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Clostridium difficile is a spore-forming, gram positive bacteria responsible for causing 
Clostridium difficile infection (CDI), the main symptom of which is diarrhoea. It can also cause 
serious symptoms, for example, pseudomembranous colitis, toxic megacolon and death. CDI 
spreads through the ingestion of C. difficile spores, which are very resistant to cleaning 
products and can survive on surfaces for many months. Little is known about the germination 
of C. difficile spores; taurocholic acid, a bile acid found naturally in the gut is one of the known 
germinants, but the exact mechanism of germination is unknown. Other bile acids, such as 
cholic acid have shown germinating ability, but to a lesser extent. 

The aim of this PhD was to create a polymer surface that forced the germination of the C. 
difficile spores upon contact, then to kill the resulting more susceptible vegetative cell. A 
known germinant of C. difficile spores, cholic acid, was derivatised at the carboxyl group in a 
flexible synthesis to give a range of carboxamide analogues terminating in a quaternised amino 
function, with or without a polymerisable function. The attachment of polymerisable groups at 
the hydroxyl functions was also explored. 

The cholic acid monomers proved to be resistant to polymerisation. Of the monomeric 
compounds, however, nine exhibited C. difficile spore-germinating activity, two had either 
sporicidal or germinating and antimicrobial abilities and two other compounds had 
germinating and sporicidal and/or antimicrobial activity. The results for this series of 
compounds indicate that germination of C. difficile spores is favoured by the presence of a 
quaternary ammonium function and a two- to four-carbon chain between the cholamide 
carbonyl and the quaternary centre. 

Overall, eleven new compounds exhibited activity against C. difficile spores. The incorporation 
of these compounds into a polymer surface or disinfectant spray has the potential to reduce 
the risk of infection of CDI by eliminating C. difficile from surfaces, in both healthcare and 
community based settings. 
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1.INTRODUCTION 

1.1 CLOSTRIDIUM DIFFICILE, GENERAL BACKGROUND 

Clostridium difficile is an anaerobic, Gram positive, spore forming, toxin producing 

microorganism responsible for causing C.difficile infection (CDI), otherwise known as C.difficile 

associated disease (CDAD) (Burns et al., 2010). There are currently in excess of 100 different 

genetic ribotypes of C.difficile. The main symptoms of CDI are diarrhoea and stomach cramps; 

more serious symptoms are pseudomembranous colitis (inflammation of the colon) (Deneve et 

al., 2009), which was first reported in 1893 (Rupnik et al., 2009), and toxic mega colon (colonic 

distension) which can lead to death (Johnson and Gerding, 1998). CDI has been a clinical 

problem since 1978 (Gerding, 2009), however, the numbers of infections were not considered 

high until 2005 when the number of cases in the UK reached 46,000 (Duerden, 2011). The 

number of cases of CDI in Britain has fallen sharply since 2007, with the introduction of the 

Code of Practice for Infection Prevention and Control during the Health Act 2006 was brought 

into power after two outbreaks of CDI in which 33 people died (“Health Act 2006,” 2006). 

While this fall in numbers shows how important infection control is, there is growing concern 

about new strains of C.difficile and the lack of treatment offers for CDI. 

 CDI can only infect a patient when their gut flora is disrupted, usually by broad 

spectrum antibiotics, such as cephalosporins and other beta-lactam antibiotics and 

fluoroquinones (Gerding, 2009). Other risk factors for CDI include prolonged hospital stays, 

immunosuppressants and drugs such as proton pump inhibitors (Deneve et al., 2009). 

Unusually, treatment for CDI involves further antibiotics, which are vancomycin and 

metronidazole. Metronidazole is used for mild cases of CDI whereas vancomycin is used for 

more serious cases, or when metronidazole fails (Rupnik et al., 2009). There have been reports 

that some C.difficile strains, such as ribotype 027, are becoming resistant to vancomycin, 

causing concern that soon only one treatment will be available for CDI patients (Rupnik et al., 

2009). Currently, the most common C.difficile strain in the UK is 038 (HPA, 2012). A new strain 

has also recently been reported in Scotland, ribotype 332, which has killed three patients (BBC 

news, 2013). Whilst there are a lot of alternative treatments advocated by different groups, 

none have been approved by the National Institute for Health and Care Excellence (NICE) so 

are unavailable through the NHS.  
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 CDI spreads through contamination of surfaces by C.difficile vegetative cells and 

spores. It can be spread through touch by staff and patients, as well on medical equipment 

(Vonberg et al., 2008). The spores are highly resistant to a number of cleaning products and 

hard surface disinfectants. The spores can survive for many months in aerobic conditions 

(Gerding et al., 2008). This allows the infection to spread easily around a hospital setting, 

causing outbreaks. Vegetative C.difficile cells can only survive outside of the body for a few 

hours and are easily killed by cleaning (Jump et al., 2007). If the vegetative cells are not killed, 

the stressful conditions experienced by the cell will trigger sporulation. 

 After a number of outbreaks in the UK, reporting of all CDI cases in patients between 

the ages of 2 and over became mandatory.  Reporting in cases in children under two is not 

required due to the high prevalence of asymptomatic C. difficile in children's gut (Libby et al., 

1983). The number of cases and deaths related to CDI for every acute trust hospital are 

available online on the Health Protection Agencies website.  The numbers show year on year 

falls since 2007, however, in 2012, the numbers of cases are starting to level off. 

1.2 PREVALENCE OF C.DIFFICILE 

CDI accounts for approximately 25% of all cases of antibiotic associated diarrhoea (Howerton 

et al., 2011). During the months of March 2011 to April 2012 there were 18,005 cases of CDI in 

acute hospital trusts in England. Of these, 13,836 cases were in patients over the age of 65. 

The number of cases in hospitals are dropping; between April 2007 to March 2008 there were 

45,439 cases reported (Public Health England, 2012). Community based infections are defined 

as infections acquired within 48 hours after admission to a health care facility, providing the 

onset of the infection had occurred more than 12 weeks after any release from a hospital or 

other health care setting. There are, however, more cases of community based infections, 

(Rodriguez-Palacios et al., 2010) with patients who would be class as low risk (e.g. those who 

haven’t recently been given a course of broad spectrum antibiotics, who are under 65 and 

have no underlying conditions) contracting CDI (Rupnik et al., 2009). Around 5% of the adult 

population are asymptomatic carriers of C.difficile (Ramirez et al., 2010) and as many as 50% of 

patients who have been hospitalised for 4 weeks or more (Johnson and Gerding, 1998).  The 

increase in community based CDI is puzzling due to the nature of C.difficile. CDI is contracted 

when there is a disruption to the normal gut flora, which allows C.difficile to colonise. 

Increased numbers in low risk patients could indicate new sources for the infections, such as 

transmission from domestic animals, or through food, however there have been no such 

reported cases. 
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Hospitals have been aware of CDI since 1978, when a voluntary surveillance scheme was set 

up. In 1990, there were 500 cases of CDI, in 2001 it increased to 20,000 and in 2005 the 

number of cases reached 46,000 (Duerden, 2011). In June 2003, the first outbreak of CDI 

involving ribotype 027 occurred in the Stoke Mandeville Hospital, UK. This outbreak had wide 

reaching consequences, including more priority given to hospital associated infections (HAI).  

Outbreaks of CDI are further discussed in section 2.1.2. 

 

Figure 1 Graph to show the fall in CDI cases in the UK since 2007 

1.2.1 TIMELINE OF C.DIFFICILE  

Pseudomembranous colitis, one of the main complications of CDI was identified in 1893 by 

John Finney as a “postoperative complication” of a gastroenterostomy performed on a young 

woman. The cause of this complication was unknown (Rupnik et al., 2009). Forty two years 

later, in 1935, C.difficile was described by researchers looking at infant faecal flora. It was 

thought to be part of a child’s normal faecal flora, not a pathogen, due to the prevalence in 

children up to the age of two. In 1940, Snyder found isolates in children as young as 8 weeks, 

again, thinking it was part of a child's normal faecal flora (Stark et al., 1982). C.difficile was not 

identified as the causative agent for pseudomembranous colitis until 1978. Vancomycin was 

found to be a very effective antibiotic against C.difficile in 1981; however it was also 

discovered there was a high relapse rate with it too (Rupnik et al., 2009). It wasn’t until 1995 

that the mechanism of action for C.difficile toxins (A and B) was discovered. In 1997, the 

transcription and toxin production for both toxins were described and in 2001 tcdR, a toxin 

regulator was discovered (Gerding, 2009). In 2005, a hyper-virulent strain of C.difficile was 
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found, called 027 (Gerding, 2009). Since then, a lot of research has gone into how and why 

C.difficile spores germinate, ways to inhibit germination or cures, such as vaccinations.  

1.2.2 OUTBREAKS OF C.DIFFICILE  

There have been many major outbreaks of CDI in British hospitals in the last ten years, two of 

which occurred in Stoke Mandeville hospital (Healthcare Commission, 2006). The outbreaks 

led to big changes in infection control protocols in the UK. Other UK outbreaks have occurred 

in Maidstone and Tunbridge Wells between October 2005 and September 2006. Overall, 500 

people were infected with CDI and 60 people died. The contributing factors towards the 

outbreaks were largely the same as in the Stoke Mandeville outbreak which is discussed 

further below. There have been outbreaks in the US, Canada and Europe, some of which have 

been attributed to a certain strain of C.difficile (027). The outbreak in Québec was also 

attributed to the transfer of patients between cities.  Outbreaks in Africa and Asia are rare and 

are usually not caused by stain 027. Due to increased globalisation, the spread of 027 strain is 

likely to widen, increasing the risks of outbreaks in other parts of the world (Rupnik et al., 

2009).   

1.2.3 STOKE MANDEVILLE 

 Between 2003 and 2005 there were two outbreaks of CDI in the Stoke Mandeville hospital in 

Buckinghamshire. During this time, 334 patients were infected with CDI and 33 died. The first 

hospital wide outbreak occurred between October 2003 and June 2004, where there were 174 

new cases and 19 deaths, 16 of which almost certainly contracted CDI whilst at the hospital. 

The outbreak was so large because patients with CDI were not isolated, leading to 

contamination of wards. Isolation of patients was not possible due to lack of rooms, other 

patients being prioritised and lack of focus by senior management to contain the outbreak 

(Healthcare Commission, 2006). 

 The second outbreak took place between October 2004 and June 2005. During this outbreak, 

there were 160 cases and another 19 deaths, of which, 17 of the patients contracted CDI from 

the hospital. Reasons for the large number of cases lie with the senior management of the 

hospital, who did not implement advice given by the infection control team or the local health 

protection unit. This led to the news of the outbreak reaching the Department of Health and 

the public eye.  

The outbreak in Stoke Mandeville is very important in understanding the culture of infection 

control before 2007. The main reasons for the peak in CDI cases before then were that 
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healthcare associated infections were not regarded as a priority against other healthcare 

aspects. Indeed, it was thought that diarrhoea was to be expected alongside antibiotic 

treatment. Responsibility for the infections were seen to by the infection control staff, not the 

clinicians, however, as with the Stoke Mandeville outbreaks, advice given by the infection 

control was not taken seriously by other staff members. This lead to health ministers being 

made aware of the problems in 2004-5. The introduction of a statutory Code of Practice for 

Infection Prevention and Control during the Health Act 2006, which was revised in the Health 

and Social Care Act 2008 to include the independent sector, address many of the issues 

surrounding infection control. The duties of this act include  

 " General duty to protect patients, staff and others from HCAI" 

 "Duty to provide and maintain a clean and appropriate environment for health care" 

 " Duty to provide adequate isolation facilities" 

 "Duty to ensure adequate laboratory support". 

There was also a national target set by the government of a 30% reduction in CDI cases by 

2010-11. The results for this target were achieved and another 30% target reduction was set 

for 2013. Since the acts, more priority has been given to HAIs, drastically reducing infection 

rates. Responsibility for infection control has shifted towards clinicians, healthcare board 

members, chief executives, managers and the government (Duerden, 2011). Infection control 

still remains a priority, as the risk of antibiotic resistant bacteria causing serious outbreaks in 

infections is still high.    

1.2.4 C.DIFFICILE FOUND IN MEAT AND ANIMALS 

C.difficile could be considered to be a zoonotic pathogen (Paredes-Sabja and Sarker, 2011). It 

has been found in farm animals such as cattle, pigs and poultry; domestic animals such as 

hamsters and guinea pigs, and exotic animals such as elephants and ostriches (Dawson et al., 

2009; Keessen et al., 2011). This suggests that people could be coming into contact with 

C.difficile from places outside of a healthcare setting, something that can be demonstrated by 

the infection of children with Escherichia coli from farm animals (Fairbrother and Nadeau, 

2006). However, there have been no reported cases of this kind of transfer of C.difficile. Spores 

have been found many retail meats, with one study in Holland estimating that 20% of ground 

retail meat and other meat products contained C.difficile (Paredes-Sabja and Sarker, 2011). 

Another study demonstrated that spores could actually survive the recommended 
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temperatures for cooking meat, suggesting that spores could be ingested through eating a 

meal (Rodriguez-Palacios et al., 2010). Although cases of this kind of transmission have not 

been reported, there is the possibility of it happening in the future and it does go some way of 

explaining the increases in the number of community based cases.   

1.3 HYPERVIRULENT TOXINTYPE III NAP1/027 STRAIN 

The strain 027 (or NAP1 as it’s known in America) is a particularly virulent strain of C.difficile. It 

has been associated with increased antibiotic resistance, more severe symptoms and longer 

hospital stays (Rupnik et al., 2009). It has an 18bp deletion in the Toxin C gene, a negative 

regulator, meaning it produces more toxin A and B, the main causes for the symptoms of CDI, 

than other strains (Deneve et al., 2009). Work is currently ongoing regarding the typing of 

strains, with reporting of typing results from hospital tests being given to the C.difficile 

Ribotyping Network (CDRN) for England and Northern Ireland. This will give a more accurate 

idea of the spread of strains throughout England . The number of cases involving the 027 strain 

is around 20% in Europe, compared to 47% in the USA. The 027 strain was the main strain 

identified in the Stoke Mandeville outbreaks in 2003 and 2005. Since then, the number of 

reported cases has dropped dramatically, with the 038 strain being more prevalent in the UK 

now (HPA, 2012). However, as there is no mandatory reporting of typing of strains, these 

figures may not be wholly accurate. We can gain evidence from the types of treatments given 

to patients, as patients with the 027 strain are usually harder to treat (Warren and Guerrant, 

2011). If the authors of the above paper are correct in their conclusions that not all isolates of 

the 027 type are hypervirulent, then we could be exposing patients to unnecessary and 

expensive treatments if the typing results are taken into consideration when decided 

treatment for the patient.    

1.4 ACQUISTION OF THE DISEASE AND RISK FACTORS  

In order to be infected with CDI two main conditions must be met. 

 1. Exposure and ingestion of C.difficile spores must have occurred 

 2.  Normal gut flora has been disrupted, for example, due to the use of antibiotics, 

immunosupression, old age etc (Gerding, 2009). 

If both of these conditions have been met, then the spores can germinate and the infection 

can establish itself. The infection can have a devastating effect on the body. Vegetative cells 

multiple and attach themselves to intestinal epithelial cells via surface-layer proteins (S-layer 

proteins), causing tissue damage. This colonization of the gut initiates an inflammatory 
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response and causes severe damage to the intestinal epithelium. If left untreated, CDI can lead 

to bowel perforation, toxic megacolan and even death (Dawson et al., 2009). 

Risk factors for CDI include the use of broad spectrum antibiotics, such as cephalosporins, 

clinamycin, fluorquinolones, old age and being on proton pump inhibitors (Deneve et al., 

2009). Broad spectrum antibiotics wipe out the natural gut flora allowing C.difficile to colonize 

the gut and the infection to take hold. Old age (over 65 years old) is also a risk factor due to 

the increased chances of being hospitalized for other, unrelated conditions, increasing the risk 

of being infected with CDI. Underlying conditions, usually associated with old age, can also 

cause complications when treating CDI, so increasing the risk of death or serious 

complications. Old age can also make it harder for the body to fight off infections. Around 70% 

of all CDI cases are patients aged 65 or over. Note, under twos are not included in CDI statistics 

due to the prevalence and apparent asymptomatic carriage of C.difficile.  

1.4.1 ANTIBIOTIC USE  

The sustained over use of antibiotics has led to a massive increase in antibiotic resistant 

organisms and antibiotic associated diseases. Most antibiotics have now been associated with 

an increased risk of CDI. Those with the highest risk are clindamycin, cephalosporin and 

fluoroquinolones (Dawson et al., 2009).  

 Two antibiotics are predominatly used to treat CDI, metronidazole and vancomycin. 

Due to its cost, metronidazole is used to treat CDI first in cases of mild to moderate infection. 

Vancomycin is used for more serious cases or when metronidazole is ineffective (Lancaster and 

Matthews, 2012). As CDI relies on gut flora disruption, restoring normal gut flora as soon as 

possible is essential. However, this can be difficult to achieve with some patients, with high 

relapse rates common. One patient in Washington D.C. who had multiple relapses endured a 

continuous course of oral vancomycin for 31 months, costing $1,030 (£677.85) a month 

(≈$31,930/£21,013 for the entire course) (Bartlett, 1994).  

 There is emerging evidence that some 027 strains are becoming resistant to a number 

of antibiotics, including gatifloxacin and moxifloxacin (Rupnik et al., 2009). This presents a 

massive problem for health care providers. The emergence of a resistant strain could lead to 

an outbreak of CDI, with increased risk of death due to lack of viable treatments available. The 

resistance of one strain also means that the resistance of other strains is possible. As only two 

antibiotics are presently used to treat CDI, any resistant strains could present health care 

providers with a problematic treatment plan with another serious outbreak probable.  
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 A new antibiotic has recently been approved by the FDA called fidaxomicin which 

could help in the arsenal against CDI, however the cost of a course of the drug is over 100 

times more expensive than a course of metronidazole, and twice the cost of a vancomycin 

course (Lancaster and Matthews, 2012). If more C.difficile strains do become more resistant, 

then health care providers will be left with little choice but to use fidaxomicin, greatly 

increasing the cost of treating a CDI patient and putting a big burden on an already stretched 

NHS budget.    

Antibiotic Induce CDI Treat CDI C.difficile resistance 

Broad spectrum cephalosporin    

2nd and 3rd generation 

cephalosporin 

   

Broad spectrum penicillin   N/A 

Clindamycin    

Fluoroquinolones    some 027 strains 

Ureidopenicillin    low propensity  N/A 

Vancomycin    some 027 strains 

Metronidazole    

Table 1 Table to show what common antibiotics induce CDI, are used to treat CDI or have shown resistance to C. difficile  

1.5 GASTROINTESTINAL PHYSIOLOGY 

The lower gastrointestinal tract is made up of the small and large intestine. The small intestine 

is made up of the duodenum, jejunum and ileum, whereas the large intestine is made up of 

the cecum and colon. Most of the digestion and absorption of food takes place in the small 

intestine, whereas the large intestines role is to absorb water and carry the food waste form 

the body. The colon contains a complex microbial community of mainly anaerobic bacteria. 

This acts as a defence barrier against colonisation of pathogenic bacteria which might enter 

the body. The gut flora environment is very sensitive and can be effected by changes in diet, 

age and medication. The changes in the gut due to advancing age are of importance as CDI 

mainly effects those ages 65 and over. Old age is associated with malnutrition, which will 

affect the colonic flora environment. This puts the elderly at a higher risk of developing CDI, 

compared to those aged under 65. C.difficile affects the small intestine; however there are 

different theories for the infections exact mechanism. It is widely accepted that any C.difficile 

cells entering the body will be destroyed by the stomach acid and that the spores will survive.  
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The spores interact with the bile acids along the GI tract, only germinating when the correct 

conditions are reached.  

1.5.1 BILE ACIDS AND ENTEROHEPATIC CIRCULATION 

Bile acids are found and produced naturally in mammals aiding digestion of food. Primary bile 

acids, cholate and chenodeoxycholate, are synthesised in the liver whereas secondary bile 

acids are synthesised though conjugation with either glycine, to produce glycocholic acid, or 

with taurine, to produce taurocholic acid. They are then secreted into the digestive tract 

where they facilitate the absorption of fats and cholesterol. The bile acids are also actively 

absorbed to be reutilised in the liver. Bile enters the cecum at a concentration of 

approximately 2mM, where it is modified by the normal gut flora. Bile salt hydrolase removes 

the conjugated amino acid, turning it back into the original bile acid. Here it is further 

metabolized then actively transported into the cytoplasm and the 7α-hydroxyl is removed, 

creating lithocholic acid, which solubilises fat for absorption (Sorg and Sonenshein, 2010). 

1.5.2 GERMINATION THEORY 

Spore germination is defined as  

 "the irreversible loss of spore specific properties ". (Burns et al., 2010) 

In order for the spores to germinate, they must first come into contact with the correct 

environment. This is usually occurs in the colon in humans. The spores interact with the 

germinants around them which triggers germination. The spores then release Zn2+, K+, Na+, 

dipicolinic acid and Ca2+ (Ca-DPA) (Xiao et al., 2011). The role of dipicolinic acid is to provide 

stability to the spore and also to protect the spore's DNA from any damage that make occur 

during sporulation (Setlow et al., 2006). The pH of the internal spore rises and there is an 

uptake of water or rehydration of the core. Potassium ions are reabsorbed, signalling a 

resumption of metabolic activity. The cortex degrades, there is a loss of spore heat resistance 

and a transition from phase bright to phase dark occurs. The outgrowth of vegetative 

bacterium then takes place (Xiao et al., 2011).   

1.5.3 C.DIFFICILE GERMINATION 

C.difficile spores will only germinate when they encounter very specific conditions inside the 

body (Xiao et al., 2011). The exact mechanism of germination is not known currently as C. 

difficile has a different germination mechanism to other Clostridium species (Sorg and 

Sonenshein, 2010). C. difficile does not have the germination (Ger) receptors which are 
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common in other Clostridium species and the specific receptors which trigger germination in C. 

difficile are unknown (Lawley et al., 2009). 

 Germination studies have shown that C. difficile germinates in the presence of certain 

bile acids, namely taurocholic acid, cholic acid and glycocholic acid in vitro (L.J. Wheeldon et 

al., 2008). The exact mechanism is not known but the theory states that the concentrations of 

primary and secondary bile acids in the gut play an important role in whether a person is 

infected with CDI or is a asymptomatic carrier of C. difficile. 

  Bile acids are produced by the body to aid in the absorption of fats and fat soluble 

vitamins after a meal has been consumed. There are two types of bile acids, primary and 

secondary. The primary bile acids are cholic acid and chenodeoxycholate which are 

synthesized from cholesterol. The primary bile acids are conjugated to the amino acids glycine 

or taurine to make the secondary bile acids taurocholic acid and glycocholic acid. These 

secondary bile acids are then deconjugated by bile salt hydrolase in the intestinal lumen. The 

reason for the conjugation then deconjugation is not clear. It is thought that the conjugation of 

the primary bile acids to the amino acids reduced the toxic effect of the primary bile acids as 

they travel through the intestines. A reason for the deconjugation in the use of amino acids as 

a nutrients source. The primary bile acids are then reduced by the enzyme 7-dehydroxylase, a 

bacterial enzyme, (Hillman, 2004) to deoxycholate and lithocholate which further aid the 

absorption of fats from a meal (Britton and Young, 2012).  

 Work carried out by Sorg and Sonenshein has shown that in vitro, C. difficile spores 

germinate in the presence of taurocholic acid and glycine and that they act as co-germinants 

(Sorg and Sonenshein, 2008). Their work also showed that deoxycholate was also able to 

trigger germination of the spores but that it was highly toxic to C. difficile vegetative cells. This 

work lead to the theory that if spores are ingested, they will germinate in the presence of the 

bile acids but the vegetative cells will be killed by deoxycholate. When antibiotics are 

indroduced to the system, the gut flora is reduced dramatically and deoxycholate is not 

synthesised, leading to the establishment of C. difficile in the gut (Britton and Young, 2012). 
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Figure 2 Two flow charts to show one theory of C. difficile spore germination. The flow chart on the left shows the germination 

theory of a patient not on antibiotics whereas the flowchart on the right shows the germination theory of a patient who has 

been treated with broad spectrum antibiotics. 

There are other theories of germination, for example, C.difficile spores have four receptor 

sites, two for taurocholate and two for glycine. The spores bind to taurocholate, which triggers 

a rapid saturation of the other taurocholate receptor site. The spore then binds to glycine, 

which again, triggers a saturation of the other glycine site. Once complete, the spore can 

initiate germination. (Sorg and Sonenshein, 2010).   

It has been reported that the optimum concentration of sodium taurocholate to activate spore 

germination is 0.1-100 mmol-1 in vitro which achieved a 2.49-2.62 log reduction of colonies 

during germination tests. The minimum concentration of taurocholate was found to be 0.1 

mmol-1.  (Wheeldon et al., 2008). There is conflicting evidence surrounding the germinating 

abilities of all of the cholate derivatives, Wheeldon et al state that glycocholate and cholate 

enhance colony formation but only on agar and also require extensive periods of exposure. A 

number of amino acids, including glycine are needed for spore germination and a study 

showed that thioglycollate was more efficient than glycine in germinating spores. Whilst there 

is some conflict in the theory of spore germination, it is accepted that the C.difficile spores use 

the concentration of bile acids as cues to when to germinate.  
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1.6 PATHOGENSIS OF C.DIFFICILE INFECTION 

Due to the difficulty working with C.difficile, there are different theories for the mechanism of 

the infection caused by the spores. It has already been established that C.difficile must have a 

different germination mechanism to other Clostridium species due to its lack of Ger receptors. 

1.6.1 ENTRY 

C.difficile enters the body through the faecal-oral route, meaning spores must be ingested 

before the infection can take hold. Any vegetative cells will be killed by the stomach acid pH, 

whereas spores will survive and pass through to the duodenum and onto jejunum, where the 

concentration of primary bile acids is high.  

1.6.2 ADHERENCE 

Vegetative C.difficile cells binds to intestinal epithelial cells through its surface layer proteins 

with the aid of its flagella and proteases (Paredes-Sabja et al., 2012). The surface layer 

proteins, especially SlpA, vary between species and are currently not well understood. The 

flagella aid in the adherence of the cell by penetrating the mucus layer of the epithelial cell 

surface. The flagella are recognised by the epithelial cells pathogen sensing pathway and 

triggers an immune response (Solomon, 2013). 

1.6.3 EVASION 

The production of toxins by C.difficile triggers an immune response resulting in a large amount 

of marcrophages being recruited. A study by Paredes- Sabja et al. Lookied at the effect C. 

difficile cells had on Raw 264.7 cells, mouse leukaemic monocyte macrophage cells, in vitro. 

The have suggested that the spores are recognised by the Raw cells and are indeed 

phagocytosed by them. The spores, however, appear to be highly resistant to this process, are 

able to survive and even produce toxins that attach the Raw cells. The spores exosporium 

contains receptors that are recognised by the Raw 264.7 cells and the spore will be engulfed 

within 30 minutes. The spore interacts with the phagosomes membrane, eventually disrupting 

it, killing the cell and allowing the spore to survive. C.difficile cells, however, are easily killed by 

the phagosomes (Paredes-Sabja et al., 2012) (Madan and Jr, 2012). If the results of this study 

are found to be represntative of human cells, this suggests that the spores are able to survive 

the body's immune response, allowing them to germinate when the conditions are more 

favourable, which could be 1-4 weeks after CDI treatment.   

 



28 
 

1.6.4 DAMAGE TO THE HOST 

C.difficile cells produce five toxins that damage the host cells, two of which are toxic. Toxins A 

and B are largely responsible for the symptoms presented with CDI. Both toxins are 

responsible for the destruction of intestinal epithelial cells (Dawson et al., 2009). 

Toxin A- Uridine diphosphate glucosylating toxin encoded in the pathogencity locus. Targets 

intestinal epithelial cells causing neutrophil infiltration, production of signalling proteins, 

disruption of tight junctions and cell death. 

 Toxin B- Uridine diphosphate glucosylating toxin encoded in the pathogencity locus. Tcd B 

causes disruption of tight juctions and cell death. Tcd B can cause infection without Tcd A. 

(Voth and Ballard, 2005) 

Both toxins induce the production of tumour necrosis factor alpha and proinflammatory 

interleukins. The toxins produced also induce an inflammatory cascade, leading to 

pseudomembrane formulation in the colon (Madan and Jr, 2012).   

Toxin E- An accessory gene in the PaLoc region. Its function is not fully understood but it is 

though to assist the release of toxins A and B through permeabilization of the cell wall of 

C.difficile. 

Toxin R- A regulatory gene, needed for the production of RNA. A sigma factor. 

Toxin C- a negative regulator not found in all strains. It controls the amount of toxins A and B 

released. In strain 027, there is an 18 base pair deletion in toxin C resulting in uncontrolled 

production in toxins A and B, leading to a more severe form of CDI.  

1.6.6 CLINICAL MANIFESTATIONS OF CDI 

The main symptom of CDI is diarrhoea, which can range from mild to explosive. This is usually 

associated with stomach cramps. More serious symptoms are pseudomembranous colitis and 

toxic mega colon, both of which could lead to death. Pseudomembranous colitis, hardening of 

the gut wall, is usually diagnosed with colonoscopy whereas toxic mega colon is usually 

diagnosed with radiographic technique. Complications from CDI can include dehydration, 

sepsis and intestinal perforation (Deneve et al., 2009; Jump et al., 2007).  Symptoms for 

paediatrics are different and not well understood. There is conflicting evidence about whether 

babies under two get CDI as 67% of neonates are carriers of C.difficile. The symptoms for 

paediatrics are diarrhoea, colic attacks (crying for an unknown reason), hypermeteorism 

(excess gas), vomiting and abdominal distension (McFarland et al., 2000).  
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1.7 SPORULATION AND SPORE STRUCTURE 

1.7.1 SPORULATION 

When the cell experiences a highly stressful environment, such as an aerobic environment, it 

will form a dormant spore to protect itself (Leggett et al., 2012). C.difficile spores are highly 

resistant to many environmental attacks and can survive for many months outside of the body. 

A paper by Leggett et al. describes sporulation occuring in seven stages; vegetative cell, 

asymmetric cell division, engulfment, cortex formation, coat formation and maturation, 

release. 

Asymmetric cell division- the cell divides and forms two compartments, one of which is 

smaller than the other called the prespore.  

 Engulfment- a forespore is formed by the mother cell engulfing the prespore. The forespore is 

now bound in inner and outer membranes. 

Cortex formation- a peptidoglycan cortex is formed between the inner and outer forespore 

membrane.  

 Coat formation and maturation- the spore coat is formed, as well as dipicolinic acid (DPA), 

which is responsible for the reduction of water in the forespore. The spore matures. 

 Release- the spore is released by the lysis of the mother cell. The spores are released into the 

environment by diarrhoea, which can release in excess of 100 spores and cells per gram of 

faeces (L.J. Wheeldon et al., 2008). Once released, they can survive on surfaces for many 

months, until they experience the correct conditions for germination. This can create a vicious 

cycle of re infection for patients and indeed, relapse rates are high (Leggett et al., 2012).   

The spores are able to survive many extreme conditions, including toxic chemicals, pH 

changes, radiation and desiccation. They can also withstand high temperature; they have been 

found in meat that has been cooked at recommended temperatures (Rodriguez-Palacios et al., 

2010). The spores are also capable of sensing the environment they are in, allowing them to 

germinant when in favourable conditions (Vonberg et al., 2008). The spores contain a number 

of features which aid them to survive in stressful conditions, which include having a 

proteinaceous spore coat with a higher resistance to hydrophillic agents, reduced water 

content in the spore core and small acid-soluble proteins (SASP) which protects and repairs 

damaged DNA during germination. 
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Figure 3 Figure to show the different stages of sporulation of a C. difficile bacterial cell 

Based on a image from Leggett et al. 2012 

1.7.2 SPORE STRUCTURE 

The spore structure for C.difficile is not fully understood. It is thought to have an exosporium, 

which, based on studies of other species exosporium, is likely to be made up of mostly protein.  

Studies have shown that the exosporium of C.difficile contains receptors that are recognised 

by the immune system. It is also thought to be involved in spore attachment to environmental 

surfaces. The next layer is the spore coat which is made up of a series of thin layers of complex 

proteins. It is the first barrier to large molecules and chemicals that would kill the spore. The 

coat must be able to allow the spores germinants through however, not much is known about 

the spore coat or its mechanisms. Studies have shown that small molecules such as alkylating 

agents do pass through the coat and ultimately kill the spore. The outer membranes function is 

unclear as studies have shown it serves no protective function. It is essential for spore 

formation along with the peptidoglycan cortex and germ cell wall, again, showing no real 

protective role. The inner membrane has been shown to be highly impermeable, even to very 

small molecules. It contains the spore’s germinant receptors, which are currently unknown in 

C.difficile. The spore's core is dehydrated and contains the spores DNA, RNA, ribosomes, small 

acid spore proteins and enzymes. The environment of the spore is highly protective, containing 

a high concentration of DPA (Leggett et al., 2012).  
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Figure 4 Figure to show the structure of a C. difficile spore 

Based on a image from Leggett et al. 2012 

1.8 PREVENTION OF CDI 

Infection control strategies in most hospitals requires isolation of the patient including use of 

their own toilet where available. If a room is not available, then it is recommended that a 

C.difficile ward is set up (Vonberg et al., 2008). Other infection control measures include hand 

washing, the use of dedicated cleaning equipment and the use of hard surface disinfectant, for 

example, 2% w/v hypochlorite bleach. A stool sample is sent off immediately where an assay is 

carried out to confirm the diagnosis of CDI. C.difficile vegetative cells have a very distinctive 

smell which can be used as a diagnostic test along with the onset of diarrhoea.  Treatment of 

mild to moderate cases usually starts with metronidazole as it is the cheaper option and has a 

good patient response. If this does not cure the CDI, vancomycin can be used. If the diagnosis 

is for severe diarrhoea, then vancomycin is used straight away. There is a 20% relapse rate 

with CDI and the treatment for relapse is to use the same antibiotic that was used previously 

(Rupnik et al., 2009). There are no other recommended treatments for CDI in UK hospitals due 

to lack of evidence or conflicting data results. One new treatment which has been used with 

success in the US is a faecal transplant, and which is currently undergoing a randomised trial in 

the Netherlands. A faecal transplant constists of a stool sample, preferably one from a person 

who is close to the patient, being put into the bowels of a patient. It is either transplanted via a 

coloniscope or a nasogastric tube (Mattila et al., 2012). It is seen as a last resort however and 

is not currently recommended for UK patients.  
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Probiotics and biotherapies work on the theory of restoring gut flora to normal levels after 

antibiotic use. The evidence to support this treatment for CDI patients is limited and it is 

currently not recommended as part of a treatment plan for patients.   

 The options for treating CDI are very limited. While there are many treatments 

suggested in the literature, the data sets are very small, conflicting or incomplete. Given the 

increased and growing antibiotic resistance of C.difficile, a new way of tackling this problem is 

needed. 

1.8.1 CONTAMINATION AND CLEANING 

When a patient is diagnosed with CDI, hospital protocol, at the moment, is to isolate patients 

showing CDI symptoms, if possible (Vonberg et al., 2008). Isolation should mean that the 

patient gets their own en suite room, however this is not always possible. Protocol dictates 

that it is acceptable to put a number of CDI patients in a room together but this does increase 

the risk of re-infection. Cleaning should be undertaken using dedicated cleaning equipment 

which is only used in infected patient’s rooms. Cleaning should be undertaken with a 2% v/v 

hypochlorite solution as it has been shown that spores are killed when bleach is used (Vonberg 

et al., 2008). A number of different agents can be used to kill the spores, for example, a 

hospital in Nottingham used hydrogen peroxide spray to decontaminate rooms in their high 

dependency ward (Shapey et al., 2008). While this was very effective at killing spores, the 

room could not be used for a number of hours after the decontamination had taken place, 

which can be very disruptive on a busy ward. Hydrogen peroxide is also very harmful and an 

explosion risk. Copper also kills C.difficile spores and there was a trial in hospitals using copper 

equipment. Unfortunately, the hospitals found that people would steal the copper bedpans, 

equipment etc and with the price of copper increasing, hospitals could no longer afford to 

restock. Further studies have also shown that copper does not kill the spores, only the 

vegetative cells (L. J. Wheeldon et al., 2008).  

