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Summary of Thesis 

Aquasomes are nanocarrier systems consist of three distinctive layers; an inner core, a 
polyhydroxy carbohydrate layer and an outer layer of an API (Kossovsky et al., 1991). 
Aquasomes have a unique structure and ability to carry active molecules through a non-
covalent bounding and provide superior stability, especially for proteins and peptides 
(Masatoshi and Yongning, 1998; Kim and Kim, 2002; Khopade et al., 2002). Different core and 

coating materials were used to prepare aquasomes under different conditions to investigate 
the relationship between preparation conditions and loading efficiency. In terms of loading 
efficiency, hydroxyapatite aquasomes, with either lactose or trehalose as a coating material, 
had the highest BSA loading (40%-60%) when compared to DSPA aquasomes. While DCPA 
aquasomes, with either lactose or trehalose as a coating material, had the lowest BSA loading 
(8%-16%). To investigate the interaction of the three layers of aquasomes, Surface analysis, 
docking and MD simulations were performed. Surface analysis performed by Discovery Studio 
showed that HA and trehalose interact by hydrogen bonding with the later acting as a hydrogen 
acceptor, while BSA displayed almost complete SAS and that there are numerous targets for 
trehalose attachments (no specific active site). MD simulations of BSA performed by AMBER 
12 showed a stable MD simulation of BSA for 5 ns. Total energy analysis of BSA on the two 
conditions performed (300K and 280K) support the experimental data of lower BSA loadings 
of aquasomes prepared at 400C compared to those manufactured at 250C (p<0.05). This could 

be related to that BSA might have either started to denature/unfold or breaking up which 
eventually resulted in low BSA loadings obtained experimentally. The high loading efficiency 
highlights aquasomes as a promising carrier for the delivery of proteins and peptides. 
Following formulation Optimisation, two routes of delivery were investigated, pulmonary and 
oral routes. For pulmonary delivery of aquasomes, BSA-loaded aquasomes were successfully 
formulated as pMDI and DPI formulations. Both pMDI and DPI formulations were investigated 
to identify lung distribution of BSA-loaded aquasomes using NGI. In vitro release studies on 
the selected size fractions from NGI show a sustained release of BSA over a period of 6 hr. In 
order to complement the in vitro release data, cell culture studies were performed to 
demonstrate the controlled release effect of aquasomes with BEAS-2B cell lines. The release 
of salbutamol sulphate (model drug) from aquasomes post 2 hr started to slow gradually until 
it reached its highest difference at 6 hr (p<0.05) when compared to the control. For oral delivery 

of aquasomes, BSA-loaded aquasome tablets were successfully formulated with MCC as 
multifunctional excipient and talc as a lubricant. Various powder blends of varying aquasomes 
amounts (25, 37.5, 50, 62.5 and 75%) were prepared and compressed at increasing 
compression forces (0.5, 1, 2 and 3 tons). It was noticed that under high compression forces 
of 2 and 3 tons, BSA spreads out of BSA-loaded aquasomes as was presented with confocal 
microscopy images. Tablets compressed under 1 ton of compression force was therefore 
chosen for coating as it showed desirable tablet characteristics (hardness, disintegration etc.). 
Acrylic based coating was used to spray coat the tablets. The coated tablets were found to 
disintegrate in pH >5.5 and steadily release for 6 hr. Cell culture studies were conducted to 
demonstrate the controlled release effect of aquasomes using Caco-2 cell lines. The release 
of metronidazole (model drug) from aquasomes post 2 hr started to slow gradually until it 
reached its highest difference at 6 hr (p<0.05) when compared to the control.  
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The process or method which involves the administration of a pharmaceutical compound to 

achieve a therapeutic effect in humans or animals is called drug delivery. Drug delivery 

systems (DDS) have been implemented because of their capability of sustaining the duration 

of therapeutic activity, controlling the rate of drug delivery and/or targeting the delivery of active 

pharmaceutical ingredient (API). Examples of DDS can include liposomes, gold nanoparticles 

and polymeric nanosystems. DDS can be classified into delayed release systems, sustained 

release systems, site-specific targeting systems and receptor targeting systems (Figure 1.1) 

(Tiwari et al., 2012; Ochekpe et al., 2009; Gothoskar, 2016).  

 

 

 

Figure 1.1. A diagram shows the descriptions of the different types of drug delivery systems 

(modified from: Gothoskar, 2016; Pathak and Thassu, 2007; Ochekpe et al., 2009). 

 

The alteration of pharmacokinetics and pharmacodynamics of an API is considered as another 

tool to control the delivery of drugs besides changing the type of the DDS. Such alteration is 

achieved by the use of novel drug delivery system and/or the structural or physiological 

modification of the chosen route of delivery. When it comes to sustain the therapeutic action 
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of an API, it is preferable to tackle the approach as a design property of a rate controlled 

dosage form, and less preferable to tackle it as inherited kinetic properties of the drug. 

Therefore, to design an optimal controlled release system, a comprehensive understanding of 

pharmacokinetics and pharmacodynamics properties of an API is essential. Insuring patient 

safety, enhancing patient compliance and efficacy are the principal objectives for a controlled 

drug release. Precisely, the concentration of an API should reach the therapeutic window, 

below which no efficacy exerted and above which undesirable effects occur. The main 

parameter for developing a controlled delivery system for the nominated API is the therapeutic 

index (Ochekpe et al., 2009; Pathak and Thassu, 2007). Table 1.1 lists the main advantages 

and disadvantages of DDS. 

 

 

Table 1.1. A table shows the advantages and disadvantages of drug delivery systems 

(modified from: Dixit et al., 2013; Patel, 2010).  
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Based on the recent statistics for the worldwide market concerning the top 10 DDS, the market 

shows an increase in the annual growth of about 113.6.5 $ bn in 2010 to an estimated 175.6 

$ bn in 2016 (Figure 1.2). Moreover, the forecast of shares of generic market indicates a rise 

in the generic market (Table 1.3). The industrial investments in this market are highly 

competitive and innovative, this is why DDS are under the protection of a fundamental 

intellectual property. Occasionally, DDS development and manufacture requires a 

combination of technological acquaintance. Therefore, DDS industry usually requires both 

licensing practices and the collaboration with two or more parties with shared interests (The 

Medica, 2009). 

 

 

Figure 1.2. The worldwide generic market ($ bn) in 2010. It is worth noted that US and Canada 
combined markets worth more than that of the rest of the world collectively (The Medica, 
2009). 

 

Figure 1.3. The forecast of shares of generic market in 2012 and 2016 (modified from: 
ReportLinker, 2015). The data highlight the driven interest in DDS by the major pharmaceutical 
companies and its importance in the pharmaceutical market.  
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1.1. Nanotechnology 

Nanotechnology can be defined as the science at the scale of one-billionth of a metre. From 

a technological aspect, nanotechnology describes devices, materials and systems presenting 

new and enhanced physical, chemical and biological features. In general, distinguished 

properties of the materials are expressed in the nanoscale range of 1-100 nm. Such properties 

include the increase of the surface area and dominance of the quantum effect, the effect that 

are highly related with the large surface area and very small particle size to volume ratio. For 

instance, on a macroscale range copper is opaque however, it changes to transparent in the 

nanoscale range. A more significant change occurs with gold’s physical properties. Based on 

the nanoparticle size of gold, the melting point ranges between 200-1068oC, however the 

colour ranges from yellow to blue, pink, violet, and red. At the nanoscale the quantum effects 

influence the material’s electrical, optical, thermal and magnetic properties (Ochekpe et al., 

2009; Jain et al., 2006; Stylios et al., 2005; Cortie, 2004). The importance of nanotechnology 

as a science and its wide spread benefits in both medical and non-medical areas is well 

defined by the yearly total spending in this field. Figure 1.4 shows the total spending on 

nanotechnology area in selected countries. 

 

 

Figure 1.4. The total spending ($bn) on nanotechnology sciences in all areas 2008-2010. The 
annual increase in spending on nanotechnology hiighlight the importance ofthis field and its 
wide spread benefits in both medical and non-medical (modified from: Xue and Hwang 2011).  
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1.1.1. Nanotechnology in drug delivery 

Multiple obstacles face nano drug delivery systems, for example the poor 

solubility/bioavailability of an API, in vitro and in vitro stability, intestinal absorptions, 

transmission to the targeted site of action, therapeutic efficacy and fluctuations of the API 

plasma concentration that either reaches values below the minimum effective concentrations 

(MEC) or exceeds the minimum toxic concentrations (MTC). The significance of 

nanotechnology lies with its beneficial employability to overcome the challenges faced in drug 

delivery, since the nanostructure fabrication at the nanoscale offers various advantages. It is 

necessary to highlight that the size limit in nanotechnology is meaningless, since DDS 

practicality and efficiency are not merely based on their size. The domain of DDS ranges from 

truly nanosystems (e.g. polymer micelles and drug-polymer conjugates) to micro-particles 

(within the range of 100 μm). Both the nano and micro systems have been highly essential in 

developing different clinically useful DDS. Highlighting the fact that nanotechnology implicates 

either nanofabrication or nanonamanufactre and its micro counterparts. Multiple attempts to 

use various nanoforms have been made to develop DDS, ranging from biological substances 

like albumin, phospholipids and gelatine for liposomes, to chemical substances such as solid 

metal-containing nanoparticles (NPs) and different polymers (Table 1.2). Such systems can 

be designed to contain or carry an API which either absorbed or conjugated onto the particle 

surface, engulfed or encapsulated inside the lipid/polymer or dissolved within the particle 

matrix. Such systems offer protection for the API when it faces critical environment or their 

undesirable biopharmaceutical properties can be disguised or substituted with the 

nanomaterials properties (Ochekpe et al., 2009; Stylios et al., 2005). In addition, nanocarriers 

can preferentially accumulate at inflammatory and infectious sites and tumour by virtue of 

improved permeability and retention (EPR) effect. Such effect employs site-specific features, 

which is not related with normal tissues or organs, thus results in increased target selectivity 

(Stylios et al., 2005; Kobayashi, 2014). 
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Table 1.2. A table shows selected DDS and their descriptions and applications (Gangwar et al., 2012).  
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1.2.1.1. Liposomes 

Liposomes are phospholipid bilayer vesicles with an empty centre (Figure 1.5). Liposomes 

can encapsulate high molecular weight molecules such as peptides and proteins and low 

molecular weight molecules such as glucose. Water-soluble compounds are present in the 

aqueous centre while lipid soluble compounds and amphiphilic compounds are imbedded in 

the phospholipid bilayer. The liposomal formulation can be administrated by many routes, such 

as intravenous, oral, inhalation, local and ocular applications. Liposomes can be classified 

according to size: multilamellar liposomes (MLVs) usually range from 500-10,000 nm and 

unilamellar liposomes. Unilamellar liposomes can be classified as small unilamellar vesicles 

(SUVs) and as large unilamellar vesicles (LUVs). In size, SUVs are smaller than 50 nm and 

LUVs are larger than 50 nm (Riaz, 1996; Goyal et al., 2005). 

 

 

 

Figure 1.5. A figure shows the structure of liposomes which consists from outer phospholipid 
layer and inner aqueous core.  

 

 

1.2.1.1.1. Mechanism of liposomal formation  

Owing to their inherit characteristic, phospholipids spontaneously form closed vesicles when 

hydrated in aqueous media (Figure 1.6). This is because phospholipids are amphipathic in 

nature (has hydrophilic and hydrophobic tails). The self-assembling property of phospholipid 

molecules into bilayer sheets leads to the lowering of unfavourable interactions between the 

solvent and long hydrocarbon fatty chains. This acquires almost maximum stability at a lower 

energy state. To gain a stable state, the lipid sheets start folding or curl onto itself to form 

closed vesicles with a central aqueous core (Shehata et al., 2008; Goyal et al., 2005). 

 

 

 

 

         

 
Figure 1.6. A figure shows the types of liposomes according to size (modified from: Riaz, 
1996). Unilamellar vesicles are divided to SUVs and LUVs. Multilamellar vesicles are divided 
to MLVs of multiple size of engulfed liposomes. 

SUVs LUVs 

MLVs MLVs 
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1.2.1.2. Recent advances in liposomal research 

For more than 40 years in the research area, liposomology has evolved tremendously (Table 

1.3). One of the recent advances in liposomology is stimuli-sensitive liposome. These 

liposomes are triggered to release an API in response to various environmental triggers. 

Schroeder et al (2009) prepared perfluorocarbons gas loaded liposomes which when exposed 

to ultrasound waves resulted in the release of the loaded gas in the cytoplasm of the targeted 

cells. Another recent advance in liposomology are virosomes (Figure 1.7). Virosomes are 

composed from fusogenic viral envelope non-covalently attached to the liposomes. Influenza 

strain HVJ (hemagglutinating virus of Japan; Sendai virus) were loaded successfully on these 

liposomes as well as hepatitis B. Therefore, these virosomes could be a promising carrier for 

anti-cancer drugs (Kaneda, 2012). 

 

 

 

 

 

 

 

 

Figure 1.7. A schematic representation of a virosome. Viral envelope non-covalently attached to 
the liposomes outer lipid layer (modified from: Kaneda, 2012). 
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Table 1.3. A table shows the development in the liposomology field since first liposomes was proposed as a delivery system in 1965 by Bangham 

et al.  
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1.2.1.1.2. Clearance of liposomes in the body 

After parenteral administration of liposomes, they become covered with circulating proteins in 

the blood stream. Some of these circulating proteins cause disruption to the integrity of the 

lipid bilayer and eventually results in rapid leakage of liposomal contents. Other liposomes 

may facilitate antibody recognition and subsequent elimination of liposomes from the blood. 

For instance, liposomes with unsaturated lipid bilayers (such as ethyl phosphatidylcholine) 

rapidly lose their membrane integrity and eventually disintegrate. This occurs after high-

density lipoproteins insert ApoA1, an apolipoprotein, into the lipid bilayer, which eventually 

results in liposomal fragmentation (Patel, 1992; Semple et al., 1998). Mononuclear phagocyte 

system (MPS) can eliminate circulating liposomes. These Mononuclear phagocyte systems 

are present in the bone marrow, liver (Kupffer cells), lung and spleen (Semple et al., 1998; 

Semple et al., 1996). 

 

1.2.1.1.3. Obstacles associated with liposomes as a carrier system 

There are no doubts about how successful the liposomes are as a carrier system in the 

delivery of drugs, especially with clinically proven medicines such as DOXIL®. However, 

liposomes as of many other carrier systems have their own associated obstacles or limitations. 

For instance, fusion of liposomes can occur due to either an increase or decrease in pH or 

during storage (aging). This results in an uneven distribution of the dose within the system and 

eventually affects the system stability (Figure 1.8) (Maurer et al., 2001; Connor et al., 1985; 

Austin et al., 1997). In addition, due to their lipid nature, liposomes are cleared by the 

reticuloendothelial system (RES), primarily in the liver, which results in reduced circulating 

time (Kamps et al., 1997). Moreover, they are prone to destructive interactions between the 

drug and the lipid comprising the liposome, which can result in poor stability and eventually 

failure of therapy. Furthermore, recent studies suggest that liposomes could trigger an immune 

response, which can lead to serious consciences to the patient’s health. (Moghimi and Hamad, 

2008; Szebeni and Moghimi, 2009).  
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Figure 1.8. Two mechanisms (A and B) proposed for liposomal fusion, in which both results 

in fusion pore (modified from: Austin et al., 1997). 

 

1.1.2.2. Aquasomes 

It is well understood the stability of the chemical structure of an API is what provides this API 

with pharmacological activity. Hence, degradation, a shift or loss of its activity and an alteration 

in the physical or chemical properties can occur if the chemical structure of this API was 

affected. However, the spatial qualities are less considered in these circumstances, though it 

has a profound effect on the API pharmacological activity. The spatial qualities comprise of a 

freedom of internal molecular rearrangement, freedom of bulk movement and their unique 3D 

structure (Kossovsky et al., 1995; Kossovsky et al., 1990). As a nanodelivery system, 

aquasomes have advantages over other nanodelivery systems, Figure 1.9 highlights the 

advantages of aquasomes as a drug delivery system. 

 

Figure 1.9. The main advantages of aquasomes as a drug delivery system (modified from: 
Umashankar et al., 2010; Jain et al., 2012; Kossovsky et al., 1995; Vengala et al., 2012). The 
advantages are merely based on the type of the materials that form aquasomes and the 
preparation method. 
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Numerous proteins and peptides have been used as therapeutic agents. In the last decade, 

the use of proteins or peptide-based drugs have increased the management of numerous 

diseases. It is challenging to deliver these sensitive protein and peptides systemically without 

the loose of their therapeutic effects (Pontiroli et al., 1990; Smith, 1997; Umashankar et al., 

2010). Nir Kossovsky has proposed a nanocarrier carrier system for the delivery of protein 

and peptides named ‘’Aquasomes’’. Aquasomes consist of three distinct layers; an inner solid 

core, a polyhydroxy carbohydrate film and a layer of the active molecule with or without 

modification (Figure 1.10) (Kossovsky et al., 1995). The unique ability of aquasomes to carry 

therapeutically active proteins and peptides non-covalently and it superior stability have 

highlighted them as potential nanocarriers for proteins and peptides (Vengala et al., 2012; 

Khopade et al., 2002).  

 

 

        

 

 

 

 

 

 

 
Figure 1.10. A figure shows the structure of aquasomes which consists from inner core, 
polyhydroxy carbohydrate layer and a drug layer. 
 

1.1.2.2.1. Method of aquasomes preparation 

Three main steps are needed to prepare aquasomes. The first step involves formulating the 

inorganic core, succeeded by core coating with polyhydroxy oligomer and the final step is the 

loading of the drug (Figure 1.11). The first step is based on ceramic core fabrication, which 

depends on the chosen materials. Calcium phosphate is the most commonly used ceramic 

core. The manufacture of calcium phosphate core is based on the use of inverted magnetron 

sputtering or colloidal precipitation and sonication. These materials are characterised for 

possessing a high degree of order in the crystalline state, thus ensuring only limited effects 

can affect the nature of the atoms during the performance of surface modification (adsorption). 

Moreover, ceramics are ovule shaped and biodegradable. Following the core fabrication, the 

cores are centrifuged and rinsed with deionised water to remove sodium chloride, which is 

generated during the reaction. Distilled water utilized to re-suspend the precipitates, which are 

later either sonicated or filtered using micro filters to collect the desired size. In the second 

Drug 

Polyhydroxy coating layer 

Core 
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step of aquasomes preparation, the coating with polyhydroxy oligomer is carried out by adding 

the coating in an aqueous dispersion of the cores under constant mixing and then freeze-

drying. Carbohydrates which are not absorbed are centrifuged in order to remove. During the 

last step, loading of the drug to the coated cores takes place. A known concentration solution 

of the drug is mixed with the coated cores and then Freeze-dried to obtain aquasomes 

(Umashankar et al., 2010; Jain et al., 2012; Oviedo et al., 2007; Vengala et al., 2012).  

 

 

 

 

 

 

 

Figure 1.11. A Schematic diagram shows the steps of aquasomes preparation, which are 

coating the solid cores and loading the drug on the coated solid cores. 

 

1.1.2.2.2. Recent research on aquasomes 

He et al. (2000) compared the nanoparticulate adjuvant consisting of dihydrogen calcium 

phosphate anhydrous (DCPA) with the commonly used aluminium (alum) adjuvants 

concerning its capacity to stimulate immunity towards herpes simplex virus type 2 and Epstein-

Barr virus infections. DCPA was observed to cause slight or no inflammatory reactions at the 

administration site, provide high immunoglobulin G2a (IgG2a) antibody accumulation, 

neutralize antibodies and ease a high protection percentage towards herpes simplex virus 

type 2 infections. The animal studies done investigating DCPA revealed that they are highly 

tolerated, absorbed and caused no side effects at high doses. DCPA are recommended by 

the authors as an adjuvant instead of aluminium to provide protection against the infection of 

herpes simplex virus type. Hydroxyapatite has been employed as a core by Khopade et al. 

(2002). Such core was formulated by the use of carboxylic acid-terminated half-generation 

poly(aminoamine) as templates. Trehalose was utilized to coat the cores and haemoglobin 

was loaded. The particle size was found to fall within the nanometre range, and the loading 

efficiency detected to approximately reach 13.7 mg of haemoglobin per gram of the core. 

Aquasomes were subjected to a study comparing their efficiency in carrying oxygen when 

Mixing with concentrated 

sugar solution 

Mixing with concentrated 

drug solution 

Core 
Coated 

core 
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compared to the fresh blood and solutions of haemoglobin. Hill coefficient, an indicator for the 

binding of ligand to macrophages, was used as a parameter to compare haemoglobin carrying 

efficiency. The coefficient showed that haemoglobin properties and its oxygen carrying 

capacity using aquasomes were retained. Aquasomes were subjected to in vivo studies as 

well that showed their ability to retain their oxygen binding for a period over 30 days. Thus, 

the author deduced that aquasomes possess good potentials to be used as oxygen carriers.  

 

Cherian et al. (2000) investigated aquasome employability for parenteral administration. They 

formulated aquasomes using calcium phosphate core to deliver insulin parentally.  Different 

coatings were suggested such as cellobiose, pyridoxal-5-phosphate and trehalose. Drug 

loading was followed by the adsorption method. In vivo studies were carried out on albino rat 

for evaluating the different aquasomes formulations. All the formulation exhibited reduced 

glucose level except of the aquasomes coated with cellobiose, which might be reasoned by 

the high level of molecular preservation by the pyridoxal-5-phospate coating.  These results 

led the authors to conclude that aquasomes hold a promising carriers for proteins and peptide 

when administered parentally.  

1.1.2.2.3. Clearance of aquasomes  

As previously mentioned, aquasomes comprise from three layers that are the core, 

polyhydroxy oligomer and the drug layer. Calcium phosphate ceramics are commonly used 

as core material. Monocytes and multicellular cells that are called osteoclasts are the main 

cells responsible for biodegrading aquasomes in vivo. Their efficiency in clearing the 

aquasomes results from their ability to first intervene at the site of biomaterial implantation 

during the inflammatory reaction. Biomaterials are reported to be exposed to two different 

types of phagocytosis, which is either dissolving the calcium phosphate crystals solely in the 

cytoplasm following the phagosome membrane disappearance or dissolution following the 

heterophagosomes formation. Calcium phosphate phagocytosis is harmonized with the 

autophagy and residual bodies accumulation within the cells (Vengala et al., 2012; 

Umashankar et al., 2010; Israelachvili, 2003). Other cytokines participate in the inflammatory 

mechanisms and may be engaged with the biodegradation process (Baumann and Gauldie, 

1994). The fate of the carbohydrates layer depends on its type, they enter the metabolic cycles 

in the body to act as an energy source to breakdown the molecules to its subunits, such as 

gluconeogenesis and glycolysis (Umashankar et al., 2010; Kondoh et al., 2005; Vengala et 

al., 2012). The loaded drug on the aquasomes surface may not confront a difficulty with 

receptor recognition on the active site, thus producing the biological or pharmacological 

activity. 



34 
 
 

1.3. Pulmonary Drug Delivery 

There are various routes for the delivery of DDS, such oral, pulmonary and parenteral routes. 

Pulmonary drug delivery has been employed for a long time to aid in treating lung diseases 

such as chronic obstructive pulmonary diseases (COPD) and asthma. The lungs provide a 

non-invasive route for systemic administration with the low enzymatic activity and no hepatic 

first pass effect. Such circumstances make the pulmonary route of administration suitable to 

deliver small and macromolecular drugs. The anatomy of the lungs offers good bioavailability 

for macromolecules due to the large surface area of absorption, which reach approximately 

100 m2, with a thin absorption membrane that ranges between 0.1 and 0.2 μm (Table 1.4). In 

the era of the 19th century, many people were suffering from the asthma that used smoking 

roll-ups containing stramonium powder that is mixed with tobacco to relieve symptoms 

(Lenzer, 2006; Wolf, 1998).  

Technically, the pulmonary drug delivery route is challenging. Multiple inhalation techniques 

can influence the extent of the delivered drug to the lungs. However, the pulmonary drug 

delivery route remains the favoured route for administering various drugs to manage various 

illnesses. The route is developed to be utilized to treat angina pectoris, bone disorders, 

diabetes, migraine, acute lung injury, tuberculosis and others. A safe and effective inhalational 

therapy does not solely depend on the active molecules but on the delivery systems and its 

application (Tortora and Grabowdki, 2003; Wolf, 1998). 

 Large quantities of biological and non-biological particulates target the respiratory tract that 

forms approximately 19,000 L of the inhaled air per day. In pulmonary drug delivery, the drug 

directly passes to the blood circulation. For instance, using the pulmonary drug delivery for 

treating obstructive respiratory diseases minimises the required dose and the systemic side 

effects with the benefit of a rapid response. In the case of the parental route, injections are 

associated with pain and with hygiene concerns and possible side effects. Nasal drug delivery 

approach in terms of quantity of the delivered drug to the site of action is insufficient, thus 

penetration enhancers must be incorporated which might cause local irritation. However, with 

pulmonary route the research has indicated many molecules are absorbed at the lower 

respiratory tract and diffuse to the bloodstream naturally with high bioavailability and without 

the aid of enhancers. Intra-dermal route provides less naturally permeable boundary for 

macromolecules if compared with the gastrointestinal tract. The device through which proteins 

are injected to the body like insulin has been available for years. However, such device did 

not meet acceptance with doctors and the patients as well because of the discomfort 

accompanied and the possibility of splash back that might transmit blood-borne diseases. The 

dosage form that serves this purpose is known as aerosols. These dosage forms contain 
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therapeutically active ingredients, which are dispensed under pressure in a sealed containers 

and upon the activation of an appropriate valve system a fine mist is released (Aulton and 

Wells, 1998; Hickey, 1996; Karhale, 2012). 

 

Table 1.4. A table shows the advantages and disadvantages of drug delivery via the 
pulmonary route (Shaikh et al., 2010; Patil and Sarasija, 2012; Karhale, 2012).  
 

Advantages of Pulmonary Drug Delivery Disadvantages of Pulmonary Drug Delivery 

It requires no need of needle to deliver the dose 
 

local side effect due to oropharyngeal deposition 
during dose administration 

It requires minimum dose to achieve therapeutic 
effect compared to oral delivery 
 

Incorrect use of delivery device which lead to 
failure of therapy 

Local/targeted delivery to the lungs The mucus layer could limit absorption of drugs. 

Compared to oral delivery, onset of action is 
quicker 
 

Sever Lung condition could limit therapy. 

Avoid first pass effect by the liver 
 

Require the use of complex delivery devices 
specially for DPI formulations 

  

 

1.3.1. Anatomy of lungs 

The nose symbolizes the beginning of the respiratory tract, which terminates deep in the lungs 

at the alveolar sac. The lungs comprise of more than 40 types of cells, among which more 

than six line the airways (Figure 1.12). The pulmonary epithelia diversity can be elucidated by 

the examining the lungs structure from three main levels (Steinhoff, 2013). 

 

1.3.1.1. Nasopharyngeal region 

Upper airways are a term used to describe the nasopharyngeal region as well. This region 

includes respiratory airways, which start with the nose and end with the larynx (Inner Body, 

2016). 
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Figure 1.12. A diagram shows the anatomy of the human respiratory system (Health, Medicine and 
Anatomy Reference Pictures, 2013). 

 

1.3.1.2. Tracheo-bronchial region 

The central airways denote the trachea-bronchial region. This region begins with the larynx 

and goes through the trachea, bronchi and bronchioles then ends with the terminal 

bronchioles. This region is chiefly lined with ciliated and goblet cells. Some serous cells, clara 

cells and brush cells are also found with little kulchitsky cells (Dail and Hammar, 2013). 
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Clara cells secrete uteroglobin, which exerts anti-inflammatory functions and classified as 

secretoglobins. Despite clara cells abundancy in lungs, their mechanism of function remains 

vague. Bronchial Kulchitsky cells are disseminated specific cells and recognised by its 

adjacency to the basement membrane. Multiple studies denoted that they are comprised from 

electron-dense granules. These granules exhibit similarity with the cells of endocrine function. 

In addition, the degranulation studies done on these cells claim that such cells have either 

endocrine or paracrine nature (Dail and Hammar, 2013; Rocicki et al., 2016). 

1.3.1.3. The bronchioles 

Ciliated cuboidal cells predominantly line the bronchioles. The occurrence of serous and 

goblet cells along the progression of airways decreases while the Clara cells number 

increases (Dail and Hammar, 2013; Karhale, 2012). 

1.3.1.4. Alveolar region 

Peripheral airways, respiratory airways or pulmonary regions are all terms that refer to the 

alveolar region. This region comprises from the respiratory bronchioles, alveolar ducts and 

alveoli. The alveolar region is characterised by the absence of mucous and has a flatter 

epithelium, thus becoming the simple squamous type of thickness ranging between 0.1 and 

0.5 μm. Type-I pneumocytes and Type-II pneumocytes are the principal cells of the alveolar 

region. Type-I pneumocytes are characterised by their short length of the airways-blood path 

in which the drug molecules and gases are diffuses. These cells represent approximately 93% 

of the alveolar sac surface area; however, their number is less than that of the type-II 

pneumocytes. Type-II pneumocytes cells have a cuboidal shape. They secret and store 

pulmonary surfactants. Within the alveolar region the alveolar macrophages account 

approximately reaches 3% of cell population. These phagocytic cells functions by scavenging 

and transporting particulate matters to mucociliary escalator and lymph nodes (Dail and 

Hammar, 2013; Hiralal, 2012; Karhale, 2012). At the level of alveoli, the gases are transferred 

across the respiratory surface in opposite directions, this biological process is called gas 

exchange. Oxygen and carbon dioxide are essentially required and generated through the 

cellular and metabolic reactions. Thus, the existence of an efficient exchange system is 

essential. The gas exchange results from the diffusion down the concentration gradient (the 

passage of gaseous molecules from the area of high concentration to the lower concentration) 

(Dail and Hammar, 2013; Curoservice, 2015; Karhale, 2012). 
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Oxygen contained within the inhaled air diffuses through the alveolar walls to near capillaries 

into blood stream, which then carried to the rest of the body by the pulmonary arteries. Carbon 

dioxide generated through the metabolic processes returns back to the lungs through the 

blood of the pulmonary veins, which are later diffuses across the capillary and alveoli walls 

into the air to exhaled (Dail and Hammar, 2013; Karhale, 2012). 

 

1.3.2. Cell culture models for assessment of pulmonary drug absorption 

The airways epithelium structure is characterised by being inaccessible and heterogeneous 

which makes the mechanical evaluation of pulmonary cellular integrity and physiological 

functions difficult. In order to investigate the mechanisms, which govern drug transportation, 

precise sampling and dosing, in addition defining the exposed surface area and the local drug 

concentrations, are considered as essential parameters that are required to be controllable 

and reproducible. Thus, various airway and alveolar epithelial cell culture models of human 

and animal origin have been employed as an in vitro absorption models (Foster et al., 2000; 

Morimoto et al., 1993; Winton et al., 1998; Shen et al., 1997). These models are comprised 

from both cell lines (airway) and primary cell cultures (airways and alveolar). 

Cultures of primary cells resemble more closely native epithelia. However, these models are 

more time-consuming and less reproducible if compared with cell line models that decrease 

their suitability for the permeability screening. Two immortalized human bronchial cell line 

models have been proposed to investigate the barrier functions of airway epithelia, which are 

Calu-3 and 16HBE14o- (Winton et al., 1998). The adenocarcinoma epithelial cells Calu-3 are 

of a serous origin obtained from the bronchial airways. They are composed from mixture of 

phenotypic ciliated and secretory cells (Mathias et al., 2002) and from polarized, tight and well 

differentiated monolayer cells with apical microvilli in air-liquid interface culture (Foster et al., 

2000; Mathias et al.,2002). Recently, cell line models have been employed in experiments 

investigating the airway drug transport mechanisms (Borchard et al., 2002; Florea et al., 2001; 

Hamilton et al., 2001a; Hamilton et al., 2001b; Mathias et al., 2002; Pezron et al., 2002). At 

present, there are no available epithelial cell lines to investigate the functions of the alveolar 

barrier. Instead, type II alveolar cells that are isolated from healthy human lungs, rabbits and 

rats in primary cultures have demonstrated to differentiate into type I cells and to produce tight 

epithelial barriers that exhibit morphological similarity to the in vivo alveolar epithelium 

(Matsukawa et al., 1997; Shen et al., 1997).  
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1.3.3. Components of the aerosol system 

1.3.3.1. Containers 

Glass, plastic, metal or combination of these material are usually utilized to manufacture the 

aerosol containers. For glass containers, precise designs are essential to give a maximised 

pressure capacity, impact resistance and safety. Plastics provide a coating either for the glass 

containers to enhance the safety features or to coat metal containers to increase the corrosion 

resistance and to improve the formulation stability. Metals usually used to manufacture aerosol 

containers include stainless steel, aluminium or tinplated steel (Shaik, 2016; Newman, 2005).  

 

1.3.3.2. Propellants 

Propellants exert an essential function for the pressurized metered dose inhalers, which is 

propel contained materials from the container by providing the required pressure within the 

aerosol system. Propellants are either liquefied or mixture of gases, in which the vapour 

pressure is utilized to obtain the necessary delivery by spraying the content from the aerosol 

container (Shaik, 2016; Newman, 2005). 

1.3.3.3. Valves 

Valves are the components that regulate the active ingredients and propellant flow from the 

container and determine the aerosol spray characteristics. Rubber, aluminium, stainless steel 

and plastic are the commonly used materials to manufacture the aerosol valves. Aerosols for 

oral or nasal application necessitate the use of metered-dose valves in order to ensure uniform 

dispensation of spay and an accurate dose of the active ingredients. Such function is expected 

within limited variability at each activation of the valves (Shaik, 2016; Newman, 2005). 

 

1.3.3.4. Actuators 

The actuator or adaptor is the device fitted to the stem of the aerosol valve. Upon depression 

or any other assigned movement, the valve opens and leads the spray to the desired direction 

(Figure 1.13). The actuator design comprises of an orifice that comes in various sizes and 

shapes with an expansion chamber. The design is very essential as it affects the physical 

features of the spray or foam, especially with the inhalation aerosols, since the delivery of the 

active ingredients must be achieved within a suitable particle size. Usually a proportion of the 

active ingredients deposit on the inner surface of the actuator indicating that the amount 

available is less than the released amount by actuating the valve (Shaik, 2016; Newman, 

2005; Gothoskar, 2016) 



40 
 
 

 

Figure 1.13. A diagram shows MDIs and it valve function. It can be noticed that the actuator 

is designed to prevent continuous propellant gas exit after a successful puff (modified from 

Ramteke, 2012). 

 

1.3.4. Inhalers used in pulmonary drug delivery 

1.3.4.1. Pressurised metered dose inhalers (pMDIs) 

Metered dose inhalers are considered the most commonly used devices in aerosol 

manufacturing. Propellant is used to disperse the micronized drug. If needed, surfactants are 

added to avoid agglomerations. The system operates upon actuation which expose the 

propellant to the atmospheric pressure, which causes aerosolisation of the formulation. The 

air warms up the aerosol causing the propellant to evaporate, thus reducing the particle size 

to fall within the desirable range (Finlay, 2001; Gothoskar, 2016). 

