et al., 

2003; Somogyi et al., 2014). Therefore, whilst the involvement of GABAA receptors in 

modulating the power of both theta and gamma oscillations is evident, we cannot be 

certain which population of interneurons may be responsible for our observations. 

Additionally, while the involvement of FS interneurons are believed to be important in 

gamma oscillation generation (Cardin et al., 2009), whether the same population is 

involved in coupling of theta to these oscillations or contribute equally to the generation of 

both is unknown from these data alone. 
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 3.3.3.2 Ionotropic glutamate receptor (iGluR) pharmacology 

The generation of EPSPs by AMPA receptors in neuronal networks are believed to be 

important in maintaining and increasing the synchrony of gamma oscillations (Whittington 

et al., 1997). Furthermore, gamma oscillations can synchronise over long-distances, 

which has been shown to be reliant on the generation of EPSPs by AMPA receptors onto 

cortical interneurons (Traub et al., 1996a; Fisahn et al., 1998; Traub et al., 2000; Fuchs et 

al., 2001; Traub et al., 2004). In our studies, block of AMPA receptors resulted in a 

reduction in the power of our gamma oscillations, suggesting a similarity to previously 

recorded gamma oscillations from the hippocampus and other cortical areas (Buhl et al., 

1998; Fisahn et al., 1998; Dickson et al., 2000; Cunningham et al., 2003; Roopun et al., 

2008; Cardin et al., 2009). These results suggest that there are clear differences between 

gamma oscillations observed here and the previously generated beta oscillations, which 

were insensitive to AMPA receptor block (Roopun et al., 2006; Yamawaki et al., 2008). 

 

In contrast, block of AMPA receptors increased theta oscillatory power consistent with a 

non-synaptically coupled network of intrinsic oscillators in which synaptic blockade 

augments an intrinsically generated rhythm (e.g. the beta2 rhythm in somatosensory 

cortex in vitro as shown by Roopun et al., 2006). Furthermore, application of AMPA 

receptor antagonists to gamma oscillations has been shown to result in the emergence of 

theta oscillations (Gillies et al., 2002; Cunningham et al., 2003; Modebadze, 2014). One 

hypothesis suggests that theta-on cells within hippocampal networks generate a sub-

threshold rhythm of intrinsic membrane properties, which emerge as theta frequency 

oscillations (Bland et al., 1988). These intrinsic membrane generators of theta appear to 

be reliant on the depolarisation by carbachol and subsequent hyperpolarisation by a 

GABAergic network (MacVicar and Tse, 1989). However, it is also possible that gamma 

oscillations, dependent on synaptic communication, are not abolished by antagonists at 

AMPA receptors but are merely slowed into the theta range, thereby augmenting apparent 

theta power. Though having measured the relative time-courses of gamma decline and 

theta augmentation, such a hypothesis was not supported. 

 

Blockade of NMDA receptors with NMDAR antagonists significantly increased power in 

both the theta and gamma band in M1, consistent with other reports of such NMDAR 

antagonist effects in the literature (Pinault, 2008; Hakami et al., 2009; McNally et al., 

2011). It has been reported that GABA interneurons and the generation of IPSPs in 

hippocampal CA1 are sensitive to NMDAR antagonism (Grunze et al., 1996) and selective 

genetic ablation of NMDAR on parvalbumin-positive (PV+, FS) interneurons has been 

reported to augment gamma activity (Korotkova et al., 2010). Therefore, disinhibition of 
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GABA interneurons has been suggested as a mechanism for augmented excitability in 

pyramidal neurons, leading to increased oscillatory power. In the same report Korotkova 

et al. (2010) showed that selective NMDAR ablation on interneurons reduced theta power 

in CA1, an effect not seen in M1. This may reflect different local circuit organisation 

between hippocampus and neocortex, or simply be due to the acute versus chronic 

effects of ablation as compared to pharmacological intervention.  

 

In contrast, our studies of M1 theta oscillations were unaffected by NMDA receptor block 

by AP5 and CPP. It is certainly possible that the increased activity of the gamma 

oscillations could be increasing the ambient glutamate concentration around synapses, 

which could affect the competitive action of AP5 and CPP, resulting in only a partial 

antagonistic effect on NMDA receptors. On the other hand the non-competitive 

antagonists MK-801 and ketamine increased the power of theta oscillations. These drugs 

also have a variety of non-specific targets which may be affecting the neuronal network 

oscillations (for a review see Kohrs and Durieux, 1998). In particular, ketamine has been 

shown to have active properties on opioid receptors (Smith et al., 1987), cholinergic 

receptors (Aronstam et al., 1982) and on 5-HT/dopamine reuptake (Martin et al., 1988), 

while MK-801 has been reported to inhibit nicotinic acetylcholine receptors (Amador and 

Dani, 1991), potentiate the release of 5-HT (Iravani et al., 1999) and interact with DA 

release and reuptake (Clarke and Reuben, 1995). Overall, the difference in the response 

of theta oscillations to ketamine and MK-801 could be due to non-specific effects on other 

neuronal receptors within the network, rather than through a specific block of NMDA 

receptors. 

 

 3.3.3.3 Metabotropic glutamate receptor (mGluR) pharmacology 

Whittington et al. (1995) demonstrated that the activation of mGluR1 and mGluR5 results 

in the generation of interneuronal network gamma oscillations in the hippocampus. 

Furthermore, activation of mGluR1/5 has been shown to result in increased IPSC 

frequency (Kerner et al., 1997) via a block of K+-channel induced hyperpolarisation and an 

increase in GABA release onto interneurons (Desai et al., 1994; Deng et al., 2010; 

Errington et al., 2011) resulting in an increase in gamma power. However, in our studies, 

block of group I mGluRs increased the oscillatory power of both theta and gamma while 

agonists decreased the power of theta alone. Previous studies have reported that 

activation of group I mGluRs decreased synaptic inhibition (Desai and Conn, 1991; Varma 

et al., 2001) and it seems likely that blockade of mGluRs may result in increased synaptic 

inhibition, either through reduction in constitutive activity at the receptor or through 

reduction of glutamate driven activation of mGluRs in the CCh/KA activated network. In 
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such a scenario, increased action-potential dependent GABA release may lead to 

increased oscillatory power in the same manner that positive modulation of GABAA 

receptors with benzodiazepines or barbiturates are known to do. 

 

Typically mGluR group II and III receptors are present on both excitatory-inhibitory and 

inhibitory-inhibitory terminals and their activation results in a decrease in neurotransmitter 

release (Iserhot et al., 2004; Cosgrove et al., 2011; Liu et al., 2014). We found that the 

power of both theta and gamma oscillations increased in block of group II and III mGluRs. 

However, whilst we observed a decrease in theta and gamma oscillatory power using an 

agonist of group II mGluRs, activation of group III mGluRs increased oscillatory power. A 

study in hippocampus demonstrated that agonists of group II mGluRs resulted in a 

reduction of gamma oscillatory power, through the reduction of EPSCs onto interneurons 

(Price et al., 2005). Furthermore, studies using LY341495, a group II and III mGluR 

antagonist, in sensorimotor cortex demonstrated a pyramidal neuron specific increase in 

EPSCs, independent of GABA receptor disinhibition (Bandrowski et al., 2003). Activation 

of mGluR2/3 can also initiate a PKC-dependent mechanism, which has been shown to 

increase NMDA receptor currents on interneurons (Tyszkiewicz et al., 2004). This 

supports our observations that an application of mGluR2/3 agonists result in a decrease in 

the power of our oscillations, potentially also due to secondary effects on NMDA 

receptors. 

 

Application of the group III mGluR agonist L-AP4 resulted in an increase in the power of 

our theta and gamma oscillations. Group III mGluRs are believed to be localised pre-

synaptically on interneurons to reduce recurrent GABAergic inhibition in an interneuronal 

network. Group III mGluR activation could therefore result in inhibition of interneuron-

pyramidal neuron activity, increasing the power of both our theta and gamma oscillations 

(Semyanov and Kullmann, 2000). 

 

 3.3.3.4 Gap junction pharmacology 

Gap-junctions and electrical coupling between cells allows the free flow of ions between 

interneurons, which facilitates the generation of large, synchronous IPSPs and increased 

oscillatory power (Galarreta and Hestrin, 1999; Gibson et al., 1999; Deans et al., 2001). In 

line with previous studies, blocking gap-junction communication resulted in the abolition of 

our gamma oscillations (Fisahn et al., 1998; Traub et al., 2000; Hormuzdi et al., 2001; 

Traub et al., 2003). Theta oscillations were also acutely sensitive to blocking of gap-

junctions as shown previously in vivo (Golebiewski et al., 2006; Bocian et al., 2009) and in 

vitro (Konopacki et al., 2004). 
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However, we must be aware of the complications associated with the use of 

carbenoxolone. While carbenoxolone is a potent gap junction antagonist, there are also 

reports that it acts at multiple different receptors and supresses neuronal activity in the 

brain, which makes it a very non-specific and dirty drug to use in pharmacological 

investigations. These include 11β-hydroxysteroid dehydrogenase, post synaptic NMDA 

receptors, GABAA receptors, Ca2+ channels and the suppression of action potentials and 

input resistance (Connors, 2012). Therefore we cannot say for certain that the effect 

we’ve observed on our oscillations after carbenoxolone application is completely due to its 

role on gap junctions. Further investigations using knock-out models of different gap 

junction subunits would allow us to investigate the actual role of gap junctions in our 

oscillations. Furthermore, we could utilise electron microscopy to actually identify the 

presence of gap junctions between different neuronal cells. This would allow us to 

formulate an idea of their role through their location on different pyramidal and 

interneuronal subtypes, as well as extrapolate how their knock-out or loss from these 

locations affects our recorded oscillations. This is especially important, given the role that 

axo-axonal gap junctions are believed to play in the generation and propagation of theta 

and gamma oscillations in the hippocampus and M1. 

 

 3.4 Conclusion 

 

In this chapter we have shown that M1 can generate co-existent theta and gamma 

oscillations with distinct pharmacological profiles. We believe that improvements in slice 

preparation and neuronal viability have contributed to the protection of neuronal elements 

essential for generation of theta and gamma oscillations. Importantly, the protection of a 

population of cells or neuronal process sensitive to nitric oxide damage during slicing by 

aminoguanidine may be key in the generation of the oscillations we observe here. The 

pharmacology of our gamma oscillations appear consistent with gamma oscillations 

observed in the hippocampus, somatosensory cortex (S1) and entorhinal cortex. These 

oscillations appear to be generated through the combined action of KA and CCh, and 

involve both excitatory and inhibitory synaptic transmission, as well as non-synaptic 

communication through gap junctions. However, based on the pharmacology of our theta 

oscillations, we would suggest that they result from a non-synaptic network involving the 

intrinsic properties of neurons themselves. A summary of the pharmacological 

characterisation of these oscillations is provided in Table 3.1. Additionally, evidence of 

phase-amplitude coupling between the two networks underlies an important physiological 
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aspect of theta-gamma rhythms. Overall, this presents a new model of oscillations in M1 

and the first evidence for theta-gamma coupling in vitro. Though ultimately, further studies 

are required to determine the relative involvement of different neuronal populations to 

each oscillation generated in M1 (see chapter 6). Additionally, more slices to improve N 

numbers throughout this study would improve the certainty for the effect each drug 

condition has on the different theta and gamma oscillations. In order to determine the 

amount needed to remain statistically relevant and to prevent unwanted statistical errors, 

power analysis could be performed, which would prevent us wasting animals and slices 

on experiments that are already adequately powered. 

  



94 
 

Drug N 
(slice) 

Theta power Gamma 
power 

GABAergic receptors   

Gabazine  250 nM 7 ↑ ↓↓↓ 

   2 µM 7 ↑↑↑ ↓↓ 

Picrotoxin  50 µM 8 ↑↑ ↓↓ 

Diazepam  30 nM 8 - - 

   100 nM 8 ↑ ↑ 

Zolpidem  10 nM 14 - ↑ 

   30 nM 14 - ↑↑↑ 

   100 nM 8 ↑↑↑ ↑↑↑ 

Flumazenil  500 nM 15 - ↑↑↑ 

   1 µM 15 - ↑↑↑ 

Pentobarbital  10 µM 7 - ↓ 

LSN3074113  10 µM 7 ↑↑↑ - 

CGP55845  5 µM 17 ↑↑ ↑↑↑ 

Ionotropic glutamate receptors 

SYM 2206  20 µM 20 ↑↑↑ ↓↓↓ 

NBQX   2.5 µM 9 ↑ ↓↓ 

D,L-AP5  50 µM 15 - ↑↑↑ 

(R)-CPP  5 µM 11 - ↑↑ 

MK-801   20 µM 12 ↑↑↑ ↑↑↑ 

Ketamine  20 µM 7 ↑ ↑ 

Metabotropic glutamate receptors 

CPCCOEt  20 µM 7 ↑ ↑ 

MPEP   20 µM 10 ↑↑ ↑↑ 

MTEP   100 nM 8 ↑↑ ↑↑ 

DHPG   10 µM 10 ↓↓ - 

LY341495  100 nM 9 ↑ - 

   5 µM 9 ↑↑ ↑↑↑ 

LY379268  1 µM 8 ↓↓ ↓↓ 

L-AP4   50 µM 8 ↑↑ ↑↑ 

Cholinergic receptors  

Atropine  5 µM 7 ↓ ↓ 

Gap junctions 

Carbenoxolone 200 µM 13 ↓↓↓ ↓↓↓ 

Table 3.1 Summary table of drugs used to pharmacologically characterise theta and gamma 

oscillations. Listed are names of individual drugs, the N’s per experiment, the changes to 

oscillatory power for theta and gamma oscillations. 



95 
 

Chapter 4 Dopamine Pharmacology of M1 

Oscillations 
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 4.1 Introduction 

 

Dopamine (DA) neurons of the substantia nigra pars compacta (SNc) and ventral 

tegmental area (VTA) project to large areas of the frontal cortex and basal ganglia (BG) 

and as such DA signalling has been shown to be functionally involved in the regulation of 

motor execution, behaviour (including motivation, reward learning, prediction and pain) 

and working memory (Schultz, 1998; Lisman and Otmakhova, 2001; Mallet et al., 2008b; 

Mitsi and Zachariou, 2016). Therefore it is not surprising that dysfunction of the 

dopaminergic system has been implicated in a number of neurological disorders, including 

schizophrenia, attention deficit hyperactivity disorder (ADHD), Tourette’s syndrome, 

Huntington’s disease and PD (Ehringer and Hornykiewicz, 1960; Snyder et al., 1970; 

Creese et al., 1976; Jakel and Maragos, 2000; Mink, 2006; Swanson et al., 2007; Borroto-

Escuela et al., 2016). 