  Hospital design can play a big role in the spread of spores. A new hospital design in 

Canada reduced infections considerably by removing corners from rooms. By getting rid of 

corners and making them curved, cleaners could more effectively clean rooms, corridors and 

bathrooms. More individual rooms made it easier for isolation to take place and an increased 

number of sinks reduced CDI rates significantly. Unfortunately, hospital redesign and 

modification is very expensive, but new hospitals should take these findings into consideration. 
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1.8.2 NEW TREATMENTS 

There are many treatments suggested in the literature of treatment of CDI. One of the newest 

treatments for CDI which has recently been approved by the FDA and EMA is the use of 

fidaxomicin, a new class of macrocyclic antibiotics. Trials have shown it to be non-inferior to 

vancomycin with a slightly lower relapse rate. The HPA has not yet recommended it however, 

due to the high treatment costs and lack of comparison studies with metronidazole. The NICE 

summery of fidaxomicin has put the cost of the recommended 10 day treatment cost at £1350 

(excluding VAT), whereas the same 10 day treatment course for metronidazole is £2.53 and for 

vancomycin it is £188.27. Fidaxomicin is the first antibiotic to be recommended for CDI 

treatment for 30 years, showing the difficulties experienced by researchers investigating new 

treatments for CDI (Lancaster and Matthews, 2012).



 

1.9 BILE ACIDS 

Studies have shown that three bile acids germinate C.difficile spores. These are cholate, 

taurocholate and glycocholate (Sorg and Sonenshein, 2010, 2009, 2008; L.J. Wheeldon et al., 

2008). The structures of these bile salts are shown below along with a structure of cholic acid 

that has been numbered. It is possible to see that from these structures that all three have a 

steroid structure with a side chain at position C17 and three hydroxyl groups at positions C3, 

C7 and C12.  
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Figure 5 Structure of cholic acid with the carbon atoms numbered 

 

1.9.1 STRUCTURE 

 

Figure 6 Structure of Taurocholate 

Taurocholate is secondary bile acid formed by the conjugation of cholic acid and taurine. It has 

an amide and a sulfonic acid group for its side chain. It is generally agreed that taurocholate is 

a "gold standard" germinant for C.difficile spores and is routinely used in culture tests (L.J. 

Wheeldon et al., 2008). Recent theories of C.difficile germination suggest that taurocholic acid 
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and glycine act as co-germinants. Spores bind to taurocholic acid first then to glycine (Sorg and 

Sonenshein, 2010). Ramirez et al have recently described that there may be two taurocholate 

and glycine receptor sites (Ramirez et al., 2010). The theory states that as one of the 

taurocholic aid sites is occupied, a glycine site will also be occupied. This increases the chances 

of the next taurocholic acid and glycine sites to be occupied, triggering germination.  Currently, 

the receptor sites for C.difficile are unknown and there are none of the well known receptor 

sites which are generally found on other Clostridium species (Lawley et al., 2009). While 

taurocholate is the best germinant, manipulation of the structure of taurocholic acid is difficult 

due to its high solubility in water and low solubility in organic solvents. Work has been carried 

out on the manipulation of taurocholic acid by a former PhD student without success.  

 

 

Figure 7 Structure of glycholate 

Glycocholate is a secondary bile acid formed by the conjugation of cholic acid and glycine. It 

has an amide and a carboxylic acid group on its side chain. As with cholic acid, there is 

conflicting evidence for the germination qualities of this compound. While some have found 

that glycocholate is a germinant, others state it is a co-germinant (L.J. Wheeldon et al., 2008). 

While there is conflicting evidence concerning spore germination and bile acids, nearly all 

agree that a rich medium, such as horse blood agar (HBA) agar is needed for germination.  
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Figure 8 structure of cholic acid 

Cholic acid, as shown in figure 8, has a side chain terminating in a carboxylic acid. There is 

some conflicting evidence concerning cholic acids germinating abilities with some papers 

saying it is a germinant of spores whereas others say it is a co-germinant. One research group 

have shown cholic acid to be a germinant but to a lesser extent than taurocholic acid (L.J. 

Wheeldon et al., 2008). It also requires a longer incubation period. There are some 

disadvantages to cholic acid, for example, it is not soluble in certain solvents, such as 

chloroform. It is, however, easily converted to the methyl ester form which increases its 

solubility. 

The structure of cholic acid (figure 4) has been labelled in the currently accepted manner. The 

three hydroxyl groups on the steroid body are on positioned on C3, C7 and C12. These 

hydroxyl groups are of varying importance for spore germination. Chenodeoxycholate has no 

C12 hydroxyl present and there is evidence to show that it is an inhibitor of germination (Sorg 

and Sonenshein, 2009). This suggests that the C12 hydroxyl is essential to spore germination 

but not to binding, as it is an active competitor to taurocholic acid. Deoxycholate is missing the 

C7 OH group and there is evidence to show that it still germinates spores, but it then 

suppresses vegetative cell growth (Britton and Young, 2012). This is interesting as it suggests 

that the C7-OH is not important for recognition, but is for growth of cells. As there are no 

natural bile acids with the C3 hydroxyl missing and a synthetic bile acid lacking the C3 hydroxyl 

has never been reported for C.difficile germination, the importance of this hydroxyl is 

unknown at this point.  

 The side chain of the bile salt is also an important feature in germination. The sulfonic 

acid in taurocholate seems to be of significance as there is agreement that taurocholate 

germinates spores. It is used in culture tests and was used in diagnostic tests before 
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immunoassays became widely available. With regards to cholate and glycocholate, there is 

conflicting evidence to whether they are sole germinants or co-germinants.  

1.9.2 STRUCTURE ACTIVITY  

A recent paper has studied the importance of the side chain and hydroxyl groups on 

taurocholate for the germination of C.difficile spores (Howerton et al., 2011). Howerton et al. 

made various compounds, each with slight changes in the side chain or a change to the 

hydroxyl groups. They made 22 compounds altogether, pictured below. They have been 

arranged into two tables: changes to hydroxyls and changes to side chain. 

 

Manipulation 

relative to 

taurocholate 

Structure  Activity 

Chirality change 

at C12-OH 

 

No change 

Removal of C7-

OH 

 

Reduced 

germination 

by 70% 

Removal of C12-

OH 

 

Increased 

germination 

by 10% 
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Removal of C12-

OH plus change 

in chirality at C7-

OH 

 

Decreased 

germination 

to 3% 

Removal of C12-

OH and C7-OH 

 

Unable to 

achieve 

germination 

Removal of all 

hydroxyls 

 

Unable to 

achieve 

germination 

Removal of C12-

OH and addition 

of C6-OH 

 

Unable to 

achieve 

germination 

Removal of C12-

OH and C7-OH 

plus addition of 

C6-OH 

 

Unable to 

achieve 

germination 
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Methylation of 

the C3 hydroxyl 

 

Unable to 

achieve or 

inhibit 

germination 

Methylation of 

the C3 and 

C7hydroxyls  

 

Unable to 

achieve 

germination 

Table 2 Table to show the effect of hydroxyl manipulation and germination of C. difficile spores in taurocholate  

Manipulation 

relative to 

taurocholate 

Structure Activity 

Carbon chain 

shortened by 

one methylene 

group 

 

Germination 

comparable 

to 

taurocholate 

Carbon chain 

lengthened by 

one methylene 

group 

 

Unable to 

achieve 

germination 
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Replacement 

of the 

taurine two 

carbon unit 

by a benzene 

ring 
 

Unable to 

achieve 

germination 

Replacement 

of the 

taurine two 

carbon unit 

by a benzene 

ring and 

movement of 

the sulfonic 

acid group to 

the ortho 

position 

 

Unable to 

achieve 

germination 

Replacement 

of the 

taurine two 

carbon unit 

by a benzene 

ring and 

movement of 

the sulfonic 

acid group to 

the meta 

position 

 

Unable to 

achieve 

germination 
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Reduction of 

the sulfonic 

group to a 

sulfinic acid 

 

Unable to 

achieve 

germination 

Shortening 

the ethyl 

chain by one 

carbon and 

replacement 

of the 

sulfonic acid 

group with a 

carboxylic 

acid 

 

Significantly 

germinate in 

buffer 

Replacement 

of the 

sulfonic acid 

group with a 

carboxylic 

acid 
 

Unable to 

achieve 

germination 

Replacement 

of the 

taurine 

component 

in the side 

chain with a 

dipeptide 

derived from 

beta alanine 

 

Unable to 

achieve 

germination 
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Lengthening 

the side 

chain by one 

carbon and 

replacement 

of the 

sulfonic acid 

group with 

carboxylic 

acid 

 

Unable to 

achieve 

germination 

Replacement 

of the 

taurine 

component  

in the side 

chain with a 

“dipeptide” 

derived from 

gamma-

aminobutyric 

acid 

terminating 

in a 

carboxamide 

 

Unable to 

achieve 

germination 

Replacement 

of the amide 

in the side 

chain with an 

ester 

 

Unable to 

achieve 

germination 

Table 3 Table to show the effecs of side chain manipulation upon the germination of C. difficile spores in taurocholate. 
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It was found that changes in the side chain can make significant differences in the germination 

activity, with most of them being detrimental. Changes to the hydroxyl groups reduced or 

abolished the germinating activity. A short summery of the papers findings is given in table 4. 

 

 Modification Increased 

germination 

No affect on 

germination 

Decreased 

germination 

Role of part 

12-OH Removal 

 

 

 

Important for 

binding and 

activation of 

spores 

7-OH Removal   

 

Important for 

binding and 

activation of 

spores 

Change in 

stereochemistry 

  

 

3-OH Removal   

 

Hydrogen 

bonding. 

Essential for 

the 

recognition 

of 

taurocholate 

Replaced with 

another 

hydrogen bond 

 

 

 

C-17 side 

chain 

Shortening alkyl 

chain 

 

 

 Hydrogen 

bond ability 

of amide 

group is 

necessary for 

germination. 

Lengthening 

chain 

  

 

Bulkier linkages   

 

Replacing 

sulponate 

group with 

carboxylate 

 

 

 

Table 4 summary of results from Howerton et al, 2011, that show the detrimental effects of side chain and hydroxyl 

manipulation of taurocholate and its spore germinating abilities. 
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Hydrogen bonding seems to be important for both recognition of taurocholate and for the 

germination of the spores. According to this study, it appears that all three hydroxyls are 

important, or at least, the hydrogen bonding ability of the hydroxyls. Changing the C3-OH to a 

methoxy changed the compound's ability to germinate the spores. The authors believe that 

the C3-OH is essential to the recognition of taurocholate and that its removal decreases 

germination greatly. One of the shortcomings of this study is that while they suggest the 

hydrogen bonding ability of the hydroxyl is essential, they do not confirm this with any other 

type of hydrogen bond donor group, such as an amine. Also, in regards to the other two 

hydroxyls at C7 and C12, there is no further investigation into the importance of these groups 

apart from their removal. Questions such as could another group effect the germinating 

abilities of the compounds remain unanswered. They have also shown that moving the 

hydroxyls to a different position renders the compound unable to germinate the spores. This is 

interesting as it suggests there must be a very specific receptor site on the spores for the C7-

OH. The authors state that the C7-OH is important for recognition and binding. This is in direct 

conflict with the theory of deoxycholate, which states that the C7-OH is not important for 

germination but is important for cell growth. This conflict is indicative of the confusion 

surrounding the importance of each hydroxyl.   

 The conclusions reached with the side chain are a bit more conclusive. Side chain 

length is investigated, showing that a longer chain is detrimental to germination. This seems 

logical as the compound needs to fit into receptor sites on the C.difficile spore, and a longer 

chain may not fit well. The same goes for a bulkier chain. Again, the important factor for the 

tail seems to be its hydrogen bond donating ability. Replacing an amide with an ester resulted 

in no germination, which confirms the importance of the side chains to hydrogen bond. 

Amides are hydrogen bond donators, whereas esters are not. Replacing the sulfonic group 

with a carboxylic acid group was also detrimental. This could be due to the hydrogen bonding 

ability of the sulfonic group.        

Liggins at al. Looked at progesterone analogs affects against C.difficile germination. They 

looked at 13 different compounds, the majority of which had no effect on the spores (Liggins 

et al., 2011).  
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Compound Structure Activity 

progesterone O

O  

Inhibits germination 

Mifepristone 
OH

O

N

 

Inhibits germination 

Medroxyprogesterone 

O

OH

O

 

Inhibits germination  

Cholesterol 

OH  

No effect on germination or 

inhibition compared to 

progesterone 

Cholesterol  sulfate 

S

O

O

OH  

No effect on germination or 

inhibition compared to 

progesterone 

Pregnenolone O

OH  

No effect on germination or 

inhibition compared to 

progesterone 

21-hydroxy pregesterone O

O

OH

 

Reduces inhibition activity 

Corticosterone O

O

OHOH

 

No effect on germination or 

inhibition compared to 

progesterone 
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Cortisol 
O

O

OHOH
OH

 

No effect on germination or 

inhibition compared to 

progesterone 

Cortisone O

O

OHO
OH

 

No effect on germination or 

inhibition compared to 

progesterone 

Prednisone 
O

O

OHOH
OH

 

Inhibits germination 

Prednisolone 
O

O

OHO
OH

 

Inhibits germination 

DHEA O

OH  

Inhibits germination 

DHEA sulfate O

S

O

O

OH  

Inhibits germination 

Table 5 Table to show progesterone analogues effect on C. difficile spore germination 

The main conclusion of this study was the suggestion that taurocholate, chenodeoxycholate 

and progesterone bind to the same receptor sites in C.difficile spores. Progesterone, however, 

shows non-cooperative binding. Progesterone was also shown to be 3-fold more active at 

spore germination inhibition than chenodeoxycholate. The paper also discussed that the spore 

germination seemed to be inhibited when a ketone group was present instead of a hydroxyl, 

and that a hydroxyl group at position 17 deactivates any spore germination inhibition. This 

appears to be true for some of the compounds tested, but does not explain compounds such 

as DHEA and prednisolone, both of which have ketone and hydroxyl groups present and are 

both inhibitors. While this paper has made some inroads into the germination of C. difficle 

spores, it does not explain it all.        

Copper is known to kill C.difficile bacteria and was used in a study by Weaver et al. Pure copper 

is very effective in killing both spores and cells but the disadvantage to this is that the cost of 

copper can fluctuate so can make it expensive. Copper disrupts the cells membrane by 
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producing hydroperoxide radicals or it can disrupt the cells electron transport pathway, 

preventing metabolism from taking place (Weaver et al., 2008). Bismuth has also shown 

antimicrobial properties as shown by Mahony et al. various bismuth containing compounds 

were made and antimicrobial activity was tested for each one. Their activity changed with each 

compound but they did find some that were very effective at killing C.difficile cells. They 

speculated that sulphur was needed to chelate the bismuth and that the bismuth needed a 

specific carrier to deliver it to the cells (Mahony et al., 1999). 



1.10. HYDROXYL MANIPULATION 

There are three hyrdroxyl groups and a carboxylic acid on cholic acid. This means reactions can 

take place on four sites, making selectivity a problem. As already discussed, the hydroxyl 

groups on the bile acids have varying degrees of importance regarding germination. A different 

group on the C12 may render the bile acid incapable of germination and may actually inhibit it. 

For this reason, in order for test the germinating ability of the new compounds, the hydroxyl 

groups may have to be protected and then deprotected in order for selectivity to be achieved.  

Conversely, selectivity may be achieved with careful temperature control and timing for 

reactions. This approach would be advantageous as it decreases the number of synthetic steps 

required and limits the possibilities of by-product formation. 

1.10.1 NON PROTECTED HYDROXYLS 

The reactivity series of the hydroxyls to in cholic acid is C3>C7>C12. The C3-OH is a lot less 

hindered than the C7-OH and the C12-OH due to the presence of other methyl groups on the 

steroid skeleton. However, there is evidence to show the reactivity changes to C3>C12>C7 

when chemistry involving reacting on the C3-OH occurs. If the C3-OH is involved in chemistry 

to modify the hydroxyl group to a oxo, tosy or silyl group, the C7-OH becomes the most 

hindered hydroxyl, making the C12OH the more accessible of the two. This change in chemical 

reactivity could have implications on the germinating ability of any compounds synthesised 

(Blickenstaff and Orwig, 1969).  

1.10.2 REACTING ON THE C3-OH 

Reacting on the C3-OH without protection of the other groups is possible due to the C3-OH 

being a lot more reactive than the other two hydroxyl groups. There are a few examples of this 

in the literature. Hirayama et al published details of a reaction between methyl cholate and 2-

nitro-benzyl-bromide using silver (I)oxide as a catalyst to create an ester on the C3. They 

achieved good to modest yields, targeting the C3-OH position (Hirayama et al., 2003).  

 Two separate groups have used tert-butyldimethylsilyl chloride to selectively target 

the C3-OH position (Czajkowska and Morzycki, 2006; Zhang et al., 2009) to also create an ester 

linkage. Both Czajkowska et al. and Zhang et al. Used TBSMSCl/ imidazole to silyate at the C3 

hydroxyl of methyl cholate. The only difference was the time and temperature conditions. 

Czajkowska et al. carried out the experiment at room temperature for 3 hours whilst Zhang et 

al. did it at 10oC and room temperature for 48 hours. 
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1.10.3 REACTING ON THE C7 OH 

Reacting on the C7-OH was done by Broderick at al. The hydroxyl group at position C7 was 

oxidised to a carbonyl group (Broderick et al., 1998).  

1.10.4 REACTING ON THE C12 OH 

Reacting on the C12-OH is difficult due to its reactivity and hindered position. Selective 

oxidation on the C12 is possible as described by Miljkovic at al. Methyl cholate was oxidised by 

using anhydrous sodium carbonate and bromine at 0-4oC for 72 hours. Selective oxidation at 

the C12 position is possible as the reactivity order changes to C12>C7>C3 (MILJKOVIC et al., 

1996).  

1.11 PROTECTED HYDROXYLS 

Selectively reacting on one hydroxyl group is difficult, especially if you only want to modify the 

C3-OH. For example, the reaction temperature needs to be controlled in order to slow down 

the reaction to a suitable pace where it can be monitored easily. Often, the molecular ratios 

have to be arranged so that there is an excess of starting material, to try and push the 

equilibrium to favour reacting on one position only. An alternative procedure to the one 

detailed above is to protect all the hydroxyl groups, then selectively remove the protecting 

groups and react on the unprotected hydroxyl group. This gives the advantage of using 

compounds where control of the reaction conditions are more difficult or when the cost of the 

reactants are high. One disadvantage of using protection groups is that they need to be 

removed afterwards, without removing anything else. 

1.11.1 PROTECTING ALL OF THE HYDROXYLS 

The most common form of hydroxyl protection is acetylation. There are various papers 

describing this method, all with slight variations. All use acetic anhydride, but there are 

differences in the rest of the method (A. Brady and K. M. Sanders, 1997; Tochtrop et al., 2002; 

Yoshii et al., 2004). Tochtrop et al use pyridine and 4-Dimethylaminopyridine (DMAP) with 

cholic acid to make a triacetylated compound in good yield (94%). Other forms of acetylation 

include acetylating on the C7 and C12-OH and using tetrahydropyranyl ether (THP) to protect 

the C3-OH. The tetrahydropyranyl group can then be deprotected in three steps, however, the 

yield is very low (16%). Fieser used hydrogen chloride in methanol to deprotect the 3OH, using 

benzene in the recrystallisation method (Fieser and Rajagopalan, 1950). Tochtrop protected 

the hydroxyl groups in order to work on the side chain so deprotected all of the acetoxy 

groups using sodium hydroxide.  
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 Starchenkov et al. used formic acid to protect hydroxyl groups in cholic acid as the 

formate esters with the yields for tri-protection at less than 50% and di-protection (C3 and C7) 

was 77%. Jurcek et al. used formic acid as well (Starchenkov et al., 2000). 

1.11.2 REACTING ON THE C3-OH 

Protecting the C3 hydroxyl can be done in many ways. Hirayama et al.  used 2-nitrobenzl 

bromide with methyl cholate to create on ester linkage on the C3, with yields of around 60% 

but had differences in regioselectivity before chromatographic purification (Hirayama et al., 

2003). Czajkowska and Morzycki selectivity protected the C3 hydroxyl of methyl cholate using 

tert-butyldimethylsilyl chloride and imidazole in Dimethylformamide (DMF), which synthesised 

an ester linkage to the amine. They obtained yields of 92% and removed the tert-

Butyldimethylsilyl ether (TBDMSO) protecting group using tetrabutylammonium fluoride after 

manipulating the side chain (Czajkowska and Morzycki, 2006). Yoshii et al.  protected the C3OH 

using THP to create a protective ether but recovered yields of only 16%(Yoshii et al., 2004). 

Zhang et al  also created a ether linkage using tert-butyldimethylsilyl chloride (TBDMSCl) 

recovering yields of 94% after recrystallization (Zhang et al., 2009).  

 Broderick et al  selected to work on the C7-OH, creating a ketone (Broderick et al., 

1998). This was done by first protecting the C3-OH as a hemisuccinate, followed by oxidation 

of the C7-OH by Jones reagent. Once this was achieved, they acetylated the C3 and C7 

hydroxyls in order to manipulate the C12-OH. By first oxidising, then reacting with an amine 

group, they were able to react (Boc)2O to the C12-OH and then deprotect the C3 and C7-OH 

groups.  

1.11.3 SEMI-PROTECTION OF THE C3-OH AND C7-OH  

Other authors achieve acetylation on the C3-OH and the C7-OH only and so, have a semi-

selective method. Broderick et al used pyridine and acetic anhydride with methyl cholate 

which, left at room temperature, reacted to achieve diacetylation at the C3 and C7 position 

(Broderick et al., 1998). Fieser and Rajagopalan used a mixture of benzene and pyridine with 

methyl cholate to achieve the same (Fieser and Rajagopalan, 1950). Zhang et al used DMAP 

and triethylamine in dichloromethane to acetylate on the C3- and C7-hydroxyls.  Fieser and 

Rajagopalan also acetylated C3 and C7 but without using DMAP. They used benzene and 

pyridine, recovering 70% of their product. 

 

 



51 
 

1.11.4 SEMI-PROTECTION OFTHE C7 OH AND C12 OH 

It is also possible to protect two of the hydroxyls while keeping the other one free. For C3 and 

C7 protection, Cravotto et al acetylated the hydroxyls using high intensity ultraviolet light and 

microwaves stating the concentration of DMAP is essential for selectivity (Cravotto et al., 

2005). Yoshii et al protects C7 and C12 hydroxyls by forming acetates using acetic anhydride 

but only after the C3 had been protected by THPO (Yoshii et al., 2004). 

Various papers (Sorg and Sonenshein, 2009; L.J. Wheeldon et al., 2008) have shown that the 

removal of the C12 hydroxyl in a bile acid inhibits germination and Howerton et al has shown 

that there is some importance to the C7 OH in binding and activation of the spores (Howerton 

et al., 2011). Due to the importance of these hydroxyl sites, any chemistry done involving the 

bile acids will rely heavily on hydroxyl selectivity.  

 



1.12 MANIPULATION OF THE SIDE CHAIN 

For the purposes of this project, manipulation of cholic acids side chain is of equal importance 

to the work on the hydroxyl groups. In terms of C.difficile germination, less is known about the 

specific groups in the side chain of the bile acids than the importance of the hydroxyl groups, 

apart for the need for them to be a hydrogen bond donor. While there are very few papers 

discussing the manipulation of bile acids side chains in regard to C.difficile, there are many 

papers where it is being done for use in building scaffolds. As ultimately the project goals are 

to synthesis an antimicrobial polymer, it is sensible to add an amine chain to cholic acid, with 

the aim to later quaternise the end of the chain, creating an antimicrobial warhead.  Detailed 

research in the literature shows there are many possibilities, using a range of different amines.  

1.12.1 CHOLIC ACID 

 Looking firstly at cholic acid, Vallegjo et al reacted bases (adenine or adenosine) to the 

side chain resulting in nitrogenated bile acid derivatives. The yields were low (20-30%) and 

they had complex mixtures, but if this type of reaction could be modified to create larger 

yields, it may be possible to react specific amino acids to cholic acid and increase chances of 

germination (Vallejo et al., 2007).  

Randazzo et al used cholic acid and spermine to create an amine containing chain from the 

side chain of the bile acid. Tests carried out on the compounds showed that they were 

antimicrobial against both gram positive and gram negative bacteria. While the yields were 

low- 30-40%, they have shown that an antimicrobial amine chain can be attached to the side 

chain which is the main aim of this research (Randazzo et al., 2009).  

Malik et al used TBDPSiCl and TBDMSi-Cl to protect the side chain on cholic acid by creating 

silyl esters. They found that by using the larger TBDPSi-Cl it was more selective, resulting in a 

92% yield (Malik et al., 1986). This work could be adapted for the aims of this project and 

would allow the three hydroxyl groups present on cholic acid to be manipulated without 

affecting the side chain.  

One method used in the literature to form amide bonds is to use ethylchlorocarbonate as a 

coupling agent. Ethylchloroformated is dripped in to a solution of cholic acid, anhydrous 

dioxane and tributylamine and left to form a mixed anhydride. This is then followed by the 

addition of the amine and left to react for three hours to form the amide bond 
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(Mukhopadhyay et al., 2004). This type of reaction is quick and offers good yields with little 

side reactions.  

An amide side chain can also be synthesised when the hydroxyls on cholic acid are protected, 

as described by a paper in the Journal of the American Chemical Society (Mukhopadhyay et al., 

2004). Here, the hydroxyls were protected using formic acid to give formate esters, and then 

the protected cholic acid was put into a solution of dichloromethane, DMAP and 

dicyclohexylcarbodiimide at 0oC. Dimethylethylenediamine was added after 5 minutes where it 

was left to react for 18 hours at room temperature to create the amide bond and amine side 

chain.  

1.12.2 METHYL CHOLATE 

An amide side chain can also be formed using methyl cholate. Methyl cholate can be 

preferable due to its increased solubility over cholic acid. An example of a simple manipulation 

of the side chain of methyl cholated can be seen with Kurosawa et al reacting methyl cholate 

with methylsulfinylcarbanion to create a sulphonyl group. This, however, gave a series of 

diastereoisomers. They then manipulated it further to create a longer ketone chain on the bile 

acid (Kurosawa et al., 1995). Czajkowska and Morzycki used allyl bromide and sodium hydride 

to create a six carbon ether chain.   

Focussing on amide bond formation, Tamminen and Kolehmainen used ammonia to convert 

the methyl ester into an amine on methyl cholate as did Miljkovic et al. 

Pandey et al described in a paper from the Journal of the Chemical Society described a method 

of reacting cholic acid with ethenediamine in the presence of methanol for 48 hours to give an 

amide side chain (Pandey et al., 2002).   

1.12.3 AMIDE BOND FORMATION 

The amide bond is an essential bond in chemistry and biology, responsible for a lot of 

biological activity. In biological systems, the amide bond is usually formed by specialist 

enzymes making the process quick and efficient. Unfortunately, the enzymes are usually much 

specialised so are unsuitable for some chemical reactions. This presents a problem for 

chemical reactions, as there are many different chemical ways of synthesising the amide bond 

and often the most efficient is not always obvious. Synthesis of the amide bond sometimes 

requires considerable optimisation, making the process time and cost heavy.  



54 
 

 Whilst amide bond formation is possible this way in the form of aminolysis and the 

application of heat, amine degradation can present issues, although this can be prevented with 

short reaction times and the absence of oxygen (Montalbetti and Falque, 2005). 

1.12.4 ACTIVATION 

The most common way to form an amide bond is by first activating the carboxylic acid. 

Activation means that a better leaving group is attached to the compound, allowing for a 

faster reaction.  An example of an activating agent is ethylchloroformate, which is an acyl 

chloride. The acid chloride of the ethylchoroformate attacks the carbonyl group of cholic acid, 

creating a mixed anhydride and hydrochloric acid, which can be removed using triethylamine. 

The mixed anhydride formed is a better leaving group than the carbonyl group so, when 

attacked by an amine, an amide bond will be formed. 

 

Figure 9 Figure to show the mechanism of action of activation of cholic acid by ethylchloroformate, then a further reaction with 

diaminoethane to form a cholic acid amide derviative  

 Other methods of activation include the use of acylimidazoles such as carbonyl diimidazole 

(CDI). This type of coupling allows a 'one pot' amide bond formation, although the reaction 

mechanism is more complicated than that of ethylchloroformate. 
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Figure 10 Figure to show the activation of a carboxylic acid by CDI, then aminolysis with an amine to form an amide. 

1.12.5 COUPLING 

Anhydrides can also be used as coupling compounds. Dicyclohexyl carbodiimide (DCC) can be 

used to form symmetric anhydrides either using heat or by using two equivalents of the acid. 

Using DCC is a two step reaction, as the anhydride has to be formed first, before the amine can 

be added. Multiple water washes will remove any urea formed. 

 

Figure 11 Figure to show the mechanism of action of DCC with a carboxylic acid followed by attack of an amine to form an 

amide bond.



1.13 QUATERNASIONS  

Quaternasions are formed between tertiary amines and alkylating agents. The nitrogen group 

will have a permanent positive charge whereas the halogen will have a negative charge. 

Quaternasions require very simple chemistry and a large library of compounds can be created 

due to the large number of haloalkanes available.  

1.13.1 ANTIMICROBIAL ACTIVITY 

Compounds containing a quaternary ammonium have been shown to have antimicrobial 

qualities to them due to their positive charge (Dhende et al., 2011). Most cell walls are 

negatively charged; for gram negative bacteria, the lipopolysaccharides in its cell wall give it 

the negative charge and for gram positive bacteria the negative charge is formed by the 

peptidoglycan. The positive charge on the quaternised compound disrupts the bacterial cell 

wall, causing lysis and killing the cell (Charnley et al., 2011).  

1.13.2 QUATERNARY AMMONIUM COMPOUNDS 

Quaternary ammonium compounds are synthesised by the alkylation of teriary amines, usually 

by haloalkanes. Haloalkanes are a group of alkylating agents are compounds containing 

halogen groups, for example, methyl iodide.  They are reactive towards nucleophiles and can 

be small, for example, ethyl iodide, or large, for example, iodohexane.  Quaternary ammonium 

cations have a permenant positive charge and when coupled with their anion, they are 

quaternary ammonium compounds or salts (McMurry, 2011).  

.    

 

Scheme 1 Scheme to show the mechanism of action of a quaternastion of an teriary amine with a methyl iodide 

 

The compounds do have some unfavourable health effects however. They can cause irritation 

to both the skin and the respiratory system, and can also cause more extreme symptoms such 

as skin burns and asthma. Quaternary ammonium compounds are used in many different 
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applications, for example, some disinfectants. They are very effective compounds but do have 

disadvantages, especially with prolonged use (Purohit et al., 2000).



1.14. POLYMERISATIONS 

Polymers are large molecule made up of smaller molecules (monomers) in repeating units. 

There are many different polymers beig used today, all with different properties. Copolymers 

are polymers which two or more repeating units which can be arranged in blocks, random, 

grafts or alternating units, all of which can drastically alter the properties of the polymer. The 

sterochemistry of the repeating units can be controlled to give isotactic, where the polymer 

groups are arranged in the same orientation, syndiotactic, where the groups are arranged in 

alternate positions, or atactic polymers, where the groups are placed randomly. All of these 

variants will give the polymers different properties. There is a precedent in literature of using 

bile acids in polymer synthesis due to their rigid, steroid structure which makes them ideal for 

liver drug delivery (Zhu and Nichifor, 2002).  

1.14.1 LINEAR POLYMERS 

Linear polymers are single, long, polymer chains, making them flexible and easy to analyse due 

to their solubility. There is only one carbon-carbon double bond for the initiator to react with. 

Examples of linear polymers are polystyrene and poly (methyl methacrylate). Linear 

copolymers are synthesised by reacting two monomers together to create a polymer with 

different properties. 

In the context of this project, the polymers that are most interesting are generally copolymers 

with vinyl benzyl chloride (VBC) as the point of polymerisation. By attaching VBC to the cholic 

acid derivative, copolymers or monomers can be synthesised. For example, a derivative such 

as the one shown in figure 13 can be synthesised and then polymerised with styrene to give a 

copolymer based on polystyrene.  
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Scheme 2 the linear polymerisation of a polymerisable cholic acid derivative with polystyrene 

By having the cholic acid derivative attached this way, the steroid body of cholic acid is free to 

move about and all three hydroxyls are free to bind with the C.difficile spores. The polymer 

also contains a quaternised nitrogen giving it an antimicrobial element. As the polymer is 

linear, it is soluble so can be easily characterised by various analytical techniques, such as NMR 

spectroscopy.  

1.14.2 CROSS LINKED POLYMERS 

Cross linked polymers are more rigid and are harder to characterise once synthesised. Cross 

linked polymers require at least two polymerisable points on the same compound in order to 

cross link. Cholic acid has three potential polymerisable points- each of its hydroxyl groups. By 

attaching polymerisable groups to these, eg, methacrylates, cross linked polymers can be 

created, either as monomers or copolymers.  

An example of a cholic acid monomer is shown in figure 14. All three hydroxyl groups have 

been reacted on allowing a crosslinked polymer to be synthesised. 

  

 

 

 

Figure 12 Trimethacrylated cholic acid methyl ester 
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Another way to create a crosslinked polymer is to use a crosslinker as the copolymer, for 

example, ethylene glycol dimethacrylate. Here, crosslinking can be achieved and only one 

hydroxyl group on cholic acid needs to be polymerisable. 

 

Scheme 3 Figure to show an example of the polymerisation of a mono-acryoly cholate with EGDMA to form a cross linked 

polymer containing a germinating compound. 

1.14.3 ANTIMICROBIAL POLYMERS 

There are many different types of antimicrobial polymers. Some are specific to a type of 

bacteria whereas others are not. Polymers containing quaternary ammonium compounds 

disrupt the negative charge of the bacteria's cell wall and have been proven to kill bacteria 

upon contact (Charnley et al., 2011). The polymers properties are linked with its antimicrobial 

activity as reviews have found that antimicrobial activity is affected by the length, chemical 

functionality and alkyl spacer of the polymer. Immobilisation of the cationic group of the 

polymer increases its antimicrobial activity. Cross linked polymers generally have a reduced 

antimicrobial activity due to their rigidiness, although it can be increased if the cation chains 

are long and flexible enough to enter the bacterial cell wall.  

 The surface properties of the polymer also affect its antimicrobial activity. The 

hydrophobicity or hydrophillicity of the polymers and its surface charges can affect the way 

the bacteria adhere to the polymer (Gao et al., 2011). As a result of this, a library of novel 

polymers may have to be synthesized in order to achieve an effective antimicrobial polymer. 
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 Antimicrobial polymers can be made in many different ways; the most common way 

shown in the literature is the synthesis of a polymer containing a tertiary nitrogen, then 

quaternisation of the polymer to form a quaternary ammonium compound inside the polymer. 

This method has the advantage of already having the polymer formed before quaternisation 

takes place, therefore avoiding any potential polymerisation issues that may arise from having 

a charged group on a polymerisable compound.  

1.14.4 POLYMERISABLE GROUPS ON HYDROXYLS 

Attaching polymerisable groups on the three hydroxyl groups of cholic acid is well established 

in literature. One of the main ways of attaching a polymerisable group on the bile acid is to use 

methacryloyl chloride. By far the most common procedure for attaching a polymerisable group 

to the hydroxyls is by attaching a methacrylate or acrylate to the C3-OH. There are a few 

variations in the method, but the basic method is dissolve methyl cholate in a solvent, e.g. 

chloroform, add a base (triethylamine) and then to drip methacryloyl chloride in slowly. 