 

1.3.4.2. Dry powdered inhalers (DPIs) 

Most of the DPIs are designed to contain a blend of micronized drugs and carrier particles to 

prevent aggregation and enhance aerosolisation. Aerosol DPI activation occurs when the 

patient inhale and the airflow enters the device to generate turbulence and shear. The air 

fluidizes the blend of the static powder, thus facilitating the entry to the patient’s airway. At the 

level of airways, the drug’s particles dissociate from the carrier particles are travel deep into 

the lungs, while the large carrier particles collide on the oropharynx and cleared. Therefore, 

the efficiency of the system drug delivery to the lungs depends on the variable inspiratory 

airflow of the patient. The main challenge in case of DPIs is dose uniformity. Such challenge 
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is of a great concern with powders due to the discrete nature and size of the particulates 

(Gothoskar, 2016; Swain et al., 2012; Finlay, 2001).  

 

1.4. Oral Drug Delivery 

In addition to the delivery of DDS via pulmonary rout, the delivery of an API via the oral route 

are considered one of the most used route of delivery compared to all other routes whether 

the delivery of API was for local or systemic therapeutic effect. The preference of oral delivery 

over other routes of delivery because it’s many advantages. Such advantages include patient 

acceptance, safe, convenient and relatively simple administration of oral drug formulations. 

The majority of oral delivery formulations are intended for immediate release rather than 

controlled or delayed release of an API, because of the fast absorption and metabolism via 

this route. (Figure 1.16) (Allen et al., 2011; Aulton, 2007). 

 

1.4.1. Oral controlled drug delivery systems 

Oral controlled release drug delivery system is a system, which releases an API in a constant 

manner until the API depletion, whether the API release intended for immediate or delayed 

release, in the GI tract. Such systems can be targeted for a specific part of the GI tract or 

intended for systemic delivery. For a successful oral delivery formulation, there are main 

aspects needed to be understood and examined before the formulation process. These factors 

include pharmacokinetic, physicochemical and pharmacodynamics of the API of interest. In 

addition to these factors, the anatomy and physiology of the GI tract has an influencing role 

(Figure 1.14) (Zaman et al., 2016; Aulton, 2007).  

 

Figure 1.14. A diagram shows the main areas of potential challenge in the development of 
oral controlled drug delivery systems (modified from: Chien, 1992). 
 

•To acheive an oral MDD system that can be deliverd 
to the site of interest and dilver the required dose 
effectivly and within the required time of residence

Development of a drug 
delivery system

•To acheive a method/MDD system that can modulate 
the GIT transit time for optimum therapy

GIT transit time

•To acheive an oral MDD system that can deliver the 
dose effectifly and efficintly passing the first pass 

effect or quick elimination from the body
Hepatic first pass 

elimination
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1.4.2. Anatomy of GIT 

The gastrointestinal (GI) tract is the system that comprises of organs that receive food, digests 

it and absorb the nutrients, and expels waste material (Figure 1.15). The GI tract performs 

four distinct processes ingestion, digestion, absorption and excretion.  

 

1.4.2.1. The Mouth 

The first part of the GI tract is the mouth. It includes teeth, tongue, buccal mucosa and the 

salivary glands. The saliva is secreted in the mouth from exocrine glands. The exocrine glands 

are parotid, submandibular, and sublingual glands. The saliva secreted in the mouth can be 

either thick or thin. Thick saliva contains high amounts of digestive enzymes (lipase and 

amylase), where the thin saliva is mainly for food wetting (Philschatz, 2016; Inner Body, 2016). 

 

1.4.2.2. The Pharynx   

The pharynx is located in the region between the throat and neck. It has a dual function in the 

respiratory and digestive systems, as it prevents the food from directing towards the bronchi 

through the activation of receptor present on the surface of the pharynx. The pharynx is 

subdivided into three regions oropharynx, hypopharynx and nasopharynx. (Philschatz, 2016; 

Inner Body, 2016). 

 

1.4.2.3. The Oesophagus 

After the food passes from the pharynx region, the food enters the oesophagus, a muscular 

hallow tube. The oesophagus is lined with mucous membrane to allow easy 

passage/swallowing of the food. There are two types of muscles lining the oesophagus, 

circular and longitudinal layers of muscles. This creates a peristaltic action to help direct the 

food toward the stomach (Philschatz, 2016; Inner Body, 2016).  

 

1.4.2.4. The Stomach 

One the main part of the digestive system and where the food starts to digest by the effect of 

hydrochloric acid, which is secreted from oxyntic cells. It is a hollow muscular organ. It is 

positioned above the small intestine and just below the diaphragm. The stomach is connected 

to the oesophagus via the oesophageal sphincter and to the duodenum via the pyloric 

sphincter. There are two nerve supplies to the stomach, parasympathetic (stimulant action) 

and orthosympathetic (inhibitory action). At rest, the volume of the stomach can go low as 50 

mL, while at feeding it can go up to 4L (Philschatz, 2016; Inner Body, 2016). 
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1.4.2.5. The Small Intestine 

The majority of the food is digested in the small intestine. The small intestine can be subdivided 

to the duodenum, the jejunum, and the ileum. The length of the small intestine varies from 

individual to another; though the range of the length is between 4-6 m. Plicae circulars are 

permanent folds in the small intestine, which contains numerous villi. The villi are composed 

from microvilli, which are responsible for food absorption, while the digestive enzymes are 

secreted from the gallbladder and the pancreas (Philschatz, 2016; Inner Body, 2016). 

 

1.4.2.6. The Large Intestine 

The length of the large intestine is approximately 2 m, and it is divided into caecum, the 

ascending colon, transverse colon, descending colon and sigmoid colon. It is from large 

intestine where Water is largely absorbed and the food is completely digested by the time it 

reaches it. However, water-soluble vitamins are absorbed from the large intestine, which 

generated from the action of the floral bacteria (Philschatz, 2016; Inner Body, 2016). 

 

Figure 1.15. A diagram shows the anatomy of the human GIT tract (Adapted from 

midlandstech, 2015). 
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1.4.3. Biological models for assessment of oral drug absorption 

1.4.3.1. Human epithelial colorectal adenocarcinoma cell line (CaCo-2)  

The typically used model in cell culture studies to represent oral drug absorption are Caco-2 

cells. They model the epithelial cells which are the predominant cell type of the GI tract. Caco-

2 cells form monolayers when seeded on to cell culture wells or into Transwells®. Oral drug 

transport studies and nanoparticle release studies are the typical studies performed with Caco-

2 cells. Typically, the cells are seeded on to cell culture well plates or into Transwells® which 

have two compartments filled with media required for the growth of the cells. After cell 

confluency (18-21 days), the media is replaced with fresh media and cells are ready for the 

proposed study (Mi et al., 2008; Lin et al., 2008). 

1.4.3.2. Human adenocarcinoma cell line (HT29) 

The presence of the mucus layer lining the GI tract has defensive mechanisms. It protects 

from direct friction of the food to the cells as well as from harmful particles or substances. The 

mucous layer, therefore, constitutes a barrier in limiting the transport of nanoparticles across 

the epithelia cell. HT29 cells when seeded with Caco-2 cells, the former differentiate to goblet 

mucous screening cells. Hence, the model is more representative to the lumen of the GI tract 

compared to Caco-2 alone (Leibovitz, 1976). 

 

1.4.4. Manufacturing of tablets 

There are three methods to manufacture tablets, direct compression, dry granulation and wet 

granulation. The choice mainly depends on the API. For instance, acetylsalicylic acid cannot 

be prepared by wet granulation because it hydrolysed to acetic acid and salicylate and 

eventually leads to loss of therapeutic action. Of the three methods, direct compression 

remains an attractive option for many reasons. Direct compression methods, by comparison 

to the other methods, is time efficient, involves less steps and is economically viable (DFE, 

2014).  

 

1.4.4.1. Direct compression 

Direct compression is by far the easiest method of tablet manufacturing. It comprises from 

three main steps of lubrication, powder blending, and compaction. The use of excipients is 

necessary to improve powder flowability (e.g. fillers and binders). Conversely, these excipients 

are not needed in dry and wet granulation because flow and compaction is enhanced by the 

flowability of granules. Other excipients such as superdisintegrants are generally used for 

tablet manufacturing by both wet or dry granulation. Regardless of the accessibility of these 

materials, direct compression has disadvantages. For instance, it is not suitable for 
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hygroscopic APIs and high compression forces can trigger physical/chemical interactions or 

degradation which eventually affect the stability of the APIs (DFE, 2014). 

 

1.4.4.2. Dry granulation 

Dry granulation has been increasingly used in the manufacturing of tablets, though it is not a 

modern technique. The method enhances the flowability of poorly flowable tablets through 

increasing the particle size prior to direct compression. The same steps in the manufacture of 

tablets by direct compression are required, with addition of a slug formation step, milling and 

sieving to the required size. (Stahl, 2014; DFE, 2015). 

 

1.4.4.3. Wet granulation 

The use of wet granulation is similar in purpose to the use of dry granulation in that it improves 

the flowability of poorly flowable powders ready to be tableted using direct compression. The 

API powder (mixed with tablet excipients) is mixed with water or any binding solution to form 

large agglomerates/paste. Then, after allowing the powder to dry, the resulted 

agglomerates/paste are then sieved or milled to the required particle size. Afterwards, the 

powder is mixed with lubricants, pigments or disintegrants and compressed to form tablets 

(Figure 1.16) (DFE, 2015; Stahl, 2014). 

 

Figure 1.16. A Schematic diagram shows the process of tablet manufacture using wet 

granulation method (modified from: Pharm Tips, 2011). 
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1.4.5. Types of orally controlled release systems 

1.4.5.1. Reservoir type  

In this delivery system, the API is encapsulated in a polymer. The polymer controls the release 

of the API. By modifying the polymer type and thickness, multiple reservoir systems can be 

achieved. For instance, pulse delivery systems are systems in which the first layer is made 

from fast dissolving polymers which give a bolus effect, where the rest of the system is made 

of a polymer which dissolves/disintegrates slowly to allow for a delayed release effect (Kost 

and Langer, 2001; Aulton, 2007; Nokhodochi et al., 2012). 

 

1.4.5.2. Matrix type 

Matrix delivery systems are the most widely used delayed release systems because the 

preparation of the APIs and polymer dispersion is relatively easy. In addition, it can be further 

adjusted for pulse delivery using varying amounts of channelling agents (Kost and Langer, 

2001; Aulton, 2007; Nokhodochi et al., 2012). 

 

1.4.5.3. Ion Exchange matrix 

The API is exchanged from these systems by an exchange process. Ions present in the GI 

tract get exchanged with resin, which in turn loses its structure and the API starts leaching 

slowly to the GI tract and gets adsorbed (Kost and Langer, 2001; Aulton, 2007; Nokhodochi 

et al., 2012).  

 

1.4.6. Factors Affecting Oral Drug Delivery 

1.4.6.1. Biological half-life 

The choice of an API for delayed release formulations depends mainly on its half-life (t1/2). 

This is because an API has to be released in the body at a rate similar to its rate of excretion. 

If the half-life of an API (such as digoxin t1/2=8 hr) is long, the therapy would fail and could 

cause serious side effects. However, if the half-life of the API such as levodopa (t1/2=3 hr), 

delayed effect can be beneficial in reducing the dose frequency and maintaining a prolonged 

therapeutic effect (Choudhary, 2014; Song, 2014). 

 

1.4.6.2. Absorption  

In the formulation of delayed release systems, the API release should not be faster nor slower 

than its absorption rate. For instance, if the API were released faster than the absorption rate, 

it would cause both local and systemic side effects, such as the case with furosemide. 

Conversely, if the API release was slower than its absorption, the minimum therapeutic dose 

would not be met (Choudhary, 2014; Song, 2014). 
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1.4.6.4. Distribution 

The volume of distribution (Vd) is another factor that influences the choice of an API to be 

formulated in delayed release formulations. For instance, an API with a high Vd is not suitable 

to be formulated for delayed release formulations (such as Chloroquine) (Choudhary, 2014; 

Song, 2014).  

 

1.4.6.5. Protein Binding 

The therapeutic effect of an API greatly depends on the concentration of unbound API in the 

body. Some APIs have a tendency to highly bind to plasma proteins and this eventually results 

in a long half-life. Such APIs are not suitable for delayed release formulations (such as 

Digoxin) (Choudhary, 2014; Song, 2014). 

 

1.5. In Silico Biological Modelling  

In order to understand how DDS are performing either in vitro or in vivo situations, molecular 

modelling can be used to visualise such performance. In Silico modelling or molecular 

modelling is a process by which the energy of a structure is calculated based on the nuclear 

motion of the atoms. However, the electrons are not included directly in the energy calculation. 

The main reason to why electrons are not included directly is that electrons are self-arranged 

according to the position of their parent nuclei. The self-arrangement is based on Born-

Oppenheimer approximation. In Born-Oppenheimer approximation, the electrons movement 

is governed by their weight, heavy electrons move faster compared to slow electrons (Leech, 

2001; Richon, 1994). 

Molecular modelling process molecules as groups of dots, which are connected by links. 

Therefore, a separate programming package called force fields are required. Force fields are 

used to identify molecular geometry and calculate the energy. Force fields are files which 

contain list of atoms and atom parameters and logarithmic equations for energy calculations. 

Depending on the use, several force fields can be created. For instance, sp2-Hybridized and 

sp3-Hybridized carbons (tetrahedral) are found in ethyl benzene. The C-C bond present in the 

benzene ring differs from that in the ethyl chain. Hence, to measure the energy of a molecule, 

each force potential is calculated separately and the energy of the molecule is the sum total 

all force potential. (Leech, 2001). 

 

1.5.1. System coordination 

It is crucial to specify the atoms and/or molecules positions in the system to a modelling 

programme. This can be carried out by using two different methods. The first method is to 
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specify the atoms and/or or molecules using Cartesian coordinates (x, y, z). The other method 

is to specify the locations of the atoms and/or molecules in relation to other atoms present in 

the system, such written language is called the Z-matrix (Figure 1.17). System coordination of 

the Cartesian can be converted to the Z-matrix and vice versa. However, the Z-matrix is 

usually preferred because it provides a more insight into the location of atoms in relation to 

each other. Hence, it is the writing method of choice in Quantum Mechanics, where the 

molecules are studied at the atomic scale. Furthermore, the number of lines that describes a 

linear molecule are written by Cartesian is less than that of the Z-matrix. Such differences 

occur therefore because in the Cartesian method, the atoms and/or molecules can be 

described with liberty (free to translate and rotate) within the Cartesian space without changing 

their positions (Leech, 2001; Clark, 1985; Richon, 1994). 

 

 

 

 

 

 

 

 

Figure 1.17. Z-matrix coordinates of ethane. Z-matrix provide a detailed method of 

coordination as it provides a more insight into the location of atoms in relation to each other 
(modified from: Leach, 2001). 

 

1.5.2. Potential energy calculations 

Molecular modelling has been used in the study of biomolecules and in bimolecular 

applications. An X-ray crystallography is necessary to perform molecular modelling. In the 
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case of the X-ray crystallography is not available, then the data gathered from NMR are 

combined with raw data from molecular mechanics to build a X-ray crystallography. Molecular 

modelling studies have proven their value in the study of SARS, binding affinities, nucleic acids 

and proteins stability that cannot be achieved from still models. A suitable example is the state 

of thiocamphor/cytochrome P450 complex during oxidation has determined with molecular 

modelling. (Gelin and Karplus, 1977; Paulsen and Ornstein, 1993).  

 

Despite the valuable advantages of molecular modelling, the method is time consuming. For 

instance, the pharmacologically active conformation can be missed during the search for the 

global minima of the structure. This is further exploited if the molecule of interest is an agonist 

or antagonist. In this case, all low energy conformations have to be examined because not 

necessarily the conformation of lowest energy is the correct conformation. However, the 

search of the global minima in the case of small molecules with less numbers of rotating bonds 

is less time consuming. As shown in Figure 1.18, the torsion angle is driven stepwise with a 

rotation angle of 3600 (Leach, 2001; Richon, 1994).  

 

 

Figure 1.18 A diagram shows the various conformations of butan generated and their 

energies during a simulation (Richon, 1994). 
 

 

As the simulation run time increases, the conformations generated for a given molecule, 

defined as the "non-identical arrangements of the atoms in a molecule obtainable by rotation 

about one or more single bonds" increases. The hypothetical number of conformation, which 
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could be generated during simulation, can be calculated using the equation 1 shown below 

(Smit, 1997; Jensen, 1999).  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑒𝑟𝑠 = (
360

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡
)

𝑁𝑜.𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑎𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠

  ………. (1) 

 

1.5.3. Mathematical and graphical representations 

Molecular structures can be represented by means of graphical model presentations that show 

atomic geometry and electronic distribution (Figure 1.22). Models vary in simplicity and 

complexity. To choose between different graphical representations merely depends on the 

amount of information needed to comprehend and predict the chemical activity. For instance, 

the models shown in Figure 1.22 are correct. However, each graphical representation provides 

a different understanding. CH4O is the simplest representation of methane. However, such 

representation provides all the necessary information to determine the quantity of CO2 that is 

going to be released after burning methane. However, this representation is not sufficient for 

calculating the hydrogen bonding which could be resulted between molecules. In this case, 

the Lewis structure representation, which displays the non-bonding pairs of electrons of the 

oxygen atom, is preferable. Molecules represented by Lewis structures are shown in skeleton, 

which consist of atoms and their outer shell valence electrons. The importance of Lewis 

representations is that these representations are simple to draw and the amount of the 

information concluded from is adequate (Leach, 2001; Smit, 1997; Jensen, 1999). 

 

1.5.4. Software and hardware tools 

The performance and price of hardware and software, which are used in molecular modelling, 

has increased dramatically in the last few years. The speed at which electrical signals can be 

transmitted is what determines the computer speed. Therefore, there will come a time when 

no additional improvements can be made to machines with single-processor serial 

architectures, when the parallel computers will play an important role. A parallel computer 

couples processors together in such a way that the calculation is divided into small pieces with 

the results being combined at the end. Some calculations are more amenable to parallel 

processing than others, and a significant amount of effort is being spent converting existing 

algorithms to run efficiently on parallel architectures. Graphics processing units (GPUs) have 

been advanced to contain co-processors for high output to perform high volumes of 

computational loads. Currently, the crystal structure of biomolecules are large and the time 

scale used to study them have increased dramatically. Consequently, the community of 

molecular modelling were the pioneers to adapt computing with GPU. Early efforts to develop 
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molecular modelling algorithms using GPU computing was a total success. In 2000, 

semiconductor and microprocessor advances have provided a performance with an 

exponential growth curve, which eventually increasing molecular modelling applications and 

widen its capabilities. Although such success in using GPU computing in molecular modelling 

was valuable, it came to standing point as the demand on high throughput GPU increased. 

Heat dissipation and power consumption set the limitations for single-core microprocessors. 

Hence, the molecular modelling community begin the development of multi-core processors 

to satisfy the increasing demands. Data-parallel co-processors coupled to the usage of GPUs 

have provided a unique opportunity to increase the efficacy and workloads of desktop 

workstations and computers and laptops and their softwares, without the need of using remote 

supercomputers (Figure 1.19) (Leech 2001; Frenkel and Smit, 1997; Jensen, 1999). 

 

 

Figure 1.19. The advantage of using GPU over CPU in reducing the simulation time for up to 
a half (modified from: Resse et al., 2011). 
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1.6. Aim and Objectives 

The aim of the work included in the thesis is to investigate aquasomes as a nanoparticulate 

delivery system for the delivery of proteins and peptides via pulmonary and oral routes. To 

achieve this aim, the following objectives have been sought: 

 Optimise a method for the preparation of aquasomes through investigating the effect 

of variables such as temperature and mixing time and perform MD to understand the 

assembly of aquasomes at the molecular level. 

 Formulate BSA-loaded aquasomes as pMDI and DPI formulations and Investigate the 

aerodynamic behaviour of the formulations to identify lung distribution of aquasomes. 

 Perform cell culture studies with salbutamol-loaded aquasomes in pMDI and DPI 

formulations as a model drug to demonstrate the controlled release effect of 

aquasomes with BEAS-2B cell lines (pulmonary route). 

 Formulate BSA-loaded aquasomes as direct compression tablet formulations and 

investigate the effect of compression forces (0.5, 1, 2 and 3 tons) on BSA-loaded 

aquasomes. 

 Perform cell culture studies with metronidazole-loaded aquasome formulations as a 

model drug to demonstrate the controlled release effect of aquasomes with Caco-2 

cell lines (oral route). 

 Perform stability studies to establish an understanding of the stability of BSA-loaded 

aquasome tablets, pMDI and DPI formulations. 
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CHAPTER 2 

 
 
 
 
 

Optimisation of Aquasomes Manufacture 
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2.1. Introduction 

Aquasomes consist of three distinct layers; inner solid core, polyhydroxy carbohydrate film 

and a layer of the active molecule with or without modification (Kossovsky et al., 1995). Various 

core materials are available to manufacture aquasomes, such as ceramics, gold and diamond. 

Ceramics are widely used and have a safe profile, hence ceramics was selected to be used 

as core material. Ceramics can include dicalcium hydrogen phosphate (DCPA), monocalcium 

dihydrogen phosphate (MCPA) and hydroxyapatite (HA). To investigate their suitability, the 

three types of ceramics were used in the manufacture of aquasomes DCPA, MCPA and HA. 

DCPA (CaHPO4) is a natural occurring mineral. DCPA is widely used as an abrasive in 

medical applications, as a pharmaceutical excipient and in the food industry to increase 

calcium content (Gbureck et al., 2005; Miyazaki et al., 2009).  MCPA [Ca(H2PO4)2] is a white, 

odorless, crystalline powder. MCPA can be obtained by heating calcium dihydrogen 

phosphate monohydrate (MCPM) to temperatures above 100°C. The compound is stable up 

to around 200°C and decomposes at higher temperatures. MCPA is mainly used in the 

production of fertilizers (Bohner et al., 1995). HA [Ca5(PO4)3(OH)] is a naturally occurring 

mineral from the family of calcium apatites. Hydroxyapatite is the main constituent of bone 

matrix (around 90%). Most of the remaining 10% are formed by carbonated apatites. 

Therefore, hydroxyapatite is the candidate of interest for many types of bone implants. It has 

the highest hardness when compared to DCPA and MCPA (Furlong et al., 1991). 

 

Various disaccharides can be used in the coating step, such as lactose, trehalose, mannose 

and cellobiose. Lactose is a disaccharide sugar formed from galactose and glucose units. It is 

a yellowish powder and is soluble in water (216 mg/mL). Lactose is used as filler in capsule 

and tablet pharmaceutical formulations and as a carrier in dry powder inhalation devices. 

There are two isomeric forms of lactose, beta and alpha lactose. These isomeric forms are 

inter-changeable depending on various conditions such as temperature and pH. The beta form 

is obtained as an anhydrate phase, which has no tendency to form any hydrate phases. On 

the contrary, the alpha has anhydrous and hydrate forms, from which the anhydrous form is 

very hygroscopic and unstable (Nickerson T.A., 1979; Zhou et al., 2011). Trehalose is a 

disaccharide sugar formed from two glucose units joined by an alpha glucoside linkage. It is 

colourless and is soluble in water (68.9 g/100 g). It is very stable under high temperatures and 

acidic pH environments. The primary use of trehalose is in the processing of foods, other uses 

include cosmetic production, pharmaceutical preparation and antibacterial sheets (Miller and 

York, 1998; Schlichter et al., 2001). Cellbiose is formed from two joint glucose unites by beta 

glycosidic linkage. The water solubility of Cellbiose is 5.86 g/L and it is usually prepared from 

cellulose hydrolysis. It has medical uses such as an agent to indicate malabsorption syndrome 

http://en.wikipedia.org/wiki/Galactose
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Sugar
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and intestinal permeability in Crohn's disease (HMDB, 2016). 

 

2.1.1. Mechanisms of Self-assembly 
 

If the components of a disordered system form an organized assembly or pattern reversibly 

as a result of specific or local interactions without external intervention, this is called self-

assembly (Jain et al., 2006). There are three self-assembly mechanisms electrostatic 

interaction, hydrogen bonding and Van der Waals forces. 

 

2.1.1.1. Electrostatic interaction 

It is the interactions of charged groups such as sulphate, carboxyl and phosphate groups. An 

example of electrostatic interactions is the interactions of between charged groups of DNA 

double helixes, which maintain the stability of the tertiary structures of folded proteins (Yang 

et al., 2008; Tam et al., 2009). 

 

2.1.2.2. Hydrogen bonding 

Hydrogen bond formation is one of the most abundant form of mechanism of self-assembly. 

As the case with electrostatic interactions, hydrogen bond formation has an important role in 

the maintain of the stability of the tertiary structures of folded proteins. If hydrophobic 

molecules are surrounded with water molecules, the molecules tend to repel water molecules 

and bond together. This tendency to join together decreases the overall level of disorder/ 

entropy of the surrounding, thus the molecules become self-assembled. In this case, the 

inability to form hydrogen bonds resulted in the self-assembly of the hydrophobic system. 

(Gancia et al., 2001; Arunan and Mani, 2015) 

 

2.1.1.3. Van der Waals forces 

Dipole moment occur when molecules carry less charge than formally charged groups. Van 

der Waals forces are the forces related with dipole moment. The Van der Waals forces are 

fundamentally responsible for softness or hardness of a material. (Britanica, 2016; Tavares et 

al., 2004). Van der Waals forces are weaker than chemical bonds and hydrogen bonds. For 

instance, thermal activity at ambient temperature can disrupt the interactions based on Van 

der Waals forces (Senese, 2010). 

 

To understand self-assembly at molecular level, molecular modelling (MD) can be used. MD 

is everything that requires the usage of a computer to draw, label or calculate the properties 

of the molecules in interest (Pensak, 1989). MD also embraces all methods used in 
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computational chemistry such as energy minimisation, energy calculation, and molecular 

dynamics. The identification of moieties responsible for the interaction with an active site allow 

having an understanding of the mechanisms responsible for the biological activity at the 

molecular level. The acquired knowledge is aimed at designing new active molecules that can 

be successfully used as APIs. The calculations are strictly based on the structure being 

investigated. Therefore, the generated data should normally be supported by experimental 

results, as MD data could be misleading or inaccurate (Sanchez, 1999). 

 
The energy of a molecule can be calculated using two approaches, quantum mechanics and 

molecular mechanics. In quantum mechanics, the system is represented as nuclei where 

electrons spread around the system (electron cloud or electron density). There are many 

equations that are involved in the calculation of energy in quantum mechanics, such as the 

Schroedinger equation and the Hartree-Fock equation. The Hartree-Fock equation with the 

Born-Oppenheimer approximation are preferred method for energy calculations of 

biomolecules, as the motion of electrons are separated from the motion of nuclei. In the case 

of molecular mechanics, the electrons of the systems are not taken into consideration and 

energy calculation of the complex is based on the positions of the nuclei. Hence, the equations 

set and constraints, which describe the potential surface of a molecule, is called force field 

(Sanchez, 1999; Morin, 2015). 

 

Energy minimisation or function optimisation in molecular modelling is to find the minimum 

energy of a given structure or collection of atoms. The reason for finding the energy minimum 

prior MD simulation is that the energy at this level is equal to the energy of the global minimum. 

Although it seems an easy step, the minimum energy calculated can score higher than that of 

the global minima and eventually lead to unreliable MD data. Physically, the process of energy 

minimization resembles an instantaneous localization of the system at which the atoms are 

exposed to a net force corresponding to a temperature of 0 K (Steinbach 2010; Sanchez, 

1999). 

 

2.1.2. Aim and Objectives 

The aim of the work in this chapter is to investigate the various cores, coatings and 

manufacturing conditions to reach a high loading efficiency of BSA and to provide an 

understanding of how aquasome layers are assembled at a molecular level using molecular 

modelling. To achieve this aim, the following objectives were performed: 

 Optimise a method for the preparation of aquasomes through investigating the 

effect of process variables such as temperature, concentration and mixing time.  
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 Manufacture of BSA-loaded aquasomes using multiple cores and coating 

materials to reach a high loading efficiency of BSA and optimum release profiles. 

 Perform in vitro release studies with simulated intestinal fluid to examine the 

release profiles of the aquasomes. 

 Perform stability studies to establish understanding of the stability of aquasomes 

formulations. 

 Determine the forces responsible for aquasome assembly by performing docking 

experiments using suitable software for the three layers of aquasomes. 

 Execute MD simulations to elaborate and investigate the self-assembly of the 

layers of aquasomes. 

 Relate the data generated from MD and docking studies with the experimental 

data to provide enhanced understanding of aquasomes as a nanocarrier system. 
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2.2. Materials and Methods 

2.2.1. Materials 

Anhydrous calcium hydrogen phosphate (99%), lactose anhydrous powder (99%), trehalose 

powder (99%), mannitol powder (99%), potassium bromide powder (99%) D-Mannose powder 

(99%), Avicel powder (99%) D-galactose powder (99%), xylitol powder (99%), silicon 

nanoparticles (99%) D-sucrose powder (99%), cellobiose powder (99%), D- arabinose powder 

(99%) D-galactose powder (99%), D-ribose powder (99%), D-fucose powder (99%), D-

mannose and lyophilized Bovine Serum Albumin powder (99%) were purchased from Sigma 

Aldrich, UK. HPLC grade acetonitrile and trifluoroacetic acid (TFA) of 99% purity were also 

purchased form Sigma Aldrich, USK. All materials were used as received unless otherwise 

specified. Ultra-pure grade water was used when required. 

 

The materials section also includes the software used in molecular modelling and the 

computers used to operate them. 

 

2.2.1.1 Scigress 7.7 

Scigress 7.7 is one of the programmes used in the docking studies, primarily for docking 

ligands into active sites of proteins. It can also be used to measure other important features 

that describe the interaction between two molecules such as heat of energy, energy of 

interaction and optimization energy (FQS, 2016). The Scigress 7.7 software was used to draw 

and perform minimisation of HA and BSA, preparation of the HA and BSA for MD simulation 

in AMBER and to perform docking studies. 

 
2.2.1.2. Assisted model building and energy refinement (AMBER) 12 

 

AMBER is a range of force fields package designed for molecular dynamics of biomolecules. 

The AMBER package was first developed by Peter Kollman’s group at the University of 

California, USA, Case et al., 2012. AMBER was used to perform MD simulations of HA and 

BSA protein. 

 
2.2.1.3. Accelrys discovery studio v3.5 

 

Discovery studio has numerous uses such as visualising and editing biomolecules and 

perform modelling and simulation for macro and micro molecules using the CHARM force field 

(Accelrys, 2015). Discovery Studio was used to visualise HA, BSA and for the analysis of their 

interactions. Discovery Studio was also used for surface analysis which includes solvent 

accessibility surface (SAS), surface charge and hydrogen bond. 
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2.2.1.4. Visual molecular dynamics (vmd) v19.1 

 
VMD is a visualisation computer programme at the molecular level and it is used for animating, 

displaying, and analysing systems using three-dimensional (3D) graphics and built in scripts 

(William, 1996). The VMD programme me was used to extract the compounds conformations 

from the AMBER MD trajectory. 

 

2.2.1.5. Computer systems 
 

For the modelling and other related work, two high-speed computers were used 
 

 MSI based computer which was equipped with 8 nodes CPU at 3000 MHz clocking, 8 

Gb of RAM, 2 Gb high definition video card (Nvidia GTX 670 GPU) running on Linux 

operation system (Ubuntu version 12.04). 

 HP based computer which was equipped with 8 nodes CPU at 2000 MHz clocking, 8 

Gb of RAM, 1 Gb high definition video card (Intel chipset) running on Windows 7 

operation system. 

 

2.2.2. Preparation of Aquasomes 

2.2.2.5. Solid cores 

2.2.2.5.1. DCPA cores 

10 mL of Ultra-pure water was placed in eight glass containers (Batch No. 1, 2, 3, 4, 5, 6, 7 

and 8) which contained 480 mg of DCPA powder followed by vigorous shacking. The samples 

were further sonicated at amplitude of 10.0 for 30 min using a Soniprep 150 Plus disintegrator 

(MSE, UK). The samples were then centrifuged at 3000 rpm for 3 min using a Universal 32 

centrifugation system (Hettich Zentrifugen, Germany). The supernatants were then discarded 

and the recovered pellets were taken forward to the coating stage. 

 

2.2.2.5.2. MCPA cores 

10 mL of Ultra-pure water was placed in eight glass containers (Batch No. 1, 2, 3, 4, 5, 6, 7 

and 8) which contained 480 mg of MCPA powder followed by vigorous shacking. The samples 

were further sonicated at amplitude of 10.0 for 30 min using a Soniprep 150 Plus disintegrator 

(MSE, UK). The samples were then centrifuged at 3000 rpm for 3 min using a Universal 32 

centrifugation system (Hettich Zentrifugen, Germany). The supernatants were then discarded 

and the recovered pellets were taken forward to the coating stage. 
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2.2.2.5.3. HA cores 

10 mL of Ultra-pure grade water was placed in eight glass containers (Batch No. 1, 2, 3, 4, 5, 

6, 7 and 8) which contained 480 mg of HA powder followed by vigorous shacking (Figure 

2.1). The samples were further sonicated at amplitude of 10.0 for 30 min using a Soniprep 150 

Plus disintegrator (MSE, UK). 

 

2.2.2.2. Coating stage 

The samples containing the solid cores (DCPA, MCPA and HA) powder were divided into sets 

of eight samples. The first four sets were mixed with a lactose solution of concentration of 0.1 

M for 1 hr (at 4°C and 25°C) or for 2.5 hr (at 4°C and 25°C). The recovered coated cores were 

then centrifuged at 3000 rpm for 3 min, washed to remove unadsorbed lactose and then 

freeze-dried. The previous procedure was repeated to the other set of four samples to coat 

with trehalose. 

 

2.2.2.3. Loading stage 

The coated solid cores were mixed with 10 mL of BSA solution (1 mg/mL) for 2.5 hr at 4°C 

and 24 hr at 25°C. The loaded cores were then centrifuged at 3000 rpm for 3 min, washed to 

remove unadsorbed BSA and then freeze-dried. 

 

2.2.2.4. Freeze-drying Protocol 

In the preparation of aquasomes, freeze-drying process was used. The freeze-dryer used was 

Vir Tis Advantage Plus, USA. A freeze-drying cycle of 24 hr was performed. The cycle 

consisted of four stages; pre-stage (60 min at -45ºC/no vacuum), primary drying (720 min at 

-45ºC under vacuum of 400 mbar) stage, secondary drying stage (460 min at -20ºC under 

vacuum of 400 mbar) and final stage (240 min at 25 ºC). The condenser temperatures set to 

- 76ºC.  Freeze-drying vials and lids were used when required. 