 

 4.1.1 Dopamine Receptors 

 

DA activates a group of G-protein coupled receptors (GPCRs), namely D1 to D5. These 

are separated into two groups, the D1-like receptors, which include D1 and D5, and the 

D2-like receptors, which include D2, D3 and D4. These groups are based on their ability 

to modulate adenylate cyclase (AC) activity (Kebabian and Greengard, 1971; Spano et al., 

1978; Seeman and Vantol, 1994). Thus, D1-like receptors increase AC activity and 

stimulate the production of cyclic adenosine monophosphate (cAMP), while D2-like 

receptors decrease AC activity and inhibit the production of cAMP (Kebabian and Calne, 

1979; Enjalbert and Bockaert, 1983). These differences were later found to result from 

specific Gα–proteins linked to the receptors, D1-like are linked to Gαs/olf, and D2-like to 

Gαo/i. (Missale et al., 1998; Tritsch and Sabatini, 2012). The activation of cAMP by D1-like 

receptors has a major role in the regulation of protein kinase A (PKA), which has many 

downstream phosphorylation targets (Greengard, 2001). In contrast, activation of D2-like 

receptors activates phosphatases that result in the inhibition of PKA activity (Tritsch and 

Sabatini, 2012). DA also stimulates phospholipase C (PLC) production, primarily by D2-

like receptors, via the Gβγ-protein which can directly increase intracellular Ca2+ levels and 

regulate the activity of Ca2+ and K+ channels (Friedman et al., 1997; Beckstead et al., 

2004). 

 

Within the M1 of monkeys, D1-like and D2-like receptors are distributed across all cortical 

layers, though both groups of receptors demonstrated a greater localisation to the 
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superficial layers (LI and LIII) (Lidow et al., 1989; Lidow et al., 1991; Huntley et al., 1992). 

This is in contrast to rodents where D1-like receptors were found to be localised to the 

deep layers V and VI (Dawson et al., 1986; Vitrac et al., 2014). Furthermore, D1 receptors 

in M1 have been shown to be localised to the soma of pyramidal neurons, whilst D5 

receptors extend more to their apical dendrites (Awenowicz and Porter, 2002). 

Additionally, both D1-like and D2-like receptors are localised on PV+ interneurons, 

preferentially in deep layers V and VI (Gaspar et al., 1995; LeMoine and Gaspar, 1998). 

 

 4.1.2 Dopamine and neuronal activity 

 

DA plays a major role in locomotor activity, whereby the degeneration of the dopaminergic 

neurons of the SNc results in PD and the symptoms of akinesia, bradykinesia and rigidity.  

The loss of DA coincidently results in the emergence of highly synchronous and coherent 

beta oscillations (12-30 Hz), which are indicative of PD (Magill et al., 2001; Bevan et al., 

2002; Brown, 2003). The role of DA in modulating the activity of the cortico-BG network is 

therefore important for our understanding of this disease.  

 

In this chapter, we investigated the modulation of network oscillations by DA in brain 

slices of M1 and pharmacologically explore the receptors involved. The chronic loss of DA 

and the consequences of modulatory loss were investigated by using the 6-OHDA model 

of PD (Ungerstedt, 1968). Thus, using the previously established protocol for the 

generation of oscillations in M1 slices in vitro using CCh and KA (see chapter 3); we 

investigated the importance of dopaminergic modulation on M1 theta and gamma 

oscillations in DA-intact and DA-depleted slices. 

 

Experiments were performed in collaboration with Mazhar Ozkan (Marmara University, 

Turkey). 
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 4.2 Results 

 

 4.2.1 Basic dopaminergic pharmacology 

 

 4.2.1.1 General DA receptor activation 

DA can become readily oxidised which may affect the intended applied concentration and 

potentially produce unreliable and varied results. Furthermore, DA oxidation may result in 

the production of reactive oxygen species (ROS) and free radicals. These can be reduced 

by the application of the neuro-protectant ascorbic acid (Hastings and Zigmond, 1994; 

Hastings et al., 1996). Oxidised DA resulted in the aCSF turning a blue colour. We found 

that 500 µM ascorbic acid successfully prevented the oxidation of DA for the duration of 

our experiments.  

 

Our initial experiments were conducted on brain slices obtained from rats 50-100 g. In this 

cohort of animals, application of DA (30 µM) caused no significant change in the power of 

both theta (to 110.5 ± 13.1% of control, n=9 slices, ns, Fig 4.1Ai, B, C) and gamma (to 

92.5 ± 9.7 % of control, n=9 slices, ns, Fig 4.1Aii, B, C) oscillations. 

 

Figure 4.1 Dopamine application has no effect on oscillations in layer V of M1 (A) Band-

passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and 

after drug application. (B) Typical power spectra demonstrating peak responses before (solid line) 

and after application of 30 µM dopamine (DA, dashed line). (C) Peak power changes of theta (grey 

bars) and gamma (red bars) oscillations normalised to control. 
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However, application of the non-specific DA receptor agonist, apomorphine (20 µM), 

caused a significant increase to theta oscillatory power (to 149.7 ± 11.8% of control, n=15 

slices, p<0.001, Fig 4.2Ai, B, C) but was without effect on the power of gamma 

oscillations (108.4 ± 14.9% of control, n=15 slices, ns, Fig 4.2Aii, B, C). 

 

Figure 4.2 Apomorphine significantly increases theta oscillations in LV of M1 (A) Band-

passed raw data of (i) theta and (ii) gamma oscillations after induction with CCh and KA (ctrl) and 

after drug application. (B) Typical power spectra demonstrating peak responses before (solid line) 

and after application of 20 µM Apomorphine (Apo; dashed line). (C) Peak power changes of theta 

(grey bars) and gamma (red bars) oscillations normalised to control. ***, p<0.001 

 

 4.2.1.2 D1-like receptor pharmacology  

Although DA has no effect on the power of theta and gamma oscillations, action at D1-like 

and D2-like receptors could be in opposition and directly cancelling each other out. 

Therefore, to determine the possible contribution of D1-like receptors in modulation of 

network oscillations in M1, we applied the D1-like receptor agonist SKF 38393 (SKF; 10 

µM). This resulted in the significant increase in the power of both theta (to 162.2 ± 18.0% 

of control, n=25 slices, p<0.001, Fig 4.3Ai, B, C) and gamma (to 159.5 ± 12.4% of control, 

n=25 slices, p<0.001, Fig 4.3Aii, B, C) oscillations. 
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Figure 4.3 D1-like receptor agonist SKF 38393 significantly increases both theta and gamma 

oscillations in LV of M1 (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after 

induction with CCh and KA (ctrl) and after drug application. (B) Typical power spectra 

demonstrating peak responses before (solid line) and after application of 10 µM SKF 38393 (SKF, 

dashed line). (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations 

normalised to control. ***, p<0.001 

 

Surprisingly, application of the D1-like receptor antagonist SCH 23390 (SCH; 2 µM) also 

resulted in the significant increase of both oscillations in M1 (theta: to 179.6 ± 26.2% of 

control, n=10 slices, p<0.01; gamma: 157.7 ± 25.3% of control, n=10 slices, p<0.05; Fig 

4.4). 
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Figure 4.4 D1-like receptor antagonist SCH 23390 significantly increases the power of both 

theta and gamma oscillations in LV of M1 (A) Band-passed raw data of (i) theta and (ii) gamma 

oscillations after induction with CCh and KA (ctrl) and after drug application. (B) Typical power 

spectra demonstrating peak responses before (solid line) and after application of 2 µM SCH 23390 

(dashed line). (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations 

normalised to control. **, p<0.01, *, p<0.05. 
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 4.2.1.3 D2-like receptor pharmacology 

To determine the possible contribution of D2-like receptors in the modulation of network 

oscillations in M1, we used the D2-like receptor agonist quinpirole (10 µM). This resulted 

in the significant increase in the power of both theta (to 149.0 ± 13.8% of control, n=9 

slices, p<0.01, Fig 4.5Ai, B, C) and gamma oscillations (to 133.9 ± 12.3% of control, n=9 

slices, p<0.05, Fig 4.5Aii, B, C).  

 

Figure 4.5 D2-like receptor agonist quinpirole significantly increases both theta and gamma 

oscillations in LV of M1 (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after 

induction with CCh and KA (ctrl) and after drug application. (B) Typical power spectra 

demonstrating peak responses before (solid line) and after application of 10 µM quinpirole (dashed 

line). (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations normalised to 

control. **, p<0.01, *, p<0.05. 

 

The application of the D2-like receptor antagonist sulpiride (10 µM) also resulted in the 

significant increase of theta oscillations (to 126.3 ± 9.0% of control, n=9 slices, p<0.01, 

Fig 4.6Ai, B, C), with no significant change in gamma oscillatory power (to 113.3 ± 6.5% 

of control, n=9 slices, ns, Fig 4.6Aii, B, C). 
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Figure 4.6 D2-like receptor antagonist sulpiride significantly increases theta but not gamma 

oscillations in LV of M1 (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after 

induction with CCh and KA (ctrl) and after drug application. (B) Typical power spectra 

demonstrating peak responses before (solid line) and after application of 10 µM sulpiride (dashed 

line). (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations normalised to 

control. **, p<0.01. 
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 4.2.2 Dopaminergic pharmacology in 6-OHDA lesioned rats 

 

Using the toxin 6-OHDA we modelled the movement deficits seen in PD and investigated 

changes in the dopaminergic modulation of oscillations generated in M1, using the same 

protocol to induce oscillations (5 µM CCh and 150 nM KA), in 280-350 g animals. We 

performed unilateral lesions of rodent MFB in the left (ipsilateral) hemisphere, which 

allowed us to use the right (contralateral) hemisphere as a control. In order to account for 

any potential inter-hemispheric changes which could occur from lesioning, we also 

performed experiments in age-matched control (AMC) animals. Animals were tested for 

motor deficits after a post-surgical period of at least two weeks using the stepping test 

(see methods section 2.2.2.1).  

 

Those animals which displayed deficits in contralateral step adjustment (forehand: 0.45 ± 

0.14 steps, p<0.001; backhand: 7.56 ± 1.02 steps, p<0.001; n=21 animals) compared to 

ipsilateral step adjustment (forehand: 18.19 ± 0.80 steps; backhand: 21.76 ± 0.75 steps; 

n=21 animals) were considered successfully lesioned (see Fig 4.7). Animals displaying 

equally high step adjustment in both ipsilateral and contralateral limbs were rejected. 

 
Figure 4.7 Pooled mean results of stepping test Mean stepping tests from 6-OHDA lesioned 

animals for contralateral (contra, grey bars) and ipsilateral (ipsi, red bars) forelimbs in both the 

forehand and backhand directions. ***, p<0.001. 
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In order to compare the spectral profile of the oscillations generated in AMC, ipsilateral 

and contralateral slices (following CCh and KA application), baseline power spectra 

recordings were normalised to the highest value, pooled and averaged (Fig 4.8). Overall 

we observed no significant difference between theta peak frequencies (AMC: 6.04 ± 0.21 

Hz, n=68 slices; ipsilateral: 6.38 ± 0.24 Hz, n=51 slices; contralateral: 6.78 ± 0.27 Hz, 

n=35 slices). Also, there were no significant differences observed in the power of theta 

oscillations (AMC: 10.97 ± 1.02 µV2, n=68 slices; ipsilateral: 9.97 ± 1.00 µV2, n=51 slices; 

contralateral: 9.45 ± 1.20 µV2, n=35 slices). When we compared gamma oscillatory peak 

frequencies in each condition, we again observed no significant differences (AMC: 34.21 ± 

0.35 Hz, n=68 slices; ipsilateral: 33.73 ± 0.46 Hz, n=51 slices, contralateral: 33.69 ± 0.60 

Hz, n=35 slices) and no differences in the power of gamma oscillations (AMC: 11.06 ± 

1.54 µV2, n=68 slices; ipsilateral: 11.11 ± 1.82 µV2, n=51 slices; contralateral: 9.89 ± 1.65 

µV2, n=35 slices). 

 

 

 

Figure 4.8 Normalised power spectra of AMC, ipsilateral and contralateral generated 

oscillations in LV of M1 Normalised power spectra of recordings from AMC animals (black line) 

compared to 6-OHDA animals in ipsilateral (red line) and contralateral (grey line) hemispheres. 
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 4.2.2.1 General DA receptor activation 

Following the application of DA (30 µM) to slices from AMC animals we observed no 

significant changes to oscillatory power in both theta (to 130.2 ± 15.6% of control, n=11 

slices, ns, Fig 4.9Ai, B, C) and gamma oscillations (to 113.3 ± 18.4% of control, n=11 

slices, ns, Fig 4.9Aii, B, C). 

 

 

Figure 4.9 Application of DA (30 µM) to AMC slices results in no significant differences to 

oscillations in LV of M1 (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after 

induction with CCh and KA (ctrl) and after drug application. (B) Typical power spectra 

demonstrating peak responses before (solid line) and after application of 30 µM dopamine (DA, 

dashed line). (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations 

normalised to control. 

 

However, in ipsilateral slices of 6-OHDA lesioned animals, on the re-introduction of DA, 

we observed a significant increase in theta oscillatory power (to 154.2 ± 19.5% of control, 

n=10 slices, p<0.01) and a significant decrease in gamma oscillatory power (82.0 ± 5.8% 

of control, n=10 slices, p<0.05, Fig 4.10A, C). Application of DA to contralateral slices 

resulted in no significant changes to oscillatory power (theta: 131.1 ± 27.2% of control, 

n=6 slices, ns; gamma: 88.9 ± 11.0% of control, n=6 slices, ns; Fig 4.10B, C). Power 
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analysis of this experiment revealed that the approximate 12.2% difference in normalised 

power that we observed in Fig 4.10C in the contralateral hemisphere only had a 20% 

power value. This suggests that we only had a 20% chance to observe a statistically 

significant difference of that magnitude. However in the ipsilateral hemisphere, our 

significant difference of approximately 18% normalised power change, is deemed to be 

75% powered. Giving us a 75% chance of observing a true effect in our experiment. 

 

Figure 4.10 Application of DA (30 µM) to ipsilateral and contralateral hemispheres of 6-

OHDA lesioned animals (A) Typical power spectra demonstrating peak responses before (solid 

line) and after application of 30 µM dopamine (DA, dashed line) in ipsilateral hemisphere. (B) 

Typical power spectra demonstrating peak responses before (solid line) and after application of 30 

µM dopamine (DA, dashed line) in contralateral hemisphere (C) Peak power changes of theta (grey 

bars) and gamma (red bars) oscillations normalised to control in ipsilateral and contralateral 

hemispheres. ipsi - ipsilateral, contra - contralateral. **, p<0.01, *, p<0.05. 
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Amphetamine (AMPH) induces the release of DA from pre-synaptic dopaminergic 

neuronal terminals through the displacement of vesicular DA (Besson et al., 1969). 

However, in contrast to the lack of effect of DA in AMC’s we observed that application of 

AMPH (20 µM) resulted in the significant increase in theta oscillatory power (150.7 ± 

16.2% of control, n=13 slices, p<0.01, Fig 4.11Ai, B, C), as well as a significant decrease 

in gamma oscillatory power (67.2 ± 7.8% of control, n=13 slices, p<0.01, Fig 4.11Aii, B, 

C). 

 

Figure 4.11 Amphetamine (20 µM) has opposing effects on theta and gamma oscillations in 

LV of M1 in AMC (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after induction 

with CCh and KA (ctrl) and after drug application. (B) Typical power spectra demonstrating peak 

responses before (solid line) and after application of 20 µM amphetamine (Amph, dashed line). (C) 

Peak power changes of theta (grey bars) and gamma (red bars) oscillations normalised to control. 

