
Breaks and outliers when modelling the volatility of the 

US stock market 

 

 

Vasiliki Chatzikonstanti1 

Department of Economics, University of Patras, University Campus, Rio 26504, 

Greece, e-mail: vchatz@upatras.gr 

Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET, 

United Kingdom, e-mail: v.chatzikonstanti@aston.ac.uk   

                                                 
1 The author acknowledges funding from the University of Patras (Caratheodory Research Grant 

C.909). 

mailto:vchatz@upatras.gr
mailto:v.chatzikonstanti@aston.ac.uk


Breaks and outliers when modelling the volatility of the 

US stock market 

 

Abstract 

 

This study analyses volatility persistence of the US stock market, after taking into 

account the role of breaks and outliers. By employing a wavelet-based algorithm, 

it identifies several outliers which are comfortably associated with major events 

such as the ‘Black Monday’ and the Asian crisis. There is also evidence of 

clustering of breaks and a substantial variation in the properties of the identified 

segments. 
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I. Introduction 

Modelling the volatility of financial time series is a primary area of 

investigation in financial economics and econometrics. Understanding its 

behaviour is critical as it is a fundamental measure of risk and has considerable 

implications in numerous financial activities, such as asset pricing and portfolio 

selection. The most common properties of volatility, the fat (heavy)-tailed 

distribution and volatility clustering, have been thoroughly analysed particularly 

after the introduction of the seminal (G)ARCH models by Engle (1982) and 

Bollerslev (1986). 

However, it is commonly accepted that financial markets have been 

severely influenced by extreme events such as financial crashes of foreign 

countries, wars, natural catastrophes and terrorist attacks. Consequently, it seems 

rather imperative that the modelling of financial time series (Charles and Darné, 

2005; Bali and Guirguis, 2007) takes this into account. The two approaches that 

seem to be focal in the relevant strands of literature are to incorporate breaks in the 

mean and/or volatility dynamics and to identify and correct for the presence of 

outliers prior to fitting a particular model. 

The presence of breaks and outliers may have undesirable effects on the 

estimates of the underlying volatility process. The impact of each one on volatility 

has been exhaustively examined. However, their joint impact on volatility has not 

been dealt with in depth yet. This article builds upon the notion that the behaviour 

of volatility is simultaneously affected by breaks in the mean and/or volatility 

dynamics and outliers. To this end, it proposes a methodological framework that 

integrates recent approaches for the detection of breaks and outliers. It employs a 

wavelet-based outlier detection method. The number and timing of potential 



breaks in outlier-corrected returns are identified non-parametrically. The actual 

detected breaks are confirmed using a variety of robustness tests that leads to 

segments with statistically different properties. Comparing the volatility 

persistence of the original returns, outlier-corrected returns, returns with sudden 

changes and segments determined by the break detection procedure will reveal to 

which extent breaks and outliers influence the behaviour of volatility. 

In order to examine the research issue, this article utilizes returns from five 

US stock market indices over a long period. It finds outliers in all series associated 

with prominent events such as the “Black Monday”, the Asian crisis or the recent 

financial crisis. The break analysis provides evidence of breaks in the mean and/or 

volatility dynamics in outlier-corrected returns, with noticeable differences across 

identified segments. The examination of GARCH models reveals that the series 

are highly persistent, if breaks are not accounted for, while ignoring outliers 

induces biases to GARCH parameters estimates. 

The rest of the article is organised as follows. Section 2 briefly reviews the 

relevant literature. Section 3 contains the methodology. Section 4 provides an 

overview of the data. Section 5 presents the results and Section 6 concludes. 

  



II. Literature Review 

The notion of breaks in the mean and/or volatility dynamics has attracted 

the attention of the research community at least since Diebold (1986) and 

Lamoureux and Lastrapes (1990). They demonstrate that the persistence in 

volatility is overestimated due to unaccounted for multiple structural changes. 

Mikosch and Starica (2004) point out that regime shifts in variance generate 

IGARCH effects. Hillebrand (2005) and Krämer and Azamo (2007) establish that 

neglecting structural breaks in the parameters of a GARCH model causes 

overestimation of persistence. More recently, Karoglou (2010) demonstrates that 

by accounting for breaks in the mean and/or volatility dynamics it is possible to 

arrive substantially closer to normality than by employing some GARCH-type 

models; and the two seem not to coexist. 

Given the grave implications of the existence of breaks in modelling 

financial series, a number of procedures to detect them have been developed (see 

for example the LM-type tests of Andrews (1993), the Bai and Perron (1998 2003) 

methodology, as well as the more popular CUSUM tests of Inclàn and Tiao 

(1994)). Kokoszka and Leipus (1999, 2000), and subsequently Kim et al. (2000), 

Lee et al. (2004) and Sansó et al. (2004) modify the Inclan and Tiao CUSUM 

statistic to allow for dependent heterogeneous underlying processes, such as 

GARCH-type processes. The modification is based on scaling the CUSUM 

statistic with a long run variance estimator. This algorithm has been used for the 

detection of breaks in financial time series in a number of studies (Andreou and 

Ghysels, 2002; de Pooter and van Dijk, 2004; Rapach et al., 2008; McMillan and 

Wohar, 2011; Vivian and Wohar, 2012). In this article the identification of breaks 

in the mean and/or volatility dynamics is based on the modified version of the 



CUSUM statistic. It employs a non-parametric approach proposed by Kokoszka 

and Leipus (2000) scaled by a large number of different long run variance 

estimators to secure the findings against break under-reporting in contrast to other 

empirical studies that use a single long run variance estimator. 

Outliers are observations that reflect extraordinary, infrequent events or 

rare large shocks that have important effects on modelling time series. In fact, the 

probability of these movements is much higher than what is expected by the 

normal distribution (and occur in clusters). The evidence of excess kurtosis 

observed in returns may reflect the existence of extreme stock market movements, 

as well. 

The modelling of outliers seems to be the source of severe econometric 

issues, as their existence may erroneously suggest or hide true heteroscedasticity 

(van Dijk et al, 1999), lead to biases to the maximum likelihood estimators even 

in the case of a single outlier (Sakata and White, 1998; Carnero et al., 2007) and 

may also induce bias in the out-of-sample forecasts (Ledolter, 1989; Chen and Liu, 

1993a; Franses and Ghijsels, 1999; Charles, 2008). 