 

2.2.3. Characterisation of BSA-loaded aquasomes 

2.2.3.1. Particle size analysis 

Size measurements were performed using a Sympatek particle size analyser (Brookhaven 

Instruments, Germany). A quantity of 100 µg of aquasomes diluted with ultra-pure water were 

placed in the specified cuvette (4 clear sides cuvette). All measurements were performed in 

triplicate (n=3) at ambient temperature. The values are reported as mean ± standard deviation. 
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Figure 2.1. Flow chart of the method used to prepare aquasomes with DCPA, MCPA and 

HA cores with lactose and trehalose as coating materials. 
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2.2.3.2. Zeta potential measurements 

Zeta potential measurements were carried out using a Zetaplus (Brookhaven Instruments, 

Germany). A quantity of 100 µL sample was placed in the specified cell with an electrode 

attached to it. All measurements were performed in triplicate (n=3) at ambient temperature. 

The values are reported as mean ± standard deviation. 

 

2.2.3.3. DSC analysis 

DSC analysis was carried out after the coating and loading stages. An amount of 1.2 mg of 

sample was placed in Tzero low mass aluminum pan. The samples were then heated from 

0°C-350°C at a scanning rate of 3°C/min under nitrogen purge using Q200 scanning 

calorimetry (TA instruments, USA). All measurements were performed in triplicate (n=3) at 

ambient temperature. The values are reported as mean ± standard deviation. 

 

2.2.3.4. FTIR analysis 

FTIR was used for structural analysis using potassium bromide (KBr) disc method. The KBr 

disks were prepared using KBr powder (200 mg) with 1% w/w of API. The mixed powders 

were then compressed at 8 tons for 10 min under vacuum. Infrared spectra were recorded in 

the wavenumber range of 4000–400 cm-1 using IR 2000 spectrophotometer (Thermal Electron 

Corporation, USA). All measurements are performed at ambient temperature. 

 

2.2.3.5. SEM imaging 

The samples were attached onto an aluminum pin stubs with adhesive surface (12.5 mm). 

The pin stubs were coated with a thin layer of gold using a gold coater Polaron SC500, Polaron 

Equipment, UK. The samples on the pin stubs were then examined using a Stereoscan 90, 

Cambridge Instrument.  A High vacuum with an accelerating voltage of 20 KV was used to 

operate the SEM and at 12 mm of working distance in the presence of argon gas, Polaron 

Equipment, UK. 

 

2.2.3.6. In vitro release studies 

In vitro release studies were performed on BSA loaded aquasomes formulations. The samples 

were redistributed in 10 mL of phosphate buffer solution (pH 7.4) and placed in a shaking 

water bath (37oC/100 rpm). A quantity of 0.3 mL was taken for analysis at a number of time 

points (1, 2, 3, 4, 5, 6, 7, and 24 hr). A fresh 0.3 mL of PBS was placed back into the samples 

to maintain sink conditions. Samples were analysed using HPLC with UV and fluorescent 

detection (section 2.2.3.7). 
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2.2.3.7. HPLC analysis 

Drug analysis from the in vitro release studies was measured using an Agilent 1200 series 

HPLC System with UV and fluorescence detectors (Germany). Analysis was performed at 

ambient temperatures. For HPLC analysis of BSA, a C18-ODS Jupiter column (4.6 mm x 250 

mm / 5 μm / 300 Å (Phenomenex, USA) was used. The injection volume of the sample was 

set at 100 μL. Fluorescent detection method was used with excitation wavelength was set at 

220 nm and emission wavelength was set at 312 nm. A gradient elution method was used 

during which the proportion of solution B (acetonitrile) in the eluent increased from 5% to 65% 

solution against solution A (0.01%, v/v trifluoroacetic acid in ultra-pure water) at 1 mL/min a 

flow rate. BSA eluted with a retention time of 17.0 min. A standard calibration curve was 

established by the use of BSA standard solutions (r2 = 0.998), which the concentration of BSA 

in unknown solutions was determined. The HPLC method was adapted from Umerthia et al., 

(2010). 

2.2.3.8. Stability studies 

BSA-loaded aquasomes powder were stored at 4ºC ±1ºC/60% RH ±2% RH, 25ºC ±1ºC/60% 

RH ±2% RH and 40ºC ±1ºC/75% RH ±2% RH in accelerated stability studies cabinet. At 

interval time points of 0, 7, 14, 21 and 28 days, samples were taken for in vitro release studies 

(section 3.2.3.6). Visual inspection was performed on the samples, which include changes in 

colour and peeling. Stability methods were adopted from FDA guidelines Q1A (R2). All 

measurements were performed in triplicate (n=3). The values are reported as mean ± standard 

deviation. 

 

2.2.3.9. Statistical analysis 

A one-way analysis of variance with Tukey–Kramer multiple comparisons test was used 

statistically compared the results obtained from performed experiments. The significance level 

of analysis was p<0.05. 

 

2.2.4. Methods of molecular modelling 

 
2.2.4.1. HA cell and HA surface 

 
The structure of HA (ID R100225) was transferred from the American Mineralogist Data Base 

(AMDB). The structure was then beautified (valence, hyperdization and geometry) using 

Scigress workstation and then saved as a PDB file. 
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In order to perform MD simulation with AMBER 12, xLeap was used to build the library of the 

three atoms comprising the cell of HA (Ca, OH and P) as it was not provided by default.  A cell 

was assembled later on using these libraries. An alternative method was used to build the 

xLeap library, which are detailed below: 

 

Set up the starting file: 
$AMBER HOME/EXE/ANTICHAMBER  -i  alpha.pdb –fi pdb –o acd.prepin –fo prpi 
$AMBER HOME/EXE/ANTICHAMBER –I acd.pripen –f prepi –o acd.frcmod 
Setting the library: 
$AMBER HOME/EXE/xLeap –s –f leaprc ft99SB 
Source leaprc.gaff 
LoadAMBER prep acd.prepin 
LoadAMBER params acd.frcmod 
Complex = copy acd 
Edit complex 

 

 
The coordinates of the cell at this step were ignored, since the purpose is to generate a 

readable PDB file by xLeap. After file generation, the coordinates were imported for the first 

PDB file and entered manually to the PDB file generated by xLeap. The final step was to load 

the PDB file to xLeap and generate a library of the cell unit in order to build a surface of 

repeated cell units. After the HA surface build, the HA surface was minimized using the Sander 

programme of the AMBER package. The system was then taken into the first stage of the MD 

simulation (MD 1). After MD 1 completion, the system was progressed to MD 2 step. The 

conditions of each step mentioned previously are summarized below. 

Stage: Minimization step 

Cycles No. 2,000 
Minimization method: Initial descent method (conjugate gradient after 1,000 cycles) 
Explicit water mode 
Cut of distance of 12 Å 
Igb (Born approximation) =0 
ntb (Periodic boundaries) =1 
Fixing the position of coordinated residues 
150 
RES 1-500 

 
Stage: MD 1 
Heating 0 to 300K over 20 
ps &cntrl 
imin (Minimization) = 0, 
irest (Restart simulation) = 0, 
ntx (Read of information saved) = 1, 
ntb (Periodic boundaries) = 1, 
cut (Cut off distance) = 12, 
ntr (Flag restrained atoms) = 0, 
ntc (System shake) = 1, 
ntf (Force evaluation) = 1, 
igb (Born approximation) = 0 
tempi (Temperature initiation) = 0.0, 
temp0 (Temperature maintained) = 300.0, 
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ntt (Temperature scaling) = 3, 

gamma_ln (Collision frequency) = 1.0, 

nstlim (Number of MD steps) = 20000, dt (Time of step) = 0.001 
ntpr (Frequency of printing) = 1000, ntwx (Write of coordinate) = 1000, ntwr (Write to restrt file) = 1000 
Fixing the position of coordinated residues 

150 

RES 1-500 

 
Stage: MD 2 

MD run constant pressure 
&cntrl 
Imin (Minimization) = 0, 
irest (Restart simulation) = 1, 
ntx (Read of information saved) = 7, 
ntb (Periodic boundaries) = 2, 
cut (Cut off distance) = 12, 
ntr (Flag restrained atoms) = 1, 
ntc (System shake) = 1, 
ntf (Force evaluation) = 1, 
igb (Born approximation) = 0 

ntp (Constant pressure dynamics) = 1 

tempi  = 300.0, 
temp0  = 300.0, 

ntt (Temperature scaling) = 3, 

gamma_ln (Collision frequency) = 1.0, 

nstlim (Number of MD steps) =500000, dt (Time of step) = 0.001 
ntpr (Frequency of printing) = 1000, ntwx (Write of coordinate) = 1000, ntwr (Write to restrt file) = 1000 
Fixing the position of coordinated residues 

150 

RES 1-500 

 

2.2.4.2. Trehalose 

The crystal structure of trehalose was drawn using Scigress workstation. After setting the 

structure, the structure was first beautified and an Augmented MM2 geometry was performed 

to determine energy minima. 

 

 
2.2.4.3. BSA 

The crystal structure of BSA (ID 3V03) was downloaded from the website of Protein Data Bank 

(Majorek K.A. et al., 2012). The PDB file was processed to be readable by AMBER 12 using 

Wordpad. The processing of the file includes deleting water molecules, ligands, co- factors 

and ions and renaming disulphide bridges (CYS-CYS) to (CYX-CYX). The parameter and 

topology files (PREPIN and FRCMOD) were created using the ANTECHAMBER programme 

in the AMBER package for BSA. Using the xLeap programme, PREPIN and FRCMOD files of 

BSA were loaded and the charge of BSA model was neutralised by adding 17 sodium ions. 

The system was then solvated in an 8-Å (at starting of the protein surface) truncated 

octahedron of transferable intermolecular potential 3P water molecules (TIP3P). Afterwards, 

BSA topology and parameter files were generated. BSA was then minimized using the Sander 
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programme of the AMBER package. The BSA was then processed to the first stage of the MD 

simulation (MD 1). After MD 1 completion, the system was then progressed to MD 2 step. The 

conditions of each step mentioned previously are summarized below. 

Step: Minimization step 
Cycles No. 2,000 
Minimization method: Initial descent method (conjugate gradient after 1,000 cycles) 
Cut of distance of 12 Å 
Igb (Born approximation) =0 

ntb (Periodic boundaries) =1 

 

Step: MD 1 

MD heating 0 to 300K over 20 
ps &cntrl 
imin (Minimization) = 0, 
irest (Restart simulation) = 0, 
ntx (Read of information saved) = 1, 
ntb (Periodic boundaries) = 0, 
cut (Cut off distance) = 12, 
ntr (Flag restrained atoms) = 1, 
ntc (System shake) = 1, 
ntf (Force evaluation) = 1, 
igb (Born approximation) = 1 
tempi (Temperature initiation) = 0.0, 
temp0 (Temperature maintained) = 300.0, 

ntt (Temperature scaling) = 3, 

gamma_ln (Collision frequency) = 1.0, 

nstlim (Number of MD steps) = 20000, dt (Time of step) = 0.001 
ntpr (Frequency of printing) = 1000, ntwx (Write of coordinate) = 1000, ntwr (Write to restrt file) = 1000 
Step: MD 2 

MD run constant pressure 
&cntrl 
imin (Minimization) = 0, 
irest (Restart simulation) = 1, 
ntx (Read of information saved) = 7, 
ntb (Periodic boundaries) = 0, 
cut (Cut off distance) = 12, 
ntr (Flag restrained atoms) = 1, 
ntc (System shake) = 1, 
ntf (Force evaluation) = 1, 
igb (Born approximation) = 1 
tempi (Temperature initiation) = 0.0, 
temp0 (Temperature maintained) = 300.0, 

ntt (Temperature scaling) = 3, 

gamma_ln (Collision frequency) = 1.0, 

nstlim (Number of MD steps) = 20000, dt (Time of step) = 0.001 
ntpr (Frequency of printing) = 1000, ntwx (Write of coordinate) = 1000, ntwr (Write to restrt file) = 1000 

 
 

2.2.4.4. Docking of HA and trehalose 
 

The FastDock programme within the Scigress workstation was used to perform docking 

experiments of HA and trehalose. The conditions of docking are as follows: 
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Docking method: Rigid active site side and flexible ligands. 

Method of docking: Lamarckian genetic algorithm 

AMBER van der Waals: Grid Spacing 0.30000 (Å) 

Scoring Function: PMF 

Size of pop: 50 

Rate of Crossover: 0.80000 

Maximum Generations: 3000 

Rate of mutation: 0.20000 

Convergence: 1.0000 

Elitism: 5 
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2.3. Results and Discussion 

2.3.1 Manufacture of aquasomes with DCPA cores 

2.3.1.1. Preparation of DCP cores 

DCPA cores have a high density of 2.89 g/cm3 and calcium to phosphate ratio of 1.0. A high 

sonication amplitude was therefore required to break the DCPA cores (Kalita et al., 2007). A 

study carried out by Oviedo et al. (2007) prepared DCPA aquasomes loaded with 

indomethacin. In their study, a sonication amplitude of 90.0 for a duration of 90 min was 

needed to reduce the mean particle size of DCPA to <400 nm. 

 

In the current study, the size distribution of the DCPA raw powder was heterogeneous and 

had a mean particle size of 60 μm ±11.5. To reduce the particle size of DCPA powder, DCPA 

powder was sonicated for a period of 30 min (intermittent) under sonication amplitude of 10.0. 

After sonication, two particle distributions were obtained (4 μm and 20 μm). Further sonication 

of 30 min did not result in more reduction in particle size. Alternative techniques such as 

increasing the depth of the probe and reducing the aqueous medium were employed, but their 

effect on particle size reduction was not noticeable. Due to the limitation of the machine to 

achieve higher sonication times (>10.0), the sonicated DCPA cores were used without 

modification. 

 

2.3.1.2. Coating of DCPA cores 

It is known that the higher the concentration of a coating results in higher adsorption onto the 

cores (Dormant and Adamson, 1968). In the current study, a concentration of 0.2M was used 

to coat the solid cores. Coating of solid cores at concentration above 0.2M was not desirable, 

due to viscosity and crystal formation (Crowe et al., 1996; Gharsallaoui et al., 2008). 

 

The assembly of aquasomes is based on physical adsorption. The method of Oviedo et al. 

(2007) was followed with modifications. The coating was carried out at two different 

temperatures (25oC and 4oC) and two different mixing times (1 hr and 2.5 hr). The reason for 

choosing these two variables was to study the effect of coating time and coating temperature 

on aquasomes preparation. 

 

2.3.1.3. Loading of DCPA cores 

BSA has been used widely in research as a module for proteins (Gelamo and Tabak, 2000; 

Jun et al., 2011). In the literature, loading conditions for preparation of aquasomes varied. 

However, the method of Oviedo and co-workers was followed with modifications as described 

in section 2.2.2. Two loading conditions were used, 2.5 hr at 4oC or 20 hr loading at 25oC. 
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2.3.1.4. Size Analysis 

Size analysis is a useful tool to measure the particles’ size of a given sample before and after 

modification. Specifically, an increase in the mean particle size of a powder after the coating 

process is an indication of the presence of a coat covering the particles (Oviedo et al., 2007; 

Keck, 2010). 

 

After sonication of the DCPA powder, two particle distributions were obtained (40 μm and 60 

μm). Therefore, it was difficult to relate the effect of different coating and loading conditions to 

the increase in the mean particle size. In general, all size measurements recorded were above 

the mean particle size of the DCPA core before coating (51.2 μm ±11.5) (Table 2.1). 

 
 
 

Table 2.1. Mean particle size measurements of DCPA cores before and after coating. 
 

Formulation No. Mean Particle Size 
(µm) 

Formulation No. Mean Particle Size 
(µm) 

 
 

 
Lactose 

1 69.8 ±10.9   
 

 
Trehalose 

5 69.3 ±12.8  

2 66.7 ±12.8  6 68.7 ±12.7  

3 68.4 ±12.8  7 70.5 ±12.3  

4 67.3 ±12.5  8 69.7 ±11.6  

 
 
 
 
 

2.3.1.5. Zeta potential measurements 

Zeta potential is widely used for the quantification of the magnitude of the electrical charge at 

the surface of a particle. When a molecule undergoes a surface molecular modification, the 

magnitude of the zeta potential changes. Hence, zeta potential has been used as a tool to 

confirm coating and loading processes of nanoparticles (Lyklema J., 1995; Borges et al., 

2005). 
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Due to the variability in the mean particle size in the samples, the zeta potential measurements 

were also varied accordingly (Table 2.2). The effect of different coating and loading conditions 

could not be linked to the increase or decrease in zeta potential measurements. Such 

variability in zeta potential measurements occur because zeta potential is affected by the size 

of the particle. For instance, a larger particle will carry more charge when compared to a 

smaller one (Lyklema J., 1995; Horiba, 2009). 

 
 

Table 2.2. Zeta potential measurements of DCPA cores before and after coating. 
 

Formulation No. Zeta Potential Formulation No. Zeta Potential 

 
 
 

 
Lactose 

1 13.8 ±0.7   
 
 

 
Trehalose 

5 16.1 ±1.2  

2 14.2 ±0.4  6 15.4 ±0.9  

3 13.2 ±0.8  7 13.2 ±0.8  

4 15.4 ±1.1  8 14.9 ±0.7  

 
 
 
 

2.3.1.6. DSC analysis 

DSC is a thermo-analytical technique in which the heat necessary to increase the temperature 

of a sample is calculated as a function of temperature. It has been used extensively to study 

polymorphism and glass transition (Tg) (Deangelis et al., 2006). 

 
In the current study, Tzero technology and Tzero low-mass pans were used to achieve the 

most sensitive analysis possible. DCPA powder has high melting and decomposition 

temperatures (380oC) which could not be measured due to instrument limitation (maximum of 

350oC can be measured on the TA Q200). However, both coating materials, lactose and 

trehalose, decompose at temperatures of 235oC and 150oC respectively (Taylor and York, 

1998; Lefort et al., 2004). 

 

The DSC peak recorded from the samples show that coatings of lactose or trehalose did not 

reveal any measured peak at the decomposition temperature of both lactose and trehalose. 

This could be related to the argument that DSC is unable to detect impurities if it is less than 

0.1% (Figure 2.2 and 2.3) (Ceschel et al., 2003; Deangelis et al., 2006). 
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However, if the pan lids are removed after the DSC analysis is finished, it can be noticed that 

the cores are brownish in colour in the case of lactose as it was caramelized at high 

temperature (>1200C) (Kroh, 1994). However, in the case of trehalose as a coating, the colour 

was the slightly off white, as trehalose dose not undergo caramelisation at high temperatures 

(Figure 2.4) (Takanobu, 2002). 

 

 

 
 
 

Figure 2.2. DSC analysis of aquasomes with DCPA cores coated with lactose. The arrow 
indicates the recorded peak at the lactose decomposing temperature. 

 

 
 
 

Figure 2.3. DSC melting curve of lactose, which decomposes at 235oC. 
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Figure 2.4. Tzero low mass DSC pans: (A) aquasomes with DCPA cores before DSC analysis, 

(B) aquasomes with DCPA cores coated with trehalose after DSC analysis and (C) aquasomes 
with DCPA cores coated with lactose after DSC analysis (the lactose coating was decomposed 
(caramelised). 

  A 
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2.3.1.7. FTIR analysis 

FTIR is the absorption measurement of a sample under different IR frequencies. It is an 

essential spectroscopic technique in organic and inorganic chemistry (Bertoluzza et al., 1995). 

For instance, Rawat et al. (2008) used FTIR to measure HA cores after coating with alginate 

as an indication for complete coating. Goyal et al. (2005) used FTIR to confirm the adsorption 

of Antigen T helper (Th1 and Th2) after loading them on liposomes. Such techniques allow 

easy identification of the compounds with minimal sample and in a non-destructive way. 

 

FTIR analysis was carried out by the KBr disk method. According to the Beer-Lambert law, 

the IR spectrum is the sum of the IR spectrum of the materials present in the sample. It also 

states that the signal level is usually low for the trace material, since the infrared absorbance 

is proportional to concentration (Chan and Kazarian, 2005). 

 

(Beer-Lambert Law) A = log10  (I0/I) = abc 

Where, 

A= Absorbance (dimensionless) 

I0  = source radiation intensity 

I = transmitted radiation intensity 

a = co-efficient of absorptivity 

b = Path length or thickness, and 

c = Concentration of the absorber 

 

In the current study, the samples did not reveal any identifying peaks of lactose and trehalose. 

This may be due to the low concentrations of both coating materials present when compared 

to the DCPA, which has the predominant absorbance. Moreover, similar results occurred when 

measuring the presence of BSA after the loading step. 

 
However, the three identifying peaks of DCPA (3000 cm-1, 2270 cm-1, and 1050 cm-1 - 1125 

cm-1 for OH, P-O and P=O stretching vibrations respectively which are indicated by red arrows 

were all clearly overlapped with lactose peaks (Figure 2.5) (Miller and Wilkins 1952). The low-

absorbance peaks recorded at (2289 cm-1) can be identified as lactose.  After loading with 

BSA, these peaks were absent; this is may be due to overlapping with the BSA absorbance. 

Conversely, with trehalose the same was observed as lactose in terms of DCPA overlapping 

peaks. However, no identifying peak for trehalose was recorded. The presence of lactose, 

trehalose and BSA can therefore be detected by their overlapping effect with the IR spectrum 

of the DCPA cores but not by their identifying peaks. This is due to low concentrations of 
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sample present. Decreasing the path between the detector and the sample was carried out to 

try to increase the sensitivity of the detection, however no change was observed. 
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Figure 2.5. FTIR spectrums of aquasomes manufactured with DCPA cores. (A) IR spectrum 
of DCPA cores before coating, (B) IR spectrum of DCPA coated cores (C) IR spectrum of 
aquasomes with DCPA cores coated with lactose. 
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2.3.1.8. SEM analysis 

SEM is an electron microscope that images a sample by scanning   it with a beam    of 

electrons. It provides valuable information, such as structural and thickness 

characterization, elemental analysis and electrical conductivity properties. (Barkay et al., 

2009; Nouri et al., 2012). 

 

SEM images of DCPA show DCPA cores are spherical in shape and have a rough surface 

(Figure 2.6). However, after coating with lactose and loading with BSA, the surface 

morphology changes (Figure 2.7). The DCPA cores after loading appear to have a 

smoother surface, which indicates the presence of layers coating them. This finding was 

parallel to what Oviedo et al. (2007) carried out; they used SEM images to confirm the 

presence of both layers (API and sugar layers). 

 
 
 
 

 
 

Figure 2.6. SEM image of DCPA cores before coating. 
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Figure 2.7. SEM image aquasomes with DCPA cores coated with lactose, which has a 
smoother surface when compared to uncoated DCPA cores. 

 
 

 
2.3.1.9. In vitro release studies of aquasomes with DCPA cores 

In vitro release studies were performed on the final aquasome formulations (Table 2.3 

and Table 2.4). The samples were redistributed in 10 mL of phosphate buffer solution (pH 

7.4) and placed in a shaking water bath (37oC/100 rpm). Phosphate buffer solution (pH 

7.4) was used to simulate the pH environment present in the intestine, where the 

aquasomes are targeted for delivery. A quantity of 0.3 mL was taken for analysis at a 

number of time points (1, 2, 3, 4, 5, 6, 7, and 24 hr). Samples collected from the in vitro 

release studies were analysed with HPLC using a gradient method for BSA reported by 

Umrethia et al. (2010). The method was tested and gave a correlation co-efficient of 0.998, 

a limit of detection of 0.15 μg/ml and limit of quantification of 0.40 μg/mL. It was 

challenging to place a relationship between the BSA released from the DCPA aquasomes 

(in both lactose and trehalose as coating materials) and the effect of different 

manufacturing conditions used. This is related to the high variability in the mean particle 

sizes between the samples after locating and coating steps. Such findings were 

anticipated, since both sizing analysis and zeta potential measurements varied across the 

samples, and hence, different loading efficiencies were obtained (Table 2.3). However, 

the total BSA loading efficiency of DCPA formulations coated with trehalose was 

approximately 2-3% less than those coated with lactose, though it is statistically not 

significant (p>0.05) (Figures 8-11). 
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It was observed from the cumulative release of BSA from the DCPA aquasomes, that all 

the formulations show a controlled release of BSA over the first 6 hr with no burst effect 

noticed. This is could be related to the fact that the number of OH groups on both sides 

of trehalose the same (the number of OH groups on each side is 4), while lactose has not 

uneven number of OH groups. Hence, trehalose has a more controlling effect (attachment 

to BSA) over the release of BSA. The coating and loading conditions of each formulation 

are listed in Table 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2.3. Zeta potential measurements of aquasomes with DCPA cores after coating and loading steps. 
Formulation No. Coating 

material 
Coating 

Conditions 
Zeta Potential 
After Coating 

Loading 
material 

`Loading 
Conditions 

Zeta Potential 
After Loading 

1  

Lactose 

 
2.5 hr/4oC 

 

-1 ±0.2 

 
 
 
 
 
 
 
 
 
 

 
BSA 

2.5 hr/4oC -13 ±0.2 

2 20 hr/25oC -9.5 ±0.3 

3  

Lactose 

 
1 hr/4oC 

 

0.5 ±0.2 

2.5 hr/4oC -9.1 ±0.1 

4 20 hr/25oC -15 ±0.8 

5  

Lactose 

 
2.5 hr/25oC 

 

-1.7 ±0.5 

2.5 hr/4oC -18.3 ±0.5 

6 20 hr/25oC -16.5 ±0.4 

7  

Lactose 

 
1hr/25oC 

 

-1.2 ±0.5 

2.5 hr/4oC -20.1 ±0.2 

8 20 hr/25oC -17.7 ±0.2 

9  

Trehalose 

 
2.5 hr/4oC 

 

-2.9 ±0.1 

2.5 hr/4oC -11.2 ±0.3 

10 20 hr/25oC -17.9 ±0.8 

11  

Trehalose 

 
1 hr/4oC 

 

-2.1 ±0.2 

2.5 hr/4oC -13.6 ±0.4 

12 20 hr/25oC -12.4 ±0.1 

13  

Trehalose 

 
2.5 hr/25oC 

 

-3.15 ±0.2 

2.5 hr/4oC -12.2 ±0.3 

14 20 hr/25oC -17.3 ±0.2 

15  

Trehalose 

 
1hr/25oC 

 

-1.0 ±0.1 

2.5 hr/4oC -13.4 ±0.33 

16 20 hr/25oC -12.6 ±0.33 
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Table 2.4. The percentage BSA loading of aquasomes coated with lactose and trehalose. 
 

 
Coating material Formulation No. % of BSA loading 

 
 
 
 
 

Lactose 

Formulation 1 14.10% ±1.7 

Formulation 2 8.69% ±1.2 

Formulation 3 11.78% ±1.4 

Formulation 4 14.92% ±1.5 

Formulation 5 15.77% ±1.4 

Formulation 6 13.42% ±2.8 

Formulation 7 12.77% ±1.8 

Formulation 8 9.62% ±1.3 

 
 
 
 
 
 

 
Trehalose 

Formulation 9 14.14% ±1.9 

Formulation 10 8.65% ±0.9 

Formulation 11 13.15% ±1.1 

Formulation 12 12.62% ±1.1 

Formulation 13 14.56% ±0.9 

Formulation 14 13.02% ±1.2 

Formulation 15 13.72% ±1.3 

Formulation 16 8.42% ±1.9 
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Figure 2.8. In vitro cumulative release of BSA (mg) from DCPA cores coated with lactose 

(formulations 1-4) over 20 hr. 

 
 
 

 

 
 

Figure 2.9. In vitro cumulative release of BSA (mg) from DCPA cores coated with lactose 

(formulations 5-8) over 20 hr. 
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Figure 2.10. In vitro cumulative release of BSA (mg) from DCPA cores coated with trehalose 

(formulations 9-12) over 20 hr. 
 
 
 
 
 

 
 

Figure 2.11. In vitro cumulative release of BSA (mg) from DCPA cores coated with trehalose 

(formulations 13-16) over 20 hr. 
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2.3.2. Manufacture of aquasomes with MCPA cores 

2.3.2.1. Preparation of MCPA cores 

MCPA powder has a density of 2.58 g/cm3 and calcium/phosphate ratio of 0.5, therefore less 

sonication force was required to reduce the particle size of the MCPA particles (Fernandez et 

al., 1999). There is no evidence that MCPA has previously been used as a solid core material 

for aquasome preparation. However, the choice to investigate MCPA as a core material was 

based on its physical properties such as particle morphology (form spherical cores after size 

reduction with sonication) and biocompatibility (MCPA is a biodegradable material with safe 

toxicity profile). 

 

To reduce the particle size of MCPA powder, MCPA powder was sonicated for a period of 30 

min (intermittent) under sonication force of 10.0. After sonication, the size population of 

powder obtained was 4 µm. Sonication for an extra 30 min did not result in a further reduction 

in particle size. Other alternative techniques such as increasing the depth of the probe and 

reducing volume of the medium was employed, but did not result in a further reduction in 

particle size 

 

2.3.2.2. Zeta potential measurements 

The zeta potential measurement revealed that MCPA powder is slightly negative in charge (- 

3.9 ±0.32). This encourage the adsorption of both lactose and trehalose, because lactose is 

neutral to positively charged in pH 7.4 and trehalose is slightly negative at the same pH. 

 

2.3.2.3. DSC analysis 

According to DSC analysis (Figure 2.12), two peaks were recorded. The first peak is recorded 

at 150ºC, which is a rehydration peak. The second peak was recorded at 190ºC, which is the 

decomposition temperature of MCPA. It was not possible to analyse the coated particle with 

DSC as the decomposing peaks of trehalose and lactose would be overlapping with the 

rehydration peak and the decomposition peak of MCPA respectively. 
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Figure 2.12 DSC analysis of MCPA cores, it shows the crystallization peaks (45oC), the 
dehydration peak (150oC) and the melting peak (240oC). 

 
 
 
 
 

2.3.2.4. SEM analysis 

SEM studies show that MCPA particles have a rhombus shape with a semi smooth surface. 

However, after sonication the particles become spherical in shape, Figure 2.13. It can be 

noticed that sonication had reduced the size significantly compared HA and DCPA. This is 

related to the fact that MCPA has the lowest calcium to phosphor ratio (2.58 g/cm3) when 

compared to HA and DCPA. 
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Figure 2.13. SEM images of MCPA powder: (A) shows MCPA cores before coating, (B) 
shows the morphology of the MCPA cores after sonication. 

 
 

 

 

 

A 

B 
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Initially, MCPA particles showed the characteristics of a good core material. Since it is slightly 

negative, has a spherical shape, a rough surface and small mean particle size.   This suggests 

that MCPA could be used as a core material to prepare aquasomes. However, it is found that 

after coating with lactose and freeze-drying; it forms a gum upon contact with the air (Figure 

2.14). These were very difficult to handle and it was difficult to characterize them. In addition, 

it was not ideal to load them as well as the gum was not distributed in the BSA solution. Hence, 

MCPA was not taken forward as core material for aquasomes preparation. 
 

 

 
 
 
 

 
 

 

Figure 2.14. Freeze-dried samples of MCPA after coating with lactose: (A) MCPA freeze dried 
samples before vial opening, (B) MCPA freeze dried samples after vial opening and the 
formation of a gum. 

 

 

 

 

A 

B 
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2.3.3. Aquasomes with HA Cores 

2.3.3.1. Preparation of HA Aquasomes 

2.3.3.1.1. Preparation of HA cores 

The HA powder was purchased from Sigma Aldrich, UK. The mean particle size of the powder, 

as the company claims, is (>200 nm). However, the size of the HA powder when measured 

(section 2.2.3.1) was between 925 nm-1100 nm. 

 
Attempts were made to reduce the mean size of particles. For instance, hand grinding for a 

period of 15 min and sonication for a period of 1 hr at a sonication amplitude of 10.0. The 

attempts were unsuccessful in reducing the particle size. The failure in the reduction of size 

was expected, because HA powder has a high density (3.16 g/cm3) and high calcium to 

phosphate ratio (1.67) (Combes, 2011; Kalita et al., 2007). The reasons to why the mean 

particle size of HA does not match what has been claimed, could be either due to 

manufacturing defect (batch defect) or an irreversible agglomeration (Merkus 2009). 

Therefore, the powder was used as received without further modification. 

 

     2.3.3.1.2. Size measurements 

As mentioned previously, the mean particle size of HA did not match what has been claimed 

(>200 nm), and the measured mean particle size of HA varied between the samples. 

According to Table 2.5, it is clear that the mean particle size measurements of HA cannot be 

utilized for characterization purposes. 

 
 

 
Table 2.5. HA mean particle size and zeta potential measurements. 

 

Sample No. Mean Particle Size 
(nm) 

Zeta Potential 

Solid cores 950 ±160 - 8.01 ±0.23 

Coated cores 1100 ±130 - 8.30 ±0.57 

Loaded cores 1200 ±190 -8.32 ±0.69 
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2.3.3.1.3. Zeta Potential Measurements 

The zeta potential measurements of the aquasomes with HA cores are listed in Table 2.6. It 

is known that the zeta potential of lactose at pH 7.4 is neutral to slightly positive in charge, 

trehalose is slightly negative and BSA is negatively charged. (Malvern, 2005; Tymczyszyn 

2007; Horiba, 2009). 

 

In the case of mixing time, 2.5 hr coating times resulted in higher zeta potential values in both 

coating materials, lactose and trehalose, at the same coating conditions. In addition, higher 

loading conditions resulted in higher zeta potential values at the same loading temperatures. 

This is parallel to the fact that the rate of physical adsorption increased as the mixing time 

increases. Therefore, as the mixing time increases, more layers are adsorbed to the surface 

and higher zeta potential values are recorded. In terms of manufacturing temperatures, 

coating and loading at 4oC resulted in higher zeta potential values, and thus, the more coating 

material or BSA is adsorbed. 

 

However, the zeta potential values recorded indicates that less BSA is adsorbed on HA cores 

coated with trehalose at 4oC, while more BSA is adsorbed on HA cores coated with trehalose 

at 25oC when compared to HA cores coated with lactose. This could be related to viscosity of 

both lactose and trehalose at low temperatures. As the temperature increases, the viscosity 

of trehalose solution is increased, while the lactose solution increases in viscosity as the 

temperature decreases. High viscosity resulted in reduced particle motions in the solution, and 

thus increased the rate of physical adsorption (Miller et al., 1997; Maher et al., 2011). 

 
 

2.3.3.1.4. DSC Analysis 

HA cores have high melting and decomposition temperatures (1000oC) which cannot be 

measured due to instrument limitation (maximum of 350oC can be measured on the TA Q200). 

The DSC analysis of both coated and loaded cores did not reveal any peak at the melting or 

decomposition temperatures of lactose, trehalose or BSA (Figure 2.15). 
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Figure 2.15. DSC analysis of Aquasomes with HA cores coated with lactose. 
 