**, p<0.01. 
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When AMPH (20 µM) was applied to ipsilateral, dopamine-depleted, slices we observed a 

significant increase in theta oscillations (to 159.1 ± 11.7% of control, n=9 slices, p<0.01) 

with no significant change in gamma oscillatory power (84.9 ± 15.4% of control, n=8 

slices, ns, Fig 4.12A, C). Power analysis of the gamma oscillatory change suggests that 

this experiment only provided a 10% chance to see a true effect, however to have a 75% 

chance to see a true effect we would have had to observe a 40% change in normalised 

power. In contrast, AMPH applied to contralateral slices caused no significant changes to 

theta oscillatory power (134.1 ± 18.2% of control, n=8 slices, ns) but a significant 

decrease in gamma oscillations (55.7 ± 8.6% of control, n=8 slices, p<0.01, Fig 4.12B, C). 

 

 

Figure 4.12 Application of amphetamine (20 µM) to 6-OHDA lesioned slices of M1 results in a 

differential response between hemispheres (A) Typical power spectra demonstrating peak 

responses before (solid line) and after application of 20 µM amphetamine (Amph, dashed line) in 

ipsilateral hemisphere. (B) Typical power spectra demonstrating peak responses before (solid line) 

and after application of 20 µM amphetamine (Amph, dashed line) in contralateral hemisphere (C) 

Peak power changes of theta (grey bars) and gamma (red bars) oscillations normalised to control 

in ipsilateral and contralateral hemispheres. Ipsi = ipsilateral, Contra = contralateral. **, p<0.01. 
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 4.2.2.2 D1-like receptor pharmacology 

To determine the possible contribution of D1-like receptors in modulation of network 

oscillations in M1 in older animals (290-310 g), we again applied the D1-like receptor 

agonist SKF (10 µM). In AMC animals, the oscillatory power of both theta and gamma 

oscillations was increased (theta: 130.1 ± 8.2% of control, n=13 slices, p<0.01; Fig 

4.13Ai, B, C; gamma: 134.2 ± 9.2% of control, n=13 slices, p<0.01; Fig 4.13Aii, B, C). 

These changes were similar to those observed in young animals (50-100 g).  

 

Figure 4.13 Application of D1-like agonist SKF 38393 (10 µM) results in increases to both 

oscillations in LV of M1 (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after 

induction with CCh and KA (ctrl) and after drug application. (B) Typical power spectra 

demonstrating peak responses before (solid line) and after application of 10 µM SKF (dashed line). 

(C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations normalised to 

control. **, p<0.01. 
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Upon application of SKF (10 µM) to slices from lesioned animals we observed significant 

increases to oscillatory power in the ipsilateral hemisphere, of both theta (to 133.5 ± 

11.4% of control, n=16 slices, p<0.05) and gamma (to 161.8 ± 17.0 of control, n=16 slices, 

p<0.01, Fig 4.14A, C) oscillations. Similar increases in theta oscillatory power were 

observed upon application of SKF to contralateral slices (to 145.3 ± 16.0% of control, 

n=10 slices, p<0.05) and to gamma oscillatory power (to 260.7 ± 72.0% of control, n=10 

slices, p<0.01, Fig 4.14B, C). 

 

 

Figure 4.14 Application of D1-like agonist SKF 38393 (10 µM) to 6-OHDA lesioned slices 

increased the power of all oscillations (A) Typical power spectra demonstrating peak responses 

before (solid line) and after application of 10 µM SKF (dashed line) in ipsilateral hemisphere. (B) 

Typical power spectra demonstrating peak responses before (solid line) and after application of 10 

µM SKF (dashed line) in contralateral hemisphere (C) Peak power changes of theta (grey bars) 

and gamma (red bars) oscillations normalised to control in ipsilateral and contralateral 

hemispheres. Ipsi = ipsilateral, Contra = contralateral. **, p<0.01, *, p<0.05. 
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However, application of the D1-like antagonist SCH (2 µM) resulted in no changes to the 

power of either theta or gamma oscillations in AMC animals (theta: to 109.7 ± 7.4% of 

control, n=11 slices, ns; gamma: 125.0 ± 15.1% of control, n=11 slices, ns; Fig 4.15). 

 

Figure 4.15 Application of D1-like antagonist SCH 23390 (2 µM) to slices from AMC results in 

no significant changes to oscillatory power (A) Band-passed raw data of (i) theta and (ii) 

gamma oscillations after induction with CCh and KA (ctrl) and after drug application. (B) Typical 

power spectra demonstrating peak responses before (solid line) and after application of 2 µM SCH 

(dashed line). (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations 

normalised to control. 
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Application of SCH (2 µM) to ipsilateral dopamine-depleted slices, caused no significant 

changes to theta (113.8 ± 7.5% of control, n=13 slices, ns, Fig 4.16A, C) or gamma 

(158.4 ± 26.0% of control, n=13 slices, ns, Fig 4.16A, C) oscillatory power. However, 

application of SCH (2 µM) significantly increased theta (153.5 ± 19.3% of control, n=9 

slices, p<0.01, Fig 4.16B, C), and gamma (142.1 ± 13.9% of control, n=9 slices, p<0.01, 

Fig 4.16B, C) oscillatory power in contralateral slices. 

 

Figure 4.16 Application of D1-like antagonist SCH 23390 (2 µM) to 6-OHDA lesioned slices 

has differential effects on theta and gamma oscillations (A) Typical power spectra 

demonstrating peak responses before (solid line) and after application of 2 µM SCH (dashed line) 

in ipsilateral hemisphere. (B) Typical power spectra demonstrating peak responses before (solid 

line) and after application of 2 µM SCH (dashed line) in contralateral hemisphere (C) Peak power 

changes of theta (grey bars) and gamma (red bars) oscillations normalised to control in ipsilateral 

and contralateral hemispheres. ipsi - ipsilateral, contra - contralateral. **, p<0.01. 
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 4.2.2.3 D2-like receptor pharmacology 

Application of the D2-like receptor agonist quinpirole (10 µM) in slices from AMC animals 

resulted in significantly increased power of both theta (to 127.8 ± 6.7% of control, n=12 

slices, p<0.01, Fig 4.17Ai, B, C) and gamma oscillations (to 183.5 ± 40.3%, n=12 slices, 

p<0.05, Fig 4.17Aii, B, C). 

 

Figure 4.17 The D2-like agonist quinpirole (10 µM) results in increased oscillations in AMC 

slices of LV in M1 (A) Band-passed raw data of (i) theta and (ii) gamma oscillations after induction 

with CCh and KA (ctrl) and after drug application. (B) Typical power spectra demonstrating peak 

responses before (solid line) and after application of 10 µM quinpirole (Quin, dashed line). (C) Peak 

power changes of theta (grey bars) and gamma (red bars) oscillations normalised to control. **, 

p<0.01, *, p<0.05. 

 

Application of quinpirole to ipsilateral DA-depleted slices significantly increased theta 

oscillatory power (to 140.9 ± 12.6% of control, n=14 slices, p<0.01). In contrast however, 

gamma oscillatory power showed no significant difference from control (to 98.9 ± 7.4% of 

control, n=15 slices, ns, Fig 4.18A, C). Application of quinpirole to contralateral slices 

resulted in no significant change to theta oscillations (to 124.8 ± 15.7% of control, n=7 

slices, ns) while gamma oscillatory power was significantly increased (to 152.5 ± 19.4% of 

control, n=7 slices, p<0.05, Fig 4.18B, C). A comparison between ipsilateral and 

contralateral changes in the power of gamma oscillations demonstrated that these were 

significantly different (p<0.05). 
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Figure 4.18 Quinpirole (10 µM) showed differential effects on the power of theta and gamma 

oscillations in layer V of M1 from 6-OHDA animals between hemispheres (A) Typical power 

spectra demonstrating peak responses before (solid line) and after application of 10 µM quinpirole 

(Quin, dashed line) in ipsilateral hemisphere. (B) Typical power spectra demonstrating peak 

responses before (solid line) and after application of 10 µM quinpirole (Quin, dashed line) in 

contralateral hemisphere (C) Peak power changes of theta (grey bars) and gamma (red bars) 

oscillations normalised to control in ipsilateral and contralateral hemispheres. Ipsi = ipsilateral, 

Contra = contralateral. **, p<0.01, *, p<0.05. 
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To complete our investigation into the D2-like receptors, we used the D2-like antagonist 

sulpiride. When sulpiride (10 µM) was applied to slices from AMC animals we observed 

significant increases in power to both the theta (to 118.3 ± 6.4% of control, n=7 slices, 

p<0.05) and gamma oscillations (to 118.8 ± 5.0% of control, n=7 slices, p<0.05, Fig 4.19), 

which was different to what was observed previously in the young (50-100 g) control 

animals. 

 

Figure 4.19 D2-like antagonist sulpiride (10 µM) increases the power of theta and gamma 

oscillations in LV of M1 in AMC animals (A) Band-passed raw data of (i) theta and (ii) gamma 

oscillations after induction with CCh and KA (ctrl) and after drug application. (B) Typical power 

spectra demonstrating peak responses before (solid line) and after application of 10 µM sulpiride 

(Sulp, dashed line). (C) Peak power changes of theta (grey bars) and gamma (red bars) 

oscillations normalised to control. *, p<0.05. 
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However, when applied to ipsilateral slices from DA-depleted animals sulpiride was 

without effect on theta oscillatory power (to 122.1 ± 10.55 of control, n=10 slices, ns) but 

caused a significant increase in gamma power (to 133.8 ± 13.8% of control, n=10 slices, 

p<0.05, Fig 4.20A, C). In contralateral slices, application of sulpiride resulted in a 

significant increase in theta (to 162.8 ± 20.2% of control, n=6 slices, p<0.05,) and gamma 

(to 208.6 ± 44.2% of control, n=6 slices, p<0.05, Fig 4.20B, C) oscillatory power. 

 

 

Figure 4.20 In 6-OHDA lesioned rats, sulpiride (10 µM) increases the power of contralateral 

oscillations and only gamma oscillations in ipsilateral slices (A) Typical power spectra 

demonstrating peak responses before (solid line) and after application of 10 µM sulpiride (Sulp, 

dashed line) in ipsilateral hemisphere. (B) Typical power spectra demonstrating peak responses 

before (solid line) and after application of 10 µM sulpiride (Sulp, dashed line) in contralateral 

hemisphere (C) Peak power changes of theta (grey bars) and gamma (red bars) oscillations 

normalised to control in ipsilateral and contralateral hemispheres. Ipsi = ipsilateral, Contra = 

contralateral. *, p<0.05. 
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 4.3 Discussion 

 

In this chapter we have pharmacologically characterised the dopaminergic modulation of 

both theta and gamma oscillatory power in the M1 network in DA-intact and DA-depleted 

slices. Initially, no overall effect was observed on DA application in DA-intact slices 

obtained from young animals (50-100 g), although, in general, application of D1-like and 

D2-like receptor agonists as well as the antagonists increased both theta and gamma 

oscillatory power. These results are difficult to reconcile unless one postulates differing 

DA concentrations from slice to slice and propose the possibility other non-specific 

receptor-mediated effects such activity at α1-adrenergic receptors (see Ozkan et al., 

2016). 

 

In slices obtained from older animals (290-310 g), DA application significantly decreased 

gamma oscillatory power in DA-depleted (ipsilateral) slices, an effect not observed in 

contralateral slices or those obtained from DA-intact AMC animals. Furthermore, AMPH 

only decreased gamma power in DA-intact slices (contralateral and AMC), as expected if 

DA (or noradrenaline or 5-HT) was being released from intact terminals. Application of 

DA, apomorphine or amphetamine all showed a trend to, or significant increases in, theta 

oscillatory power. Interestingly, quinpirole consistently increased both theta and gamma 

power in AMC and contralateral slices, whereas gamma power was not affected in 

ipsilateral DA-depleted slices. 

 

Overall, these data suggest that DA and its receptors mediate a series of complex 

interactions which affect the power of theta and gamma oscillations in M1.  

 

 4.3.1 Dopamine-depletion on oscillatory profiles 

 

We had hypothesised that the ipsilateral DA-depleted hemisphere and contralateral DA-

intact hemisphere would show contrasting oscillatory profiles. However, no significant 

differences were observed between the control frequency and power of the theta and 

gamma oscillations. It is possible that the contralateral hemisphere does exhibit some DA-

depletion and this is affecting the profile. However, when we assessed activity in slices 

from AMC animals, they also showed a similar profile. Therefore no changes in the 

frequency or power of theta or gamma oscillations and no evidence of enhanced activity in 

the beta frequency range was observed as a result of DA-depletion. 
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It is generally accepted that DA depletion leads to exaggerated beta oscillations in 

patients (Brown et al., 2001; Brown and Williams, 2005) and in animal models of PD (Nini 

et al., 1995; Sharott et al., 2005; Hammond et al., 2007; Mallet et al., 2008a; Mallet et al., 

2008b) (see section 1.3.2.1). Therefore it appears that M1 can support the local 

generation of oscillations in the reduced slice preparation, but that DA-depletion cannot 

generate pathological oscillations like those observed in vivo. However, we do know that 

stimulation of M1 can reduce pathological oscillations (Pagni et al., 2003; Drouot et al., 

2004; Lefaucheur et al., 2004), which suggests a critical role of M1 in the modulation and 

control of information flow throughout the intact cortico-BG network. 

 

 4.3.2 Dopamine receptors on neuronal activity 

 

Research on DA signalling and modulation of neuronal activity has concentrated on the 

pre-frontal cortex (PFC), which receives direct dopaminergic modulation from midbrain DA 

neurons of the VTA (for review see Seamans, 2010 and Tritsch and Sabatini, 2012). 

However, the literature regarding individual DA receptors and their specific effects is 

inconsistent. 

 

 4.3.2.1 General effects of DA application 

A study by Seamans et al. (2001a) outlined the contrasting role of the D1-like and D2-like 

receptors on pyramidal neurons in PFC. They demonstrated that after the application of 

DA, there was a time-dependent modulation of IPSC amplitude over a period of 50 mins. 

They found that the initial (<20 min) response to DA was mediated by D2-like receptors, 

resulting in a decrease in IPSC amplitude and therefore an increase in the excitability of 

pyramidal neurons recorded. In contrast, 20-50 mins after DA application they observed 

an increase in IPSC amplitude, above original baseline levels, mediated via D1-like 

receptors, which increased inhibition of pyramidal neurons to reduce excitability (Seamans 

et al., 2001a). Furthermore, the activation of both D1-like and D2-like receptors in striatum 

had opposing effects on GABA release (Harsing and Zigmond, 1997). This demonstrates 

not only the possibility of competing D1-like and D2-like receptor mediated effects but also 

the importance of overlapping or competing time-dependent effects. Our experiments last 

40 mins from point of drug application. Therefore, our analysis of the effect of DA could be 

hindered by the point of cross-over between D2-like and D1-like receptor dominance, if 

indeed we are observing these effects in our slices. This could potentially be a reason why 

we do not observe a consistent response of DA in our slices. Alternatively, the 

inconsistent response to applied DA could be due to variable concentrations of DA 
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present between slices such that only those exhibiting low ambient levels of DA respond 

to DA application.  

 

In addition, recent studies have suggested the involvement of α1/2-adrenergic receptors in 

DA receptor mediated responses. A study by Yang et al. (2014) found that a DA-induced 

membrane hyperpolarisation was mediated by adrenergic receptors. Furthermore, it has 

been shown in PFC that D1 receptors and adrenergic receptors can co-localise in the 

dendrites of neurons, potentially resulting in the generation of heterodimeric receptor 

complexes that have altered signalling and activation properties (Prinster et al., 2005; 

Rashid et al., 2007; Gonzalez et al., 2012; Rebois et al., 2012; Mitrano et al., 2014).  