Depending on the temperture and molar equivalents of the methacryloyl chloride, the reaction 

will take place on one, two or all three of the hydroxyls. In order to react just on the C3-OH, 

the most common conditions was putting the solution of methyl cholate and triethylamine on 

ice at 0oC, dripping in the methyacryloyl chloride, then allowing the temperature to return to 

room temperature (Benrebouh et al., 2001, 2000; Zhang et al., 2009, 1998).  

O
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Scheme 4 Scheme to show the methacrylation of the C3-H of methyl cholate 

Denile and Zhu used the same procedure but converted the 3OH to an oxime first, however 

converting it to an amine created a mixture of the 3NH2 stereochemistry. The alpha position 

had a yield of 56% but the authors found it easier to separate the two stereoisomers after it 

was reacted with methacryloyl chloride (yield 60%) (Zhu et al., 1996). Nichifora et al used 

succinic anhydride to create a polymerizable group on the 3OH position. First, however, the 

side chain was manipulated with trichloroethylene. After the reaction was complete, (95% 

yield) the products side chain was converted back into a carboxylic acid with zinc dust and 

acetic acid (Nichifor et al., 2004). Another alternative is using cholic acid, PTSA and 

diisopropylcarbodiiamide as carried out by Zuluaga et al (Zuluaga et al., 1999).  
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1.14.5 POLYMERISABLE GROUPS ON THE SIDE CHAIN OF CHOLIC ACID  

Polymerisation on the side chain is possible too, but it is not as common. Liu et al achieved an 

88% yield for their product by first creating a chain on the tail that terminated in an amino 

group. The amine used was ethylenediamine and a yield of 92% was achieved (Liu et al., 2001). 

The mono-amine derivative was then reacted with acryloyl chloride on ice and left to warm 

and react at room temperature for 24 hours. By carrying out the reaction on ice, the reaction 

was slowed enough to allow the acryloyl chloride to react on the amine and not the hydroxyl 

groups on of cholic acid.Hao et al used cholic acid that had a glycoyl side chain attached to it 

using TEG. They then reacted it with methacryloyl chloride to make a polymerisable tail. Their 

yields were 65%. Hao et al. used the same method but got a yield of 70% (Hao et al., 2009). 

Zhang et al also modified the side chain to an amine before attaching a polymerisable group, 

this time using dimethylamino ethylamine. It was then attached to styrene through a  

methacryolyl group (Zhang et al., 2000).  

1.14.6 POLYMERISATION 

Polymerisation of monomers can be carried out in different ways depending on the desired 

qualities of the polymer. Copolymers (two or more monomers) can allow for the desired 

polymer properties to be more easily achieved.   

1.14.7 FREE RADICAL 

During free radical polymerisation, the polymer is built by a radical initiator molecule. The 

most common way this is achieved is by using azobisisobutyronitrile (AIBN). As it decomposes, 

it releases nitrogen gas to form two 2-cyanoprop-2-yl radicals. These radicals initiate the 

polymerisation, creating both linear and cross linked polymers. Free radical polymerisation is 

usually poorly controlled and are unsuitable if a low molecular weight polymer polymers is 

desired (Davis et al., 1999).  

2

 

Figure 13 Figure to show the initiation of an AIBN free radical through degradation of AIBN 
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The general synthesis of a free radical polymerisation is as follows: 

The required monomer is dissolved in an appropriate solvent, for example, propanol. A 

catalytic amount of an initiator, such as AIBN is added. The experimental container is then 

securely sealed and degassed, before heating to an appropriate temperature. The 

polymerisation can take between 24- 72 hours to complete, where a precipitate usually forms. 

This procedure also works for copolymers.  

 The first published synthesis of the polymerisation of cholic acid was in 1988. It was 

carried out in toluene and used p-toluenesulfonic acid as the catalyst (Li et al., 2008).  

1.14.8 UV ACTIVATION 

UV activation of polymers is again initiated by free radicals, although this time by 

benzophnone molecules. When exposed to UV light, benzophenone molecules are reduced to 

hydroxydiphenylmethyl radicals, which can then initiate polymerisation (Scully et al., 2008). 

Benzophenone can inititiate crosslinking in a range of ethylene polymers, including high 

density polyethylene (Qu, 2002)

UV

 

Figure 14 Figure to show the formation of a benzophenone free radical formed in the presence of UV light 

In some cases, a solvent is needed to produce the radicals, as the benzophenone captures a 

hydrogen atom from the solvent to produce the radicals (Adam and Walther, 1996). When 

using polymers, the benzophenone can extract a hydrogen from the polymer chain to form the 

ketyl (K*) and polymer alkyl radicals (P*) (Qu, 2002).  The amount of UV radiation needed to 

produce the benzophenone radicals is low; Scully et al estimated that the average irradiance of 

their samples was ~5 W/cm3. 

1.14.9 POLYUREATHANES  

Another way to synthese polymers is to use isocyanates to create polyureathanes. 

Polyureathanes are routinely used to make biomedical equipment, such as catheters, artificial 

organs and in drug delivery. They can also be used to create coatings and hard plastics. The 

incorporation of biologically active materials is possible if it has a hydrogen containing group 
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present (Zdrahala and Zdrahala, 1999).  Polyureathanes are prepared by reacting a 

diisocyanate and a diol. The basic mechanism for the reaction is below (McMurry, 2004). 

  

Scheme 5 Scheme to show the mechanism of action for polyureathane formation between 1,4-cyclohexanediol and 

methylenebis (phenyl isocyanate) 

Cross linked polymers are created when there are more than two hydroxyl groups for the 

isocyanate to react with.  

 As polyureathanes are so adaptable, they are idea for the controlled polymerisation of 

molecules which have specific qualities needed. 



1.15 PROJECT HYPOTHESIS 

The hypothesis of this project works on the theory that C. difficile spores can be forced to 

germinate in the presence of certain bile acids in unfavourable conditions. The spores of C. 

difficile are extremely difficult to eradicate and are a growing problem in health care settings. 

Whilst infection control policies have brought down the number of infections since 2007, lack 

of treatment options and resistance of some strains to one of the antibiotics used to treat the 

infection mean that the numbers are tailing off and could start to increase again. The 

vegetative cells of C. difficile are much easier to kill than the spores and they also don't survive 

in an aerobic environment for long. By forcing the germination of the spores in unfavourable 

conditions, the vegetative cells can be more easily killed and the chances of spreading the 

infection is greatly reduced.  

 Quaternary ammonium compounds are known to be antimicrobial against a range of 

different bacteria. Attaching an diamine to the tail of cholic acid, a known C. difficile 

germinant, and then quaternising the amine, a potential germianting and antimicrobial 

compound could be synthesised. By incorporating the compound into a polymer, the polymer 

could be installed in health care settings and help stop the spread of C.difficile spores. This in 

turn could save thousands of lives and decrease the burden of hospital acquired infections on 

the NHS. 

1.15.1 OBJECTIVES 

The objectives of this project are to synthesise and a polymer containing a manipulated cholic 

acid derivative against its germinating ability of C. difficile. In addition to this, a library of 

compounds will be synthesised and tested in order to gain further understandings of the 

germination mechanism of C. difficile.  

1.15.2 AIM 

The aim of this PhD is to synthesis a smart polymer surface which incorporated an 

antimicrobial warhead in the form of a quaternary nitrogen, and cholic acid, a bile acid that 

has shown germinating abilities against Clostridium difficile. The purpose of this polymer is to 

stop the spread of C.difficile spores throughout health care settings by forcing the spores to 

germinate in unfavourable conditions, i.e., surface tops, and then the quaternary nitrogen 

would disrupt the vegetative cells cell wall, causing lysis and death of the cell.  
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 By stopping the spread of the spores, which can live outside the body for months, 

many thousands of lives coud be saved and the risk of acquiring Clostridium Difficile Infection 

(CDI) would be greatly reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. EXPERIMENTAL 

2.1 INSTRUMENTATION 

Proton NMR spectra were obtained on a Bruker AC 250 instrument operating at 250 MHz as 

solutions in CDCl3 and referenced from δCHCl3 = 7.26 ppm unless otherwise stated. Carbon 

NMR spectra were obtained on a Bruker AC 250 instrument operating at 63 MHz as solutions 

in CDCl3 and referenced from δCDCl3 = 77.0 ppm unless otherwise stated.  Infrared spectra 

were recorded as KBr discs on a Mattson 3000 FTIR spectrophotometer or using thermo 

scientific nicolet 1s5 with ATR attachment as a solid sample. Electrospray mass spectrometry 

was carried out on a Waters LCT Premier ToF (Time of flight) mass spectrometer. Electrospray 

mass spectrometry and accurate mass spectrometry was also carried out by the EPSRC 

National Mass Spectrometry Facility in Swansea with a MAT95 magnetic sector. Melting points 

were obtained using a Reichert-Jung Thermo Galan hot stage microscope and are corrected.  

All chemicals were purchased from Sigma Aldrich.  

2.1.1 AMINOLYSIS 

Synthesis of methyl cholate (1) 

Based on a procedure formed by Fieser et al. (Fieser and Rajagopalan, 1950) 

O

O

OHOH

OH

H

H

H H

 

Cholic acid (5.0 g, 12.2 mmol) was added to dry methanol (20 mL). Acetylchloride (0.5 mL, 0.04 

mmol) was added under argon. The solution was heated at reflux for 45 minutes, then left to 

cool. Once at room temperature, the solution was cooled further on ice whereupon crystals 

appeared. The solid material was collected by filtration and washed with small amounts of 

methanol to give methyl cholate as a white solid. It was dried at room temperature under 

vacuum to give a white solid. 

Yield= 3.548g (68.9%) 

TLC: (MeO, Rf=0.86 (single spot) 

http://www.nmssc.ac.uk/instruments.html#4
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Melting point= 110.8-111.9 oC 

1H NMR (CDCl3) δ ppm: 0.67 (s, 3H, Me-18), 0.88 (s, 3H, Me-19), 0.99 (d, J= 6.0 Hz, 3H, Me-21), 

1.0-2.43 (m steroid structure) 2.49 (s, 1H, H-C-C=O), 3.47 (s, 1H, H-C-OH), 3.66 (s, 1H, CH-3), 

3.84 (d, 1H, CH-7), 3.95 (s, 1H, CH-12) ppm 

13C NMR (CDCl3) δ 174.77(C=O), 73.26 (C12), 68.66 (C7), 52.67 (C3), 51.50 (CH3), 50.33, (47.05, 

46.44, 41.82, 39.47, 39.01, 35.24, 34.70, 31.06, 29.86, 28.17, 27.45, 26.60, 23.17 steroid 

structure) 22.44 (C19), 17.31 (C21), 12.49 (C18) ppm 

MS (+APCI) m/z= 482 (M+) 

IR ν = 3399 (OH), 2921, 2869, 1739 (C=O), 1449 cm-1 

Synthesis of cholic acid benzyl amide (2) 

 

NH

O

OHOH

OH

H

H

H H

 

Method 1. Cholic acid ( 1 g, 2.44 mmol) was dissolved in DMF (10 ml) under argon. Once the 

cholic acid had dissolved, diisopropylethylamine (1.7 ml, 9.6 mmol) and disuccinimidyl 

carbonate (0.7 ml, 2.7 mmol) was added and the reaction was left to stir at room temperature 

for 19 hours. Benzyl amine (0.5 ml, 4.88 mmol) was added to the solution. After a hour, a 

white solid had precipitated. The solid product was collected by vacuum filtration and washed 

with DMF. The product was dried at room temperature under vacuum to give a yellow solid.  

Yield= 0.142 g ( 14.2 %)   

Method 2. Methyl cholate ( 1 g, 2.3 mmol) was placed into a stainless steel pressure vessel 

along with benzyl amine (1.3 mL, 12.2 mmol) and toluene (5 mL). The pressure vessel was 

placed into an oil bath and heated to 150oC for 48 hours. The pressure vessel was left to cool 

before dismantling it. The solution was poured into a round bottomed flask and placed on ice. 

The solid product was then collected by filtration and dried at room temperature under 

vacuum. The material was recystallised from ethanol / water to give a white, powdery solid 

which was dried at room temperature under vacuum under vacuum. 
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Yield= 0.341g (34.1%) 

TLC: (MeOH/DCM 5/1), Rf=0.53 (single spot) 

Melting point= 114.1-114.7 oC 

1H NMR (Methanol -d4) δ ppm: 0.69 (s, 3H, Me-18), 0.91 (s, 3H, Me-19), 1.02 (d, J= 6.5 Hz, 3H, 

Me-21), 1.0-2.439 (m, steroid structure) 3.36 (m, J=3.4 Hz, 1H, CH-3), 3.78 (s, 1H, CH-7), 3.94 (s, 

1H, CH-12), 4.35 (d, 2H, J= 1.9 Hz PH-CH2), 7.29 (m, J= 6.2Hz, 6H, aromatic ring) ppm 

13C NMR (CDCl3) δ 219.45, 218.76, 173.58 (C=O), 154.31 (aromatic ring), 128.69 (aromatic ring), 

127.85 (aromatic ring), 127.48 (aromatic ring), 125.07 (aromatic ring), 76.51 (C12), (43.61, 

41.92, 39.51, 35.26, 34.69 steroid structure), 26.58 (C19), 17.44 (C21), 12.54 (C18) ppm 

 

MS (+APCI) m/z=Found 497.3578; calculated for C31H48N1O4 497.71; -1.4 ppm 

IR ν = 3411, 2917, 1644 (C=O), 1540, 1457 cm-1 

Synthesis of N-(4-aminobutyl) cholanamide (3) 

NH

O

OHOH

OH

H

H

H H

NH2

 

Methyl cholate (1 g, 2.3 mmol) along with 1,4-diaminobutane (1,4-DAB) (10 mL) was put into a 

stainless steel pressure vessel and tightly secured. It was placed into an oil bath and heated to 

150oC for 48 hours. The pressure vessel was left to cool to room temperature before 

dismantling it. 30mL chloroform was added to dissolve the product and excess 1,4-DAB which 

was then poured into a round bottomed flask. The chloroform was taken off using a rotary 

evaporator and the 1,4-DAB was taken off under reduced pressure rotary evaporation. 

Dichloromethane (90 mL) was added to precipitate the product. The yellow solid was collected 

by filtration and dried at room temperature under vacuum. 

Yield: 0.3 g, (30.14%)  

TLC: (MeOH/DCM 1/5, Rf=0.14 (single spot) 

Melting point: 116.4-124.5 oC 
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1H NMR (CDCl3) δ ppm: 0.68 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 1.00 (d, J= 6.3Hz, 3H, Me-21) 

1.0-2.43 (m ,steroid structure) 1.22 (dd, J-14.1, 8.5Hz, CH) 2.71 (s, CH2) 3.28 (m, 1H, CH-3) 3.86 

(s, 1H, CH-7)  3.98 (s, 1H, CH-12) ppm 

13C NMR (DMSO) δ 172.43 (C=O), 107.85, 70.97 (C12), 66.20 (C7), (46.08, 45.70, 41.35, 40.17, 

39.84, 37.97, 35.65, 35.13, 34.87, 34.36, 28.55, 27.51, 27.25, 26.42, 26.20, 22.81, 22.60 steroid 

ring), 41.71 (CH2),  40.51(CH2), 30.38(CH2), 20.75 (C19), 19.52 (C21), 17.10, 12.31 (C18). ppm 

 

MS (+APCI) m/z= Found  478.3849; calculated for C28H50N2O4 478.3771; -1.0 ppm 

IR  (KBr) ν = 3274, 2935, 2898, 2865, 2831, 1736, 1669 (C=O), 1548 cm-1 

Synthesis of N-[2-(2-aminomethylamino)ethyl] cholanamide (4) 

NH

O

OHOH

OH

H

H

H H

NH
NH2

 

Methyl cholate (0.5 g, 1.15 mmol) along with  diethylenetriamine (2 mL) was put into a round 

bottomed flask under argon. It was placed into an oil bath and heated to 95 oC for 48 hours. 

The flask was left to cool to room temperature. Aceonitrile (15 mL) was added to precipitate 

the product which was then collected by filtration. The product was purified by solvent 

extraction between water and chloroform. The chloroform was evaporated under reduced 

pressure. The solid was dried at room temperature under vacuum. 

Yield=0.09 g (18%) 

TLC: (MeOH) Rf=0.1 (dominant spot), 0.35 (two spots) 

Melting point: 205.6-206.8 oC 

1H NMR (CDCl3) δ ppm: 0.66 (s, 3H, Me-18) 0.87 (s, 3H, Me-19) 0.9 (d, J=6.0Hz, 3H, Me-21) 1.0-

2.44 (m, steroid structure) 2.69 (d, J=5.9Hz, CH2) 2.75-2.88 (m, NH) 3.35 (s, MeOH) 3.47 (m, 1H, 

CH-3)  3.69 (m, impurity) 3.83 (s, 1H, CH-7) 3.94 (s, 1H, CH-12) 7.01 (s, 1H, NH2) ppm 

13C NMR (DMSO) δ ppm: 172.59 (C=O), 70.98 (C12), 70.41 (C3), 66.22 (C7),( 45.70, 41.50, 

41.32, 40.49, 40.16, 35.28, 34.35, 32.44, 31.57, 30.38, 28.53, 27.28, 26.18 steroid ring), 22.58 

(C19), 17.08 (C21), 12.32 (C18) ppm 
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MS (+APCI) m/z= Found 493.3958; calculated for C29H53N3O4 493.3880; 0.6 ppm 

IR  (KBr) ν = 3253, 2929, 2865, 1751, 1648 (C=O), 1557 cm-1 

Synthesis of N-[3-(cyclohexylamino)propyl] cholanamide(5) 

NH

O

OHOH

OH

H

H

H H

NH

 

Methyl cholate (2 g, 4.6 mmol) along with cyclohexyl-1,3-propanediamine (4.08 mL) was added 

to a round bottomed flask under nitrogen. The flask placed in a oil bath at 95 oC for 48 hours 

before raising the temperature to 120 oC for 12 hours. The flask was allowed to cool before 

chloroform (30 mL ) was added to dissolve the product. Solvent extraction between 

chloroform (30 mL) and water (30 mL) removed any excess amine. This was repeated three 

times. The chloroform layer was dried over magnesium sulphate and evaporated under 

reduced pressure to give a solid that was recrystallized from chloroform-petrol 60-80. 

 Yield = 1.2 g (60%) 

Melting point: 104.5-105.8 oC 

1H NMR (CDCl3) δ ppm: 0.67 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 0.98 (d, J= 7.5 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 2.61- 2.79 (m, ring) 3.26 (m, 1H, CH-3) 3.43 (m, 1H, NH) 3.84 (s, 

1H, CH-7) 3.97 (s, 1H, CH-12) ppm 

13C NMR (CDCl3) δ ppm: 173.94 (C=O), 71.85 (C12), 68.27 (C7), 56.87 (CH),( 46.51, 41.49, 40.08, 

39.58, 38.83, 35.38, 31.74, 31.62, 30.41, 29.08, 28.17, 27.61, 26.43 (CH), 26.10 steroid ring), 

45.30 (CH2), 40.68 (CH2), 25.11 (CH), 34.80 (CH), 33.12 (CH), 23.31, 22.69, 22.51 (C19), 17.57 

(C21), 14.17, 12.50 (C18), 11.48 ppm 

MS (+APCI) m/z= Found 546.4475; calculated for C33H58N2O4 546.4397; 0.4 ppm 

IR (KBr) ν = 3265, 3068, 2919, 2853, 1648 (C=0), 1554 cm-1 
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2.1.2 COUPLING  CHOLIC ACID 

Coupling of cholic acid with ethylchloroformate and various amines 

General procedure for the coupling of cholic acid to primary and secondary amines  

Cholic acid (0.5 g, 1.2mmol) was dissolved in THF (30 mL) along with triethylamine (2.9 mL, 0.3 

mmol). The solution was put on ice for 10 minutes before ethylchloroformate (0.13 mL, 0.013 

mmol) was dripped in over 10 minutes. The solution was allowed to react for two hours at 

room temperature.  The required amine (1.2 mmol) was added and left to react for 3 hours. 

The reaction was quenched with water (30 mL). The mixture was washed with water (3 x 30 

mL). The organic layer was dried over magnesium sulphate and the solvent was evaporated 

under reduced pressure.  Solvent extraction between water and ethyl acetate was preformed 

3 times before the organic layer was removed on the rotary evaporator. The product was dried 

at room temperature under vacuum. 

Synthesis of N-[3-(cyclohexylamino)propyl] cholanamide (6) 

NH

O

OHOH

OH

H

H

H H

NH

 

The procedure was followed as the above with the exception of the removal of the two hour 

wait before adding the amine. Cyclohexylpropanediamine (0.24 mL, 1.56 mmol) added in one 

portion. The crude material was purified by flash chromatography eluting with methanol. 

Yield = 0.36 g (72%) 

TLC: (MeOH/EtOAc 1/3, Rf=0.23 (dominant spot), 0.89 (two spots) 

Melting point: 104.5-105.9 oC 

1H NMR (CDCl3) δ ppm: 0.67 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 0.98 (m, 3H, Me-21) 1.0-2.439 

(m, steroid structure) 2.61- 2.79 (m, ring) 3.17 (d, J= 5.0 Hz, 6H, 3CH2) 3.43 (m, 1H, CH-3) 3.64 

(s ,1H, CH-7) 3.77 (s, 1H, CH-12) 3.87 (s, 2H, CH2-ring) 3.97 (s, 2H, CH2-ring) 4.01 (s, 2H, CH2-CH) 

4.10 (d, J= 2.5 Hz, 2H, CH2-CH) 4.33 (d, J=2.5 Hz, 1H, CH-NH) 7.07 (m, 1H, NH-C=O) 7.77 (m, 1H, 

NH-ring) ppm 



73 
 

13C NMR (CDCl3) δ ppm: 173.94 (C=O), 73.08 (12), 71.85 (C3), 68.27 (C7), 56.87 (CH), (46.51, 

41.49, 40.08, 39.58, 38.83, 35.38, 31.74, 31.62, 30.41, 29.08, 28.17, 27.61, 26.10 steroid ring), 

45.30 (CH2), 40.68 (CH2), 34.80 (CH2), 33.12 (CH2), 26.43 (CH), 25.11 (CH), 23.31, 22.69, 22.51 

(C19), 17.57 (C21), 14.17, 12.50 (C18), 11.48 ppm 

MS (+APCI) m/z= Found 547.4461; calculated for C33H59N2O4 547.4469; -1.5 ppm 

IR  (KBr) ν = 3265, 3068, 2919, 2853, 1648 (C=O), 1554 cm-1 

Synthesis of N-[3-(dibutylamino)propyl] cholanamide (7) 

NH

O

OHOH

OH

H

H

H H

N

 

The procedure was followed as above with 3-dibutylaminopropylamine (0.22 mL, 1.18mmol) . 

Purification of the crude product was done dissolving the product in ethyl acetate (10 mL), 

removing solid impurities by filtration followed by removing the organic solvent. The product 

was dried at room temperature under vacuum. 

Yield= 0.82 g  

TLC: (MeOH/EtOAc 1/4, Rf=0.25 (single spot) 

Melting point: 145.1-145.9 oC 

1H NMR (CDCl3) δ ppm: 0.65 (s, 3H, Me-18) 0.88 (s, 3H, Me-19) 0.89- 0.97 (m, Me-21) 1.0-2.439 

(m, steroid structure) 2.44 (m,butyl chain) 2.55 (m, butyl chain) 3.33 (m, propyl chain) 3.44 (m, 

1H, CH-3) 3.84 (s, 1H, CH-7) 3.97 (s, 1H, CH-12) 7.43 (m, 1H, NH) ppm 

MS (+APCI) m/z= 577.4931 

IR  (KBr) ν = 3299, 3089, 2919, 2853, 2358, 1727, 1642 (C=O), 1545, 1463 cm-1 
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Attempted Synthesis ofN-[3-(dimethylamino)propyl] cholanamide (8) 

N

O

OHOH

OH

H

H

H H

 

The procedure was followed as above with diethylamine (0.12 mL, 1.6 mmol). The product was 

found to contain at least four components as judged by TLC. 

Attempted synthesis of 1-(4-butylpiperazine-1-yl) cholanone (9) 

O

OHOH

OH

H

H

H H

N

N

 

The procedure was followed as above with butyl piperazine (0.3 mL, 2.1 mmol). The product 

was found to contain at least three components as judged by TLC. 

 

Synthesis of N-(2-pyrrolidin-1-ylethyl) cholanamide (10) 

NH

O

OHOH

OH

H

H

H H

N

 

The procedure was  followed as above with 1-(2-aminoethyl) pyrrolidine (0.21 mL, 1.8 mmol).  

Yield= 0.74 g (74%) 

TLC: (MeOH/EtOAc 1/1, Rf=0.18 (single spot) 
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Melting point: 96-97.1 oC 

1H NMR (CDCl3) δ ppm: 0.68 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 1.00 (d, J= 6.2Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 2.23 (d, J=12.1 Hz, CH2-ring) 2.64 (s 2H, CH2-NH) 3.44 (m 1H, CH-

3) 3.84 (s, 1H, CH-7) 3.96 (s, 1H, CH-12) 6.40 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 172.45 (C=O), 79.14, 70.98 (C12), 66.21 (C7), 55.02 (CH2), 53.58 (CH2 

ring), (46.12, 45.70, 41.49, 37.81, 35.13, 34.35, 32.51, 31.70, 26.18 steroid ring), 41.34 (CH2) 

23.08 (CH2 ring), 22.59 (C19), 17.07 (C21), 12.30 (C18) ppm 

MS (+APCI) m/z= Found 505.3993; calculated for C30H53N2O4 505.4000; -1.4 ppm 

IR  (KBr) ν = 3287, 2929, 2862, 2155, 1642 (C=O) cm-1 

Attempted synthesis of 1-(4-phenylpiperazin-1-yl) cholanone (11) 

 

The procedure was followed as above with 4-aminomethylpiperidine (0.23 mL, 2.0 mmol). The 

product was found to contain at least four components as judged by TLC. 

Synthesis of N-[3-(dimethylamino)propyl] cholanamide(12) 

NH

O

OHOH

OH

H

H

H H

N

 

The procedure was followed as above with 3-(dimethylamino)-1-propylamine (0.18 mL, 1.76 

mmol).  

Yield= 0.62 g (62%) 

TLC: (MeOH/EtOAc 1/1), Rf=0.1 (single spot) 

Melting point: 163.2-164.0 oC  
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1H NMR (CDCl3) δ ppm: 0.67 (s, 3H, Me-18) 0.87 (s, 3H, Me-19) 0.97 (d, J= 6.2 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 2.21 (m, CH2-NH) 2.33 (s, 6H, 2CH3) 3.30 (m, J=5.7Hz, 1H) 3.82 

(s, 1H, CH-7)  3.96 (s, 1H, CH-12) 6.97 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 176.07 (C=O), 70.99 (C12), 70.41 (C3), 66.23 (C7), 56.42 (CH3), (46.25, 

44.96, 41.50, 41.31, , 40.14, 35.25, 34.84, 34.36, 32.61, 30.38, 28.51, 27.30, 26.77, 26.17 

steroid ring), 45.72 (CH3), 40.47 (CH2), 31.52 (CH2), 22.80, 22.58 (C19), 17.04 (C21), 12.34 (C18) 

ppm 

MS (+APCI) m/z= Found 493.3994; calculated for C29H53N2O4 493.4000; -1.2 ppm 

IR  (KBr) ν = 3387, 2932, 2862, 2209, 1991 cm-1  

 

Synthesis of N-(1-phenyl-4-piperidyl) cholanamide (13) 

NH

O

OHOH

OH

H

H

H H
N

 

 

The procedure was followed as above with 4-amino-1-benzylpiperidine (0.34 mL, 1.79 mmol).  

Yield= 0.88 g  

TLC: (MeOH/EtOAc 1/1), Rf=0.68 (single spot) 

Melting point: 79.9-86.5 oC  

1H NMR (CDCl3) δ ppm: 0.67 (s, 3H, Me-18) 0.89 (s 3H, Me-19) 0.99 (d, J= 6.1 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 2.83 (d, J=11.9Hz, CH-NH) 3.43(m, 1H, CH-3) 3.48 (d, J=3.2Hz, 

CH-NH) 3.83 (s, 1H, CH-7) 3.96 (s, 1H, CH-12) 5.72 (d, J=8.0Hz, 1H) 7.317 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 171.78 (C=O), 138.72, 138.63, (128.65, 128.09, 126.77 aromatic ring), 

70.98 (C12), 70.41 (C3), 66.21 (C7), 62.15, 51.97, 51.87, (46.12, 45.71, 41.50, 41.33, 40.51, 

40.32, 40.17, 35.29, 35.11, 34.85, 34.36, 32.59, 31.73, 31.62, 30.39, 28.53, , 22.77 steroid ring), 

27.27 (CH2 ring), 26.19 (CH2 ring) 22.59 (C19), 17.12 (C21), 14.63, 12.31 (C18) ppm 

MS (+APCI) m/z= Found 519.4138; calculated for C36H57N2O4 581.4313. -61= benzene ring 
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IR (KBr) ν = 3279, 3006, 2925, 2810, 2358, 2162, 1782, 1646 (C=O), 1513 cm-1 

 

Synthesis of 1-(3-phenylimidazolidin-1-yl) cholanone (14) 

 

The procedure was followed as above with 1-(4-pyridyl)piperazine (0.24 g, 1.5 mmol). 

Yield= 0.523 g  

TLC: (MeOH/EtOAc 1/1,) Rf=0.32 (dominant spot), 0.85 (two spots) 

Melting point: 139.6-141.2 oC  

1H NMR (CDCl3) δ ppm: 0.68 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 0.98 (d, 3H, Me-21) 1.0-2.43 (m 

steroid structure) 2.26 (m, 1H, CH) 3.63 (m, 1H, CH-3) 3.85 (m, 1H, CH-7) 3.98 (s, 1H, CH-12) 

4.12 (d, J=6.95 Hz, 2H, CH2-N) 6.55 - 6.81 (m, 2H, CH2-N) 8.12 - 8.45 (m, 2H, aromatic ring) ppm 

13C NMR (DMSO) δ ppm: 173.30 (C=O), 171.33, 154.17, 149.80, 108.29, 99.48, 71.02 (C12), 

70.41 (C3), 66.21 (C7), 59.58, (45.74, 45.74, 45.12, 40.47, 40.14, 35.27, 34.96, 34.35, 30.70, 

30.37, 28.49, 26.17 steroid rings), 27.27 (CH2 ring) 22.77, 22.59 (C19), 17.17, 16.87 (C21), 

14.11, 12.28 (C18) ppm 

MS (+APCI) m/z= Found 454.3528; calculated for C33H51N3O4 553.387. MI-N(Ph)-NCH2CH2 

IR  (KBr) ν = 3396, 3250, 2929, 2859, 2158, 1724, 1593, 1515 cm-1 
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Synthesis of 1-[4-(2-hydroxyethyl)piperazin-1-yl] cholanone (15) 

O

OHOH

OH

H

H

H H

N

N

OH

 

The procedure was followed as above with 1-(2-hydroxyethyl)piperazine (0.2 mL, 1.5 mmol).  

Proton NMR analysis showed excess of amine present. 

Yield= 0.4 g (80%) 

Melting point: 167.8-168.1 oC  

1H NMR (CDCl3) δ ppm: 0.70 (s, 2H, Me-18) 0.90 (s, 2H, Me-19) 1.10 (d, J= 5.3Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 2.50-2.63 (m, CH-N) 3.48 (m, J=4.9 1Hz, CH-3 and CH) 3.64 (d, J= 

5.3Hz, CH-N) 3.86 (s, 1H, CH-7) 3.98 (s, 1H, CH-12) ppm 

13C NMR (DMSO) δ ppm: 170.97 (C=O), 154.56, 71.00 (C12), 70.40 (C3), 66.22 (C7), 60.61, 

60.12 (CH2), 58.43 (CH2), 52.93 (CH2 ring), 52.80, (46.08, 43.29, 41.48, 35.26, 35.21, 34.83, 

34.35, 31.19, 30.39, 29.48, 28.47, 27.29, 26.17 steroid ring), 45.74 (CH2 ring), 22.81, 22.59 

(C19), 17.14 (C21), 14.54, 12.32 (C18) ppm 

 
MS (+APCI) m/z= 521.3943 

IR  (KBr) ν = 3617, 3414, 2916, 2853, 2810, 1687 (C=O), 1624 cm-1 

 

Synthesis of N-octadecylcholanamide(16) 

O

OHOH

OH

H

H

H H

NH

 

The procedure was followed as above with octadecylamine (0.8 g, 2.9 mmol).  Further 

purification carried out using solvent extraction (x 3)between THF/water (30 mL) and 

chloroform (30 mL). The organic layer was dried over magnesium sulphate and the solvent was 



79 
 

evaporated under reduced pressure. The product was dried at room temperature under 

vacuum. 

Yield= 0.922 g (90%) 

Melting point: 83.6-84.4 oC 

1H NMR (CDCl3) δ ppm: 0.66 (s, 3H, Me-18) 0.87 (d, J= 3.4Hz, 3H, Me-19) 0.97 (d, J= 5.9Hz, 3H, 

Me-21) 1.0-2.43 (m, steroid structure) 1.23 (s, 37H, CH2-chain) 3.2 (q, J= 7.3, 6.8Hz, CH2-N) 3.43 

(m, 1H, CH-3) 3.83 (s, 1H, CH-7) 3.96 (s, 1H, CH-12) 5.56 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 172.90 (C=O), 172.43, 70.98 (C12), 70.40 (C3), 66.21 (C7), 56.68, 

(46.15, 45.68, 45.08, 41.48, 36.68, 35.12, 34.35, 31.75, 31.26, 30.34, 29.02, 28.67, 27.13, 26.18 

steroid ring), 22.79 (CH2), 22.59 (CH2), 22.57 (C19), 22.06, 17.08 (C21), 13.92 (CH2), 12.31 (C18) 

ppm 

MS (+APCI) m/z= Found 660.5923; calculated for C42H77N1O4 660.5925; -0.4ppm 

IR  (KBr) ν = 3299, 2916, 2847, 1648 (C=O), 1642 cm-1 

 

Synthesis of N-benzylcholanamide (17) 

O

OHOH

OH

H

H

H H

NH

 

The procedure was followed as above with benzylamine (0.12 mL, 1.1 mmol). The product was 

recrystallised in dichoromethane. 

Yield= 0.378 g (74.6%) 

Melting point= 114.1-114.7 oC 

1H NMR (Methanol -d4) δ ppm: 0.69 (s, 3H, Me-18), 0.91 (s, 3H, Me-19), 1.02 (d, J= 6.3Hz, 3H, 

Me-21), 1.0-2.43 (m, steroid structure) 3.36 (m, 1H, CH-3), 3.78 (s, 1H, CH-7), 3.94 (s, 1H, CH-

12), 4.35 (d, J= 1.9 Hz, 2H, CH2-NH), 7.29 (m,  J= 6.2Hz, 6H, aromatic ring) ppm 
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13C NMR ( DMSO) δ ppm: 172.55 (C=O),( 139.77, 128.17, 127.06, 126.60 aromatic ring), 70.97 

(C12), 70.41 (C3), 66.20 (C7), (46.15, 45.71, 41.89, 40.49, 40.16, 35.28, 35.09, 34.86, 34.36, 

34.36, 32.49, 31.77, 30.38, 28.53, 27.30, 26.18 steroid ring), 22.61 (C19), 17.06 (C21), 12.31 

(C18) ppm 

MS (+APCI) m/z= Found 498.3569; calculated for C31H47N1O4 498.3578; -1.8 ppm 

IR ν = 3411, 2917, 1644, 1540, 1457 cm-1 

 

Synthesis of 2-cholanamidobenzamide (18) 

 

The procedure was followed as above with 2-aminobenzomide (0.5 g, 3.7 mmol). Further 

seperation of the crude product to purify it was carried out with sodium hydrogen carbonate 

(30 mL) and 2M hydrochloric acid (30 mL). The organic layer was dried over magnesium 

sulphate and the solvent was evaporated under reduced pressure. The product was dried at 

room temperature under vacuum. 