 
2.3.3.1.5. FTIR Analysis 

The recorded FTIR data of the samples showed no identifying peaks of lactose and trehalose 

(Figure 2.16). This may be due to both coating materials being present at low concentrations 

compared to the HA, which has the predominant absorbance (3300 cm-1 - 3600 cm-1, 1422 cm-

1 - 1460 cm-1 and 1100 cm-1 for OH, CO3 and PO4 stretching vibrations which are indicated by 

red arrows) (Miller and Wilkins 1952). Moreover, the same occurred when measuring the 

presence of BSA after the loading step. Since the IR spectrum is the sum absorbance of the 

materials present in the sample, according to Beer-lambert law. FTIR spectrum of HA powder 

when compared to before or after loading, two low absorbance peaks of HA powder which is 

present at the wavelengths of (2360 cm-1 and 2337.60 cm-1) are absent. This probably because 

the absorbance recorded form either lactose, trehalose or BSA is overlapping with the two 

peaks, which causes the absence of these peaks. Therefore, the presence of lactose, 

trehalose and BSA can be detected but by their overlapping effect with FTIR spectrum of the 

HA powder but not by their identifying peaks because they present in the sample in low 

concentrations compared to HA. An attempt was made to increase the sensitivity of FTIR 

detection by decrease the path between the detector and the sample. However, there was no 

change observed. 
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Figure 2.16. (A) IR spectrum of HA cores before coating, (B) IR spectrum of HA cores 
coated with trehalose and (C) IR spectrum of Aquasomes with HA cores coated with 
lactose. 
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2.3.3.1.6. SEM analysis 

Microscopic analysis was performed to study the surface morphology of the HA powder 

particles and its distribution since it is known that the surface morphology has a great influence 

on adsorption and more generally on coating. SEM images show that HA particles have a 

round shape and a semi-smooth surface (Figure 2.17). Therefore, such morphology assists in 

good attachment of lactose or trehalose on the HA particles (Oviedo et al., 2007). The SEM 

images also show that the HA particles are not uniform in size (the presence of small and large 

particles), which confirms the sizing studies. 

 

 

 
 

 

Figure 2.17. SEM images of HA powder: (A) shows HA cores with different particle sizes, (B) 
shows the morphology of the HA cores. 

 

 

A 

B 
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2.3.3.1.7. In vitro release studies of aquasomes with HA cores 

The loading efficiency of the HA aquasomes were calculated and are summarized in Table 2.6 

and 2.7. Results show that the total BSA loading of formulations coated with trehalose is higher 

for those coated with lactose. This comes in parallel to what has been suggested in the literature 

that trehalose has been used extensively in the preparation of aquasomes (Cherian et al., 2000; 

Oviedo et al., 2007). 

 

In terms of mixing time, it is found that 2.5 hr produced higher BSA loadings when compared 

to a 1 hr mixing time. This is parallel to the zeta potential measurements, which confirms that 

higher coating and loading times resulted in more negatively charged molecules (more BSA 

attached on the surface). This may be because longer loading times allowed more layers of 

BSA to be adsorbed onto the surface (longer mixing times of BSA encouraged physical 

adsorption). BSA loading performed at 4ºC with lactose as coating resulted in aquasomes with 

higher BSA loading to that performed at 25ºC (p<0.01). This could be due to lower temperature 

which allow more BSA to be adsorbed onto the surface (lower temperature manufacturing 

conditions encourages physical adsorption) (Ferrieu et al., 2009). However, in the case of 

trehalose as a coating, BSA loading at 25ºC was higher than that of 4ºC despite the time of 

coating.  

 

In terms of total BSA loading, aquasomes coated with trehalose produced higher BSA loadings 

by approximately 7.5% to aquasomes coated with lactose (p<0.05). This may be due to 

trehalose attaching better to the HA cores because of its structure. However, aquasomes 

coated with trehalose at 25ºC produced similar BSA loadings to the aquasomes coated with 

lactose at 4ºC. This finding backs up the zeta measurements in that the viscosity of trehalose 

increases as the temperature increases and thus encourages physical adsorption (physical 

adsorption increases as particle motion decreases) (Thommes, 2012) 

 

The results also reveal that the difference (approximately by 10%) between the BSA loading 

at the loading step was (20 hr at 25ºC and 2.5 hr at 4ºC) more apparent when trehalose was 

used as a coating material. This may be due to the use of trehalose as a preservative for 

biological materials. This sugar ability based on the hydration and solid-state properties of this 

sugar, which is based on the presence of the α, α-1,1-glycosidic linkage (Sakurai 2009). 

Moreover, the release pattern of BSA for the HA aquasomes coated with trehalose are more 

consistent to those loaded with lactose over 6 hr (Figures 2.18- 2.21). 

 



 

Table 2.6. Zeta potential measurements of aquasomes with HA cores after coating and loading steps 

 
Formulation No. Coating 

material 
Coating 

Conditions 
Zeta Potential 
After Coating 

Loading 
material 

`Loading 
Conditions 

Zeta Potential 
After Loading 

1  

Lactose 

 
2.5 hr/4oC 

 

4.1 ±0.3 

 
 
 
 
 
 
 
 
 
 

 
BSA 

2.5 hr/4oC -10.4 ±0.2 

2 20 hr/25oC -12.6 ±0.3 

3  

Lactose 

 
1 hr/4oC 

 

2.5 ±0.8 

2.5 hr/4oC -13 ±0.1 

4 20 hr/25oC -12 ±0.8 

5  

Lactose 

 
2.5 hr/25oC 

 

3.0 ±0.6 

2.5 hr/4oC -9 ±0.5 

6 20 hr/25oC -10 ±0.4 

7  

Lactose 

 
1hr/25oC 

 

1.5 ±0.5 

2.5 hr/4oC -11.2 ±0.2 

8 20 hr/25oC -10.6 ±0.2 

9  

Trehalose 

 
2.5 hr/4oC 

 

-1.3 ±0.2 

2.5 hr/4oC -10.2 ±0.3 

10 20 hr/25oC 11.5 ±0.1 

11  

Trehalose 

 
1 hr/4oC 

 

-1.22 ±0.3 

2.5 hr/4oC -8.2 ±0.4 

12 20 hr/25oC -12 ±0.1 

13  

Trehalose 

 
2.5 hr/25oC 

 

-1.15 ±0.2 

2.5 hr/4oC -10.4 ±0.3 

14 20 hr/25oC 12.3 ±0.2 

15  

Trehalose 

 
1hr/25oC 

 

-1. ±0.2 

2.5 hr/4oC -10.1 ±0.33 

16 20 hr/25oC -12.1 ±0.33 
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Table 2.7. Loading capacity of HA aquasomes coated with lactose and trehalose. 
 
 

Coating material Formulation No. % of BSA loading 

 
 
 
 
 

 
Lactose 

Formulation 1 39.32% ±1.5 

Formulation 2 46.34% ±1.2 

Formulation 3 50.05% ±1.4 

Formulation 4 42.01% ±1.4 

Formulation 5 36.82% ±1.5 

Formulation 6 50.56% ±1.9 

Formulation 7 40.12% ±1.8 

Formulation 8 39.72% ±1.7 

 
 
 
 
 
 
 
 

Trehalose 

Formulation 9 36.73% ± 2.5 

Formulation 10 59.24% ±1.9 

Formulation 11 34.14% ±1.5 

Formulation 12 56.97% ±1.3 

Formulation 13 31.79% ± 2.2 

Formulation 14 47.85% ± 2.1 

Formulation 15 38.00% ±1.0 

Formulation 16 52.43% ±1.1 
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Figure 2.18. In vitro cumulative release of BSA (mg) from HA cores coated with lactose 
(formulations 1-4) over 24 hr. 

 
 
 

 
 

Figure 2.19. In vitro cumulative release of BSA (mg) from HA cores coated with lactose 

(formulations 5-8) over 24 hr. 
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Figure 2.20. In vitro cumulative release of BSA (mg) from HA cores coated with trehalose 

(formulations 9-12) over 24 hr. 
 
 
 

 
 

Figure 2.21. In vitro cumulative release of BSA (mg) from HA cores coated with trehalose 

(formulations 13-16) over 24 hr. 
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2.3.3.2. Manufacture of aquasomes with HA cores using various coatings 

The method for aquasome preparation was followed as described by Oveido R. et al. (2007) 

with modification. In order to increase the loading and to enhance the sustained release of the 

BSA, different coatings were investigated. The HA cores and BSA was fixed in all formulations 

and a screening process was carried out using different sugars from different classes (mono, 

di and polysaccharides). It was noticed that monosaccharides formulations had the least 

loading efficiency (1-4%). To investigate more, the loaded cores were characterized with FTIR 

to confirm the presence of the sugar (Figure 2.22). The FTIR results show no identifying peaks 

of any of the monosaccharaides used. Therefore, its either present in very low concentrations 

(the interaction between the HA and monosaccharaides is weak which lead to low BSA 

molecules attached) or the sugar is probably not present (Table 2.8). 

 
 

 
 

 

Figure 2.22. FTIR spectrum of BSA loaded aquasomes with HA cores coated with Fucose. 

Identical FTIR spectrums obtained from all monosaccharides and sucrose. 
 

 
The case was different for sucrose, in the literature, sucrose was mentioned as a coating since 

it is in the same category with trehalose and Cellobiose (Umashankar et al., 2010). However, 

results show it has poor loading approximately 10%. Interestingly, Cellobiose resulted higher 

BSA loading, similar to trehalose). In vitro release studies show a steady release of BSA over 

6 hr. The total BSA content per 100 mg of aquasomes was approximately 6-6.5 mg (p<0.05). 

High BSA loading of Cellobiose coating could be due to the number of OH groups present in 

the molecule, which encourages BSA attachment. The number of OH groups on each side is 

equal similar to trehalose OH distribution. Such distribution balances the favor of attaching to 

the core and BSA. 
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Table 2.8. Different BSA loaded aquasomes formulations and their characterization and loading (A=Arabinose, R=Rhibose, 

F=Fucose, M=Mannose, S=Sucrose, RH=Rhaminose, SA=Saccharine, C=Cellobiose). 
 

 
Aquasomes Zeta Potential 

Before Coating 
Zeta Potential 
After Coating 

Zeta Potential 
After Loading 

Size Before 
Coating 

(nm) 

Size After 
Coating 

(nm) 

Size After 
Loading 

(nm) 

% BSA 
Loading 

HA/A/BSA  
 
 
 
 
 
 
 
 
 

 
-10 ± 1 

-8.2±1.6 -10±2  
 
 
 
 
 
 
 
 
 

 
990± 120 

1050±50 1030±62  
 
 
 
 
 
 
 
 
 

 
1- 10 % 

HA/R/BSA -7.6±1.7 -7.6±2.1 1000±65 1100±26 

HA/F/BSA -8±1.1 -8±2.3 1100±55 1095±15 

HA/M/BSA -6±1.9 -6±3.1 1090±10 994±104 

HA/S/BSA -6.7±2.1 -6.7±2.4 1154±44 998±38 

HA/RH/BSA -5.1±2.2 -5.1±2.8 1150±12 1110±92 

HA/SA/BSA -8.5±1.2 -8.5±2.1 1000±14 1150±33 

HA/C/BSA 2±0.5 -17±1.5 1350±15 1400±12 64±3 % 
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2.3.3.3.  Modeling of aquasomes with HA cores 

MD was performed to simulate the assembly of the layers of HA aquasomes. HA 

aquasomes were used because with either lactose or trehalose as a coating material, 

they had the highest BSA loading (40%- 60%) when compared to DSPA aquasomes.   

2.3.3.3.1. HA cell and HA surface 

Recently, HA has been studied for various purposes using molecular modelling. For 

instance, Hyp-Pro-Gly peptide modelling on a surface in an aqueous environment to 

simulate HA-protein interaction in HA implants (Laurencin et al., 2010). Moreover, HA 

structural defects and uptake of carbonate has also been investigated using molecular 

modeling of HA (Proose et al., 2006). Furthermore, the effect of magnesium on HA 

during elemental replacement has also been explored using molecular modelling. 

However, HA molecular studies has used multiple softwares or force field packages to 

perform the simulations such as METADIS and SIESTA. AMBER 12 has never been 

reported to be used in HA simulations as the library of xLEAP was missing Ca and P 

atoms to identify HA structure. 

 

An alternative method was used to build the xLeap library, which are detailed section 

2.2.4.1. Post HA crystal structure transfer from AMBER (Figure 2.23), the HA super cell 

was then reduced to a cell unit and was beautified with Scigress workstation (Figure 

2.24). The HA structure was processed for MM2 (geometry optimization). It was noticed 

that MM2 processing resulted in fragmented structure of the HA cell. To expand more, 

Scigress was treating each atom individually and not as a structure of the HA cell. This 

could be because of the nature of HA as all bonds are ionic. Therefore, the HA cell 

structure was used without further processing. 

 

Surface analysis of the HA cell structure with Discovery Studio showed that HA has a 

high SAS (structure accessibility surface), which highlights that the surface of the 

nanoparticles is accessible. In addition, surface analysis show that HA can form 

hydrogen bonds by acting as an acceptor (Figure 2.25 and 2.26). 
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Figure 2.23. The crystal structure of hydroxyapatite super cell [Ca10 (PO4)6(OH)2]. 

 

 
 
 
 

 

 
 
 
 
 
 

Figure 2.24. The cell unit of the hydroxyapatite which will be used to create the surface 

[Ca5(PO4)3OH). 
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Figure 2.25. Hydrogen bond accessibility surface of hydroxyapatite. 

 
 

Figure 2.26. SAS of the surface of hydroxyapatite. 
 
 
 

After setting xLeap libraries of the HA cell (Ca, P and OH), the HA surface was built by 

repeating cell units of HA (Figure 2.27). The process was performed manually and 

required a number of HA cells of 500. The 500 repeated HA cell units were required to 

build up an HA surface of dimensions of 30*30 A0. Such dimensions were necessary to 

accommodate the large BSA protein of size of 7 A0, which was measured by VMD. 
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Figure 2.27. Surface of HA of dimensions of 30*30 A0. 

 

2.3.3.2. Trehalose modelling 

Post trehalose structure beautification with Scigress explorer, MM2 geometry 

optimization was performed on the beautified structure (Figure 2.28). A total of 4 runs 

were performed and the energy value of 39.906 kcal/mol was recorded 3 out of the 4 

runs (Table 2.9). No further processing on the trehalose was required and the structure 

was saved as a PDB file ready for docking/MD. 

 

 
 

Figure 2.28.  Trehalose structure after geometry optimization. 

 
 

Table 2.9. Runs performed with trehalose structure on Scigress (MM2). 
 

Energy (kcal/mol) 

Run 1 -160.01 

Run 2 -39.906 

Run 3 -39.906 

Run 4 -39.906 
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2.3.3.3. BSA modelling 

The crystal structure of BSA was downloaded from the Protein Data Bank (Majorek et 

al., 2012) (Figure 2.29). The structure was first analysed using Discovery Studio. The 

BSA molecule comprises from one chain of 583 amino acid residues. The BSA crystal 

structure was identified with x-ray diffraction with resolution of 2.70 Å with no missing 

residues. Although there are better crystal structures at high resolution of x-ray 

diffraction, missing residues are present in the pdb file (Bujacz et al., 2014; Bujacz, 

2012). 

 

A Rachamandran plot was used to map the ψ against φ of amino acid residues of the 

BSA molecule. A Ramachandran plot can be used to theoretically show, which 

conformations of the ψ and φ angles are potential for amino acid residues. Another 

use of a Ramachandran plot is to illustrate the experimental distribution of data 

observed in a single molecule structure, which later can be used as a validation 

method (Richardson, 1981). Rachamndran analysis of BSA chains shows acceptable 

bonds and amino acids distribution (Figure 2.30). In the literature, there are few 

examples of the MD simulations using the BSA molecule, and they all approach part 

of the BSA molecule (active site) for their MD simulation. In the BSA modelling, 

because the sugar molecule was not acting as a drug with an active site to attach to 

it, the entire chain was treated as an active site, which in return increases the MD 

simulation because of the numerous possibilities Scigress/AMBER needs to test for 

best fit (Huang et al., 2013; Gelamo and Tabak 2000; Gelamo et al., 2004) 

 
 

 
 

Figure 2.29. The crystal structure of BSA (Majorek et al., 2012). 
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Figure 2.30. Ramachandran Plot of BSA chain. 

 

BSA crystal structure was also analyzed for H-Bond, SAS, and charge. These 

findings gave the preliminary results about how the interaction of the sugar trehalose 

occurs on the surface of BSA (Figure 2.31-2.33). 

 
 

 
 

Figure 2.31. Hydrogen bond accessibility surface of BSA chain A. 
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Figure 2.32. Charge on the surface of BSA chain A. 
 
 
 

 
 

Figure 2.33. SAS on the surface of BSA chain A. 
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It can be noticed from the surface analysis of BSA crystal structure that BSA is capable 

of forming hydrogen bonds on the surface of the molecule, where the water 

accessibility is very high. Alongside the negativity of the BSA surface, BSA has many 

sites available for trehalose molecules to attach to it through hydrogen bonding. It is 

interesting to notice that zeta potential measurements of BSA, which were performed 

during manufacturing optimization of BSA loaded aquasomes, found a charge of -17, 

which correlates to the surface charge analysis performed with Discovery Studio. 

 

2.3.3.4. BSA MD Simulation with AMBER 12 

In order for successful AMBER MD simulation, certain files must be present in the 

input portal. These files were edited to match the input rules of the AMBER 

programme. One of the main files to be edited is the pdb file of BSA. In this step, all 

CYS-CYS bonds are replaced with CYX-CYX, removal of histidine (HIS) as AMBER 

does not recognize such bonds. It is noted here that there were 144 CYC-CYC bonds 

and 20 HIS amino acids present which were needed to be edited manually in the pdb 

file. 

 

MD simulation of BSA was carried out in explicit water (programme add water 

molecules to the calculation rather than estimation) and at atmospheric pressure, 

Figure 2.34. The simulation was run for 5 nanoseconds using AMBER 12 and AMBER 

force field (99FFSB). The system was first relaxed at 300K or 280K prior for MD 

simulation to reach the minimum conformational energy. The results for total energy 

during the simulation run were extracted using ‘pearl’. 

 

For BSA MD run at 300K, the total energy was low (~1.3e+05 eV) with a fluctuating 

range of less than (~±0.11eV). This indicates a high stable conformation produced in 

these conditions. However, the total energy for BSA MD run at 280K was significantly 

higher than that of BSA MD performed at 300K (Figure 2.35-38). 
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Figure 2.34. A snapshot of BSA molecule during MD simulation at 300K at 5 ns with explicit 

water molecules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.35. Total energy of BSA during MD simulation at md2 stage at 300K. 
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Figure 2.36. Total energy of BSA during MD simulation at md2 stage at 280K
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A B 

Figure 2.37. BSA molecule during MD simulation at 280K, A (2ns) and B (5ns) (without 

explicit water molecules). 
 
 

  

C D 

Figure 3.38. BSA molecule during MD simulation at 300K, A (2ns) and B (5ns) and at 280K 

A (2ns) and B (5ns) with explicit water molecules has been ignored. 
 
 

To measure the degree of similarity of the produced protein modules generated, the root- 

mean-square distance (RMSD) was used. The similarity measure is greatly based on the 

protein dimensions. This is matching to the number of equivalent pair atoms. The data 

gathered from MD simulations (.mdcrd) were analysed to calculate the RMSD as a function of 

time using ptraj. From the RMSF plots (root-mean-square of Fluctuation), it can be seen that 

the BSA is behaving similarly under the two different conditions (Figure 2.39-40). This confirms 

the total energy values of these two conditions that the BSA molecule is stable during MD 

simulations and producing comparable conformations within a short fluctuating range of less 

than 1.0 A0. 
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Figure 2.39. RMSF graph for MD simulation of BSA at temperature of 300K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.40. RMSF graph for MD simulation of BSA at temperature of 280K. 
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2.3.3.5. Docking studies of HA and trehalose 

A docking study was performed on a HA surface of 3 hydroxyapatite cells units and a trehalose 

molecule using a Lamarckian genetic algorithm (Figure 2.41). The energy of the produced 

conformation was low (-134 kJ/mole), which indicates high stability of the complex (Table 

2.10). It was also noted that the total number of hydrogen formed between trehalose and 

hydroxyapatite was 4, which also backs up the low energy of the complex and eventually the 

stability of the complex. 

 
 
 

Table 2.10. Docking scores of HA and trehalose with Scigress. 
 

Energy (kJ/mole) 

Run 1 -140 

Run 2 -134 

Run 3 -134 

Run 4 -130 

 
 
 
 
 
 
 

 
 
 

Figure 2.41. Trehalose molecule adsorbed on the surface of 3 cell units of hydroxyapatite. 

The hydrogen bonds are labeled with green arrows. 
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In the trehalose molecule, there are 8 OH groups available for hydrogen bonding. According 

to the docking results, 4 are formed with the HA surface, while the rest are available to form 

hydrogen bonding with BSA. It is also interesting to notice that only the trehalose molecule 

has an even distribution of OH groups on the two sides of the molecule and the presence of 

the o-o linkage compared to other sugar molecules tested, which relates to the higher loadings 

of BSA compared to the other sugar molecules (Figure 2.42). 

 

 

 
 
 

  
 
 

Figure 2.42. Chemical structure of sucrose (A), lactose (B), trehalose (C) and cellobiose (D) 

(modified from: Drug Bank 2015). 

 
 
 

2.3.3.6. The relation between MD simulations and experimental results 

The total energy values are considered crude data and can be misrepresentative since a small 

rotation to a subunit in the protein structure in relation to another subunit or a pivot motion can 

lead to a significant change (Menor, 2008). However, if experimental results are in line with 

total energy values, a conclusion could be made. The BSA loadings of aquasomes 

manufactured at 40C was significantly less than that of 250C (p<0.05). It is known that at low 

temperatures, physical adsorption increases due to fewer collisions with molecules due to 

energy transferred to the molecules in the form of heat is reduced. However, BSA loadings 

show the opposite, as at lower temperatures the BSA loadings were less than that obtained 

at high temperatures. Considering the total energy curves obtained from BSA MD simulations, 

the energy of the protein at 300K (250C) was higher than that obtained from MD simulations 

performed at 280K (40C). The kinetic energy theory states that when heat is introduced to a 

 

A B 

C D 
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material, the molecules and atoms of the material vibrate and therefore the space between 

the atoms increases. The spacing and motion of the atoms determines the state of the 

material. The net outcome of increased molecular motion is that the material enlarges and 

takes up more volume. In the case of proteins, the 3D structure is very crucial to its stability 

and to how it interacts with the surrounding environment. Therefore, as the heat is applied to 

a solution of proteins, the 3D structures start to unfold, due to increased kinetic energy, and 

proteins start to interact with each other (agglomerations/denaturation) or the amino acid chain 

breaks (loss of action) (Cain et al., 2006). 

 

However, based on the experimental data and BSA MD simulations the opposite was noticed. 

Such variation was reported in the literature. Hopkins (1930) was the first to report ovalbumin 

precipitation due to protein denaturation by concentrated urea at various temperatures tested. 

It was observed that the denaturation rate was highest at 0°C compared to at 23°C. The 

adverse effect of temperature was unexpected, especially as it was known that the rate of 

denaturation increases as the temperature increases.  Clark (1985), who later confirmed the 

conclusion of Hopkins, reported that the negative temperature effect on ovalbumin 

denaturation, but only at high concentrations of urea, while it is positive at low concentrations 

of urea. Induced denaturation by temperature effect on the GuHC1 was studied broadly on 

cytochrome c-552 by Nojima and co-workers (1987). The researcher found that this protein 

was stable at 27°C in 5.5 to 6.0 M GuHC1 solutions. The GuHC1 solutions were denatured 

when heating or cooling from 270C. Therefore, at low temperatures of manufacturing BSA 

loaded aquasomes, the protein might be unfolding or breaking which in both cases lowers the 

BSA loadings. This was also noticeable from the low energy values of BSA MD simulations 

performed at 300K and 280K. 

 

2.3.4. Stability studies of BSA-loaded aquasomes 

 
The stability of API formulations is important for patient’s safety (the physical and chemical 

integrity of dosage form) as stability calculations of expiration date of the APIs formulation is 

based on it. Various degradation pathways can be adopted by pharmaceutical products such 

as hydrolysis, deamination, oxidation and cyclization. The prime target of accelerated stability 

studies is to calculate the long-term stability of formulations. These studies are performed by 

exposing API formulations to stress conditions of humidity, temperature, radiations and light. 

In general, companies conduct accelerated stability studies but the procedures that direct the 

practices may vary widely in terms of when and how these studies are to be performed 

(Waterman and Adami, 2005; Lee et al., 2010; Byrn et al., 2001; Fitzpatrick et al., 2002). 
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The stability studies of BSA-loaded aquasomes was conducted at three storage conditions of 

4ºC ±1ºC/60% RH ±2%, 25ºC ±1ºC/60% RH ±2% and 40ºC ±2ºC/75% RH ±5%, Tables 2.11-

13. The stability result of BSA loaded aquasomes at 4ºC ±1ºC/60% RH ±2% and 25ºC 

±1ºC/60% RH ±2% conditions show no significant changes (p>0.05) in size, zeta potential and 

BSA content at storage conditions of 4ºC ±1ºC/60% RH ±2% and 25ºC ±1ºC/60% RH ±2% for 

90 days. The in vitro release data for both conditions were similar and statistically comparable 

(p>0.05). At 40ºC ±1ºC/60% RH ±2% storage conditions BSA loaded aquasomes failed due 

to BSA degradation The release of BSA was sustained for 6 hr at 90 rpm/370C release 

conditions. The stability result of BSA loaded aquasomes at 40ºC ±1ºC/60% RH ±2% show a 

marked decrease in BSA content after 14 days’ time point (1 month 80.9±5.3). The decrease 

was continued until 90 days’ time point when it reached 55.61±9.5 (**p<0.001). There was 

also a decrease in zeta potential, but without significant change size. 
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Table 2.11. Stability study result of BSA-loaded aquasome powder for size, zeta potential, 
BSA content and visual inspection. Storage condition was at 4ºC ±1ºC/60 % RH ±2% RH. 
Values are represented as mean ± mean (n=3). 

 0 Day 7 Days 14 Days 30 Days 60 Days 90 Days 

BSA content (%) 99.3±0.2 99.1±0.6 99.6±0.2 99.1±0.3 99.3±0.4 98.1±0.7 

Zeta potential 17±0.9 17.5±1.9 17.1±1.6 18.9±2.9 16.3±2.1 17.0±1.1 

Size (µm) 923±75 920±85 940±60 970±98 920±75 933±45 

Visual inspection 

(discoloration and 

agglomeration) 

Pass Pass Pass Pass Pass Pass 

 

 
Table 2.12. Stability study result of BSA-loaded aquasome powder for size, zeta potential, 

BSA content and visual inspection. Storage condition was at 25ºC ±1ºC/60 % RH ±2% RH. 
Values are represented as mean ± mean (n=3). 

 0 Day 7 Days 14 Days 30 Days 60 Days 90 Days 

BSA content (%) 99.3±0.2 99.2±0.6 98.8±0.4 98.9±0.3 98.1±0.5 97.1±1.2 

Zeta potential 17±0.9 16.2±1.6 16.1±2.4 15.9±1.8 15.9±1.8 17.3±0.8 

Size (µm) 923±75 950±70 950±70 920±75 920±90 930±61 

Visual inspection 

(discoloration and 

agglomeration) 

Pass Pass Pass Pass Pass Pass 

 

 
Table 2.13. Stability study result of BSA-loaded aquasome powder for size, zeta potential, 
BSA content and visual inspection. Storage condition was at 40ºC ±1ºC/60 % RH ±2% RH. 
Values are represented as mean ± mean (n=3). 

 0 Day 7 Days 14 Days 30 Days 60 Days 90 Days 

BSA content (%) 99.3±0.2 98.1±1.6 95.8±1.9 80.9±5.3 55.61±9.5 55.61±9.5 

Zeta potential 17±0.9 15.2±1.1 17.1±0.6 12.6±1.8 10.3±3.8 10.3±3.8 

Size (µm) 923±75 951±63 941±69 980±55 966±70 966±70 

Visual inspection 

(discoloration and 

agglomeration) 

Pass Pass Pass Pass Agglomer 

ation 

present 

Agglomer 

ation 

present 
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2.4. Conclusions 

Different core and coating materials were used to manufacture under different 

manufacturing conditions to investigate the relationship between manufacturing 

conditions and loading capacity of the prepared aquasomes. Results show that 

aquasomes with DCPA cores coated with lactose resulted in higher loadings of BSA when 

compared to DCPA aquasomes coated with trehalose. The effect of manufacturing 

conditions on the prepared aquasomes could not be established due to size distribution 

variability. MCPA as a core material failed due to change in crystal form. Aquasomes with 

HA solid cores coated with lactose resulted in less BSA loadings when compared to HA 

aquasomes coated with trehalose. BSA loading of HA aquasomes was dependent on 

manufacturing conditions. High BSA loading was achieved at low temperatures and 

longer mixing times, which supports the fact that these conditions encourage physical 

adsorption. In terms of loading efficiency, HA aquasomes, with either lactose or trehalose 

as a coating material, have the highest BSA loading (40%- 60%) when compared to DCPA 

aquasomes. While DCPA aquasomes, with either lactose or trehalose as a coating 

material, have the lowest BSA loading (8%-16%). 

 
It was concluded from the in vitro release studies that when the coating is performed at 

40C and the loading step is performed at 250C this resulted in higher BSA loadings in the 

case of trehalose when compared to lactose as a coating material. This is interesting as 

it was hypothesised for aquasomes that low manufacturing conditions would result in high 

loading efficiency. It was noticed that monosaccharides produced low BSA loadings when 

HA cores were used. This could be because of the low OH groups per molecule (4 OH 

groups per molecule) compared to disaccharides (8 OH groups per molecule). In general, 

the conditions for preparation of aquasomes which was brought forward for the work 

concluded in this thesis was coating at 4ºC and loading at 25ºC for 2 hr with HA and 

trehalose as the solid core and coating materials respectively. Desirable BSA loadings 

were achieved (7 mg/100 mg) at these conditions.  

 

Docking and MD simulations performed were essential to understand the forces that 

governs the assembly of the three layers of the aquasomes. Surface analysis performed 

by Discovery Studio show that HA and trehalose interact by hydrogen bonding with the 

later acting as a hydrogen acceptor, while BSA show almost complete SAS and that there 

are numerous targets for trehalose attachments (no specific active site). This was further 

confirmed by performing docking studies, which confirms hydrogen bonding formation 

between HA and trehalose, and that there are 4 hydrogen bonds formed (4 per trehalose 
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molecule per 3 HA cell units). MD simulations of BSA performed by AMBER 12 shows a 

stable MD simulation of BSA for 5 ns. Total energy analysis of BSA on the two conditions 

performed (300K and 280K) support the experimental data of lower BSA loadings of 

aquasomes manufactured at 40C compared to those manufactured at 250C (p<0.05).  This 

could be because BSA might have either started to denature/unfold at 40C, which 

eventually resulted in low BSA loadings obtained for aquasomes manufactured at 40C. 
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CHAPTER 3 

 

Pulmonary Delivery of Aquasomes 
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3.1. Introduction 

The use of drug inhalation as therapy dates back to 1,500 BC when the ancient Egyptians 

inhaled vapours for ritual or healing purposes (Patton and Byron, 2007). Lung conditions such 

as chronic obstructive pulmonary disease (COPD) and asthma have been treated for years 

using pulmonary drug delivery. Pulmonary drug delivery allows local treatment of various 

diseases, whilst minimising side effects from systemic administration (Lenzer, 2006). The 

lungs also offer a non-invasive systemic administration method with low enzyme activity and 

no hepatic first pass effect, which is suitable for biomolecules such as proteins and peptides 

(Wolf, 1998). The anatomy of the lungs may compensate for the reduced bioavailability of 

macromolecules. This includes a thin membrane (0.1-0.2 μm) and a large surface area 

(100 m2) which are both qualities that does not limit absorption (Tortora and Grabowdki, 2003). 

For drug delivery via the lungs to be therapeutically effective, the amount of an API required 

for therapy has to pass the oropharynx. An API with an aerodynamic diameter between 0.5 

and 5 μm tends to be deposited in the lower region of the respiratory tract where in the alveoli 

there is a longer residence time and the API can diffuse into the blood stream (Zanan et al., 

1996; Cherian et al., 2000). Ideally, a successful inhaled drug delivery device must provide 

reproducible drug dosing and generate an aerosol at enough speed to pass the oropharynx. 

A good example of such devices include pressurised metered dose inhalers (pMDIs) and dry 

powder inhalers (DPIs) (Steckel and Brandes, 2004). 

 

3.1.1. Pulmonary deposition of inhaled particles 

There are four mechanisms along with target and formulation factors that determine where in 

the lung the inhaled particles will be deposited. These mechanisms are impaction, 

sedimentation, interception and diffusion. Impaction describes the event when particles impact 

with the bifurcation of the lung (it is where the trachea is divided internally into left and right 

bronchi), because they follow their original path (inertia). The deposition of the particles with 

such mechanisms is affected by the aerodynamic diameter, which ultimately is affected by 

particle mass, for this reason the heavier the particles the more deposition that occurs. 

Therefore, the bronchial region is where most of the heavier particles deposit. The second 

mechanism is sedimentation, where particles are deposited in the lower lung airways because 

of decreased airflow and narrower airways. As with the impaction mechanism, it depends on 

aerodynamic diameter. In some cases, particles may grow in size, due to their hygroscopic 

nature, which eventually deposit earlier in the upper airways than anticipated.  The third 

mechanism is interception, which occurs when the outer edges of particles contact the surface 

of the airways of the lung and deviate from their original path, hence it is more evident within 

the lower airways. This deposition of particles with interception is greatly affected by particle 
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shape and the diameter of the airways. The fourth mechanism is diffusion, which affects 

particles with diameters of below 500 nm. The aerodynamic diameter has less influence on 

the deposition of larger particles in the lower airways. In this region, the airflow is low and the 

particles exhibit Brownian movements, which move from an area of high concentration to a 

lower concentration area (Tena and Clara, 2012; Yeh, et al, 1976; Scott, 2016). 

 

3.1.2. Cascade impactors 

To study the deposition of particles, cascade impactors provide a platform for in vitro 

characterisation. Cascade impactors include the Anderson Cascade Impactor (ACI), Multi-

stage Liquid Impactor (MSLI) and the Next Generation Impactor (NGI). There are other types 

of methods apart from cascade impactors, such as Phase-Doppler particle size analysis 

(PDA), the particle time of flight (TOF) and laser diffractometry (LD). However, these methods 

provide an average particle size rather than size distribution and does not include particle 

density into size calculations (Marple et al., 2003; Vacellio et al., 2001; Byron et al., 2004).  

 

Cascade impactors work based on impaction (inertia) to determine particle size and 

distribution in the lung. The air is introduced at a fixed velocity (30, 60 or 90 L/min) into a series 

of meshes. As the air velocity is fixed, the particles will be deposited according to aerodynamic 

diameter (cut-off diameter). The NGI was introduced in 1997 by collaborative work of 

prominent pharmaceutical companies to bring an impactor, which is robust and closely 

resembles the lung airways (Figure 3.1 and 3.2) (Copley, 2007).  

 

 

Figure 3.1. A diagram shows NGI, which is used in the characterisation of pMDI and DPI 

formulations (Adapted from: US Pharmacopia monograph (<601>). 
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Figure 3.2. A diagram shows the stages of NGI and the dimension of the nozzles (Adapted 

from: Adapted from: US Pharmacopia monograph (<601>). 