 

In a concomitant but separate study in our laboratory, using slices from young animals 

(50-100 g), Ozkan et al. (2016) found that application of DA resulted in a small but 

significant decrease in gamma oscillatory power. However, SKF and QUIN application 

both resulted in significant power increases (as in this study). Application of the α1-

adrenergic agonist phenylephrine (10 µM) mimicked the effect of DA and the α1-

adrenergic antagonist prazosin (10 µM) blocked the effect of DA, indicating an interaction 

between the dopaminergic and adrenergic system. Therefore, it is possible that these DA-

α1 receptor complexes are present within M1 and could be contributing to the variable 

results we have observed in slices obtained from young animals (50-100 g). 

 

4.3.2.2 DA application significantly decreases gamma oscillatory power in DA-

depleted slices 

We observed a significant decrease in gamma oscillatory power in DA-depleted ipsilateral 

slices, associated with DA application. Presumably the action of applied DA is masked by 

the levels of DA already present in DA-intact slices. Overall, there are a number of pre- 

and post-synaptic mechanisms by which DA receptor activation could affect the 

excitability of both pyramidal cells and interneurons involved in the generation of network 

activity. 

 

DA has been shown to induce membrane depolarisation and increase the excitability of 

pyramidal neurons in PFC through the enhanced activity of slowly-inactivating Na+ 

currents, an increase in the conductance of NMDA channels and the attenuation of slow-

inactivating K+ currents (Yang and Seamans, 1996; Durstewitz et al., 2000; Henze et al., 

2000; Durstewitz and Seamans, 2002). Furthermore, D1-like receptor activation increases 

EPSC amplitude by Ca2+ modulation and protein kinase A (PKA) signalling (Gonzalez-
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Islas and Hablitz, 2003), an effect also observed in striatum (Calabresi et al., 1992; 

Cepeda et al., 2001; Tang et al., 2001). 

 

DA also inhibits the activity of the FS-interneuronal network (Weiss et al., 2003; Ikegaya et 

al., 2004). D1 and D2-like receptor activation has been shown to reduce the amplitude of 

IPSCs on FS-interneurons (Zaitsev et al., 2007; Towers and Hestrin, 2008) through 

presynaptic reduction of GABA release (Harsing and Zigmond, 1997; Cooper and 

Stanford, 2001; Momiyama and Koga, 2001). However, there are reports that activation of 

D1-like receptors has been shown to increase IPSC amplitude and frequency (Harsing 

and Zigmond, 1997; Seamans et al., 2001b; Trantham-Davidson et al., 2004). 

 

In summary, DA is generally believed to increase the excitability of pyramidal cells but 

reduce inhibition in the inhibitory network, both of which could result in a loss of 

synchronous network activity. 

 

4.3.2.3 AMPH decreases gamma oscillations in DA-intact slices 

AMPH induces the release of DA from intact pre-synaptic DA terminals by the active 

exchange of DA (Chiueh and Moore, 1975; Jones et al., 1998; Mair and Kauer, 2007). In 

our experiments, AMPH only decreased gamma in DA-intact slices (contralateral and 

AMC) and had no effect in DA-depleted (ipsilateral) slices. This would be expected if 

AMPH was acting to release DA from an extensive population of intact terminals. Although 

we have assumed DA depletion, through behavioural testing of animals prior to obtaining 

brain slices, we have not directly confirmed the loss of DA terminals by, for example, 

histological studies. However, the AMPH results presented do endorse the assumption 

that our slices are extensively DA-depleted. 

 

AMPH has also been shown to release noradrenaline, 5-HT and ACh as well as DA 

(Raiteri et al., 1975; Mandel et al., 1994). Therefore, we cannot be certain that the effects 

observed in DA-intact slices are solely due to action of DA on DA receptors. 

 

4.3.2.4 Application of DA, apomorphine or amphetamine increases theta 

oscillatory power 

Theta oscillations are suggested to be the result of synchronous intrinsic membrane 

potentials in the hippocampus and cortex (Bland et al., 1988; Leung and Yim, 1991; 

Konopacki et al., 1992b; Bland and Colom, 1993; Bland et al., 2002). Theta oscillations in 

our slices showed a propensity to increase in power in the presence of DA, AMPH or APO 
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as would be expected if DA acts to increase membrane excitability and increase sub-

threshold membrane potentials. 

 

Injection of AMPH into the VTA in vivo has been shown to elicit theta oscillations, 

presumably via the induction of DA release (Orzel-Gryglewska et al., 2013) and more 

recent work in the PFC has suggested that in patients and animal models of PD, theta 

oscillatory power is attenuated (Parker et al., 2015). However, past studies have also 

shown that neocortical and hippocampal theta in rodents was not affected by the loss of 

DA (Whishaw et al., 1978) while Weiss et al. (2003) reported that intrinsic membrane 

potentials at theta frequency in slices of rodent hippocampus were not altered by the 

application of DA. 

 

Interestingly, while we did see a significant increase in the power of theta oscillations with 

the application of apomorphine, we did not see the same effect with dopamine application. 

As apomorphine is a broad agonist of dopamine receptors, the same as dopamine, we 

would have expected to see similar results from both. It is possible that when we are 

applying dopamine it is becoming oxidised, reducing the activation of the receptors, or the 

rate of uptake of dopamine via DA reuptake transporters and mechanisms is reducing the 

effective dopamine response we observed in the network. We also have to be aware of 

the potential for non-specific effects of apomorphine on non-dopamine receptors, such as 

its antagonistic activity at 5-HT and α-adrenergic receptors (Millan et al., 2002; LeWitt, 

2004). Therefore it is possible that these differences and non-specific effects are what 

result in the differential responses we observed in these studies. 

 

The use of amphetamine in the DA-depleted/intact and AMC slices also appeared to 

result in a reduction of theta oscillation frequency. This change appeared to be consistent 

across the AMC and lesioned slices and was still within the frequency band analysed for 

changes in theta oscillatory power. It is possible that this effect is a result of the increased 

power than amphetamine produced in the theta oscillations, due to an increased 

contributory network involved in the oscillation, which may result in reduced oscillation 

frequency. Though, the changes in frequency could also be due to changes in receptor 

activation that may alter the decay time kinetics of receptors responsible for the timing of 

the theta oscillation. The final possibility is that these are simply natural changes that the 

slices have undergone over the course of the experiment. Regardless, without further 

experiments to assess whether the changes we have observed are due to the specific 

action on a particular DA receptor, using amphetamine in combination with different DA-
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receptor antagonists, the full impact of amphetamine on network dynamics cannot be fully 

understood. 

 

4.3.2.5 D2-like mediated increase in gamma power is lost in DA-depleted slices 

We have observed significant increases in the power of our theta and gamma oscillations 

after activation of D2-like receptors by their specific agonist quinpirole in young (50-100 g) 

and old (290-310 g) DA-intact slices. However, the increase in gamma power was not 

seen in DA-depleted (ipsilateral) slices. D2-like receptors are known to be located pre-

synaptically on dopaminergic fibres, acting as feedback auto-receptors to inhibit the 

release of DA (Aghajanian and Bunney, 1977; Carlson et al., 1987; Lacey et al., 1987). 

Therefore this result is easily explained by the loss of DA innervation to M1 during the 

lesioning process. In contrast, theta oscillations in our slices also showed increases in 

oscillatory power after the application of quinpirole, even in the DA-depleted slices 

suggesting that the postsynaptic D2-like receptors are still present in M1 after lesioning 

and can modulate intrinsic membrane potentials involved in theta generation. 

 

 4.3.2.6 Age-related effects 

Between the young animals (50-100 g) and AMC older (290-310 g) animals, there are 

some noticeable differences in the response of the theta and gamma oscillations to the 

application of different dopaminergic drugs. 

 

A brief observation is that the magnitude of any changes observed in response to drug 

application is reduced in the AMC slices, as well as the level of significance of such 

changes. Additionally, the response of both theta and gamma oscillations to SCH 23390 

in the older animals is lost. This is a surprising result, as you would usually expect to see 

no differences in what we consider to be “control” animals. However, there are many 

different changes that occur in the brain throughout maturity, which could have some 

impact on the networks that generate these oscillations (Kolb et al., 1998). These changes 

that occur between the different ages could be attributable to the consolidation of the 

neuronal networks present in the rodents from young to old. 

 

Alternatively, there are limitations to using older animals in in vitro work. Older animals, by 

virtue of them being larger, are more difficult to anaesthetise quickly and prepare slices 

from in comparison to younger animals. Therefore, this could result in unforeseen 

neuronal death in the networks which is not present in slices prepared from younger 

animals. This may explain the reduced response with the application of the drugs, as 

there is a less connected network which mediates the oscillations to manipulate with 
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drugs. The lack of significant change in the oscillations of older slices with the application 

of SCH 23390 could also be explained through these limitations. As well this could be due 

to the unequal health of older slices or due to the less abundant network present in the 

slice. 

 

 4.3.2.7 Limitations 

These studies have outlined some of the basic responses of our oscillations in M1 in both 

the DA-intact and DA-depleted slices. However, while these can inform us about the 

potential impact of DA-depletion upon the networks present in M1 and the relative 

contributions and changes that the network may be undertaking in PD; there are several 

limitations to this study which must be considered. 

 

In the use of the specific D1-like receptor agonist SKF 38393 and antagonist SCH 23390, 

we observed that these both resulted in increased oscillatory power in our young (50-100 

g) and older (250-310 g) animals. These could be considered the main effects of the 

drugs specifically at D1-like receptors. However, SKF 38393 is known to be only a partial 

agonist at D1-like receptors, which means that it competes for the activation site with the 

endogenous ligand. While this means it is still an agonist at these sites, the activation rate 

could overall be lower than it would be with the actual ligand present. Thus, SKF 38393 

could only be having a partial agonistic effect on our oscillations, which may result in the 

responses we have observed. This potential mixed response by the SKF 38393 could be 

mitigated through the use of other agonists in order to clarify the response we observed. 

Furthermore, SCH 23390 is also believed to act as an agonist at 5-HT1C+2C receptors, 

shown previously in cloned human receptors (Millan et al., 2001). Therefore, without 

additional experiments using a specific antagonist of D1-like receptors it possible that the 

effects we observed in our experiments are actually mediated by non-specific actions at 

other receptors. 

 

Furthermore, the effects of the D1-like and D2-like receptor antagonists (SCH 23390 and 

sulpiride) on oscillations from the ipsilateral hemispheres of 6-OHDA lesioned animals are 

potentially difficult to reconcile. We would have expected to see no change in the power of 

our theta and gamma oscillations when blocking the dopamine receptors in ipsilateral 

slices, as we would not expect there to be dopamine present activating these receptors to 

begin with. It is possible that there are dopamine terminals, from sources other than the 

MFB such as the VTA, which may be innervating M1 networks. Alternatively, we have to 

assume that there will be some remaining dopamine terminals or fibres which were 

damaged during the slicing procedure. It is possible that dopamine released from these 
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damaged terminals into the surrounding tissue may be resulting in the activation of 

dopamine receptors in the network. Additionally, as we sliced and stored our brain slices 

from ipsilateral and contralateral hemispheres in the same interface chamber, there is the 

possibility that DA from the intact hemisphere could have become mixed into the solution 

and activated receptors in the depleted hemisphere. 

 

In order to avoid these potential issues in the future, brain slices could be stored in 

separate chambers prior to experiments being performed. Likewise, multiple antagonists 

and agonists of the different dopamine receptors could be utilised in order to control for 

the effects of non-specific drugs. Future studies would also benefit from performing 

immunohistochemistry staining for TH+ neurons and DA reuptake transporters in order to 

verify the presence or loss of DA neurons in M1. This would not only help in confirming 

our lesioning but also would allow greater comparisons between amount of loss and 

oscillatory power or pharmacological changes. 

 

4.4 Conclusions 

 

In this chapter we have demonstrated that DA modulation of M1 has complex and 

sometimes variable effects on CCh and KA induced theta and gamma oscillations in M1. 

Although we have observed differences in the modulation of oscillations in slices obtained 

from young (50-100 g) animals and older (290-310 g) AMC and lesioned animals, a 

number of key conclusions can be made (an overall summary is in table 4.1). These 

include DA-depleted slice-specific decreases in gamma oscillatory power after DA 

application and loss of decreased gamma power after AMPH application. Additionally, the 

effect of D2-like receptor activation is lost in lesioned slices, consistent with the pre-

synaptic action of D2-like receptors in reducing DA release from intact fibres. Finally DA 

increases in theta oscillatory power were most probably due to the enhancement of 

intrinsic subthreshold oscillations. 

 

Furthermore, in contrary to previous studies of PD in vivo, we did not observe the 

emergence of pathological oscillatory activity in M1, suggesting the importance of an 

intact cortico-BG network in their generation. In order to further examine the changes that 

individual D1-like and D2-like receptors undergo between these slice conditions, we could 

use immunofluorescence or immunohistochemistry to identify the locations of the 

receptors in the slices or on particular cell types. Furthermore, the involvement of the 

different dopamine receptors on specific neuronal types could further be examined 
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through the use of fluorescent sensors sensitive to Ca2+ changes, as an indicator of 

activity. This could begin to demonstrate the relative involvement or lack of involvement 

that different cells in the network demonstrate in relation to dopaminergic signalling. If we 

could begin to understand the role that dopaminergic signalling plays in network 

oscillations in control animals, we could begin to investigate the individual role that 

different DA receptors have in signalling in PD. This could be through similar experiments 

or could involve different genetic KO’s of receptors, on either a global or targeted scale. 

For instance, targeted knock out of the D2-like receptor of a wild type animal may start to 

explain why we do not see a response to D2-like receptor activation in the lesioned 

animals. 
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Drug N 
(slice) 

Theta power Gamma 
power 

Young (50-100 g) 

Dopamine  30 µM 9 - - 

Apomorphine  20 µM 15 ↑↑↑ - 

SKF38393  10 µM 25 ↑↑↑ ↑↑↑ 

SCH 23390  2 µM 10 ↑↑ ↑ 

Quinpirole  10 µM 9 ↑↑ ↑ 

Sulpiride  10 µM 9 ↑↑ - 

AMC (280-310 g) 

Dopamine  30 µM 11 - - 

Amphetamine  20 µM 13 ↑↑ ↓↓ 

SKF38393  10 µM 13 ↑↑ ↑↑ 

SCH 23390  2 µM 11 - - 

Quinpirole  10 µM 12 ↑↑ ↑ 

Sulpiride  10 µM 7 ↑ ↑ 

Ipsilateral hemispheres (280-310 g) 

Dopamine  30 µM 10 ↑↑ ↓ 

Amphetamine  20 µM 9 ↑↑ - 

SKF38393  10 µM 16 ↑ ↑↑ 

SCH 23390  2 µM 13 - - 

Quinpirole  10 µM 14 ↑↑ - 

Sulpiride  10 µM 10 - ↑ 

Contralateral hemispheres (280-310 g) 

Dopamine  30 µM 6 - - 

Amphetamine  20 µM 8 - ↓↓ 

SKF38393  10 µM 10 ↑ ↑↑ 

SCH 23390  2 µM 9 ↑↑ ↑↑ 

Quinpirole  10 µM 7 - ↑ 

Sulpiride  10 µM 6 ↑ ↑ 

Table 4.1 Summary table of drugs used to pharmacologically characterise theta and gamma 

oscillations. Listed are names of individual drugs, the N’s per experiment, the changes to 

oscillatory power for theta and gamma oscillations. 
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Chapter 5 In vivo oscillations in M1 of 6-OHDA 

lesioned animals 

  



129 
 

 5.1 Introduction 

 

In vivo, beta oscillations (12-25 Hz) have been associated with a resting or idling state, 

consisting of pre-movement preparation or anticipation (Cheyne et al., 2008; Tzagarakis 

et al., 2010), and may also have a role in maintaining posture or tonic contraction (Baker 

et al., 1997; Jenkinson and Brown, 2011). During movement execution, beta oscillations 

undergo several changes in power in M1. Event-related desynchronisation (ERD) 

precedes movement and is associated with a decrease in beta oscillatory power (Crone et 

al., 1998; Pfurtscheller et al., 2003; Jurkiewicz et al., 2006). During movement, brief bursts 

of gamma oscillations (30-80 Hz) can be observed which are thought to be involved with 

the actual processing of the movement (Pfurtscheller et al., 1993; Brown et al., 1998; 

Crone et al., 1998; Cheyne et al., 2008). Post-movement beta rebound (PMBR) follows 

upon the completion of movement, with a resynchronisation of beta oscillatory power 

which may represent inhibition of M1 (Salmelin et al., 1995; Jurkiewicz et al., 2006). 