Furthermore, outliers in time series are related to “smearing” and the 

“masking” effects (see Bruce and Martin, 1989). The former is referred to the fact 

that the presence of some outliers may bias the diagnostics resulting in false 

identification of other outliers. The latter is associated to the occurrence of large 

outliers which prevent the identification of others. More recently, Rodrigues and 

Rubia (2011) show that outliers may induce large size distortions in break 

detection algorithms, as the existence of additive outliers may mask the presence 

and number of potential breaks. 



The severe problems of outliers’ existence motivate the development of a 

number of methods to detect and accommodate them. For instance we refer the 

tests proposed by Tsay (1986, 1988), Chang et al. (1988) and Chen and Liu 

(1993b) based on ARMA models, while the recent literature focuses on detection 

and correction of outliers within the GARCH framework proposed by Franses and 

Ghijsels (1999), Charles and Darné (2005), Doornik and Ooms (2005), Zhang and 

King (2005), Bali and Guirguis (2007), Ané et al. (2008), Grané and Veiga(2010) 

and Hotta and Tsay (2012). Along these lines, this study focuses on the detection 

and correction of outliers to emphasize the existence of large shocks that may 

affect the stock markets. In doing so, it employs a wavelet procedure applied to 

the residuals of volatility models as proposed by Grane and Veiga (2010). This 

procedure is more reliable than others as detects less false outliers. Further, it 

avoids the joint estimation of the parameters of the underlying model and the 

detection of outliers, the presence of which may affect the parameters estimation. 

III. Methodology 

Outlier detection 

This study applies a wavelet-based outlier detection algorithm proposed by 

Grané and Veiga (2010) to detect and correct outliers from the dataset. In the 

econometric literature, outliers are often distinguished to additive and innovative 

type. This study focuses on the detection of additive outliers. The innovative 

outliers are extreme disturbances that affect all observations after their occurrence 

(see Pena, 2001) and seem to overlap with the notion of breaks. For that reason 

they are treated as synonymous. 



The procedure of Grane and Veiga (2010) is chosen since it is based on the 

residuals of an estimated model, which is estimated only once, in contrast to other 

proposed algorithms who suggest an iterative procedure (see for instance Franses 

and Ghijsels, 1999 and Doornik and Ooms, 2005). The adopted algorithm allows 

for a recursively manner of outliers’ identification. It avoids the joint estimation 

of the parameters of the underlying model and the outliers, the presence of which 

may affect the parameters estimation2. Moreover, the wavelet-based outlier 

procedure appears to be more reliable than others such as Franses and Ghijsels 

(1999) and Doornik and Ooms (2005) procedures, since it reduces the probability 

of false detected outliers. Finally, the classification of an observation as an outlier 

is based on critical values obtained by simulation and are not derived from rules 

of thumb or asymptotics (Bilen and Huzurbazar, 2002). 

The detection of outliers is based on the detail coefficients from the discrete 

wavelet transformation of the residuals of a volatility model, such as a GARCH 

model which is common for financial time series. The errors can follow a standard 

normal or a Student's t distribution3 (see Grane and Veiga, 2010 for an extensive 

analysis of the procedure). 

An observation is classified as an outlier if the absolute value of the 

detailed coefficients is greater than a threshold value. The threshold is defined as 

the 95th percentile of the distribution of the maximum of the detailed coefficients 

(in absolute value) obtained by simulated similar processes of the same size. The 

simulation-based derivation of critical values allows assuming different 

distribution in case the standard assumption of normally distributed residuals is 

                                                 
2 The procedure allows for only one detected outlier at a time, which means that when an outlier is 

detected then the series is corrected and the adjusted series is used for the detection of a new outlier. 
3 The algorithm can be extended to other error distributions, such as the Generalized Error 

Distribution. 



questionable. Therefore, the coefficients whose absolute value exceeds the 

threshold value results in a set of identified outlier positions, 𝑆 = {𝑠1, … , 𝑠𝑛}. The 

final step of the procedure involves the correction of the identified outliers and 

reconstruction of the series, which are performed by applying the inverse discrete 

wavelet transform. 

Detecting breaks in volatility 

Regarding the number and timing of the potential breaks, this article employs 

a CUSUM-type test designed to detect breaks in unconditional volatility. 

Specifically, it utilizes a modified version of the Inclan and Tiao (1994) algorithm, 

as proposed by Kokoszka and Leipus (2000) that allows for dependent processes. 

The Inclan and Tiao (1994) procedure is designed for i.i.d. processes, which is a 

very strong assumption for financial time series. As shown by and Andreou and 

Ghysels (2002), Sanso et al. (2004) and de Pooter and van Dijk (2004), the Inclan 

and Tiao (1994) test can be substantially oversized when the series follow a 

dependent process, such as a GARCH model. Therefore, it is employed a non-

parametric adjustment proposed by Kokoszka and Leipus (2000) that includes 

various dependent underlying processes (henceforth KL). 

Let denote the process of interest 𝑋𝑡 = 𝑟𝑡
2, with 𝑟𝑡 the returns of the series, 

the KL statistic, 𝐾𝐿𝑇, is given by 

𝐾𝐿𝑇 = max
1≤𝑘≤𝑇

|
1

𝜎̂𝐿𝑅
𝐷𝑇(𝑘)| 

where 𝐷𝑇(𝑘) =
1

√𝑇
∑ 𝑋𝑡

𝑘
𝑡=1 +

𝑘

𝑇√𝑇
∑ 𝑋𝑡

𝑇
𝑡=1  and 𝜎̂𝐿𝑅 a consistent estimator of the 

long run variance estimator. Under certain mild regularity conditions the 

asymptotic distribution of the KL statistic is given by sup
0≤𝑠≤1

|𝐵(𝑠)|, where 𝐵(𝑠) is 



a standard Brownian bridge, while the 90%, 95% and 99% asymptotic critical 

values are 1.22, 1.36 and 1.63 respectively. 

The KL statistic was fundamentally designed to test for a single break; 

however it can be applied in a sequential manner to identify multiple breaks, 

similar to the ICSS algorithm proposed by Inclan and Tiao (1994). This study 

adopts the sequential segmentation procedure to detect multiple breaks based on 

the KL statistic. First, the entire sample is tested for the presence of a single break. 