Melting point: 103-104 oC  

1H NMR (CDCl3) δ ppm: 0.69 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 1.03 (d, J= 6.0Hz, 3H, Me-21) 

1.0-2.43 (m steroid structure) 2.10 (s, impurity, acetic acid) 3.47 (m, J=7.9Hz, 1H, CH-3) 3.84 (s, 

1H, CH-7) 3.98 (s, 1H, CH-12) 6.25 ( s, 4H, NH2) 7.07 (m, ring) 7.52 (d, J= 8.3Hz, ring) 8.62 (d, J= 

8.4Hz, 1H, NH) 11.10 (s) ppm 

13C NMR (CDCl3) δ ppm: 176.74, 176.03 (C=O), (145.05, 137.37, 133.74, 124.55 aromatic ring), 

71.47 (C12), 51.28, 51.00, (46.75, 46.58, 45.75, 45.42, 45.09, 44.75, 44.42, 44.09, 43.75, 40.29, 

39.61, 31.43, 27.84 steroid ring), 22.27 (C19), 17.56 (C21) ppm 

MS (+APCI) m/z= Found 527.3473; calculated for C31H46N5O5 527.3479; -1.2 ppm 
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IR  (KBr) ν = 3350, 3220, 2932, 2865, 1721, 1660 (c=C=O), 1612, 1581 cm-1 

 

Synthesis of N-(4-benzoylphenyl)cholanamide (19) 

O

OHOH

OH

H

H

H H

NH

O

 

The procedure was followed as above with 4-aminobenzophenone (0.23 g, 1.17 mmol). 

Yield= 0.1270 g (25.4%) 

Melting point:  125.8-127.6 oC 

1H NMR (CDCl3) δ ppm: 0.70 (s, 3H, Me-18) 0.90 (s, 2H, Me-19) 1.02 (d, J= 6.3Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 3.48 (m, 1H, CH-3) 3.86 (s, 1H, CH-7) 3.99 (s, 1H, CH-12) 7.37-

7.65 (m, 6H, ring) 7.65-7.91 (m, 6H, ring) 8.25 (s, 1N, NH) ppm 

13C NMR (DMSO) δ ppm: 194.48 (C=O), 172.42 (C=O), (143.55, 137.59, 132.14, 131.11, 130.99, 

129.30, 128.43, 118.16 aromatic rings), 66.21 (C7), (45.72, 40.50, 40.17, 39.84, 39.50, 39.17, 

38.84, 38.50, 35.27, 35.12, 34.36, 34.36, 33.56, 31.29, 30.39, 28.54, 27.31, 26.20 steroid ring), 

22.60 (C19), 17.13 (C21), 12.34 (C18) ppm 

MS (+APCI) m/z= Found 587.3684; calculated for C37H50N1O5 587.36; -0.6ppm 

IR  (KBr) ν = 3317, 3098, 2932, 2865, 1967, 1645, 1584, 1521 cm-1 

 

Synthesis of N-(4-vinylphenyl)acetamide (20) 

O

OHOH

OH

H

H

H H

NH
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The procedure was followed as above with 4-vinyl aniline (0.42 mL, 3.5 mmol). Further 

purification with washing product dissolved in ethyl acetate (30 mL) with 2M HCl (30 mL) four 

times. The organic layer was dried over magnesium sulphate and the solvent was evaporated 

under reduced pressure. The product was dried at room temperature under vacuum. Proton 

NMR anaylsis showed the product contained excess 4- vinyl aniline. 

TLC: (MeOH/EtOAc 1/1), Rf=0.95 (single spot) 

1H NMR (CDCl3) δ ppm: 0.69 (s, 3H, Me-18) 0.90 (s, 3H, Me-19) 1.02 (d, J= 6.0Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 2.36 (s) 2.62 (s) 3.47 (m, 1H, CH-3) 3.87 (s, 1H, CH-7) 3.99 (s, 1H, 

CH-12) 5.18 (d, J= 11.5Hz, 1H, CH) 5.67 (d, J=18.0Hz, 1H, CH) 6.61 (dd, 1H, NH) 7.36 (d, 

J=5.4Hz,aromatic) 7.52 (d, J=8.5Hz, aromatic) ppm 

13C NMR (DMSO) δ 171.74 (C=O), (153.40, 139.14, 138.93, 131.73, 131.22, 128.96, 128.86, 

128.17, 126.58, 126.47, 125.28, 118.85, 117.95, 112.28 aromatic ring, with excess 4-vinyl 

aniline) ,( 137.30, 136.16, 112.46 C=C), 70.95 (C12), 70.40 (C3), 66.19 (C7), 60.14, (46.06, 45.69, 

41.46, 41.34, 40.42, 40.09, 35.27, 35.16, 34.85, 34.35, 33.43, 31.43, 30.35, 28.53, 27.28, 26.16 

steroid ring), 22.78, 22.59 (C19), 21.02, 17.11 (C21), 14.48, 12.33 (C18), 10.94 ppm 

MS (+APCI) m/z= Found 510.3570; calculated for C32H48N1O4 510.3578; -1.5 ppm 

IR (KBr) ν = 3429, 3296, 3101, 3044, 2929, 2868, 2364, 1672 (C=O), 1587, 1521, 1508, 1460  

cm-1 

Synthesis of N-(2-dimethylaminoethyl)cholamide (21) 

O

OHOH

OH

H

H

H H

NH

N

 

The procedure was followed as above with cholic acid (5 g, 12.2 mmol),  triethylamine (2.9 mL, 

28.7 mmol), ethylchloroformate (1.3 mL, 12 mmol) and dimethylethylenediamine (1.3 mL, 14.7 

mmol).  

Yield=3.2185 g (64 %) 
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Melting point: 181-182.2 oC 

1H NMR (CDCl3) δ ppm: 0.66 (s, 3H, Me-18) 0.87 (s, 3H, Me-19) 0.98 (d, J=6.0Hz, 3H, Me-21) 

1.0-2.43 (m steroid structure) 2.37 (s, 6H, 2CH3) 2.62 (t, 2H, NH-CH2) 3.39 (d, J=5.7Hz, N-CH2 

plus CH-3) 3.81 (s, 1H, CH-7) 3.94 (s,  1H, CH-12) 7.17 (s, 1H, NH) ppm 

13C NMR (CDCl3) δ ppm:218.02, 178.14, 174.59 (C=O), 73.01, 71.80 (C12), 68.37 (C7), 57.82 

(CH2), (46.54, 46.49, 44.98, 44.63, 41.69, 39.73, 39.59, , 35.62, 35.49, 34.87, 33.15, 31.75, 

30.62, 28.30, 27.70, 26.42 steroid ring), 36.26 (CH3), 23.39, 23.32, 22.58 (C19), 17.55 (C21), 

14.73, 12.53 (C18) ppm 

MS (+APCI) m/z= Found 479.3835; calculated for C28H50N2O4 479.3843 -1.7ppm  

IR (KBr) ν = 3484, 3250, 3074, 2925, 2865, 1715, 1633, 1551 cm-1  

 

7.1.3 INVERSE ADDITIONS 

 

Attempted synthesis of N-(2-anilinoethyl)-N-phenyl-cholamide (22) 

N

O

OHOH

OH

H

H

H H

NH

 

Cholic acid (0.5 g, 1.2 mmol) was dissolved in dry THF (20 mL) along with 4-methylmorpholine 

(0.28 mL, 3 mmol). The mixture was put in ice for 10 minutes before ethylchloroformate (0.13 

mL, 1.0 mmol) was dripped in over 10 minutes. The mixture was allowed to react for 20 

minutes at room temperature. In a separate flask, dibenzylethylenediamine  (1.2 mL, 4.9 

mmol)  was dissolved in  dry THF (5 mL). The mixed anhydride solution was placed into a 20mL 

syringe and dripped into the amine solution over 20 minutes. The reaction was left at room 

temperature for 48 hours. Water (25 mL) was added to precipitate the product. The solid was 

collected by filtration and dissolved in water before solvent separation (x 3) with ethyl acetate 

(30 mL). The organic solvent was dried with magnesium sulphate and removed under reduced 

pressure. Re-crystallisation was attempted in water (10 mL) but TLC analysis in 80/20 

chloroform/water showed 4 spots. 
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Attempted synthesis of N-methyl-N-[2-(methylamino)ethyl] cholamide (23) 

N

O

OHOH

OH

H

H

H H

NH

 

Cholic acid (0.5 g, 1.2 mmol) was dissolved in dry THF (20mL) along with 4-methylmorpholine 

(0.28 mL, 3.0 mmol). The mixture was put in ice for 10 minutes before ethylchloroformate 

(0.13 mL, 1.0 mmol) was dripped in over 10 minutes. The mixture was allowed to react for 20 

minutes at room temperature. In a separate flask, dimethyl-1,3-propanediamine (0.6 mL, 7.1 

mmol) was dissolved in  dry THF (5 mL). The mixed anhydride solution was placed into a 20mL 

syringe and dripped into the amine solution over 20 minutes. The reaction was left at room 

temperature for 48 hours. Water (25 mL) was added to quench the reaction before solvent 

separation (x 3 ) with ethyl acetate (30 mL). The organic solvent was dried with magnesium 

sulphate and removed under reduced pressure. TLC analysis in 80/20 chloroform/water 

showed 3 spots. 

 

2.2 QUATERNISATIONS 

 

Each cholic acid derivative was dissolved in either chloroform or dichloromethane along with a 

tenfold excess of the alkylating agent. The mixtures were left at room temperature for 4-48 

hours. Upon the precipitation of the product, the solid was collected by filtration and washed 

with solvent, dried and purified if necessary.  

 

Synthesis of 3-cholanamidopropyl(trimethyl)ammonium; iodide (24) 

O

OHOH

OH

N
H

N
+

I
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N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1.0 mmol) was dissolved in  DCM (25 

mL) along with methyl iodide (1.4 mL, 4.3 mmol). The reaction was left for 48 hours where 

upon a yellow solid formed. The solid was collected by filtration and washed with chloroform 

(10 mL) before drying at room temperature under vacuum. 

Yield= 0.18 g (36%) 

TLC: (MeOH), Rf=0.05 (single spot) 

Melting point: 134.6-135.4 oC  

1H NMR (D2O) δ ppm: 0.70 (s, 3H, Me-18) 0.90 (s, 3H, Me-19) 0.96 (d, 3H, Me-21) 1.0-2.43 (m, 

steroid structure)  3.11 (s, 9H, 3CH3) 3.30 (ddt, J=17.8Hz, 2H, CH2-N) 3.48 (dd, J=10.4, 5.3Hz, 

1H, CH-3) 3.89 (s, 1H, CH-7) 4.05 (s, 1H, CH-12) 7.65 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 212.03, 172.84 (C=O), 79.97, 70.95 (C12), 70.37 (C3), 66.20 (C7), 

52.27 (CH3), 52.18, 45.68 (CH2), 40.52 (CH2),( 40.43, 40.18, 40.10, 35.27, 34.35, 32.33, 29.95 

steroid ring), 22.97, 22.60 (19), 17.11 (C21), 12.31 (C18), 6.83 ppm 

MS (+APCI) m/z= Found 507.4150; calculated for C30H55N2O4 507.4156; -1.3 ppm 

IR  (KBr) ν = 3387, 2929, 2862, 1700, 1642 cm-1 

 

Synthesis of 3-cholanamidopropyl-ethyl-dimethyl-ammonium iodide (25) 
 

NH

O

OHOH

OH

H

H

H H

N
+

I
-

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1.0 mmol) was dissolved in  DCM (20 

mL) along with ethyl iodide (0.4 mL, 1.3 mmol) and  methanol (1 mL). The reaction was left for 

1 week before the solvent was removed under reduced pressure. The solid was washed with 

ether (10 mL) and chloroform (10 mL) before drying. The product was a yellow solid.  

Yield =0.267 g (53%) 

Melting point: 122.5-123.1 oC 
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1H NMR (D2O) δ ppm: 0.72 (s, 3H, Me-18) 0.92 (s, 3H, Me-19) 0.97 (m, 3H, Me-21) 1.0-2.43 (m, 

steroid structure)  3.04 (s, 6H, CH2) 3.21-3.34 (m, 4H, 2CH2) 3.38 (q, J= 7.3Hz, 2H, CH2-N)  3.44-

3.62 (m, 1H, CH-3) 3.89 (s, 1H, CH-7) 4.06 (s, 1H, CH-12) 7.67 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 197.83, 172.88 (C=O), 70.96 (C12), 70.37 (C3), 66.20 (C7), 60.46, 

58.59 (CH3), 49.59, 49.52, (45.96, 41.46, 41.38, 40.51, 40.17, 39.84, 39.51, 39.42, 39.17, 39.01, 

38.84, 38.51, 35.47, 35.25, 35.15, 34.87, 34.34, 32.35, 30.35, 28.55, 27.26, 26.20 steroid ring), 

45.68 (CH2), 31.52 (CH2), 22.77, 22.59 (C19), 22.52 (CH2), 17.10 (C21), 12.31 (C18), 7.76 ppm 

MS (+APCI) m/z= Found 521.4305; calculated for C31H57N2O4 521.4313; -1.5 ppm 

IR  (KBr) ν = 3420, 3256, 2913, 2856, 2243, 1639 (C=O) cm-1 

Synthesis of 3-cholanamidopropyl-propyl-dimethyl-ammonium iodide (26) 
 

O

OHOH

OH

NH

N
+

I

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1.0 mmol) was dissolved in  DCM (20 

mL) along with 1-iodopropane (1.5 mL, 5.0 mmol) and methanol (1 mL). The reaction was left 

for 1 week before solvent extraction (x 3) between dichloromethane (20 mL) and water (20 

mL). The organic layer was dried with magnesium sulphate before being removed under 

reduced pressure.  The product was a white solid which was dried at room temperature under 

vacuum. 

Yield =0.43 g (86%) 

TLC: (MeOH), Rf=0.17 (single spot) 

Melting point:108.1-108.9 oC  

1H NMR (DMSO) δ ppm: 0.57 (s, 3H, Me-18) 0.79 (s, 3H, Me-19) 0.86-0.94 (m, 37H, Me-21 plus 

2CH2) 1.0-2.43 (m, steroid structure) 3.07 (m, 1H, CH-3) 3.15-3.28 (m, 6H, 3CH2) 3.61 (s, 1H, 

CH-7) 3.77 (s, 1H, CH-12) 3.99 (d, J=3.5, 1H 3OH) 4.10 (d, 1H, 7OH) 4.32 (d, J = 4.34 Hz, 1H, 

12OH) 7.88 (t, J=5.7Hz, NH) ppm 
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13C NMR (DMSO) δ ppm: 172.92 (C=O), 70.97 (C12), 70.37 (C3), 66.20 (C7), 64.37, 61.10, 50.20, 

50.16, (45.97, 35.45, 35.15, 34.86, 34.34, 32.37, 30.34, 28.53, 26.20 steroid ring), 45.68 (CH3), 

31.54 (CH2), 27.26 (CH2), 22.58 (C19), 17.10 (C21), 15.32 (CH3), 12.31 (C18), 10.45 (CH2) ppm 

MS (+APCI) m/z= Found 535.4461; calculated for C32H59N2O4 535.4469; -1.6 ppm 

IR  (KBr) ν = 3396, 2935, 2865, 2246, 2124, 1706, 1645 (C=O), 1533 cm-1 

 

Synthesis of 3-cholanamidopropyl-butyl-dimethyl-ammonium iodide (27) 
 

O

OHOH

OH

NH

N
+

I

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1.0 mmol) was dissolved in  DCM (20 

mL) along with 1-iodobutane ( 1.2 mL, 4 mmol) and  methanol (1 mL). The reaction was left for 

1 week before solvent extraction (x 3) between dichloromethane (20 mL) and water (20 mL). 

The organic layer was dried with magnesium sulphate before being removed under reduced 

pressure.  The product was a white solid which was dried at room temperature under vacuum. 

Yield =0.347 g (69%) 

TLC: (MeOH/EtOAc 1/5), Rf=0.23 (dominant spot), 0.9 (two spots) 

Melting point: 125.8-126.4 oC 

1H NMR (D2O) δ ppm: 0.68 (s, 3H, Me-18) 0.88 (s, 3H, Me-19) 0.84-1.00 (m, 5H, Me-21 plus 

CH2) 1.0-2.43 (m, steroid structure) 3.02 (s, 6H, 3CH2) 3.14-3.32 (m, 6H, CH2 butane chain) 3.47 

(m, 1H, CH-3) 3.86 (s, 1H, CH-7) 4.02 (s, 1H, CH-12) ppm 

MS (+APCI) m/z= Found 549.4619; calculated for C33H61N2O4 549.4626; -1.2 ppm 

IR  (KBr) ν = 3378, 2932, 2865, 2358, 2337, 2155, 2009, 1976, 1651, 1633 (C=O), 1539 cm-1 
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Synthesis of 3-cholanamidopropyl-pentyl-dimethyl-ammonium iodide (28) 
 

O

OHOH

OH

NH

N
+

I

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in chloroform (75 

mL)  along with 1-iodopentane (1.5 mL) and methanol (1 mL). The reaction was left for 1 week 

before solvent extraction (x 3) between chloroform (75 mL) and water (70 mL). The organic 

layer was dried with magnesium sulphate before being removed under reduced pressure.  The 

product was a white solid which was dried at room temperature under vacuum. 

Yield =0.077g (77 %) 

TLC: (MeOH), Rf=0.21 (single spot) 

Melting point: 107.9-108.3oC  

1H NMR (Methanol-d4) δ ppm: 0.67 (s, 3H, Me-18) 0.83-1.05 (m, 10H, Me-21 plus CH2) 1.0-

2.439 (m, steroid structure) 3.04 (s, 6H, 3CH2) 3.47 (m, 1H, CH-3) 3.76 (s, 1H, CH-7) 3.92 (d, 

J=3.3Hz, 1H, CH-12) ppm 

13C NMR (DMSO) δ ppm: 170.89 (C=O), 154.50, 71.01 (C12), 70.42 (C3), 66.22 (C7), 60.58, 

57.47, 57.41 (CH3), 53.14, 52.55, 52.46, 48.55, 46.07, 45.02, 43.30, 41.52, 41.33, 40.93, 35.30, 

35.22, 34.85, 29.49, 28.47, 28.35, 27.30, 26.17 steroid ring), 45.74 (CH3), 40.50 (CH2), 30.37 

(CH2), 34.34 (CH2), 31.17 (CH2), 22.79 (CH2), 22.57 (C19), 20.03, 17.12 (C21), 14.51, 13.84 (CH2), 

12.29 (C18) ppm 

 

MS (+APCI) m/z= 563.4767 

IR  (KBr) ν = 3381 2929 2871 1645 (C=O) 1533 cm-1 
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Synthesis of 3-cholanamidopropyl-hexyl-dimethyl-ammonium iodide (29) 
 

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in chloroform (15 

mL) along with 1-iodohexane (2.1 mL, 6.8 mmol) and  methanol (1 mL). The reaction was left 

for 5 days before solvent was removed under reduced vacuum. The product was purified by 

washing with diethyl ether was collected by filtration and dried at room temperature under 

vacuum. The product was a orange solid.  

Yield =1.74 g  

TLC: (MeOH), Rf=0.41 (single spot) 

Melting point: 101.7-102.3 oC  

1H NMR (Methanol-d4) δ ppm: 0.68 (s, 3H, Me-18) 0.90 (d, J= 5.6Hz, 6H) 1.01 (d, J=5.6Hz, 3H, 

Me-21) 1.0-2.43 (m, steroid structure) 1.15 (td, J= 7.0, 0.8Hz) 3.04 (s, 6H,3CH2) 3.47 (m, 1H, CH-

3) 3.77 (s, 1H, CH-7) 3.92 (s, 1H, CH-12) ppm 

13C NMR (DMSO) δ ppm: 172.86 (C=O), 70.96 (C12), 70.37 (C3), 66.20 (C7), 62.99, 60.98, 50.12, 

(45.98, 35.46, 35.13, 30.05, 29.48, 28.54, 27.26, 26.20 steroid ring), 45.68 (CH3), 34.34 (CH2), 

30.65 (CH2), 31.55 (CH2), 25.40, 22.59 (C19), 21.87 (CH2), 21.59, 17.10 (C21), 13.81 (CH3), 12.32 

(C18), 9.10 (CH2) ppm 

MS (+APCI) m/z= Found 577.4949; calculated for C35H65N2O4 577.4939; 1.8 ppm 

IR  (KBr) ν = 3390, 2925, 2859, 1654 (C=O) cm-1  
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Synthesis of 3-cholanamidopropyl-benzyl-dimethyl-ammonium iodide (30) 
 

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in chloroform (20 

mL) along with 2-phenylethyl bromide (1.36 mL,  5.4 mmol) and  methanol (1 mL). The reaction 

was left for 24 hours before solvent was removed using a rotary evaporator. The resulting solid 

was washed with diethyl ether (10 mL) and dried under vacuum at room temperature. The 

product was a white solid.  

Melting point: 103.8-105 oC  

1H NMR (DMSO) δ ppm: 0.58 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.92 (d, J= 5.7 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure)  2.49 (p,  J = 1.9 Hz, 14H, 2CH3) 2.55 – 2.77 (m, 2H, CH2-N),  2.99 

(s, 8H, 4CH2) 3.15 – 3.27 (m, 1H) 3.49 (t, J = 6.6 Hz, 1H, CH-3) 3.60 (s, 1H, CH-7) 3.77 (s, 1H, CH-

12) 4.05 (dd, J = 22.2, 3.3 Hz, 1H, 3OH) 4.10 (m, 1H, 7OH) 4.32 (d, J = 4.0 Hz, 1H, 12OH) ppm 

13C NMR (DMSO) δ ppm: 172.89 (C=O), (140.23, 128.25, 126.21, 125.98 aromatic ring), 70.96 

(C12), 70.38 (C3), 50.13, (45.68, 35.47, 34.85, 34.83, 34.35, 32.36, 31.65, 26.20 steroid ring), 

23.54 (CH2), 22.54 (C19), 17.10 (C21), 12.32 (C18) ppm 

MS (+APCI) m/z= 583.4473 

IR  (KBr) ν = 3362, 3059, 3023, 2925, 2859, 1645 (C=O) cm-1 

 

Synthesis of 3-cholanamidopropyl-dimethyl-octadecyl-ammonium iodide (31) 
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N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in  chloroform 

(15 mL) along with 1-iodo-octadecane (2.4 g, 5 mmol) and  methanol (1 mL). The reaction was 

left for 72 hours before solvent was removed using a rotary evaporator. The resulting solid was 

washed with diethyl ether (10 mL)before being collected by filtration and dried under vacuum 

at room temperature. The product was a yellow solid. 

 Yield =0.30 g (60 %) 

Melting point: 115.3-116.4 oC  

1H NMR (Methanol-d4) δ ppm: 0.68 (s, 3H, Me-18) 0.84 (s, 3H, Me-19) 1.01 (d, J= 6.0 Hz, 3H, 

Me-21) 1.0-2.43 (m, steroid structure) 1.26 (s, 9H, 2CH3) 2.23 (s, 7H, CH2) 3.05 (s) 3.15 (t) 3.27 

(m) 3.44 (m, 1H, CH-3) 3.76 (s, 1H, CH-7) 3.92 (s, 1H, CH-12) ppm 

13C NMR (DMSO) δ ppm: 172.30 (C=O), 70.98 (C12), 66.21 (C7), (46.21, 45.70, 34.85, 34.35, 

31.80, 31.27, 30.34, 29.43, 28.77, 28.51, 27.26, 26.34, 26.17 steroid ring), 22.56 (C19), 22.06, 

17.04 (C21), 13.91 (CH2), 12.29 (C18) ppm 

MS (+APCI) m/z= 754.6801 

IR  (KBr) ν = 3362, 2922, 2850, 1639 (C=O) cm-1 

 

Synthesis of 3-cholanamidopropyl-(2,2-dimethylpropanoyloxymethyl)-dimethyl-
ammonium chloride (32) 
 

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in chloroform (20 

mL) along with chloromethyl pivalate (1.44 g, 5 mmol) and  methanol (1 mL). The reaction was 

left for 12 hours before solvent was removed using a rotary evaporator. The product was 

purified by washing with diethyl ether before being collected by filtraction and dried at room 

temperature under vacuum. The product was a white solid.  

Melting point: 127.9-128.3 oC  
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1H NMR (DMSO) δ ppm: 0.57 (s, 3H, Me-18) 0.80 (s, 3H, Me-19) 1.08 (d, J=5.7 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 2.70 (s, CH3-N) 3.05 (s, CH3-N) 3.36 (dd, J= 15.7, 8.7Hz, CH-3) 

3.60 (s, 1H, CH-7) 4.01 (m, 1H, 3OH) 4.10 (m, 1H, 7OH) 4.34 (m, 1H, 12OH) 5.25 (s, 2H) 5.85 (s, 

1H) 7.93 (t, J=5.7Hz, 1H, NH) ppm 

13C NMR (DMSO) δ 179.30 (C=O), 172.96 (C=O), 70.96 (C12), 66.20 (C7), 54.42 (CH3), 47.85, 

(46.00, 45.70, 41.92, 34.86, 34.35, 27.24, 26.98, 26.43 steroid ring), 24.19, 22.59 (C19), 17.09 

(C21), 12.31 (C18) ppm 

MS (+APCI) m/z= 607.4669 

IR  (KBr) ν = 3402, 3362, 2932, 2871, 2470, 1760, 1706, 1624 (C=O) cm-1 

 

Synthesis of 3-cholanamidopropyl-dimethyl-(2-phenylethyl)ammonium bromide (33) 
 

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in  chloroform 

(20 mL) along with 1-bromo-3-phenylpropane (1.52 mL, 5 mmol) and  methanol (1 mL). The 

reaction was left for 12 hours before solvent was removed using a rotary evaporator. The 

product was purified by washing with diethyl ether (10 mL) was collected by filtration and 

dried at room temperature under vacuum. The product was a white solid.  

Yield =0.83 g  

TLC: (MeOH), Rf=0.16 (dominant spot), 0.89 (two spots) 

Melting point: 176.8-177.4 oC  

1H NMR (DMSO) δ ppm: 0.58 (s, 3H, Me-18) 0.82 (s, 3H, Me-19) 0.95 (d, J=6.0Hz, 3H, Me-21) 

1.10 (t, J=7.0Hz, impurity, diethyl ether) 3.12 (d, J=14.5Hz, 8H)  3.61 (m, 1H, CH-7) 3.78 (s, 1H, 

CH-12) 4.00 (d, J= 2.8 Hz, 1H, 3OH) 4.10 (d, J= 3.2 Hz, 1H, 7OH) 4.34 (d, J= 4.1 Hz, 1H, 12OH) 

7.28 (m, 8H, aromatic) 7.93 (m, 1H, NH) ppm 



93 
 

MS (+APCI) m/z= 611.4411 

IR  (KBr) ν = 3373, 3026, 2929, 2859, 1691 (C=O), 1645 cm-1 

 

Synthesis of 3-cholanamidopropyl-allyl-dimethyl-ammonium;bromide (34) 
 

O

OHOH

OH

N
H

N
+

Br

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in  chloroform 

(20 mL) along with allyl bromide (1.52 mL, 5 mmol) and  methanol (1 mL). The reaction was left 

for 12 hours before solvent was removed using a rotary evaporator. The product was purified 

by washing with diethyl ether was collected by filtration and dried at room temperature under 

vacuum. The product was a white solid. 

 Yield =0.15 g (30 %) 

TLC: (MeOH), Rf=0.32 (one spot) 

Melting point: 121.3-121.9 oC  

1H NMR (MeOH) δ ppm: 0.68 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 1.00 (d, J= 6.1 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 3.04 (s, 6H, 2CH3) 3.76 (s, 1H, CH-12) 3.94 (d, J= 7.5 Hz, 3H, CH2) 

5.68 (d, 1H, CH=CH) 5.93 – 6.17 (m, 1H, CH=CH), 7.88 (s, 1H, NH) ppm 

13C NMR (DMSO) δppm: 172.88 (C=O), 127.60 (C=C), 125.76 (C=C), 70.96 (C12), 70.37 (C3), 

66.20 (C7), 65.11, 61.12, 49.73, (45.97, 45.68, 35.26, 34.35, 28.53, 27.29, 26.20 steroid ring), 

31.55 (CH2-Br), 25.04 (CH2), 22.56 (C19), 17.11 (C21), 12.31 (C18) ppm 

MS (+APCI) m/z= Found 533.4307; calculated for C32H57N2O4 533.4313; -1.1 ppm 

IR  (KBr) ν = 3368, 3077, 2925, 2862, 2710, 1733, 1651 (C=O), 1633, 1466 cm-1 
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Synthesis of 3-cholanamidopropyl-cyclopentyl-dimethyl-ammonium bromide (35) 
 

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in DCM (10 mL) 

along with) of cyclopentyl bromide (0.9 mL, 10 mmol). The reaction was left for 72 hours 

where the product preciptated out. It was collected by filtration and dried at room 

temperature under vacuum.  The product was a white solid. 

Melting point: 102.6-103 oC  

1H NMR (DMSO) δ ppm: 0.57 (d, J=1.4 Hz, 3H Me-18) 0.76-0.97 (m, 6H, Me-19 and Me-21) 1.0-

2.43 (m, steroid structure) 2.13 (s, dimethyl) 3.14 (s, 3H) 3.4-3.55 (m, 1H, CH-3) 3.60 (s 1H CH-

7) 3.77 (s, 1H, CH-12) 3.94-4.18 (m, 4H, CH2- ring) 4.32 (t , J=3.9Hz, 1H, CH-N) 5.35 (s, 1H, NH) 

ppm 

13C NMR (DMSO) δ ppm: 216.00, 138.38 (C=O), 70.92 (C19), 70.38 (C21), 66.17 (C18), 60.48 

(CH-Br), (45.71, 43.19, 41.39, 40.51, 40.17, 36.53, 35.28, 34.89, 34.35, 30.64, 30.37, 30.35, 

30.18, 28.51, 26.19 steroid ring), 25.66, 24.51 (CH2 ring), 22.59 (C19), 21.64, 16.91 (C21), 12.29 

(C18) ppm 

 

MS (+APCI) m/z= 562.4448 

IR  (KBr) ν = 3368, 2932, 2865, 2355, 1715 (C=O), 1578, 1460 cm-1 
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Synthesis of 3-cholanamidopropyl-cyclopentyl-dimethyl-ammonium bromide (36) 
 

 

N-[3-(dimethylamino)propyl] cholanamide (12) (0.5 g, 1 mmol) was dissolved in DCM (10 mL) 

along with  4-(Bromomethyl)benzophenone (1 mL, 2.7 mmol). The reaction was left for 72 

hours where the product preciptated out. It was collected by filtration and dried at room 

temperature under vacuum.  The product was a white solid. 

Yield =0.49 (97 %) 

Melting point: 158.8-159.5 oC  

1H NMR (DMSO) δ ppm: 0.58 (d, J=1.4 Hz, 3H Me-18) 0.82 (s, 3H, Me-19) 0.93 (m, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 3.03 (s, 3H, CH3) 3.61 (m, 1H, CH-3) 3.78 (s, 1H, CH-7) 4.02 (s, 

1H, CH-12) 4.12 (t, J = 5.3 Hz, 8H, 2CH2) 4.33 (s, 1H, 3OH), 4.66 (s, 4H, 7OH), 4.81 (s, 7H), 7.98 – 

7.42 (m, 20H, aromatic + NH) ppm 

13C NMR (DMSO) δ ppm: 206.45, 195.31, 173.27, 138.46 (C=O), 136.47, 133.15, 133.10, 132.05, 

129.72, 128.66, 111.39, 70.93 (C19), 70.37 (C21), 66.19 (C18), (45.87, 45.69, 41.46, 41.37, 

40.49, 40.16, 39.83, 39.49, 39.34, 39.16, 38.99, 38.82, 38.49, 35.25, 34.94, 34.85, 34.34, 30.65, 

30.38, 28.51, 27.24, 26.19 steroid ring), 22.75 (CH2 ring), 22.58 (C19), 21.87, 16.91 (C21), 12.26 

(C18) ppm 

 

MS (+APCI) m/z= Found 688.4567; calculated for C43H62N1O6 688.4572; -0.7 ppm 

IR  (KBr) ν = 3408, 2935, 2868, 1724 (C=O), 1654, 1596, 1572 cm-1 
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Synthesis of 3-cholanamidoethylyl(trimethyl)ammonium;iodide (37) 

 

N-[3-(dimethylamino)ethyl] cholanamide (21) (0.5 g, 1.0 mmol) was dissolved in  DCM (20 mL) 

along with methyl iodide (0.3 mL, 2.1 mmol). The reaction was left for 12 hours where upon a 

solid formed and the solvent had evaporated. Diethyl ether (10 mL) was added to the flask and 

the solid was collected by filtration before being washed with chloroform (10 mL). The product 

was dried at room temperature under vacuum. 

Yield= 0.314 g (63%) 

Melting point: 215.3- 216.1 oC  

1H NMR (D2O) δ ppm: 0.58 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.9 (d, 3H, Me-21) 1.0-2.43 (m, 

steroid structure)  3.08 (s, 9H, 3CH3) 3.45 (m, 1H CH-3) 3.61 (s, 1H, CH-7) 3.77 (s, 1H, CH-12) 

4.04 (m, 1H C3-OH) 4.13 (m, 1H, C7-OH) 4.36 (m, 1H, C12-OH) 8.33 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 173.25 (C=O), 70.96 (C12), 70.37 (C3), 66.19 (C7), 52.47 (CH3), 45.99 

(CH2), (35.28, 35.09, 34.35, 32.92, 32.26, 31.44, 30.25 steroid ring), 26.20, 22.25, 22.59 (19), 

17.05(C21), 12.31 (C18) ppm 

MS (+APCI) m/z= Found 493.3991; calculated for C29H53N2O4 493.4000; -1.8 ppm 

IR  (KBr) ν = 3423, 3241, 2935, 2862, 2252, 2118, 1663, 1618, 1539 cm-1 
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Synthesis of 3-cholanamidoethylyl-ethyl-dimethyl-ammonium iodide (38) 
 

 

N-[3-(dimethylamino)ethyl] cholanamide (21) (0.5 g, 1.0 mmol) was dissolved in  DCM (20 mL) 

along with ethyl iodide (0.4 mL, 1.3 mmol) and  methanol (1 mL). The reaction was left for 12 

hours before the solvent was removed under reduced pressure. The solid was washed with 

ether (10 mL) and chloroform (10 mL) before drying. The product was a yellow solid.  

Yield =0.280 g (56%) 

Melting point: 142.3-142.7 oC 

1H NMR (D2O) δ ppm: 0.86 (s, 3H, Me-18) 0.90 (s, 3H, Me-19) 0.93 (m, 3H, Me-21) 1.0-2.43 (m, 

steroid structure)  2.87 (s, 2H, CH2) 3.04 (s, 4H, 2CH2) 3.24 (q, J= 5.8 Hz, 1H, CH-3)  3.33-3.57 

(m, CH2) 3.84 (s, 1H, CH-7) 4.0 (s, 1H, CH-12) 7.61 (s, 1H, NH) ppm 

MS (+APCI) m/z= Found 507.4147; calculated for C30H55N2O4 507.4156; -1.8 ppm 

IR  (KBr) ν = 3387, 2932, 2862, 2689, 1706, 1648 (C=O), 1533 cm-1 

 

Synthesis of 3-cholanamidopropyl-propyl-dimethyl-ammonium iodide (39) 
 

 



98 
 

N-[3-(dimethylamino)ethyl] cholanamide (21) (0.5 g, 1.0 mmol) was dissolved in  DCM (20 mL) 

along with 1-iodopropane (0.5 mL, 1.7 mmol) and methanol (1 mL). The reaction was left for 6 

days before the solvent was removed under reduced pressure. The solid was washed with 

diethyl ether (10 mL) and collected by filtration. Further purification was carried out by 

washing the crude product with diethyl ether (2 x 10 mL) and chloroform (2 x 10 mL).  The 

product was a white solid which was dried at room temperature under vacuum. 