These dynamic changes in M1 oscillations demonstrate very specific roles in movement 

for beta and gamma oscillations. 

 

The loss of dopamine (DA) fibres from the SNc results in the excessive synchronisation of 

beta frequency oscillations throughout the cortico-BG network (Wichmann and DeLong, 

1999; Brown et al., 2001; Bevan et al., 2002; Brown, 2003; Brown and Williams, 2005; 

Mallet et al., 2008b; Brazhnik et al., 2012). Exaggerated beta oscillations are thought to 

contribute to the hypokinetic symptoms experienced by PD patients, such as bradykinesia 

and rigidity (Chen et al., 2007). It remains a matter of debate as to whether the reduction 

in beta is directly related to the improvement in motor ability. 

 

The primary treatment for PD is the administration of the DA precursor L-DOPA, which 

replenishes DA levels after undergoing conversion in catecholaminergic terminals. 

Administration of L-DOPA induces a concurrent reduction in pathological beta oscillations 

present in the cortico-BG network and improvement in the motor symptoms of PD in 

patients (Brown et al., 2001; Kuhn et al., 2006). However, one in five patients with 

Parkinson’s fails to respond to DA replacement therapy which becomes progressively less 

effective and leads to wearing off effects, periods of ‘freezing’ and unpredictable 

movements as well as sickness, low blood pressure, hallucinations and confusion. 

Furthermore, late-stage cognitive decline associated with PD is not improved by 

dopaminergic therapies. Therefore, drug targets other than those which affect the DA 

system are urgently required (Davie, 2008; Kalia and Lang, 2015). 
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Zolpidem is commonly used as a sedative and is a non-benzodiazepine modulator of 

GABAA receptors, specific for those that contain the α1-subunit. Recent work in vivo has 

also demonstrated that sub-sedative doses of zolpidem (in the nM range) can reduce 

presumed pathological activity and improve deficits observed in vegetative states and 

stroke (Clauss and Nel, 2006; Brefel-Courbon et al., 2007; Hall et al., 2010). In PD 

patients studies have further demonstrated that sub-sedative doses of zolpidem in vivo 

can improve motor symptoms and at the same time desynchronise pathological beta 

oscillations in M1 (Hall et al., 2014). In PD patients specifically, improvements in 

movement ability were correlated with a balancing of beta oscillatory power between 

hemispheres (interhemispheric ratio). The excessive beta oscillatory power in the DA-

depleted hemisphere is reduced, as the beta oscillatory power DA-intact hemisphere is 

increased (Hall et al., 2014).  

 

In this chapter we have used the 6-OHDA unilateral rodent model of PD to evaluate the 

long-term effects of the lesion on motor behaviour, the oscillatory profile in each layer of 

M1 and compared how the oscillatory power is altered after L-DOPA and zolpidem 

application. 
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 5.2 Results 

 

 5.2.1 Evaluation of 6-OHDA lesions 

 

Unilateral 6-OHDA lesions of male Sprague-Dawley rats (280-320 g) were performed (see 

2.2.1.1). Following surgery, animals were allowed to recover for 2 weeks, after which the 

success of the lesion was assessed using rotations in a rotometer (Ungerstedt, 1971), and 

during locomotor activity (LMA) in an open field (Cools et al., 1990), as well as the 

adjusting step test (Olsson et al., 1995). 

 

 5.2.1.1 The rotometer test 

 

Figure 5.1 Rotometer testing demonstrated significant differences between the lesioned and 

sham animals. (A) Mean rotations per 5 min epoch in contraversive (black and grey and 

ipsiversive (dark red and light red) directions in 6-OHDA (black and dark red) and SHAM (grey and 

light red) animals. (B) Bar graph showing mean total rotations for 40 mins in each direction 

(contraversive, grey; ipsiversive, red) for each condition group. (C) Mean rotations per each 5 min 

epoch for each condition (6-OHDA, grey; SHAM, red) shown as the rotational asymmetry score 

(RAS). (D) Bar graph showing mean RAS for total 40 mins in each condition (6-OHDA, grey; 

SHAM, red). ***, p<0.001, *, p<0.05. 
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Rotometer tests are usually accompanied by a pharmacological prompt (apomorphine or 

amphetamine) to induce robust rotations (Ungerstedt, 1971; Creese et al., 1976; Perese 

et al., 1989). However, to prevent any possible conflicts with later pharmacological 

experiments, only basal non-drug induced rotations were used. Animals were assessed 

individually over a period of 40 mins and data grouped into 5 min epochs. Data was 

presented as full 360o rotations in contraversive (clockwise towards the non-lesioned 

hemisphere) and ipsiversive (counter-clockwise towards the lesioned hemisphere) 

directions. The results may make it appear that animals do not move greatly after the first 

10-15 min epochs but this is usual for animals investigating their surroundings and 

subsequently resting. Mean total rotations for the whole 40 min period demonstrate that 

there are clear differences present between the lesioned and non-lesioned groups even 

when averaged. 

 

In the first 5 min epoch, lesioned animals (6-OHDA) showed a significant bias towards 

ipsiversive rotations (6.35 ± 0.81 rotations, n=26 animals, Fig 5.1A), compared to 6-

OHDA contraversive rotations and sham animals in both directions (p<0.001). This was 

also demonstrated in the 10 min epoch (1.27 ± 0.39 rotations, n=26 animals, p<0.05, Fig 

5.1A). In pooled data from all epochs (Fig 5.1B), lesioned animals demonstrated a clear 

preference for ipsiversive compared to contraversive rotations (9.27 ± 1.23 rotations, n=26 

animals, p<0.001, Fig 5.1B) while sham animals demonstrated no significant preference 

in either direction of rotation (contraversive: 0.90 ± 0.31 rotations, n=10 animals, ns; 

ipsiversive: 1.00 ± 0.39 rotations, n=10 animals, ns; Fig 5.1B). On calculating the 

rotational asymmetry score (RAS), lesioned animals were significantly different in the 

initial 5 min epoch (-6.27 ± 0.83 RAS, n=26 animals, p<0.001, Fig 5.1C) and when pooled 

the RAS’s for lesioned animals (-9.19 ± 1.25 RAS, n=26 animals, p<0.001, Fig 5.1D) were 

significantly different compared to sham animals (-0.10 ± 0.99 RAS, n=10 animals, Fig 

5.1D). One 6-OHDA animal was excluded from electrophysiological experiments as their 

RAS was similar to sham animals, indicating an inadequate lesion. 
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Figure 5.2 Long-term rotometer testing demonstrated lesions persisted after 22 weeks.  

(A) Mean rotations per each 5 min epoch in each direction (contraversive, black and grey; 

ipsiversive, dark red and light red) in both conditions (6-OHDA, black and dark red; SHAM, grey 

and light red). (B) Bar graph showing mean total rotations for the total 40 mins in each direction 

(contraversive, grey; ipsiversive, red) for each condition group. (C) Mean rotations per each 5 min 

epoch for each condition (6-OHDA, grey; SHAM, red) shown as the rotational asymmetry score 

(RAS). (D) Bar graph showing mean RAS for total 40 mins in each condition (6-OHDA, grey; 

SHAM, red). **, p<0.01, *, p<0.05. 

 

After 22 weeks lesioned animals continued to show a significant bias toward ipsiversive 

rotations over contraversive rotations in the 5 min (2.00 ± 0.47 rotations, n=9 animals, 

p<0.001, Fig 5.2A) and 25 min (1.22 ± 1.00 rotations, n=9 animals, p<0.05, Fig 5.2A) 

epochs. Pooled data from all epochs showed that ipsiversive rotations (6.67 ± 2.49 

rotations, n=9 animals, p<0.01, Fig 5.2B) were significantly different to contraversive 

rotations (0.11 ± 0.11 rotations, n=9 animals, ns) and to sham animals in both directions 

(ipsiversive: 0.33 ± 0.33 rotations, n=6 animals, ns; contraversive: 0.67 ± 0.21 rotations, 

n=6 animals, ns, Fig 5.2B). Using RAS, lesioned animals exhibited significant directional 

bias during the first 5 min epoch (-2.00 ± 0.47 RAS, n=9 animals, p<0.01, Fig 5.2C) 

compared to sham lesioned animals (0.33 ± 0.21 RAS, n=6 animals) and pooled RAS 

scores were also significantly different for lesioned animals compared to sham animals 

(lesioned: -6.56 ± 2.51 RAS, n=9 animals; sham: +0.33 ± 0.33 RAS, n=6 animals; p<0.01, 

Fig 5.2D). 
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 5.2.1.2 Locomotor activity (LMA) test 

The LMA test was used to test rotational activity in an open field (Cools et al., 1990). The 

Ethovision XT (Noldus, Netherlands) software recorded basal movement over a period of 

40 min and calculated the number of rotations in both contraversive and ipsiversive 

directions, where a turn greater than 90o was counted as one rotation (based on a 2-point 

head-centre analysis).   

 

Figure 5.3 LMA testing demonstrated differences between the lesioned and sham animals. 

(A) Mean rotations per each 5 min epoch in each direction (contraversive, black and grey; 

ipsiversive, dark red and light red) in both conditions (6-OHDA, black and dark red; SHAM, grey 

and light red). (B) Bar graph showing mean total rotations for the 40 mins period in each direction 

(contraversive, grey; ipsiversive, red) for each condition group. (C) Mean rotations per each 5 min 

epoch for each condition (6-OHDA, grey; SHAM, red) shown as the rotational asymmetry score 

(RAS). (D) Bar graph showing mean RAS for total 40 mins in each condition (6-OHDA, grey; 

SHAM, red). ***, p<0.001, **, p<0.01, *, p<0.05. 

 

In the initial 5 and 10 min epochs, lesioned animals had a significantly higher number of 

ipsiversive rotations (5 min: 17.19 ± 1.05, n=26 animals; 10 min: 11.58 ± 1.25, n=26 

animals, Fig 5.3A) compared to contraversive rotations (5 min: 3.27 ± 0.60, n=26 animals, 

p<0.001; 10 min: 2.77 ± 0.47, n=26 animals, p<0.001, Fig 5.3A). Sham lesioned animals 
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had no significant bias towards either contraversive or ipsiversive direction. On pooling all 

epochs lesioned animals demonstrated significant bias towards ipsiversive rotations 

(60.73 ± 5.21, n=26 animals, p<0.001, Fig 5.3B) rather than contraversive rotations 

(19.23 ± 2.90, n=26 animals, Fig 5.3B). Sham lesioned animals had no significant bias 

towards either the ipsiversive rotations (49.80 ± 4.16, n=10 animals, ns, Fig 5.3B) or 

contraversive rotations (36.10 ± 1.72, n=10 animals, Fig 5.3B).  

 

Using RAS, lesioned animals exhibited significant directional bias during the 5 and 10 min 

epochs (5 min: -13.92 ± 1.28, p<0.001; 10 min: -8.81 ± 1.27, p<0.01; n=26 animals, Fig 

5.3C), compared to sham lesioned animals (5 min: -2.80 ± 1.52; 10 min: -2.60 ± 1.51; 

n=10 animals, Fig 5.3C). On pooling all RAS data, lesioned animals exhibited significant 

directional bias (-41.50 ± 4.52, n=26 animals, p<0.001, Fig 5.3D) compared to sham 

animals (-13.70 ± 4.27, n=10 animals, Fig 5.3D). The LMA results from the presumed 

non-lesioned animal identified in the rotometer test were consistent with sham animals. 

 

 5.2.1.3 Adjusting step test 

The adjusting step test was developed by Olsson et al. (1995) to test forelimb akinesia in 

rat PD models (see methods section 2.2.2.1), a low score indicating a successful lesion.  

 

Figure 5.4 Adjusting step test identified significant forelimb bias in the 6-OHDA lesioned 

rats. (A) Bar graph showing mean total number of steps over a 1m space when assessing the 

contralateral paw in both the forehand and backhand directions. (B) Bar graph showing mean total 

number of steps over a 1m space when assessing the ipsilateral paw in both the forehand and 

backhand directions. Grey bars, 6-OHDA lesioned. Red bars, SHAM lesioned. 
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In contralateral limbs (the side of body controlled by the lesioned hemisphere), lesioned 

animals performed significantly less adjustment steps than sham animals (Fig 5.4A). 

There was a significant difference in both the forehand (6-OHDA: 0.96 ± 0.65 steps, n=26 

animals; SHAM: 13.70 ± 1.13 steps, n=10 animals; p<0.001, Fig 5.4A) and the backhand 

(6-OHDA: 5.80 ± 0.82 steps, n=26 animals; SHAM: 16.75 ± 0.44 steps, n=10 animals; 

p<0.001, Fig 5.4A) directions. In comparison, ipsilateral limbs (the side of body controlled 

by the non-lesioned hemisphere, Fig 5.4B) were not significantly different between 

lesioned and sham animals. No difference was seen in either the forehand (6-OHDA: 

13.46 ± 0.51 steps, n=26 animals; SHAM: 12.88 ± 0.95 steps, n=10 animals; ns, Fig 5.4B) 

or backhand (6-OHDA: 17.06 ± 0.56 steps, n=26 animals; SHAM: 16.98 ± 0.65 steps, 

n=10 animals; ns, Fig 5.4B) directions. Once again, the one presumed unsuccessfully 

lesioned animal was easily identified, as the number of adjusting steps was consistent 

with sham animals. 

 

 5.2.2 Frequency profile of 6-OHDA lesions 

 

 5.2.2.1 Depth recordings 

We bilaterally implanted depth electrodes to investigate the oscillatory profile through the 

different cortical layers of M1. This data is based off of experiments in one lesioned 

animal. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Approximation of depth 

electrode positioning within M1. 

Approximate position of depth electrode in 

M1, based upon surgical co-ordinates and 

size of depth electrode. Orange bar, depth 

implant. Grey circles, LFP channel recording 

points. 