 

 

3.1.5. Aim and Objectives 

The aim of the work in this chapter is to investigate pMDI and DPI as a platform for aquasomes 

for pulmonary delivery. To achieve this aim, the following objectives was sought: 

 Formulate BSA and metronidazole loaded aquasomes as pMDI and DPI formulations.  

 Investigate the aerodynamic behaviour of the pMDI and DPI formulations using NGI to 

identify lung distribution of aquasomes. 

 Perform in vitro release studies with simulated lung fluid to determine the release 

profile of aquasome formulations. 

 Perform cell culture studies with BEAS-2B cell lines to demonstrate the controlled 

release effect of aquasomes in comparison to salbutamol sulphate which was used as 

a model drug. 

 Perform stability studies to explore the stability of pMDI and DPI formulations. 
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3.2. Materials and Methods 

3.2.1. Materials 

Hydroxyapatite powder (99%), trehalose powder of (99%), cellobiose powder (99%), HPLC 

grade acetonitrile (99%), metronidazole (99%), salbutamol sulphate (99%), trifluoroacetic acid 

(TFA) (99%) and Bovine Serum Albumin (BSA) powder (99%) were purchased from Sigma 

Aldrich, UK. Modified Eagle’s Minimum Essential Medium solution, Earle’s Balanced Salt 

Solution (EBSS), L-glutamine, nonessential amino acids, sodium bicarbonate, sodium 

pyruvate, Fetal Bovine Serum (FBS), Penicillin-Streptomycin (pen/strep) antibiotic solution 

and 0.25% (w/v) Trypsin were purchased from Fisher Scientific, USA. Hydrofluoroalkane 

(HFA)-134a (pharmaceutical grade) was purchased from INEOS Fluor, UK. All materials were 

used as received unless otherwise specified. Ultra-pure grade water was used when required. 

 

3.2.2. Preparation of Aquasomes 

3.2.2.1. Freeze-drying protocol 

In the preparation of aquasomes, freeze-drying process was used. The freeze-dryer used was 

Vir Tis Advantage Plus, USAa. A freeze-drying cycle of 24 hr was performed. The cycle 

consisted of four stages; pre-stage (60 min at -45ºC/atmospheric pressure), primary drying 

stage (720 min at -45ºC under vacuum of 400 mbar), secondary drying stage (460 min at -

20ºC under vacuum of 400 mbar) and equilibrium stage (240 min at 25 ºC). The condenser 

temperature was set at -76ºC.  Freeze-drying vials and lids were used where required. 

 

3.2.2.2. Aquasomes preparation 

Aquasomes were manufactured by modifying the method of Kossovsky et al. (1995). A 

quantity of 100 mg of hydroxyapatite powder (HA) was mixed with trehalose solution (0.1 M) 

for 2.5 hr at 25ºC. The resulting coated cores were then centrifuged (3000 rpm for 10 min), 

washed to remove unadsorbed trehalose and then freeze-dried. A quantity of 10 mL of BSA 

solution (1 mg/mL) was added to the freeze-dried sample under stirring for 2.5 hr at 25ºC. The 

sample was then centrifuged (3000 rpm for 10 min), washed to remove unadsorbed BSA and 

freeze-dried. 

 

3.2.3. Powder Characterisation 

3.2.3.1. HPLC analysis 

Drug analysis from the in vitro release studies and the amount deposited in the NGI stages 

was analysed using an Agilent 1200 series HPLC System equipped with UV and fluorescence 

detectors (Germany). Analysis was performed at ambient temperatures.  
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3.2.3.1.1. BSA HPLC method 

For HPLC analysis of BSA, a C18-ODS Jupiter column (4.6 mm x 250 mm / 5 μm / 300 Å 

(Phenomenex, USA) was used. The injection volume of the sample was set at 100 μL. 

Fluorescent detection method was used with excitation wavelength of 220 nm and emission 

wavelength was set at 312 nm. A gradient elution method was used during which the 

proportion of solution B (acetonitrile) in the eluent increased from 5% to 65% solution against 

solution A (0.01%, v/v trifluoroacetic acid in ultra-pure water). The flow rate of mobile phase 

was set at 1 mL/min. BSA eluted with a retention time of 17.0 min. A standard calibration curve 

was established by the use of BSA standard solutions (r2 = 0.998), which was used for the 

determination of unknown BSA concentration samples. The HPLC method was adapted from 

Umerthia et al., (2010). 

 

3.2.3.1.2. Metronidazole HPLC method 

For HPLC analysis of metronidazole, a C18 Luna column (4.6 mm x 150 mm / 5 μm / 300 Å 

(Phenomenex, USA) was used. The injection volume of the sample was set at 100 μL. 

Fluorescent detection method was used with excitation wavelength was set at 275 nm and 

emission wavelength was set at 312 nm. An isocratic elution method was used during which 

the proportion of solution B (methanol) in the eluent was 60% against solution A (0.01%, v/v 

trifluoroacetic acid in ultra-pure water). The flow rate of mobile phase was set at 1 mL/min. 

metronidazole eluted with a retention time of 3.0 min. A standard calibration curve was 

established by the use of metronidazole standard solutions (r2 = 0.997), which was used for 

the determination of unknown metronidazole concentration samples. The HPLC method was 

adapted from Tashtoudh et al. (2008). 

 

3.2.3.1.3. Salbutamol sulphate HPLC method 

For HPLC analysis of salbutamol sulphate, a C18 Luna column (4.6 mm x 150 mm / 5 μm / 

300 Å (Phenomenex, USA) was used. The injection volume of the sample was set at 100 μL. 

Fluorescent detection method was used with excitation wavelength was set at 292 nm and 

emission wavelength was set at 312 nm. An isocratic elution method was used during which 

the proportion of solution B (acetonitrile) in the eluent was 50% against solution A (0.01%, v/v 

trifluoroacetic acid in ultra-pure water). The flow rate of mobile phase was set at 1 mL/min. 

Salbutamol sulphate eluted with a retention time of 2.5 min. A standard calibration curve was 

established by the use of salbutamol sulphate standard solutions (r2 = 0.997), which was used 

for the determination of unknown salbutamol sulphate concentration samples. The HPLC 

method was adapted from Pai et al. (2009).  
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3.2.3.2. Preparation of pMDI formulations 

BSA-loaded aquasome pMDI formulations were prepared by adding 100 mg of the BSA-

loaded aquasomes powder into pMDI canisters (glass canister was used for stability studies 

and metal canister for any other studies). Pamasol crimper (Pamasol Willi Mäder AG, 

Pfäffikon, Switzerland) was used to crimp the valve (BK357 30 μL) onto the pMDI vials. 

Pamasol propellant filler (Pamasol Willi Mäder AG, Pfäffikon, Switzerland) was used to fill the 

pMDI vials with approximately 10 g of HFA-134a. The final pMDI formulation formed a 

suspension of an approximate concentration of 1.0% w/w. Crimping and filling of the canisters 

were carried out at ambient temperature.  

 

3.2.3.3. Preparation of aquasomes DPI formulation 

A quantity of 20 mg of aquasomes powder was loaded into size 3 hydroxypropyl 

methylcellulose (HPMC) capsules (Shionogi Qualicaps). The HPMC capsules were placed 

into a Cyclohaler®. The capsules are pierced before introducing the Cyclohaler® to the mouth 

tip of the NGI. Capsule loading was performed at ambient temperatures. 

 

3.2.3.4. In vitro powder aerosolisation 

The aerosolisation of aquasomes were investigated using an NGI, Copley Scientific, UK. In 

the case of the pMDI formulations of aquasomes, the pMDI canister was introduced to the 1-

7 stages of the NGI by spraying into the mouthpiece, which was attached to the throat piece. 

In the case of the pMDI formulation, the Cyclohaler® is fixed into the mouthpiece. Prior 

analysis, a digital flow meter (Model DFM2, Copley Scientific, UK) was used to set the flow 

rate through the NGI at 60 ±1 L/min for 5. After introduction of the pMDI formulation, the NGI 

was disassembled and the powder in the trays was weighed. An adjustment was required to 

the NGI for DPI formulation assessment, a pre-stage is added between the NGI. The pre-

stage is a stage consisting of a perforated disk with a 15 mL reservoir in the centre. The same 

procedure as pMDI were followed for DPI formulations in terms of aerodynamics and 

formulation recovery. The procedure was adopted from USP26 (601). 

 

3.2.3.5. In vitro release studies 

Simulated lung fluid (Gamble’s solution) was prepared by dissolving the required components 

in 1L of ultra-pure grade water (Table 3.1). The solution was then left standing for 4-5 hr at 

ambient temperature to check for any salt precipitation, which if occurs, the solution was 

discarded and a fresh 1L was prepared. In vitro release studies were performed on the 

aquasomes collected from stages 3 and 5. The samples were redistributed in 10 mL of 

simulated lung fluid and placed in a shaking water bath at 37oC/100 rpm. A quantity of 0.3 mL 
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was taken for HPLC analysis (section 3.2.3.1) at hourly time points up to 6 hr. The release 

medium was replaced with 0.3 mL of fresh pre-heated simulated lung fluid. 

 

 

 

Table 3.1. The required components to prepare the simulated lung fluid (Gamble’s solution) 

used for the in vitro release studies of pMDI and DPI aquasomes formulations. 
 

Material Amount (mg)/L 

Potassium chloride 720 

calcium chloride dehydrate 220 

sodium chloride 600 

potassium phosphate monobasic 680 

sodium phosphate dibasic 866 

potassium carbonate 1500 

potassium thiocyanate 60 

citric acid 30 

 

 

3.2.3.6. Aerosolisation parameters of pMDI and DPI formulation 

To assess the aerosolisation performance of the pMDI and DPI formulations, emitted dose 

(ED), fine particle dose (FPD) and fine particle fraction (FPF) were calculated. ED was 

calculated as the percentage of total loaded powder weight exiting the pMDI vial. FPD was 

calculated as the weight of drug less than 5 µm (NGI stages 2-6). FPF was calculated as the 

ratio of FPD to total loaded dose. The same procedure of calculation was followed for DPI 

formulations. 

 

3.2.7. Procedure for BEAS-2B cell lines 

3.2.7.1. Cell lines maintenance 

BEAS-2B cell lines were received as a gift from Dr Lindsay Marshall, Aston University. The 

cells were maintained using medium comprised from Dublecco’s modified Eagle’s medium 

(DMEM), 0.5% penicillin-streptomycin, 10% fetal bovine serum (FBS), 2% glutamate solution 

and 1% nonessential amino acids (NEAA). The cells were incubated at 37°C temperature and 

5% CO2. The cells were feed every day and passaged every 2-3 days. The media, HBSS and 

trypsin were preheated to 37°C in a water bath prior to mixing. A quantity of 10 mL of HBSS 

solution was used to wash the flask containing the cells to remove traces of FBS and dead 

BEAS-2B cells. Trypsin was added (3 mL of 0.25% w/v) to the flask and Incubated for 5-10 
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min at 37°C. After the detaching of the cells, a quantity of 10 mL of media was added to quench 

trypsin effect. To prevent clumping of BEAS-2B cells, the mixture was pipetted 3-4 times. A 

quantity of Caco-2 cells was then placed in a new flask (1 mL to a 75cm2 and 0.5 mL to a 

25cm2
 flask). The media was then added to the flask (20 mL to a 75cm2 and 10 mL to a 25cm2

 

flask) and incubated at 37°C.  

 

 

3.2.7.2. Cell Counting 

To count the BEAS-2B cells, a haemocytometer was used. A haemocytometer is a slide made 

of thick glass with a rectangular indentation to create a chamber. The chamber is carved with 

perpendicular lines by laser-etched grid. After addition of trypsin to BEAS-2B cells, a quantity 

of 1 mL was placed in an Eppendorf tube in to which a quantity of 100 µL of trypan blue was 

added. After thorough mixing, a quantity of the mixture was then moved and added to the 

upper edge of the haemocytometer. Using an inverted light microscope and under a suitable 

objective (10-20x), the cells were counted in the four corners with exclusion of the cells outside 

the four rectangular indentation. To calculate the total number of the cells, the following 

equations were used: 

 

 

Cells count =  
total No. of cells counted

4
 x2 … . . (2)            % of viability =  

number of live cells

total number of cells
… … . . (3) 

 

 

3.2.7.3. Cell viability assay  

A 96 well plates were used to seed the BEAS-2B cells at a concentration of 1x106 cells/well. 

Then, the cells were incubated for 24 hr. Afterwards, the media, and a quantity of 

metronidazole was added to the wells (C to H) and incubated for 24 hr (well A and B are 

controls). After the 24 hr, an amount of 10 µL of 3-(4, 5-dimethylthiazolyl-2)-2, 5-

diphenyltetrazolium bromide (MTT) was added to each well and the cells were then incubated 

for a period of 4 hr. The cells were then shaken for 15 min using an electric shaker and 

measured for absorbance at a wavelength of 520 nm using Bio Rad microplate reader, model 

3350, USA. All measurements were performed in triplicate (n=3). The values are reported as 

mean ± standard deviation. 

 

 

 

http://en.wikipedia.org/wiki/Glass
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      Table 3.2. Concentrations of salbutamol, trehalose and HA used in the cell viability assays 

of BEAS-2B cell lines for the delivery of aquasomes via the pulmonary route. 

 

Description Concentrations used 

Salbutamol sulphate solution 10, 20, 40, 80, 90 and 100 µg 

Trehalose solution 10, 20, 40, 80, 90 and 100 µg. 

HA suspension 10, 40, 80, 90, 100 and 150 µg 

 

 

3.2.7.4. TEER measurements 

For TEER measurements, the cells at a concentration of 2 x 105 cells/cm² were seeded on 6-

well trans-well plates with polycarbonate-coated membranes (24mm; 4.7cm²; 0.33 cm3). The 

cells were allowed to grow for 20 days. The media in the apical and basal compartments was 

replaced every 1-2 days. TEER were recorded every 2 days using an epithelial voltmeter, 

(World precision, USA). The measurements were performed in triplicate and each well was 

measured from three different sides to reduce reading errors. All measurements were 

performed in triplicate (n=3). The values are reported as mean ± standard deviation. 

 

3.2.7.5. Permeability studies 

The cells were grown on 6-well Transwell® as described in section 4.2.4.4. After replacing the 

exhausted media from the apical and basal compartments, 1.5 mL of plane media (MDEM) 

mixed with metronidazole at a concentration of 200 µg/mL was added to the apical 

compartment. At time intervals of 1, 2, 3, 4, 5 and 6 hr, an amount of 300 µL was taken from 

both compartments and analysed using HPLC (sections 4.2.3.4). For permeability studies, 

HBSS was used to wash the cells prior the addition of the drug and pre-equilibrated for 1 hr 

with blank media. Afterwards, blank media was removed and the concentrations of 

metronidazole mixed with blank media was added subsequently. All measurements were 

performed in triplicate (n=3). Permiability methods were adopted from Khan et al. (2011). The 

values are reported as mean ± standard deviation. The percentage of drug transported was 

calculated as shown in equation 4. 

 

% of drug transported =  
Apical drug concentration−Basal drug concentration

total drug loading
 x100  ………(4) 

 

 

3.2.8. Stability studies 

BSA-loaded aquasomes pMDI and DPI formulations were stored at 4ºC ±1ºC/60% RH ±2% 

RH, 25ºC ±1ºC/60% RH ±2% RH and 40ºC ±1ºC/75% RH ±2% RH in accelerated stability 
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studies cabinet. At interval time points of 7, 14, 21 and 28 days, samples were taken for in 

vitro release studies (section 3.2.3.5). Visual inspection was performed on the samples, which 

include changes in colour and peeling. Stability methods were adopted from FDA guidelines 

Q1A (R2). All measurements were performed in triplicate (n=3). The values are reported as 

mean ± standard deviation.  

 

3.2.9. Statistical analysis 

A one-way analysis of variance with Tukey–Kramer multiple comparisons test was used 

statistically compared the results obtained from performed experiments. The significance level 

of analysis was p<0.05. 
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3.3. Results and Discussion 

To assess the aerosolisation performance of pMDI and DPI aquasome formulations, there are 

certain parameters to examine. These parameters include ED, FPD and FPF (Table 3.3). In 

general, a successful pMDI and DPI formulations will score ED, FPD and FPF of >90%, >8% 

and >1 respectively. 

 

 

Table 3.3. Aerosolisation parameters used in the assessing of pMDI/DPI formulations for the 
delivery of aquasome formulation. 
 

 Acceptance 

level 

Comments 

ED >90% The higher the better as it indicates the amount of powder 

that exits the inhaler to the oral cavity (less waste). 

FPD >80% The higher the better as indicates the fraction of the 

dispersed powder of less than 5 µm 

FPF >1  The higher the better. 

 

 

To produce BSA-loaded aquasomes with enhanced powder aerosolisation, minor adjustments 

were performed to the freeze-drying method. It was noticed that BSA-loaded aquasomes have 

the tendency to form loose agglomerates when compared to metronidazole-loaded 

aquasomes. The tendency to form loose agglomerates could be related to Van der Waals 

forces or transitory forces as the protein is attached to the outer surface of the aquasomes 

(Senese, 2010). Such agglomerations can directly affect the aerodynamic performance of the 

BSA-loaded aquasomes (agglomerates were deposited in the first two stages of NGI). 

Therefore, to reduce the amount of agglomerates in the freeze-dried powder, the amount of 

water mixed with the formulation before the freeze-drying step was increased gradually in 

steps (0.2 mL, 0.4 mL and 0.6 mL) (Table 3.4). The aerosolisation performance of the powder, 

measured with the NGI, was enhanced as the amount of the water increased (Figure 3.3). It 

is known that as water temperature decreases, the volume of the water increases. This is 

because as the temperature of the water decreases the hydrogen bond strength decreases, 

which allow water molecule to expand in size. This also affects water density, as the density 

of water in frozen state is much less than in its liquid state (Chaplin, 2015; Deville et al., 2007). 

However, when higher volumes of water were added to the BSA-loaded aquasomes powder 

(>0.8 mL), the drug adsorbed onto the aquasomes started to be released (5% release which 

is equivalent 0.35±0.03 mg), which eventually reduced the loading efficiency.  
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Table 3.4. The deposition of BSA-loaded aquasomes DPI formulations in the stages of the 
NGI. The table shows the improvement in aerosolisation of the DPI formulations as the amount 
of water increases prior to freeze-drying. Values are represented as mean ± mean (n=3). 

Stage Cut-off diameter 
(µm) 

Amount of water 
(mg) / 0.2 mL 

Amount of water 
(mg) / 0.4 mL 

Amount of water 
(mg) / 0.6 mL 

Device - 4.2 ± 1.1 1.8 ± 0.22 0.5 ± 0.05 

Throat - 1 ± 0.20 1.33 ± 0.20 1.33 ± 0.30 

Pre-Stage > 8.06 4.2 ± 0.44 2.9 ± 0.90 1.46 ± 0.37 

Stage 1 8.06 3.5 ± 0.62 2 ± 0.12 < 1 

Stage 2 4.40 4.5 ± 0.97 6.2 ± 1.41 1.5 ± 0.36 

Stage 3 2.82 1.2 ± 0.55 1.2 ± 0.39 4.03 ± 0.85 

Stage 4 1.66 < 1 3.5 ± 0.81 4.53 ± 0.58 

Stage 5 0.94 < 1 < 1 4.63 ± 0.24 

 

 

 

Figure 3.3. A bar chart shows the DPI formulation of BSA-loaded aquasomes deposited in 
the stages of the NGI (formulated with 0.6 mL ultra-pure water mixed with the powder after 
freeze-drying). BSA-loaded aquasomes show enhanced aerosolisation as most of the 
deposited powder were in NGI stages 3, 4 and 5. Values are reported as mean ± SD (n=3). 
Statistical analysis (one-way ANOVA/Tukey) between stages: **p< 0.01, ***p < 0.001. 
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In both cases of pMDI and DPI formulations of metronidazole-loaded aquasomes, the drug 

loading during in vitro release studies were at or below the limit of quantification (LOQ) of the 

metronidazole HPLC method. The formulations were treated with 0.1 % Triton X to dissemble 

the system and then the total loading of the formulation was calculated. The reason that the 

loading of metronidazole is lower than that of BSA could be because metronidazole has a 

molecular weight of 171.153 g/mol, while BSA has a molecular weight of 66,463 g/mol. This 

results in higher attraction forces of BSA molecules (583 residues) to that of metronidazole 

per molecule, which eventually decreases the loading despite the concentrated solution of 

metronidazole used to prepare the metronidazole-loaded aquasomes. This is further 

explained in Chapter 2.  

 

3.3.1. pMDI formulation of aquasomes 

3.3.2.1. pMDI formulations of BSA-loaded aquasomes 

The dispersant aiders are used to produce a dispensable powder, which eventually enhances 

the aerosolisation performance. L- Leucine is one of the known dispersant aiders that has 

widely been used in pMDI and DPI formulations to produce dispersible powders. It is 

interesting to indicate that aquasomes showed high dispersability (ED 94.86% ±2.6) without 

the use of dispersant aiders (Table 3.5). The aerosolisation performance of the particles was 

assessed using the NGI. Table 3.4 shows the amount of aquasomes and the percentage of 

the delivered dose of aquasomes to each stage of the NGI. It can be observed that (54.7% 

±6.85) of the delivered dose has a cut-off diameter of 2.82 μm. It has been recognized that 

particle deposition in the lower respiratory region occur at aerodynamic diameter between 0.5-

5 μm. For systemic circulation, this is the optimum location for the drug to diffuse into the blood 

stream. In addition, the BSA-loaded aquasomes showed high dispersability, which indicate 

that inhalation of these formulation powders would be associated with low incidence of local 

side effects which results from the low deposition of these powders in the oropharyngeal 

region (Koleswara, 2007; Rabe, 2006).  

 

ED and FPD values of the aerosolised aquasome formulations were used to calculate FBF 

and the percentage of aquasomes delivered to each step of the NGI. FPD is an indication to 

what fraction of the delivered dose is less than 5 µm, which draw an indication to the deposition 

of the powder in the mid-lower lung region. It is noticeable that the majority of the deposited 

aquasomes were in stages 2, 3 and 4 which is in the terminal bronchiole region (Figure 3.4). 

The collected powder in stages 6 and 7 was unprocessable and hence the reduction was 

calculated from the delivered dose, which was anticipated to belong to those stages. The FBF 
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score of the BSA-loaded aquasome formulation was above 1, which shows that a large 

percentage of the aquasomes powder exited the pMDI vial and has deposited in the NGI 

stages with minimum waste. It is noted that the aerosolisation performance of the BSA powder 

was not performed as in its original state the powder causes blockage of the pMDI valve. To 

produce a respirable powder, it has to be dissolved in water, mixed with a dispersible aider 

and then spray dried to produce the final powder. Since the aim of the current study is to 

sustain the release of BSA (develop a controlled release system), BSA respirable powder was 

not produced as a control, instead, freeze-dried BSA powder was used as a control for the in 

vitro release studies of the aquasome pMDI formulations. 

 

 

 

Table 3.5. The cut-off diameter of the NGI stages, ED, FBD, FBF, mass of aquasomes, actual 

amount of BSA and the theoretical amount of BSA at each stage of pMDI formulation of BSA-

loaded aquasomes. Values are mean ± SD (n = 3). 

 
 

Stage 

Cut-off 

Diameter 

(µm) 

Amount of 

Aquasom

es (mg) 

 

ED 

 

FBD 

 

FBF 

Aquasome

s Delivered 

(%) 

Theoretical 

amount of 

Drug (mg) 

Actual 

Amount of 

Drug (mg) 

Unprocessed 

formulation 

 

- 

 

100 

 

          -  

 

7.0 ±0.89 

Device - 4.9 ±1.39 

9
4
.8

6
 ±

2
.6

 

8
0
 ±

1
.5

 

1
.1

8
 

-  - 

Throat - 6.1 ±1.35 - 0.043 ±0.09 - 

Stage 1 8.06 3.7 ±0.6 4.6 ±0.75 0.259 ±0.04 0.45 ±0.12 

Stage 2 4.40 18.7 ±2.13 22.7 ±2.86 1.27 ±0.15 1.6 ±0.40 

Stage 3 2.82 44 ±5.29 54.7 ±6.58 3.08 ±0.37 2.24 ±0.09 

Stage 4 1.66 12.6 ±2.51 15.7 ±3.13 0.88 ±0.17 0.95 ±0.10 

Stage 5 0.94 5.5 ±0.5 6.8 ±0.62 0.385 ±0.03 0.65 ±0.03 
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Figure 3.4. The amount of aquasomes deposited at different stages of the NGI of a pMDI 
formulation of BSA-loaded aquasomes. The majority of the deposited aquasomes were in 
stages 2, 3 and 4 which is in the terminal bronchiole region Values are reported as mean ± SD 
(n = 3). Statistical analysis (one-way ANOVA/Tukey) between stages: *p < 0.05, **p< 0.01, 
***p < 0.001. 
 

 

3.3.2.2. In vitro release studies of pMDI formulation of BSA-loaded aquasomes 

Even though there is a vast amount of research within the area of pulmonary drug delivery, 

the release models for inhalable powders are rarely discussed. However, the absence of a 

suitable model for pulmonary in vitro release is interesting. This is because with inhalable drug 

delivery systems, the onset of action is critical to assess the formulation. To elaborate more, 

in the literature, unprocessed powders are used as a reference. However, it is with no doubt, 

the powder undergoes immediate release unless the drug has poor solubility or dissolves 

under certain pH conditions (which is not the case in the present study) (Learoyda et al., 2010; 

Taylor et al., 2006; Learoyd et al., 2008).  

 

Figure 3.6 shows the release of BSA from aquasomes with aerodynamic diameters of 2.82 

and 0.94 μm (stages 3 and 5 respectively) and BSA-loaded aquasomes powder. Stage 3 was 

the stage where most of the deposition of aquasomes occurred (mid region of lung) and stage 

5 represents the alveoli region. The BSA release from aquasomes was controlled over the 6 

hr study with no burst effect noticed. A small burst was observed from aquasomes collected 

from stage 5, which was statistically significant compared to control (p< 0.01). This could be 

related to the large amount of the release media used (10mL) which may have contributed to 
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a higher number of water molecules being attracted to the system compared to the 100 mg of 

manufactured aquasomes (Kossovsky et al., 1995). On the other hand, these studies exhibit 

the potential to sustain drug release through aquasomes. It is interesting to observe that over 

the 6 hr study, BSA-loaded aquasomes with an aerodynamic diameter of 0.94 μm released 

650±0.03 μg of BSA (9.2% ±0.5 of total loading). This is very encouraging for potential 

protein/peptide delivery using aquasomes via the pulmonary route. As to achieve maximum 

therapeutic effect dose not streamed from optimisation of inhaled delivery device only, but 

also from well-designed formulation or delivery systems (Onoue et al., 2008). 

 

BSA-loaded aquasomes released approximately 95% of the initial loading over the 6 hr of the 

release study (Figure 3.5 and 3.6). In vitro release studies for stages 3 and 5 show the 

amounts of BSA of 2.24±0.09 mg and 0.65±0.03 mg respectively (Table 3.4). However, these 

values are different to the theoretical loadings by 27% and 71% respectively. This deviation 

could arise because the size distribution width is high (990±120 µm), which could result in an 

uneven distribution of BSA-loaded aquasomes in stages 3 and 4. However, it would be 

interesting to investigate if such deviation can be overcome by sonicating the cores at higher 

sonication amplitudes to produce a more uniform particle size (Learoyd et al., 2009; 

Alessandra et al., 2008).   

 

 

  

Figure 3.5. The hourly BSA concentration released from aquasomes taken from NGI stages 
3 and 5 of pMDI formulation of BSA-loaded aquasomes. BSA-loaded aquasomes in both 
stages show a sustained release of BSA. Values are reported as mean ± SD (n = 3).  
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Figure 3.6. A figure shows the cumulative release of BSA from 100 mg aquasomes (r2 0.999), 

aquasomes collected from stage 3 (r2 0.998) and aquasomes collected from stage 5 (r2 0.997) 

of pMDI formulation of BSA-loaded aquasomes. Values are reported as mean ± SD (n = 3). 

 
3.3.2. pMDI formulation of metronidazole-loaded aquasomes 

As with the BSA-loaded aquasomes pMDI formulation, dispersant aiders were not used in the 

process of formulation for metronidazole. The ED of the pMDI formulation of metronidazole-

loaded aquasomes was 94.5 ±1.6%. The aerosolisation performance of metronidazole-loaded 

aquasome particles was evaluated using the NGI and the results are presented in table 3.6. 

A percentage of 66.2% ±4.9 of the delivered dose has a cut-off diameter of 2.82 μm. pMDI 

formulation of metronidazole-loaded aquasomes show similar trends to pMDI formulation of 

BSA-loaded aquasomes in terms of these particles will be expected to deposit in the lower 

respiratory tract and the alveoli and have high dispersability, which indicate low incidence of 

local side effects. The percentage of the metronidazole-loaded aquasomes in each stage of 

the NGI shows that the majority of the deposited aquasomes were in stages 2 and 3, which 

are in the terminal bronchiole region (Figure 3.7). As for the collected powder in stages 6 and 

7, this was unprocessable and hence the reduction was calculated from the delivered dose, 

which was anticipated to belong to those stages. The FBF score of the metronidazole-loaded 

aquasome formulation was 1.17. This shows that a greater percentage of the aquasome 

powder exited the pMDI vial and has deposited in the NGI stages with minimum waste.  

 

As was the case for the BSA-loaded aquasomes, metronidazole powder is not a respirable 

powder (section 3.3.2.1). Since the aim of the study is to sustain the release of metronidazole 

(develop a controlled release system), metronidazole respirable powder was not produced as 
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a control, instead, metronidazole powder was used as a control in the in vitro release studies 

of the aquasomes pMDI formulations. 

 

Table 3.6. The cut-off diameter of NGI stages, ED, FBD, FBF, mass of aquasomes, actual 
amount of metronidazole and the theoretical amount of metronidazole at each stage of the 
pMDI formulation of metronidazole-loaded aquasomes. Values are reported as 
mean ± SD (n = 3). 
 

 

Stage 

Cut-off 

Diameter 

(µm) 

Amount of 

Aquasome

s (mg) 

 

ED 

 

FPD 

 

FPF 

Aquasome

s Delivered 

(%) 

Theoretical 

amount of 

Drug (mg) 

Actual 

Amount of 

Drug (mg) 

unprocessed 

Formulation 

 

- 

 

100 

 

          -  

 

0.4 ±0.09 

Device - 3.9 ±1.2 

9
4
.5

 ±
1
.6

 

8
0
.5

 ±
1
.1

 

1
.1

7
 

-  - 

Throat - 4.1 ±1.1 - - - 

Stage 1 8.06 3.2 ±0.6 3.7 ±0.4 0.01 ±0.002 un quantified 

Stage 2 4.40 20.7 ±1.1 24.0 ±2.2 0.08 ±0.002 0.09 ±0.04 

Stage 3 2.82 49.2 ±3.3 56.9 ±6.2 0.19 ±0.004 0.28 ±0.05 

Stage 4 1.66 9.6 ±2.0 11.1 ±2.9 0.03 ±0.003 un quantified 

Stage 5 0.94 3.5 ±0.5 4.0 ±0.3 0.01 ±0.002 un quantified 

  
 

 

Figure 3.7. A bar chart shows the amount of aquasomes deposited at different stages of NGI 
of the pMDI formulation of metronidazole-loaded aquasomes. Values are reported as 
mean ± SD (n = 3). Statistical analysis (one-way ANOVA/Tukey) between stages: *p < 0.05, 
**p< 0.01, ***p < 0.001. 
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3.3.2.1. In vitro release studies of pMDI formulation of metronidazole-loaded aquasomes 

As shown in Figure 3.8, the release of metronidazole from aquasomes with aerodynamic 

diameters of 2.82 (NGI stage 3) was controlled over the 6 hr of study. The release of 

metronidazole from aquasomes with aerodynamic diameters of 2.82 exhibit the potential to 

sustain drug release through aquasomes. Aquasomes collected from NGI stages 1, 2, 3, 4 

and 5 was washed with simulated lung fluid and analysed using HPLC (3.2.3.3). The loading 

of the 100 mg of metronidazole-loaded aquasomes was less comparable to that of BSA (0.4 

mg ±0.09), therefore, it was difficult to quantify metronidazole because these concentrations 

are less than the LOQ of the HPLC method.  

 

 

 

Figure 3.8. A figure shows the amount of metronidazole released from aquasomes collected 

from NGI stage 3 of the pMDI formulation of metronidazole-loaded aquasomes. Values are 
reported as mean ± SD (n = 3). 
 

However, metronidazole was detected in stages 1, 4 and 5. Metronidazole-loaded aquasomes 

released 96% of the initial loading after 6 hr of release (Figure 3.9). In vitro release studies for 

stages 2 and 3 show that metronidazole loading was of 0.09 mg ±0.04 and 0.28 mg ±0.05 

respectively. Though, these values are different to the theoretical loadings of metronidazole 

by 12.5% and 47.3% respectively (Table 3.5). The reason to why such deviation from the 

theoretical metronidazole loadings was explained in section 3.3.2.2. 
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Figure 3.9. A figure shows the cumulative release of metronidazole from 100mg aquasomes 

(r2 0.998), aquasomes collected from stage 3 (r2 0.998) of the pMDI formulation of 

metronidazole-loaded aquasomes. Values are reported as mean ± SD (n = 3). Values are 

reported as mean ± SD (n = 3).   
 

 

3.3.3. DPI formulations of aquasomes 

3.3.3.1. DPI formulation of BSA-loaded aquasomes 

The ED of the DPI formulation of BSA-loaded aquasomes was 96.0% ±2.3. The NGI was used 

to assess the DPI formulation of BSA-loaded aquasomes (Table 3.7). A percentage of 62.76% 

±2.8 of the delivered dose has a cut-off diameter of 2.82 μm. Therefore, the BSA-loaded 

aquasomes showed high dispersability and low incidence of local side effects (e.g. mouth and 

throat). The FBF score of the BSA-loaded aquasome DPI formulations was 1.09, this shows 

that a great percentage of the aquasomes powder exited the capsule has deposited in the 

NGI stages with minimum waste. To produce a respirable powder, the same procedure 

mentioned in section 3.3.2.1 was performed. The percentage of the BSA-loaded aquasomes 

in each stage shows that the majority of the deposited aquasomes were in stages 2 and 3, 

which is in the terminal bronchiole region of the lung (Figure 3.10). The collected powder in 

stages 1, 6 and 7 was unprocessable and hence the reduction in the delivered dose was 

anticipated to belong to those stages. 
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Table 3.7. The cut-off diameter of NGI stages, ED, FBD, FBF, mass of aquasomes, actual 
amount of BSA and the theoretical amount of metronidazole at each stage of DPI formulation 
of BSA-loaded aquasomes. Values are reported as mean ± SD (n = 3). 
 