If a break is detected, the sample is split into two sub-samples with break date set 

as the split point. Second, each sub-sample is examined separately for a single 

break. If a new change point is detected, the sub-sample is further divided into two 

new segments. This procedure continues until no more breaks are found in any of 

the sub-samples. The significance level in each testing step must take into account 

the number of breaks that have already been detected. This is achieved by using a 

significance level of 𝛼/(𝑁 + 1), where 𝑎 = 0.05 is the nominal significance level 

at the first step and 𝑁 the number of breaks, when testing for the (𝑁 + 1) break. 

Third, the identified set of breaks is ordered and cross-checked using adjacent 

breakpoints. If a previously identified break point does not reject the null, it is 

dropped from the final set of breaks. Further restrictions can be imposed on the 

algorithm, for example we can allow for a maximum number of breaks and a 

minimum distance between adjacent breaks (de Pooter and van Dijk, 2004).4 

The KL statistic requires a consistent estimator 𝜎̂𝐿𝑅
2  of the long run variance 

of {𝑋𝑡}. There are a number of procedures in order to estimate the long run 

variance, such as estimators which depend on the kernel function one uses. For 

                                                 
4 Following de Pooter and van Dijk (2004) we impose a minimum distance between adjacent 

breaks of 3 business months to prevent breaks from being identified unrealistically close. 



that purpose, this study employs seven different estimators for the long run 

variance 𝜎𝐿𝑅
2 : 

(i) the Newey and West (1987) estimator. 

(ii) the Newey and West (1994) estimator. 

(iii) the Andrews (1991) quadratic spectral estimator. 

(iv) the Vector Autoregression Heteroscedasticity and Autocorrelation 

Consistent (VARHAC) estimator of Den Haan and Levin (1997) using the AIC 

information criterion. 

(v) the Vector Autoregression Heteroscedasticity and Autocorrelation 

Consistent (VARHAC) estimator of Den Haan and Levin (1997) using the BIC 

information criterion. 

(vi) the Andrews (1991) Bartlett kernel estimator using an ARMA(1,1) model. 

(vii) the Andrews (1991) Bartlett kernel estimator using an AR(1) model. 

As the number of detected breaks will differ across long run variance 

estimators, the actual detected breaks will be confirmed using a variety of methods 

designed to test for the equality of means and/or variances of two contiguous 

segments. Specifically, the tests of the “Awarding breakdates” stage as proposed 

by Karoglou (2010) are adopted. In this stage, the standard t-test and the 

Satterthwaite-Welch t-test are used for the equality of means and the standard F-

test, the Siegel-Tukey test with continuity correction (Siegel and Tukey (1960) and 

Sheskin (1997)), the adjusted Bartlett test (see Sokal and Rohlf (1995) and Judge 

et al. (1985)), the Levene test (1960) and the Brown-Forsythe test (1974) for the 

equality of variances. 



Volatility model 

A standard 𝐴𝑅(1) − 𝐺𝐴𝑅𝐶𝐻(1,1) model5 for the returns is employed as it 

is flexible enough to assess the most important stylised facts of the data and to 

examine the volatility persistence of financial time series. The conditional mean is 

given by 

𝑟𝑡 = 𝜇 + 𝜌𝑟𝑡−1 + 𝜀𝑡 

where 

𝜀𝑡 = 𝜂𝑡𝜎𝑡 

𝜀𝑡~𝑁(0, 𝜎𝑡
2) 

𝜂𝑡~𝑖. 𝑖. 𝑑. 𝑁(0,1) 

and the conditional variance of 𝜀𝑡 is given by 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  

The parameters satisfy at least 𝜔 > 0 and 𝛼, 𝛽 ≥ 0 to ensure that the 

conditional variance is positive and the existence of the GARCH process. The 

process is stationary if 𝛼 + 𝛽 < 1. The sum of 𝛼 and 𝛽 indicates the persistence 

of a shock. The typical value of the sum, especially for stock market return series, 

is very close to one, implying that shocks are highly persistent. If 𝛼 + 𝛽 = 1, then 

one has an integrated GARCH (IGARCH) process where shocks have a permanent 

effect on volatility. Beyond analysing the persistence of a process through the sum 

of the 𝛼 and 𝛽 parameters, it is used a volatility measure with intuitive 

interpretation to quantify the volatility persistence, the half-life of a shock. This 

measure is calculated as ℓ = 𝑙𝑛(0.5) 𝑙𝑛(𝛼 + 𝛽)⁄  and measures the period of time 

                                                 
5
 The autoregressive parameter is included in the conditional mean, if series show evidence of 

autocorrelation indicated by the autocorrelation and partial autocorrelation functions. 



(days in our study) over which a shock to volatility decays to half its original size. 

For a stationary GARCH(1,1) the unconditional variance of 𝜀𝑡 is given by 

𝜔 (1 − 𝛼 − 𝛽)⁄ . Notice that when 𝛼 = 0, 𝛽 is unidentified and set equal to zero 

then the series is characterized by conditional homoscedasticity. The parameters 

are estimated using the quasi maximum likelihood estimation (QMLE). 

The standard GARCH model is augmented with dummy variables to account 

for the identified breaks in unconditional volatility. In particular, we estimate 

𝑟𝑡 = 𝜇 + 𝜌𝑟𝑡−1 + 𝜀𝑡 

where 

𝜀𝑡 = 𝜂𝑡𝜎𝑡 

𝜀𝑡~𝑁(0, 𝜎𝑡
2) 

𝜂𝑡~𝑖. 𝑖. 𝑑. 𝑁(0,1) 

and the conditional variance of 𝜀𝑡 is given by 

𝜎𝑡
2 = 𝜔1 + 𝑑1𝐷1 + ⋯+ 𝑑𝑛𝐷𝑛 + 𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  

where 𝐷𝑖 are the dummy variables taking the value of one from each point of 

structural break in variance and zero elsewhere. 