 

 

Each depth electrode consisted of 16 channels. Although no histology was undertaken, by 

reference to surgical co-ordinates it was estimated that channel 1 was located in central 

part of LII/III with channel 16 located at the bottom edge of LVI (Fig 5.5). Recordings of 
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baseline activity from a 6-OHDA lesioned animals demonstrated distinct differences 

between the ipsilateral (lesioned Fig 5.6Ai) and contralateral (non-lesioned Fig 5.6Aii) 

hemispheres. FFT analysis of 30 s of data recorded in channel 10, believed to be in mid-

layer V, from the ipsilateral hemisphere revealed peaks at a frequency of 32.17 Hz 

(power: 2.24 x 10-10 V) and 6.89 Hz (power: 1.43 x 10-10 V), while recordings from the 

same location in the contralateral hemisphere displayed a single oscillatory peak at a 

frequency of 6.89 Hz (power: 1.8 x 10-10 V) (Fig 5.6B, C). 

 

Taking the peak oscillatory power of the 30-40 Hz band from each recording channel in 

the ipsilateral hemisphere, we plotted the change in power descending through M1 (Fig 

5.7A). We observed that there were two areas of higher power, in channels 1-4 

(superficial LII/III; 1.79 x 10-10 ± 9.12 x 10-12 V, n=4 channels) and in channel 10 (LV; 2.24 

x 10-10). Current-source density analysis of 20-45 Hz oscillations revealed a pattern of 

sources (red) and sinks (blue) in the superficial and deeper layers, in line with the power 

change observed in fig 5.7A (Fig 5.7B). No prominent 30-40 Hz oscillation was evident in 

the contralateral hemisphere (Fig 5.7Bii). 

 

CSD plots would ordinarily be expected to demonstrate the phase inversion of the sources 

and sinks across the layers, however we see no such changes. Additionally, as this is a 

recording from only a single animal we cannot assume this to be representative of M1 

after 6-OHDA lesioning. In order to assess this CSD we need to consider potential 

problems that may affect this analysis, such as a damaged probe or periodic noise in the 

recording. The CSD also shows a large smearing effect of the sources and sinks across 

many of the layers, which may be due to an oscillation of high coherence affecting the 

analysis. As such, the analysis may not be suitable for this form of recording and may 

need to be investigated further for any potential problems which could affect the outcome. 

 

While we are approximating the depth of the electrode within M1 and the recordings 

appear to correspond to the superficial and deep layers. We should be aware of the 

different sites of oscillation generation across the layers and steps should be taken to 

verify the positioning of the electrodes before final conclusions can be drawn. 
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Figure 5.6 Comparison of depth electrode recordings from contralateral and ipsilateral 

hemispheres in a 6-OHDA rat. (A) 1 s of raw data from ipsilateral (i) and contralateral (ii) 

hemispheres of M1 with representative channel used in further graphs highlighted by box (scale 

bar: 200 ms x 2.0x10
-4

 V). (B) Spectrogram of 20 s of data from ipsilateral hemisphere. (C) 

Representative power spectrum showing differences between ipsilateral (grey line) and 

contralateral (red line) hemispheric recordings. 
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Figure 5.7 Current-source density analysis demonstrated a 30-40 Hz oscillation originating 

in the deeper channels of M1. (A) Graph showing peak power changes in the 30-40 Hz oscillation 

band descending through M1 cortical layers from superficial to deep. (B) CSD analysis graphs in 

the 20-45 Hz range in the (i) ipsilateral and (ii) contralateral hemisphere, demonstrating sources 

(red) and sinks (sinks). 

 

 5.2.2.2 EEG recordings 

6-OHDA and sham lesioned animals were implanted with bilateral EEG electrodes over 

the frontal cortex and placed inside a 24 h recording system. Data collected during the 

most active (dark) phase of a rodent diurnal cycle was analysed. Initial baseline 

recordings from the ipsilateral hemispheres of lesioned animal data revealed two main 

oscillatory peaks at a frequency of 2.3 ± 0.4 Hz and 30.5 ± 0.2 Hz with power 2.4x10-4 ± 

2.8x10-5 µV2 and 6.9x10-5 ± 5.3x10-6 µV2 respectively (n=7 animals; Fig 5.8A). The 

contralateral hemispheres of lesioned animals displayed a single peak at a frequency of 

2.4 ± 0.4 Hz and power 1.9x10-4 ± 2.7x10-5 µV2 (n=7 animals; Fig 5.8A) as did sham 

animals (ipsi: 2.6 ± 0.5 Hz, 2.1x10-4 ± 1.9x10-5 µV2; contra: 2.2 ± 0.3 Hz, 2.1x10-5 ± 3.1x10-

5 µV2; n=3 animals; Fig 5.8B).  

 

Pooling all baseline data from 6-OHDA and sham animals, we identified that the peak in 

the 30-40 Hz band was consistently significantly greater in power (p<0.001) in the 

ipsilateral hemisphere’s of 6-OHDA animals (30.53 ± 0.07 Hz, 6.41x10-5 ± 1.66x10-6 µV2, 

n=51 baseline recordings) compared to ipsilateral hemispheres of sham lesioned animals 

(30.26 ± 0.05 Hz, 4.88x10-5 ± 9.99x10-6 µV2, n=43 baseline recordings). 
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Figure 5.8 Power spectra of 6-OHDA and sham lesioned animals’ baseline recordings 

demonstrates differences between ipsilateral hemispheres in 6-OHDA animals. Pooled power 

spectra demonstrating ipsilateral (ipsi, red line) and contralateral (contra, grey line) differences in 

oscillatory profiles between (A) 6-OHDA lesioned and (B) sham lesioned animals. 
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 5.2.3 L-DOPA and zolpidem in depth electrode recordings 

 

All depth electrode recordings outlined in this section were obtained from a single animal 

leaving a minimum of two days between experiments to ensure full clearance of the 

previous drug. The animal was connected to depth electrode recording equipment, placed 

in an open field environment and left to habituate for at least 20 mins. 

 

 5.2.3.1 L-DOPA vehicle (glucose 5%) 

Initially the animal was dosed with vehicle (glucose 5% i/p). We observed no changes in 

ipsilateral oscillatory power in the 30-40 Hz band relative to contralateral hemisphere peak 

power for the whole 90 min experimental period (ns, Fig 5.9B). 

 

 

Figure 5.9 Administration of vehicle (glucose 5%) results in no changes to 30-40 Hz 

oscillations (A) Representative power spectra demonstrating oscillatory peaks of two 

corresponding channels in (i) ipsilateral (ipsi) and (ii) contralateral (contra) hemispheres over time 

(s). (B) Line graph demonstrating changes in power of ipsilateral hemisphere normalised to 

contralateral hemisphere. Each pair of corresponding channels from either hemisphere labelled 1-

16 in descending depth. Grey vertical line notifies the time at which vehicle was administered. 
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 5.2.3.2 L-DOPA (6 mg/kg) 

We investigated oscillatory peak changes in a 6-OHDA lesioned animal (n=1 animal) in an 

open field before and after the administration of the DA precursor L-DOPA (6 mg/kg i/p). 

L-DOPA was co-administered with benserazide (15 mg/kg i/p), a DOPA decarboxylase 

inhibitor, in order to prevent enzymatic degradation of L-DOPA in the peripheral system. 

 

 

Figure 5.10 Administration of L-DOPA decreases the power of ipsilateral 30-40 Hz 

oscillations. (A) Representative power spectra demonstrating changes in oscillatory peaks of two 

corresponding channels in (i) ipsilateral and (ii) contralateral hemispheres over time (s). (B) Line 

graph demonstrating changes in power of ipsilateral hemisphere normalised to contralateral 

hemisphere. Each pair of corresponding channels from either hemisphere labelled 1-16 in 

descending depth. Grey vertical line notifies the time at which L-DOPA was administered. Black bar 

signifies significance with respect to control power pre-L-DOPA administration. ** p<0.01. 

 

Following L-DOPA administration we observed significant reductions in ipsilateral 

hemisphere 30-40 Hz oscillatory peak power relative to contralateral hemisphere peak 

power from the time period 3850 s to 5020 s (95.64 ± 19.0 % pooled change of n=16 

channels, p<0.01 for 10 channels in comparison to control time point (not including 

channels 11, 13 and 14, Fig 5.10B), which persisted to the end of the experiment (total 90 

mins). 
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 5.2.3.3 Zolpidem (0.3 mg/kg) 

Previous work has investigated the use of low-doses of zolpidem to improve PD 

symptoms and reduce pathological oscillations in patients (Hall et al., 2010; Hall et al., 

2014) and in vitro (Prokic et al., 2015). We aimed to show whether this could be replicated 

using the 6-OHDA model, using a dose of zolpidem of 0.3 mg/kg.  

 

Figure 5.11 Administration of zolpidem (0.3 mg/kg) does not result in a significant change in 

the power of the ipsilateral hemisphere relative to the contralateral hemisphere. (A) 

Representative power spectra demonstrating changing oscillatory peaks of two corresponding 

channels in (i) ipsilateral (ipsi) and (ii) contralateral (contra) hemispheres over time (s). (B) Line 

graph demonstrating changes in power of ipsilateral hemisphere normalised to contralateral 

hemisphere. Each pair of corresponding channels from either hemisphere labelled 1-16 in 

descending depth. Grey vertical line notifies the time at which zolpidem was administered. 

 

After recording baseline activity for 20 mins, zolpidem was administered orally and the 

animal placed back into open field chamber for a further 90 mins. No significant change in 

oscillatory power was observed in any channel (1-16), in either ipsilateral or contralateral 

hemisphere (ns, n=16 channels, Fig 5.11).  
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 5.2.4 L-DOPA and zolpidem in EEG recordings 

 

No animals were dosed with the same drug twice and drugs order was randomised. Data 

from the whole pre- and post-dosing period was collected using the EEG continuous 

recording system. 30 min epochs of data from pre- (BL) and post-dosing was analysed 

using cumulative power analysis of band-pass filtered 30-40 Hz oscillations, designed to 

correspond to the abnormal peaks observed in the FFT analysis.  

 

 5.2.4.1 L-DOPA (6 mg/kg) 

6-OHDA and sham animals were administered both L-DOPA (6 mg/kg i/p) and vehicle 

(glucose 5% i/p). L-DOPA was co-administered with the peripheral DOPA decarboxylase 

inhibitor with benserazide (15 mg/kg i/p). 

 

 

Figure 5.12 Cumulative power graphs of 30-40 Hz oscillations with L-DOPA showed no 

significant effects on 6-OHDA or sham animals. Graphs demonstrating changes in cumulative 

power over time in (i) ipsilateral (ipsi) and (ii) contralateral (contra) hemispheres. Data presented as 

total cumulative power from baseline (BL) condition up to 120 min post dosing (Post-120) in (A) 6-

OHDA and (B) sham animals.*, p<0.05 

 

In 6-OHDA animals no changes in cumulative power were observed in response to L-

DOPA (n=7 animals) or vehicle (n=6 animals), in either ipsilateral or contralateral 

hemispheres over the entire 120 mins recording period (ns, Fig 5.12A). In sham animals, 

a significant decrease in cumulative power in vehicle after 30 mins (post-30) compared to 

BL in the contralateral hemisphere (to 95.70 ± 0.66% of BL, p<0.05, n=5 animals; Fig 

5.12Bii) was observed. No other significant differences were observed (L-DOPA: n=5 

animals; vehicle: n=5 animals; ns, Fig 5.12B). 
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Previous MEG recordings from M1 in patients with Parkinson’s had revealed that the 

motor improvements afforded by zolpidem were directly correlated with the balancing of 

beta oscillatory power between hemispheres (interhemispheric ratio, Hall et al., 2014). 

Here, we attempted to replicate these finding in the 6-OHDA lesioned animal. However, 

following dosing with L-DOPA in either 6-OHDA (Fig 5.13A) or sham (Fig 5.13B) animals 

we observed no significant changes in the inter-hemispheric power ratio. 

 

Figure 5.13 Ipsilateral/contralateral ratios after L-DOPA and vehicle dosing demonstrate no 

significant differences. Graphs demonstrating the ratio between ipsilateral and contralateral 

hemispheres in each drug condition in (A) 6-OHDA and (B) sham animals.  

 

Nevertheless, when 30-40 Hz cumulative power is averaged across all time points (Fig 

5.14A), it was significantly higher in the ipsilateral hemispheres of 6-OHDA animals (2.49 

x 106 ± 4.18 x 104, n=24 baseline recordings) than contralateral hemispheres (2.17 x 106 ± 

5.68 x 104, n=24 baseline recordings, p<0.001, Fig 5.14A) and both the ipsilateral (2.15 x 

106 ± 7.15 x 104, n=20 baseline recordings) and contralateral (2.11 x 106 ± 4.37 x 104, 

n=20 baseline recordings; Fig 5.14A) hemispheres of sham animals. In addition, the 

averaged interhemispheric ratio of the 30-40 Hz oscillations were significantly higher in 6-

OHDA lesioned animals (1.15 ± 0.01 ratio, n=24 baseline recordings, Fig 5.14B) 

compared to sham animals (1.02 ± 0.02 ratio, n=20 baseline recordings, p<0.001, Fig 

5.14B). 
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Figure 5.14 Average cumulative power and inter-hemispheric ratio of 30-40 Hz oscillations in 

post-vehicle dosing demonstrates significantly higher power in 6-OHDA ipsilateral 

hemispheres. (A) Bar graph demonstrating average post-dosing cumulative power in 6-OHDA 

ipsilateral (dark grey) and contralateral (white) hemispheres, and sham ipsilateral (light grey) and 

contralateral (red) hemispheres. (B) Bar graph demonstrating average interhemispheric ratio post-

dosing. ***, p<0.001. 

 

 5.2.4.2 Zolpidem (0.3 and 1 mg/kg) 

6-OHDA and sham animals were orally administered zolpidem (0.3 and 1 mg/kg) and 

vehicle (methylcellulose 0.25%), leaving a minimum of seven days between experiments 

to ensure full clearance of the previous drug. 

 

Figure 5.15 Cumulative power graphs of 30-40 Hz oscillations with 0.3 and 1 mg/kg zolpidem 

showed no significant effect on 6-OHDA or sham animals. Graphs demonstrating changes in 

cumulative power over time in (i) ipsilateral (ipsi) and (ii) contralateral (contra) hemispheres. Data 

presented as total cumulative power from baseline (BL) condition up to 120 min post dosing (Post-

120) in (A) 6-OHDA and (B) sham animals. **, p<0.01, *, p<0.05. 
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In 6-OHDA lesioned animals, no significant changes in the cumulative power were 

observed following administration of 0.3 mg/kg or 1 mg/kg zolpidem in either ipsilateral  

or contralateral hemispheres (Fig 5.15Ai and ii). However, after dosing with vehicle 

significant increases to cumulative power were observed in the 30 and 60 minute epochs 

in both ipsilateral (30: by 13.19 ± 7.80%, n=6 animals, p<0.05; 60: by 12.30 ± 6.65%, n=6 

animals, p<0.05; Fig 5.15Ai) and contralateral (30: by 14.11 ± 6.67 %, n=7 animals, 

p<0.01; 60: by 13.18 ± 5.91%, n=7 animals, p<0.01) hemispheres (Fig 5.15Aii) 

 

Sham animals displayed no significant change in cumulative power on administration of 

vehicle in both ipsilateral (n=3 animals) and contralateral (n=2 animals) hemispheres. 

Similarly no changes were observed in either ipsilateral (n=4 animals) and contralateral 

(n=3 animals) hemisphere on administration of zolpidem at 0.3 or 1 mg/kg (Fig 5.15B). 

However, note the one outlier which shows significant difference in cumulative power, 60 

mins post-dosing of 1 mg/kg zolpidem (p<0.05; Fig 5.15Bii). 

