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This thesis presents a detailed research work on the fabrication, characterisation and applications 

of optical fibre grating devices with operation wavelengths cover from near- to mid- infrared (IR) 

range.  

One of the major contributions described in this thesis is the systematic investigation on the 

structures, fabrication methods and spectral, thermal, strain and surrounding refractive index (SRI) 

characteristics of near-IR fibre gratings including fibre Bragg gratings (FBGs), chirped fibre 

Bragg grating (CFBGs) and long period grating (LPGs).  For some applications, such as special 

engineering sensors and high power fibre laser, the fibre gratings have been fabricated on different 

novel fibres (metal coated fibre and large mode field fibre), respectively.  

Another important contribution from the studies is experimental investigation on 45º tilted fibre 

gratings (45°-TFGs) and excessively tilted fibre gratings (ex-TFGs), and their applications. 45º-

TFGs with high polarisation dependent loss (PDL) in single mode and polarisation maintaining 

(PM) fibres have been fabricated. The 45°-TFG has been employed as in fibre polariser to obtain 

the single polarised laser, which has been further developed as transverse loading sensor 

achieving high sensitivities. Furthermore, all fibre Lyot filter with narrow bandwidth (26 pm), 

constructed by two 45º-TFGs with 100m long cavity in PM fibre has been demonstrated.  For ex-

TFGs, SRI sensor based on a surface modified 81°-TFG, showing capability to detect glucose 

concentration with relatively high RI sensitivity (~168nm/RIU). Finally, an all-fibre loading 

sensor based on a hybrid 45° and 81° TFG structure has been demonstrated. 

Finally, I have fabricated fibre gratings into mid-IR 2μm range. The mid-IR FBGs have been 

evaluated for thermal and strain response, revealing higher temperature sensitivities than that in 

near-IR range. The mid-IR LPGs have been investigated for the thermal and refractive index 

sensitivities, also showing significant enhancement. The 45°-TFGs in mid-IR have been 

investigated for their PDL characteristics. The mid-IR FBGs and 45°-TFGs have been employed 

in Tm-doped fibre laser cavity to realize multi-wavelength continued wave (CW) and single 

polarisation operation. 

Key words:  Fibre Bragg grating, Long-period grating, Tilted fibre grating, Optical fibre sensor, 

Fibre lasers. 
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1.1 Introduction 

Since in-fibre gratings were demonstrated by Hill et al. in 1978 [1], a variety of application 

devices based on optical fibre gratings have been developed. So far, fibre Bragg gratings as the 

most common in-fibre devices have been used in many applications, such as telecommunications 

and sensing [2, 3], fibre laser systems and pump laser stabilizers [4], gain flattening filters [5], 

WDM systems [6] and chromatic dispersion compensators [7]. In the earlier development period, 

optical fibre gratings were mostly  classified into two categories: (i) fibre Bragg gratings (FBGs), 

based on forward to backward core mode coupling which are characterized by wavelength 

selective reflection function in form of filtering and (ii) long-period gratings (LPGs), based on 

forward core to cladding mode coupling which are characterized by loss filter function.   

In the last ten years, optical fibre gratings with tilted structure have gained more attention from 

researchers due to their distinctive optical properties. The ability to couple light from the core 

mode to cladding and radiation modes by the tilted fibre gratings (TFGs) was first reported in 

1990 by Meltz et al. [8]. Subsequently, Erdogan & Sipe [9] gave a theoretical analysis of TFG 

structures and also pointed out the in-fibre polarization characteristic function of 45°-TFG 

structure, which enable it to couple s-polarized light from the guided core-mode to the radiation 

mode and propagate the p-polarized light through the fibre. Basically, fibre grating devices are a 

periodic form of modulation of the refractive index (RI) of the fibre core. This RI modulation 

structure can be introduced by exposing a silica glass fibre to an ultraviolet laser (UV) with a 

typical wavelength in the range of 244nm-248nm [10]. 
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In recent years, the optical fibre devices operating in the mid infrared (mid-IR) spectrum have 

attracted growing interests due to their application potentials in defence [11], health [12, 13] and 

the environment [14]. Optical fibre gratings are useful in-fibre components, therefore, there are 

high demands for their wavelength extension from near-IR to mid-IR.  Moreover, laser sources 

within eye-safe (2μm) region, especially for operation wavelengths in the atmospheric 

transmission window between 2.05μm and 2.3μm, have been attracting special attention. 

However, most of the reported mid-IR fibre lasers used the bulk mirrors in the cavities, inducing 

high insertion loss and limiting the structure compactness. FBGs can be used as intra-cavity 

resonators for all fibre lasers to eliminate these disadvantages. Therefore, the fabrication of FBGs 

extending to mid-IR wavelength range is the key factor for the development of all fibre mid-IR 

lasers. Besides, the 45°-TFG can be employed as an in-fibre polarizer in a mid-IR mode-locked 

fibre laser providing the effect of nonlinear polarization evolution (NPE) [15] and as well as low 

insertion loss and high compactness.   
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1.2 Structure of thesis 

The thesis consists of seven chapters and the detailed contents of each chapter are listed below: 

Chapter 1 provides a brief introduction and describes the structure of the thesis. 

Chapter 2 will begin with a historical perspective about the development of optical fibre gratings. 

Subsequently, mechanism photosensitivity of optical fibre and photosensitivity enhancement 

techniques are reviewed in details. As the second major part of this chapter, the theory concerning 

the mode coupling mechanisms and phase match conditions are discussed systematically. Finally, 

a brief description of the three major fibre grating fabrication methods for FBG, LPG and TFG is 

given.  

Chapter 3 presents the research outcome on the fabrication and characterisation of different types 

of optical fibre grating. The chapter will first describe two inscription methods for producing 

FBGs with central wavelengths covering the range from 800nm to 1550nm, and their thermal and 

strain sensing characteristics.  Then, the chapter will introduce the chirped fibre Bragg grating 

made in large mode fibres with the discussion on the fabrication and spectral response. A short 

section has been devoted to the FBGs fabricated in metal coated fibre and the evaluation of their 

thermal property. Finally, the chapter gives a systematic investigation of LPGs with different 

periods, including the characterization of their spectral, thermal and surrounding refractive index 

(SRI) response. Chapter 4 presents the fabrication, spectral characteristics and applications of 

45°-TFGs. The first part of this chapter introduces the structure and phase matching conditions of 
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TFGs.  Then, the second part gives a theoretical review on the polarization characteristics of 45°-

TFG and introduces the fabrication methods for tilted fibre grating. As one unique type of 

application, the power tapping experiment based on 45°-TFG is described.  Finally, the 

applications of 45°-TFGs based all fibre interferometer in laser systems are discussed.  

Chapter 5 reports the experimental investigation of excessively tilted fibre gratings (ex-45°TFGs) 

and their temperature and refractive index sensing function in detail.  Firstly, this chapter gives a 

detailed description of the structure and mode coupling mechanism of ex-45°TFGs. Then, the 

inscription methods and characterisation of the thermal and SRI sensitivity for ex-45°TFG are 

discussed. In the final part,  two applications employing ex-45°TFGs are presented; one is the 

implementation of a novel glucose sensor based on an ex-45°TFG and the other is the 

demonstration of loading and temperature sensing using  a hybrid 45°- and 81°-TFG to simplify 

the measurement process. 