 

Stage 

Cut-off 

Diameter 

(µm) 

Amount of 

Aquasomes 

(mg) 

 

ED 

 

FBD 

 

FBF 

Aquasome

s Delivered 

(%) 

Theoretical 

amount of 

Drug (mg) 

Actual 

Amount of 

Drug (mg) 

unprocessed 

Formulation 

 

- 

 

20 

 

          -  

 

1.5 ±0.09 

Device - - 

9
6

.0
 ±

2
.3

 

8
8

.1
 ±

1
.9

 

1
.0

9
 

- - - 

Throat - 1.33 ± 0.3 - - - 

Pre-stage > 8.06 3.50 ± 0.3 - 0.10 ±0.07 - 

Stage 1 8.06 - - - - 

Stage 2 4.40 4.51 ± 0.2 23.4 ±1.8 0.33 ±0.05 0.28 ±0.09 

Stage 3 2.82 7.50 ± 0.7 39.4 ±2.5 0.56 ±0.07 0.74 ±0.09 

Stage 4 1.66 1.83 ± 0.4 9.13 ±2.1 0.65 ±0.07 0.31 ±0.07 

Stage 5 0.94 - - - un quantified 

  
  

 

Figure 3.10. A bar chart shows the amount of aquasomes deposited at different stages of NGI 
of the DPI formulation of BSA-loaded aquasomes. Values are reported as mean ± SD (n = 3). 
Statistical analysis (one-way ANOVA/Tukey) between stages: *p < 0.05, **p< 0.01, 
***p < 0.001. 
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3.3.3.2. In vitro release studies of DPI formulations of BSA-loaded aquasomes 

Figure 3.11 compares the release of BSA from aquasomes with aerodynamic diameters of 

2.82 (NGI stage 3) and the aquasome powder. The BSA release of aquasomes was controlled 

over the 6 hr of study. Aquasomes collected from the NGI stages 1, 2, 4 and 5 were washed 

with simulated lung fluid and analysed using the HPLC (2.3.3.3).  

 

BSA was detectable in stages 1, 2, 4 and 5 of the NGI. BSA-loaded aquasomes released 

approximately 98% of the loading after 6 hr of release (Figure 3.9). In vitro release studies for 

stages 2, 3 and 4 show that BSA loading was of 0.28 ±0.09, 0.74 ±0.09 and 0.31 ±0.07 mg. 

However, these values are different from the theoretical loadings of BSA by 15.15%, 32.14% 

and 24.23% respectively because of the reasons explained in section 3.3.2.2. 

 

 

 

Figure 3.11. The figure shows the hourly amount of BSA released from aquasomes at NGI 

stage 3 of DPI formulation of BSA-loaded aquasomes (6 hr in vitro release study). Values 

are reported as mean ± SD (n = 3). 

 

3.3.3.3. DPI formulation of metronidazole-loaded aquasomes 

The ED of the DPI formulation of metronidazole-loaded aquasomes was 94.5 ±1.9, Table 3.8. 

A percentage of 80.5% ±1.1 of the delivered dose has a cut-off diameter of 2.82 μm. Therefore, 

metronidazole-loaded aquasomes DPI formulation will deposited in the lower respiratory 

region with minimal local side effect due to their high dispersability. The FBF score of the 

metronidazole-loaded aquasomes formulation was 1.17, this shows that a great percentage 

of the metronidazole-loaded aquasomes powder exited the DPI vial has deposited in the NGI 
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stages with minimum waste. To produce a respirable powder, since metronidazole in its 

original state is not a respirable powder, the same procedure mentioned in section 3.3.2.1 was 

performed. The percentage of the metronidazole-loaded aquasomes in each stage shows that 

the majority of the deposited aquasomes were in stages 2 and 3, which is in the terminal 

bronchiole region of the lung (Figure 3.12). As for of the collected powder in stages 1, 5, 6 and 

7, this was unprocessable and hence the reduction was calculated from the delivered dose, 

which was anticipated to belong to those stages. 

 

 

 

 

 

Table 3.8. The cut-off diameter of NGI stages, ED, FBD, FBF, mass of aquasomes, actual 

amount of metronidazole and the theoretical amount of metronidazole at each stage of the 
DPI formulation of metronidazole-loaded aquasomes. Values are reported as 
mean ± SD (n = 3). 
 

 

Stage 

Cut-off 

Diameter 

(µm) 

Amount of 

Aquasomes 

(mg) 

 

ED 

 

FPD 

 

FPF 

Aquasome

s Delivered 

(%) 

Theoretical 

amount of 

Drug (mg) 

Actual 

Amount of 

Drug (mg) 

unprocessed 

Formulation 

 

- 

 

20 

 

          -  

 

0.08 ±0.89 

Device - - 

9
4
.5

 ±
1
.9

 

8
0
.5

 ±
1
.1

 

1
.1

7
 

- - - 

Throat - 1.90 ± 0.5 - - - 

Pre-stage > 8.06 2.80 ± 0.4 - 0.10 ±0.07 - 

Stage 1 8.06 - - - - 

Stage 2 4.40 4.81 ± 0.6 25.2 ±1.6 0.01 ±0.01 0.02 ±0.01 

Stage 3 2.82 7.00 ± 0.5 36.8 ±2.1 0.03 ±0.02 0.05 ±0.01 

Stage 4 1.66 1.30 ± 0.3 6.9 ±1.6 0.005 

±0.002 

un quantified 

Stage 5 0.94 - - - - 
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Figure 3.12. A bar chart shows the amount of aquasomes deposited at different stages of NGI 
of the DPI formulation of metronidazole-loaded aquasomes. Values are reported as 
mean ± SD (n = 3). Statistical analysis (one-way ANOVA/Tukey) between stages: *p < 0.05, 
**p< 0.01, ***p < 0.001. 

 
 

3.3.3.4. In vitro release studies of DPI formulations of metronidazole-loaded aquasomes 

 

Table 3.8 compares the release of metronidazole from aquasomes with aerodynamic 

diameters of 4.40 and 2.82 (NGI stage 2 and 3). The metronidazole release of aquasomes 

was controlled over the 6 hr of the study. The aquasomes collected from other stages were 

unquantifiable on the HPLC because the metronidazole concentration was below the LOQ of 

the metronidazole HPLC method. The amount of metronidazole deposited on stages 2 and 3 

were 0.02 mg ±0.01 and 0.05 mg ±0.01 respectively. 

 

3.3.4. Cell culture studies 

In cell culture studies, salbutamol sulphate was used as a model drug. The use of salbutamol 

sulphate as a model drug for this study and not metronidazole was for two reasons. 

Salbutamol is a well suited as a model for the BEAS-2B cell lines as salbutamol sulphate is 

already used to treat asthma. Moreover, there is substantial research where salbutamol is 

used as a model drug, which provide a rich ground to progress with these studies (Lipworth 

and Clark, 1997; Lipworth and Clark, 1998). However, there is less research in terms of 

sustained release formulations for pulmonary drug delivery.  

 

The cell line that was used for cell viability and permeability studies was BEAS-2B. BEAS-2B 

cells are derived from normal bronchial epithelium obtained from healthy individuals. The cells 
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were infected with a replication-defective SV40/adenovirus 12 hybrid to clone them. BEAS-2B 

have been used in studies of pneumococcal infection mechanisms. BEAS-2Bhas also been 

used  to express keratins and SV40 T antigen. Despite that Calu-3 cell lines still remains the 

preferred choice of cell lines because of it early appearance, BEAS-2B is gaining a growing 

interest because its origin (human origin and not immortalised cancer cells) and for its rapid 

confluency (3-4 days) (Reddel, et al., 1995). 

 

3.3.4.1. MTT assay for the effects of HA, trehalose and salbutamol sulphate 

The MTT assay is a method that quantifies cell viability and cytotoxicity based on colour 

change (yellow to purple) of MTT due to the reduction of the agent inside the living cells. It is 

worth noting that the MTT assay cannot be used as an indication for cell proliferation, because 

the MTT is specifically metabolised by the mitochondria, hence, it is designed to measure cell 

viability via cell metabolism. To measure cell proliferation, assays such as the tetrazolium 

assay may be used (Berridge et al., 2005).  

 

To measure cell viability in the presence of HA, concentrations of 0.1, 0.4, 0.6, 0.8, 0.9, 1 and 

1.5 mg/mL of salbutamol were used. The analysis of the data gathered from the MTT assay 

indicates that the BEAS-2B cells were viable, in comparison with the control, at all the 

concentrations of HA apart form the highest concentration (1.5 mg/mL). The reduction in the 

percentage of cell viability was statistically significant (p< 0.01) when compared to the HA 

concentration of 0.8 mg/mL, and also significant statistical difference (p<0.05) when compared 

to the HA concentration 1.0 mL (Figure 3.13). Cell death may have occurred either because 

of the high concentration of the non-soluble HA covered the surface area and produced a 

barrier between the cells and the medium or because non-soluble HA particles introduced a 

stress and indirectly caused cell death. However, it is interesting to notice Xe et al. (2013) 

performed a study on the toxicity of HA using BEAS-2B cell lines and found that needle- and 

plate-shaped HA nanoparticles caused cell toxicity compared to spherical HA nanoparticles at 

concentrations of 10–300 μg/mL. Moreover, Zhao et al. (2011) performed in vitro assessment 

of rod shaped HA nanoparticles and found that reactive oxygen species (ROS) was highly 

generated in the case of longer and large surface area HA nanoroads compared shorter and 

small surface area ones. These studies come parallel to the MTT assay that show low toxicity 

of HA nanoparticles used and highly suggest that the HA cell toxicity is shape and size 

dependent rather than an inherit characteristic. 



144 
 
 

 

Figure 3.13. The bar chart shows the percentage of BEAS-2B cell viability in various HA 
concentrations. Values are reported as mean ± SD (n = 3). Statistical analysis (one-way 
ANOVA/Tukey) between stages: *p< 0.05. 

 
 

To measure the percentage of cell viability in the presence of trehalose, concentrations of 0.1, 

0.2, 0.4, 0.6, 0.8, 0.9, 1 mg/mL of trehalose were used. The analysis of the data gathered from 

MTT assays indicate that the BEAS-2B indicate that there is no significant difference (p>0.05) 

in viability compared to the reference (p>0.05) (Figure 3.14). Such results come parallel to 

what has been published in terms of the cell-preservative effect of trehalose. For instance, 

Cloonan et al. (2014) studied the effect of trehalose on rats during cigarette smoke induced 

COPD. They noticed that rats treated with 2% w/v solution trehalose (via mouth) was protected 

from induced COPD compared to control (treated with sucrose). They suggest that trehalose 

exhibited this effect via a marked increase in autophagy flux and increased expression of 

ubiquitin binding scaffold protein p62. Moreover, Geissler et al. (2013) found that trehalose 

(concentration of 300 mM) had unique characteristic in stabilising mitochondria of BEAS-2B 

cell during apoptosis cell studies using a fungal pathogen called gliotoxin. 
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Figure 3.14. The bar chart shows the percentage of BEAS-2B cell viability in various trehalose 

concentrations. Values are reported as mean ± SD (n = 3). 

 
3.3.4.2. MTT assay of the effect of salbutamol sulphate 

To measure cell viability in the presence of salbutamol, concentrations of 0.1, 0.2, 0.4, 0.6, 

0.8, 0.9, 1 mg/mL of salbutamol were used. The analysis of the data collected from MTT 

assays indicate that there is no significant difference (p>0.05) in viability compared to the 

reference, in comparison with the reference absorbance, at concentrations of 0.1, 0.2, 0.4 and 

0.6 mg/mL of salbutamol (p>0.05) (Figure 3.15). However, with concentrations of 0.8 and 1 

mg/mL of salbutamol there was a decrease in the mean absorbance. Despite the decrease in 

absorbance, there was no statistical difference when compared to the reference absorbance 

(p>0.05). These findings are parallel to the lethal dose studies performed on rats, which show 

salbutamol sulphate had a high margin of toxicity level. The lethal dose of subcutaneous 

salbutamol sulphate injection is approximately 2,000 mg/kg. By comparison, the maximum 

recommended daily inhalation dose for adults is less by 1400 times higher than that of rats. 

This highlights the safety profile of salbutamol sulphate, though lethal dose studies have not 

been identified in humans for ethical reasons (Drugs, 2015). 
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Figure 3.15. The bar chart shows the percentage of BEAS-2B cell viability in various 

salbutamol sulphate concentrations. Values are reported as mean ± SD (n = 3). 
 

 

3.3.4.3. TEER measurements 

MTT assays were performed to quantify cell viability in the presence of aquasome components 

(HA, trehalose and metronidazole). Although MTT assay in the literature was performed on 

HA, trehalose and metronidazole, the concentrations of the three materials have not been 

reported to fit the purpose (assembly of aquasomes aquasomes) (Ignjatović et al., 2013; 

Mathoera et al., 2002; Umashankar et al., 2010). To measure TEER, the cells were allowed 

to grow for a period of 20 days after seeding on 6-well Transwell® plates and the TEER was 

measured every 2 days. The TEER measurements for the BEAS-2B cells plateaued after day 

15 (Figure 3.16). It is worth to indicate that measuring TEER of BEAS-2B cell line are 

challenging as the confluency rate is rapid compared to Caco-2 cell line, and on many 

occasions it is difficult to produce TEER measurements of higher than 100 ohm/cm2 (Erhardt 

and Kim, 2007; Stewart et al., 2012). 
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Figure 3.16. The figure shows the TEER measurement of BEAS-2B cells seeded on 6-well 

Transwell® plates with TEER measured every 2 days for 20 days. Values are 

mean ± SD, n = 3. 

 

3.3.4.4. Permeability studies of Salbutamol sulphate loaded aquasomes 

Salbutamol sulphate loaded aquasomes were administered to the monolayers of BEAS-2B 

cells in Transwell® and the permeability was compared to that of salbutamol sulphate solution 

of the same concentration to determine whether salbutamol-loaded aquasomes can show a 

delayed drug release effect. As shown in Figure 3.17, salbutamol loaded aquasomes had a 

delayed salbutamol release across the monolayers of cells compared to the free salbutamol 

sulphate solution. This was also confirmed with the lower total salbutamol released from both 

formulations. Within the first hour of release of salbutamol sulphate from aquasomes, there 

was an initial burst effect of 40% higher than that of salbutamol sulphate solution, despite the 

fact that there was no statistical difference. After 2 hr, the release of salbutamol sulphate from 

aquasomes started to slow gradually until it reached its highest difference at hour 6 (p<0.05).  

The salbutamol transported across the BEAS-2B monolayer was 46.12% ±2.9 after 6 

hr. Rytting et al., (2010) performed similar studies on negatively-charged polymer poly (vinyl 

sulfonate-co-vinyl alcohol)-g-poly (d,l-lactic-co-glycolic acid) which was loaded with 

salbutamol sulphate. They found that these nanopolymeric carriers delayed the release of the 

salbutamol sulphate compared to control free salbutamol. It is interesting to note that the 

encapsulation efficiency of these nanopolymeric carriers was 2.7% (2.7 mg salbutamol 

sulphate in every 50 mg of the nanopolymeric carrier). However, the applied concentration of 

these systems was at 2.5 mg/mL, which is a fraction to the concentration of the nanopolymeric 

carrier proposed by Rytting et al. (2010). 
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Figure 3.17. A figure shows the transport of salbutamol sulphate across BEAS-2B as free 
drug solution (orange line) or as loaded on aquasomes (blue line). Values are reported as 
mean ± SD (n=3). Statistical analysis (one-way ANOVA/Tukey) between stages: *p< 0.05. 

 
3.3.5 Stability studies of DPI and pMDI formulations 

The stability of BSA-loaded aquasome pMDI and DPI formulations were conducted in two 

storage conditions of 4ºC ±1ºC/60% RH ±2% RH and 25ºC ±1ºC/60% RH ±2% RH. The 

stability of BSA-loaded aquasomes of DPI and pMDI formulations were not investigated at 

40ºC ±1ºC/75% RH ±2% RH because the stability studies of BSA-loaded aquasomes at 

storage conditions of 40ºC ±2ºC/75% RH ±5% RH failed (Chapter 2).  

 

The stability studies of BSA-loaded aquasome DPI formulations were investigated for a period 

of 6 months at storage conditions of 4ºC ±1ºC/60% RH ±2% RH and 25ºC ±1ºC/60% RH ±2% 

RH, Table 3.9 and 3.10. However, the stability studies of BSA-loaded aquasome pMDI 

formulations was investigated for a period of 2 months at storage conditions of 4ºC ±1ºC/60% 

RH ±2% RH and 25ºC ±1ºC/60% RH ±2% RH, Table 3.11. 

 

The stability studies of BSA-loaded aquasome DPI formulations was investigated for a period 

of 6 months at storage conditions of 4ºC ±1ºC/60% RH ±2% RH and 25ºC ±1ºC/60% RH ±2% 

showed no change in aerosolisation performance and percentage of loadings of BSA (p>0.05). 

The samples were also checked for discoloration after NGI studies, where the samples 

showed no change in colour. This highlights aquasomes as a stable platform for the delivery 

of proteins and peptide. The minimum time required by guidelines for stability studies 

performed at 4ºC ±1ºC/60% RH ±2% RH, 25ºC ±1ºC/60% RH ±2% RH and 40ºC ±1ºC/75% 

RH ±2% RH is for 12, 6 and 6 months respectively (Faisal et al., 2013; SADC, 2014; Singh et 

al., 2012). The stability studies of BSA-loaded aquasomes DPI formulation was investigated 
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for a period of 6 months at storage conditions of 4ºC ±2ºC/60% RH ±5% RH was performed 

for 6 months which was inadequate to establish an accepted shelf life. However, at storage 

condition of 25ºC ±2ºC/60% RH ±5%, aquasomes were able to withstand storage conditions 

up to 6 months. According to FDA guidelines, shelf life is calculated as the amount of time of 

accelerated stability studies to the power of two (n2). In this case, the predicted shelf life for 

BSA-loaded aquasomes at 25ºC ±1ºC/60% RH ±2% is 12 months. It is important to highlight 

that such predictions should always be accompanied by real stability studies to confirm the 

predicted shelf life. 

 

The stability studies of BSA-loaded aquasome pMDI formulations was investigated for a period 

of 6 months at storage conditions of 4ºC ±1ºC/60% RH ±2% RH and 25ºC ±1ºC/60% RH ±2% 

for 2 months show no change in aerosolisation performance and percentage of loadings of 

BSA (p>0.05). The samples were also checked for clarity, discoloration and presence of 

agglomeration, which the samples show none for the duration of the stability studies. As the 

case with BSA-loaded aquasomes DPI formulation, the study was performed less than 6 

months at 4ºC ±1ºC/60% RH ±2% RH and 25ºC ±1ºC/60% RH ±2% RH storage conditions. 
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Table 3.9. Stability studies of BSA-loaded aquasomes DPI formulation for 6 months at 25ºC ±1ºC/60% RH ±2% RH. The table shows the 

deposition of BSA-loaded aquasomes in each stage and the amount of BSA loading. Values are reported as mean ± SD (n = 3). 
 

Stage 

Aquasome

s 

deposited 

(mg) 

 

 

14 days 

Amount 

of BSA 

(mg) 

 

 

14 days 

Aquasom

es 

deposite

d (mg) 

 

1 month 

Amount 

of BSA 

(mg) 

 

 

1 months 

Aquasom

es 

deposite

d (mg) 

 

2 months 

Amount 

of BSA 

(mg) 

 

 

2 months 

Aquasom

es 

deposite

d (mg) 

 

3 months 

Amount 

of BSA 

(mg) 

 

 

3 months 

Aquasom

es 

deposite

d (mg) 

 

4 months 

Amount 

of BSA 

(mg) 

 

 

4 months 

Amount 

of 

Aquasom

es (mg) 

 

5 months 

Amount 

of BSA 

(mg) 

 

 

5 months 

Aquasom

es 

deposite

d (mg) 

 

6 months 

Amount 

of BSA 

(mg) 

 

 

6 months 

Device - - - - - - - - - - - - - - 

Throat 1.33 ± 0.3 - 1.32 ± 0.4 - 1.30 ± 0.4 - 1.34 ± 0.3 - 1.40 ± 0.3 - 1.30 ± 0.6 - 1.33 ± 0.3 - 

Pre-stage 3.50 ± 0.3 - 3.47 ± 0.5 - 3.45 ± 0.6 - 3.48 ± 0.4 - 3.45 ± 0.5 - 3.48 ± 0.5 - 3.50 ± 0.3 - 

Stage 1 - - - - - - - - 0.7± 0.2 UQ - - - - 

Stage 2 4.51 ± 0.2 0.28 

±0.09 

4.64 ± 0.3 0.30 ±0.1 4.46 ± 0.4 0.28 

±0.08 

4.50 ± 0.4 0.30 ±0.1 4.48 ± 0.4 0.25 

±0.05 

4.50 ± 0.4 0.30 ±0.1 4.51 ± 0.2 0.25 

±0.09 

Stage 3 7.50 ± 0.7 0.74 

±0.09 

7.61 ± 0.9 0.78 

±0.07 

7.51 ± 0.6 0.68 ±0.1 7.52 ± 0.6 0.75 

±0.07 

7.51 ± 0.5 0.70 ±0.1 7.55 ± 0.5 0.75 

±0.09 

7.50 ± 0.7 0.70 

±0.05 

Stage 4 1.83 ± 0.4 0.31 

±0.07 

1.62 ± 0.6 0.29 ±0.1 1.80 ± 0.5 0.30 

±0.09 

1.79 ± 0.4 0.29 

±0.09 

1.66 ± 0.5 0.25 

±0.07 

1.82 ± 0.5 0.31 

±0.09 

1.83 ± 0.4 0.39 

±0.09 

Stage 5 - UQ - UQ - UQ - UQ - UQ - UQ - UQ 

Discoloratio

n 

none none none none none none none none none none none none none none 
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Table 3.10. Stability studies of BSA-loaded aquasomes DPI formulation for 3 months at 4ºC ±1ºC/60% RH ±2% RH. The table shows the 

deposition of BSA-loaded aquasomes in each stage and the amount of BSA loading. Values are reported as mean ± SD (n = 3). 
 

Stage 

Aquasomes 

deposited 

(mg) 

 

14 days 

Amount of 

BSA (mg) 

 

 

14 days 

Aquasomes 

deposited 

(mg) 

 

1 month 

Amount of 

BSA (mg) 

 

 

1 months 

Aquasomes 

deposited 

(mg) 

 

2 months 

Amount of 

BSA (mg) 

 

 

2 months 

Aquasomes 

deposited 

(mg) 

 

3 months 

Amount of 

BSA (mg) 

 

 

3 months 

Device - - - - - - - - 

Throat 1.29 ± 0.4 - 1.39 ± 0.7 - 1.33 ± 0.5 - 1.43 ± 0.6 - 

Pre-stage 3.56 ± 0.4 - 3.29 ± 0.7 - 3.50 ± 0.9 - 3.60 ± 0.7 - 

Stage 1 - - - - - - - - 

Stage 2 4.60 ± 0.4 0.30 ±0.07 4.54 ± 0.4 0.30 ±0.01 4.51 ± 0.5 0.29 ±0.1 4.52 ± 0.7 0.30 ±0.09 

Stage 3 7.59 ± 0.5 0.75 ±0.1 7.70 ± 0.9 0.73 ±0.09 7.80 ± 0.9 0.76 ±0.1 7.55 ± 0.6 0.74 ±0.09 

Stage 4 1.50 ± 0.5 0.29 ±0.09 1.51 ± 0.9 0.25 ±0.09 1.63 ± 0.9 0.34 ±0.09 1.85 ± 0.8 0.39 ±0.1 

Stage 5 - UQ - UQ - UQ - UQ 

Discoloration none none none none none none none none 
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Table 3.11. Stability studies of BSA-loaded aquasomes DPI formulation for 2 months at 4ºC ±1ºC/60% RH ±2% RH and 25ºC ±1ºC/60% RH ±2% 

RH. The table shows the deposition of BSA-loaded aquasomes in each stage and the amount of BSA loading. Values are reported as mean ± SD 

(n = 3). 
 

Stage 

Aquasome

s 

deposited 

(mg) 

 

14 days 

Amount 

of BSA 

(mg) 

 

 

14 days 

Aquasom

es 

deposited 

(mg) 

 

1 month 

Amount 

of BSA 

(mg) 

 

 

1 months 

Aquasom

es 

deposited 

(mg) 

 

2 months 

Amount 

of BSA 

(mg) 

 

 

2 months 

Aquasom

es 

deposited 

(mg) 

 

14 days 

Amount 

of BSA 

(mg) 

 

 

14 days 

Aquasom

es 

deposited 

(mg) 

 

1 months 

Amount 

of BSA 

(mg) 

 

 

1 months 

Amount 

of 

Aquasom

es (mg) 

 

2 months 

Amount 

of BSA 

(mg) 

 

 

2 months 

Storage 

conditions 

4ºC ±1ºC/60% RH ±2% RH 25ºC ±1ºC/60% RH ±2% RH 

Device - - - - - - - - - - - - 

Throat 1.30 ± 0.4 - 1.33 ± 0.6 - 1.33 ± 0.7 - 1.30 ± 0.5 - 1.25 ± 0.3 - 1.31 ± 0.5 - 

Pre-stage 3.52 ± 0.5 - 3.47 ± 0.8 - 3.50 ± 0.5 - 3.40 ± 0.4 - 3.40 ± 0.9 - 3.54 ± 0.6 - 

Stage 1 - - - - - - - - - - - - 

Stage 2 4.51 ± 0.6 0.29 ±0.08 4.64 ± 0.4 0.30 ±0.1 4.79 ± 0.8 0.32 ±0.09 4.61 ± 0.5 0.29 ±0.1 4.31 ± 1 0.22 ±0.11 4.61 ± 0.7 0.30 ±0.09 

Stage 3 7.45 ± 0.4 0.72 ±0.1 7.61 ± 0.4 0.70 ±0.1 7.55 ± 0.5 0.74 ±0.07 7.40 ± 0.6 0.75 ±0.1 7.60 ± 0.7 0.72 ±0.12 7.20 ± 0.9 0.61 ±0.06 

Stage 4 1.75 ± 0.6 0.30 ±0.09 1.62 ± 0.9 0.28 ±0.07 1.80 ± 0.4 0.29 ±0.1 1.80 ± 0.8 0.27 ±0.1 1.73 ± 0.5 0.30 ±0.09 1.79 ± 0.4 0.30 ±0.11 

Stage 5 - UQ - UQ - UQ - UQ - UQ - UQ 

Clarity of 

solution 

clear clear clear clear clear clear clear clear clear clear clear Clear 

Agglomeratio

ns 

none none none none none none none none none none none none 

Discoloration none none none none none none none none none none none none 
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3.4. Conclusions 

BSA-loaded aquasomes were successfully formulated as pMDI and DPI formulations. The 

aerodynamic behaviour of the pMDI and DPI formulations was investigated to identify lung 

distribution of aquasomes. Both DPI and pMDI formulations show large amounts of 

aquasomes deposited in stages 2, 3 and 4 of the NGI. These stages represent mid-lower lung 

area, which relate to less chances of being removed by cilia movement and also better drug 

targeting. In vitro release studies with simulated lung fluid were performed to examine the 

release profile of the aquasomes. The release studies on the selected size fractions show a 

sustained release of BSA over a period of 6 hr. In order to complement the in vitro release 

data, cell culture studies were performed to demonstrate the controlled release effect of 

aquasomes with BEAS-2B cell lines. The release of salbutamol sulphate from aquasomes 

started to slow gradually after 2 hr until it reached its highest difference at hour 6 (p<0.05).  

 

The transported salbutamol across the BEAS-2B monolayer in aquasomes formulation was 

46.12 ± 2.9% after 6 hr. The stability studies of BSA-loaded aquasomes pMDI and pMDI 

formulations were investigated. The stability studies of BSA-loaded aquasomes pMDI 

formulation was performed for a period of 6 months at storage conditions of 4ºC ±1ºC/60% 

RH ±2% RH and 25ºC ±1ºC/60% RH ±2% for 2 months show no change in aerosolisation 

performance and percentage of loadings of BSA (p>0.05). The stability studies of BSA-loaded 

aquasomes DPI formulation was investigated for a period of 6 months at storage conditions 

of 4ºC ±1ºC/60% RH ±2% RH and 25ºC ±1ºC/60% RH ±2% for 6 and 2 months respectively 

show no change in aerosolisation performance and percentage of loadings of BSA (p>0.05). 

The stability studies of BSA-loaded aquasome DPI formulations was investigated for a period 

of 6 months at storage conditions of 4ºC ±1ºC/60% RH ±2% RH was performed for 6 months 

which 6 months less to be adequate to establish an accepted shelf life. However, at storage 

conditions of 25ºC ±1ºC/60% RH ±2%, aquasomes were able to withstand storage conditions 

up to 6 months. In this case, the predicted shelf life for BSA-loaded aquasomes at 25ºC 

±1ºC/60% RH ±2% is 12 months. 

 

In general, both pMDI and DPI formulation of aquasomes exhibited an acceptable 

aerodynamic performance with the majority of the powder deposited in the mid-lower regions 

of the lung. Furthermore, the both pMDI and DPI formulation, show encouraging stability study 

data, which show a formulation stability of pMDI and DPI for 6 and 3 months respectively at 

the tested conditions. 
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4.1. Introduction 

To obtain a tablet with API content uniformity, the components of the tablet mixture have to 

be dry (low moisture content), powdered or granular, uniform particle size and has good 

flowability. For instance, a tablet mixture of different particle sized powders could segregate 

during the manufacturing process due to different densities, and eventually lead to poor API 

content uniformity. This is crucial as content uniformity ensures that the correct dose of API is 

delivered. One of the simplest methods of tablet manufacturing is direct compression. In 

addition to the simplicity of formulation and tablet manufacture, direct compression has other 

advantages such as reduced labour and energy costs of manufacturing. For successful 

tableting with direct compression, three key factors have to be accomplished flowability, 

compactability of the compression mixture and API content uniformity. The properties and the 

percentage of API in the tablet mixture have an impact on the three factors formerly 

mentioned. For instance, a tableting mixture of low dose API, the flow and compaction of the 

tableting mixture are dependent on the type of excipients used. For a tableting mixture of a 

medium API dose, the compression mixture flowability may become a critical factor. However, 

the tableting mixture with high API dose, the flow and compaction of the mixture are both 

significantly depend on the properties of the API (Table 4.1). Formulations made by direct 

compression can be developed with minimum numbers of excipients such as a diluent 

(filler/binder), a disintegrant and a lubricant. Extra additives can be added to serve various 

purposes (Table 4.2) (DFE pharma, 2014; Gohel and Jogani, 2005; Parmar and Rane, 2009; 

Huang W. et al., 2013; McCormick, 2005).    

 

 

Table 4.1. The table shows the effect of API concentration in the tablet mixture on flowability, 

compactability and content uniformity using direct compression (modified from: DFE pharma, 

2014). 

 

  Low API dose   

(mg) 

Medium API dose 

(mg) 

High API dose  

(mg) 

API (%) <10  10-50  >50  

250 mg <4% 4-20% >20% 

Content uniformity Principal concern Generally not an issue Least concern 

Flowability Excipients needed to 

improve 

Minor interference Drug properties 

dependant 

Compactability Excipients needed to 

improve 

Unlikely to be an issue Drug properties 

dependant 

 

 



156 
 

Table 4.2. A list of the most widely used excipients in the manufacture of tablets and their 

description (modified from: Drug Topics, 2008). 

 

Function Description and examples 

Diluent 
Diluents increase the bulk of tablets and are responsible for compaction and 

flow tablet properties. Direct compression diluents are frequently referred to 

as filler-binders. Examples include MCC and lactose. 

Disintegrant 
Super disintegrants are materials that disintegrate a tablet at low 

concentrations (2% to 6% w/w). Commonly used super disintegrants include 

cross carmellose sodium and sodium starch glycolate. 

Lubricant 
Magnesium stearate is used in the vast majority of direct compression tablets. 

A common problem with metal stearates is their potential to reduce the 

strength of tablets and to cause slow disintegration and dissolution if overused 

or over blended. 

Glidant 
Glidants are only needed when API is present in sufficient concentration to 

enhance flowability. 

Surfactant 
Wetting agents may be included if the API is hydrophobic. An example of 

surfactant is sodium lauryl sulphate (SDS). 

 

 

Some APIs may be unsuitable for direct administration by the oral route. For instance, stomach 

acids denature protein based-drugs such as insulin. With this range of APIs that cannot be 

formulated into tablets and administered directly, a coating is applied to form a barrier and 

prevent the acidic effect of the stomach (Table 4.3) (Grosser et al., 2012; Ansel et al., 1995) 

 

 

Table 4.3. The table shows examples with description of the three main types of coatings for 

tablets (modified from: Ankit G et al., 2012; DFE, 2014; Bose and Bogner, 2007). 

 

   Type of coating Description 

Film coated 
(FC) 

         Most commonly used to alter the appearance of the tablets, protect the tablet to 

remain stable and mask the taste of APIs. To apply the film coating, the coating is 

deposited on the tablets surface to form a thin uniform film. An example of film 

coating material is ethyl cellulose. 

Enteric 
coating (EC) 

        Some APIs degrades in acidic media or cause irritation. These APIs are coated 

with pH dependent coating (the coating disintegrate at specific pH). These tablets 

must not be crushed or chewed, due to APIs exposure. Examples of enteric 

coating materials are Methyl acrylate-methacrylic acid copolymers and shellac. 

Compression 
coating 

        The use of this type of coating has increased recently due to its ease of application 
and cost effectiveness. It involves the DC of granular coating (dry) using a special 
coating equipment. Examples of compression coating materials used are 
polyethylene oxide and micronized ethyl cellulose. 
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Extensive studies have been performed to explore the mechanism of coating formation. As for 

coatings that dissolve in solvent, once the coating solution droplets deposited on the surface 

of the tablet, the droplets join to form a thin liquid layer. As the solvent starts to evaporate, the 

liquid layer transforms to a gel layer thin into a solid film. Conversely, for coating dispersion, 

they require the process of coalescence to form the film. The polymer spheres closely join on 

the surface of the tablet after spraying due to evaporation of water. Then, the spheres distort 

to fill in the voids remain after water evaporating. With continuous drying, the spheres fuse 

together and the polymer chains interpenetrate to form the film. (Steward et al., 2000; Bauer, 

1998; Massoud and Bauer, 1989; Felton, et al., 2013) 

 

4.1.1. Aim and objectives 

 
The aim of the work in this chapter is to investigate tablets as a platform for aquasomes for 

oral delivery. To achieve this aim, the following objectives were explored: 

 

 Preparation of BSA-loaded aquasomes tablets with MCC as a filler/disintegrant and 

magnesium stearate or talc as lubricants under various compression forces.  

 Investigate the effect of compression forces (0.5, 1, 2 and 3 tons) on BSA-loaded 

aquasomes to examine the BSA layer under increased compression forces. 

 Film coat the aquasome tablets with pH dependent coating (pH >5.5) to produce 

enteric coated tablets to protect BSA on the outer layer of the aquasomes from acidic 

secretions of the stomach. 

 Perform cell culture studies and compare the release obtained from in vitro studies to 

demonstrate the controlled release effect of aquasomes. 