IV. Data 

The data set consists of daily closing values of five US stock market 

indices, namely the S&P 500, MSCI world US (MSWRLD), NASDAQ 

Composite, Dow Jones Industrial Average (DJIA) and NYSE Composite. The data 

are obtained from Datastream. The sample period runs from 3 January 1983 to 19 

March 2013 resulting in a total of 7782 observations. Table 1 provides some 

descriptive statistics for the stock index (log) returns. 



[Table 1 around here] 

The stock market returns demonstrate the usual properties of financial data; 

specifically, a small mean is dominated by a large standard deviation. The 

NASDAQ index is the most volatile series, while the MSWRLD the least. 

Moreover, returns are highly non-normal, showing evidence of negative skewness 

and significant kurtosis. The kurtosis ranges from 11.612 for the NASDAQ index 

to 45.769 for the DJIA, supporting the existence of outliers. The Lagrange 

Multiplier (LM) test indicates that all series exhibit significant evidence of ARCH 

effect. The outlier-adjusted returns still exhibit excess skewness, kurtosis and 

conditional heteroscedasticity. However, the excess skewness and kurtosis are 

dramatically reduced. For instance, in the S&P 500 and DJIA indices, their values 

decreased more than 50%. 

Table 1 also presents the pair-wise correlations among the stock market 

indices. These estimated pair-wise correlation coefficients are all greater than 0.7 

and statistically significant at 1% confirming that the indices are positively 

correlated. The NYSE and S&P 500 indices are tightly linked with a correlation of 

0.98. The DJIA and S&P 500 and NYSE and DJIA pairs exhibit high correlation 

as well, 0.964 and 0.952 respectively. The lowest correlation, 0.732, is reported 

between NASDAQ and MSWRLD indices. 

V. Empirical Results 

Table 2 presents the timing of the identified outliers by employing the 

wavelet-based procedure6 to the residuals series from a GARCH(1,1) model with 

                                                 
6 A threshold value of 𝑘1

0.05 = 4.3521 computed from 20,000 Monte Carlo replications of size 𝑛 =
7700 is used. 



Gaussian errors7 for each stock market index along with their percentage change 

and the events that may be associated with. A total of 18 outliers is detected which 

is relatively low compared to other studies (for instance see Charles and Darné, 

2012), ranging from two for MSWRLD and NASDAQ indices to six for the DJIA 

index. It is worth mentioning that the S&P 500 and NYSE indices exhibit exactly 

the same outliers; this pair has the highest correlation. On the other hand the pair 

with the lowest correlation, NASDAQ and MSWRLD, has no common outliers. 

The detected outliers are negative, with the exception of the outlier in the 

MSWRLD index in January 17, 1991 which is in accordance with the literature 

that negative outliers occur more frequently than positive ones (Jansen and de 

Vries, 1991). Noteworthy the majority of these negative outliers are common 

among the examined indices. This can be explained by the fact that markets appear 

to be higher related during periods of extreme negative variations (see for instance 

Longin and Solnik, 2001; Ang and Bekaert, 2002; Ané and Kharoubi, 2003). 

[Table 2 around here] 

Beyond the mere analysis of the detection of outliers, this study examines 

the time of these outlying observations. The timing of the detected outliers reveals 

that stock market indices exhibit outliers in common dates. The first outlier 

corresponds to the day known as “Black Monday”, identified in four indices 

namely the S&P 500, MSWRLD, DJIA and NYSE. This corresponds to the highest 

loss during the examined time period for the stock market indices -20.41%, -

9.84%, -22.61% and -19.17% respectively8. The second outlier identified in the 

S&P 500, DJIA and NYSE indices on October 13, 1989 corresponds to the mini 

                                                 
7 In the case of a volatility model with the errors following a t-student distribution no outliers are 

detected, in accordance with the findings of Grane and Veiga (2010). 
8 On October 19, 1987 the fall of the DJIA is recorded as the largest one-day percentage decline 

from 1928 to 2010 (Charles and Darne, 2012). 



stock market crash from the failure of the buyout deal for United Continental 

Holding (UAL) Corporation, the parent company of United Airlines. The average 

decline this day was 6.28%. The outlier in the MSWRLD index on January 17, 

1991 caused a rise of 4.88% in the index and is associated with the Gulf War I, 

specifically the Operation Desert Storm. The outlier on November 15, 1991 in 

DJIA index coincides with bad economic statistics, related to the stagnation of US 

economic activity. A prominent outlier is identified in the S&P 500, NASDAQ, 

DJIA and NYSE indices on October 27, 1997 due to Asian crisis, resulting in an 

average reduction of 6.91% in the indices. The terrorist attacks in the US on 

September 11th, 2001 seem to have affected the stock markets. On September 17, 

2001, the day that the US stock market reopened, an outlier is detected in DJIA 

index, resulting in a decline of 7.13%. Finally, the outlier of February 27, 2007 in 

the S&P 500, NASDAQ, DJIA and NYSE indices corresponds to the day of the 

decline of the Shanghai Stock Exchange and the news regarding the recession in 

the US economy, with an average decrease of 3.56%. 

[Figure 1 around here] 

Utilizing the outlier-corrected series, the study proceeds with the analysis 

aiming at the identification of breaks. The outlier-corrected instead of the original 

returns are adapted, since Rodrigues and Rubia (2011) demonstrate that additive 

outliers may mask the presence and the number of potential breaks detected by the 

CUSUM-type statistics. Figure 1 presents the returns for S&P 500 and DJIA along 

with ±3-standard-deviation bands for each of the regimes defined by the structural 

breaks. We have included both the identification of breaks in case of no outliers 

corrected returns and the outlier corrected returns in order to demonstrate how the 

existence of outliers may mask the identification of breaks. If outliers are not 



accounted for, two breaks in the unconditional volatility of the S&P 500 index are 

identified. The number of breaks increases to eight for the outlier adjusted returns. 

For the DJIA no breaks are detected for the non-outlier adjusted returns and two 

when the outliers are taken into account. Similar results hold for the rest of the 

indices9. Table 3 reports the results on the timing of the identified breaks and Table 

4 presents descriptive statistics of each identified segment10. 