Chapter 6 presents the fabrication and applications of optical fibre gratings in the mid-IR 

wavelength range. First of all, the characteristics of mid-IR FBGs, LPGs and 45°-TFGs in terms 

of spectral, thermal, strain and RI response, as well as polarization dependent loss (PDL) are 

discussed, respectively. Secondly, the results on a multi-wavelength continuous wave mid-IR 

fibre laser utilizing a set of FBGs with Bragg wavelengths in the mid-IR range as reflectors are 

reported.  Finally, a thulium-doped fibre laser employing a 45°-TFG and Sagnac loop mirrors as 

cavity elements is demonstrated, which can operate with tuneable single-wavelength lasing 

around 2000nm. 
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Chapter 7 will present the thesis conclusions and some detailed suggestions for future works. 
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Background review (history, 

photosensitivity, grating theory 

and fabrication methods) 
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2.1 Fibre grating history  

Optical fibre photosensitivity was first discovered in germanium-doped silica fibre at the 

Communication Research Centre (CRC) in Canada by Hill and co-workers [1] in 1978. During 

an experiment performed to research scattering phenomenon in special optical fibre, the visible 

argon ion laser radiation light was launched into the core of the fibre. It was noticed that as a 

function of time, an increase in the fibre attenuation was observed. The spectral measurements 

displayed that a weak standing wave intensity pattern formed by the 4% back reflection from the 

cleaved end of the fibre interacting with the forward propagating light. It was determined that a 

permanent refractive index grating was photo-induced into the core of this special fibre, which 

operated as a type of distributed reflectors that coupled the forward- to the counter-propagating 

light beam. This scientific discovery that subsequently called “Hill gratings” was a milestone in 

researching on the nonlinear properties of germanium-doped silica fibre. Although scientists 

realized the importance of this discovery in future research development at that time, this curious 

phenomenon confused a few researchers [16, 17], for about ten years. The main reason for this is 

that it was difficult to repeat the original experiments and also because the phenomenon observed 

only from the experiments which was limited to the one “magic” fibre at the CRC. Moreover, the 

writing wavelength of the spectral region of the “Hill gratings” is confined in the visible part of 

the spectrum, which was no use for telecommunication and signal processing and sensing in near-

IR region.  
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During 1980s, scientists were already researching in second-harmonic generation phenomenon in 

germanium-doped silica optical fibres, which has a zero second-order nonlinear coefficient 

responsible for second-harmonic generation. Sasaki, Ohmori[18]  and Hill et al.[19] reported 

another nonlinear phenomenon of sum frequency generation. Stolen [20] and Farries [21] set up 

some experiments to support a mechanism for phase-matched generation of second harmonic (SH) 

light in the fibre. Afterwards the observation from Stone [22] demonstrated virtually any 

germania-doped silica fibre is sensitive to argon ion laser radiation light, recommenced activity 

in the field of fibre gratings.  

The major technical breakthrough came from Gerry Meltz et al.’s paper[23], which reported that 

Bragg gratings have been produced by holographic technique using the ultraviolet laser at 244nm 

single-photon absorption. They demonstrated the two interfering 244nm single-photon UV laser 

beams could be used to carve the grating that would reflect a wide wavelength range light 

(750nm~1650nm) by illuminating the fibre core from the side. The Bragg resonance wavelength 

is dependent on the angle between the two interfering beams. So the wavelength for reflection 

gratings can be extended to fabricate at 1530nm, which is an interesting wavelength in 

telecommunications field. R. Kashyap et al. [24] demonstrated the first fibre laser operating from 

the reflection of the erbium-doped germane-silicate fibre grating at 1500nm afterwards. Normally, 

UV induced index changes in standard single mode optical fibres have been limited to ­ 3 × 10-5. 

Since then, several treatment methods for increasing index changes in optical fibres have been 

developed. However, these treatment methods make it possible to create efficient reflectors only 

a hundred wavelengths long. Lemaire and his colleagues [10] reported a simple fibre treating 
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technique which can sensitise fibres using a low temperature and high pressure hydrogen 

treatment before the UV exposure. In the same year Hill and Anderson et al. [25]  invented the 

phase mask method to write the FBGs, which made FBGs commercial fabrication becoming a 

reality. 

At the beginning, the observation of photosensitivity in fibres was only a scientific curiosity 

without more researchers’ attention, but over time it has become to play an important role in 

sensing technology and optical communication engineering. Nowadays, research into 

mechanisms of fibre photosensitivity and its applications have sprung up in many universities and 

industrial laboratories all over the world. Thousands of articles in regard to photosensitivity and 

fibre gratings have been published in the scientific journals and in the proceedings of conferences, 

and workshops. 
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2.2 Photosensitivity in optical fibre 

The photosensitivity in optical fibre refers to a permanent refractive index change of the fibre 

core after exposure to UV light with specific wavelength. Photosensitivity was first discovered in 

an optical fibre where it was exposed to visible argon ion laser radiation at 488nm launched into 

its core. The photosensitivity is mainly determined by the core material. It was initially discovered 

in the germanium doped fibre and photo-excited with 240-250nm ultraviolet (UV) light. Actually, 

following many years of research, varying degrees of photo-sensitivities have been observed 

through photoexcitation at different UV wavelengths in other element doped fibres, such as 

europium[26] , cerium [27], phosphorus [28] and erbium: germanium [29]. Nevertheless, the 

germanium doped fibre shows more sensitivity than the others.  Therefore, most of optical fibre 

core we used is doped with germanium, which is widely employed in both the optical sensor 

applications and the telecommunications fields. In this section, we will only present the 

germanium induced photosensitivity mechanism.    

2.2.1 The point defects in germanium-doped fibre 

The point defects in optical fibre are usually produced by ionizing radiation [30] and the fibre 

fabrication process [31]. In the 1980’s, point defects is related to the phenomenon of second 

harmonic generation [20, 32-35]. The one-photon process that causes the photo-induced variation 

at 240nm is below the band gap at 146nm, thereby the point defects in ideal glass tetrahedral 

network are reasonable for the observation of photosensitivity. In order to better understand the 
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photosensitivity at UV region, it is necessary to study the point defects in the germanium doped 

fibre.  

  

Figure 2.1 The schematic of proposed point defects of germanium doped silica. 

Germanium can be considered as both GeO2 and GeO in the glass, due to it having two stable 

oxidation states (+2 and +4). As is known, the germanium doped preform is prepared by using 

the modified chemical vapor deposition (MCVD) technique. It is also well known that GeO 

becomes more stable than GeO2 at high temperature [36, 37]. Therefore, during the high –

temperature gas-phase oxidation process of MCVD, GeO2 dissociates to the GeO molecule. 

When GeO is incorporated into glass, this molecule displays itself in the forms of 2-coordiated 

Ge or the Ge-Si (or Ge-Ge) wrong bonds, which are considered the defects precursors [38]. This 

point defect is related to the 240-250nm absorption band and its centres are named as germanium 

oxygen-deficient centres (GODCs), which are responsible to the photosensitivity of optical fibre.  

Figure 2.1 shows the schematics of the proposed point defects in germanium doped optical fibre. 
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In Figure 2.1, the Ge(1) and Ge(2) are ensnared electron centres, which have the absorption 

wavelength at 281nm and 213nm, respectively [38]. 

2.2.2 Photosensitivity mechanisms 

Photosensitivity in optical fibres denotes a modification in the refractive index of the fibre core, 

which [1] was first discovered in an optical fibre where it was exposed to visible argon ion laser 

radiation at 488nm launched into its core. Although the mechanism of photosensitivity has not 

been illustrated clearly and the processes details are not yet fully explained by now, there are also 

several theories that have been published to explain it, such as: colour-centre model [39], 

compaction model [40], stress-relief model [41], electron charge migration model [42], permanent 

electric dipole model [43], ionic migration model [44] and Soret effect [45]. Among all these 

models, the first three mechanisms were involved in photosensitivity for the most common 

germanosilicate fibre. In this section, we will describe these three models associated with 

refractive index changes: colour centre, compaction/densification and stress relief models.   

2.2.2.1 Colour centre model 

The colour-centre model was firstly proposed by Hand and Russell [39]. It is well known that in 

many germanium-doped optical fibres there are two dominant absorption bands at 195nm (6.35eV) 

and 240nm (5.1eV)), which is associated with point defects GeE’ and GODC induced by the 

chemical reactions. Under the UV irradiation, the Ge-Si wrong bond is broken by absorbing one 

UV photon at about 240nm, or by two-photon absorption at 480nm, forming a GeE’ centre and 
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releasing the electron freely into the glass matrix until electrons are extracted from neighbouring 

Ge sites to create additional absorption centres in the glass. Thus, the other absorption band has 

been generated as well, which leads to a refractive index change following the Kramers-Kronig 

relationship [46]. After that, many experiments [47, 48] supported the colour-centre model for 

photosensitivity effect.  

As we discussed in the last section, two possible candidates of GODC are listed as follow: Ge2+ 

ions coordinated by two oxygen atoms and getting the Ge-Ge or Si-Ge wrong bonds or two lone 

pair electrons (see in Figure 2.1 ) [49]. Two photochemical reaction paths for colour centre model 

were firstly proposed by Hosono et al. [50] through their experiment results. One reaction path is 

the single-photon process that the wrong bond based GODC absorbs a photon (5.16eV) and 

converts into GeE’, GeO3+ and an electron (see in Figure 2.2(a)); another reaction path is two-

photon process that the 2-coordinated Ge based GODC absorbs two photons and generates a self-

trapped hole centre (STH) and a Ge electron centre (GEC) and finally the GEC is converted to 

GeE’ (see in Figure 2.2(b)). 