 

Figure 5.16 Ipsilateral/contralateral ratios after 0.3 and 1 mg/kg zolpidem and vehicle dosing 

demonstrate no significant differences. Graphs demonstrating the ratio between ipsilateral and 

contralateral hemispheres in each drug condition in (A) 6-OHDA and (B) sham animals. 

 

Once again, following dosing with zolpidem at 0.3 or 1 mg/kg in either 6-OHDA (Fig 

5.16A) or sham (Fig 5.16B) animals, we observed no significant changes in the inter-

hemispheric power ratio. However, as observed previously, the cumulative power in the 

ipsilateral hemispheres of 6-OHDA animals (2.77 x 106 ± 7.09 x 104, n=24 baseline 

recordings) was significantly higher than contralateral hemisphere (2.41 x 106 ± 6.85 x 

104, p<0.01, n=28 baseline recordings) and both the ipsilateral (2.44 x 106 ± 1.28 x 105, 

p<0.05, n=12 baseline recordings) and contralateral (2.14 x 106 ± 1.80 x 104, p<0.001, 

n=8 baseline recordings, Fig 5.17A) hemispheres of sham animals. However, in this 

cohort there was no significant difference observed between the average interhemispheric 

ratios of 6-OHDA (1.14 ± 0.04 ratio, n=24 baseline recordings, Fig 5.17B) and sham (1.12 

± 0.09 ratio, n=8 baseline recordings, Fig 5.17B) animals. 
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Figure 5.17 Average cumulative power and interhemispheric ratio of 30-40 Hz oscillations in 

post-vehicle dosing demonstrates significantly higher power in 6-OHDA ipsilateral 

hemispheres but no difference in interhemispheric ratio (A) Bar graph demonstrating average 

post-dosing cumulative power in 6-OHDA ipsilateral (dark grey) and contralateral (white) 

hemispheres, and sham ipsilateral (light grey) and contralateral (red) hemispheres. (B) Bar graph 

demonstrating average interhemispheric ratio post-dosing. 
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 5.3 Discussion 

 

In this chapter we have investigated the oscillatory activity of M1 in vivo using the 6-OHDA 

model of PD. The success of the lesion protocol was assessed in each animal using the 

rotometer, the LMA and the adjusting step test. Further testing at 22 weeks post-surgery 

indicated the long-term stability of the lesions. Using depth electrode and EEG recordings, 

oscillatory activity in the 2-10 Hz range was found in the ipsilateral and contralateral 

hemispheres of both lesioned and sham animals. However, only in the ipsilateral 

hemisphere of DA-depleted animals did we detect a 30-40 Hz oscillatory peak, which was 

localised to LII/III and LV of M1. In EEG recordings, this was observed as a significant 

increase in the interhemispheric ratio in lesioned animals.  

 

Using depth electrode recordings the ipsilateral 30-40 Hz oscillation (but not 2-10 Hz 

oscillation) was reduced by the administration of L-DOPA (6 mg/kg) with associated 

change in interhemispheric ratio. However, administration of zolpidem (0.3 mg/kg), which 

previously reduced abnormal beta oscillatory activity in vivo and in vitro resulting in the 

rebalancing of interhemispheric beta power (Hall et al., 2014; Prokic et al., 2015), was 

without effect. 

 

 5.3.1 Testing 6-OHDA lesions 

 

 5.3.1.1 Short-term testing 

During rotometer and LMA testing, amphetamine or apomorphine are usually 

administered to induce robust rotations in a pre-hypothesised direction. In this study we 

were able to observe pronounced basal rotational activity in lesioned animals (but not 

sham animals) without the use of drugs. These tests were both performed over a period of 

40 mins, which produced clear differences in activity at the start compared to the end of 

the testing period. The increased activity in the initial 5 and 10 min epochs can be 

explained by the initial exploratory behaviour that animals perform when placed into a 

novel environment. After this period, the animals tended to relax (and often enter a 

resting/sleep state), resulting in a reduction in the amount of movement registered. This is 

clearest in the lesioned animals who demonstrate robust rotations in a particular direction. 

However, this is not to say that the sham animals do not move or explore in the 

rotometers or the LMA environment. Further experiments could set a lower threshold in 

terms of rotational degrees (which was set at 360o in rotometer testing and 90o in LMA 

testing) to count as one rotation. If a higher resolution of what counted as a single rotation 
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were used then the results would be clearer in the actual movement performed by the 

sham animals, but as there should be no bias in these animals they would still 

demonstrate a roughly equal RAS. However, a higher resolution of rotational accuracy in 

the lesioned animals should only relay a greater number of movements in the pre-

hypothesised direction. While this information may be useful for a greater understanding 

of the rotational behaviour demonstrated in the lesioned animals, it would not necessarily 

inform us as clearly as to the success or failure of the lesioning surgery. 

 

The success of lesion experiments was further confirmed using the adjusting step test, 

which measures rodent forelimb akinesia (Olsson et al., 1995). This was a method used 

previously in testing 6-OHDA lesions in our in vitro experiments (see chapter 4). Using this 

test, scores for limbs contralateral to the lesioned hemisphere were significantly reduced 

compared to ipsilateral limbs, which was consistent with their rotometer and LMA scores. 

 

 5.3.1.2 Long-term testing 

Rodents who have undergone 6-OHDA lesioning do not begin to exhibit movement 

deficits until 80-90% of dopamine cells are lost (Bernheimer et al., 1973; Orr et al., 1986). 

Indeed, 2-5 weeks post-lesion is thought to correspond to a time when the 

pathophysiological state has likely stabilised at a maximum level (Pan and Walters, 1988; 

Vila et al., 2000). Following this, compensatory mechanisms which attempt to normalise 

striatal activity through increased DA synthesis and release (Nisenbaum et al., 1986; 

Robinson and Whishaw, 1988; Zigmond et al., 1990), may contribute to a partial functional 

recovery at 12 to 16 weeks (Schwarting and Huston, 1996). However, other studies have 

demonstrated that there are still significant reductions in nigral cell counts and tyrosine 

hydroxylase reactivity at 16 weeks (Sauer and Oertel, 1994). 

 

As our electrophysiological studies commenced 10-12 weeks post-lesion, we decided to 

re-assess the rotational ability of the remaining animals at 22 weeks. We found that while 

the number of rotations was reduced from the original testing, lesioned animals’ still 

demonstrated significant directional bias compared to sham animals. Whilst this could be 

attributed to compensation though DA-related mechanisms, other studies have suggested 

that decreases in movement deficits may be related to animals learning to cope with and 

adapt to their impairments, with the actual physiological changes still intact (Morgan et al., 

1983; Schwarting and Huston, 1996). Therefore, as our animals continued to demonstrate 

significantly altered movement deficits 22 weeks post-lesion, we believed our lesions and 

results to be without significant compensatory mechanisms. 
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 5.3.2 In vivo oscillatory profile 

 

In both depth electrode and EEG recordings, we observed abnormal oscillatory activity in 

the 30-40 Hz range in our 6-OHDA animals. This was specific to ipsilateral hemispheres 

of lesioned animals and was not observed in sham animals. Whilst abnormal oscillatory 

activity is readily observed in BG structures in PD animal models (Brown and Marsden, 

1998; Sharott et al., 2005; Mallet et al., 2008a; Mallet et al., 2008b) and in PD patients 

(Brown et al., 2001; Bevan et al., 2002; Brown, 2003; Brown and Williams, 2005; Kuhn et 

al., 2006; Chen et al., 2007; Hammond et al., 2007), the frequency of activity commonly 

found is within in the beta range (12-25 Hz). However, the observation of a higher 

frequency range is not without precedence and maybe related to recordings made during 

different behavioural states. During rest or inactivity, beta oscillations in the 12-25 Hz 

range are commonly observed, but during alertness and activity oscillations in this range 

are reduced and 25-40 Hz oscillations dominate (Avila et al., 2010; Brazhnik et al., 2014). 

As our recordings took place in home cages or an open field arena where rodents were 

able to move freely, and depth recordings were made during the dispensing of food pellets 

to promote activity, the higher oscillatory frequency range may be expected. 

 

CSD analysis of depth electrode recordings predominantly localised the 30-40 Hz 

oscillations to LV of M1, although oscillations were also detected in LII/III. Similar results 

had been reported previously in in vitro studies of M1, where beta (see Yamawaki et al., 

2008) and gamma (see chapter 3) oscillations have been localised to LV and are believed 

to be due to the predominance of large pyramidal Betz cells (Rivara et al., 2003). This has 

also been observed in somatosensory cortex (S2), where pharmacologically similar in 

vitro beta oscillations were observed in LV (Roopun et al., 2006). However, care should 

be taken when interpreting the CSD analysis in Fig 5.7B. While the periodicity of the 

sources and sinks demonstrated across this graph does suggest an oscillatory pattern at 

~30-35 Hz, in line with the FFT generated, the fact that there is no phase inversion across 

the channel sites is somewhat suspect. It is possible that there is a high level of 

coherence of the oscillation across the layers which results in the smearing pattern of the 

sources and sinks at each channel. However, it is also possible that there was a problem 

with the probe or even with the CSD computation that was been performed, resulting in a 

potentially inaccurate CSD response. As a result, we should consider other methods of 

validating the depth of the probe, via immunohistochemistry in order to observe the probe 

tract. Furthermore, in order to understand which cortical layers the oscillations are being 

generated from, we could perform the same experiments with multiple N numbers and 

validated probe telemetry. Alternatively we could utilise in vivo recordings under 
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anaesthesia in order to record oscillations from a stable setup and reduce the potential for 

technical problems associated with an awake recording set up. 

 

In the M1-BG, enhanced oscillatory activity within the 4-6 Hz range correlates with tremor 

in PD patients (Volkmann et al., 1996; Timmermann et al., 2003; Pollok et al., 2004; 

Timmermann and Florin, 2012). However, in this study, oscillatory peaks in the 2-8 Hz 

range were also seen in both the ipsilateral and contralateral hemispheres of both 6-

OHDA and sham animals consistent with previous studies which described oscillations in 

the <10 Hz range between DA-depleted and DA-intact animals (Brazhnik et al., 2012). 

 

 5.3.3 L-DOPA 

 

In depth electrode recordings, L-DOPA decreased the power of the abnormal 30-40 Hz 

oscillations in ipsilateral M1 after 30-40 mins. This reduction was not observed during the 

administration of the vehicle over the same time period. These results are consistent with 

previous reports of L-DOPA reducing 8-30 Hz oscillations in the BG, restoring the network 

to a pro-kinetic state (Kuhn et al., 2006; Delaville et al., 2014). Additionally, in 6-OHDA 

lesioned animals, Brazhnik et al. (2014) observed that L-DOPA administration resulted in 

improvements in motor ability and a reduction in SNr oscillatory power in the ipsilateral 

hemisphere with no change in the contralateral hemisphere. The same study also 

demonstrated that L-DOPA reduced the interhemispheric oscillatory ratio to normal 

(Brazhnik et al., 2014). These observations are consistent with our results and the 

previous results from the lab where improvements in symptoms were consistent with a 

balancing of the interhemispheric power in PD patients (Hall et al., 2014). 

 

However, the administration of L-DOPA in our EEG recordings resulted in no change to 

the power of 30-40 Hz oscillations in ipsilateral hemispheres. This was surprising, 

considering the significant response seen in the depth electrode recordings. However, it is 

possible that this is due to the inability to isolate active periods from periods of rest or 

sleep. While this was also a potential issue with the depth electrode studies, in these 

experiments, rodents were encouraged to remain active by the dispensing of food pellets.  

 

Furthermore, depth electrodes record activity from networks which are local to each 

recording channel and therefore have excellent spatial resolution, an attribute which is lost 

in EEG recording. Previous studies have shown that while L-DOPA and DA agonists 

reduce abnormal oscillations in M1 of 6-OHDA animals (Brazhnik et al., 2012; Delaville et 

al., 2015) they have no effect on 30-40 Hz oscillations observed in PFC (Delaville et al., 
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2015). Therefore, our negative results could also be due to the recording of activity from 

networks, other than M1, which are insensitive to L-DOPA.  

 

 5.3.4 Low-dose zolpidem 

 

Low-dose zolpidem (10 nM) reduces CCh and KA induced beta in vitro (Prokic et al., 

2015). In addition, sub-sedative doses of zolpidem (0.05 mg/kg) have been shown to 

reduce pathological beta oscillatory activity in ipsilateral M1 in PD patient’s in vivo which is 

accompanied by a decrease in interhemispheric ratio that is directly correlated with an 

improvement in symptoms (Hall et al., 2014). In this study we attempted to recreate these 

experiments in the 6-OHDA lesioned animals in both depth electrode and EEG 

recordings. 

 

However, on administration of 0.3 mg/kg (depth) and 0.3 and 1 mg/kg (EEG) of zolpidem 

we observed no significant changes in oscillatory power and no change in the hemispheric 

ratio. Whilst this result was surprising these doses may miss the effective therapeutic 

window. The 0.3 mg/kg dose was calculated using animal equivalent dose (AED) to take 

into account body surface area differences between animals and humans (Nair and 

Jacob, 2016) (rat factor - 6.2). However, this calculation does not take body weight or 

differences in metabolism into account which may alter the effective dose.  

 

In patient studies higher doses of zolpidem led to a ‘beta buzz’ and sedation while in in 

vitro studies, there was a clear difference in the response to 10 nM and 30 nM zolpidem, 

with only the lower concentration resulting in the desynchronising effect on the beta 

oscillations, with the latter exaggerating their activity (Prokic et al., 2015). Thus, the dosing 

regime is critical and any deviation from therapeutic range may produce a very different 

result. Further studies would therefore incorporate a much lower dosing protocol or use a 

range of doses to develop a dose response, thus providing a greater idea as to the useful 

therapeutic dose for our studies, as well as the level at which sedative effects begin to 

occur. 

 

In our experiments, we identified an abnormal oscillation in the 30-40 Hz range which is in 

the same range as the oscillations elicited in vitro. Whilst this frequency range has been 

recorded previously in vivo (Avila et al., 2010; Brazhnik et al., 2014; Delaville et al., 2014), 

it is different to the frequency of oscillations that recorded by Hall et al. (2014) and Prokic 

et al. (2015). Therefore it is possible that the activity arises from distinct neuronal 
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networks which are differentially modulated by zolpidem. This suggestion is supported by 

the effect of zolpidem in vitro (see chapter 3). 

 

 5.3.5 Limitations 

 

Having observed the abnormal oscillatory behaviour in both the depth and EEG 

experiments, there are some limitations to these experiments which should be considered 

when evaluating these results. 

 

The depth probe experiments utilised a sugar pellet dropping into the arena every 20 

seconds, in order to incite the animal to move and remain active during the experiments. 

However, this approach could be refined to improve the resolution of these experiments. 

For instance, as the animal is moving and eating at irregular times (even though the pellet 

drop is regular) it is impossible without video tracking and gated movement to attribute a 

particular oscillatory period to a particular movement or behaviour. Improving this with a 

specifically timed movement plan or maze paradigm would improve the variables we 

would be able to measure in this experiment. In particular, as we were looking at 

movement before and after a drug condition, a paradigm which has specifically gated and 

controlled movement would perhaps have yielded a greater resolution to the recordings. 