Yield =0.283 g (56%) 

Melting point: 108.1-108.9 oC  

1H NMR (D2O) δ ppm: 0.64 (s, 3H, Me-18) 0.87 (s, 3H, Me-19) 0.93 (m, 5H, Me-21 + CH2) 1.0-

2.43 (m, steroid structure) 2.85 (s, 2H, CH2) 3.06 (s, 3H, CH3) 3.24 (q, J= 5.6, 4.5 Hz, 2H, CH-3 + 

CH) 3.28-3.60 (m, CH2) 3.83 (s, 1H, CH-7) 3.98 (s, 1H, CH-12) 7.60 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 171.96 (C=O), 148.27, 138.66, 86.11, 79.15, 70.96 (C12), 70.38 (C3), 

66.20 (C7), 64.50, (44.22, 41.46, 41.36, 35.11, 34.85, 26.20, 25.09 steroid ring), 45.69 (CH3), 

28.56 (CH2), 22.77 (C19), 17.06 (C21), 15.34 (CH3), 12.31 (C18) ppm 

MS (+APCI) m/z= Found 521.4303; calculated for C31H57N2O4 521.4313; -1.9 ppm 

IR  (KBr) ν = 3390, 2935, 2862, 2243, 2121, 1651 (C=O), 1536 cm-1 

 

Synthesis of 3-cholanamidoethyl-butyl-dimethyl-ammonium iodide (40) 
 

 

N-[3-(dimethylamino)propyl] cholanamide (21) (0.5 g, 1.0 mmol) was dissolved in  DCM (20 

mL) along with 1-iodobutane ( 0.6 mL, 2 mmol) and  methanol (1 mL). The reaction was left for 

3 days where a precipitate formed. The crude product was collected by filtration and washed 

with chloroform (15 mL). The product was a white solid which was dried at room temperature 

under vacuum. 
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Yield =0.338 g (67%) 

Melting point: 186.4-187.4oC  

1H NMR (D2O) δ ppm: 0.64 (s, 3H, Me-18) 0.84 (s, 3H, Me-19) 0.94 (m, 4H, Me-21+ CH) 1.0-2.43 

(m, steroid structure) 2.26 (s, 9H, 3CH3) 2.54 (m, 2H, N-CH2) 3.26-3.31 (m, 2H, CH2) 3.42 (m, 1H, 

CH-3) 3.82 (s, 1H, CH-7) 3.98 (s, 1H, CH-12)  

MS (+APCI) m/z= Found 535.4458; calculated for C32H59N2O4 535.4469; -2.1 ppm 

IR  (KBr) ν = 3484, 3432, 3250, 3071, 2922, 2865, 1633 (C=O), 1551 cm-1 

 

Synthesis of 3-cholanamidoethyl-pentyl-dimethyl-ammonium iodide (41) 
 

 

N-[3-(dimethylamino)ethyl] cholanamide (21) (0.5 g, 1 mmol) was dissolved in DCM (20 mL) 

along with 1-iodopentane (0.6 mL, 1.9 mmol) and  methanol (1 mL). The reaction was left for 3 

days where a precipitate formed. The product was collected by filtration, washed with 

chloroform (20 mL) and dried at room temperature under vacuum. The product was a white 

solid.  

Yield =0.396 g (79 %) 

Melting point: 139.6- 141.2 oC  

1H NMR (D2O) δ ppm: 0.64 (s, 3H, Me-18) 0.76 (s, 3H, Me-19) 0.84 (s, 3H, Me-21) 1.0-2.439 (m 

steroid structure) 2.28 (s, 6H, 2CH3) 2.55 (t, 2H, N-CH2) 3.24 (m, 1H, CH-3) 3.29 (t, 2H, CH2) 3.39 

(m, 1H, CH-3) 3.82 (s, 1H, CH-7) 3.98 (s, 1H, CH-12) ppm 
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13C NMR (D2O) δ ppm: 172.46 (C=O), 70.99 (C12), 70.40 (C3), 66.21 (C7), 58.32 (CH3), 48.55, 

(46.13, 45.18, 36.62, 35.12, 34.85, 34.85, 32.51, 28.52, 28.35, 27.26, 26.18 steroid ring), 45.71 

(CH3), 34.36 (CH2) 31.71 (CH2), 30.38 (CH2), 22.60 (C19), 17.08 (C21), 13.84 12.31 (C18) ppm 

 

MS (+APCI) m/z= Found 549.4618; calculated for C33H61N2O4 549.4626; -1.4 ppm 

IR  (KBr) ν = 3484, 3250, 3071, 2925, 2868, 1627 (C=O), 1560 cm-1 

 

Synthesis of 3-cholanamidoethyl-hexyl-dimethyl-ammonium iodide (42) 
 

 

N-[3-(dimethylamino)ethyl] cholanamide (21) (0.5 g, 1 mmol) was dissolved in DCM (10 mL) 

along with 1-iodohexane (0.7 mL, 2 mmol) and  methanol (1 mL). The reaction was left for 3 

days where a precipitate formed. The product was collected by filtration, washed with 

chloroform (20 mL) and dried at room temperature under vacuum. The product was a orange 

solid.  

Yield =0.82 g  

Melting point: 104.2-104.5 oC  

1H NMR (D2O) δ ppm: 0.58 (s, 3H, Me-18) 0.80 (s, 3H, Me-19) 0.87 (m, 10H, Me-21+ 3CH2-N) 

1.0-2.43 (m, steroid structure) 1.26 (m, 15H) 2.49 (s, 3H, CH3-CH2) 3.04 (s, 5H, 2CH2-NH) 3.15 

(d) 3.29 (t, J=6.7 Hz, 1H) 3.24 (m, 1H, CH-3) 3.82(s, 1H, CH-7) 3.97 (s, 1H, CH-12) 4.00 (3OH) 

4.08 (7OH) 4.31 (12OH) 8.09 (t, 1H, NH) ppm 

13C NMR (D2O) δ ppm: 172.45 (C=O), 70.98 (C12), 70.40 (C3), 66.21 (C7), 58.32 (CH3), (46.13, 

45.18, 36.62, 35.12, 34.85, 34.85, 32.51, 28.52, 28.35, 27.26, 26.18 steroid ring), 45.71 (CH3), 

34.36 (CH2) 31.71 (CH2), 30.38 (CH2), 22.60 (C19), 17.08 (C21), 12.31 (C18) ppm 

MS (+APCI) m/z= Found 563.4771; calculated for C34H63N2O4 563.4782; -2.0 ppm 

IR  (KBr) ν = 3393, 3238, 3056, 2925, 2853, 1703, 1651 (C=O), 1606 cm-1  
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Synthesis of 3-cholanamidoethyl-allyl-dimethyl-ammonium bromide (43) 
 

 

N-[3-(dimethylamino)ethyl] cholanamide (21) (0.5 g, 1 mmol) was dissolved in DCM (10 mL) 

along with allyl bromide (0.4 mL, 3.3 mmol) and  methanol (1 mL). The reaction was left for 12 

hours before solvent was removed using a rotary evaporator. The product was purified by 

washing with diethyl ether was collected by filtration and dried at room temperature under 

vacuum. The product was a white solid. 

 Yield =0.129 g (26 %) 

Melting point: 119.1-120.3 oC  

1H NMR (CDCl3) δ ppm: 0.58 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.93  (d, J= 6.0 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 3.03 (s, 6H, 2CH2) 3.47 (s, 1H, CH-3) 3.62 (d, J= 9.2 Hz, 1H, CH-

12) 3.78 (s, 1H, C12-OH) 4.01 (d, J=2.7 Hz, 3H, CH2+ CH2-CH=CH) 4.10 (s, 1H, C12-OH) 5.63 (d, J= 

5Hz, 1H, CH=CH2) 5.67 (s, 1H) 5.76 (s, 1H, CH= CH2) 6.03 (m, 1H, CH=CH2) 8.03 (t, 1H, NH) ppm 

MS (+APCI) m/z= Found 519.4146; calculated for C31H5N2O4 519.4156; -2.0 ppm 

IR  (KBr) ν = 3362, 2929, 2862, 1700, 1645 (C=O), 1536 cm-1 
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Synthesis of N-[2-(1-methylpyrrolidin-1-ium-1-yl)ethyl]cholanamide iodide (44) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (10 mL) along 

with of methyl iodide (1.4 mL, 10 mmol). The reaction was left for 60 hours where the product 

precipitated out. It was then collected by filtration, washed with chloroform (20 mL) and dried 

at room temperature under vacuum.  The product was a white solid. 

Melting point: 140.7-141-4 oC  

1H NMR (DMSO) δ ppm: 0.58 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.93 (d, J= 5.8Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure) 3.02 (s, 3H, CH3) 3.20 (m, 1H, CH-3) 3.50 (m) 3.61 (s, 1H, CH-7) 

3.77 (s, 1H, CH-12) 4.01 (m, 1H, 3OH) 4.10 (m, 1H, 7OH) 4.33 (m, 1H, 12OH) 8.11 (t, 1H, NH) 

ppm 

13C NMR (DMSO) δ: 173.30 (C=O), 70.96 (C12), 70.37 (C3), 66.19 (C7), 63.86 (CH2), 61.67 (CH2 

ring), 47.44, (45.98, 45.68, 41.46, 35.09, 34.34, 33.58, 32.25, 31.40, 28.54, 27.26, 26.20 steroid 

ring), 41.39 (CH2), 22.76 (CH2 ring), 22.59 (C19), 20.91, 17.04 (C21), 12.31 (C18) ppm 

MS (+APCI) m/z= Found 519.4152; calculated for C31H55N2O4 519.4156; -0.8 ppm 

IR  (KBr) ν = 3390, 3274, 2922, 2862, 1651 (C=O), 1533, 1460 cm-1 
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Synthesis of N-[2-(1-ethylpyrrolidin-1-ium-1-yl)ethyl]cholanamide iodide (45) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (10 mL) along 

with of ethyl iodide (0.4 mL, 10 mmol). The reaction was left for 60 hours where the product 

precipitated out. It was collected by filtration, washed with chloroform and dried at room 

temperature under vacuum. The product was a yellow solid. 

Melting point: 120.7-121.7 oC  

1H NMR (DMSO) δ ppm: 0.57 (s, 3H, Me-18) 0.80 (s, 3H, Me-19) 0.92 (m, 3H, Me-21) 1.0-2.43 

(m, steroid structure) 2.23 (d, J=12.1 Hz, CH3) 2.64 (CH2) 3.49 (m, 4H, CH3) 3.60 (s, 1H, CH-7) 

3.77 (s, 1H, CH-12) 4.01 (m, 1H, 3OH) 4.10 (m, 1H, 7OH) 4.34 (m, 1H, 12OH) 5.75 (s, 1H, CH) 

8.08 (s, 1H, NH) ppm 

MS (+APCI) m/z= Found 533.4302; calculated for C32H57N2O4 533.4313; -2.0 ppm 

IR  (KBr) ν = 3378, 2929, 2862, 2361, 2158, 2018, 1645 (C=O), 1527 cm-1 

Synthesis of N-[2-(1-propylpyrrolidin-1-ium-1-yl)ethyl]cholanamide;iodide (46) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (15 mL) along 

with of 1-iodopropane (3 mL, 10 mmol). The reaction was left for 12 hours where the product 
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preciptated out. It was collected by filtration, washed with chloroform and dried.  The product 

was a yellow solid. 

Yield= 0.947 g 

Melting point: 203.8-204.1 oC  

1H NMR (DMSO) δ ppm: 0.58 (s, 3H, Me-18) 0.80 (s, 3H, Me-19) 0.91 (m, 6H, Me-21 + CH2) 1.0-

2.43 (m, steroid structure) 3.18 (m) 3.5 (ddt, J=40.0, 13.4, 6.6 Hz, 3H, CH3) 3.61 (s, 1H, CH-7) 

3.77 (s, 1H, CH-12) 4.01 (d, 1H, 3OH) 4.10 (d, J= 4.12 Hz, 1H, 7OH) 4.32 (d, J= 3.16 Hz, 1H, 

12OH) 8.09 (s, 1H, NH) ppm 

MS (+APCI) m/z= Found 547.4463; calculated for C33H59N2O4 547.4469; -1.2 ppm 

IR (KBr) ν = 3566, 3353, 3217, 2913, 2856, 2246, 2121, 1642, 1527 cm-1 

 

Attempted synthesis of N-[2-(1-butylpyrrolidin-1-ium-1-yl)ethyl]cholanamide iodide 
(47) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (15 mL) along 

with of 1-iodobutane (1.14 mL, 10 mmol). The reaction was left for 48 hours where the 

product precipitated out. It was collected by filtration, washed with chloroform and dried at 

room temperature under vacuum.  The product was a white solid. 

Proton NMR analysis showed that the product was not the intended compound.  
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 Attempted synthesis of N-[2-(1-pentylpyrrolidin-1-ium-1-yl)ethyl]cholanamide 
iodide (48) 
 

  

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (15 mL) along 

with of 1-iodopentane (2 mL, 10 mmol). The reaction was left for 96 hours where the product 

preciptated out. It was collected by filtration, washed with chloroform (20 mL) and dried at 

room temperature under vacuum.  The product was a white solid. 

Proton NMR analysis showed it was not the desired compound.  

Synthesis of N-[2-(1-hexylylpyrrolidin-1-ium-1-yl)ethyl]cholanamide iodide (49) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in DCM (15 mL) along 

with of 1-iodopentane (2 mL, 10 mmol). The reaction was left for 96 hours where the product 

precipitated out. It was collected by filtration, washed with chloroform (15 mL) and dried at 

room temperature under vacuum.  The product was a yellow solid. 

Yield=0.527 g  

1H NMR (DMSO) δ ppm: 0.58 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.91 (m, Me-21 + CH2) 1.0-2.43 

(m, steroid structure) 2.44 (p, J=1.8HZ, 4H, CH3) 3.33 (m, CH2) 3.49 (m, 8H, CH-3, CH2) 3.61 (m, 
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1H, CH-7)  3.77 (s, 1H, CH-12) 4.00 (d, 1H, 3OH) 4.10 (t, 1H, 7OH) 4.30 (s, 1H, 12OH) 7.72 (s, 1H, 

NH) ppm 

13C NMR (DMSO) δ 173.38 (C=O), 70.96 (C12), 70.37 (C3), 70.30, 66.19 (C7), 62.48, 58.76, 56.74 

(CH2 ring), (45.95, 45.69, 40.48, 40.15, 39.81, 39.48, 39.15, 38.81, 38.48, 35.09, 34.34, 32.22, 

31.36, 30.71, 28.54, 27.25, 26.21 steroid ring), 25.43 (CH2 ring), 22.59 (C19), 21.91 (CH2), 21.15, 

17.04 (C21), 13.82 (CH3), 12.29 (C18) ppm 

MS (+APCI) m/z= 589.4926 

IR  (KBr) ν = 3466, 3362, 3186, 3044, 2953, 2922, 1706, 1660, 1624 (C=O), 1530 cm-1 

Synthesis of N-[2-(1-allylpyrrolidin-1-ium-1-yl)ethyl]cholanamide bromide (50) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  chloroform (20 

mL) along with allylbromide (1.2 mL, 10 mmol). The reaction was left for 96 hours where the 

product precipitated out. It was collected by filtration, washed with chloroform (20 mL) and 

dried at room temperature under vacuum. The product was a white solid. 

Yield= 0.59 g (60%) 

TLC: (MeOH/EtOAc, 1/1, Rf=0.08 (one spot) 

Melting point: 186.5-186.9 oC  

1H NMR (DMSO) δ ppm: 0.59 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.95 (d, J= 5.8 Hz, 3H, Me-21) 

1.0-2.43 (m, steroid structure)  2.07 (m) 2.23 (d, J=12.1 Hz, CH2) 3.27 (m, 3H, CH-3 + CH2) 3.5 

(m, 5H, 2CH2) 3.61 (s, 1H, CH-7) 3.79 (s, 1H, CH-12) 3.95 (d, J= 7.5 Hz, 1H, CH- allyl bromide) 

4.03 (d, 2H, J= 7.1 Hz, 3OH) 4.11 (d, 1H, 7OH) 4.33 (d, 1H, 12OH) 5.66 (t, 2H, CH=CH2) 6.08 (m, 

1H, CH=CH2) 8.13 (t, 1H, NH) 8.32 (s, 1H) ppm 
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13C NMR (DMSO) δ ppm: 173.37 (C=O), 127.23 (C=C), 126.28 (C=C), 79.17, 70.94 (C12), 70.36 

(C3), 66.18 (C3), 61.74, 60.54, 57.71 (CH2), (45.94, 45.68, 40.48, 40.15, 40.07, 39.82, 39.73, 

39.48, 39.15, 38.81, 38.48, 34.34, 33.11, , 31.39, 30.35, 28.54, 28.53, 27.29, 26.20 steroid ring), 

32.18 (CH2), 22.60 (C19), 21.16, 17.03 (C21), 12.30 (C18) ppm 

MS (+APCI) m/z= Found 545.4306; calculated for C33H57N2O4 545.4313; -1.3 ppm 

IR  (KBr) ν = 3472, 3365, 3211, 3050, 2922, 2859, 2458, 2042, 1630 (C=O), 1542 cm-1 

Synthesis of N-[2-(1-benzylpyrrolidin-1-ium-1-yl)ethyl]cholanamide bromide (51) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (15 mL0 

along with benzyl bromide (1.2 mL, 10 mmol). The reaction was left for 48 hours where the 

product precipitated out. It was collected by filtration, washed with chloroform (15 mL) and 

dried at room temperature under vacuum.  The product was a yellow solid. 

Yield= 0.59 g  

TLC: (MeOH/EtOAc, 1/1), Rf=0.08 (one spot) 

Melting point: 165.7-165.9 oC  

1H NMR (D2O) δ ppm: 0.56 (s, 3H, Me-18) 0.87 (s, 3H, Me-19) 0.92 (d, J= 5.5 Hz, 3H, Me-21) 1.0-

2.43 (m, steroid structure)  2.19 (s) 2.23 (d, J=12.1 Hz, CH2) 3.37-3.68 (m, 6H, CH-3 + CH2) 3.75 

(s, 1H, CH-7) 3.98 (s, 1H, CH-12) 7.38 (s, 1H, NH) 7.54 (m, aromatic) ppm 

13C NMR (DMSO) δppm: 173.43 (C=O), (132.61, 129.04, 128.41 aromatic ring), 60.89 (CH2), 

60.86 (CH2), (45.69, 35.25, 35.10, 34.94, 34.67, 34.34 steroid ring), 22.59 (C19), 20.86, 17.03 

(C21), 12.28 (C18) ppm. 

MS (+APCI) m/z= 595.4461 
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IR  (KBr) ν = 3368, 3053, 2922, 2862, 2361, 1788, 1706, 1648 (C=O), 1536 cm-1 

Synthesis of N-[2-[1-(3-phenylpropyl)pyrrolidin-1-ium-1-yl]ethyl]cholanamide 
bromide (52) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (15 mL) along 

with 1-bromo-3-phenylpropane (2 mL, 10 mmol). The reaction was left for 12 hours where the 

product precipitated out. It was collected by filtration, washed with chloroform (10 mL) and 

dried at room temperature under vacuum. The product was a yellow solid. 

Yield=0.986 g (98 %) 

Melting point: 140.8-141.3 oC  

1H NMR (DMSO) δ ppm: 0.58 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.92 (m, 3H, Me-21) 1.0-2.43 

(m, steroid structure) 2.68, (dt, J=10.9, 7.4Hz, 2H, CH2) 3.16-3.58 (m, 9H, CH-3, CH2) 3.60 (s, 1H, 

CH-7) 3.77 (s, 1H, CH-12) 4.02 (m, 1H, 3OH) 4.10 (m, 1H, 7OH) 4.33 (m, 1H, 12OH) 7.12-7.36 

(m,  4H, aromatic) 8.11 (t, J=5.5Hz, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 173.32 (C=O), (140.52, 128.37, 128.37, 128.33, 125.98 aromatic ring), 

79.15, 70.97 (C12), 70.38 (C3), 66.20 (C7), 63.84 (CH2), 61.68 (CH2), 47.42, (45.98, 45.69, 45.68, 

40.48, 40.14, 39.81, 39.48, 39.14, 38.81, 38.47, 35.10, 34.86, 34.35, 33.85, 33.58, 33.36, 32.25, 

31.39, 30.34, 28.53, 27.27, 26.20 steroid ring), 34.34 (CH2), 22.59 (C19), 20.90, 17.04 (C21), 

12.30 (C18) ppm. 

MS (+APCI) m/z= Found 519.4150; expected 623.478 (MI- CH2CH2C6H6) 

IR  (KBr) ν = 3387, 3256, 3068, 3026, 2929, 2868, 1651, 1624 (C=O), 1533 cm-1 
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Synthesis of [1-(2-cholanamidoethyl) pyrrolidin-1-ium-1-yl] methyl 2,2-
dimethylpropanoate chloride (53) 
 

 

N-(2-pyrrolidin-1-ylethyl)cholanamide (10) (0.5 g, 1 mmol) was dissolved in  DCM (10 mL) along 

with chloromethyl pivalate (1.4 mL, 10 mmol). The reaction was left for 72 hours where the 

product precipitated out. It was collected by filtration, washed with chloroform and (15 mL) 

dried at room temperature under vacuum.  The product was a yellow solid. 

Yield=0.335 g (34 %) 

Melting point: 121.2-121.8 oC  

1H NMR (DMSO) δ ppm: 0.58 (s, 3H, Me-18) 0.81 (s 3H Me-19) 0.95 (d, J= 5.7 Hz, 3H, Me-21) 

1.0-2.439 (m, steroid structure) 1.11 (s, 3H, CH3) 1.17 (s, 1H, CH) 1.24 (m, 5H) 3.17- 3.47 (m, 

4H, 2CH2) 3.38 (t, J=9.1 Hz, 1H, CH-3) 3.87 (s, 1H, CH-7) 4.03 (s, 1H, CH-12) 8.66 (s, 1H, NH) 

11.39 (s, 1H) ppm 

13C NMR (DMSO) δ 206.43, 179.27, 175.20 (C=O), 173.36, 173.14, 77.70, 70.93 (C12), 70.37 

(C3), 69.58, 66.19 (C7), 60.88, 57.80, 53.07 (CH2), 52.88 (CH2 ring), (45.71, 37.66, 35.16, 34.85, 

34.34, 33.32, 33.29, 32.16, 31.29, 30.65, 30.65, 28.50, 26.97, 26.97, 26.88, 26.42, 26.31, 26.20 

steroid ring), 22.57 (C19), 21.81 (CH2 ring), 17.07 (C21), 12.28 (C18) ppm. 

MS (+APCI) m/z= 619.4647 

IR  (KBr) ν = 3368, 2929, 2874, 2607, 2476, 2249, 2118, 1754, 1709, 1651 (C=O), 1539 cm-1 
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Synthesis of N-(1-methyl-1-phenyl-piperidin-1-ium-4-yl)cholanamide iodide (54) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in DCM (15 mL) along 

with methyl iodide (1.4 mL, 10 mmol). The reaction was left for 72 hours where the product 

precipitated out. It was collected by filtration, washed with DCM (20 mL) and dried at room 

temperature under vacuum.  The product was a yellow solid. 

Yield=0.7 g  

TLC: (MeOH), Rf=0.13 (dominant spot), 0.71 (two spots) 

Melting point: 165.8-166.7 oC  

1H NMR (DMSO) δ ppm: 0.57 (s, 3H, Me-18) 0.80 (s, 3H, Me-19) 0.92 (d, 3H, Me-21) 1.0-2.43 

(m, steroid structure)2.92 (s, 4H, 2CH2) 3.03 (s, 1H, CH) 3.06 (s, 1H, CH) 3.16 (s, 3H, CH3) 3.60 (s, 

1H, CH-7) 3.78 (s, 1H, CH-12) 4.00 (m, 1H, 3OH) 4.10 (S, 1H, 7OH) 4.28 (m, 1H, 12OH) 4.57 (S, 

2H, CH2) 4.60 (m, 2H, CH2) 7.53 (m, 8H, aromatic) 7.79-7.90 (m, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 172.24 (C=O),( 133.08, 128.86, 127.54 aromatic ring), 35.10, 34.35, 

22.60 (C19), 17.12 (C21), 12.31 (C18) ppm. 

MS (+APCI) m/z= Found 595.4464; calculated for C36H57N2O4 595.4469; 0.84 ppm 

IR  (KBr) ν = 3396, 2925, 2862, 2355, 1648 (C=O), 1533 cm-1 
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 Synthesis of N-(1-propyl-1-phenyl-piperidin-1-ium-4-yl)cholanamide iodide (55) 
  

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in DCM (15 mL) along 

with 1-iodopropane (1.5 mL, 10 mmol). The reaction was left for 72 hours where the product 

precipitated out. It was collected by filtration, washed with DCM (15 mL) and dried at room 

temperature under vacuum. The product was a yellow solid. 

Yield=0.7 g  

Melting point: 113-113.8 oC  

1H NMR (DMSO) δ ppm: 0.58 (d, J=4.1 Hz, 3H, Me-18) 0.81 (s 3H Me-19) 0.87 (m, 9H, Me-21 + 

2CH3) 1.0-2.439 (m, steroid structure) 2.08 (s, CH3)  3.01-3.33 (m, 9H, CH-3, CH2) 3.61 (s, 1H, 

CH-7) 3.78 (s, 1H, CH-12) 3.92-4.11 (m, 2H, CH2) 4.60 (d, J=10.3 Hz, 1H) 7.42-7.62 (m, 6H, 

aromatic ring) ppm 

MS (+APCI) m/z=Found 651.5086; expected 609.4625 (MI+ 52) 

IR  (KBr) ν = 3393, 2932, 2862, 2361, 2155, 2018, 1642 (C=O), 1533 cm-1 
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Attempted synthesis of N-(1-butyl-1-phenyl-piperidin-1-ium-4-yl)cholanamide iodide 
(56) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in DCM (15 mL) along 

with 1-iodobutane (1.2 mL, 10 mmol). The reaction was left for 72 hours where the reaction 

did not progress. The reaction was heated to 35 oC for 48 hours, and then the temperature was 

raised to 50 oC for 128 hours. TLC showed the reaction did not progress.  

Attempted synthesis of N-(1-pentyl-1-phenyl-piperidin-1-ium-4-yl)cholanamide 
iodide (57) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in DCM (15 mL) along 

with 1-iodopentane (1.5 mL, 10 mmol). The reaction was left for 72 hours where the reaction 

did not progress. The reaction was heated to 35 oC for 48 hours, and then the temperature was 

raised to 50 oC for 128 hours. TLC showed the reaction did not progress.  
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Synthesis of N-(1-hexyl-1-phenyl-piperidin-1-ium-4-yl)cholanamide iodide (58) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14)( 0.7 g, 1.2 mmol) was dissolved in DCM (15 mL) 

along with 1-iodohexane (1.5 mL, 10 mmol). The reaction was left for 120 hours where the 

product did not precipitate. The solvent was removed under vacuum and the product was 

sonicated then washed with diethyl ether (10 mL). The product was dried at room temperature 

under vacuum and it a yellow solid. 

Yield= 0.55 g (78 %) 

TLC: (MeOH), Rf=0.12 (dominant spot), 0.9 (two spots) 

Melting point: 126.4-127.8 oC  

1H NMR (CDCl3) δ ppm: 0.64 (s, 3H, Me-18) 0.86 (s, 3H, Me-19) 0.97 (d, Me-21) 1.0-2.43 (m, 

steroid structure) 2.04 (s, CH3) 2.83 (m,CH2) 3.2 (t, 1H, CH2-N)3.47(m, 1H, CH-3) 3.56 (m, 2H, 

CH2) 3.81 (s, 1H, CH-7) 3.94 (s, 1H, CH-12) 6.06 (d, J=7.8Hz, 1H, NH) 7.32 (q, J=4.3, 3.7Hz, 6H, 

aromatic) ppm 

13C NMR (DMSO) δ ppm: 206.44, 171.82 (C=O), (128.73, 128.16, 126.95 aromatic ring), 70.97 

(C12), 70.46 (C3), 66.20 (C7), 51.90 (CH2), (46.11, 45.69, 40.49, 40.16, 35.30, 34.86, 34.35, 

34.35, 32.56, 31.72, 30.66, 29.68, 28.53, 27.30, 26.18 steroid ring), 22.59 (C19), 17.11 (C21), 

12.31 (C18) ppm. 

MS (+APCI) m/z= Found 665.5257; calculated for C41H67N2O4 665.5252; 0.77 ppm 

IR  (KBr) ν = 3372, 3296, 3056, 3032, 2932, 2862, 2364, 1642 (C=O), 1530 cm-1 
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Synthesis of N-(1-benzyl-1-phenyl-piperidin-1-ium-4-yl)cholanamide (59) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in DCM (15 mL) along 

with benzyl bromide (1.5 mL, 10 mmol). The reaction was left for 12 days where the product 

precipitated. The product washed with diethyl ether (10 mL). The product was dried at room 

temperature under vacuum and it a peach solid. Product is not pure. 

Yield= 0.1839 g (18 %) 

Melting point: 150.3-150.9 oC  

1H NMR (Methanol-d4) δ ppm: 0.68 (s, 3H, Me-18) 0.90 (s, 3H, Me-19) 0.98 (d, J=6.2 Hz, 3H, 

Me-21) 1.0-2.43 (m, steroid structure) 3.68 (m, 1H, CH-3) 3.78 (s, 1H, CH-7) 3.92 (s, 1H, CH-12) 

4.49 (s, 2H, CH2) 4.54 (s, 4H, 2CH2) 7.19-7.37 (m, 10H, aromatics) 7.45-7.60 (m, 10H, aromatics) 

7.89 (s, 10H) ppm 

13C NMR (DMSO) δppm: (133.56, 133.08, 130.33, 129.23, 127.46, 127.12, 126.37 aromatic 

ring), 70.96 (C12), 45.69, 34.35 (CH2), 27.31, 24.50, 22.59 (C19), 17.04 (C21), 12.30 (C18), 5.85, 

1.58 ppm. 

MS (+APCI) m/z= Found 671.4770; expected 657.4625 (MI+CH3) 
 
IR  (KBr) ν = 3411, 3329, 3062, 2929, 2859, 2671, 2355, 1654 (C=O), 1536, 1493 cm-1 
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Synthesis of (4-cholanamido-1-phenyl-piperidin-1-ium-1-yl)methyl 2,2-
dimethylpropanoate chloride (60) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in chloroform (15 mL) 

along with of chloromethyl pivalate (1.4 mL, 10 mmol). The reaction was left for 12 days where 

the product did not precipitate. The solvent was taken off under vacuum and the product 

sonicated and washed with diethyl ether (10 mL). The product was dried at room temperature 

under vacuum and it a yellow solid. 

Yield= 0.5215 g (52 %) 

Melting point: 135.9-137 oC  

1H NMR (Methanol-d4) δ ppm: 0.68 (s, 3H, Me-18) 0.92 (s, 3H, Me-19) 1.02 (d, J= 6.1 Hz, 3H, 

Me-21) 1.0-2.439 (m, steroid structure) 2.99 (d, J=11.4Hz, 1H, CH3) 3.78 (s, 1H, CH-7) 3.97 (s, 

1H, CH-12) 5.75 (s, 2H, O-CH2-Cl) 7.24-7.45 (m, 2H, aromatic) 7.55 (m, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 206.44 (C=O), 175.60 (C=O), 128.69, 69.59 (CH2),) 45.69, 35.12, 34.35, 

30.66, 26.97, 26.32 steroid ring), 22.59 (C19), 17.11 (C21), 12.30 (C18) ppm. 

MS (+APCI) m/z= Found 695.4994; calculated for C41H65N2O6 695.4993; 0.143 ppm  
 

IR  (KBr) ν = 3365, 3065, 2935, 2865, 2631, 2525, 2361, 1751, 1642 (C=O), 1542 cm-1 

 

 

 

 



116 
 

Synthesis of N-[1-phenyl-1-(3-phenylpropyl)piperidin-1-ium-4-yl]cholanamide 
bromide (61) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in chloroform (15 mL) 

along with 1-bromo-3-phenylpropane (1.3 mL, 10 mmol). The reaction was left for 12 days 

where the product did not precipitate. The solvent was taken off under vacuum and the 

product sonicated and washed with diethyl ether (10 mL). The product was dried at room 

temperature under vacuum and it a yellow solid. 

Yield= 0.79 g  

Melting point: 126.1-126.7 oC  

1H NMR (Methanol-d4) δ ppm: 0.69 (s, 3H, Me-18) 0.91 (s, 3H, Me-19) 0.98 (d, J= 6.2 Hz, 3H, 

Me-21) 1.0-2.43 (m, steroid structure) 2.98 (d, 2H, CH2) 3.43 (m) 3.66 (m, 1H, CH-3) 3.79 (s, 1H, 

CH-7) 3.94 (s, 1H, CH-12) 4.50 (s, 1H, CH-N) 7.09-7.41 (m, 7H, aromatic) ppm 

13C NMR (DMSO) δ ppm: (140.52, 128.85, 128.43, 128.37, 128.33, 125.98 aromatic ring), 70.99 

C12), 70.38 (C3), 66.20 (C7), (45.95, 45.69, 45.69, 40.49, 40.15, 35.27, 34.89, 33.36, 31.62, 

30.38, 28.52, 27.31, 26.19 steroid ring), 34.61 (CH2), 34.36 (CH2), 33.86 (CH2), 22.59 (C19), 

17.12 (C21), 12.31 (C18) ppm. 

MS (+APCI) m/z= Found 699.5087; calculated for C44H65N2O4 699.5095; 1.143 ppm  
 

IR  (KBr) ν = 3375, 3023, 2932, 2859, 1642 (C=O), 1536 cm-1  
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Synthesis of N-(1-allyl-1-phenyl-piperidin-1-ium-4-yl)cholanamide bromide (62) 
 

 

N-(1-phenyl-4-piperidyl) cholanamide (14) (0.5 g, 1 mmol) was dissolved in DCM (15 mL) along 

with allyl bromide (1.2 mL, 10 mmol). The reaction was left for 4 days where the product 

precipitated then washed with DCM (25 mL) . The product was dried at room temperature 

under vacuum and to give an orange solid. 

Yield= 0.242 g (24 %) 

TLC: (MeOH), Rf=0.24 (one spot) 

Melting point: 161.4-161.7 oC  

1H NMR (CDCl3) δ ppm: 0.58 (d, J= 3.6 Hz, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.93 (m, 3H, Me-21) 

1.0-2.43 (m steroid structure) 3.18, 3.61 (s, 1H, CH-3), 3.78 (s 1H CH-7), 3.95 (dd, J=16.7, 9.8 Hz 

1H CH-12) 4.08 (s) 4.31 (s, 2H, CH2) 4.55-4.68 (m  CH=CH2) 5.61-5.83 (m CH=CH2) 7.42-7.62 (m, 

6H, aromatic ring) ppm 

13C NMR (DMSO) δ ppm: 187.15 (C=O), 133.09 (C=C), (131.49, 130.30, 128.97, 127.16 aromatic 

ring), 92.56 (C=C), 70.96 (C12), 70.37 (C3), 66.19 (C7), 55.64 (CH2), (46.01, 41.48, 40.50, 40.16, 

39.83, 39.49, 39.15, 38.82, 38.74, 38.50, 37.34, 35.27, 30.66, 28.56 steroid ring), 22.59 (C19), 

17.13 (C21), 12.30 (C18) ppm. 