Figure 2.2 The two photochemical reaction paths: (a) single photon process and (b) two-photon 

process[50]. 
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In the colour centre model, the changes of refractive index are associated with the photo induced 

changes of absorption in UV region through Kramers-Kronig relation, which is expressed as [46] : 

Equation 2.1  
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Where P is the principal part of the integral, λ is the wavelength at which the refractive-index 

change was calculated, and αeff (λ) is the effective change in the absorption coefficient of the 

defects.  

For colour centre model, Kramers-Kronig relationship indicates that the UV absorption of silica 

is connected to the refractive index change in the infrared and visible spectrum. Although this 

model can explain UV-induced low value refractive index change accurately, which has been 

verified by several experimental results [51-55], it is unable to fully account for the experimental 

investigations especially in higher value of refractive index changes.   

2.2.2.2 Compaction/densification model 

The compaction/densification model assumes that the UV laser exposure induces density 

modulation which leads to refractive index variation. The amorphous silica film [40] has been 

shown to have linear compaction effect that results in refractive index change which is illuminated 

under the KrF excimer laser, and its thermal reversibility. In their experiment, a KrF excimer laser 

was employed to irradiate thin-film amorphous silica samples grown on Si wafers. There was 

about 16% reduction in the film thickness after irradiation and an increase of refractive index 
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during laser irradiation. After the samples were annealed for one hour at 950°C, the compaction 

disappeared and the thickness and refractive index value were recuperated to the original state. 

However, if continued accumulation of UV irradiation is applied beyond the compaction 

threshold, it will become irrecoverable [56]. They also measured the refractive index change in 

hydrostatically compressed silica and the experiment results were consistent with laser-

compacted, amorphous silica. This result confirmed that the variation of refractive index caused 

by laser and hydrostatically induced compaction growth have similar physical mechanisms, which 

means internal structure rearranged resulted in compaction of amorphous silica processing and 

not through a processing of defect creation.  Afterwards, in order to comprehensively understand 

the formation dynamics of FBG, the UV-induced compaction in the Ge-doped fibre was also 

observed in the experiments by using transmission electron microscope (TEM) [57].  

2.2.2.3 Stress relief model 

The stress relief model claims that the refractive index change depends on the relief of built-in 

thermo-elastic stress caused in the fibre core by the UV-illumination [58]. During the fibre 

drawing and cooling process, the different thermal expansion coefficients of fibre cladding and 

core region lead to the fibre core being under tension [59]. It is known the tension can reduce the 

refractive index because of the stress-optic effect. Therefore, during the UV irradiation process, 

the wrong bonds break and the relaxation in the tensioned fibre core induced by the thermal effect 

could cause the increasing of refractive index. Although the stress relief model explains the large 

index change in the fibre core, the growing of fibre Bragg grating induces very strong tension, 
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which contradicts this model [51]. Moreover, the stress relief model can’t explain the thermal 

reversibility of grating inscription. 

2.2.3 Photosensitivity enhancement techniques 

The standard single mode telecom fibres which doped 3 mol% germanium dioxide have shown 

very poor photosensitivity (typically only indicates index changes of 3×10-5) [60]. Thus, the 

researchers have tried to understand and increase the photosensitivity in optical fibres since the 

beginning of grating inscription in optical fibre and the discovery of photosensitivity. Normally, 

increasing concentration of germanium dopant can improve the photosensitivity of fibre (large 

index changes of 5×10-4) [61]. However, the higher germanium doping level also leads to some 

drawbacks such as significant transmission loss and reduced mechanical strength. Therefore, 

three main methods have been developed to increasing the photosensitivity of fibre: hydrogen 

loading, flame brushing and appreciated co-doping method. 

2.2.3.1 Hydrogen loading technique 

Lemaire and co-workers [62] firstly reported hydrogen loading technique which achieving the 

high UV photosensitivity in optical fibres.  The permanent index change of hydrogenated fibre 

after UV exposure has been increased to 3.43×10-3, which is almost 100 times higher than non-

hydrogenation fibre. In this method, the treating process is that the optical fibres are soaked in 

hydrogen gas within a pressure ranging from 20~750atm at a temperature ranging from 25°C 

to75°C for several days ( the loading time depends on the temperature and pressure).  One 
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advantage of this technique is that the hydrogen in unexposed fibre areas will release out, which 

can cause critical loss at communication windows.  

The achieved increased photosensitivity in hydrogen loading technique process is due to the 

capability of hydrogen to create additional GODCs from germanium atoms in the lattice in the 

following fashion. The research results from Douay et al. have demonstrated that the 

concentration of GODCs in the fibre core is significantly increased after loading hydrogen 

treatment [63]. In hydrogenation process, H2 molecules can diffuse into the fibre core through the 

cladding where the fibre is placed in a high pressure hydrogen gas tube. UV exposure or any 

intense heat will result in dissolving H2 to thermally react with Si-O-Ge glass sites and subsequent 

formation of additional GODCS, Si-OH and Ge-OH bonds which cause the large permanent index 

changes in the fibre core [64]. However, involving hydroxyl broadband absorption peak at 

1.39μm and 1.41μm can causes critical loss in the communication windows [65, 66]. Thus, some 

researchers have tried to load the fibre with deuterium instead of hydrogen, which appeared to 

move the infrared loss band away from the tele-communication transmission window [67].  

2.2.3.2 Flame brushing technique 

The flame brushing is another simple and effective photosensitization technique for 

germanosilicate optical fibre, which can achieve high photosensitivity with small absorption loss 

[68]. The designated region of fibre is brushed repeatedly in a flame fuelled with hydrogen and 

oxygen at the temperature of approximate 1700 ºC for around 20mins. The flame brushing and 
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hydrogenation technique have the same photosensitizing principle, by which the hydrogen 

molecules dissolve quickly into the fibre and chemically react with germanosilicate glass to 

induce the GODC bands that are the main reason for the fibre photosensitivity, sensitising the 

fibre with Δn reaching 10-3 [68].  

Comparing with the hydrogenation technique, there are several advantages for fibre 

photosensitivity enhancing by this technique, such as permanent photosensitivity enhancement, 

strong FBGs fabrication in normal standard telecom fibre, localization of photosensitivity and 

short treating time. However, the major shortcoming of this technique is that the high temperature 

treatment by flame brush can weaken the fibre, which could seriously shorten the service life of 

the optical fibre device fabricated using this approach.  

2.2.3.3 Co-doping technique   

The photosensitivity can be enhanced by adding additional materials (co-dopants) into the 

germanosilicate fibre, such as boron (B) [43] and tin (Sn) [69].In 1993, Williams’s et.al 

demonstrated a highly photosensitive fibre which was co-doped with boron and germanium in the 

fibre core. In their experiment, three type fibres (1- standard telecom fibre with 3mol% GeO2, 2- 

fibre with highly Ge concentration of 20 mol% GeO2 and 3- B/Ge co-doping fibre with 15 mol% 

GeO2) have been exposed to UV-beam until their index modulation became saturated. They 

achieved the saturated index modulation of approximately 7×10-4 for B co-doped fibre over about 

10 minutes while for other two fibres, it took about 2 hours to reach the saturated index 

modulation of  3×10-5 and  2.5×10-4 respectively. The systematic study shows the B co-doping 
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can significantly increase the index change, which is around 4 times larger than that of the 

standard single mode fibre. Meanwhile, the UV exposing time to reach saturated  reflectivity was 

sharply decreased from more than 2 hours for the pure germanosilicate fibre to only around 10 

mins for co-doped fibre [70]. As we known, the doping of boron to silica could decrease refractive 

index of the glass and make it softer than original material [71]. Although these investigations 

evidently indicate a much better photosensitivity response from B co-doped fibre than the fibre 

with only equivalent Ge concentration, boron doping causes extra loss about 0.1 dB at 1550 nm 

range, which is not satisfying. However, for short length gratings, this may not be of concern. 

In another approach to enhance the photosensitivity of the fibre by adding other material as co-

dopants, Dong et.al [69] reported that tin (Sn) co-doped fibre exhibits the saturated refractive 

index change of 3 times bigger than of the normal germane-silicate fibre. And comparing with B 

co-doping, Sn co-doped fibre has some advantages including not introducing significant loss at 

the telecommunication transmission window and the grating survival at high temperature [72].   