[Table 3 around here] 

The break detection reveals that the changes in unconditional volatility of 

the US stock market returns can be captured at least by two breaks, as in the case 

of DJIA while the dynamics of the NASDAQ index seems to be more complex, as 

nine breaks have been identified. It is interesting to note that the number of 

identified breaks in volatility is different despite the high correlation between the 

indices. However the timing of common identified breaks coincides. It is worth 

mentioning that most of the breakdates are attributed to major events, providing 

evidence about the economic impact of these events. For instance, four indices, 

namely S&P 500, MSWRLD, NASDAQ and NYSE, show a break in July 2007 

and DJIA in October 2007 which is associated with the beginning of the Financial 

Crisis of 2007-2008. Four of the examined series, S&P 500, MSWRLD, NASDAQ 

and NYSE, exhibit another break in September 2008, the month that the financial 

institutions crisis hits its peak. Several major American institutions such as 

Lehman Brothers, Merrill Lynch, Fannie Mae, Freddie Mac, Washington Mutual, 

Wachovia, Citigroup and AIG, either failed or were subject to government 

                                                 
9 Results for the remaining indices are available upon request. 
10 Due to space limitations we do not report the results from the tests for the equality of mean and 

variance of contiguous segments; however the relevant results are available upon request. 



takeover. Finally, all indices have a break in March-June 2009, which is related to 

European debt crisis. 

[Table 4 around here] 

Another interesting aspect of the break analysis is the existence of a large 

segment from 1983 to 1997/1998 in the S&P 500, MSWRLD, NASDAQ and 

NYSE indices which spans on average fifteen and a half years (about the 50% of 

the total number of observations). A second large segment (1997-2007) is also 

identified in MSWRLD index that accounts for the 33% of the total sample. 

Moreover, it is worth noting that a larger segment that runs from 1983 to 2007 that 

covers twenty-five years (more than the 80% of the total observations) is identified 

in the DJIA index. These large segments appear to be relatively calm, in contrast 

to the small segment during 2007/08-2009 (spanning on average 266 days) 

identified in all examined indices which reveals an episode of significant high 

volatility with standard deviation over 2%. 

Regarding the descriptives for the identified segments as represented in 

Table 4, substantial differences across segments are noticed. In ten segments the 

distribution is positively skewed and negatively in the other segments, while 

almost all segments are leptokurtic. Furthermore, the normality assumption is not 

rejected in nine segments. Lastly, the 26% of the segments does not exhibit 

conditional heteroscedasticity. These results indicate the importance of breaks in 

the mean and/or volatility dynamics when fitting a model. 

The final part of the analysis is devoted to the volatility persistence of stock 

markets returns. A benchmark GARCH model is employed to the original returns, 

the outlier-corrected returns, the returns with sudden changes in variance and to 

the identified segments. Table 5 summarises the relevant results. Inspection of the 



parameter estimates over the full sample (original returns) reveals that the GARCH 

processes are highly persistent with the sum of the 𝛼 and 𝛽 parameters ranging 

from 0.985 (MSWRLD) to 0.994 (NASDAQ), in line with the extant literature, 

and the median value equals to 0.998. Using half-life for the examination of the 

persistence the half-lives range from 47 to 124 days and the median (mean) value 

across series is 59 (71). 

[Table 5 around here] 

The degree of persistence is slightly increased when the outlier corrected 

returns are employed, as measured by the sum of the 𝛼 and 𝛽 parameters, ranging 

from 0.985 to 0.995. The increase is more noticeable when examining the half-life 

measure. The number of days that a shock decreases to its half size is increased on 

average by 30%. The median value of the sum of the parameters is 0.99 and 

corresponds to a half-life of 80 days. Furthermore, the unconditional variance is 

reduced by 9% on average for the outlier adjusted returns. However such a 

reduction can be considered rather remarkable as there are only 2 to 6 outliers in 

7782 observations. The DJIA index that has the highest number of identified 

outliers, exhibits the highest decrease in the unconditional variance. An interesting 

finding present in all series is that the value of α parameter decreases and the value 

of the β parameter increases in the outlier-corrected returns. Notably the reduction 

of α parameter is much higher than the increase of the β parameter. This imply 

that large innovations have larger short run effects and financial time series revert 

to their long run trends relatively quickly. Therefore, the uncounted outliers imply 

that the α parameter is overestimated and the β parameter is underestimated11. 

                                                 
11 This finding is in accordance with the existing literature, see for instance Charles and Darne 

(2006), Carnero et al. (2007, 2012) and Franses and Ghijsels (1999). 



Once the identified breaks are incorporated into the benchmark GARCH 

model by including the dummy variables in the variance equation the volatility 

persistence, as measured by the sum of the 𝛼 and 𝛽 parameters, is considerably 

reduced in all cases12. Among the examined indices, NASDAQ shows the largest 

decline in volatility persistence from 0.995 (outlier adjusted returns) to 0.95. The 

smallest reduction is observed for the DJIA, from 0.991 to 0.989. Alternatively, 

by quantifying the decrease in volatility persistence through the half-life values ℓ, 

the half-life values range from 14 (NASDAQ) to 63 (DJIA) days. It is worth 

mentioning that the median half-life percentage reduction among series is equal to 

60%.13 

Examination of parameter estimates across sub-samples reveals that the 

decrease in persistence is often sizable. In the extreme, there are sub-samples 

where the persistence vanishes, the estimates of 𝛼 is equal to zero and the sub-

samples are characterized by conditional homoscedasticity14. The persistence in 

the identified segments as measured by the sum of the 𝛼 and 𝛽 parameters is 

reduced with a median (mean) value across segments equal to 0.973 (0.967). The 

reduction of the persistence is substantial if the half-life measure is employed; 

notably only in three segments the half-life is greater than the full sample half-life. 

Across the segments the half-life ranges from 5 to 72 days and the median (mean) 

value is 26 (31). Therefore, the results regarding the volatility persistence in 

identified segments reveal a substantial reduction from the GARCH (1,1) process 

                                                 
12 The findings are similar to other studies, see for example, Aggarwal et al. (1999) Ewing and 

Malik (2010), and Wang and Moore (2009). 
13 Overall, our results are in accordance with Lamoureux and Lastrapes (1990) who argue that 

standard GARCH model overestimates the persistence in volatility since relevant sudden changes 

in variance are ignored. 
14 Similar results for sub-sample GARCH estimates have been employed in Rapach et al. (2008), 

McMillan and Wohar (2011) and Vivian and Wohar (2012) among others. 



that does not allow for breaks in the mean and/or volatility dynamics. The 

reduction in the volatility persistence is remarkably even when compared with the 

results from GARCH model augmented with dummy variables. 