MS (+APCI) m/z= Found 621.4620; calculated for C38H59N2O4 621.4626; 0.96 ppm  

 
IR  (KBr) ν = 3378, 3056, 2935, 2856, 2552, 2358, 1639 (C=O), 1533 cm-1 
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2.3 POLYMERISABLE GROUPS ON THE C3-OH 

This work was based on a procedure by Zhang et al. (Zhang et al., 1998) 

2.3.1 ACRYLOYLATES 

3α,7α,12α-triacrylate cholic acid methyl ester (63) 

O

O

OO

O

H

H

H H

O

O

O

 

Methyl cholate (4.22 g, 10 mmol) was dissolved in dry chloroform (30 mL). Triethylamine (2.23 

mL, 16 mmol) was added and the flask was cooled to ice temperature. Acryloyl chloride (1.3 

mL, 15 mmol) in chloroform (10 mL) was dripped in over 30 minutes. The mixture was 

protected from the light and left at room temperature overnight. More acryloyl chloride (1.3 

mL, 15 mmol) in dry chloroform (10 mL) was dripped in over 30 minutes and the reaction was 

left for 6 hours at room temperature. The flask was maintained at -20 oC for 5 days. More 

acryoyl chloride (1.5 mL) was added. The reaction was left for 24 hours at room temperature. 

The solvent was removed using a rotary evaporator (the temperature was set to 30 oC) to 

produce a white solid. Ethyl acetate (50 mL) was added and the solid (salt) was collected by 

filtration. The ethyl acetate was removed on the rotary evaporator to leave a yellow oil. Flask 

column chromatography using 95% DCM/ 5% ethyl acetate was used to purify the product, 

increasing to 9/1 ratio then 3/1 ratio. The solvents were removed by rotary evaporation before 

the product was dried at room temperature under vacuum.  

Yield= 0.2176 g (5 %) 

TLC: (DCM/EtOAc 5/1), Rf=0.5 (one spot) 

1H NMR (CDCl3) δ ppm: 0.75 (s, 3H, Me-18) 0.83 (s, 3H, Me-19) 0.94 (d, J= 6.0 Hz, 3H, Me-21) 1-

2.43 (steroid structure) 2.67 - 2.91 (m, 2H) 3.60- 3.86 (m, 1H) 4.63 (m, 1H, CH-3) 5.03 (s, 1H, 

CH-7) 5.19 (s, 1H, CH-12) 5.72-5.97 (m, 2H, CH=CH2) 5.99 – 6.52 (m, 3H, CH=CH2) ppm 

13C NMR (CDCl3) δ ppm: 174.48 (C=O), 169.70(C=O), 169.38(C=O), 169.20(C=O), 165.67(C=O 

excess), 165.46(C=O excess), 165.38(C=O excess), 165.29, 165.23, 136.42 (C=C), 130.55 (C=C), 
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130.42, 130.26, 130.18, 129.12, 129.00, 75.43, 74.62, 74.08, 73.92, 70.94 (C12), 70.85 (C3), 

51.48, (47.44, 45.23, 45.12, 43.40, 43.32, 43.22, 40.84, 40.74, 39.32, 39.20, 39.14, 38.22, 

38.00, 37.87, 34.75, 34.62, 34.55, 34.43, 34.35, 31.29, 30.91, 30.85, 30.74, 28.82, 28.60, 27.17, 

26.74, 26.65 steroid ring), 25.46, 25.16, 22.84, 22.5 (C19), 22.34, 17.53 (C21), 17.45, 12.18 

(C18), 12.08 ppm. 

MS (+APCI) m/z= Found 602.1935; expected 584.3349 (MI+CH3 +3H) 

IR  (KBr) ν = 2947, 271, 1715, 1633 (C=O), 1612, 1469 cm-1 

Synthesis of 3α,12α diacroylate-7αhydroxycholic acid (64) 

 

This product was collected by column chromatography of the previous product (3α,7α,12α-

triacrylate cholic acid methyl ester). 

Yield= 0.7744 g (18 %) 

TLC: (DCM/EtOAc 5/1), Rf=0.41 (one spot) 

1H NMR (CDCl3) δ ppm: 0.68 (s, 3H, Me-18) 0.84 (s, 3H, Me-19) 0.95 (d, J= 6.3 Hz, 3H, Me-21) 1-

2.43 (Steroid structure) 2.66-2.93 (m, 1H) 3.61-3.93 (s, 3H, CH3) 4.12 (q, J=7.1 Hz, 1H ethyl 

acetate), 4.64 (tt, J= 10.7, 6.5 Hz, 1H CH-3) 4.99 (s, 1H, CH-7) 5.18 (s, 1H, CH-12) 5.34 (m, 1H) 

5.70-5.93 (m, 1H, CH=CH) 5.98-6.52 (m, 2H, CH=CH) ppm 

13C NMR (CDCl3) δ ppm: 174.55 (C=O), (169.68, 169.57, 165.78, 165.71, 165.57, 163.18 C=O, 

including excess acyloyl chloride), (130.66, 130.54, 130.30, 130.19, 130.08, 129.12, 129.00, 

128.87 C=C, including excess acyloyl chloride), 75.63, 74.40, 74.28, 74.17, 72.57, 71.79, 71.02 

(C12), 67.93 (C7), 60.36, 51.46, 47.46, 47.11, (46.56, 45.20, 45.06, 43.55, 43.40, 42.08, 42.02, 

41.18, 41.12, 40.90, 40.84, 39.23, 38.23, 38.10, 35.23, 35.16, 34.96, 34.73, 34.61, 34.52, 34.34, 
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31.31, 30.98, 30.81, 28.60, 28.17, 28.10, 27.69, 27.51, 27.24, 26.64 steroid ring), 25.51, 25.36, 

22.90, 22.53 (C19), 17.41 (C21), 17.32, 12.50, 12.26 (C18), 12.19 ppm. 

MS (+APCI) m/z= Found 548.1638; expected 531.3322 (MI+CH3+ 2H) 

IR  (KBr) ν = 35 26 2944, 2871, 1715, 1639 (C=O), 1612, 1469 cm-1 

Synthesis of 3α acetate-7α,12α dihydroxy cholic acid (65) 

 

O

O

OHO

OH

H

H

H H

O

 

This product was collected by column chromatography of the product 3α,7α,12α-triacrylate 

cholic acid methyl ester. 

Yield= 0.0232 g 

TLC: (DCM/EtOAc 5/1), Rf=0.38 (one spot) 

1H NMR (CDCl3) δ ppm: 0.70 (s, 3H, Me-18) 0.82 (s, 3H, Me-19) 0.94 (d, J= 6.5 Hz, 3H, Me-21) 1-

2.43 (steroid structure) 3.67 (s, 3H, CH3) 3.87 (s, 1H, CH-7) 4.11 (s, 1H, CH-12) 5.78 (dd, J=10.3, 

1.7 Hz, 1H, CH=CH)6.07 (dd J= 17.3, 10.3 Hz, 1H, CH=CH) 6.37 (dd, J=17.3, 1.7 Hz, 1H) ppm 

13C NMR (CDCl3) δ ppm: 217.85, 216.22, 215.83, 215.45, 214.86, 214.47, 173.94, 73.08, 71.85 

(C12), 68.27 (C7), 56.87, (46.52, 45.30, 41.74, 41.49, 40.08, 39.58, 38.83, 35.37, 34.80, 33.50, 

33.13, 31.74, 30.41, 29.10, 28.16, 27.62, 26.43, 26.10 steroid ring), 25.01, 23.32, 22.69, 22.51 

(C19), 17.57 (C21), 14.17, 12.50 (C18), 11.48 ppm. 

MS (+APCI) m/z= Found 494.16; expected 476.3138 (MI+CH3 +3H) 

IR  (KBr) ν = 3375, 2959, 2932, 2865, 1712, 1630 (C=O), 1618, 1533 cm-1 
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2.3.2 METHACRYLATES 

Synthesis of 3α methacrylate 7α,12α dihydroxyl cholic acid methyl ester (66) 

 

O

O

OHO

OH

H

H

H H

O

 

Methyl cholate (4.22 g, 10 mmol) was dissolved in dry chloroform (30 mL). Triethylamine (2.23 

mL, 16 mmol) was added and the flask was put on ice. Methacryloyl chloride (1.45 mL, 15 

mmol) in chloroform (10 mL) was dripped in over 30 minutes. The mixture was protected from 

the light and left at room temperature overnight. The solvent was removed using a rotary 

evaporator (the temperature was set to 30 oC) to produce a white solid. Ethyl acetate (50 mL) 

was added and the solid (salt) was collected by filtration. The ethyl acetate was removed on 

the rotary evaporator to leave a white solid. Flask column chromatography using 75% DCM/ 

25% ethyl acetate was used to purify the product. The solvents were removed by rotary 

evaporation before the product was dried at room temperature under vacuum. 

1H NMR (CDCl3) δ ppm: 0.70 (s, 3H, Me-18) 0.83 (s, 3H, Me-19) 0.98 (d, J= 6.1 Hz, 3H, Me-21) 1-

2.43 (steroid structure) 3.77 (s, 3H, CH3) 3.82 (d, J= 26.9 Hz, 1H, CH-7) 4.10 (s, 1H, CH-12) 4.63 

(tt, J= 11.2, 4.4 Hz, 1H CH-3) 5.5 (m, 1H, CH=CH2) 5.83 (m, 1H, CH=CH2) 6.07 (s, 1H) 6.25 (s, 1H) 

ppm 

13C NMR (CDCl3) δppm: 218.61, 174.68 (C=O), 167.10 (C=O), 136.92 (C), 124.92 (C=C), 74.54, 

72.92 (C12), 68.26 (C7), 51.52, 47.26, (46.57, 42.15, 41.23, 39.57, 35.22, 35.13, 34.90, 34.71, 

34.42, 31.05, 30.89, 28.44, 27.42, 26.83, 26.69 steroid ring), 23.14, 22.57 (C19), 18.35 (CH3), 

17.37 (C21), 12.57 (C18) ppm. 

MS (+APCI) m/z= Found 535.3181; expected 476 (MI+CH3CN+H2O) 

IR  (KBr) ν = 3599, 3544, 2971, 2935, 2865, 1733, 1703, 1639 (C=O), 1469 cm-1 
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2.3.3 PHENYL METHACRYLATES  

Synthesis of Atropic acid (67) 

The method is based on work by Chang et al.(Chang et al., 2006) 

OH

O
  

Potassium hydroxide (19.0 g, 338 mmol) was dissolved in deionised water (40 mL). Tropic acid 

(15.2 g, 91.6 mmol) was added and the reaction was heated under reflux for 1 hour. The 

reaction was left to cool to room temperature, then cooled further on ice. Conc. HCl (60 mL) 

was added to give a white solid. The solid was collected by filtration and washed with water 

before drying at room temperature under vacuum. 

Yield= 7.01 g (36.9 %) 

TLC: (MeOH) Rf=0.82 (one spot) 

1H NMR (CDCl3) δ ppm: 6.03 (d, J= 1.2 Hz, 1H CH=C) 6.54 (d, J= 1.2 Hz, 1H C=O) 7.26-7.52 (m, 

6H aromatic ring) ppm 

MS (+APCI) m/z= Found 147.0482; calculated for C9H8O2 148.0524; 10.9 ppm 

Synthesis of Phenylmethacryloyl chloride (68) 

Cl

O
 

Atropic acid (6) (0.5 g, 3 mmol) was dissolved in toluene (5 mL). Thionyl chloride (10 mL, 6.2 

mmol) was added. The reaction was heated to 60 oC for 4 hours. The reaction was left to cool 

to room temperature before the solvent was removed to leave a yellow gum.  

Yield = 0.6 g 
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Attempted synthesis of 3α phenylmethacrylate 7α,12α dihydroxy cholic acid methyl 

ester (69) 

 

O

O

OHO

OH

H

H

H H

O  

Methyl cholate (0.5 g, 1.15 mmol) was dissolved in dry chloroform (5 mL) along with 

triethylamine (0.2 mL, 1.72 mmol). The mixture was put on ice. Phenylmethacryloyl chloride 

(0.6 g, 3.6 mmol) in dry chloroform (5 mL) was dripped in over 7 minutes. The reaction was 

kept at 4 oC under argon for 48 hours before the temperature was raised to room temperature 

for 2 weeks. The reaction was stopped by removing the solvent on the rotary evaporator. Ethyl 

acetate (50 mL) was added to remove the salt and the solvent was removed to leave a yellow 

gum. Column chromatography with DCM, then 80/20 methanol/ethyl acetate attempted but 

good separation was not possible. The solvents were removed by rotary evaporation before 

the product was dried at room temperature under vacuum. 

Proton NMR analysis showed a mixture of starting material and product. 

2.3.4 POLYMERISABLE GROUPS ON AMINE CHAIN 

2.3.4.1 PREPARATION OF QUATERNARY AMMONIUM CHOLIC ACID DERIVATIVES CONTAINING A VINYL 

BENZYL GROUP 

Synthesis of N-[2-[1-[(4-vinylphenyl)methyl]pyrrolidin-1-ium-1-yl]ethyl]cholanamide 
chloride (70) 
 

NH

O

OHOH

OH

H

H

H H

N
+

 

N-(2-pyrrolidin-1-ylethyl) cholanamide (10) (0.35 g, 0.7 mmol) was dissolved in chloroform (10 

mL). Vinyl benzyl (0.5 mL, 3.5 mmol) chloride was added. The reaction was protected from the 

light and left to stir overnight. The reaction was heated under reflux for 24 hours. The solvent 
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was removed under reduced pressure before the product was dried at room temperature 

under vacuum. 

TLC: (MeOH), Rf=0.17, 0.87 (dominant spot) (two spots) 

1H NMR (CDCl3) δ ppm: 0.62 (s, 3H, Me-18) 0.85 (s, 3H, Me-19) 0.93 (d, J= 5.9 Hz, 3H, Me-21) 1-

2.43 (steroid ring) 3.11 – 3.24 (m, 8H, 2CH2),  3.60 (m, 1H, CH-3), 3.77 (s, 1H, CH-7), 3.95 (m, 

1H, CH-12), 4.35 (d, J = 4.0 Hz, 2H, CH2), 4.54 (s, 2H, CH2), 5.38 (d, J = 10.9 Hz, 1H CH=CH2), 5.96 

(d, J = 17.6 Hz, 1H, CH=CH2), 6.80 (dd, J = 17.7, 11.0 Hz, 1H), 8.23 (d, J = 5.2 Hz, 1H, NH) ppm. 

13C NMR (DMSO) δ ppm: 173.40 (C=O), (145.12, 138.80, 132.94, 127.83, 126.57, 104.54 

aromatic ring), 135.74 (C=C), 116.15 (C=C), 79.52, 78.99, 78.46, 70.94 (C12), 70.39 (C3), 67.05, 

66.21 (C7), 61.14, 60.78, 57.11 (CH2), 48.55, (45.95, 45.72, 41.48, 41.38, 40.50, 40.42, 40.17, 

35.28, 35.13, 34.86, 34.34, 33.10, 32.23, 31.42, 28.51, 27.30, 26.19 steroid ring), 22.58 (C19), 

20.86, 17.05 (C21), 14.56, 12.27 (C18) ppm. 

MS (+APCI) m/z= 621.4614  

IR (KBr) ν = 3350, 3059, 2932, 2862, 1703, 1651 (C=O), 1533 cm-1 

Synthesis of 3-acetamidopropyl-dimethyl-[(4-vinylphenyl)methyl]ammonium 
chloride (71) 
 

NH

O

OHOH

OH

H

H

H H

N
+

 

N-[3-dimethylamino) propyl] cholanamide (12) (0.35 g, 0.7 mmol) was dissolved in chloroform 

(10 mL). Vinyl benzyl chloride (0.5 mL, 3.5 mmol) was added. The reaction was protected from 

the light and left to stir overnight. The reaction was heated under reflux for 24 hours. The 

product precipitated out, collected by filtration and washed with petrol 40-60 (30 mL). Product 

was found to be not pure by TLC.  

TLC: (MeOH) Rf=0.0.06, 0.84 (dominant spot) (two spots) 

1H NMR (CDCl3) δ ppm: 0.65 (s, 3H, Me-18) 0.87 (s, 3H, Me-19) 0.95 (d, J= 6.0 Hz, 3H, Me-21) 1-

2.43 (steroid structure) 3.14 (d, 3H, CH3) 3.21 (s, 2H, CH2) 3.49 (s, 1H, CH-12), 3.69 (d, J = 19.8 

Hz, 1H, CH-7), 3.90 (s, 1H, CH-3), 5.38 (dd, J = 11.0, 5.9 Hz, 1H, CH=CH2), 5.83 (dd, J = 17.7, 4.8 
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Hz, 1H, CH=CH2), 6.71 (dd, J = 17.6, 10.9 Hz, 1H), 7.30 –7.63  (m, 4H aromatic ring), 8.49 (s, 1H, 

NH) ppm 

13C NMR ( DMSO) δ ppm: 172.97 (C=O), (138.80, 135.76, 133.21, 127.38, 126.40 aromatic ring), 

116.09 (C=C), 79.52, 78.99, 78.46, 70.97 (C12), 70.39 (C3), 66.20 (C7), 65.85, 61.35, 59.67 

(CH3), 49.22, 48.55, (45.92, 41.48, 41.36, 40.51, 40.18, 35.51, 35.27, 35.18, 34.87, 34.35, 32.31, 

28.51, 27.28, 26.20 steroid ring), 45.70 (CH3), 31.50 (CH2), 22.79, 22.68, 22.58 (C19), 17.11 

(C21), 14.61, 12.29 (C18) ppm. 

MS (+APCI) m/z= 609.4619 

IR  (KBr) ν = 3347, 2929, 2862, 1775, 1694, 1627 (C=O), 1551 cm-1 

Synthesis of N-[1-phenyl-1-[(4-vinylphenyl)methyl]piperidin-1-ium-4-yl]cholanamide 
chloride (72) 
 

NH

O

OHOH

OH

H

H

H H

N
+

 

N-(1-phenyl-4-piperidyl) cholanamide (13) (1.5 g, 3.5 mmol) was dissolved in DCM (20 mL). 

Vinyl benzyl chloride (1.5 mL, 10.5 mmol) was added. The reaction was protected from the 

light and left to stir overnight. The reaction was heated under reflux for 24 hours. The product 

precipitated out, which was then collected by filtration and washed with petrol 40-60 (30 mL). 

Further purification by solvent extraction (x 3) between petrol 40-60 (10 mL) and methanol (10 

mL) left a white solid. 

TLC: (MeOH), Rf=0.16 (one spot) 

1H NMR (CDCl3) δ ppm: 0.57 (s, 32H, Me-18) 0.88 (s, 3H, Me-19) 0.98 (d, J= 6.1 Hz, 3H, Me-21) 

1-2.43 (steroid structutre) 3.18 (tt, J = 14.7, 7.3 Hz, 7H, CH2 ring), 3.61 (d, J = 3.7 Hz, 1H, CH-3), 

3.77 (d, J = 3.6 Hz, 1H, CH-7), 4.04 (d, J = 3.2 Hz, 1H, CH-12), 4.14 (d, J = 3.3 Hz, 1H, C3-OH), 

4.36 (d, J = 4.0 Hz, 1H, C7-OH), 4.53 (s, 1H, C12-OH), 5.38 (d, J = 10.9 Hz, 1H, CH=CH), 5.95 (d, J 

= 17.7 Hz, 1H, CH=CH), 6.79 (dd, J = 17.6, 11.0 Hz, 1H), 7.73 – 7.43 (m, 4H aromatic ring), 8.07 

(t, J = 5.7 Hz, 1H, NH) ppm 
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13C NMR (DMSO) δ ppm: 172.94 (C=O), (138.80, 135.78, 133.22, 127.43, 126.42, aromatic ring), 

116.15 (C=C), 70.95 (C12), 70.37 (C3), 66.19 (C7), 65.83, 61.33, 49.24, (45.94, 45.70, 41.48, 

41.36, 40.51, 40.17, 35.50, 35.28, 35.19, 34.87, 34.35, 32.32, 31.51, 30.35, 28.54, 27.29, 26.20 

steroid ring), 22.79, 22.67, 22.60 (C19), 17.12 (C21), 12.31 (C18) ppm 

MS (+APCI) m/z= Found 609.4612; expected 683.4782 (MI-73) MI – (vbc + propane) 

IR  (KBr) ν = 3356, 2925, 2862, 2164, 1648 (C=O), 1548 cm-1 

 

7.3.4.3  BOC PROTECTION 1,4-DIAMINOBUTANE 

 

Due to the difficulties of selectively attaching a polymerisable group onto the amine side chain 

of a modified cholic acid compound, an alternative route was taken. By synthesising a amime 

chain which had a polymerisable group on one end, the free amine could be coupled to the 

cholic acid, creating the desired compound. The first step of this synthesis would be to protect 

one end the diamine, in order to attach a polymerisable group onto the other end. Removal of 

the protecting group would then allow the free amine to be coupled to cholic acid. The end 

compound would be cholic acid with an amide side chain terminating in an methacrylate 

group. The methods are based on the work carried out by Chudzit et al. (Chudzik, n.d.) 

Synthesis of N-Boc-1,4-butanediamine (73) 

NH
NH2

O

O

 

1,4-diaminobutane (1 mL, 12.94 mmol) was dissolved in DCM (20 mL) and put on ice. Di-tert-

butyl dicarbonate (0.3 g, 1.29 mmol) in DCM (5 mL) was dripped in over 50minutes. The 

reaction was left at ice temperature for 12 hours. The reaction was washed with water (100 

mL) followed by  brine (100 mL), before being dried with magnesium sulphate. The solvent was 

removed under vacuum to leave a yellow solid.  

Yield= 0.087g (8.7%) 

TLC: (MeOH) Rf=0.07, 0.9 (dominant spot) (two spots) 
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1H NMR (CDCl3) δ ppm: 1.40-1.61 (m, 12H, 3CH3) 3.13 (q, J=6.1 H, 2H, CH2) 4.55 (s, 1H) ppm 

13C NMR (DMSO) δ ppm: 155.57 (C=O), 77.26 (C), 28.36 (CH3), 28.21, 27.29, 26.93, 26.86 ppm. 

MS (+APCI) m/z= Found 289.2126; expected 188. Diamer produced. 

IR  (KBr) ν = 3372 2983 2941 2847 1681 (C=O) 1521 cm-1 

Synthesis of tert-butyl N-[4-(2-methylprop-2-enoylamino)butyl]carbamate (74) 
 

NH
NH

O

O
O

 

Methacrylic anhydride (0.44 mL, 3 mmol) was dissolved in chloroform (8 mL) and put on ice. N-

Boc-1,4-butanediamine (78) (0.5 g) in chloroform (1.5 mL) was dripped in over 5 minutes. The 

reaction was left at ice temperature for 12 hours. Water (20 mL) was added to quench the 

reaction and the layers were separated. More water (20 mL) was added, the layers separated 

and this was repeated twice more with sodium hydroxide (20 mL, 1M). The chloroform layer 

was dried with magnesium sulphate and the majority of it was removed under vacuum. A small 

amount of petrol 60-80 was used to precipitate the product, which was then collected by 

filtration and dried to give a white solid. 

Yield= 0.27g (61 %) 

1H NMR (CDCl3) δ ppm: 1.44 (s, 10H, 3CH3) 1.48-1.71 (m, 6H) 1.96 (dd, J=1.6, 0.9 Hz, 3H, CH3) 

3.14 (q, J=6.4 Hz) 3.34 (tdd, J=6.6, 5.3, 2.4 Hz, 2H, CH2) 4.62 (s, 1H, CH2) 5.32 (q, J=1.5Hz, 1H, 

CH2) 5.68 (t, J=1.0 Hz, 1H, CH=CH) 6.00 (s 1H) ppm 

13C NMR (DMSO) δ ppm: 167.30 (C=O), 155.53 (C=O), 140.10 (C=C), 118.58 (C=C), 77.29 (C), 

40.51 (CH2), 40.17(CH2), 39.84(CH2), 39.51, 39.17, 39.03, 38.84, 38.51, 28.24(CH2), 27.00(CH2), 

26.48, 18.65 ppm. 

MS (+APCI) m/z= Found 257.1863; calculated for C13H24N2O3 256.17; 1.3 ppm 
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Synthesis of N-(4-aminobutyl)-2-methyl-prop-2-enamide (75) 
 

NH2
NHO  

Tert-butyl N-[4-(2-methylprop-2-enoylamino)butyl]carbamate (79) (0.2 g) was dissolved in  

DCM (3 mL) and  TFA (3 mL) for 5 hours. The solvent was removed under vacuum to leave a 

clear oil. The product was stored at -20oC.  

1H NMR (CDCl3) δ ppm: 1.96 (s, 3H, CH3) 3.23 (q, J = 6.8 Hz, 2H CH2), 3.86 (s, 2H, CH2), 5.55 (s 1H 

CH=CH) 5.82 (s, 1H, CH=CH) 7.32 (s, 1H, NH) 7.55 (s, 2H, NH) 13.88 (s, 1H, TFA) ppm  

13C NMR (CDCl3) δ ppm: 172.71 (C=O), 164.56, 163.96, 163.36, 162.76, 145.24, 127.37, 123.94, 

122.77, 118.17, 113.57, 45.57, 45.24, 44.90, 44.57, 44.24, 43.90, 43.57, 43.27, 32.15, 31.29, 

29.72 (CH2), 23.77 ppm 

MS (+APCI) m/z= Found 157.1332; calculated for C8H17N2O1 157.1335; 1.5 ppm 

IR  (KBr) ν = 3409 2930 2863 2111 1641(C=O) cm-1 

Synthesis of N-(4-cholanamidobutyl)-2-methyl-prop-2-enamide (76) 
 

NH

O

OHOH

OH

H

H

H H

NH

O

 

Cholic acid (1 g, 2.4 mmol) was dissolved in THF (30 mL) along with triethylamine (0.75 mL). It 

was put on ice for 10 minutes. Ethylchloroformate (0.13 mL) was dripped in over 10 minutes. It 

was taken off the ice and left at room temperature for two hours. N-(4-aminobutyl)-2-methyl-

prop-2-enamide (80) (0.4 g) was added and left to react for 12 hours. The reaction was 

quenched with water (30 mL) and separated 3 times. The organic layer was dried over 

magnesium sulphate, collected by filtration and dried at room temperature under vacuum. 

NMR showed the reaction had not gone to completion.  Further purification attempted but 

was difficult.  
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1H NMR (CDCl3) δ ppm: 0.68 (d 3H J= 3.1 HZ, Me-18) 0.89 (d 3H J= 2.0 Hz Me-19) 0.982 (d 3H J= 

4.3 Hz Me-21) 1-2.43 (steroid structutre) 4.12 (q, 10H, J = 7.1 Hz, CH-3, CH-7), 4.61 (s, 1H, CH-

12) 7.27 (s, 1H, NH) ppm 

13C NMR (DMSO) δ ppm: 198.77 (C=O), 172.37 (C=O), 116.7 (C=C), 70.96 (C12), 70.40 (C3), 

66.21 (C7), 59.71, (46.06, 45.72, 41.49, 41.33, 40.51, 40.17, 39.84, 39.50, 39.17, 39.01, 38.84, 

38.50, 35.29, 35.02, 34.85, 34.36, 30.38, 26.18 steroid ring), 22.77, 22.59 (C19), 17.09, 16.91 

(C21), 14.06, 12.30 (18) ppm 

MS (+APCI) m/z= Found 547.4101; calculated for C32H54N2O5 546.402; -0.8 ppm 

IR (KBr) ν = N/A 
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2.5 PROTECTING HYDROXYL GROUPS 

This work was based on the procedures carried out by Kuhajda et al.(Kuhajda et al., 1996) 

3α,7α,12α triaetate methyl cholate (77) 

O

O

OO

O

H

H

H H

O

O

O

 

Methyl cholate (1 g, 2.4 mmol) was dissolved in  dry chloroform (15 mL) along with DMAP (8.6 

mg, 0.708 mmol). Triethylamine (1.6 mL, 11 mmol) was added followed by acetic anhydride 

(1.1 mL, 11.6 mmol). The solution was heated under argon at 80oC for 48 hours. Reaction was 

left to cool before solvent extractions with sodium bicarbonate (x2) (20 mL), 0.5M HCl (x2)  (20 

mL) and water (x2) (20 mL). The organic layer was dried using magnesium sulphate removed 

under reduced pressure and dried to leave a white solid.  

Yield= 0.22g (22 %) 

TLC: (MeOH) Rf=0.84 (one spot) 

1H NMR (CDCl3) δ ppm: 0.69 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 0.97 (d, J= 6.1 Hz, 3H, Me-21) 1-

2.43 (steroid ring), 3.66 (d, J = 0.9 Hz, 3H, O-CH3), 4.44 (m, 1H, CH-3), 4.78 (s, 1H, CH-7), 4.96 (s, 

1H, CH-12) ppm 

13C NMR (CDCl3) δ ppm: 216.00, 215.29, 214.91, 214.56, 214.33, 214.11, 213.84, 213.50, 

213.03, 174.58, 170.58, 170.43, 75.41, 74.11, 70.71, 51.58, 47.36, (45.06, 43.42, 40.93, 37.73, 

34.69, 34.35, 31.26, 30.90, 30.77, 28.91, 27.21, 26.90, 25.60 steroid ring), 22.82 (CH3), 22.59 

(C19), 21.68, 21.53, 17.51 (C21), 12.24 (C18) ppm 

MS (+APCI) m/z= found 571.3230; expected 548.334 (MI+23) 

IR  (KBr) ν = 3514 2947 2871 1721 (C=O) cm-1  
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2.5.1 REMOVAL OF PROTECTING GROUPS 

3α hydroxyl 7α,12α diacetate methyl cholate (78) 

 

O

O

OOH

O

H

H

H H

O

O  

Triprotected methyl cholate (3.3 g, 5.4 mmol) was dissolved in methanol (30 mL) along with 

potassium carbonate (1.1 g, 8.21 mmol) was added. The reaction mixture was stirred at room 

temperature for 3.5 hours. The reaction was stopped by adding acetic acid until the solution 

turned acidic. Water (30 mL) was added and the flask was put on ice for 1.5 hours to 

precipitate the product. The product was collected by filtration and dried at room temperature 

under vacuum.  

Yield= 2.13 g (64 %)   

TLC: (MeOH), Rf=0.38 (one spot) 

1H NMR (CDCl3) δ ppm: 0.72 (s, 3H, Me-18) 0.81 (s, 3H, Me-19) 0.98 (d, J= 6.0 Hz, 3H, Me-21) 1-

2.43 (steroid structure) 3.50 (tt, J = 10.6, 4.3 Hz, 1H CH-3), 3.65 (s, 3H, O=CH3), 4.89 (q, J = 3.1 

Hz, 1H, CH-7), 5.12 – 5.02 (m, 1H, CH-12) ppm 

13C NMR (CDCl3) δ ppm: 214.85, 174.55, 170.64, 119.59, 79.09, 75.42, 71.64, 70.85 (C12), 

51.49, 47.32, (45.04, 43.38, 41.02, 38.61, 37.75, 34.84, 34.57, 34.27, 31.33, 30.86, 30.75, 

30.42, 28.91, 27.15 steroid ring), 25.53, 25.03, 22.78, 22.55 (C19), 21.62, 21.43, 17.47 (C21), 

12.19 (C18) ppm 

MS (+APCI) m/z= Found 509.3223; expected 506.3244 (MI+2) 

IR  (KBr) ν = 3447 2925 2868 1724 (C=O) 1430 cm-1 
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2.6 POLYMERISATION OF COMPOUNDS 

79. Polymerisation of 3α,12α diacroylate-7αhydroxycholic acid  

3α,12α diacroylate-7αhydroxycholic acid (63) (0.175 g) was dissolved in toluene (2.5 mL). AIBN 

(0.1 g) was added, along with EGDMA (0.82 mL). 100µl of the solution was pipetted out into a 

96 well plate and a PTFE-lined cover was clamped across the top of the plate to seal the wells. 

It was place in at oven set at 60oC for 12 hours. The products were white discs. 

80. Polymerisation of methacrylate 7α,12α dihydroxyl cholic acid  

Methacrylate 7α,12α dihydroxyl cholic acid (65) (0.2 g) was dissolved in toluene (3.5 mL). AIBN 

(0.1 g) was added, along with EGDMA (0.8 mL). 100µl of the solution was pipetted out into a 

96 well plate and clamped. It was place in at oven set at 60oC for 12 hours. The products were 

white discs. 

81. Polymerisation of 3α hydroxyl 7α,12α diacetate methyl cholate  

3α hydroxyl 7α,12α diacetate methyl cholate (77) (0.5 g) was added to a round bottomed flask 

along with bis[acetylacetonato]copper (0.02 g) and  vinyl benzyl chloride (2 mL). The reaction 

was heated to 120oC for 4.5 hours. The crude product was purified using column 

chromatography with petrol 60-80, slowly increasing the amount of ethyl acetate (0-100%). 

The solvents were removed under reduced pressure and the polymer was dried at room 

temperature under vacuum. 

82. Polymerisation of 3-acetamidopropyl-dimethyl-[(4-

vinylphenyl)methyl]ammonium chloride (70) 

3-acetamidopropyl-dimethyl-[(4-vinylphenyl)methyl]ammonium chloride (70) (0.5 g) was 

dissolved in ethanol (4 mL). Styrene (3.9 mL) was added along with AIBN (100 mg). The 

reaction was degassed and heated to 65oC for 12 hours where a white solid precipitated out. It 

was purified by dissolving in chloroform (20 mL) and dripping into stirring methanol (100 mL). 

The product was collected by filtration and dried at room temperature under vacuum to give a 

white solid. 

Proton NMR analysis shows very little incorporation of N-[3-  (dimethylamino)propyl] 

cholanamide (12) into the polymer. 
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83. 3-acetamidopropyl-dimethyl-[(4-vinylphenyl)methyl]ammonium chloride (70)(0.25 g) was 

dissolved in ethanol (4 mL) along with AIBN (100 mg). Tert-butyl methacrylate (0.23 mL) was 

added. The mixture was degassed which argon and heated to 60oC for 4 days. The solution was 

purified by dripping onto ethyl acetate (75 mL) to give a white powdery solid which was dried 

at room temperature under vacuum. 

Proton NMR analysis showed that no polymerisation had taken place. 

84. 3-acetamidopropyl-dimethyl-[(4-vinylphenyl)methyl]ammonium chloride (70) (0.25 g) was 

suspended in propan-2-ol (6 mL) along with AIBN (100 mg). The mixture was degassed and 

heated to 70oC for 5 days. The white, cloudy solution was collected by filtration to give a off 

white solid which was dried at room temperature under vacuum.  

No NMR analysis could be undertaken of this polymer due to its insolubility. 

 85. Polymerisation of N-[2-[1-[(4-vinylphenyl)methyl]pyrrolidin-1-ium-1-

yl]ethyl]cholanamide chloride (69) 

 N-[2-[1-[(4-vinylphenyl)methyl]pyrrolidin-1-ium-1-yl]ethyl]cholanamide chloride (69) (0.5 g) 

was dissolved in ethanol (4 mL) along with  AIBN (100 mg). Tert-butyl methacrylate (0.46 mL) 

was added. The mixture was degassed with argon and heated to 60oC for 4 days. The solution 

was purified by dripping onto ethyl acetate( 75 mL) to give an off white solid which was dried 

at room temperature under vacuum. 

Proton NMR analysis showed that no polymerisation had taken place. 

86. N-[2-[1-[(4-vinylphenyl)methyl]pyrrolidin-1-ium-1-yl]ethyl]cholanamide chloride (69) (0.15 

g) was dissolved in ethanol (5 mL) along with AIBN (100 mg). Methacrylate was added (0.8 mL). 