 Perform stability studies to explore the compatibility of the excipients and the 

formulation stability. 
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4.2. Materials and Methods 

4.2.1. Materials 

Hydroxyapatite powder (99%), trehalose powder (99%), metronidazole (99%), microcrystalline 

cellulose ph-112 (99%), HPLC grade acetonitrile and trifluoroacetic acid (TFA) (>99%) and 

Bovine Serum Albumin (BSA) powder (99%) were purchased from Sigma Aldrich, UK. Talc 

(99%), magnesium stearate (99%), Modified Eagle’s Minimum Essential Medium solution, 

Earle’s Balanced Salt Solution (HBSS), Penicillin-Streptomycin antibiotic solution, 

nonessential amino acids, sodium pyruvate, Fetal Bovine Serum (FBS), L-glutamine and 

0.25% w/v Trypsin were purchased from Fisher Scientific, USA. Acrylic b-based polymer 

(Eudraget L100) and ethyl acetate were received as gifts from Colorcon, UK. HPMCAS were 

received as gifts from Shin-Etsu, Japan. All materials were used as received unless otherwise 

specified. Ultra-pure grade water was used when required.  

 

4.2.2. Preparation of Aquasomes Tablets 

4.2.2.1. Preparation of BSA-loaded aquasomes 

BSA-loaded aquasomes were manufactured by modifying the method of Kossovsky et al., 

1995. A quantity of 100 mg of HA was added to a trehalose solution (10 mL/0.1 M) and mixed 

for 2.5 hr at 25ºC. Afterwards, the coated cores were then centrifuged (3000 rpm/10 min), 

washed with ultra-pure water to remove unadsorbed trehalose and then freeze-dried. A 

quantity of 100 mg of the coated cores were added to a BSA solution (10 mL/0.015 M) and 

mixed for 2.5 hr at 25ºC. Then, aquasomes were centrifuged (3000 rpm/10 min), washed with 

ultra-pure water to remove unadsorbed BSA and then freeze-dried. The same procedure was 

used to load aquasomes with metronidazole. 

 

4.2.2.2. Freeze-drying Protocol 

In the preparation of aquasomes, freeze-drying process was used. The freeze-dryer used was 

Vir Tis Advantage Plus, USA. A freeze-drying cycle of 24 hr was performed. The cycle 

consisted of four stages; pre-stage (60 min at -45ºC/atmospheric pressure), primary drying 

stage (720 min at -45ºC under vacuum of 400 mbar), secondary drying stage (460 min at -

20ºC under vacuum of 400 mbar) and equilibrium stage (240 min at 25 ºC/atmospheric 

pressure). The condenser temperature was set at -76ºC.  Freeze-drying vials and lids were 

used where required. 
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4.2.2.3. Tablet preparation  

Tablets were made using BSA-loaded aquasomes powder, MCC powder grade ph-112 as a 

multifunctional excipient (filler/binder/disintegrant). Powders of magnesium stearate and talc 

(1% w/w) were used as lubricants. Five powder blends with varying amounts of BSA-loaded 

aquasomes were prepared (Table 4.4). The target weight of the tablet was 400 mg. The tablets 

were made using a manual direct compression presser under 0.5, 1, 2 and 3 tons of 

compression force followed by 30 seconds dwelling time. All measurements were performed 

in sextuplicate (n=6) at ambient room temperature.  

 

  Table 4.4. The description of powder blends used for the preparation of aquasome tablets 
using direct compression method. 
 

Powder blend 
No. 

Powder composition % of aquasomes in 400 
mg tablet 

1 100 mg of aquasomes / 296 mg of 
MCC-ph 112 

 
 
 

4 mg 

Talc 

25 

2 150 mg of aquasomes / 246 mg of 
MCC-ph 112 

37.5 

3 200 mg of aquasomes / 196 mg of 
MCC-ph 112 

50 

4 250 mg of aquasomes / 146 mg of 
MCC-ph 112 

62.5 

5 296 mg of aquasomes / 100 mg of 
MCC-ph 112 

75 

 

 

4.2.2.4. Measurement of angle of repose (ѳ) 

The cone method was used to measure the angle of repose. The specified funnel was 

attached to the funnel holder. The powder was then dispensed through the funnel until a 

conical pyramid was obtained. The diameter and height of the heap were measured. To 

calculate the angle of repose, the internal angle between the horizontal surface and the 

powder surface was measured, and the angle of repose was calculated from the equation: 

Tanθ = 2xheight/diameter. The method were adopted from US Pharmacopia monograph 

(<1174>). All measurements were performed in sextuplicate (n=6) at ambient room 

temperature. The values are reported as mean ± standard deviation. 

 

 

 

 



160 
 

4.2.2.5. Hardness test 

Hardness of tablets was measured after dwelling time of tablets with 4M hardness tester, 

Schleuniger, (Thun) Switzerland. The method were adopted from US Pharmacopia 

monograph (<1217>). All measurements were performed in sextuplicate (n=6) at ambient 

room temperature. The values are reported as mean ± standard deviation. 

 

4.2.2.6. Disintegration test 

To measure the disintegration time of tablets, ZT3 from Erweka, (Heusenstamm) Germany 

disintegration test machine was used. The method were adopted from US Pharmacopia 

monograph (<701>). A tablet was positioned in the disintegration basket which was cycling at 

a constant frequency of 30 cycles/min in DI water (800 ml) at 37°C (floating disk was not 

needed). The time at which the tablet was fully disintegrates and passed through the sieve 

was noted. All measurements were performed in sextuplicate (n=6). The values reported as 

mean ± standard deviation. 

  

4.2.2.7. Friability test 

To measure the tablets friability, a Roche friabilator from J. Engelsmann AG, (Ludwigshafen) 

Germany. The method were adopted from US Pharmacopia monograph (<1216>). The tablets 

(n=6) were placed in the friability chamber at 25 rpm for 4 min. The tablets were then de-

dusted and weighed and the friability expressed as the percentage loss in weight as shown in 

the equation 5. All measurements were performed at ambient room temperature. The values 

are reported as mean ± standard deviation. 

 

The percentage of friability = 
(𝑝𝑟𝑒 𝑓𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡−𝑝𝑜𝑠𝑡 𝑓𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑝𝑟𝑒 𝑓𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑥100  ………(5) 

 

 

4.2.2.8. Porosity test 

To measure tablet porosity, a helium multipycnometer from Quantachrome Instruments, 

(Syosset) USA was used. The true volume of the tablet was calculated based on the 

Archimedes principle of fluid (helium gas) displacement. Helium is used because it does not 

cause oxidation to the sample being tested, so it does not affect sensitive APIs and because 

the helium atom is small in size, it can penetrate and fill the voids within the bulk of the tablet. 

All measurements were performed in sextuplicate (n=6) at ambient room temperature. The 

values are reported as mean ± standard deviation. 
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4.2.2.9. Coating of aquasome tablets 

For the coating of aquasome tablets, two coatings were trialled. The first coating was HPMC-

AS at a concentration of 2-20% w/w of solids. The second coating was Eudragit®L100 at 

concentration of 20% w/w of solids (the powder was sieved with 150 µm sieve to remove 

agglomerations). Both coatings are pH dependent and provide protection against the acidic 

environment of the stomach (at pH >5.5 the coating disintegrate). All the coatings were mixed 

with 11% w/w triethyl citrate (TEC) as a plasticiser and 0.05% w/w of sodium lauryl sulphate 

(SLS) as anti-foaming agent. The coating conditions for the two coatings were 30 min at 70-

80% air inlet; temperature was of 370C at 4.00 rpm of feed using a Caleva mini coater, USA. 

All measurements were performed in sextuplicate (n=6). The values are reported as mean ± 

standard deviation. 

 

4.2.3. Powder Characterization 

4.2.3.1. Particle size and size distribution 

Size measurements were performed using a Sympatek particle size analyser (Brookhaven 

Instruments). A quantity of 100 µL of diluted aquasomes with ultra-pure water were placed in 

the specified cuvette (4 clear sides cuvette). All measurements were performed in triplicate 

(n=3) at ambient room temperature. The values are reported as mean ± standard deviation. 

 

4.2.3.2. Scanning electron microscopy (SEM) 

The samples were attached onto an aluminium pin stubs with adhesive surface 

(radius=12.5 mm). A thin layer of gold was applied on the samples on the pin stubs using a 

gold coater Polaron SC500, Polaron Equipment, UK. The samples on the pin stubs were then 

examined using a Stereoscan 90, Cambridge Instrument. In an atmosphere of argon gas, a 

high vacuum with an accelerating voltage of 20 KV was used to operate the SEM and at 

12 mm of working distance, Polaron Equipment, UK.   

 

4.2.3.3. HPLC analysis 

Drug analysis from the in vitro release studies were measured using an Agilent 1200 series 

HPLC System with UV and fluorescence detectors (Germany). The analysis was performed 

at ambient temperature.  

 

4.2.3.3.1. BSA HPLC method 

For HPLC analysis of BSA, a C18-ODS Jupiter column (4.6 mm x 250 mm / 5 μm / 300 Å 

(Phenomenex, USA) was used. The injection volume of the sample was set at 100 μL. 
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Fluorescent detection method was used with excitation wavelength was set at 220 nm and 

emission wavelength was set at 312 nm. A gradient elution method was used during which 

the proportion of solution B (acetonitrile) in the eluent increased from 5% to 65%solution 

against solution A (0.01%, v/v trifluoroacetic acid in ultra-pure water) at 1 mL/min flow rate of. 

BSA eluted with a retention time of 17.0 min. A standard calibration curve was established 

with the use of BSA standard solutions (r2 = 0.998), which the concentration of BSA in 

unknown solutions was determined.  

 

4.2.3.4.2. Metronidazole HPLC method 

For HPLC analysis of metronidazole, a C18 Luna column (4.6 mm x 150 mm / 5 μm / 300 Å 

(Phenomenex, USA) was used. The injection volume of the sample was set at 100 μL. 

Fluorescent detection method was used with excitation wavelength was set at 275 nm and 

emission wavelength was set at 312 nm. An isocratic elution method was used during which 

the proportion of solution B (methanol) in the eluent was 60% against solution A (0.01%, v/v 

trifluoroacetic acid in ultra-pure water). The flow rate of mobile phase was set at 1 mL/min. 

metronidazole eluted with a retention time of 3.0 min. A standard calibration curve was 

established by the use of metronidazole standard solutions (r2 = 0.997), which was used for 

the determination of unknown metronidazole concentration samples. The HPLC method was 

adapted from Tashtoudh et al. (2008). 

 

4.2.3.5. In vitro release studies of aquasome tablets 

Fasting state simulated gastric fluid (FaSGF) and fasting state simulated intestinal fluid 

(FaSIF) were prepared by dissolving the required components (Table 4.5) in 1L of ultra-pure 

grade water (Marques et al., 2011). The solutions were kept standing for 4 to 5 hr at ambient 

temperature to check for any salt precipitation, which if occurs, the solutions are discarded 

and a fresh 1L are prepared. In vitro release studies were performed on the 

BSA/metronidazole-loaded aquasome tablets in continuous phase. The samples were 

redistributed in 40 mL of simulated media (FaSGF/FaSIF) and placed in a shaking water bath 

at 37oC/100 rpm. A quantity of 0.3 mL was taken for HPLC analysis at hourly time points up 

to 6 hr. The release medium was replaced with 0.3 mL of fresh simulated lung fluid. 
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       Table 4.5. Materials required to prepare 1L of FaSGF and FaSIF for in vitro release 
studies of aquasome tablets. 

Material Amount (mg) 

FaSGF 
Potassium chloride 

122.6 

Orthophosphoric acid 5.5 

Sodium dihydrogen phosphate 32 

Hydrochloric acid  To the required pH  

FaSIF 

sodium taurocholate  
4.5 

lecithin 0.5 

maleic acid 58.09 

sodium hydroxide 72 

sodium chloride 51 

glyceryl monocholate 1 

sodium oleate 0.8 

Sodium hydroxide or hydrochloric acid To the required pH  

 

 

4.2.4. Cell culture studies  

4.2.4.1. Cell lines maintenance and passaging 

Caco-2 cell lines were received as a gift from Dr Afzal Mohammed, Aston University. The cells 

were maintained using medium comprised from Dublecco’s Modified Eagle’s medium 

(DMEM), 0.5% penicillin-streptomycin, 10% fetal bovine serum (FBS), 2% glutamate solution 

and 1% nonessential amino acids (NEAA). The cells were incubated at 37°C temperature and 

5% CO2. The cells were fed every day and passaged every 2-3 days. The media, HBSS and 

trypsin were preheated to 37°C in a water bath prior addition. A quantity of 10 mL of HBSS 

solution was used to wash the flask containing the cells to remove traces of FBS and dead 

Caco-2 cells. Trypsin was added (3 mL of 0.25% w/v) to the flask and Incubated for 5-10 min 

at 37°C. After the detaching of the cells, a quantity of 10 mL of media was added to quench 

trypsin effect. To prevent clumping of Caco-2 cells, the mixture was pipated 3-4 times. Then, 

a quantity of Caco-2 cells was then placed in a new flask (1 mL to a 75 cm2 and 0.5 mL to a 

25 cm2
 flask). The media was then added to the flask (20 mL to a 75 cm2 and 10 mL to a 25 

cm2
 flask) and incubated at 37°C.  
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4.2.4.2. Cells counting procedure 

To count the Caco-2 cells, a haemocytometer was used. A haemocytometer is a slide made 

of thick glass with a rectangular indentation to create a chamber. The chamber is carved with 

perpendicular lines by laser-etched grid. After lysing of the Caco-2 cells with trypsin, a quantity 

of 1 mL was placed in an eppendorf tube in to which a quantity of 100 µL of trypan blue was 

added. After thorough mixing, a quantity of the mixture was then moved and added to the 

upper edge of the haemocytometer. Using an inverted light microscope and under a suitable 

objective (10-20x), the cells were counted in the four corners with exclusion of the cells outside 

the four rectangular indentation. To calculate the total number of the cells, the following 

equations were used: 

 

Cells density =  
total No. of cells counted

4
 x2 … . . (6)          % of viability =  

Number of live cells

total number of cells
 … … (7) 

 

 

4.2.4.3. Cell viability assay  

A 96 well plates were used to seed the cells at a concentration of 1x106 cells/well. Then, the 

cells were incubated for 24 hr. Afterwards, the media, and a quantity of metronidazole was 

added to the wells (C to H) and incubated for 24 hr (well A and B are controls). After the 24 

hr, an amount of 10 µL of 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) 

was added to each well and the cells were then incubated for a period of 4 hr. The cells were 

then shaken for 15 min using an electric shaker and measured for absorbance at a wavelength 

of 520 nm using Bio Rad microplate reader, model 3350, USA. All measurements were 

performed in triplicate (n=3). The values are reported as mean ± standard deviation. 

 

 Table 4.6. Concentrations of metronidazole, trehalose and HA used in the cell viability assay 

of Caco-2 cell lines for the delivery of aquasomes via the pulmonary route. 

 

Description Concentrations used 

Metronidazole solution 10, 20, 40, 80, 90 and 100 µg 

Trehalose solution 10, 20, 40, 80, 90 and 100 µg. 

HA suspension 10, 40, 80, 90, 100 and 150 µg 

 

 

 

 

http://en.wikipedia.org/wiki/Glass
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4.2.4.4. TEER measurements 

As for TEER measurements, the cells at a concentration of 2 x 105 cells/cm² were seeded on 

6-well trans-well plates with polycarbonate-coated membranes (24mm, 4.7cm²; 0.33 cm3). The 

cells were allowed to grow for 20 days. The media in the apical and basal compartments was 

replaced every 1-2 days. TEER were recorded every 2 days using an epithelial voltmeter, 

(World precision, USA). The measurements were performed in triplicate and each well was 

measured from three different sides to reduce reading errors. All measurements were 

performed in triplicate (n=3). The values reported as mean ± standard deviation. 

 

4.2.4.5. Permeability studies 

The cells were grown on 6-well Transwells® as described in section 4.2.4.4. After replacing 

the exhausted media from the apical and basal compartments, 1.5 mL of media (MDEM) 

mixed with metronidazole at a concentration of 200 µg/mL was added to the apical 

compartment. At time intervals of 1, 2, 3, 4, 5 and 6 hr, an amount of 300 µL was taken from 

both compartments and analysed using HPLC (sections 4.2.3.4). For permeability studies, 

HBSS was used to wash the cells prior the addition of the drug and pre-equilibrated for 1 hr 

with blank media. Afterwards, blank media was removed and the concentrations of 

metronidazole mixed with blank media was added subsequently. Permiability methods were 

adopted from Khan et al. (2011). All measurements were performed in triplicate (n=3). The 

values are reported as mean ± standard deviation. The percentage of drug transported was 

calculated as follows: 

 

 

% of drug transported =  
Apical drug concentration−Basal drug concentration

drug loading
 𝑥100  ……(8) 

 

 

4.2.5. Stability studies 

Aquasome tablets were stored at 4ºC ±1ºC/60% RH ±2% RH, 25ºC ±1ºC/60% RH ±2% RH 

and 40ºC ±1ºC/75% RH ±2% RH in accelerated stability studies cabinet (ATG, UK). At interval 

time points of 7 days, 14, 21 and 28 days, samples were taken for in vitro release studies 

(section 4.2.3.5). Visual inspection was performed on the samples, which includes changes in 

colour and peeling. Stability methods were adopted from FDA guidelines Q1A (R2). All 

measurements were performed in triplicate (n=3). The values are reported as mean ± standard 

deviation.  
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4.2.6. Statistical analysis 

A one-way analysis of variance with Tukey–Kramer multiple comparisons test was used 

statistically compared the results obtained from performed experiments. The significance level 

of analysis was p<0.05. 
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4.3. Results and Discussion 

There are many different delivery systems of solid oral dosage forms, most commonly used 

are tablets and capsules. Tablets as a solid dosage form are economical in manufacturing, 

stable and most suitable for transportation, packaging and shipping. Tablets can also be 

modified to release API into different sections across the GIT by applying different types of 

coatings. To investigate the possibility of manufacturing tablets with BSA-loaded aquasomes 

for oral delivery, it was essential to investigate the integrity of BSA-loaded aquasomes under 

compression forces and the stability of BSA-loaded aquasomes in the presence of excipients 

during the preparation of tablets. To investigate the integrity of BSA-loaded aquasomes, 

fluorescent-labelled BSA was used and was loaded on the aquasomes and tablets were 

prepared by direct compression subsequently (Figure 4.1). The fluorescent-labelled BSA was 

used instead of a standard fluorescent agent to facilitate further investigation using confocal 

microscopy as well as using the same model protein (comparable loading and release profile 

can be achieved using the same condition for manufacturing, characterization and release 

studies). BSA is used widely as a model for proteins and peptide studies. For instance, He et 

al., (2013) used BSA as a model for proteins and peptides in their research to facilitate a 

strategy for the fabrication of protein-functionalized quantum dots (QDs) at ambient 

temperature with single step. Likewise, Tantisripreecha et al. (2012) used BSA to develop 

delayed-release tablets from proliposomes of BSA granules by direct compression method. 

However, in the literature, there was no evidence found for the use of fluorescent-labelled BSA 

to investigate how proteins can handle compression forces using confocal microscopy. For 

instance, Tantisripreecha et al. (2012) used phosphorous nuclear magnetic resonance 

spectroscopy (³¹P-NMR) to study BSA interactions after compression. 

 

As a nanocarrier system, aquasomes have not been investigated through the oral route in a 

solid dosage form (Umashankar et al., 2010; Narang, 2012; Monica et al., 2015). Because the 

drug is attached on the outer layer of these systems, it was essential to investigate whether 

BSA will be attached to the system at high compression forces required to manufacture the 

tablets. It is documented that compression forces can affect the API integrity either directly 

due to the forces of compression or indirectly due to physical/chemical interaction with the 

tablet excipients during the tablet manufacture. For instance, (E)-4-[1-[4-[2-

(Dimethylamino)ethoxy]phenyl]-2-(4-isopropyl) phenyl]-1-butenyl]phenyl monophosphate 

(TAT-59) is a new anticancer drug for the treatment of breast cancer. The physical and 

chemical stability of a mixture of TAT-59 and MCC at various powder blend concentrations 

directly compressed at 0, 300, 600 and 1400 kg/cm2 were assessed. It was found that the 
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increase in compression force increased the contact area between TAT-59 and MCC. The 

degradation of TAT-59 was enhanced as the proximity between TAT-59 and moisture 

presented at the surface of MCC increased (Matsunaga et al., 1994). 

 

In another study, 6-benzyl-3-(5-methoxy-1,3,4-oxadiazol-2-yl)-5,6,7,8-tetrahydro-1,6-

naphthyridin-2(1H)-one, is a new receptor agonist produced from benzodiazepine and was 

proposed to be formulated as a tablet. It was demonstrated that due to decreased crystallinity, 

chemical instability occurred which was caused by direct compression. Therefore, it was 

challenging to manufacture tablets with stable API using direct compression method (Fujita et 

al., 2010). However, in other cases compression can improve the formulation to that of 

unprocessed powder. A study investigated solid dispersions of drug-polymer mixture (NAP in 

PVP-VA) under compression force of 1.5 tons to prepare tablets. It was found that 

compression improved drug-polymer interactions compared to uncompressed powder and 

was studied using DSC and PXPRD. It was also proposed by the researcher that Tg width, the 

PXRD halo patterns and vibrational spectroscopic techniques can be used predict physical 

stability of the solid dispersions of drug-polymer mixture (Worku et al., 2013).  
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Manual mix for 5 min.

Talc

MCC-
PH 122

Aquasomes 
with 

Fluorescent 
labelled 

BSA

The upper surface (where the compression is highest compared to the bulk) 

is gently sampled to collect fine powder particles, which then viewed with 

confocal microscopy. 

Compression of the mixture under different 

compression forces (0.5, 1, 2 and 3 tonnes) with 30 

seconds keep time. 

The BSA-loaded aquasomes tablet 

are then characterised for hardness, 

porosity, friability and disintegration 

time. 

Tablets are then coated using acrylic based polymer (Eudraget 

100) for 30 min until 10% weight gain was achieved.  

In vitro dissolution studies were then performed on the 

BSA-loaded aquasome coated tablets (90 rpm/370C). 

The coating of the BSA-loaded aquasomes tablets was checked for 

coating uniformity and resistance to 2 hr in acidic medium by 

placing them in FaSGF 0.1 HCL/100 rpm/370C. 
Figure 4.1. Preparation workflow of and testing of BSA-loaded aquasome tablets 
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4.3.1. Preparation of aquasome tablets 

To prepare the powder blends for direct compression, two excipients were used initially, MCC 

and magnesium stearate. Both excipients are widely used in the manufacturing of tablets and 

have established safety profiles (Matsunaga et al., 1994). MCC was used as a multifunctional 

excipient (filler/binder/disintegrant) while magnesium stearate and talc were used as 

lubricants. The grade of MCC used was ph-112 because it has a high bulk density (0.28-0.34 

g/cc) and large particle size (100 µm) so it may provide protection to aquasomes against 

compression forces and enhances flowability (Gohel, 2005; FMC biopolymer, 2015). MCC 

also has the lowest amount of moisture (<1.5%), which is superior to the other types in 

providing stability to moisture sensitive APIs (FMC biopolymer, 2015).  

 

Various mixtures of both excipients and fluorescent-labelled BSA aquasomes were prepared 

(Table 4.1). The tablets were produced under increasing compression forces (0.5. 1, 2 and 3 

tons) to examine the effect of compression forces on the integrity of BSA-loaded aquasomes. 

It was noticed that during the first trials of tablet preparation, black dots appeared on the 

surface of the tablets (Figure 4.2). As MCC was the main excipient, the suggestion was to first 

replace the lubricant magnesium stearate with talc to investigate the cause of these black 

spots. After the use of talc as a lubricant instead of magnesium stearate, the black spots 

disappeared. There are various reasons which may explain the appearance of black dots. For 

instance, if the formulation contains large amounts of calcium phosphate and/or 

hydroxyapatite, the chances of these spots appearing are high due to the abrasive nature of 

these powders. This is why calcium tablet supplements made from calcium phosphate have a 

greyish colour and not a white colour as the uncompressed powder appears. The other reason 

may be due to moisture, whether the formulation has high moisture content or the API is 

hygroscopic in nature. Moreover, high quantities of fine powder in the product can enter 

between the feed frame and turret and cause friction and lead to the appearance of the black 

dots. Improper mixing could lead to powder pockets, which upon compression form 

discoloration. Furthermore, compression forces could trigger the melting of API (APIs with low 

melting points) due to heat generated during compression (Bundenthal, 2014; Patel et al., 

2010; Roy, 2011).  

 

In the case of BSA-loaded aquasome tablet preparations, the powder blend was mixed by 

hand for about 5 min to achieve a visually uniform mixture. In addition, the amount of HA is 

less than 25% w/w of the powder blend, therefore black spots could not be due to HA cores 

being compressed. Although proteins have a tendency to absorb moisture, BSA is not 
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considered a hygroscopic material. In addition, the aquasome powder was freeze-dried and 

the moisture content of MCC used was 1.5% w/w. Furthermore, the melting point of BSA, 

trehalose and hydroxyapatite is above 700C (as measured by DSC), which makes it 

unreasonable to reach it at 0.5 tons of compression force. The fact that after changing the 

lubricant lead to the disappearance of the black spots highly suggests that under compression 

of the tablet blend a sort of physical/chemical interaction occurred between the BSA-loaded 

aquasomes and magnesium stearate. Such interactions, especially with magnesium stearate 

has been reported in the literature. As a principal example, magnesium stearate interacted 

with acetylsalicylic acid in tablet manufacture and lead to the degradation of the later. The 

mechanism of how magnesium stearate causes the degradation of acetylsalicylic acid is not 

clearly understood. Kornblum and Zoglio (1967) found that acetylsalicylic acid rate of 

decomposition in suspensions with containing lubricants, such as magnesium stearate, was 

related to the high solubility of the magnesium salt of acetylsalicylic acid. This was resulted in 

the formation of a buffer with dissolved acetylsalicylic acid, generating a pH that was negative 

on the stability of the API. It has also been proposed that the existence of magnesium stearate 

impurities in magnesium stearate may increase the degradation by forming an alkaline pH 

environment (Kornblum and Zoglio, 1967; Miller, 1988; Bharate, et al., 2010).   

 

 

 

 

Figure 4.2. Three aquasome tablets prepared by direct compression method. (A) Coated 

aquasome tablets, the surface is less shiny because of the coating (at 1 tons of compression 

force), (B) uncoated aquasomes tablet with 1% w/w talc (at 0.5 tons of compression force) (C) 

uncoated aquasome tablet with 1% w/w magnesium stearate (at 0.5 tons of compression 

force). The black dots are marked with red arrows. 

 

 

A total of five powder blends with varying BSA-loaded aquasomes quantities were prepared 

and compressed under increasing compression forces of 0.5, 1, 2 and 3 tons (Table 4.1). 

Compressed blends 3, 4 and 5 failed to produce a tablet. The tablets produced with these 

formulations were fragmented when trying to release them from the dye and this was the case 

A B C 
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with the different compression forces used. MCC is well known for its filler and binder 

properties and it is also known that MCC has high compressibility (Carlin, 2008; 

Ohwoavworhua and Adelakun, 2010). Compressed powder blends 3 and 4 had the lowest 

MCC and this could be related to the failure of these formulations, as there was not enough 

MCC present. Another reason could be that when 400 mg of BSA-loaded aquasome powder 

was compressed, it produced fragmented tablets (chipping was also noticed), which indicate 

the poor mechanical properties of aquasomes (Sina Y, 2009; Nicklasson et al., 1999). 

Furthermore, hydroxyapatite (the prominent component of aquasomes) alone is not useful as 

an excipient, but by adding substantial quantities of carob flour to the hydroxyapatite, a directly 

compressible material can be produced (US patent 20100150806 A1, 2010). 

 

The failure of aquasomes to produce compressed tablets with compressed blends 1 was 

investigated using SEM (Figure 4.3 and 4.4). At compression forces of 1 ton, the compressed 

powder blends were sampled and viewed with SEM. It can be noticed that as the percentage 

of BSA-loaded aquasomes increases, the MCC under increased compression transformed 

from fibres to fragmented sheets (heterogeneous mixture). These fragmented sheets are 

produced from the compressed BSA-loaded aquasomes, as it can be clearly understood from 

the compressed BSA-loaded aquasomes without any additives when compared to 

compressed MCC without any additives (Figure 4.4 A and B). This correlates to the poor 

mechanical properties of HA.  

 

The tablets produced with compressed blend 2 failed to produce tablets at compression forces 

of 0.5 and 1 ton, while at compression forces of 2 and 3 tons tablets were produced. In the 

pharmaceutical industry, the preferred compression forces are at 1 ton and less. The reasons 

to such preference is that high compression forces increase the chances of physical/chemical 

interactions. Moreover, compression forces on dyes are low, which eventually extends their 

lifespan. Furthermore, low compression forces prevent tablet defects such as chipping and 

picking which are increased at higher compression forces (Knopp, 2013; Matsunaga et al., 

1994). Therefore, compressed blend 2 was not brought forward to the next stage (coating and 

evaluation of BSA). As for compressed blend 1, it produced tablets with satisfactory properties 

at the different compression forces investigated.   
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Figure 4.3. SEM images of tablets’ bulk prepared with BSA-loaded aquasomes at 

compression force of 0.5 (A), 1 (B), 2 (C) and 3 (D) ton. The voids (marked with red circles) in 

the bulk decreases as compression force increases, which correlates to the decrease in 

porosity and the increase of disintegration time of these tablets. SEM images were taken at 

186-196x of magnification and at 25 KV. 
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C D 
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Figure 4.4. SEM images of tablets’ bulk prepared with BSA-loaded aquasomes at increasing 

amounts of BSA-loaded aquasomes [MCC powder (A), BSA-loaded aquasomes powder (B), 

37% BSA-loaded aquasomes (C), 50% BSA-loaded aquasomes (D), 62% BSA-loaded 

aquasomes (E) and 75% BSA-loaded aquasomes (F)] at 1 ton of compression force. As the 

amount of BSA-loaded aquasomes increases, the mixture under compression transformed 

from heterogeneous appearance due to MCC fibres to fragmented flat sheets (marked with 

red arrows). SEM images were taken at 369-398x of magnification and at 25 KV.  
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E F 



175 
 

4.3.2. Characteristics of aquasome tablets  

To investigate the behaviour of MCC/BSA-loaded aquasomes mixtures under various 

compression forces, the results of hardness and porosity were plotted against each other 

(Table 4.7 and 4.8). compressibility profile of the powder blend can be produced by plotting 

tablet porosity against compaction pressure. Compressibility is defined as the ability of the 

materials in the powder blend to undergo a volume reduction on exposure to compression 

(Joiris et al., 1998). The compressibility profile of the aquasome tablets show moderate 

compressibility at 0.5 and 1 tons of compression force and high compressibility at 2 and 3 tons 

of compression force (Figure 4.5). This could be related to the effect of the MCC, as at higher 

compression forces it tends to undergo plastic deformation with less voids (low porosity) (Amin 

et al., 2012; Hx et al., 1999; Shlieout et al., 2002). Comparing MCC compressibility without 

aquasomes to reported polydex and crosspovidone, MCC show high compressibility 

especially at high compression forces (Al khatawi et al., 2012). In comparison, the 

compressibility profile of MCC powder has similar trends to the MCC/BSA-loaded aquasomes 

mixture. This could be because MCC is the dominant powder fraction of the MCC/BSA-loaded 

aquasome mixture (approximately 74% of powder blend).  

 

To understand the reduction in volume of a powder blend, several mathematical equations 

were developed to evaluate the effect of applied pressure on the porosity changes of the 

tablets. Some of the known mathematical equations are the Heckel, Kawakita and Cooper-

Eaton equations. These equations evaluate the effect of applied pressure on the porosity 

changes of the tablets. The Heckel plot is used to demonstrate powder profile under 

compression and is normally distinguished by three regions. The first region is an initial 

nonlinear region (section I), then a linear region where the data obey the expression (section 

II), and a third non-linear region (section III) (Denny, 2002; Ramberger and Burger, 1985; 

Mani, 2004; Heckel, 1961). The Py value on the heckle plot of MCC is lower than that of 

MCC/aquasomes mixture. This indicates that aquasomes have low elasticity, which was 

evident from the SEM images (aquasome powder turns into fragmented plates, which possess 

no elasticity) (Figure 4.4 and 4.3). Moreover, according to the Heckel profile (Figure 4.5 and 

4.6), the first part (marked with a dotted line) is where particle arrangement occurs. MCC 

exhibited a steep straight ascending line, which indicates deformation mechanism of particle 

arrangement, which correlates with the SEM images of compressed MCC, BSA-loaded 

aquasomes and mixture of both at elevated compression forces.  Whereas MCC/aquasomes 

exhibited a more gradual ascending line, which indicates high degree of particle 

arrangements, which could be due to the difference of particle size of both mixture and to the 

high compressibility of MCC particles. 

http://www.sciencedirect.com/science/article/pii/0032591085800735
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Figure 4.5. A graph shows the compressibility profile of MCC and MCC/aquasomes mixture 

shows higher compressibility (lower porosity) of MCC than MCC/aquasomes (higher porosity) 
at the different compaction pressures used. Values are reported as mean ± SD (n=6). 

 

 

Figure 4.6.  Heckel plot of MCC (orange line, R2 0.976) and MCC/aquasomes (blue line, R2 
0.963) mixture compressed under 50, 100, 200 and 300 MPa. The linear portions of the graph 
were used to obtain Py values 520 and 658 MPa for MCC and MCC/aquasomes mixture 
respectively. Values are reported as mean ± SD (n=6). 
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Table 4.7. Table of results of hardness before and after coating, friability, porosity, disintegration of compressed powder blend 1 before and after 

coating and visual inspection. Values are reported as mean ± SD (n = 6). 

 

 

 Visual Inspection1 includes checking if the tablets are undamaged, smooth, cracks or capping, chipping, swelling, mottling, discoloration, fusion 

between tablets 

 Visual Inspection2 includes checking if the three are picking or sticking, capping, peeling, chipping and twinning. 

 

 

 

 

 

 

 

 

 Compression 
Force 

(Tons) 
(variable 
factor) 

Friability  Disintegration 
Time (min) 

Porosity Hardness 

(N) 

Visual 
Inspection1 

Hardness 
After 

Coating 
(N) 

Disintegration 
After Coating 

(Min) 

Visual 
Inspection2 

After 
Coating 

Formulation 1 0.5 2.1±0.3 4±1 0.514±0.02 80±9 Pass 112±6 12±1 Pass 

Formulation 2 1 1.3±0.2 8±0.5 0.402±0.01 120±7 Pass 145±8 17±1.5 Pass 

Formulation 3 2 0.8±0.2 9±0.5 0.262±0.01 180±6 Pass 200±5 20±1 Pass 

Formulation 4 3 0.5±0.2 13±0.5 0.211±0.01 210±9 Pass 245±6 32±1.5 Pass 
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Table 4.8. Data of hardness before and after coating, friability, porosity, disintegration of compressed powder blend 2 before and after coating 

and visual inspection. Values are reported as mean ± SD (n = 6). Failed formulations marked with F. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Visual Inspection1 includes checking if the tablets are undamaged, smooth, cracks or capping, chipping, swelling, mottling, discoloration, fusion between 
tablets. 