If we focus on volatility persistence at segments during the recent financial 

crisis, as defined by the break on September 2008, we notice that the segment that 

covers the period from July 2007 to September 2008 are characterized by 

homoscedasticity for all indices. On the other hand, on the segment that covers the 

period from Sept 2008 to May/June 2009, the persistence seems to be quite 

different across the indices. The highest persistence (0.981) is noticed at the 

NASDAQ index and the lowest (0.964 and 0.965) at MSWRLD and NYSE 

indices. 

VI. Conclusion 

This study examines the volatility modelling, emphasising on the volatility 

persistence, by evaluating the impact of breaks in the mean and/or volatility 

dynamics and outliers. Employing a wavelet-based outlier detection method, it 

finds several outliers in the US stock market indices (S&P 500, MSWRLD, 

NASDAQ, DJIA and NYSE). The identified outliers are associated with high 

impact events such as the financial crises, wars and terrorist attacks. Due to the 

fact that outliers may bias the presence and the timing of breaks, a CUSUM-type 

statistic to detect breaks in the outlier corrected data is applied. The dynamics of 

the examined series are quite complex with the number of identified breaks 

ranging from two to nine. The break analysis reveals clustering of breaks in periods 

with high uncertainty such as the recent financial crisis and the European debt 

crisis. The properties of the identified segments appear to vary substantially, 



pointing the importance of accounting for outliers and breaks. Regarding the 

volatility persistence, the existence of outliers bias the parameters estimates of the 

volatility persistence, while ignoring the possible breaks lead in spuriously high 

estimates of volatility persistence. Therefore, the volatility modelling is noticeably 

improved when breaks and outlier are taken into account. 

A further interesting direction would be to study the volatility of other 

stock markets through the analysis of breaks and outliers and examine the possible 

transmission mechanisms across markets. 
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Tables 

Table 1. Descriptive statistics and correlation matrix 

Returns S&P 500 MSWRLD NASDAQ DJIA NYSE

Mean 0.031 0.028 0.033 0.034 0.030

St. Dev. 1.141 0.918 1.380 1.117 1.099

Skewness -1.271 -0.544 -0.237 -1.683 -1.306

Kurtosis 31.655 14.418 11.612 45.769 31.350

JB 271759.80* 43197.63* 24430.51*604390.70*266165.00*

LM(10) 74.8* 259.2* 192.8* 47.4* 105.9*

Outlier Corrected Returns

Mean 0.033 0.028 0.034 0.037 0.033

St. Dev. 1.117 0.912 1.377 1.083 1.078

Skewness -0.467 -0.427 -0.219 -0.395 -0.586

Kurtosis 15.005 12.871 11.603 15.839 17.023

JB 47609.59* 32233.43* 24367.87* 54338.23* 65026.21*

LM(10) 199.6* 251.8* 195.6* 178.7* 257*

Correlation matrix

S&P 500 1

MSWRLD 0.810 1

NASDAQ 0.844 0.732 1

DJIA 0.964 0.776 0.756 1

NYSE 0.980 0.837 0.794 0.952 1  

Note: * Denotes significance at 1%. 

 

Table 2. Identified outliers 

Date Stock Market Index (Percentage change) Event

19/10/1987
S&P 500 (-20.41), MSWRLD (-9.48),     

DJIA (-22.61), NYSE (-19.17)
Black Monday

13/10/1989 S&P 500 (-6.13), DJIA (-6.91), NYSE (-5.80) Rejection of repurchase plan of United Airlines 

17/01/1991 MSWRLD (4.88) Operation Desert Storm

15/11/1991 DJIA (-3.93) Bad economic statistics; Fear of economic stagnation

27/10/1997
S&P 50 (-6.87), NASDAQ (-7.02),          

DJIA (-7.18), NYSE (-6.57)
Asian Crisis

17/09/2001 DJIA (-7.13) The September 11t terrorist attack

27/02/2007
S&P 500 (-3.47), NASDAQ (-3.86),        

DJIA (-3.29), NYSE (-3.63) 
Fall of Shanghai Stock Exchange; fear of recession 

 

  



Table 3. Identified breaks in volatility 

Newey-West (1987) Newey-West (1994) Quadratic Spectral VARHAC AIC VARHAC BIC Bartlett ARMA Bartlett AR Adopted

- 20/07/1998 20/07/1998 - - 20/07/1998 26/03/1997 26/03/1997

- 28/04/2003 28/04/2003 - - - 03/05/2002 20/07/1998

- 09/07/2007 09/07/2007 - - - 25/07/2003 03/05/2002

- 12/09/2008 12/09/2008 - - - 09/07/2007 28/04/2003

- 01/06/2009 01/06/2009 - - - 12/09/2008 25/07/2003

- - - - - - 01/06/2009 09/07/2007

- - - - - - - 12/09/2008

- - - - - - - 01/06/2009

MSWRLD

23/07/2007 16/10/1997 16/10/1997 - - 23/07/2007 16/10/1997 16/10/1997

- 03/09/2008 03/09/2008 - - - 03/09/2008 23/07/2007

- 13/05/2009 13/05/2009 - - - 04/05/2009 03/09/2008

- - - - - - 01/08/2011 04/05/2009

- - - - - - 20/12/2011 01/08/2011

- - - - - - - 20/12/2011

27/07/1998 27/07/1998 27/07/1998 27/07/1998 15/10/1997 27/07/1998 15/10/1997 15/10/1997

16/12/2002 16/12/2002 16/12/2002 16/12/2002 03/01/2000 16/12/2002 03/01/2000 27/07/1998

- 23/07/2007 23/07/2007 - 16/12/2002 - 23/04/2001 03/01/2000

- 12/09/2008 12/09/2008 - - - 16/12/2002 23/04/2001

- 01/06/2009 01/06/2009 - - - 18/08/2004 16/12/2002

- - - - - - 23/07/2007 18/08/2004

- - - - - - 12/09/2008 23/07/2007

- - - - - - 01/06/2009 12/09/2008

- - - - - - - 01/06/2009

- 31/10/2007 31/10/2007 - - - 31/10/2007 31/10/2007

- 21/04/2009 21/04/2009 - - - 21/04/2009 21/04/2009

23/07/2007 23/07/2007 23/07/2007 23/07/2007 23/07/2007 23/07/2007 20/07/1998 20/07/1998

- 18/05/2009 18/05/2009 - - - 03/09/2008 23/07/2007

- - - - - - 03/06/2009 03/09/2008

- - - - - - - 18/05/2009

S&P 500 

NASDAQ 

DJIA

NYSE

Note: The breakdates are significant at 5%. 