The nitrogen (N2) co-doping germanosilicate fibre also exhibited extremely high photosensitivity, 

where the refractive index change is around 2×10-3 for non-hydrogenation fibre, and 1×10-2 index 

change for hydrogenated fibre [73]. However, hydrogenated N-doped fibres induce very high 

intrinsic loss at the level of 1000dB/km at the third telecommunication window, because the N-

H bond has extraordinary strong absorption loss band at the wavelength of 1506nm [74, 75].  

.  
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2.3 Coupled mode theory  

Coupled mode theory is a mathematics tool for analysis of the propagation of electromagnetic 

waves in periodic layered mediums. Nowadays, it becomes one of most popular solutions utilized 

in obtaining quantitative information about the diffraction efficiency and spectral dependence of 

optical fibre gratings (including FBG, LPG, and TFG). There are a number of different coupled-

mode formulations produced by mathematicians [76, 77]. Here, the coupled-mode theory that will 

be discussed is based on the model provided by Erdogan [78-80]. 

Erdogan pointed out that in the ideal-mode approximation to coupled-mode theory the transverse 

component of the electric field can be written as a superposition of ideal modes which are in an 

ideal waveguide without grating perturbations. 

Equation 2.2        ( , , , ) [ ( )exp( ) ( )exp( )]. ( , )exp( )t j j j j jt

j

E x y z t A z i z B z i z e x y i t       

Where the coefficients Aj(z) and Bj(z) are the slowly varying amplitudes of the jth mode travelling 

in the +z and -z directions, respectively. ),( yxe jt


 is the transverse mode field with the time 

dependence exp(-iωt), which might describe; bound-core, cladding or radiation LP modes. The 

propagation constant   means: 

Equation 2.3             
2

effn





  

where effn  represents the effective refractive index of jth mode.  
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The presence of a dielectric perturbation causes the various modes to be coupled. The amplitudes 

jA )(z and jB )(z of the jth modes to evolve along the z direction. This can be explained in the 

following equations: 

Equation 2.4   
 

         ziKKBiziKKAi
dz

zdA
jk

k

z

kj

t

kjkjk

k

z

kj

t

kjk

j
   expexp   

Equation 2.5   
 

         ziKKBiziKKAi
dz

zdB
jk

k

z

kj

t

kjkjk

k

z

kj

t

kjk

j
   expexp   

Where 
t

kjK  and 
z

kjK  are the transverse and longitudinal coupling coefficients between the j and 

k modes respectively. The transverse coupling coefficient
t

kjK  can be written as; 

Equation 2.6          *, , , . ,
4

t t t

kj k jK z x y z e x y e x y dxdy





      

Where ω is the waveguide frequency. The longitudinal coefficient 
z

kjK  has similar equation 

format as
t

kjK , but 
z

kjK  is usually neglected because generally    z t

kj kjK z K z (nearly 2 orders of 

magnitude smaller) for fibre modes.  zyx ,, is the permittivity perturbation. 

Most Fibre gratings are fabricated by exposing a photosensitive fibre to a spatially varying pattern 

of UV light. The refractive index effn  change can be expressed as: 

Equation 2.7         


















 zzvznzn effeff 




2
cos1  

where v is the fringe visibility of the index change;  is the grating period;  z is the grating 

chirp and  effn z  is the "dc" index change spatially averaged over a grating period. The UV-

induced index change ( , , )effn x y z  in most fibre gratings is approximately uniform across the 

core and negligible outside the core. Therefore, the core index change can be written by 
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substituting  effn z  in equation 2.7 by  con z . Then, the general coupling coefficient 

(Equation 2.8) can be rewritten as: 

Equation 2.8           










 zzzzzK kjkj

t

kj 



2

cos2   

Where 
kj  is the “dc” coupling coefficient and

kj is the “ac” coupling coefficient 

Equation 2.9     
 

   dxdyyxeyxe
znn

z t

j

core

t

k

effeff

kj ,.,
2

*



  

Equation 2.10     zz kjkj 



2

   

2.3.1 Fibre Bragg gratings (FBGs) 

For an FBG, the dominant interaction is close to the wavelength for which a mode of amplitude 

A(z) is coupled into an identical counter-propagating mode of amplitude B (z). The Equation 2.4 

and 2.5 may simplified by keeping the terms that involve the amplitudes of the particular mode 

and by synchronous approximation. The resulting equations can be written as: 

Equation 2.11                 zSizRi
dz

dR
  ˆ    

Equation 2.12                 *ˆ
dS

i S z i R z
dz

       

where the amplitude  R and S are 

Equation 2.13               ( )exp
2

R z A z i z



 

  
 
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Equation 2.14               ( )exp
2

S z B z i z



 

   
 

   

In Equation 2.11 and 2.12,   is the "ac" coupling coefficient and a   the general "dc" self-

coupling coefficient defined as 

Equation 2.15             

1 ( )
ˆ

2

d z

dz


        

In above Equation 2.15, the derivative (1/2)dφ(z)/dz describes possible chirp of the grating period, 

the detuning   is assumed to be constant for all gratings along the z axis, this becomes:  

Equation 2.16              
1 1

2D eff

D

n


    
 

 
       

  
  

Where 
D effn    is the “design wavelength” (initial resonance wavelength) for Bragg 

scattering by a very weak grating (i.e. 0effn ). 

In a single-mode Bragg grating case, the relations for coupling coefficients  and  can be 

simplified as: 

Equation 2.17         
2

effn


 


   

Equation 2.18         
*   

                                     effn




  

If there is a forward coupling grating with no chirped, then effn  is a constant and / 0d dz  . 

Therefore, ,  and ̂  are constants, and thus Equations 2.13 and 2.14 are simplified into 
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coupled first-order ordinary differential equations with constant coefficients,  for which closed-

form solutions will be calculated out when appropriate boundary conditions are specified. 

For a FBG with length L, the reflectivity could be recognised as a forward-propagating wave from 

the negative infinite (z= -∞), while assuming that no backward-propagating wave exists for z ≥ 

L/2. The amplitude ρ and the power reflection coefficient R can be expressed as follow: 

Equation 2.19  

2 2

2 2 2 2 2 2

ˆsinh ( ) ( )

ˆ ˆ ˆ ˆsinh ( ) ( ) cosh ( ) ( )

L L

L L i L L

  


      

 


   
 

And 

Equation 2.20                  

2 2 2

2
2 2 2

2

ˆsinh ( ) ( )

ˆ
ˆcosh ( ) ( )

L L
R

L L

 


 






  
 

Using the equation 2.20 the maximum reflectivity of FBG can be given as: 

Equation 2.21                           
2

max tanh ( )R L  

By plotting equation 2.20 for κL=0.88 and κL=3, the reflection spectra of a uniform Bragg grating 

are illustrated as below: 
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Figure 2.3 Simulated reflection spectra of 5mm long FBGs with κL=0.88 and κL=3. 

In figure 2.3, the normalized wavelength is   

Equation 2.22         
max

1

ˆ1 /L N



  



  

Where λmax is the wavelength at maximum reflectivity, and N is the grating period number 

(N=L/Λ).    

2.3.2 Long period gratings (LPGs) 

For LPGs, the dominant interaction is close to the wavelength for which a mode of amplitude 

1( )A z  is coupled into an identical co-propagating mode of amplitude 2 ( )A z . Therefore, this 

simplifies equation 2.4 and equation 2.5 to the following; 

Equation 2.23               ˆ
dR

i R z i S z
dz

     
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Equation 2.24               *ˆ
dS

i S z i R z
dz

      

The new amplitudes R and S are: 

Equation 2.25              1 11 22exp exp
2 2

z
R z A i i z


  

   
     

   
  

Equation 2.26            2 11 22exp exp
2 2

z
S z A i i z


  

   
      

   
  

In above equations, the “ac” components are 11 and 22 , and the “ac” cross-coupling coefficients 

are  = 21 =
*

12 . The “dc” self-coupling coefficient can be described as: 

Equation 2.27          11 22 1
ˆ

2 2

d

dz

  
 


     

In above equation 2.27, the detuning   is assumed to be constant for all gratings along the z axis, 

this becomes:  

Equation 2.28          1 2

1 1 1

2
eff

D

n


   
 

 
      

  
  

Where 
D effn    is the “design wavelength” (Initial resonance wavelength) for an 

infinitesimally weak grating. As for Bragg gratings, the grating conditions corresponds to  =0 

or  = d = effn  . 