  

 Compression 
Force 

(Tn) (variable 
factor) 

Friability Disintegration Time 
(min) 

Porosity Hardness 

(N) 

Visual 
Inspection1 

Formulation 1 0.5 F F F F Failure to form a 

tablet 

Formulation 2 1 F 8±0.5 0.352±0.01 69±5 Pass 

Formulation 3 2 F 9±1.2 0.312±0.05 90±5 Pass 

Formulation 4 3 F 10±1 0.230±0.09 100±4 Pass 
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4.3.3. Coating of aquasome tablets 

The aquasome tablets prepared under compression forces of 1 ton were selected for 

coating with HPMCAS-M. HPMCAS-M is a polymeric coating that disintegrates at pH>6. 

It has been used widely as a coating of tablets (Tanno et al., 2004; Sarood et al., 2014). 

When HPMCAS-M was initially used for the coating of BSA-loaded aquasome tablets, it 

was found that even at very low concentrations (2% w/w), the coating solution solidified 

in the machine tubing within 5-10 min. It is important to highlight that the minimum level 

to produce a uniform film of HPMCAS-M should be at least 15%w/w. One of the reasons 

to why this could be happening is that the pump speed was not sufficient to pump the 

coating dispersion even when placed at maximum output (4 ml/min). Even though when 

the distance of the tube that connects between the spray head and fed-in container 

(contains the coating dispersion) was reduced as an attempt to overcome this issue, the 

solution solidified after the first 5 min into the coating process. Consequently, acrylic 

based coating was used as an alternative. The procedure to prepare the coating 

dispersion was recommended by the coating manufacturer as the standard method to 

reach optimum coating using the spray coating technique (section 4.2.2.9). As for the 

coating parameters, the temperature was kept at 30oC, so the protein was exposed to 

lower temperatures to minimise protein degradation (Table 4.9). The pump speed was 

kept at maximum to prevent solidification of the coating solution inside the tubes. The 

agitator remained on to prevent tablets attaching to the coating chamber and the air flow 

speed was kept at 70-80% as it was found that when lower air flows were used the tablets 

sank into the coating chamber and if higher flow speed was used the tablets exited the 

coating chamber.  
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Table 4.9. The parameters of the coating procedure and their description used to coat 

aquasome tablets prepared under compression forces of 1 ton. (modified from: Lan et al, 

2004; Kout and Muller, 2009; Caleva 2015). 

Parameter Description Conditions 

Temperature The temperature of the air, which controls the 

drying speed of the coating. The higher the 

temperature the less sticking of tablets and less 

after coating defects such as peeling 

Rang of temperature 

(25-100 0C) 

Selected temperature 

(30 0C) 

Agitation Agitation prevent the tablets from sticking to the 

coating chamber. 

Rang of functioning 

(on/off)  

Selected functioning 

(on) 

Air flow speed Controls the speed of the air going into the 

coating chamber, which eventually controls the 

drying speed and the tumbling of the tablets in 

the coating chamber, which eventually affects 

the effectiveness of the coating. The higher the 

airflow sped the better the efficiency of tablet. 

Rang of air flow speed 

(10-100 %) 

Selected air flow speed 

(70-80 %) 

Pump speed Controls the speed of the coating solution going 

to the spry head. The higher the pump speed the 

better coverage area and less the defects due to 

empty pockets. 

Rang of pump speed 

(1-4 mL/min) 

Selected pump speed 

(4 mL/min) 

Air pressure To control how much of the coating solution 

being pumped into the coating chamber. Air 

pressure and airflow speed has an important role 

in smoothness of the tablets. The higher the 

pressure sped the better the smoothness of the 

coating.  

Rang of air flow speed 

(0.5-2 psi) 

Selected air flow speed 

(0.5 psi) 

 

 

The duration of the coating process lasted for 30 min, which achieved a percentage 

weight gain of 9%±0.5 mg. The coating was then visually inspected for picking or sticking, 

capping, peeling, chipping, and twinning or incomplete coating. Initially, the amount of 

tablets which were placed in the coating chamber was seven. However, after inspection, 

2 tablets were sticking to each other after 15-20 min of coating. To overcome this issue, 

the number of tablets was reduced to five. This issue could be related to the low 

temperature of drying (30oC), which increases the chance of sticking due to over wetting, 

and also that when the amount of tablets was seven the chances that the tablets could 

collide with each other before drying is also higher. As stated previously, a temperature 

increase could not be used as with the 30 min coating time BSA could be degraded.  
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Inverted fluorescent microscopy was used to examine the coating of the BSA-loaded 

aquasome tablets. This was performed by mixing the coating solution with the fluorescent 

agent and viewing the tablets using the florescent microscope. SEM is generally used in 

the literature to examine the coating of the tablets. However, SEM provide images with 

limited information as the images are black and white. The images taken with the inverted 

fluorescent microscope show the build-up of the coating on the upper surface of the 

tablets after 5, 10, 15, 20 and 30 min of coating (Figure 4.7). It can also be noticed that 

as the coating increases the roughness of the coating on the tablet surface decreases as 

the coating accumulates gradually and produces smother surfaces. The false image 

technique was also used to demonstrate that there is a build-up of the coating, which 

occurs gradually as the coating time increases. As shown in the images (Figure 4.7), as 

the concentration of the coating increases the colour changes from orange (lowest 

fluorescence/low concentration of coating) to blue (high fluorescence/high concentration 

of coating) after 5, 10, 15, 20 and 30 min of coating respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Images taken by the inverted fluorescent microscope. Images from A-E show 

the build-up of the coating on the upper surface of the tablets after 5, 10, 15, 20 and 30 

min of coating respectively. Images from F-J are for the edge of the tablet and show the 

change in colour from orange (low concentration of coating) to blue (high concentration 

of coating) after 5, 10, 15, 20 and 30 min of coating respectively. In all images, the false 

colour technique was employed using Leica LAS AF light software. 
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4.3.4. In vitro release studies of aquasomes tablets 

The in vitro release studies of tablets are normally performed in 900-1000 mL volume of 

media using the USP II/III dissolution apparatus at 50/75 rpm paddle speed and at 37oC. 

However, there are some exemptions according to the FDA, where dissolution can be 

performed in smaller volumes of dissolution media (Hydromorphone HCl extend release 

tablets dissolution is performed in 50 mL of media). The volumes can be as low as 50 mL 

or even lower if the reason is justified. In the case of aquasome tablets, the reason to 

choose 40 mL volume of dissolution media to perform the in vitro release studies that 

BSA concentration in volume above 40 mL presents below the LOQ. Therefore, to keep 

BSA below sink conditions and also to maintain concentrations above the LOQ, the 

release studies were performed in 40 mL volume of media at 100 rpm/37oC. 

The coated tablets under compression forces of 1 ton were brought forward for in vitro 

release studies. The reason not to choose the tablet produced at 0.5 ton of compression 

forces was because it is recommended that for tablets to be coated to have high hardness 

in order to withstand coating conditions (pan coating as it is the preferred method for 

coating tablets in industry and require sufficient hardness for the tablets to withstand the 

tumbling) (Augsburger and Hoag 2008).  The tablets produced at 0.5 ton of compression 

force scored marginal hardness of 80±9 N and it is more likely to fail during pan coating 

conditions.  

The coated tablets under compression forces of 1 ton were placed in 40 mL volume of 

media ready to perform in vitro release study to represent what happens to a tablet inside 

the body as it travels through the GI tract (Figure 4.8). The initial medium was FaSGF 

(pH 1.2) for 2 hr at 37ºC/100 rpm followed by immersing the tablet in FaSIF (pH 5.1) for 

1 hour followed by FaSIF (pH 6.7) for 6 hr. Samples were taken at the end of the 2 hr of 

SGF (pH1.2) and at the end of the first hour of FaSIF (pH 5.1) to investigate whether BSA 

had been released. HPLC results show no BSA was detected (at SGF pH 1.2 and FaSIF 

pH 5.3) which indicates that the coating layer and the coating procedure is effective. The 

release of BSA over the 6 hr in FaSIF (pH 6.7) was steady and results in a release of 

14% ±1.9 in the first hour and approximately 90% ±4.2 after 5 hr. As a result, the coating 

performed as expected as the coating completely disintegrates at pH >5.5 without 

affecting the release of BSA from aquasomes. In comparison, BSA released from the 

tablets after the first hour was 2.9% ±0.6 less than that released from aquasomes powder, 

but the difference not statistically significant (p>0.05). This could be related to the time 
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required for the coated tablet to disintegrate (17 min ±0.6) and BSA to start to release 

from aquasomes.  

 

 
Figure 4.8. The percentage of cumulative BSA released from BSA-loaded aquasome 

tablets over 14 hr of release (2 hr at SGF pH 1.2, 1 hr at FaSIF pH 5.3 and 6 hr in FaSIF 

pH 7.4). BSA was not released from coated BSA-loaded aquasome tablets for the first 4 

hr as expected due to the effect of the coating. However, once the pH was increased 

after 4 hr, the coating started to disintegrate and BSA started to release as expected. 

Values are reported as mean ± of SD (n=3). 

 

 

4.3.5. Effect of compression on aquasome tablets  

Confocal microscopy was used to investigate BSA-loaded aquasome tablets under the 

compression forces used (compressed powder blend 1). The tablets were prepared with 

fluorescent-labelled BSA loaded on to the aquasomes so it can be viewed with the 

confocal microscopy. Fluorescent-labelled BSA aquasomes where collected from the 

outer surface and not from the bulk of these tablets as it is recognised that the surface of 

the tablet experiences the highest effect of compression compared to the bulk.  

 

As can be seen from the confocal microscopy images that fluorescent-labelled BSA 

aquasomes of compressed powder blend 1 at compression force of 0.5 and 1 tons appear 

as green dots (the fluorescence is concentrated in one point) (Figure 4.9 C and D). In 

comparison, fluorescent-labelled BSA aquasomes of compressed powder blend 1 at 

compression force of 2 and 3 tons appear as green spots, the fluorescence is not 

concentrated in one point (Figure 4.10 A and B). loaded BSA of aquasomes of 
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compressed powder blend 1 at compression force of 2 and 3 appear to be spread out of 

the cores to the surrounding area. This suggest that BSA aquasomes of compressed 

powder blend 1 at compression forces of 1 and 2 tons failed even though their tablets 

have sufficient tablet properties (hardness, porosity). Research, which has been 

performed by Edwards and Slater (2009), investigated the delivery of live bacteria via the 

oral route as tablets. Tablets were prepared by compressing live bacterial vaccine strain 

S. typhimurium SLDAPD/pUC18I. At the compression conditions they used, the live 

bacteria were tested for activity after compression and found that compression did not 

affect their activity.  

 

At high compression forces (2 and 3 tons), the system could coagulate or fragment which 

results in the distribution of fluorescent-labelled BSA (Figure 4.9 A). In order to roll out 

such an assumption, the same samples were viewed with confocal images (non-

fluorescent state) (Figure 4.9 B). The images show greyish dots, which represent the 

cores, and the cores look intact and show similar sizes before direct compression. This 

demonstrates that fluorescent BSA spreads out of the cores under high compression 

forces and the cores are not fragmented/coagulated. 

 

        

 

Figure 4.9. Confocal images (non-fluorescent state) of BSA-loaded aquasomes under 

compression forces of 0.5 (A) and 3 tons (B). It can be seen that the cores under high 

compression are intact and they are not fragmented. 
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Figure 4.10. Confocal Images of fluorescent-labelled BSA-loaded aquasomes under 3 

(A), 2 (B), 1 (C) 0.5 (D) tons of compression force. At higher compression forces (2 and 

3 tons), the BSA spreads out of aquasomes (marked with red arrows). At low 

compression forces (0.5 and 1 tons) aquasomes were intact (BSA concentrated in one 

spot) (marked with green arrows). 
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4.3.6. Cell culture studies 

Caco-2 cells are the most commonly used cell line to measure drug permeability of 

medicines for human use because of their ease of management and accessibility. The 

Caco-2 cells spontaneously differentiate at incubation conditions to form continuous 

monolayers of cells. Because Caco-2 cells are derived from the human colon, therefore, 

the permeability is higher in vivo perfusion studies conducted in humans to that of Caco-

2 cells (Artursson and Karlson, 1991). Nevertheless, the absorptive capabilities of Caco-

2 cell monolayers are comparable to small intestinal cells (Hidalgo et al., 1989). The 

prime disadvantage of Caco-2 cell monolayers are the variability of expression of efflux 

systems, active transporters and variability in the expression of metabolizing enzymes, 

including CYP 3A4. To account for such deficiency, induction of up regulation of these 

variables or transfection of the cell cultures with the cDNA has been used to evaluate the 

variability in expression (Cummins et al., 2001; Crespi et al., 1996). Additional limitations 

of the Caco-2 cell monolayers include the lack of a mucus layer, which is normally present 

in the human intestine, and cell culture homogeneity. Caco-2 cells do not have the ability 

to produce mucus, which can obstruct the absorption of APIs, in particular rapidly 

permeable ones. In spite of these disadvantages, good correlations have been 

established between the relative oral absorption in humans and the permeability of Caco-

2 cells (Ingels and Augustijns, 2003). Therefore, standardized guidelines have been 

established to correlate Caco-2 permeability as a model.  

 

4.3.6.1. MTT assay of metronidazole, trehalose and HA  

To measure cell viability in the presence of HA, concentrations of 0.1, 0.4, 0.6, 0.8, 0.9, 

1 and 1.5 mg/mL of HA were used. The analysis of the data gathered from the MTT assay 

indicates that the cells were viable, in comparison with the reference absorbance, apart 

from the highest concentration used (1.5 mg/mL). The reduction in the percentage of cell 

viability was statistically significant (p<0.001) when compared to the HA concentration of 

1 mg/mL, and also statistically significant (p< 0.05) when compared to the HA 

concentration 1.5 mL (Figure 4.11). Cell death may have occurred either because the 

high concentration of the non-soluble HA covered the surface area and provided a barrier 

between the cells and the media and/or CO2 and the cells eventually died. Another 

possible reason is that HA particles induced oxidative stress which eventually may have 

caused indirect cell death. HA has been reported by Meena et al (2011) to cause cell 

death via increased ROS in the human breast cancer cells (MCF7). However, the size of 

the HA nanoparticles tested in the study was between 10-20 nm and the significant 
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changes where observed at 100mg/L compared to the control (p<0.01). In addition, 

Kamal et al. (2013) studied the effect of HA scaffold with direct/indirect cell contact 

studies on bone marrow cells (MSC) and have found that HA bear no direct cell toxicity 

for the duration of the testing (24 hr). Equally, MTT reflects metabolic changes due to cell 

death. Further studies are required to measure inter leucine 8 (IL-8), which is released in 

higher amounts when the cells undergo stress. Stressed cells do not necessarily die, but 

could undergo morphological changes (benign or malignant). IL-8 test provides an in-

depth view on how the cells are reacting towards a specific agent/stress rather than MTT 

(Baggiolini and Clark-Lewis, 1992; Smirnova et al., 2003).  

 

 

Figure 4.11. A bar chart shows the percentage of Caco-2 cell viability in various HA 

concentrations. Values are reported as mean ± SD (n = 3). Statistical analysis (one-way 
ANOVA/Tukey) between stages: *p< 0.05.  

 
To measure the percentage of cell viability in the presence of trehalose, concentrations 

of 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mg/mL of trehalose were used. The analysis of the data 

gathered from MTT assay indicates that the cells were viable, in comparison with the 

reference absorbance, at all concentrations of trehalose investigated (Figure 4.12). This 

highlights the importance of trehalose in maintaining/preserving cells from death in 

plants. Relatively high concentrations of trehalose can be found in Anhydrobiotic 

organisms (sometimes including disaccharides and oligosaccharides). When the 

nematode Aphelenchus avenae was dehydrated slowly, trehalose was synthesised 

internally by an amount up to 20% of it is weight (Madin and Crowe, 1975). This is also 
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evident from the toxic dose of trehalose in rats which is >500 mg/Kg via oral route 

(Inchem, 2016). 

 

 

Figure 4.12. A bar chart shows the percentage of Caco-2 cell viability in various trehalose 

concentrations. Values are reported as mean ± SD (n = 3). 

 

 

To measure cell viability in the presence of metronidazole (used as a model drug), 

concentrations of 0.1, 0.2, 0.4, 0.6, 0.8, and 1 mg/mL of metronidazole were used. The 

analysis of the data gathered from MTT assay indicates that the cells were viable, in 

comparison with the reference absorbance, at concentrations of 0.1, 0.2 and 0.4 mg/mL 

of metronidazole, (Figure 4.13). However, with concentrations of 0.6. 0.8 and 1 mg/mL of 

metronidazole there was a decrease in the mean absorbance. Despite the decrease in 

absorbance, there was a statistical difference when compared to the reference 

absorbance (p<0.05). Previous MTT studies on metronidazole state that cell toxicity 

occurs at concentrations above 0.65 mg/mL. In order to perform the permeability studies, 

metronidazole concentration that was used did not exceed 0.4 mg/mL (Vanic et al., 2013; 

Drug Bank, 2013). 

0

20

40

60

80

100

120

Referance 0.1 0.2 0.4 0.6 0.8 1

%
 o

f 
C

el
l v

ia
b

ili
ty

Trehaose Concentration (mg/mL)



189 
 

 

Figure 4.13. A bar chart shows the percentage of Caco-2 cell viability in various 

metronidazole concentrations. Values are reported as mean ± SD (n=3). Statistical 

analysis (one-way ANOVA/Tukey) between stages: *p< 0.05. 

 

 

4.3.6.2. TEER measurements 

TEER measurement is an important technique to measure the confluency of the cells 

seeded on a transwells® membrane (the cells are forming tight junction). TEER 

measurements of Caco-2 has been performed widely in the literature as a valuable tool 

in the evaluating/development on nanoparticles (Pereira et al., 2013; Thompson et al., 

2011; Zhang et al., 2010; Pereira et al, 2013). To measure TEER, the cells were allowed 

to grow for a period of 20 days and were seeded on 6-well transwells® plates with 

polycarbonated-coated membranes and the cells checked for TEER every 2 days. The 

TEER measurements plateaued after day 18 (Figure 4.14). The results of TEER 

measurements obtained are parallel to what has been published in the literature (Ahmed 

et al., 2009; Ranaldi et al., 2013; HPA, 2016). As for Caco-2 TEER measurements, TEER 

tends to plateau after day 17-18 depending on the number of seeding and incubation 

conditions.  
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Figure 4.14. A graph shows the TEER measurement of Caco-2 cells seeded on 6-well 

trans-wells plates every 2 days for 20 days. Values are reported as mean ± SD (n=3). 

 

4.3.6.3. Permeability studies of Metronidazole-loaded aquasomes 

Metronidazole-loaded aquasomes were administered to a monolayer of Caco-2 cells and 

compared to a metronidazole solution of equal drug concentration in order to determine 

whether a delayed drug release effect could be noticed (Figure 4.15). The permeability 

studies show that the metronidazole-loaded aquasomes displayed a delayed transport of 

metronidazole across the monolayer of cells compared to the metronidazole solution. 

This was also confirmed with the lower total metronidazole released from both 

formulations. Within the first hour of release of metronidazole from aquasomes, there was 

an initial burst effect of approximately 4% higher than that of metronidazole solution, 

despite the fact that there was no statistical difference (p>0.05). Metronidazole was used 

as a model instead of BSA to perform permeability studies because BSA is a large protein 

(66,463 Da) and there are no receptors present on Caco-2 cells to facilitate its 

permeability (Shukla et al., 2000; Tuovinen et al., 2002). 

 

The release of metronidazole from aquasomes after 2 hr in the permeability study started 

to slow gradually until it reached its highest difference at hour 6 (p< 0.05).  The 

metronidazole transported across the Caco-2 monolayer was 60.92 ±3.5% after 6 hr. The 

data was not plotted using apparent permeability coefficient, as the purpose of the study 

was not related to measure, alter or enhance the permeability of metronidazole. In 

contrast, the purpose of the study was to observe if the aquasomes are delaying the 

release of metronidazole compared to the control (metronidazole solution).  
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Figure 4.15. Transport of metronidazole across Caco-2 from metronidazole solution 

(blue line) and metronidazole-loaded on aquasomes (orange line). The graph shows that 

there is a significant delayed release from aquasomes during the last two hr. Values are 

reported as mean ± SD (n = 3). Statistical analysis (one-way ANOVA/Tukey) between 

stages: *p< 0.05. 

 

 

4.3.7. Stability Studies of aquasome tablets 

The stability studies of BSA-loaded aquasome tablets were conducted in three storage 

conditions of 4ºC ±1ºC/60% RH ±2% RH, 25ºC ±1ºC/60% RH ±2% RH and 40ºC 

±1ºC/75% RH ±2% RH (Tables 4.10, 4.11 and 4.12 respectively). The stability result of 

BSA-loaded aquasome tablets at the tested conditions show no significant changes 

(p>0.05) in hardness, disintegration time and BSA content. Although such results are 

encouraging, extended stability studies are required to reach a solid conformation about 

the stability of BSA-loaded aquasome tablets. Due to the limited time points, degradation 

profile and estimated shelf times cannot be established. It is worth noting that the 

minimum time required by guidelines for stability studies performed at 4ºC ±1ºC/60% RH 

±2% RH, 25ºC ±1ºC/60% RH ±2% RH and 40ºC ±1ºC/75% RH ±2% RH is for 12, 6 and 

6 months respectively (Faisal et al., 2013; SADC, 2014; Singh V. et al., 2012).  
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Table 4.10. Stability study result of BSA-loaded aquasome tablets for hardness, 

disintegration time, BSA content and visual inspection. Storage condition was at 4ºC 

±1ºC/60% RH ±2% RH. Values are reported as mean ± SD (n = 3). 

 Day 0 Day 7 Day 14 Day 21 Day 28 

Hardness 145±8 143±6 150±4 148±6 151±5 

Disintegration Time 

(min) 

16±1.2 17±1.6 18±1.3 18±1.7 18±1.1 

BSA content (%) 98.97±1.4 97.90±1.2 99.97±0.9 97.95±1.9 100.09±1.8 

Visual inspection 

(discoloration and 

peeling) 

Pass Pass Pass Pass Pass 

 

 

 
Table 4.11. Stability study result of BSA-loaded aquasome tablets for hardness, 

disintegration time, BSA content and visual inspection. Storage condition was at 25ºC 

±1ºC/60% RH ±2% RH. Values are reported as mean ± SD (n = 3). 

 Day 0 Day 7 Day 14 Day 21 Day 28 

Hardness 145±8 142±5 151±5 150±4 148±5 

Disintegration Time 

(min) 

16±1.5 18±1.3 18±1.0 18±1.1 18±1.5 

BSA content (%) 99.97±1.2 96.69±1.6 100.80±1.4 99.55±1.2 98.59±1.7 

Visual inspection 

(discoloration and 

peeling) 

Pass Pass Pass Pass Pass 

 
 

 

 

Table 4.12. Stability study result of BSA-loaded aquasome tablets for hardness, 

disintegration time, BSA content and visual inspection. Storage condition was at 40ºC 

±1ºC/75% RH ±2% RH. Values are reported as mean ± SD (n = 3). 

 Day 0 Day 7 Day 14 Day 21 Day 28 

Hardness 145±8 146±6 149±6 152±4 153±4 

Disintegration Time 

(min) 

16±1.2 19±1.8 19±1.9 19±1.2 20±1.7 

BSA content (%) 99.97±1.2 98.46±1.5 96.37±2.1 96.53±1.9 95.98±1.6 

Visual inspection 

(discoloration and 

peeling) 

Pass Pass Pass Pass Pass 
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4.4. Conclusions 

BSA-loaded aquasome tablets were successfully formulated with MCC as a 

multifunctional excipient and talc as a lubricant. It was noticed that magnesium stearate 

showed physical/chemical incompatibility with aquasomes, hence it was replaced with 

talc. Various powder blends of varying BSA-loaded aquasomes amounts (25, 37.5, 50, 

62.5 and 75% w/w) were prepared and compressed at increasing compression forces 

(0.5, 1, 2 and 3 tons). It was discovered that under high compression forces of 2 and 3 

tons BSA was spreading out of BSA-loaded aquasomes as was evident from confocal 

microscopy images. BSA-loaded aquasomes tablets compressed under 1 ton of 

compression force was chosen for coating as it showed preferable tablet characteristics 

(hardness, disintegration etc.). Acrylic based coating was used to spray coat the tablets. 

The coated tablets were tested for in vitro release (2 hr at SGF pH 1.2, 1 hr at FaSIF pH 

5.5 and 6 hr in FaSIF pH 7.4). The tablets were found to disintegrate in pH >5.5 and 

steadily release for 6 hr. Cell culture studies were conducted to demonstrate the 

controlled release effect of aquasomes on Caco-2 cell lines. The release of metronidazole 

from aquasomes after 2 hr in the permeability study started to slow gradually until it 

reached its highest difference at hour 6 (p< 0.05) when compared to the 6 hr point of 

metronidazole solution. The metronidazole transported across the Caco-2 monolayer 

was 60.92 ±3.5% after 6 hr. The stability of BSA-loaded aquasome tablets were 

performed in three storage conditions of 4ºC ±1ºC/60% RH ±2% RH, 25ºC ±1ºC/60% RH 

±2% RH and 40ºC ±1ºC/75% RH ±2% RH. The stability result of BSA-loaded aquasome 

tablets showed no significant changes (p>0.05) in hardness, disintegration time and BSA 

content. In general, BSA-loaded aquasome tablets show encouraging results of in vitro 

and cell culture studies over the 6 hr release studies. Extended stability studies (>1 

month) are required to reach a solid conformation about the stability of BSA-loaded 

aquasome tablets. 
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Proteins and peptides based drugs widely exist for therapy. Owing the nature of proteins of being 

sensitive to various stress (pH of media, temperature etc), only a limited number has been 

approved by the regulatory bodies. The advances in DNA recombinant technologies have resulted 

in the steep increase in the proteins or peptide-based drugs to manage various illnesses. 

Moreover, large-scale productions of proteins or peptide-based drugs were also possible due to 

such advances (Umashankar et al., 2010; Veuillez et al., 2001; Meredith Et al., 2015) 

 

The main issue with the delivery of proteins or peptide-based drugs with a suitable delivery system 

that preserve them from external stress remains an area of research. There are various routes 

for the delivery of drugs to the body such oral, pulmonary and parenteral route. However, the oral 

route remains the dominant route for delivery and the most preferable in terms of delivery 

platforms available to it (tablets, capsules and liquid based formulations). Despite such 

advantages, the oral rout has various disadvantages such as poor permeability of the intestinal 

mucosa and degradation by gastrointestinal enzymes (Aulton, 2007; Aulton and Taylor, 2013; 

Benjamin et al., 2013; Jwala et al., 2013). Less popular routes of delivery have also been 

investigated for the delivery of proteins or peptide-based drugs (nasal, buccal, vaginal and rectal 

routes). Interestingly, the current research for the delivery of proteins or peptide-based drugs via 

those routes are encouraging and promising despite the inherit limitations such as enzymatic 

activity, patient accebtability and dose delivery (Sharma et al., 2011; Johansson et al., 2001; 

Swarbrick and Boylan, 2000; Du Plessis et al., 2010). 

 

In another study, degradation of luteinizing hormone–releasing hormone in buccal, nasal, and 

liver tissues was reported (Mingda and Jagdish, 1998). To avoid the enzymatic activity of the oral, 

buccal, nasal, rectal, and vaginal routes, proteins or peptide-based drugs are administered via 

the parenteral route (such as intravenous and intramuscular). However, even with the 

administration via the parenteral route, the short duration of action and rapid clearance of proteins 

or peptide-based drugs remain a challenge, in addition to the structural complexity these 

biomolecules have. 

 

Therefore, the need to for new delivery systems to deliver proteins or peptide-based drugs not only 

to preserve them from external stress, but also to sustain their duration of action where needed. 

Other non-proteins or peptide-based drugs factors also can affect the therapeutic action of these 

molecules. Such factors can include particle size, immunogenicity, biological half-life, 

conformational stability, rate of administration, pharmacokinetics/pharmacodynamics and dose 

requirement that represent an added challenge to as aspect of formulation. There is a wide range 
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of nanocarrier systems that are proposed for the delivery of proteins or peptide-based drugs such 

liposomes, polymers and carbon-based materials (Safari and Zarnigar, 2014; Umashankar et al., 

2010; Singh et al., 2008). Recently, a new class of nanocarrier systems have been emerged, 

aquasomes, proposed by Nir Kossovsky. Aquasomes consist of three distinct layers; an inner solid 

core, a polyhydroxy carbohydrate film and a layer of the active molecule with or without modification 

(Kossovsky et al., 1995). The unique ability of aquasomes to carry therapeutically active proteins 

and peptides non-covalently and it superior stability have highlighted them as potential 

nanocarriers for proteins and peptides (Masatoshi and Yongning, 1998; Kim and Kim, 2002; 

Khopade et al., 2002; Kossovsky et al., 1995). Aquasomes preserve the conformation of molecules 

and their pharmacological activity. It is essential to highlight that an active molecule have the 

following qualities which aquasomes preserve during the delivery, a unique 3D conformation, a 

freedom of internal molecular rearrangement induced by molecular interactions and a freedom of 

bulk movement. Such preservation also extends to stress environment such as acidic/basic pH., 

solvents and high temperature which causes denaturation. Various core and materials are 

available to manufacture aquasomes, such as ceramics, gold and diamond. The current research 

on aquasomes highlight the system as promisable carrier in many field that are not limited to drug 

delivery, such as food chemistry, microbiology and solid phase synthesis. (Kossovsky et al., 1995; 

Jain, 2001; Priyanka et al., 2012)  

 

In the present study various core and coating materials were used to prepare aquasomes under 

different conditions to study the relationship between manufacturing conditions and BSA loading. 

In terms of manufacturing conditions, coating or loading times for 2.5 hrs/25oC resulted in high 

BSA loading compared to 1 hrs/4oC (*p<0.05) for the different coating and solid core materials 

tested. DCPA and MCPA cores were unsuitable as solid core materials for aquasomes 

preparation because DCPA resulted in low BSA loading efficiencies whereas MCPA formed 

lumps post freeze drying. HA aquasomes with trehalose as a coating material, had the highest 

BSA loading (7 mg/100 mg) which resulted in a sustained release of BSA over a period of 6 hours. 

To explore aquasomes suitability for pulmonary delivery, pMDI and DPI formulations were 

prepared. Both formulations showed large amounts of aquasomes deposited in stages 2, 3 and 

4 of the NGI (mid-low respiratory region). The pMDI and DPI formulations also showed high 

disposability, which indicates low incidence of local effect. In vitro release studies performed with 

SIF showed a sustained release of BSA over a period of 6 hrs. Ex vivo studies were performed 

to demonstrate the controlled release effect of aquasomes with BEAS-2B cell lines. The release 

of salbutamol sulphate from aquasomes from hour 2 started to slow gradually until it reached its 

highest difference at hour 6 (*p<0.05). BSA-loaded aquasome tablets were formulated with MCC 
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as multifunctional excipient and talc as a lubricant. It was noticed that under high compression 

forces of 2 and 3 tons BSA was spreading out of BSA loaded aquasomes as was presented with 

confocal microscopy images. 

 

To explore aquasomes suitability for oral delivery, DC tablets were prepared. Compression force 

of 1 ton was chosen for coating as it showed preferable tablet characteristics. Acrylic coating was 

used to prepare enteric coated tablets. The coated tablets were tested for in vitro release (2 hrs 

at SGF pH 1.2, 1 hrs at SIF pH 5.5 and 6 hrs in SIF pH 7.4). The tablets were found to disintegrate 

in pH >5.5 and steadily release BSA for 6 hours. In ex vivo studies, the release of metronidazole 

from aquasomes after 2 hours in the permeability study started to slow gradually until it reached 

its highest difference at hour 6 (*p< 0.05) when compared to the 6 hrs point of control. 

 

Docking and MD simulations performed were essential to understand the forces that govern the 

assembly of the three layers of the aquasomes. HA and trehalose interact by hydrogen bonding, 

with trehalose acting as a hydrogen acceptor, while BSA shows almost complete SAS and that 

there are numerous targets for trehalose attachments (no specific active site). This was further 

confirmed by performing docking studies, which confirms hydrogen bonding formation between 

HA and trehalose, and that there are 4 hydrogen bonds formed (4 per trehalose molecule per 3 

HA cell units surface). Total energy analysis of BSA on the two conditions performed (300 K and 

280 K) support the experimental data of lower BSA loadings of aquasomes manufactured at 4oC 

compared to those manufactured at 25oC (*p<0.05).  This could be related to the fact that BSA 

might have either started to denature/unfold or begin breaking up at 4oC. 

 

In order to investigate the stability of aquasomes, stability studies were performed on aquasomes 

tablets, pMDI and DPI formulations at storage conditions of 4 ºC ±1ºC/60% RH ±2%, 25ºC 

±1ºC/60% RH ±2% and 40ºC ±1ºC/75% RH ±2%.  The results showed no significant changes 

(*p>0.05) in BSA content or release patterns. Although the stability studies were not performed 

for more than 6 months, with exception of pMDI formulations, further prolonged stability studies 

will be required for long term assessment of aquasomes. In this study, aquasomes has been 

optimised in terms of manufacturing conditions, which yielded a loading of approximately 7 mg 

per 100 mg of aquasomes, which is higher than what is reported in the literature. Pulmonary 

formulation of aquasomes (pMDI and DPI) were prepared and showed an in vitro sustained 

release over a period of 6 hours whereas cell culture studies using BEAS-2B cells showed a 

significant difference of release at hour 6 (*p<0.05). Similarly, oral formulations of aquasomes 

(directly compressed tablets) showed in vitro sustained release over a period of 6 hours of tablets 
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prepared at 1 tonne of compression force. Cell culture studies using Caco-2 cell lines showed a 

significant difference of release at hour 6 (*p<0.05). These results are promising and interesting, 

especially given the fact that aquasomes has not been investigated orally or pulmonary as 

nanocarriers for protein and peptides. These results as well as inherit aquasomes qualities of 

being biodegradable and resistance towards clearance by the reticuloendothelial system or 

degradation by other environmental challenges highlight the system as promising nanocarriers 

for proteins and peptides. 

 

In general, aquasomes are a novel carrier for bioactive molecules that deals with the principle of 

self-assembly. Better biological activity can be seen even in the case of conformationally sensitive 

drug candidates due to the presence of the unique carbohydrate coating the ceramic. The 

carbohydrate prevents the destructive of drug-carrier interactions and helps to preserve the spatial 

qualities. The stability of structure and overall integrity is controlled by the crystalline nature of the 

core. This strategy may be beneficially scaled up to the novel delivery of other bioactive molecules. 

Aquasomes have given a new optimism for the pharmaceutical sciences to deliver bioactive 

molecules. Within the large pool of peptide drugs there are a considerable number of candidates 

with the potential for delivery via these carriers including viral antigens, haemoglobin and insulin. 
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