  



Table 4. Descriptive statistics for the identified segments 

Segments Subperiod Obs. Mean St. Dev. Skewness  Kurtosis JB LM(10)

S&P 500 seg. 1 03/01/1983-26/03/1997 3712 0.0505 0.8792 -1.3626 28.9235 105088.50* 91.10*

S&P 500 seg. 2 27/03/1997-20/07/1998 343 0.1354 0.9938 0.2222 4.7179 45.00* 0.54

S&P 500 seg. 3 21/07/1998-03/05/2002 989 -0.0099 1.3050 -0.1087 5.0025 167.19* 4.49*

S&P 500 seg. 4 06/05/2002-28/04/2003 256 -0.0624 1.7133 0.3831 3.2860 7.13** 4.47*

S&P 500 seg. 5 29/04/2003-25/07/2003 64 0.1370 0.9819 -0.1010 2.7127 0.33 2.11**

S&P 500 seg. 6 28/07/2003-09/07/2007 1031 0.0435 0.6551 -0.0830 3.4499 9.88* 3.67*

S&P 500 seg. 7 10/07/2007-12/09/2008 309 -0.0654 1.2990 -0.0505 3.3538 1.74 0.71

S&P 500 seg. 8 15/09/2008-01/06/2009 186 -0.1523 3.2244 -0.0045 4.1533 10.31* 3.56*

S&P 500 seg. 9 02/06/2009-19/03/2013 991 0.0501 1.1131 -0.4494 6.7477 613.31* 24.33*

MSWRLD seg. 1 03/01/1983-16/10/1997 3858 0.0479 0.6970 -0.5818 19.1562 42176.94* 204.77*

MSWRLD seg. 2 17/10/1997-23/07/2007 2547 0.0209 0.8819 -0.1497 5.3157 578.6* 38.64*

MSWRLD seg. 3 24/07/2007-03/09/2008 292 -0.0760 1.0060 -0.0066 3.3266 1.3 1.27

MSWRLD seg. 4 04/09/2008-04/05/2009 173 -0.2069 2.7154 -0.0783 3.8823 5.79*** 4.85*

MSWRLD seg. 5 05/05/2009-01/08/2011 585 0.0585 0.9953 -0.1812 4.4478 54.29* 2.75*

MSWRLD seg. 6 02/08/2011-20/12/2011 101 -0.1074 1.8919 -0.2558 2.9493 1.11 0.76

MSWRLD seg. 7 21/12/2011-19/03/2013 325 0.0627 0.7565 0.0924 4.0472 15.31* 1.13

NASDAQ seg. 1 03/01/1983-15/10/1997 3857 0.0521 0.8470 -1.6896 25.2817 81622.98* 171.08*

NASDAQ seg. 2 16/10/1997-27/07/1998 203 0.0852 1.1473 -0.1717 3.5508 3.56 0.98

NASDAQ seg. 3 28/07/1998-03/01/2000 375 0.2025 1.8590 -0.4879 4.4538 47.90* 3.55*

NASDAQ seg. 4 04/01/2000-23/04/2001 340 -0.2048 3.1757 0.3099 3.9724 18.84* 2.24**

NASDAQ seg. 5 24/04/2001-16/12/2002 430 -0.0897 2.1310 0.2386 3.0458 4.12 1.26

NASDAQ seg. 6 17/12/2002-18/08/2004 437 0.0614 1.2888 0.0699 3.2908 1.9 2.58*

NASDAQ seg. 7 19/08/2004-23/07/2007 763 0.0532 0.8171 -0.0822 3.4575 7.51** 3.69*

NASDAQ seg. 8 24/07/2007-12/09/2008 299 -0.0581 1.4237 0.0453 2.9616 0.12 0.56

NASDAQ seg. 9 15/09/2008-01/06/2009 186 -0.1142 3.2088 0.0206 3.8543 5.67*** 2.36**

NASDAQ seg. 10 02/06/2009-19/03/2013 991 0.0574 1.2173 -0.3893 6.1551 436.07* 20.61*

DJIA seg. 1 03/01/1983-31/10/2007 6477 0.0448 0.9853 -0.5999 17.0992 54035.89* 120.53*

DJIA seg. 2 01/11/2007-21/04/2009 384 -0.1454 2.2120 0.2324 6.6385 215.27* 11.28*

DJIA seg. 3 22/04/2009-19/03/2013 1020 0.0584 1.0198 -0.3501 6.1718 448.40* 23.39*

NYSE seg. 1 03/01/1983-20/07/1998 4055 0.0541 0.8148 -1.3236 28.9105 114614.60* 104.42*

NYSE seg. 2 21/07/1998-23/07/2007 2350 0.0208 0.9911 -0.0994 6.1644 984.37* 34.15*

NYSE seg. 3 24/07/2007-03/09/2008 292 -0.0692 1.2880 -0.0877 3.2228 0.98 0.87

NYSE seg. 4 04/09/2008-18/05/2009 183 -0.1876 3.4483 -0.0517 3.8237 5.25*** 3.92*

NYSE seg. 5 19/05/2009-19/03/2013 1001 0.0430 1.2204 -0.4224 6.3230 490.32* 22.92*

Note: * Denotes significance at 1%. 