For a uniform grating,  and̂  are constants. Similar as the case of the FBG, the forward-coupled 

grating Equations 2.25 and 2.26 are coupled first-order ordinary differential equations with 

constant coefficients. Thus, closed-form solutions will be calculated out when appropriate initial 

conditions are specified. 
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2.3.3 Tilted fibre grating (TFGs) 

TFGs are gratings photo-induced index modulation tilted by an angle θ with respect to the fibre 

axis z’ (see in Figure 2.4). The index perturbation could be expressed as: 

Equation 2.29  




















 )'('

2
cos1)'()x,(

G

zzsznzn coco 


  

Where, z’=xsinθ+zcosθ shown in Figure 2.3. However, the grating period along the fiber axis (z-

direction) is simply Λ=ΛG/cosθ. Here, z’≈zcosθ is used in Equation 2.29. the general coupling 

coefficient described in Equation 2.26 will becomes: 

 Equation 2.30    )cos(
2

(z)cos2(z) (z) 










  


 zzCT

  

θ 

θ 

CORE

CLADDING
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Figure 2.4  Diagram of a tilted fibre grating in the fibre core. 

Where the subscripts m and q actually describe the forward travelling mode (+) and backward 

travelling mode (-), respectively. The self and cross coupling coefficients are modified as follows 

[79]: 
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Equation 2.31   ),(),()cos(
2
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Equation 2.32   ),(),()cos(
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Finally, the tilted fringe effect can be expressed by an effective fringe visibility[9], SŦ±(θ) can be 

defined as 

Equation 2.33   

*

*

2
exp( tan( )) ( , ) ( , )  
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2.4 Phase matching conditions 

Normally, the bound wave can be coupled to the counter-propagating or co-propagating modes 

in perturbed optical fibre. According to the mode coupling direction, optical fibre gratings will be 

divided into two types. One is a backward-coupled grating, in which the incident light is coupled 

into the opposite direction, such as FBGs and small angle TFGs. The other type is forward-

coupled gratings, such as LPGs and large angle TFGs, which couple the light to the same 

directions. 

 For the transfer of energy from a mode into another propagating mode, the phase mismatch factor 

 is referred to a detuning, which is written as: 

Equation 2.34      
2

cosi d

g

N


      

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Where i is the propagation constant for the incident mode, d signifies the diffracted mode 

propagation constant, 
g is the grating period, θ is the tilt angle of grating and letter N express 

an integer number(0,1,2…). The sign ‘ ’ represents the situation thereof the mode propagates in 

z direction. 

The transfer energy is significant when 0  , Equation 2.34 can be rewritten as: 

Equation 2.35      

2
cosi d

g


   


  

Both i  and d share the same sign for counter-propagating modes. In contrast, they have 

opposite signs for co-propagating mode. The first-order diffraction is dominant with regards to 

most cases, hence N=1[77]. The resonant wavelength should be: 

Equation 2.36  ( )
cos

gi d

eff effn n



    

In the case of normal FBG (θ=0), the Bragg wavelength is shown by: 

Equation 2.37   2B effn     

Where effn is the effective index of the core. 

Figure 2.5 below shows a diagram of the light coupling from the forward-propagating core mode 

to the backward-propagating core mode. 
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Figure 2.5  Schematic of mode coupling of an FBG structure. 

The phase matching condition of an LPG (coupling from the core mode into the co-propagating 

cladding mode) is given by: 

Equation 2.38      ,( )res co cl mn n      

Where con  is the effective index of the core mode and 
,cl mn  is the effective index with the 

thm  

cladding mode.   is the period of the grating, usually in the region at several hundred 

microns[81].  

Figure 2.6 shows a diagram of mode coupling by an LPG structure. 
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Figure 2.6 Schematic of mode coupling of an LPG. 
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In the case of a TFG, the mode couplings are possible in both coupling directions (the core mode 

can be coupled to the counter-propagating modes or to the co-propagating modes, which depends 

on the magnitude of the grating tilt angle. The resonant wavelengths are shown as below [79, 82]: 

Equation 2.39    



cos

,

g

mclcoclco nn


   

Where con  is the effective index of the core and 
,cl mn  is the effective index with the 

thm  cladding 

mode. The “+” indicates the coupling to the counter-propagating modes where as “-“ to the co-

propagating modes. The grating period along the fibre axis can be simply expresses as: 

Equation 2.40     
cos

g




    

Where 
g is the normal period of the grating and  is the grating tilt angle. 

The schematics of mode coupling to opposite directions by TFGs are shown in Figure 2.7. 
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Figure 2.7 Schematic of TFG mode coupling: a) backward coupling; b) forward coupling. 

2.5 Fabrication techniques of optical fibre grating 

2.5.1 Internal inscription technique 

The internal fiber grating writing technique was firstly invented by Hill and co-workers in 1978 

by using germanium-doped silica fibre and visible argon ion laser radiation [1].Hill's experimental 

setup is shown in Figure 2.8. 

 

Figure 2.8 Schematic of Hill experiment set up of fibre Bragg grating fabrication by internal 

inscription technique. [1] 
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As shown in Figure 2.8, a 488nm argon ion laser is employed as the source launching into core 

of the fibre. The standing wave was formed by 4% Fresnell reflection occurred at the cleaved end 

of fibre interfering with initial incident laser light. The high intensity points modified the 

refractive index in the germanium-doped photosensitive fibre in period to form a Bragg grating 

structure in the fibre core. However, the FBG fabricated by this technique is limited to the central 

wavelength coinciding with the excitation laser wavelength.  Thus, the period of grating is 

determined by the wavelength of incident laser and effective index of fibre core, which is: 

Equation 2.41       
effn2

UV
  

This technique has almost no use for real application devices as the structure can be generated for 

one fixed Bragg wavelength without any tuneability.  

2.5.2 Two-beam holographic side-inscription technique 

The two-beam holographic technique was first demonstrated by Meltz et al. in 1989 [23]. The 

disadvantages in the original Hill gratings were overcome by Meltz’s work due to improved 

writing efficiency and the ability to write gratings with arbitrarily designed Bragg wavelength by 

the angle adjustment of the interfering beams. Figure 2.9 shows a basic schematic of transverse 

holographic technique experiment set up. 
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Figure 2.9  Schematic of an amplitude-splitting interferometer used by Meltz et al. which 

demonstrated the first externally fabricated Bragg grating [23]. 

As shown in Figure 2.9, the 244nm UV beam was divided into two equal intensity beams through 

a 50:50 beam splitter and reflected by two symmetric mirrors. Then the two reflected beams 

recombined to form an interference pattern illuminating on the fibre, and the period of the 

interference pattern depends on the half angle (/2) of the two beams and the irradiation 

wavelength (UV), and  the relation is expressed as: 

Equation 2.42     











2
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UV
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
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As we see from Equation 2.37, the Bragg resonance wavelength of the grating is related to period 

of the grating, which is:  effn2 . Thus, the equation 2.38 can be rewritten as the relation 

between the FBG wavelength and irradiation wavelength and beam angle: 

Equation 2.43     











2
sin

n UVeff




  

where effn is the effective refractive index of the core. 

2.5.3 Phase mask scanning technique 

Phase mask scanning technique is considered as an alternative method, which is one of the most 

efficient approaches to produce fibre gratings with high quality and reproducibility.  This 

technique was simultaneously proposed by Anderson and Hill [25, 83] in 1993, and is based on 

near contact exposure through a phase mask. Figure 2.10 shows the schematic of a phase mask 

inscription method that was first demonstrated by Hill et al.  
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Figure 2.10  The schematic of phase mask inscription method that was first demonstrated by Hill 

et al [25]. 

The phase mask is a one-dimensional periodic surface relief pattern with period Λpm etched into 

fused silica substrate that is transparent to ultraviolet light (see Figure 2.11). A near-field fringe 

patter is thereby produced on the fibre core due to the interference of the ±1 order diffracted 

beams. The phase masks have been optimized to suppress the light diffraction energy in 0 order 

(<5%) by controlling the depth of corrugation and choosing the amplitude of the periodic surface-

relief pattern with π phase modulation at the wavelength of incident UV beam, and maximize 

diffraction efficiency in each of the ±1 diffracted orders.  