Alternatively, using a camera to record the movements, tracked in time to the oscillations 

would allow specific behaviours and their corresponding oscillatory profile to be attributed 

and considered independently. Additionally, previous experiments have utilised either a 

method of determining movement and rest periods or used anaesthetised animals, in 

order to improve beta signal resolution (Sharott et al., 2005; Mallet et al., 2008a; Mallet et 

al., 2008b). In order to bring this research more into line with the previous literature on this 

subject, future experiments could focus more on using these approaches to record beta 

oscillations. This may help to give a clearer view of these abnormal oscillations, with 

regard to previously completed work. 

 

Further consideration when interpreting these results has to be given with regard to the 

total experimental period. Although we have shown that there was no recovery of the 

lesioned state in the 6-OHDA lesioned animals over the course of the experiments, we 

have not considered any age-related effects in our experiments. As we demonstrated in 

the previous chapter (chapter 4), there are some minor differences in the response of the 

oscillatory networks in M1 to different dopaminergic drugs. While this could be due to not 

enough N numbers to provide a consistent result or differences in the health of older 

slices compared to younger ones, it is possible there are age-related physiological effects 
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occurring. The experiments performed in this chapter took place in animals which ranged 

from 300-600 g over the experimental period. However, the majority of brain development 

and maturation would have already taken place prior to this period, when the animals 

were 50-100 g (Kolb et al., 1998; Wagner et al., 2000). Future experiments could use 2 or 

more cohorts of animals at different ages to determine whether there are any differences 

to the impact of 6-OHDA lesioning dependent on the age of the rodents involved. These 

could be tested pharmacologically using different dopaminergic drugs, in an attempt to 

replicate the experimental results observed in vitro. The use of immunohistochemistry or 

genetic fluorescence labelling in these experiments could also help to determine any 

differences in dendritic branching or number and type of cells current expressed at these 

age groups. This could provide new information relating to the in vitro results in chapter 4 

and give insight into the effects of dopamine loss in the developing brain. 

 

 5.4 Conclusion 

 

In this chapter, using the 6-OHDA animal model of PD, we observed prominent abnormal 

30-40 Hz oscillations in deep layer V of the ipsilateral M1 which were not seen in 

contralateral hemisphere or sham animals. Additionally, we observed 2-8 Hz oscillations 

in both lesioned and sham animals. A long-term study demonstrated that both the motor 

deficits and 30-40 Hz oscillations were stable over a period of 22 weeks. Abnormal 

oscillations were sensitive to L-DOPA which led to a decrease in interhemispheric ratio. 

However, this result was not replicated with zolpidem which has previously been shown to 

reduce pathological beta and rebalance the interhemispheric ratio in PD patients (Hall et 

al., 2014; Prokic et al., 2015). Further experiments, as explained previously, could help to 

elucidate the exact nature of the abnormal oscillations observed in M1 through the use of 

gated or specific movement paradigms. These would not only allow us to separate the 

different beta and gamma phases of movement that take place throughout the cortico-

basal ganglia circuits, but also allow us to observe the differences in these phases with 

respect to the 6-OHDA lesion, and whether L-DOPA and zolpidem have similar or 

different effects on these phases. 
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Chapter 6 General Discussion and Future 

Experiments 
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The main aim of this thesis was to provide a mechanistic understanding of oscillatory 

behaviour in M1 and how they were altered in the DA-depleted state. We obtained M1 

slices in vitro, maintaining viability through the use of specific neuroprotectants, to 

investigate the pharmacology of simultaneously elicited theta and gamma oscillations 

(chapter 3). We next investigated how DA-depletion, as a result of 6-OHDA lesioning to 

model unilateral Parkinson’s disease (PD), affected these oscillations in vitro (chapter 4). 

Finally, we sought to investigate the oscillations in M1 as a result of 6-OHDA lesions in 

vivo and the effects of L-DOPA and low-dose zolpidem (chapter 5). 

 

The main question explored in chapter 3 was how these theta and gamma oscillations 

observed in M1 in vitro differed from previously seen beta oscillations (Yamawaki et al., 

2008). Simultaneous theta and gamma oscillations were induced in LV of M1 using 

reduced concentrations of CCh and KA, which were both essential for the generation of 

these oscillations. Using cross-correlation we determined that these oscillations had 

distinct laminar origins within the slices, theta was prominent in more superficial layer LVa, 

whilst gamma oscillations were localised in deeper LVb. Repeating the experiments using 

a multi-electrode array would provide further information regarding the flow of information 

through the layers of M1 (and S1) as well as evidence for local oscillatory networks 

between the superficial and deep layers. 

 

A significant portion of simultaneously recorded theta and gamma oscillations 

demonstrated phase-amplitude coupling, which has previously only been assessed in vivo 

(Bragin et al., 1995). Further analysis may provide more information on the interaction of 

theta and gamma in PAC, in addition to the pharmacological results already observed in 

chapter 3. This could focus on how the strength of PAC between theta and gamma 

oscillations in M1 changes with respect to the amplitude of the individual oscillations. This 

could be achieved by using the already collected pharmacological data and further 

analysing the changes in theta and gamma power using overlapping epochs over the time 

of the whole experiment, thus obtaining an understanding of any changes in both the pre- 

and post-drug conditions. If these changes were then compared to alterations in the 

modulation index over time, we could observe how changes in the individual phase and 

amplitude components contributed to the PAC observed. By performing this for different 

drug conditions where we see different power shifts in each of the theta and gamma 

oscillation, we may be able to observe how PAC changes as selective parts of the 

network are enhanced or diminished. 
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A pharmacological dissection of theta and gamma oscillatory networks indicated that gap 

junctions and cholinergic receptors were essential for the generation of both oscillations. 

However, AMPA and GABAA receptors were necessary for gamma but not theta 

oscillatory activity, suggesting that theta is generated via a non-synaptically coupled 

network of intrinsic generators. In contrast, the sensitivity of gamma oscillations to the 

block of AMPA and the lack of block by low-dose zolpidem (10 nM), distinguishes them 

from previously seen beta oscillations in M1 (Yamawaki et al., 2008) and suggests that 

these gamma oscillations are similar to persistent synaptically generated oscillations 

found in the hippocampus and entorhinal cortex (Fisahn et al., 1998; Traub et al., 2000; 

Cunningham et al., 2003). 

 

In the cortico-BG network, DA-depletion results in the emergence of exaggerated beta 

oscillations (Magill et al., 2001; Bevan et al., 2002; Brown, 2003; Mallet et al., 2008a; 

Mallet et al., 2008b). Previous studies in vivo have shown that stimulation of M1 can 

reduce the power of these oscillations, suggesting that this area has an important role in 

their control or indeed their generation (Pagni et al., 2003; Drouot et al., 2004; Lefaucheur 

et al., 2004). Following unilateral 6-OHDA lesions we obtained slices of DA-depleted M1 

and applied CCh and KA to elicit simultaneous theta and gamma oscillations. However, 

we found the frequency and power of theta and gamma oscillations in ipsilateral slices to 

be no different to that observed in contralateral slices or in slices obtained from AMC. This 

suggests that either the network responsible for the generation of these oscillations was 

unaffected by DA-depletion or that the complete cortico-BG network is required for the 

generation of pathological oscillations in the DA-depleted state. Further studies could 

repeat these experiments 22 weeks post-surgery (a timeframe tested in chapter 5), to 

determine whether long-term plastic and adaptive changes alter the oscillatory profile in 

M1 in vitro. 

 

Despite not seeing alterations in power or frequency, the influence of DA on the network 

was found to be altered after DA-depletion. Application of DA significantly reduced gamma 

oscillatory power and significant power increases elicited by D2-like receptor activation 

were lost in DA-depleted slices. This suggests that in our study, DA-depletion may be 

changing network components such as receptor complement or efficacy but that this is not 

being directly expressed as a change in oscillatory frequency or power. These potential 

findings could be combined in future experiments, in order to further understand the role 

that DA plays in M1. The use of immunohistochemistry or high resolution fluorescence 

microscopy to localise the different DA receptors to specific cell types and layers in M1 

would be useful to compare their expression and localisation in the control and 6-OHDA 
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lesioned states. These studies could then be followed up with knock-out models of 

different DA receptors to investigate their individual involvement in oscillations. 

Alternatively, if particular receptor subtypes have their expression altered in the lesion 

model, they could be targeted or reintroduced specifically on particular cell types to 

investigate how the loss of DA changes receptor expression in the cortico-basal ganglia 

circuit, and therefore how this affects oscillatory activity. This would help us understand 

the role of different receptor types in M1 and how these could be manipulated or 

selectively activated in the brain to treat PD or other dopamine-related disorders. 

 

There were also some distinctive pharmacological results when using dopaminergic 

drugs, such as the selective increase in theta oscillatory power in sulpiride with no effect 

on gamma oscillatory power. This could also be subject to the analysis of PAC strength 

over time, in order to observe the specific changes in theta and gamma oscillatory power 

on the modulation index. Looking at changes to theta and gamma oscillatory power in 

relation to PAC in the DA-depleted slices, may reveal differences in how the networks are 

able to couple together in the absence of DA signalling. 

 

Following 6-OHDA lesion surgery, rotometer, locomotor activity (LMA) and adjusting step 

tests were carried out. These tests indicated that the lesions were successful and 

remained stable throughout the experimental period up to at least 22 weeks post-lesion. 

Using both in vivo depth electrode and EEG recordings, we observed an abnormal 30-40 

Hz oscillation which was specific to the DA-depleted ipsilateral hemisphere of 6-OHDA 

animals. An oscillatory peak in the 2-8 Hz range was also observed in ipsilateral and 

contralateral hemispheres of lesioned animals, as well as sham animals. The abnormal 

30-40 Hz oscillations were a faster frequency than beta oscillations (12-25 Hz) seen 

previously in vivo in M1 (Mallet et al., 2008b) but were similar to oscillations observed in 

previous studies of 6-OHDA lesioned animals during active states (Delaville et al., 2014). 

We utilised CSD analysis, which suggested that these oscillations might be localised to 

the superficial (II/III) and deep layers (V) of M1. Application of L-DOPA reduced the power 

of abnormal 30-40 Hz oscillations and restored inter-hemispheric parity. This 

demonstrated that 30-40 Hz oscillations could be pharmacologically altered in a similar 

way to abnormal oscillations previously seen in PD patients (Brown et al., 2001; Kuhn et 

al., 2006) and 6-OHDA lesioned animals (Delaville et al., 2014). 

 

Finally, we investigated the effect of zolpidem using both depth electrode and EEG 

recordings in 6-OHDA animals. However, in contrast to the results from a study in PD 

patients, where low-dose zolpidem was found to reduce exaggerated beta oscillations 
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(Hall et al., 2014), application of zolpidem did not result in significant changes to abnormal 

oscillatory activity. Whilst this may be due to differences in the dose of zolpidem being 

administered, it may also indicate that the abnormal 30-40 Hz oscillations recorded in 

lesioned animals are pharmacologically distinct from the pathological beta oscillations 

observed in PD patients. Further experiments using different doses of zolpidem may be 

necessary in order to define the therapeutic window in 6-OHDA lesioned animals, as well 

as further experimental paradigms designed to isolate the individual oscillatory 

components that relate to movement in M1. For instance the use of a maze to hold 

animals in a stationary position and have pre-defined points at which movement would be 

occurring, would allow greater resolution of movement and stationary periods. 

Alternatively, performing these same experiments and drug exposures on anaesthetized 

animals would provide greater comparisons to be drawn to previous studies in the 

literature. 

 

Future experiments should focus on the expansion of chapter 3 through a greater 

understanding of the discrete networks individually generating the theta and gamma 

oscillations in M1 and how these networks interact to generate the phase-amplitude 

coupling we have observed. Additionally, a greater understanding of any changes to DA 

receptor expression or localisation in M1 in the control and 6-OHDA lesioned states would 

aid in understanding changes that occur in PD. 

 

The comprehensive pharmacological analysis of our theta and gamma oscillations, 

described in chapter 3, suggests that the modulation of GABAA receptors plays an 

important role in the generation and modulation of both oscillations. However, as shown in 

other brain areas, such as the hippocampus (Klausberger et al., 2003; Somogyi et al., 

2014), there are many different populations of interneurons that contribute to oscillations 

and form synaptic connections with multiple cells types at both synaptic and extrasynaptic 

locations. Understanding the relative involvement and contribution these different 

interneuronal subtypes have on network oscillations in M1 would provide a better 

understanding of how these oscillations can be affected both in PD and other disorders, 

as well as how oscillations contribute to movement and other physiological processes. In 

order to investigate the involvement of different interneuronal subtypes, further 

experiments could utilise Ca2+ imaging using a fluorescent indicator, which if it was 

targeted to specific neuronal cell types could indicate the timing and relative contribution 

of these neurons to oscillations if recordings were paired with LFPs. Alternatively, using 

genetic knock-outs or lox-cre conditional knock-outs to different cell types, we could also 

observe how networks adapt to the loss or specific involvement of these neurons in the 
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generation of theta and gamma oscillations. This could also be achieved through the use 

of optogenetics, whereby different genetically targeted and incorporated ion channels that 

are sensitive to light could be used to artificially activate or silence individual neuronal 

populations. Combining multiple sensitive receptors, which respond to different 

wavelengths of light, would allow for more complex and specific control of the different 

excitatory and inhibitory populations that contribute to oscillations. This would also allow 

the manipulation of these networks in vivo, whereby the involvement of the different 

neuronal networks and cellular subtypes could be silenced or activated to investigate the 

role of these cells in behavioural tests. Additionally, oscillations could be targeted and 

manipulated pharmacologically using DREADDs (designer receptors exclusively activated 

by designer drugs), which are human-made synthetic receptors that are known to only be 

activated by a single synthetically made drug. If these were genetically targeted to 

different neuronal types, then the involvement of these cells could be manipulated during 

oscillatory activity with absolute certainty that there are no unknown non-specific effects of 

these drugs on other receptors or untargeted cell types. The use of any of these 

experimental techniques would be invaluable in beginning to separate the different 

interneuronal types involved in our oscillations. Furthermore, manipulation of the networks 

involved would aid in our understanding of how the theta and gamma oscillations interact 

and couple together both in vitro and in vivo. 

 

These studies could also be expanded to investigate other brain areas in vitro, as the 

whole of the cortico-basal ganglia network is involved in movement and dysfunction in PD, 

not just M1. There have been investigations into the use of slice orientations that maintain 

the cortico-basal ganglia hyperdirect connections (Bosch et al., 2012), as well as those 

that maintain the cortico-thalamic connections (Smeal et al., 2007). If these were utilised, 

using the improved solutions for slice preparation that we have used in this thesis, it is 

possible that we could investigate the oscillatory activity in M1 and the basal ganglia 

nuclei. This may provide a much more physiological view of network oscillations in these 

brain areas, as the connections which are present in vivo would be maintained. This 

would be beneficial, not only for analysis of control oscillations or coherence analysis 

between the cortex and basal ganglia, but also for understanding oscillations generated in 

the 6-OHDA lesion model of PD. Understanding how oscillations throughout the cortico-

basal ganglia circuit are affected by the loss of DA would allow greater comparisons 

between these circuits in vitro and the changes observed in PD patients, and may even 

generate the characteristic beta oscillatory pathology we did not observe in isolated M1 

slices. 
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Overall, if we could determine the neuronal network machinery which underlies 12-25 Hz 

and 30-40 Hz oscillations observed both in vitro and in vivo, we could begin to isolate the 

changes that result in PD pathology. These could lead to a better understanding of this 

disease and guide the advancement of future treatments, aimed as targeting the 

pathological network activity and underlying symptoms in PD. 
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