** Denotes significance at 5%. 

*** Denotes significance at 10%. 

  



Table 5. QMLE for AR(1)-GARCH(1,1) models 

Original Returns - 0.013 (0.005) 0.078 (0.019) 0.912 (0.020) 0.990 68.878 1.331

Outlier Corrected Returns - 0.009 (0.002) 0.067 (0.010) 0.926 (0.010) 0.993 96.882 1.219

Returns with dummies 0.017 (0.004) 0.067 (0.010) 0.907 (0.013) 0.974 26.203 0.663

Segment 1 0.054 (0.017) 0.007 (0.004) 0.050 (0.018) 0.941 (0.021) 0.990 72.501 0.741

Segment 2 - 0.985 (0.103) 0.000 0.000 - - 0.985

Segment 3 - 0.087 (0.038) 0.066 (0.022) 0.883 (0.032) 0.949 13.199 1.694

Segment 4 - 0.183 (0.120) 0.086 (0.033) 0.848 (0.063) 0.934 10.125 2.772

Segment 5 - 0.968 (0.156) 0.000 0.000 - - 0.968

Segment 6 - 0.022 (0.010) 0.044 (0.013) 0.904 (0.026) 0.949 13.123 0.426

Segment 7 -0.185 (0.052) 1.619 (0.137) 0.000 0.000 - - 1.619

Segment 8 -0.177 (0.067) 0.150 (0.132) 0.084 (0.033) 0.896 (0.032) 0.979 32.911 7.210

Segment 9 - 0.031 (0.010) 0.104 (0.024) 0.870 (0.023) 0.974 26.242 1.197

Original Returns 0.172 (0.012) 0.012 (0.004) 0.104 (0.023) 0.881 (0.024) 0.985 47.073 0.853

Outlier Corrected Returns 0.174 (0.012) 0.011 (0.003) 0.094 (0.014) 0.892 (0.016) 0.985 47.161 0.760

Returns with dummies 0.176 (0.012) 0.018 (0.004) 0.102 (0.016) 0.859 (0.022) 0.961 17.566 0.455

Segment 1 0.211 (0.017) 0.037 (0.014) 0.147 (0.037) 0.766 (0.062) 0.914 7.673 0.430

Segment 2 0.162 (0.020) 0.008 (0.003) 0.067 (0.012) 0.923 (0.013) 0.990 67.615 0.736

Segment 3 - 1.009 (0.090) 0.000 0.000 - - 1.009

Segment 4 - 0.234 (0.135) 0.091 (0.033) 0.874 (0.031) 0.964 19.118 6.585

Segment 5 0.125 (0.042) 0.027 (0.016) 0.054 (0.024) 0.918 (0.030) 0.972 24.535 0.965

Segment 6 - 3.544 (0.492) 0.000 0.000 - - 3.544

Segment 7 0.102 (0.049) 0.565 (0.055) 0.000 0.000 - - 0.565

Original Returns 0.112 (0.012) 0.013 (0.003) 0.098 (0.015) 0.897 (0.014) 0.994 123.762 2.257

Outlier Corrected Returns 0.112 (0.012) 0.012 (0.003) 0.096 (0.014) 0.899 (0.014) 0.995 127.305 2.181

Returns with dummies 0.116 (0.012) 0.029 (0.006) 0.098 (0.016) 0.851 (0.022) 0.950 13.460 0.572

Segment 1 0.258 (0.017) 0.031 (0.011) 0.124 (0.031) 0.828 (0.041) 0.952 14.086 0.638

Segment 2 - 1.310 (0.147) 0.000 0.000 - - 1.310

Segment 3 - 0.496 (0.182) 0.164 (0.075) 0.694 (0.070) 0.858 4.522 3.494

Segment 4 - 10.097 (0.930) 0.000 0.000 - - 10.097

Segment 5 - 4.531 (0.313) 0.000 0.000 - - 4.531

Segment 6 - 1.828 (0.309) 0.000 0.000 - - 1.828

Segment 7 - 0.027 (0.013) 0.029 (0.012) 0.929 (0.023) 0.959 16.468 0.660

Segment 8 -0.130 (0.053) 1.974 (0.157) 0.000 0.000 - - 1.974

Segment 9 -0.167 (0.066) 0.135 (0.145) 0.073 (0.034) 0.908 (0.036) 0.981 35.591 6.983

Segment 10 - 0.038 (0.013) 0.092 (0.023) 0.881 (0.024) 0.973 25.729 1.415

Original Returns - 0.015 (0.005) 0.080 (0.020) 0.908 (0.019) 0.988 59.412 1.323

Outlier Corrected Returns - 0.010 (0.002) 0.069 (0.009) 0.923 (0.010) 0.991 78.330 1.139

Returns with dummies 0.011 (0.003) 0.068 (0.010) 0.921 (0.010) 0.989 63.110 1.000

Segment 1 - 0.008 (0.002) 0.057 (0.011) 0.936 (0.012) 0.993 94.100 1.029

Segment 2 -0.151 (0.046) 0.054 (0.033) 0.105 (0.021) 0.885 (0.018) 0.990 72.501 5.670

Segment 3 - 0.026 (0.008) 0.112 (0.024) 0.864 (0.023) 0.976 28.219 1.053

Original Returns 0.036 (0.012) 0.014 (0.005) 0.084 (0.019) 0.904 (0.020) 0.988 57.905 1.151

Outlier Corrected Returns 0.041 (0.012) 0.009 (0.002) 0.073 (0.010) 0.919 (0.010) 0.992 82.565 1.067

Returns with dummies 0.042 (0.012) 0.011 (0.003) 0.073 (0.010) 0.910 (0.012) 0.983 40.650 0.680

Segment 1 0.097 (0.017) 0.007 (0.004) 0.054 (0.019) 0.935 (0.023) 0.989 62.971 0.643

Segment 2 - 0.011 (0.004) 0.072 (0.012) 0.917 (0.013) 0.989 61.591 0.997

Segment 3 -0.174 (0.057) 1.589 (0.135) 0.000 0.000 - - 1.589

Segment 4 -0.153 (0.067) 0.366 (0.212) 0.087 (0.031) 0.878 (0.030) 0.965 19.63 10.547

Segment 5 - 0.031 (0.011) 0.096 (0.024) 0.883 (0.023) 0.979 32.315 1.457

S&P 500 

MSWRLD

NASDAQ

DJIA

NYSE

𝜌 𝜔 𝛼   𝛼 +   ℓ 𝜔  1 − 𝛼 −   ⁄

Note: Standard errors are given in parentheses. 
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Figure 1. Returns and outlier adjusted returns for S&P 500 and DJIA indices along 

with ±3-standard-deviation bands for the regimes as defined by the structural 

breaks. 

 