The depth of corrugations of minimum 0 order diffraction is expressed as: 
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Equation 2.44      
  )1(n2

d
UVs

UV







 

Where λuv is the wavelength of the UV beam and ns(λuv) is the refractive index of fused silica 

substrate at the wavelength of incident UV beam. 

 

Figure 2.11 One-dimensional periodic surface relief pattern of a phase mask. 

The period of the grating written by phase mask method is 

Equation 2.45          
2

PM
G


   

The main advantage of the phase-mask technique is its capabality of producing high quality and 

complex grating structures such as chirped grating[84], apodized grating [85], Moiré grating [86], 

sampled grating [87] and phase-shifted grating [88]. Another advantage of phase mask inscription 

technique is the ability to inscribe gratings with sophisticated structures and angles. However, the 

drawback of this technique is that gratings of different wavelengths require different phase masks. 

(b)

-1 order +1 order

Y

X

(a)
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2.5.4 Point by point inscription technique 

Point by point inscription technique is a non-interferometric method of grating inscription which 

was first demonstrated by Malo et al. and Hill et al.[89, 90]. It involves the exposure of a small 

section of fibre to UV beam, the refractive index of only the UV exposed fibre area changes at a 

time, and the UV beam is laterally translated to expose other sections of the fibre.   

Since these gratings are inscribed on the fibre section by section, it’s not an efficient technique to 

write long length gratings which require large index perturbation. In addition, as the UV beam 

cannot be focused to less than one micron, it is not feasible to write first order Bragg gratings by 

point-by-point method. This technique cannot be used for inscribing the TFG structures, and thus 

only used for LPGs with the period ranging from 10μm to 600μm. Recently, with the development 

of the femtosecond laser, the point-by-point technique is employed more widely in grating and 

microstructure fabrication using femtosecond laser inscription. 

2.5.5 Optical fibre grating inscription by femtosecond laser   

Since femtosecond laser micro-structuring of silica was first reported in 1994 [91], the use of 

ultrashort laser pulses in the femtosecond regime to directly induce refractive index changes in 

transparent dielectric materials has attracted a lot of attention within the last decade.  The first 

LPG fabricated by femtosecond laser was demonstrated in 1999 [92]. In that paper, an LPG was 

inscribed by point-by-point inscription technique using IR femtosecond laser. However, the 

transmission spectrum of this LPG was noisy and not regular like UV written gratings. The spectra 

of femtosecond laser inscribed LPGs in both germano-silica and pure silica fibres were 
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successfully improved by Hindle et al [93] afterwards. FBGs fabricated using 800nm 

femtosecond laser and point-by-point technique was firstly reported by Martinez et al in 2004 

[94]. In their experiments, FBGs with first, second and third order resonance at 1550nm were 

inscribed in telecom fibres without any photosensitisation. Phase-mask technique was also 

employed as another method to write FBGs using femtosecond laser, by which FBGs of different 

orders were first inscribed by Mihailov et al in 2003 [95]. 

Although optical fibre gratings fabricated using femtosecond laser have some drawbacks (poor 

spectra and large transmission loss [96]), their extraordinary properties can be realized as below: 

a. Fibre gratings can be inscribed in any fibre material without photosensitivity. 

b. The fibre gratings can be operated at high temperatures (up to 1000 °C). 

c. The fibre gratings writing can extend far into the fibre cladding. 

d. Birefringent reflection can be induced or controlled. 
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2.6 Chapter conclusion 

In this chapter, a comprehensive review on fibre grating development history and the UV 

photosensitivity of optical fibre has been given, including the three models of colour centre, 

compaction/densification and stress relief.  Following that, the techniques based on hydrogen 

loading, flame brushing and co-doping to increase photosensitivity of the silicate glass fibre have 

been discussed. As the second main part of this chapter, the theory of mode coupling mechanism 

and phase match condition and the structure of fibre gratings including FBG, LPG and TFG have 

been discussed in detail. Finally, fibre gratings inscription methods such as internal, two-beam 

holographic, phase mask and point-by-point inscription techniques have been reviewed. 
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Fabrication and sensing 

characteristics of UV laser 

inscribed fibre Bragg gratings 

and long period gratings 
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3.1 Introduction 

In this chapter, the three main in-fibre grating fabrication techniques - two-beam holographic, 

phase-mask, and the point-by-point technique, which have been employed to fabricate all the 

gratings used in the work presented in this thesis, will be discussed. This will be followed by a 

detailed discussion on thermal, strain and refractive index sensing properties of three different 

types of fibre grating (FBG, CFBG and LPG) which were designed and fabricated using the three 

techniques. In addition,   FBGs and CFBGs have been fabricated on two novel fibres (metal coated 

fibre and large mode filed fibre) requested by project collaborators – Strathclyde University and 

JK Lasers for applications in high temperature sensing and high power fibre laser, and their 

spectral properties have been presented and discussed. 
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3.2 Fibre Bragg gratings inscription and sensing characteristics 

3.2.1 FBG inscription  

Employing  the optical fibre grating fabrication methods described in Chapter 2, the FBGs can 

been inscribed by placing the fibre in the interference fringe area formed by two intense UV laser 

beams. The two main different methods producing the interfering fringes are two-beam 

holographic inscription technique and phase mask inscription technique. The following will 

discuss the FBGs fabricated using two UV inscription methods.  

a. Two-beam holographic inscription 

Figure 3.1 shows the two beam holographic UV fabrication system in our laboratory at Aston 

University. The UV laser beam is transmitted through and divided into two beams with equivalent 

power by a 50:50 beam splitter. Then, these two beams are reflected by two mirrors and 

intersected together on the fibre core to generate interfering fringes. 
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Figure 3.1  Two beam holographic FBGs inscription system in the laboratory at Aston University. 

As the fibre core become exposed to the UV intensity fringes, the refractive index of the core is 

periodically modified along the fibre length. The main advantage of the two-beam holographic 

method is that it is possible to write selected wavelength gratings by changing the angle (2α) 

between the two beams. The major disadvantage of this technique is that it is susceptible to 

mechanical vibration and limited grating length, thus the grating quality may not be as good as 

those inscribed by phase-mask technique.  
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Figure 3.2 Schematic diagram of optical set-up using the two-beam holographic technique. 

As shown in the schematic diagram in Figure 3.2, the Bragg wavelength of an FBG is set by 

changing the angle between the two incident UV beams (i.e. by changing the distance between 

mirrors M1 and M2 and the beam splitter) when using two-beam holographic technique. A range 

of FBGs with Bragg responses in four different wavelength ranges (800nm, 1060nm, 1310nm and 

1550nm) have been designed and inscribed using the two-beam holographic method. The fibre 

we selected is the standard single–mode fibre (SMF-28e, Corning) with a core diameter of 8.2μm 

and cladding diameter of 125±0.7μm. The core and cladding refractive indices are 1.461 and 

1.456, respectively. The spectrum measurement set up is shown in Figure 3.3, where a Broad 

Band Source was employed as a light source and the HP86142A OSA (optical spectrum analyser) 

was used to display the transmission spectrum of FBG. 

 

Figure 3.3 Diagram of FBG transmission spectrum measurement set up. 
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FBGs can be inscribed easily using two-beam holographic method with designed wavelength and 

reflectivity. The typical transmission spectra of FBGs in four different wavelength ranges written 

by the two-beam holographic technique are shown in Figure 3.4. Although all four gratings of 

different wavelengths showed the reflectivities around 10dB in the figure, much higher 

reflectivity (up to 30 to 40dB) is achievable by increasing the UV laser power or the exposure 

time. 

 

Figure 3.4 Transmission spectra of FBGs UV-inscribed in SMF by holographic method with 

designed wavelengths in four ranges: (a) 800 nm, (b) 1060 nm, (c) 1310 nm, and (d) 1550 nm. 

b. Phase mask inscription technique 

The phase mask technique was first demonstrated by Hill [25] and Anderson et al. [83] in 1993. 

Although this method is just for fixed wavelength grating fabrication, it is widely used as one of 

the most effective techniques for reproducible FBG inscription. The phase mask is a corrugated 

surface-relief grating etched in a fused silica plate. With UV beam at normal incidence, the 

radiation is diffracted into several orders, m=±1, ±2….. The phase masks have been optimized to 

suppress the light diffraction energy in 0 order and maximize diffraction efficiency in each of the 
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±1 diffracted orders. As shown in Figure 3.5, an interference pattern is produced by the 

superposition of ±1 orders diffracted beams, which can be used for writing FBGs. 