The mixture was degassed with argon and heated to 60oC for 4 days. An orange solid 

precipitated out, which was dissolved in chloroform (10 mL) and the solvent was removed 

under reduced pressure. The polymer was dried at room temperature under vacuum. 

Proton NMR analysis shows the product is poly(methyl acrylate). The was no incorporation of 

N-(2-pyrrolidin-1-ylethyl)cholanamide. 

87. N-[2-[1-[(4-vinylphenyl)methyl]pyrrolidin-1-ium-1-yl]ethyl]cholanamide chloride (69 )(0.1 

g) was dissolved in ethanol (2 mL) along with  AIBN (100 mg). The mixture was degassed with 

argon and heated to 60oC for 2 days. A brown solid precipitated out, which was dissolved in 
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DCM (10 mL) and the solvent was removed under reduced pressure. The productr was dried at 

room temperature under vacuum. 

Proton NMR analysis showed that no polymerisation had taken place. 

88. N-[2-[1-[(4-vinylphenyl)methyl]pyrrolidin-1-ium-1-yl]ethyl]cholanamide chloride (69) was 

dissolved in 7mL ethanol along with AIBN (100 mg). 2.4mL (23.04mmol) styrene was added. 

The mixture was degassed and heated to 60oC for 3 days. A white solid precipitated out, which 

was collected by filtration and purified by dissolving in chloroform and dripping into methanol.  

NMR shows no incorporation of product. 

89. Polymerisation of N-[1-phenyl-1-[(4-vinylphenyl)methyl]piperidin-1-ium-4-
yl]cholanamide chloride (71) 
 
Synthesis of N-[1-phenyl-1-[(4-vinylphenyl)methyl]piperidin-1-ium-4-yl]cholanamide chloride 

(70) (0.3 g) was dissolved in proan-2-ol (8 mL) along with AIBN (100 mg). The mixture was 

degassed with argon and heated to 70oC for 6 days. A white solid precipitated out, which was 

collected by filtration and dried at room temperature under vacuum. 

Proton NMR analysis shows a very short chained polymer was synthesised. 
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2.7 UREATHANES AND POLYUREATHANES 

3α methyl N-(p-tolyl)carbamate 7α 12α hydroxyl cholic acid (90) 
 

 

Method 1. Cholic acid (1.55 g, 3.8 mmol) was dissolved in THF (10 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with p-tolyl isocyanate (0.53 mL, 4.2 mmol). The 

reaction was left for 2 days where the product had precipitated out. The solid was collected by 

filtration and dried at room temperature under vacuum. 

1H NMR (CDCl3) δ ppm: 0.70 (s, 3H, Me-18) 0.89 (s, 3H, Me-19) 1.00 (d, J= 6.3 Hz, 3H Me-21) 

1.00-2.5 (m, steriod structure) 2.30 (d, 8H, CH3) 3.86 (s, 1H, CH-7) 4.00 (d, J=3.2Hz, 1H CH-12) 

4.56 (t, J=10.7Hz, 1H, CH-3) 6.62 (d, J=7.0Hz, 2H, NH2) 7.03-7.27 (m, 7H, aromatic +CHCl3) ppm 

MS (+APCI) m/z= 559.3735 (+18) 

TLC: (EtOAc, Rf=0.08 (one spot) 

Method 2. Cholic acid (1.55 g, 3.8 mmol) was dissolved in THF (10 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with p-tolyl isocyanate (2.6 mL, 21 mmol). The 

reaction was left for 2 days where the product had precipitated out. The solid was collected by 

filtration, washed with methanol (10 mL) and dried at room temperature under vacuum. 

Product was not pure as judged by proton NMR anaylsis. 

TLC: (EtOAc) Rf=0.51 (one spot) 

1H NMR (DMSO) δ ppm:  0.60 (s, 3H, Me-18) 0.67-0.98 (m, 7H, Me-19 +Me-21 +CH) 1.00-2.5 

(m, steriod structure)2.23 (s, 9H, CH3) 3.64 (s) 3.81 (s 1H CH-7OH) 4.13 (dd J=11.4, 3.1Hz, 1H 
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CH-12) 4.42 (dt J=10.9Hz 1H CH-3) 6.96-7.13 (m, 3H, aromatic) 7.23-7.49 (m, 3H, aromatic) 

9.40 (s, 1H) 9.51 (s, 3H) 11.93 (s, 1H) ppm 

IR = 3293, 3174, 3029, 2910, 2853, 2722, 1891, 1703, 1636 (C=O), 1587, 1560, 1511 cm-1 

Method 3. Cholic acid (1.55 g, 3.8 mmol) was dissolved in THF (10 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with p-tolyl isocyanate (2.6 mL, 19.4 mmol) 

(reaction carried put twice). One flask was put on ice for 12 hours where the mixture had 

turned brown and a preciptate had formed. The reaction was quenched with methanol (10 

mL), where it turned yellow. The product was collected by filtration and dried. The other flask 

was heated to 40oC for 12 hours, where it turned purple. The reaction was quenched with 

methanol (10 mL), where it turned yellow. The product was collected by filtration and dried at 

room temperature under vacuum. 

Ice 

TLC: (MeOH), Rf=0.7 (one spot) 

 1H NMR (DMSO) δ ppm: 0.61 (s 3H Me-18) 0.85 (s 3H Me-19) 0.93 (d, J=6.3 Hz, 3H Me-21) 

1.00-2.5 (m steriod structure) 2.24 (s, 20H) 3.18 (s, 2H) 3.65 (, 13H) 3.82 (s, 1H, CH-7) 4.13 (d 

J=11.6Hz, 1H, CH-12) 4.40 (m, 1H, CH-3) 6.98-7.15 (m, 11H, aromatic) 7.24-7.43 (m, 11,H 

aromatic) 9.39 (s, 1H) 9.50 (s, 4H) 11.93 (s, 1H) ppm 

IR = 3293, 3029, 2983, 2907, 2856, 2725, 1894, 1788, 1700, 1633, 1590, 1508 cm-1 

Heat 

TLC: (MeOH), Rf=0.7 (one spot) 

1H NMR (DMSO) δ ppm: 0.70 (s, 3H, Me-18) 0.77 (d, J= 6 Hz, 3H Me-21) 0.88 (s, 3H, Me-19) 

1.00-2.5 (m steriod structure) 2.23 (d, J=5.9Hz, 21H) 3.65 (s, 10H) 4.29 (d, J= 7.9 Hz, 1H, CH-12) 

4.39 (m, 1H, CH-3) 4.89 (s, 1H, CH-12) 6.69-7.15 (m, 11H, aromatic) 7.22-7.50 (m, 11H, 

aromatic) 9.29 (d, J=11.1Hz, 1H) 9.49 (d, J-9.2Hz, 4H) ppm 

IR =3705, 3299, 3032, 2910, 2856, 2722, 1894, 1715, 1587, 1508, 1542 cm-1 

Method 4. Cholic acid (0.75 g, 1.8 mmol) was dissolved in THF (10 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with p-tolyl isocyanate (1.3 mL, 9.7 mmol) 

(reaction carried put twice). One flask was put on ice for 12 hours where the mixture had 

turned brown and a preciptate had formed. The reaction was quenched with methanol, where 
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it turned yellow. The product was collected by filtration and dried at room temperature under 

vacuum. The other flask was heated to 40 oC for 12 hours, where it turned purple. The reaction 

was quenched with methanol, where it turned yellow. The product was collected by filtration 

and dried at room temperature under vacuum. 

Ice 

1H NMR (CDCl3) δ ppm:  0.64 (s, 3H, Me-18) 0.84 (s, 3H, Me-19) 0.96 (d, J= 6.0 Hz, 3H, Me-21) 

1.00-2.5 (m steriod structure) 2.26 (d, J=2.3Hz, 10H) 3.72 (s, 6H) 3.80 (s, 1H, CH-7) 3.95 (s, 1H, 

CH-12) 4.52 (m, 1H, CH-3) 7.04 (dd, J=8.8, 3.0Hz, 8H, aromatic +CDCl3) 7.14-7.42 (m, 5H, 

aromatic) ppm 

Heat 

1H NMR (CDCl3) δ ppm: 0.70 (s, 3H, Me-18) 0.91 (d, J= 6.1 Hz, 3H, Me-19) 1.0 (s, 3H, Me-21) 

1.00-2.5 (m, steriod structure) 2.22 (s, 17H) 3.51 (s, 24H) 3.87 (s, 1H, CH-7) 4.00 (s, 1H, CH-12) 

4.57 (m, 1H, CH-3) 6.96-7.14 (m, 11H, aromatic) 7.28-7.43 (m, 11H, aromatic) 9.49 (s, 4H) ppm 

Attempted synthesis of 3α-methyl,N-(p-tolyl)carbomate-7α,12α-hydroxyl,N-[3- 

(dimethylamino)propyl] cholamide (91) 

 

N-[3-(dimethylamino)propyl] cholamide (1.8 g, 3.8 mmol) was dissolved in DCM (10 mL). 

Molybdenum (VI) dichloride dioxide (1.3 mg) was added along with p-tolyl isocyanate (0.53 

mL, 4.2 mmol). The reaction was left for 2 days before the solvent was removed under reduced 

pressure. The solid dried at room temperature under vacuum. 
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Proton NMR analysis showed no reaction had taken place 

Attempted synthesis of 3α-methyl,N-(p-tolyl)carbomate-7α,12α-hydroxyl,N-[3- 

(dimethylamino)propyl] cholamide (92) 

 

Figure 15 

N-[3-(dimethylamino)propyl] cholamide (0.25 g) was dissolved in THF (5 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with p-tolyl isocyanate (0.09 mL). The reaction 

was left for 2 days where a precipitate formed. The solid was collected by filtration and dried 

at room temperature under vacuum. 

Proton NMR analysis showed no reaction had taken place 

Poly (N-(4-methoxycyclohexoxy)-4-[[4-[(4-
methoxycyclohexoxy)carbamoyl]phenyl]methyl]benzamide) (93) 
 

 

1,4-cyclohexanediol (0.9 g, 8 mmol) was dissolved in dry THF (10 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with 4,4-methylenebis (phenyl isocyanate) (1 g, 4 

mmol). The reaction was left for 12 hours before being quenched with water (25 mL).  A white 

precipitate formed which was collected by filtration and dried at room temperature under 

vacuum.  
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1H NMR (DMSO) δ ppm: 1.17-1.49 (m, 1H, CH) 1.42, 2.09 (m, 7H) 3.37-3.68 (m, 2H, CH2) 3.78 (s, 

1H, CH) 4.45-4.76 (m, 2H, CH2) 7.02-7.14 (m, 2H, aromatic) 7.28-7.41 (m, 2H, aromatic) 9.38-

9.54 (m, 1H) ppm 

13C NMR (DMSO) δ ppm:  70.96, 70.38, 66.18 (CH2 ring), 63.29, 61.13, 50.64, 50.46, 50.42, 

46.02, 45.69, 41.63, 41.48, 32.81, 30.65(CH2 ring), 25.41, 22.60, 21.85, 21.62, 17.05, 13.91, 

12.33 ppm 

IR =3317 3120, 3038, 2944, 2859, 1697 (C=O), 1593, 1411 cm-1 

 

Preparation of a polyurethane copolymer of cholic acid and 4,4-methylenebis(phenyl 
isocyanate (94) 
 

 

Method 1. Cholic acid (1 g, 2.4 mmol) was dissolved in THF (15 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with 1,4-cyclohexanediol (0.28 g, 2.5 mmol). 4,4-

methylenebis (phenyl isocyanate) (2.1 g, 12.25 mmol) was added (reaction carried put twice). 

One flask was put on ice for 4 hours where the mixture had turned yellow. The reaction was 

quenched with methanol (15 mL) to form a precipitate. The product was collected by filtration 

and dried at room temperature under vacuum. The other flask was heated to 45oC for 12 

hours, then the reaction was quenched with methanol (15 mL), to form a pink precipitate. The 

product was collected by filtration and dried at room temperature under vacuum before 

purification by dissolving in chloroform (10 mL) and dripping in methanol (100 mL) to give a 

white, powdery solid. 

1H NMR (CDCl3) δ ppm: 0.73 (d, J=15.3Hz, 1H) 0.92 (s, 1H) 1.79-1.92 (m, 2H) 3.49 (s, 6H) 3.60-

3.81 (m, 4H) 3.88 (s, 2H) 6.51 (s, 1H) 7.10 (d, J=8.3Hz, 1H) ppm 

IR = 3305, 2947, 1712, 1636, 1590, 1511 cm-1 
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Method 2. Cholic acid (0.5 g, 1.2 mmol) was dissolved in THF (15 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with 1,4-cyclohexanediol (0.28 g, 2.5 mmol). 4,4-

methylenebis (phenyl isocyanate) was added (2.1 g, 12.25 mmol). The flask was heated to 40oC 

for 12 hours, to give a black solution, before more 1,4-cyclohexanediol  (0.28 g, 2.5 mmol) was 

added. After 4 hours the reaction was quenched with methanol (15 mL), to form a light brown 

precipitate. The product was collected by filtration and dried at room temperature under 

vacuum before purification by dissolving in THF (10 mL) and dripping in methanol (100 mL) to 

give a light brown, sticky solid. 

1H NMR (CDCl3) δ ppm: 0.59 (s, 3H, Me-18) 0.70 (s, 3H, Me-19) 0.85-0.93 (m, 9H, Me-21 + 

2CH3) 1.00-2.5 (m, steroid structure) 3.17 (d, J=1.9Hz, 2H) 3.77 (d, J=7.0 Hz, 6H) 4.11 (d, 

J=11.0Hz, 1H) 4.40 (m, 1H, CH-3) 4.72 (s, 3H, CH-7 + CH2) 7.08 (d, J=8.3Hz, 12H, aromatic) 7.24-

7.47 (m, 12H, aromatic +CDCl3) 9.47 (d, J=14.2Hz, 4H) ppm 

IR =3302, 2941, 2865, 1697, 1590, 1511 cm-1  

Method 3. Cholic acid (5 g, 12.25 mmol) was dissolved in THF (30 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along with 1,4-cyclohexanediol (0.28 g, 2.5 mmol). 4,4-

methylenebis (phenyl isocyanate) (2.6 g, 12.25 mmol) was added. The flask was heated to 40oC 

for 12 hours, before being quenched with methanol (15 mL), to form a yellow solution. The 

solvents were removed under reduced pressure to give a white solid which was dried at room 

temperature under vacuum. 

Preparation of a polyurethane copolymer of cholic acid and 4,4-methylenebis(phenyl 
isocyanate) (95) 
 

 

Method 1. Cholic acid (0.5 g, 1.2 mmol) was dissolved in THF (8 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along 4,4-methylenebis (phenyl isocyanate) (1 mL, 2.48 

mmol) was added. The flask was left at room temperature for 4 hours, where it turned black. 
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The reaction was quenched with methanol (10 mL), to form a light purple solution. The 

precipitate was collected by filtration and dried at room temperature under vacuum to give a 

white solid.  

1H NMR (CDCl3) δ ppm:  0.70 (s, 3H, Me-18) 0.91 (s, 3H, Me-19) 0.99 (m, 3H, Me-21) 1.00-2.5 

(m, steriod structure) 1.65 (s) 348 (s, 1H) 3.88 (s, 2H, CH-7+CH) 3.99 (s, CH-12) 4.57 (m, 1H, CH-

3) 6.60 (d, J=11.1Hz, 2H) 7.02-7.16 (m, 4H, aromatic) ppm 

IR = 3308, 3186, 3126, 304,1 2941, 2862, 1700, 1651, 1603, 1521 cm-1 

Method 2. Cholic acid (1 g, 2.4 mmol) was dissolved in THF (15 mL). Molybdenum (VI) 

dichloride dioxide (1.3 mg) was added along 4,4-methylenebis (phenyl isocyanate) (0.3 g, 1.2 

mmol) was added. The flask was left at room temperature for 4 hours. The reaction was 

quenched with methanol (15 mL) and the solvents were removed under reduced pressure to 

give a white soild which was dried at room temperature under vacuum. 

1H NMR (CDCl3) δ ppm: 0.58 (s, 3H, Me-18) 0.84 (s, 3H, Me-19) 0.91 (m, 3H, Me-21) 1.00-2.5 

(m, steriod structure) 3.79 (d, J=8.2Hz, 2H) 4.11 (m, 2H, CH-12) 4.00 (tq, J=13.0, 8.0, 6.2 Hz 1H, 

CH-3) 7.09 (dd, J=8.5,2.7 Hz, 2H, aromatic) 7.33 (d, J=8.2 Hz, 2H) 9.36-9.56 (m, 1H) ppm 
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2.8 PREPARATION OF THE COMPOUNDS USED IN THE PHOTOCHEMISTRY EXPERIMENTS 

Synthesis of 4-benzylbenzoyl chloride (96) 

 

4-benzyl benzoic acid (1 g, 4.42 mmol) was added to a dry flask along with thionyl chloride (3 

mL), DMF (0.5 mL) and toluene (13 mL). The flask was heated under reflux for 5 days. The 

solvent was removed under reduced pressure and the product was re-dissolved in toluene (5 

mL) twice and the solvent removed. The product was dried under vacuum at room 

temperature under vacuum to give a white solid. 

Yield = 1.03 g  

TLC: (MeOH) Rf=0.11 (one spot) 

1H NMR (CDCl3) δ ppm: 7.50 (tt, J = 6.6, 1.5 Hz, 5H, aromatic ring) 7.69 – 7.56 (m, 6H, aromatic 

ring) 

MS (+APCI) m/z= Found 245.0366; calculated for C14H10Cl1O2 245.0364; 0.9 ppm 

 

Synthesis of 4-benzoyl-N-propyl-benzamide (97) 

 

4-benzylbenzoyl chloride (0.5 g, 2 mmol) was dissolved in toluene (8 mL). Triethylamine (0.3 

mL, 3 mmol) was added along with propyl amine (0.33 mL, 2 mmol) at room temperature and 

left to react for 2.5 hours. Water (12 mL) was added to preciptate the product, which was 
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collected by filtration and dried at room temperature under vacuum. The product was 

recrystallised in acetonitrile (3 mL) to give a white solid.  

TLC: (MeOH) Rf=0.1 (one spot) 

1H NMR (CDCl3) δ ppm: 1.01 (t, J= 7.4 Hz, 3H, CH3) 1.59 – 1.79 (m, 2H, CH2), 3.38 – 3.54 (m, 2H, 

CH2), 7.42 – 7.70 (m, 3H, aromatic), 7.74 – 7.94 (m, 6H, aromatic)  

MS (+APCI) m/z= Found 268.1332; calculated for C17H18N1O2 268.1336; 1.5 ppm 

IR= 3320, 3032, 2962, 2892, 2874, 2692, 2540, 2510, 2379, 1909, 1860, 1654, 1630, 1557, 

1505, 1472 cm-1 

Synthesis of N-(4-benzoylphenyl) formamide cholate (98) 
 

 

Cholic acid (0.5 g, 1.2mmol) was dissolved in THF (30 mL) along with triethylamine (2.9 mL, 0.3 

mmol). The solution was put on ice for 10 minutes before ethylchloroformate (0.13 mL, 0.013 

mmol) was dripped in over 10 minutes. The solution was allowed to react for two hours at 

room temperature.  4-aminobenzophenone (0.23 g, 1.2 mmol) was added and left to react for 

3 hours. The reaction was quenched with water (30 mL). The mixture was washed with water 

(3 x 30 mL). The organic layer was dried over magnesium sulphate and the solvent was 

evaporated under reduced pressure.  Solvent extraction between water and ethyl acetate was 

preformed 3 times before the organic layer was removed under reduced pressure. The product 

was dried at room temperature under vacuum. 

MS (+APCI) m/z= Found 588.3680; calculated for C37H50N1O5 588.3684; -0.6 ppm 

2.8.1 PHOTOCHEMISTRY EXPERIMENTAL  

Reactant 1 and reactant 2 were weighed into a small vial with 1mL solvent. The vial was placed 

under the UV lamp for a set amount of time. The solution was then subject to TLC, and in some 

cases, purification and NMR analysis.  
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Reactant 1 weight Reactant 2  weight Solvent time under 

UV 

16 0.01g 98 0.004g chloroform 1.2 hours 

16 0.01g 98 0.004g chloroform 1.2 hours 

Cholic  Acid 0.006g 98 0.004g DMSO 1 hour 

Taurocholic 

Acid 

0.008g 98 0.004g DMSO 1.2 hours 

Cholic  Acid 0.006g 98 0.004g DCM 45 minutes 

Taurocholic 

Acid 

0.0118g 98 0.004g DCM 45 minutes 

17 0.0082g 98 0.004g DCM 45 minutes 

Cholic  Acid 0.006g 98 0.004g - 15 minutes 

Cholic  Acid 0.006g 98 0.004g Petrol 60-80 15 minutes 

Cholic  Acid 0.006g 98 0.004g Acetonitrile 15 minutes 

Taurocholic 

Acid 

0.008g 98 0.004g - 15 minutes 

Taurocholic 

Acid 

0.008g 98 0.004g Petrol 60-80 15 minutes 

Taurocholic 

Acid 

0.008g 98 0.004g Acetonitrile 15 minutes 

16 0.01g 98 0.004g - 15 minutes 

16 0.01g 98 0.004g Petrol 60-80 15 minutes 

16 0.01g 98 0.004g Acetonitrile 15 minutes 

Table 6 Table to show amounts of reactants 1 and 2 used, the solvent and reaction times for the UV experiments 

Reactant 1 weight Reactant 2  weight Solvent Time under 

UV 

98 0.03g polystyrene 0.25g chloroform 1 hour 

98 0.0016g polystyrene 0.25g toluene 1.5 hours 

98 0.004g polystyrene 0.25g toluene 2.5hours 

98 0.005g polystyrene 0.25g Methanol 2 hours 

98 0.005g polystyrene 0.25g Ethanol 2 hours 

98 0.005g polystyrene 0.25g Ethyl 2 hours 
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acetate 

98 0.005g polystyrene 0.25g DCM 2 hours 

98 0.005g polystyrene 0.25g Acetonitrile 2 hours 

98 0.005g polystyrene 0.25g Petrol 60-80 2 hours 

98 0.005g polystyrene 0.25g Petrol 40-60 2 hours 

98 0.005g polystyrene 0.25g THF 2 hours 

98 0.005g polystyrene 0.25g DMF 2 hours 

98 0.005g polystyrene 0.25g Acetone 2 hours 

98 0.1g polystyrene 0.25g DMF 2.5 hours 

98 0.1g polystyrene 0.25g Chloroform 2 hours 

98 0.1g polystyrene 0.25g Acetone 2 hours 

98 0.1g polystyrene 0.25g Ethyl 

acetate 

2 hours 

98 0.1g polystyrene 0.25g Methanol 2 hours 

98 0.1g polystyrene 0.25g Ethanol 2 hours 

98 0.1g polystyrene 0.25g toluene 2 hours 

98 0.1g polystyrene 0.25g DCM 2 hours 

98 0.1g polystyrene 0.25g Acetonitrile 2 hours 

98 0.1g polystyrene 0.25g Petrol 60-80 2 hours 

98 0.1g polystyrene 0.25g Petrol 40-60 2 hours 

 Table 7 Table to show the weight of reactant 1 used, along with the weight of polystryene used, the solvent and reaction times 

for the UV experiments 
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3. RESULTS 

3.1 SYNTHESIS OF CHOLIC ACID AMIDE DERIVATIVES 

3.1.1 AMINOLYSIS OF METHYL CHOLATE: DIAMINES 

In order to synthesis an antimicrobial cholic acid derivative, an amide tail had to be created. 

This was achieved with aminolysis of methyl cholate using various amines under a variety of 

conditions. The general procedure was to add methyl cholate and a large excess of the amine 

to a pressure vessel and heat.  

heat, pressure

 

 

Scheme 6 Amidation of methyl cholate acid by 1,4-diaminobutane 

The results for this procedure were varied. Whilst aminolysis did work for some diamines, the 

long reaction times and high pressures needed made the reaction difficult to control. 

Separation of the product from the excess diamine also proved very difficult, reducing the 

overall yield. Since a pressure vessel was being used, the progress of the reaction could not 

easily be assessed, meaning reaction times were probably longer than necessary and 

temperatures higher than needed. Thermal degradation of the diamines could have also 

occurred although this is arguable due to the relatively short reaction time and limited amount 

of oxygen present. Overall, this method, whilst successful in low yields was found to be 

inefficient for the projects needs. The reaction yields are given in table 6. 
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3.1.2 ACTIVATION OF CHOLIC ACID WITH DISUCCINIMIDYL CARBONATE  

DMF/DSC/Pyridine

 

 

Scheme 7 Amidation of cholic acid via activation with DSC and subsequent reaction with 1,4-diaminobutane 

Another method tried was the conversion of cholic acid to the N-hydroxysuccinate ester by 

means of disuccinimidyl carbonate in the presence of pyridine and then aminolysis with 1,4-

diaminobutane. This resulted in low yields and complex mixtures as judged by TLC and NMR 

spectroscopy. TLC anaylsis showed that the cholic acid had not all been consumed in the 

reaction, indicating that no, or little of the N-hydroxysuccinate ester had been made so the 

reaction could not progress.  

 The reaction was repeated with a simpler amine (benzyl amine) as a model and 

disoproylethylamine instead of pyridine in DMF.  

DMF/DSC/DIEA

 

Scheme 8 Synthesis of compound 17 by activation of cholic acid by DSC 

This time, the activation step of cholic acid was left for longer than the original experiment 

(overnight instead of 3 hours) and the aminolysis stage was left for a shorter time (1 hour 

instead of 48 hours). TLC analysis showed no cholic acid was present and only one component 

for the product, however, the yield obtained for this reaction was very low, 14% or 0.14 g of 

the product. Due to the low yields obtained, the use of disuccinimidyl carbonate was also 

found to be inefficient to the projects needs. 
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3.1.3 CARBONYL DIIMIDAZOLE ACTIVATION OF CHOLIC ACID 

THF/carbonyldiimidazole

 

Scheme 9 Synthesis of compound 17 by activation of cholic acid by CDI 

Due to the ineffeciencies of the disuccinimidyl carbonate activations, alternative activation 

methods were tried. Reactions with carbonyldiimidazole, cholic acid and benzyl amine resulted 

in a number of by products which, even after solvent extraction and acid washes, were still 

present in the mixture. TLC analysis of the reaction showed that 5 compounds were present in 

the reaction mixture, including cholic acid. Other issues arose when using carbonyldiimidazole, 

such as, the imidazoles hydrolytic lability. 

 Another approach was then taken using N-(3-dimethylaminoprpyl)-N'-ethylcarbodiimide with 

cholic acid and 3-(dibutylamino) proylamine. The reaction did not go to completion even after 

114 hours at room temperature. TLC analysis of the end solution showed a high number of 

side products so the decision was taken not to procedure any further again, due to 

ineffieciencies. 

3.1.4 ETHYLCHLOROFORMATE ACTIVATION OF CHOLIC ACID 

Activating cholic acid with ethylchloroformate was found o be the most successful way for 

attaching an amine to cholic acid.  

Activation of the acid could be achieved in two hours at room temperature and overall 

reaction times totalled six hours. There were no adverse reactions in leaving the solution 

overnight if using cholic acid. The concentration of the sacrificial tertiary amine, however, did 

seem to have an effect on the reaction. Whilst there was no observed difference in using 

triethylamine or 4-methylmorpholine, if the concentration of either of them was too low, the 

reaction would not go to completion. This may be due to the triethylamines role to neutralise 

any hydrochloric acid produced which allows the reaction to progress. One issue with using 

ethylchloroformate is the problem with using diamines. It was discovered during the 
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experimental optimization that both primary and secondary amines would react with the 

activated cholic acid. This meant that diamines containing two primary amino groups or a 

primary and a secondary amino group would react at both sites, giving a mixture of amide 

products. A example of this can be found with N-cyclohexyl-1,3-propanediamine.  The 

activated cholic acid can react in two places to create a dimer. Tertiary amines, however, do 

not react with the activated site. This allows the use of the diamines with primary amines one 

end and tertiary amines the other end. The use of these diamines resulted in little purification 

being needed, good yields and short reaction times.     

 The yields and methods for all of the cholic acid-amide derivatives synthesised are 

shown in table 6. 

 

Compound 

number 

Structure Method Yield 

2 

 

Activation of 

the carbonyl 

by 

disuccinimidyl 

carbonate 

14% 

2 

 

 

 

 
 

Aminolysis 34% 

3 

 

 

 

  

Aminolysis 30% 

4 

NH

O

OHOH

OH

H

H

H H

NH
NH2

 

Aminolysis 18% 
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5 

 

 

 

 
 

Aminolysis 60% 

6 

 

 

 

 
 

Coupling with 

ethylchloro-

formate 

72% 

7 

 

 

 

  

Coupling with 

ethylchloro-

formate 

 

10 

 

 

 

 

Coupling with 

ethylchloro-

formate 

74% 

12 

 

 

 

  

Coupling with 

ethylchloro-

formate 

 

13 

 

 

 

  

Coupling with 

ethylchloro-

formate 
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14 

 

 

 

  

Coupling with 

ethylchloro-

formate 

 

15 

 

 

 

 
 

Coupling with 

ethylchloro-

formate 

80% 

16 

 

 

 

 

 

Coupling with 

ethylchloro-

formate 

90% 

17 

 

Coupling with 

ethylchloro-

formate 

74% 

18 

 

 

 

 
 

Coupling with 

ethylchloro-

formate 

 

19 

 

 

 

 
 

Coupling with 

ethylchloro-

formate 

25% 
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20 

 

 

 

  

Coupling with 

ethylchloro-

formate 

 

21 

 

 

 

  

Coupling with 

ethylchloro-

formate 

64% 

Table 8 Table to show the structures, yields and method used to form amide bonds on cholic acid 
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3.2 QUATERNISATION OF CHOLIC ACID DERIVATIVES BEARING A TERTIARY AMINE  

Quaternary amides are well known for their antimicrobial properties. They are straight forward 

to synthesise and very effective at disrupting cell walls of both gram positive and gram negatve 

bacteria. The tertiary amine-containing compounds produced in section 2.2 were quaternised 

with a range of alkyl halides. Generally, the products precipitated from the reaction mixture 

and were obtained in a pure state by filtration and washing with clean solvent. A small amount 

of methanol was added to the reaction mixture for those starting materials which did not 

dissolve in either dichloromethane or chloroform. The products from these reactions did not 

precipitate out and required the removal of the solvents by rotary evaporation. 

Quaternations were easy to achieve and were relatively straight forward. Problems arose with 

the longer chained and bulkier alkylating agents. The most problematic were iodobutane, 

iodopentane and 1-bromo-3-phenylpropane which, when used in a reaction, did not go to 

completetion. NMR analysis of these alkyl halides was carried out and interpretation of the 

NMR confirmed their integrity. One reason for the problems with these three alkylating agents 

might be the length of the chain, however this doesn't explain the successful quaternisations 

achieved with iodohexane. Steric hinderance, especially with 1-bromo-3-phenyl propane may 

be an explanation; however, again, there should be no reason why iodobutane and 

iodopentane were problematic. Unfortunalty, time constrants meant that this problem could 

not be solved. The use of alternative reaction conditions could determine why under the 

standard condtions, iodobutane, iodopentane and 1-bromo-3-phenylpropane would not react. 

 The results and yields for the quaternasations are shown in table 7. 

 

Compound 

number 

Structure Yield 

24 

 

 

 

 
 

36% 
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25 

 

 

 

  

58% 

26 

 

 

 

  

86% 

27 

 

 

 
 

69% 

28 

 

 

 

 
 

14% 

29 

 

 

 

 
 

 

30 

 

 

 

 
 

 

31 

 

  

60% 



155 
 

32 

 

 

 

 

 

 

33 

 

 

 

 
 

 

34 

 

 

 

  

30% 

35 

 

 

 

  

 

36 

 

96% 

37 

 

63 % 

38 

 

56 % 
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39 

 

56 % 

40 

 

67 % 

41 

 

79 % 

42 

 

 

43 

 

26 % 

44 

 

 

 

 
 

 

45 

 

 

 

 
 

90% 



157 
 

46 

 

 

 

 
 

95% 

49 

 

 

 

 

 

50 

 

 

 

 

 

51 

 

 

 

 

 

52 

 

 

 

  

 

53 

 

 

 

  

34% 
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54 

 

 

 

 

 

 

55 

 

 

 

 

 

70% 

58 

 

 

 

 

 

78% 

59 

 

 

 

 

 

18% 

60 
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61 

 

 

 

 

 

 

62 

 

 

 

 

 

24% 

Table 9 Table to show the yields of quaterinastions of cholic acid derivatives bearing a tertiary amine 
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3.3 INTERPRETING PROTON NMRS OF CHOLIC ACID  

NMR anaylsis of cholic acid is complicated and sometimes difficult. There are forty hydrogens 

present, all within close proximity to each other. The peaks for cholic acids steroid body are 

found between 1ppm and 2.4 ppm. All of the peaks found in this region have been assigned 

using 2D NMR by Hu et al. They are generally not assigned when reporting the NMR analysis in 

the literature. The three methyl groups present on the steroid body are clearly seen at 0.7 

ppm, 0.8 ppm and 0.9 ppm. Generally, these groups do not move when the hydroxyls or side 

chain have been reacted on. The three hydrogens bonded to the hydroxylated carbon, so H-

C3-OH can be seen at 3.48 ppm, the H-C7-OH at 3.9 ppm and the H-C12-OH at 4ppm. These 

three proton peaks shift when the hydroxyl group is replaced with another functional group. 

The three hydrogens present on the hydroxyls are present in the steroid body peaks. The 

reactive series for the three hydroxyls is C3>C7>C12, however this changes once the C3-OH has 

been modified with to C3>C12>C7. This can be seen in the NMR spectrum and in schemes 5, 6 

and 7. When interpreting the NMR of a modified cholic acid compound, it is important to note 

that the three H-C-OH peaks shift especially when looking for any impurities that may be 

present.  

 The solvent used for the NMR spectra can also make analysis difficult. If the NMR is 

carried out with methanol-d4, it can be difficult to fully distinguish the H-C3 multiplet due to 

the water peak from the methanol. This in turn, makes it impossible to carry out the 

integration for that peak. Some experience is needed to confidently interpret complicated 

cholic acid derivatives. 

 Ethyl carbon chains can also be difficult to interpret due to their position in the NMR. 

The intergration can be sometimes difficult to measure as interference from the steroid body 

peaks cannot be isolated from the carbon chain peak. In this situation, sensible interpretation 

of the spectra is needed to ensure it is correct. 

3.3 ATTACHING POLYMERISABLE GROUPS TO METHYL CHOLATE 

Attaching methacrylate groups is quite straightforward, however, controlling where the 

methacryloyl chloride attached onto the methyl cholate's hydroxyls required optimisation. 

Temperature control played heavily in selectivity of the hydroxyls. At -20oC, the reaction 

slowed dramatically, virtually stopping. At 4oC, a monomethacrylate was synthesised and at 

room temperature mono, di and trimethacrylates were synthesised. The positions of the 

methacrylates can clearly be seen on the proton NMR spectra for the products. The spectrum 

shown in scheme 5 forms part of a NMR spectrum from methyl cholate in chloroform. The 
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three hydrogen groups attached to carbons three, seven and twelve can be seen as well as the 

methyl group. The CH3-OH is at 3.66 ppm, CH7-OH is at 3.84 ppm and the CH12-OH is at 3.95 

ppm. 

When the C3- hydroxyl is esterified, the reactivity of the hydroxyls towards methacryloyl 

chloride changes from C3>C7>C12 to C3>C12>C7. This can be seen in the proton NMR spectra. 

On a mono methacrylolated compound the chemical shift for CH3 is moved left to 4.67 ppm, 

whereas the other two stay just below 4 ppm. 