UV 
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-1 Order
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Figure 3.5 A schematic experimental arrangements for fabricating complex structure gratings 

using the UV beam scanning across a phase mask.  

Figure 3.5 also shows the experimental arrangement of the phase-mask fibre grating fabrication 

system in our research group lab. The UV beam is focused by a cylindrical lens (which 

transversely-mounted on a PC-controlled translation stage) through the phase mask which is 

placed in close proximity to the fibre. With the movement of the mirror mounted on the translation 

stage, the UV beam can be scanned along the fibre length to produce the grating structure in the 

core of fibre. 

When a phase mask is used, the Bragg wavelength is fixed by the phase mask period. In other 

words, FBGs with different wavelengths are inscribed by different phase masks. The structure 

and specifications of a multi-wavelength phase mask which been used to fabricate the FBGs of 

five 5 different wavelengths are shown in Figure 3.6. 



   

74 
 

λ 
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λ≈ 1543.7 nm 
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λ≈ 1559.6 nm 
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Λ = 1060.85 nm 

Λ = 1066.39 nm 

Λ = 1071.92 nm 

Λ = 1077.45 nm 

Λ = 1082.98 nm 

Thickness = 3mm each

Length = 50 mm
 

Figure 3.6 Schematic of phase mask structure with five pitch patterns.  

From the figure we see this mask contains five mask lines with five different periods (1065.85nm, 

1066.39nm, 1071.92nm, 1077.45nm and 1082.98nm) can be used to produce FBGs with 

responses at 1535.9nm, 1543.7nm, 1551.7nm, 1559.6nm and 1567.6nm, respectively. Five FBGs 

were UV-inscribed using this phase mask and the transmission spectra are shown in Figure 3.7. 

 

Figure 3.7 Transmission spectra of FBGs with five different wavelengths (1535.9nm to 1567.6nm) 

fabricated by a phase mask with multiple lines. 

In order to enhance photosensitivity in silica optical fibre, fibre samples can be hydrogen-loaded 

by storing them into hydrogen gas chamber at temperatures 20-70C and pressure 150atm 

typically, which results in diffusion of hydrogen molecules into the fibre core. After being UV 
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exposed, hydrogen will diffuse out of the fibre. This leads to a shift with central wavelength of a 

UV-written grating. A thermal annealing process (at 80°C for 48 hours) is implemented to out-

gas hydrogen from the fibre quickly and to stabilize the grating properties. Figure 3.8 shows the 

spectra of an FBG with Bragg wavelength at 1550nm written in an SMF-28 telecom fibre before 

and after annealing. We can see that it is about 0.5nm wavelength blue shift when returned to 

room temperature compared to before annealing.   
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Figure 3.8 Spectra of the FBG inscribed in SMF-28 fibre before and after the annealing. 

3.2.2 FBG sensing characteristics  

The effective refractive index (RI) and the period space between each grating plane will be 

affected by temperature and strain changes. The FBG central wavelength depends on effective RI 

of the core and the periodicity of the grating. So we can deduce that the FBG centre wavelength 

shifts due to temperature and strain changes. Equation 3.1 gives the relationship between Bragg 

wavelength shift and strain and temperature changes. 
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Equation 3.1  2 2
eff eff

B eff eff

n n
n T n l

T T l l


     
           

      
  

The first term in above equation represents the thermal effect on an FBG. This corresponds to the 

thermal expansion induced grating space change and the thermo-optical effect induced change in 

the effective RI. The first term also can be written as: 

Equation 3.2   ( )B B n T         

Where (1 )( )T      is the fibre thermal expansion coefficient;  

(1 )( )eff effn n T     is the thermo-optical coefficient. 

In the thermal sensing evaluation experiment, three FBGs with different wavelengths, which were 

fabricated by the two-beam holographic technique, were investigated. The temperature sensing 

experimental set up is shown in Figure 3.9. The grating region, which is usually around 10mm 

long, of the fibre is placed in the heating device controlled by a temperature controller (Light 

wave LDT-5910B). The temperature can be varied from 0°C to 80°C at a step of 5°C. For each 

temperature, the FBG’s resonance is measured and recorded by the Optical Spectrum Analyser 

(OSA). 

 

Figure 3.9  Experimental setup for FBG thermal characterisation. 
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From Figure 3.10, it can be seen that the three FBGs with responses in three different wavelength 

ranges exhibit different thermal sensitivities. Figure 3.10(a) shows the thermal response for the 

800nm FBG, giving a temperature sensitivity of 6.30 ± 0.07 pm/⁰C (in temperature increasing 

cycle) and 6.2 ± 0.1 pm/⁰C (in temperature decreasing cycle), respectively. In Figure 3.10 (b) and 

(c), we see the temperature sensitivities are 9.90 ± 0.07 pm/°C (increasing cycle) and 10.1 ± 0.2 

pm/°C (decreasing cycle) and 12.60 ± 0.06 pm/°C (increasing cycle) and 12.5 ± 0.3 pm/°C 

(decreasing cycle) for the FBGs with the central wavelengths in 1310nm and 1550nm ranges, 

respectively. Extraordinarily, the temperature sensitivity of the FBG with the central wavelength 

in 1550nm (12.60 ± 0.06 pm/°C) is twice as that of only 6.2 ±0.1 pm/°C at the 800nm FBG. These 

results clearly indicate that the longer the FBG central wavelength is, the higher the temperature 

sensitivity is.  

(c)

(b)(a)

 

Figure 3.10  FBG thermal responses with designed wavelengths at three different ranges: (a) 800 

nm, (b) 1310 nm, and (c) 1550 nm.  
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The second term in Equation 3.1 represents the strain effect on an FBG. The strain expansion 

leads to the change of the effective refractive index and the period of the FBG, resulting in the 

wavelength shift which can be written as 

Equation 3.3 (1 )B B e zp                   

where pe is an effective strain-optic constant defined as 

Equation 3.4   
2

12 11 12( )
2

eff

e

n
p p v p p      

Where P11 and P12 are components of strain-optic tensor, v is the Poisson’s ratio.      

 

Figure 3.11 Experimental setup for FBG strain characterization 

The experimental setup for FBG strain characterization is shown in Figure. 3. 11. The FBG was 

straightly clamped on two 3D translation stages separated at a distance of 40cm. The varied strain 

was supplied to the grating by moving the right-hand stage from 0mm to 0.35mm at a step of 
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0.05mm, which give a strain range of 750. Figure 3.12 presents the strain responses of the three 

FBGs with different Bragg wavelengths. From the figures, it can be seen that the strain 

sensitivities are 0.40 ± 0.01 pm/με, 1.00 ± 0.06 pm/με and 1.10 ± 0.06 pm/με for the FBGs with 

the central wavelength at 800 nm, 1310 nm, and 1550 nm, respectively, which demonstrates that 

the FBG with the Bragg resonance in longer wavelength range also exhibits higher strain 

sensitivity than that in shorter wavelength range. It is in good agreement with earlier report in 

[89]. 

(a) (b)

(c)

 

Figure 3.12  FBG strain responses with designed wavelengths at: (a) 800nm, (b) 1310nm and (c) 

1550nm.  

3.3 Fibre Bragg gratings with chirped structure 

Chirp usually refers to the phenomenon of a frequency change. If the period of the fibre Bragg 

grating varies monotonically along the grating length direction, its Bragg response wavelength 

will be changed along the same direction resulting in a chirped structure. Thus, this kind of 

gratings known as chirped fibre Bragg grating (CFBG), which is illustrated schematically in 



   

80 
 

Figure 3.13. CFBG can be classified into two types by grating period change rate: linear and non-

linear. So far, the CFBGs have been applied in a wide range of applications: optical fibre 

dispersion compensation [7], ultrashort optical pulse amplifier[97], coder (encoder) in optical 

code division multiple access (CDMA) system[98], time-delay component in phased array 

antenna [99, 100] and optical fibre sensor [101]. 

 

Figure 3.13  A schematic diagram of a chirped fibre Bragg grating.    

The CFBG can be considered as either the grating period Λ or the refractive index of the fibre or 

both monotonically varying along the fibre length axis, as shown in Equation 3.5. 