 

Figure 16 Partial HNMR spectrum of 3α acetate-7α,12α dihydroxy cholic acid (59) showing the positions of the hydrogens on 

the C3, C7 and C12 carbons 

On diacryloylated compounds, the CH12 also shifts to the left at around 5.15 ppm and the CH7 

stays at 3.8 ppm. 

 

CH7 

CH12 

CH3 

CH7 
CH12 

CH3 
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Figure 17 Partial HNMR spectrum of 3α, 12α ,diacetate-7α hydroxy cholic acid to show the movement of the C12 hydrogen once 

it has been acetaled  

  

Figure 18 Partial HNMR spectrum of 3α, 12α, 7α triacetate cholic acid showing the new positions of the three hydrogens 

Triacryloylation sees all three peaks shift to higher ppm values, with the CH7 being at 4.97 

ppm. The changes of reactivity were suggested by Hu et al in 2005. They looked at 2D NMR 

data from previous studies to reach this conclusion, which is consistent with the NMR spectra 

presented here.  

3.4 ACETYLATION OF METHYL CHOLATE 

Due to the difficulty of selectively reacting on the C3 hydroxyl group on cholic acid or methyl 

cholate, an alternative approach was taken involving the protection and deprotectio of the 

hydroxyl groups by acetate groups. This then allowed the C3 protecting group to be removed 

selectively. The protection and selective deprotection of the hydroxyl groups meant the 

reaction could be carried out on just the C3 position without the need for low temperatures.  

The first step of protecting the hydroxyl groups using acetates were carried out successfully a 

number of times with good yields. During the experimental optimization process, it was found 

that the temperature needed totake the reaction to completetion should be 80 oC and the 

reaction time is 24 hours. The DMAP concentration was also found to be important; a ration of 

1:3 mmol DMAP and cholic acid was needed to take the reaction to completion.  

CH7 
CH12 

CH3 
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DMAP/Et3N/DCM

80 oC/ 24hrs

   

Scheme 10 Scheme to show the synthesis of tri-acetylated methyl cholate 

3.4.1 REMOVAL OF ACETATES 

Removal of the acetates was achieved using potassium carbonate or trifluoroacetic acid. The 

reaction was carried out in DCM and monitored by TLC. Potassium carbonate in large 

quantities, removed more than the C3-acetate group even at low temperatures. By reducing 

the molar concentration to 1.5 equivalents of the starting material, the selectively to the C3-

acetate group decreased. TFA removed the C-acetate group successfully, however, 

neutralisation and removal of the by-product salt proved difficult. Potassium carbonate was 

the preferred method of removal of the acetate groups. 
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3.5 POLYMERISATIONS 

Polymerisation of the different compounds synthesised in this project sometimes proved 

difficult. Synthesis of the crosslinked copolymers with EGDMA was carried out in a 96 well 

plate, creating small polymer discs. Unfortunately, due to the insolubilty of the crosslinked 

polymers, NMR analysis of the polymer could not be carried out, and the amount of cholic acid 

incorporation could not be quantified. It could be assumed that due to the method used that 

all of the cholic acid derivative would be incorporated but due to difficulties with other 

polymerisations carried out subsequently, it would be very presumptuous to say with any 

certainty. More difficulties with polymerisations occurred when polymerisation of the 

quaternised compounds were attempted. When cholic acid derivatives containing vinyl benzyl 

quaternary ammonium moieties were co-polymerised with styrene, only a small amount of the 

cholic acid derivative was incorporated into the polymer. One theory behind this could be due 

to the rates of reaction of the two monomers. It was assumed, as both styrene and the cholic 

acid derivative have vinylbenzene groups that the rates of reaction would be similar, however, 

this proved not to be the case, with styrene polymerising a lot faster than the cholic acid 

monomer. Therefore, in an attempt to improve the chance of the cholic acid derivative 

incorporation into the polymer, different co-monomers were used, such as tert-butyl 

methacrylate and methyl acrylate, which are smaller, less bulky monomers. Unfortunately the 

same problem arose, with very little of the cholic acid derivative being incorporated. Even 

polymerising the cholic acid based polymerisable derivatives on their own was difficult. The 

reactions required very long reaction times and often the polymers were insoluble and 

therefore impossible to analyse by NMR spectroscopy. The fact the starting materials 

produced insoluble material suggests that a change has occurred but the exact change that 

happened is difficult to know due to lack of analysis. It would seem that the positive charge on 

the compounds have interfered in the polymerisation, creating insoluble polymers and slowing 

the rate of reaction greatly. Changing solvent and increasing the temperature did not seem to 

make any difference; neither did trying to polymerise it under vacuum. One variation which 

was not tried was increasing the amount of AIBN to the reaction. The rate of a polymerisation 

reaction does depend on the amount of initiator present, so the problems found with the 

polymerisation reactions could simply be down to there not being enough AIBN to create the 

radicals needed.  

 Overall, polymerising monomers and copolymers with the cholic acid derivatives was 

possible but only wih low incorporation and long reaction times. More work needs carrying out 

on this process to discover exactly what is slowing down the polymerisations to such an extent. 
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Other analytical techniques, such as solid state NMR could aid in the analysis of the 

compounds synthesised, giving more confidence in the results. 

 

3.5.1 POLYUREATHANES 

 

Figure 19 Preparation of a polyurethane copolymer of cholic acid and 4,4-methylenebis(phenyl isocyanate) 

Incorporating cholic acid into a polyureathane was successful; however, incorporating cholic 

acid derivatives was not. This, along with the issues with free radical polymerisation of 

quaternised cholic acid derivatives suggest that the positive charge on nitrogen is effecting the 

polymerisation of the compound. Indeed, polymerising quaternary ammonium compounds is 

not common in the literature. It is more common to quaternise nitrogen that is already 

incorporated into the polymer. The problems with polymerising monomers with quaternary 

nitrogens may be due to the positive charge on the compound slowing the reaction rate of 

polymerisation meaning it is not incorporated into the polymer. 

 The conditions of the polyureathane experiments were charged several times. Table 8 

shows the ratios of cholic acid, cyclohexanediol and 4,4-methylenebis (phenyl isocyanate) used 

in each experiment.  
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Polymer number Cholic acid  Cyclohexanediol 4,4-

methylenebis(phenyl 

isocyanate)  

94 1 1 5 

94 1 2 5 

94 1 0 2 

94 5 1 5 

94 2 0 1 

Table 10 Ratio of cholic acid, 1,4-cyclohexanediol and 4,4-methylenebis(phenyl isocyanate) in THF 

Due to the complexities of the NMR spectra for these polymers, it was difficult to assign all of 

the peaks.  By synthesising polymers with simpler isocyanates (p-toyl isocyanate) and by 

varying the molar equivalents of the cyclohexanediol present, a more accurate prediction 

could be made as to the composition of the polymers.  

Synthesis of compound 93 using method 1 

Assignment  1H NMR chemical shif (ppm) 

C7-OH unreacted 4.09 

C3-OH unreacted 4.13 

Table 11 Selected NMR assignments for compound 93 

Synthesis of compund 93 using method 1 (repeat) 

Assignment 1H NMR chemical shif (ppm) 

C7H-OH unreacted 4.09 

C3H-OH unreacted 4.28 

C3-H 4.40 

C7-H 4.71 

C12-H 4.89 

Table 12 Selected NMR assignments for compound 93 

Synthesis of compound 95=4 using method 1 

Assignment 1H NMR chemical shif (ppm) 

C3-H 4.57 

C7-H unreacted 3.88 

C12-H unreacted 3.99 

Table 13 Selected NMR assignments for compound 94 
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Synthesis of compound 93 using method 3 

Assignment 1H NMR chemical shif (ppm) 

C7H-OH unreacted 4.11 

C3H-OH unreacted 4.16 

C3-H 4.41 

C7-H 4.68 

C12-H 4.87 

Table 14 Selected NMR assignments for compound 94 

Synthesis of compound 94 using method 2 

Assignment 1H NMR chemical shif (ppm) 

C12H-OH unreacted 3.78 

C7-H 4.06 

C3-H 4.39 

Table 15 Selected NMR assignments for compound 94 

The concentration of cyclohexanediol seemed to make a difference in the polymer 

composition. By having a one or no molar equivalent to cholic acid, not all of the hydroxyl 

groups on cholic acid have been reacted on. By increasingthe ratio to a two molar equivalent, 

some hydroxyl groups remained un-reacted but some cross linking occurred. It is interesting to 

note that none of the reactions went to completion. This could be due to steric hindrance as 

the reaction went on. 

 Cholic acid has three sites of reaction for this reaction, the three hydroxyl groups. 

Cyclohexanediol has two reaction sites and 4,4-methylenebis(phenyl isocyanate also has two 

reaction sites. Table 14 below shows the relative reaction sites for each experiment.  
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Polymer number Cholic acid reaction 

sites 

Cyclohexanediol 

reaction sites 

4,4-

methylenebis(phenyl 

isocyanate) reaction 

sites 

94 3 2 10 

94 3 4 10 

94 3 0 4 

94 15 2 10 

94 6 0 3 

Table 16 Table to show the number of reactive sites for each of the reactants in the polyurethane experiments. 

From table 14, it is possible to see that not all of the reactions could have gone to completion 

as there were not enough reactive sites available. However, even where there are enough 

reactive sites, the reactions do not go to completion, suggesting that there may be some steric 

hindrance stopping the reaction from completing.  

3.5.2 PHOTOCHEMISTRY 

Another potential way to incorporate cholic acid into a polymer was to use photochemistry. A 

benzophenone group was attached onto the cholic acid on the side chain. The synthesis of the 

benzophenone chloride starting material was simple offering good yields. Attaching the amine 

was quick, with the product precipitating with the addition of water and recrystallised in 

acetonitrile. It was hoped that under UV stimulation that the activated benzophenone moiety 

would attach to other molecules present in the reaction mixture, in this case, cholic acid or its 

derivatives. 

Cholic acid and a cholic acid derivative were used under the UV lamps along with the 

benzophenone amine. The starting materials were put into small vials and placed under two 

different UV lamps. The larger of the two lamps had an intensity of 4.4W/cm2, whereas the 

smaller lamp had an intensity reading of 2.02W/cm2.   

 Overall, the reactions taken place under these conditions were not successful. This 

could be because of the "bulkiness" of the cholic acid benzophenone derivative. In order for 

the radical to be produced, hydrogen extraction must take place. The hydrogen is usually 

extracted from the solvent, although it can be taken from the polymer. Once the radical has 

been created, it must be able to move and react with the other compounds present. Due to 

the shape of the cholic acid benzophenone derivative, movement could be restricted and as 
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the radical formation is reversible, the radical species may not be able to react with the 

polystyrene present.   

 There is some evidence that the presence of oxygen can impede the reaction too, 

although not to a great extent. 

 

 

 



4. GERMINATION TESTS 

Many of the synthesised compounds were tested for their germinating and antimicrobial 

abilities against C.difficile. Due to the insolubility of some of the compounds in water, DMSO, 

ethanol and methanol were used to dissolve the compounds. The germination studies were 

carried out by two project students working in the microbiology lab, Amber Lavender and 

Kristian Poole. The methods titled the preparation of spore suspensions and heat shock 

method were written by Amber Lavender. 

4.1 METHODS  

The C.difficile reference strain, NCTC 11204 and C.difficile ribotype 027 (R20291) (Anaerobic 

Reference Laboratory, Cardiff, UK) were used during testing.  

4.1.2 PREPARATION OF SPORE SUSPENSIONS 

Spore suspensions of C.difficile were prepared following the method proposed by Shetty et al. 

(Shetty et al., 1999). Briefly, Columbia base agar plates were inoculated with the relevant 

strain of C.difficile and incubated for 72 hours anaerobically at 37 oC (MiniMACS anaerobic 

cabinet, Don Whitley Scientific, Shipley, UK). Then, the plates were removed and left or 24 

hours in aerobic conditions at room temperature. Colonies were then harvested into 20 mL of 

50% (w/v) ethanol and 50% saline, and vortex thoroughly. These were stored at 4 oC until 

needed.  

All experiments were performed in triplicate using spore suspensions containing 1 x107 CFU 

mL-1 spores of C. diffcile NCTC 11204 and ribotype 027. 

Before use, 1 mL of spores were centrifuged at 13000 rpm for 10 minutes (Spectrafuge 24D; 

Labnet, Woodbridge, USA). The supernatant was discarded, and the pellet resuspended in 1 

mL sterile distilled water and vortex mixed thoroughly.  

Germination solutions were prepared using 2% (w/v) of the compound in diluent (DMSO, 

ethanol, methanol, water) plus double strength thioglycollate medium (Oxoid, UK).  

4.1.3HEAT SHOCK METHOD 

For the heat shock method, 100 µl spores were exposed to 100 µl of the germination solution 

and incubated at room temperature in air for 1 hour. The entire 200 µl sample was then added 

to 800 µl sterile distilled water to dilute out the germinant to ineffective concentrations.  

Samples were placed on heat at 70 oC for 20 minutes to eliminate any germinated, 
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metabolically active spores. Control samples were kept on ice. Solutions were then diluted 

accordingly using sterile distilled water,  and cultured onto fastidious anaerobic agar (Lab M, 

Bury, UK), supplemented with 0.1% (w/v) sodium taurocholate (ST) and 5% (w/v) defibrinated 

horse blood using the Miles and Misra method (Miles et al., 1938). These were then incubated 

anaerobically for 48 hours at 37 oC (MiniMACS anaerobic cabinet, Don Whitley Scientific, 

Shipley, UK) and the CFU mL-1 counted.  

4.2 COMPOUNDS TESTED 

 

Compound 

number 

Compound name Structure 

28 3-cholanamidopropyl-pentyl-

dimethyl-ammonium iodide 

 

34 3-cholanamidopropyl-allyl-

dimethyl-ammonium 

bromide 

 

52 N-[2-[1-(3-

phenylpropyl)pyrrolidin-1-

ium-1-yl]ethyl]cholanamide 

bromide 

 

10 N-(2-pyrrolidin-1-ylethyl) 

cholanamide 

 

29 3-cholanamidopropyl-hexyl-

dimethyl-ammonium iodide 
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24 3-cholanamidopropyl 

(trimethyl)ammonium 

iodide  

 

6 N-[3-

(cyclohexylamino)propyl] 

cholanamide 

 

54 N-(1-methyl-1-phenyl-

piperidin-1-ium-4-

yl)cholanamide iodide 

 

50 N-[2-(1-allylpyrrolidin-1-

ium-1-yl)ethyl] 

cholanamide bromide 

 

61 N-[1-phenyl-1-(3-

phenylpropyl)piperidin-1-

ium-4-yl]cholanamide 

bromide 

 

3 N-(4-aminobutyl) 

cholanamide 
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32 3-cholanamidopropyl-(2,2-

dimethylpropanoyloxymethyl

)-dimethyl-ammonium 

chloride 
 

58 N-(1-hexyl-1-phenyl-

piperidin-1-ium-4-

yl)cholanamide iodide 

 

46 N-[2-(1-propylpyrrolidin-1-

ium-1-yl)ethyl]cholanamide 

iodide 

 

26 3-cholanamidopropyl-propyl-

dimethyl-ammonium iodide 

 

61 N-(1-allyl-1-phenyl-piperidin-

1-ium-4-yl)cholanamide 

bromide 

 

60 (4-cholanamido-1-phenyl-

piperidin-1-ium-1-yl)methyl 

2,2-dimethylpropanoate 

chloride 

 

42 3-cholanamidoethyl-hexyl-

dimethyl-ammonium iodide 
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45 3-cholanamidoethylyl-ethyl-

dimethyl-ammonium iodide 

 

21 N-(2-dimethylaminoethyl) 

cholanamide 

 

49 N-[2-(1-allylpyrrolidin-1-ium-

1-yl)ethyl]cholanamide 

bromide 

 

43 3-cholanamidoethyl-allyl-

dimethyl-ammonium 

bromide 

 

59 3α,12α diacroylate-

7αhydroxycholic acid 

 

45 N-[2-(1-ethylpyrrolidin-1-

ium-1-

yl)ethyl]cholanamide 

iodide 
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25 3-cholanamidopropyl-ethyl-

dimethyl-ammonium iodide 

 

37  3-cholanamidoethylyl 

(trimethyl)ammonium iodide 

 

44 N-[2-(1-methylpyrrolidin-1-

ium-1-yl)ethyl]cholanamide 

iodide 

 

1 Methyl cholate 

 

16 N-octadecylcholanamide 

 

69 3α methacrylate 7α,12α 

dihydroxyl cholic acid methyl 

ester 
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13 N-(1-phenyl-4-piperidyl) 

cholanamide 

 

7 N-[3-(dibutylamino)propyl] 

cholanamide 

 

2 cholic acid benzyl amide 

 

36  

 

Table 17 Table to show the name and structure of each cholic acid dervative tested for the germination of C. difficile spores 

 

Some compounds made were not tested due to solubility issues or the yields were too low. 

These are shown in table 18. 

 

 

 

 

 

 



177 
 

Compound 

number 

Compound name Structure 

93 3α methyl N-(p-

tolyl)carbamate 7α 12α 

hydroxyl cholic acid 

 

29 3-cholanamidopropyl-

hexyl-dimethyl-

ammonium;iodide 
 

60 3α acryloyl-7α,12α 

dihydroxy cholic acid 

 

59 3α,12α diacryloyl-

7αhydroxycholic acid 

 

66 3-acetamidopropyl-

dimethyl-[(4-

vinylphenyl)methyl] 

ammonium chloride   
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65 N-[2-[1-[(4-vinylphenyl) 

methyl] 

pyrrolidin-1- 

ium-1-yl]ethyl] 

cholanamide chloride  

67 N-[1-phenyl-1-[(4-

vinylphenyl)methyl]pip

eridin-1-ium-4-

yl]cholanamide 

chloride 

 

Table 18 Table to show the compounds not tested for germination activity due to low yields 
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5. GERMINATION RESULTS FOR STRAINS 11204 AND 027 

Table 19 shows the results of the germination tests in terms of log reduction on the number of 

C. difficile vegetative cells. A log reduction on heat suggests that the compound is a germinant, 

whereas a log reduction on ice suggests a sporicide/ germinant-antimicrobial compound. A 

one log reduction is comparable to cholic acid. 

Compound 

number 

Compound name Structure  > 1 log 

reduction on 

heat  

> 1 log 

reduction on 

ice 

34 3-cholan 

amidopropyl-

allyl-dimethyl-

ammonium 

bromide 

 

yes X 

51 N-[2-[1-(3-

phenylpropyl) 

pyrrolidin-1-

ium-1-yl]ethyl] 

cholanamide 

bromide 

 

yes yes 

29 3-cholan 

amidopropyl-

hexyl-dimethyl-

ammonium 

iodide 

 

yes x 

46 N-[2-(1-

propylpyrrolidin

-1-ium-1-

yl)ethyl] 

Cholanamide 

iodide 

 

yes yes 
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16 N-octadecyl 

cholanamide 

 

Yes (11204 and 

027) 

x 

7 N-[3-

(dibutylamino)pro

pyl] cholanamide 

 

Yes (11204) Yes  (11204) 

17 cholic acid benzyl 

amide 

 

x Yes (11204) 

36  

 

Yes (027) x 

10 N-(2-pyrrolidin-1-

ylethyl) 

cholanamide 
 

Yes (11204) x 

Table 19 Table to show the compounds which showed activity against C.difficile spores 
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5.1 RESULTS OF GERMINATION TESTS 

The results from table 19 show the compounds that gave a 1 log reduction or more between 

the initial spore count and the spore count after the heat and ice treatment. A reduction in the 

heat count suggests the compound is a germinant, whereas a reduction in the ice suggests a 

sporicidal or a germinant/ antimicrobial compound. Due to the nature of this test, it is difficult 

to distinguish between the two.   

 All ten of the compounds synthesised are novel, with three having terminating basic 

group. Previous research carried out with novel compounds and C. difficile spore germination 

is limited. Howerton et al. synthesised a range of compounds to test against taurocholate, 

however, these all terminated in an acidic group (Howerton et al., 2011). Other literature 

shows the importance of hydroxyl groups by either removing or adding more. Currently, there 

is no published research on compounds terminating in a basic group and their activity against 

C. difficile germination. 

 Nine of the compounds show germinating abilities on either the 11204 strain or the 

027 strain. Looking at the structures, it is difficult to see a pattern between all of them. All of 

the side chains contain two or more carbons, with a maximum of four. The compounds can be 

grouped into two groups, however, compounds that contain rings and compounds that contain 

a 3-4 carbon side chain with two methyl groups. 

 Six of the germinating compounds feature a quaternary nitrogen in the side chain. This 

has similarities with the known good germinant, taurocholate, in that this compound has a 

sulphonate group in its side chain. A sulphonate and a quaternary ammonium group, although 

of opposite charge, are both polar and strongly electron-withdrawing. 

 By looking at the families of the compounds, we can also see some patterns emerging. 

Table 20 shows the germination activiety results for the N-(2-pyrrolidin-1-ylethyl) cholamide 

(10) compound family. The parent compound showed activity and two of the quaternised 

compounds, whereas the other four compounds didn’t show any activity. The quaternised 

compounds that showed activity were the N-[2-(1-propyl[yrrolidin-1-ium-1-

yl)ethyl]cholananamide iodide (46) and N-[2-[1-(3-phenylmethyl)pyrrolidin-1-ium-1-

yl]ethyl]cholanamide bromide (51). Both of these compounds show activity during the heat 

and ice treatments, whereas the parent compound only shows activity during the heat 

treatment. The two quaternised compounds have a three carbon chain attached to the 

quaternary nitrogen. This indicates that this is the ideal lengh of chain for the compound to go 
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from being a germinant to being a germinant and antimicrobial/sporidical. What is unusal is 

that the compound N-[2-(1-allylpyrrolidine-1-ium-1yl)ethyl] cholanamide bromide also has a 

three carbon chain off the quaternary nitrogen but shows no activity against the spores. This 

suggests that the double bond present is having a negative affect on its germinating ability. 

Compound 

number 

Compound Inactive Active 

10 

   

44 

 

  

45 

 

 

 

46 

 

 

 

49 

 

 

 

50 
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51 

 

 

 

Table 20 Table to show the activity of the N-(2-pyrrolidin-1-ylethyl) cholamide family of compounds 

 

Table 21 shows the activity for the N-[3-(dimethylamino)propyl] cholamide (12) family of 

compounds. With this family it is harder to see a pattern. 3-Cholanamidopropyl-hexyl-

dimethyl-ammonium iodide (28), 3-cholanamidopropyl-allyl-dimethyl-ammonium bromide 

(34) and 3-cholamidopropyl-cyclopentyl-dimethyl-ammonium bromide (36) all showed activity 

during heat treatment. The shapes and properties of these compounds are all very different. 

One has a five carbon chain attached to the quaternary nitrogen, one has a three carbon chain 

and the other has a benzophenone group. Taken in isolation as a family of compounds, there is 

slight pattern to why these three compounds should all germinate C.difficile. The terminal 

dimethyl ammonium group has to be longer than the propyl chain but smaller than the 

benzophenone group in order to be active towards the cells.  

 

Compound 

number 

Compound Inactive Active 

24 

 

 

 

25 

 
 

 

27 
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28 

 

 

 

32 

 

 

 

 

34 

 

 

 

36 

 

 

 

Table 21 A table to show the activity for the N-[3-(dimethylamino) propyl] cholamide family of compounds 

Table 22 shows the N-(2-dimethylaminoethyl) cholamide (21) compound family that showed 

no activity in either the heat or the ice treatments. This family of compounds is interesting as it 

is very similar to the N-[3-(dimethylamino)propyl] cholamide (12) family of compounds. The 

difference between the two families is the carbon chain length of the amide. The N-[3-

(dimethylamino)propyl] cholamide (12) has a three carbon chain length whereas the N-(2-

dimethylaminoethyl) cholamide (21) has a two carbon chain length. By shortening the amide 

chain length by one carbon, all germination activity has been lost. This suggests that the 

optimum amide chain length for C.difficile germination is three carbons.  
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Compound 

number 

Compound Inactive Active 

21 

 

  

37 

 

  

38 

 

  

 

42 

 

  

43 

 

  

Table 22 A table to show the activity for the N-(2-dimethylaminoethyl) cholamide family of compounds 

Table 23 also shows a family of compounds that do not show any germinating abilities. The 

family of 1-(3-phenylimidazolilidin-1-yl) cholanone (14) compounds is very different to the 

other compound families. They are a lot bulkier with much more steric hinderence around the 

quaternary nitrogen center than the other compound families. By looking at the families of 

compounds and comparing their germinating abilities, it is possible to conclude that the amide 

chain is very important to the germinating ablity of the compounds, as well as the length of the 

quaternised chain. 



186 
 

 

 

Compound 

number 

  Compound Inactive Active 

14   

 

  

54   

 

  

58   

 

  

60   

 

  

61   

 

  

62   

 

  

Table 23 A table to show the activity for the 1-(3-phenylimidazolilidin-1-yl) cholanone family of compounds 

By grouping the compounds into families, small patterns start to emerge. By taking the 

compounds individually and comparing them to work carried out on other spore germinating 

compounds, more patterns can be seen. 
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33

28

             

36

 

Figure 20 Compounds 33 (top), 28 (middle) and 36 (bottom) from the N-[3-(dimethylamino)propyl] cholamide (12) family 

The diaminopropane cholate derivatives are all quaternised and all show reductions on heat 

treatment, suggesting they are all germinants. Even though the three compounds are 

quaternised, the postive charge on compounds 33, 28 and 26 do not have any antimicrobial/ 

sporicidal activity. The size of the compound 36 is large, which makes it unusual as compounds 

generally have to be small in order to penetrate the spore (Leggett et al., 2012). The length of 

the side chain in these three compounds and their germinating abilities disagrees with the 

conclusions drawn by a paper by Howerton et al. They state that lengthening the side chain is 

detrimental to the compound's germinating abilities. The compounds synthesised by that 

group, however, all terminated in either a carboxylic acid group or a sulphonic acid group. 

These groups could be responsible for the decrease in germinating abilities of their compounds 

(Howerton et al., 2011). 
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Figure 21 compounds 52 (top), 46 (middle) and 10 (bottom) from the N-(2-pyrrolidin-1-ylethyl) cholamide compound family 

  The 1-(2-aminoethyl) pyrrolidine cholate derivatives are interesting because the two 

quaternised compounds show antimicrobial/ sporicidal activity whereas the parent compound 

only shows germinating abilities. If the parent compound is able to germinate the spore, it is 

likely that the quaternised versions are acting as antimicrobials, rather than sporicides, but 

more analysis of these compounds will need to be done to confirm this.  The compounds also 

have a two- carbon chain in the side chain, which is the same as taurocholate. The significance 

of the length of the chain is interesting as it correlates with the conclusions drawn by 

Howerton et al, where they investigated the effects of modifying taurocholate. One of their 

conclusions was that altering the length of the ethyl side chain was detrimental to the 

compound's germinating abilities (Howerton et al., 2011). Whilst this set of compounds agrees 

with Howerton et al, compounds 28, 33 and 36 have a longer side chain, suggesting that the 

length of the side chain is not as important as first thought. 
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Figure 22 Compound 7 (top) and 17 (middle) and 16 (bottom) which are all unquaternised but show activity against C.difficle 

 Compound 7 (figure 23) has the longest carbon side chain and has an electron 

withdrawing group. As there is no positive charge on this compound, therefore, no 

antimicrobial element, it is easy to jump to the conclusion that this compound is a sporicide. 

However, as Howerton’s works suggests, a positive ammonium is not needed to make the 

compound antimicrobial. This is also suggestive of compound 17 Figure 23), which, again, has 

no quaternary ammonium. More tests will need to be carried out in order to see whether it is 

a sporicide or a germinating and antimicrobial compound. The size of these two compounds 

and their activity disagrees with the conclusions reached by Howerton et al. They found bulkier 

linkages decreased the germinating abilities of their compounds, possibly because of the size 

of the spore's active site. So far, all of the work carried out on C.difficile germination has stated 

that the germinant's hydrogen bond donating ability is essential for spore germination. In this 
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case, there may be some unknown interactions taking place between the spore and 

germinant, which triggers germination. 

 Compound 16 is the largest compound and also shows the largest log reductions of all 

of the compounds. The size of this compound makes it unusual as, compared to the other 

compounds in this group, it seems too big to fit into an active site to trigger germination. The 

octadecyl chain in this compound makes this compound very lipophilic and it may be that 

hydrophobic interactions are important for its interactions with the spore coat and the 

putative germination site. Another example of hydrophobic interactions and antimicrobial 

activity can be seen in the work carried out by Kikuchi et al with squalamine mimics. Here, they 

found that the hydrophobicity of the steroid backbone and the basicity of the side chain were 

the determining factors in its antimicrobial activity. Whilst they were not looking at spore 

forming bacteria, they did find that the squalamine mimics had antimicrobial activity against 

gram- positive and gram negative bacteria (Kikuchi et al., 1997). This finding supports the 

finding of this research as some of the non-quaternised compounds have shown antimicrobial 

activity. 

 The shape of the side chains of these compounds are very different. Without knowing 

the active sites of C.difficile germination, it is difficult to see a pattern within them. Once the 

germination active sites have been identified, it will be possible to examine these compounds 

using molecular modelling software to see how they fit and activate the site.  

 By comparing these results to the limited work concerning C.difficile spore 

germination, differences in conclusions can be seen. The optimal length of the side chain 

during this research is between two and four carbons, whereas previous research has shown it 

to be two carbons long. The hydrogen bond donating ability of the compounds is also 

important, however, this research has shown compounds with germinating ability and 

hydrogen bond acceptor groups. All of the research so far agrees that the three hydroxyl 

groups are essential for germination. Changes to these groups are detrimental to the 

compounds'  germinating abilities, even when the hydroxyl group is kept as a hydrogen bond 

donator. Overall, without knowing the exact mechanism for C.difficile spore germination, it is 

difficult to know what interactions are occurring between the spores and the germinants. 

Whilst this research shows ten novel spore germinants, more research is needed in order to 

understand the essential elements of the germinants.  
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6. CONCLUSIONS 

Once optimised, amidation of the carboxyl of cholic acid using ethylchloroformate was easily 

achievable. A range of novel amide derivatives have been prepared in good yields. 

Quaternisation of cholic acid derivatives containing tertiary amino groups was also 

straightforward. The use of alkyl halides for the quaternisation of cholic acid derivatives 

containing tertiary amino groups proceeded straightforwardly for the most part. It remains a 

mystery, however, that 1-iodobutane and 1-iodopentane were unreactive under the standard 

conditions. 

Polymerisation of the quaternary cholic acid derivatives was problematic. The synthesis of 

copolymers using free radical polymerisations of the quanternised vinyl benzyl compounds and 

another monomer were unsuccessful. By examining other free radical polymerisations, e.g. the 

polyureathane synthesis, it is possible to reach the conclusion that the positive charge on the 

cholic acid derivative monomer slowed the reaction time to such an extent that the derivatives 

were not incorporated into the polymer. This could be seen with proton NMR analysis of the 

soluble polymers. Free radical polymerisation of the cholic acid derivatives without another 

monomer synthesised very low yields of an insoluble polymer. Longer reaction times and 

varying the temperature of the reaction appeared to make little difference. As the polymers 

were insoluble, they were hard to analyse by NMR.  The insolubility of the product suggests 

that a polymer did form; however, due to the difficulties experienced in analysing it, it is 

difficult to say with any certainty what the product is. While the literature shows that VBC 

based quaternary ammonium compounds can be polymerised, they are generally smaller 

compounds with little steric hindrance. 

 Selective reaction on the hydroxyl groups of cholic acid was achievable through 

temperature control. A low temperature slows down the reaction so that monitoring the 

reactions progress by TLC is achievable. The reactivity of the hydroxyl groups towards 

methyacryloyl chloride is C3-OH>C12-OH>C7-OH. This is confirmed by proton NMR analysis 

and the shifts of the C3, C7 and C12 hydrogens. 

Protection and selective removal of acetate groups on the hydroxyl groups of cholic acid and 

methyl cholate was achievable but required monitoring of the reactions progress. 

Synthesis of cholic acid polyureathanes was successful, however, it was not successful with 

quaternised cholic acid derivatives. The unsuccessful attempts of polymerising the quaternised 

compounds with both free radical polymerisation and isocyanate polymerisation gives weight 
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to the theory that the positive charge is affecting the reaction rate of the compound. An 

advantage of synthesising polyurethanes is that they give a degree of flexibility over the 

desired properties of the polymer, such as solubility and stiffness. 

The UV free radical activation method for the polymerisation of cholic acid derivatives was 

unsuccessful. UV irradiation did not seem to initiate the radical in order for the reaction to 

start. This could be due to the strength of the UV bulb or due to the steric hindrance of the 

compounds.  

A number of compounds have shown germinating ability against two different strains of 

C.difficile. The ability of these compounds to reduce the number of viable C.difficile spores by 

99% (2 log reductions) is a step forward in understanding why C.difficile germinates. Given the 

limited data available on C.difficile germination, which mainly concerns taurocholic acid, new 

compounds that show germinating activity increases the knowledge of germination greatly. As 

the number of CDI cases plateau, the importance of how C.difficile germinates becomes more 

important.  

Due to the properties of the compounds made, the standard test of germination using water 

was not possible. A novel method of using DMSO in water allowed the compounds to be 

tested without affecting the result.  

These results do show that modifying the hydroxyl groups on cholic acid has a negative effect 

on germination, which is in line with the literature. 
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7. FUTURE WORK 

One of the main aims in this research was to synthesis a polymer surface in order to force the 

germination of C. difficile spores upon contact. This proved to be very difficult. Furhter 

optimisation of polymerising quaternary compounds is needed for the research to progress. 

The quaternary ammonium element of the compound slowed down the reaction rate of the 

free radical polymerisation to a point where very little of the cholic acid derivative was 

incorporated. More success has been found in the literature where the polymers have been 

synthesised first, before then the nitrogen present was quaternised.  This could be a new 

avenue to explore as the rate of reactions with a non quaternised cholic acid derivative should 

be similar to the reaction rate of a monomer. The polyureathane method of synthesising 

polymers showed promise and will need developing. The synthesis of the polyureathanes 

allow for greater flexibility of the desired properties, meaning more polymers could be made. 

However, the same issues arose when it came to trying to polymerise quaternised derivatives 

of cholic acid. By optimising the polymerisation synthesis, a wider range of polymers can be 

made, although this may require the expertise of a polymer engineer.  

 Another one of the aims was to increase the knowledge of C. difficile spore 

germination by creating a large library of compounds and testing their germinating abilities, in 

order to gain more information about the germination of the C.difficile spores. The 

germination tests carried out in this study begin to show patterns emerging in some of the 

compound “families”. By creating a larger library of compounds relating to those already 

tested, and with different bile acids, a more complete picture of the germination of C.difficile 

spores can be made.  

 Due to the nature of the testing carried out on the compounds, it is difficult to 

establish whether a reduction in the ice numbers is due to a germinating and antimicrobial 

effect or a sporicidal effect. In order to establish this, the compounds will need to be tested 

against another spore forming bacteria. It if shows activity under ice conditions, then the 

activity of the compound can be said to be sporicidal. It the compounds show no or little 

activity against the cells, and then we can assume the compounds show specific effects on 

C.difficile.   

 In order for the compounds of interest to be used in a health care setting, they need to 

be tested for their toxicity against human cells. The types of cells used depend on whether the 

compounds are loose of incorporated into a polymer surface. The toxicity testing becomes 

more important if the compounds are going to be used as a disinfectant spray or solution. In 
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this situation, the compounds will have to be tested against a variety of cell lines as the risk of 

ingestion is higher.  

 The toxicity testing of a polymer surface will be different as the risk of ingestion of the 

compounds is low. In this case, toxicity against human epithelial cells may be sufficient. In 

order for the compounds to be tested, it is likely that more of the compounds will have to be 

made.  
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