Equation 3.5        ( ) 2 ( ) ( )B effz n z z    

The CFBGs reported in this thesis are all linearly chirped in period as: 

Equation 3.6        0 1( )z z     

Where Λ0 is the initial period and Λ1 is the linear variation rate along the length of the grating. 

However, one may consider a CFBG structure consists of a group of small length uniform Bragg 

gratings increasing in period. The primary function of a CFBG is an in-fibre broad-band reflector. 

Normally, the chirp rate (1) of a linear CFBG is defined by bandwidth/grating-length. 

The CFBGs discussed in this thesis are inscribed by using the phase mask technique. The phase 

masks for CFBG fabrication were purchased from Ibsen, which were designed for 244nm 

illumination. Wavelength with Figure 3.14 (a) shows the broad reflection spectrum of a 15mm 

long CFBG inscribed using a phase mask with period of 1069.32nm and chirped rate of 1.2 nm/cm. 
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Figure 3.14(b) shows the group delay measured as a function of wavelength of this CFBG. The 

group delay of CFBG is the time required for the pulse of light to propagate along its length. 

 

 

Figure 3.14  (a) Typical reflection spectrum of CFBG with 15mm grating length, (b) Time delay 

spectrum.  

From Figure 3.14 (b), we found that the time delay curve exhibits strong fluctuations in the 

reflection band, which is caused by the FP effect from both of grating ends. The group delay 

ripple are critical in determining the ultimate systems performance of CFBG [102]. They can 

manifest in inter-symbol interference, and result in variations in Bit error rate (BER) across the 

grating spectrum, which may be eliminated by applying for an apodisation function to the chirped 

structure [103]. The typical technique used to produce an apodisation profile is by introducing a 
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time dependent phase shift during fabrication, using a periodical triangle wave to dither the phase 

mask to erase the grating fringes partly or completely.  

3.4 Optical fibre gratings inscribed in novel fibres 

3.4.1 Inscription of FBG on metal coated fibres 

The optical gratings have been requested to be fabricated on different novel fibres, depending on 

applications. As mentioned previously, FBG sensors have been developed for application in 

monitoring the health of large-scale civil and industrial structures, such as skyscrapers, bridges, 

machines and vehicles. FBG sensing techniques have also brought the technical challenges in 

embedding and installation of the sensors. This is because the normal fibre buffer (jacket) is made 

of polymer, which causes problems when the sensors are sealed in concrete and metal structures. 

With the development of fibre coating techniques, metal coated fibres have become available and 

may solve these problems. Moreover, with metal buffer protection, FBG sensors can operate at 

high temperature and in harsh environment.  

In collaboration with Strathclyde University and in order to develop fibre-optic sensors, FBGs 

were UV-inscribed in metal coated fibre - IVG Cu/Al 1300nm Fibre - whose structure is shown 

in Figure 3.15. 

 

Figure 3.15 Left: Schematic of metal coated fibre structure; Right: Microscope view of metal 

coated fibre.  
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This metal coated fibre (IVG Cu/Al 1300nm) has a core diameter of 6.5um and cladding diameter 

of 165.5um. There are four layers in the metal coated fibre: silica core, silica cladding, carbon 

layer and metal coating. Here, the additional inner carbon layer is used to improve metal-to-silica 

adhesion (< 1μm thick). 

We inscribed the FBGs in metal-coated fibre by using phase mask fabrication technique. As 

discussed earlier in this chapter, all the fabrication methods are side-exposing the fibre. Therefore, 

before the UV exposure, the fibre jacket (buffer) of about 1cm length has to be removed. For 

removing the metal coating, the fibre was immersed into 70% nitric acid (HNO3) that filled in a 

glass dish for a period up to 5 minutes. The inner carbon layer can be either burned off with the 

splicer arc in “cleaning” mode or dissolved in warm sodium hydroxide (NaOH), which takes 

several hours. 

In order to increase the photosensitivity, the metal coated fibre with 1cm coating removed was 

hydrogen loaded at normal condition. Then the fibre was mounted in the phase mask or two-beam 

holographic system for FBG fabrication. Figure 3.16 shows the typical transmission spectrum for 

the FBGs UV-inscribed in the metal coated fibre, which is similar to the FBGs made in normal 

fibre. 

 

Figure 3.16  The typical transmission spectrum for the FBGs UV-inscribed in the metal coated 

fibre 
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The fabricated FBGs in metal coated fibre were evaluated for temperature sensing for two 

temperature ranges:  low temperature range (0 - 80°C) and high temperature range (120 - 900°C). 

For sensing in low temperature range, the experiment setup is the same as FBG in normal fibre 

which is showed in Figure 3.9. For high temperature sensing, a high temperature chamber furnace 

was used and the experiment arrangement is shown in Figure 3.17. 

 
Figure 3.17  High temperature sensing experimental arrangement for FBG in metal coated fibre. 

A broadband light source (HP 83437A) was used as the signal source, and the optical spectra of 

the FBG were captured by an OSA (Yokogawa AQ6373).  The FBG was positioned in a 

laboratory chamber furnace (Carbolite CWF 1100). To avoid the effects of vibration caused by 

hot air flow, the FBG was fixed in the chamber furnace. The FBG was heated from 120°C to 

300°C in steps of 30°C and from 300°C to 900°C in steps of 50°C using the temperature control 

panel of chamber. 

For the temperature sensing, FBGs UV-inscribed in metal coated fibre have a typical sensitivity 

of 11.6 pm/°C in the low temperature range (0-80°C), as shown in Figure 3.18 (a), and 13.8 pm/°C 

in high temperature range (120-900°C), as shown in Figure 3.18 (b). In the high temperature range, 

the sensitivity increases and the response become slightly nonlinear with increasing temperature 

that it is in good agreement with earlier report in [89]. The reason for this phenomenon may be 

due to the coefficient of thermal expansion changing for different temperature ranges. Normally, 

we regard the fibre thermal expansion coefficient is a constant, which is true for a small 
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temperature range. However, we can’t ignore the effect caused by the dependence of thermal 

expansion coefficient on temperature for a wide range temperature sensing.  

 

Figure 3.18  The thermal response of the FBG UV-inscribed in metal coated fibre in: (a) low 

temperature range (0-80°C) and (b) high temperature range (100-900°C). 

The strain response of the FBG in metal coated fibre was also experimentally evaluated and the 

results are shown in Figure 3.20, giving a strain sensitivity of 1.2pm/με, which is slightly different 

to the FBGs in normal fibre that discussed in earlier chapter. This is because the effective strain-

optic constant is variated between the different type fibres.  

The FBGs UV-inscribed in metal fibre were supplied to Strathclyde University and have been 

used in high stress monitoring of pre-stressing tendons in nuclear concrete vessels and the results 

are published in Journal of Nuclear Engineering and Design [104]. 
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Figure 3.19  The strain response of the FBG UV-inscribed in metal coated fibre. 

3.4.2 Inscription of FBGs and CFBGs on large mode field fibre  

In a high power fibre laser system, the damage threshold of fibre material (around 5 W/µm2) limits 

the highest output power. To increase output power, large mode field fibre may be used. For 1kW 

output power level, the radius of core is at least around 8µm. Conventionally, the optical fibre 

gratings are employed as reflectors (FBGs), dispersion compensation component (CFBGs) and 

polarised device (45°-TFGs) in the fibre laser system. In this section we will discuss the optical 

fibre gratings fabrication on the large mode field fibre. 

In this section, the FBGs and CFBGs inscribed on large mode field fibres will be discussed. The large mode 

field fibre supplied by JK Lasers was investigated for inscription of FBG and CFBG structures. This fibre 

can handle high optical power of 1.5kW/m2 and its detailed information of fibre parameters is listed in 

Table 3. 1. 
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Fibre parameter Value 

Core diameter (micron) 20 ± 2 

Core NA 0.065 ± 0.005 

Clad diameter (micron) 390 ± 2 

Clad NA 0.46 ± 0.02 

Coating diameter (micron) 550 ± 10 

Table 3.1  Specific parameters of the large mode field fibre for grating inscription. 

According the table 3.1, the large mode field fibre has 20m core and 390m cladding. The cross 

section of fibre was observed under a microscope (shown in Figure 3.20). As it shown, the 

diameters of core and cladding are measured 20.43μm and 396.37μm, which are in good 

agreement with the values given in the data sheet.  

 

Figure 3.20    The cross section of fibre with 20.43μm diameter core and 396.37μm diameter 

cladding. 

The numerical aperture of fibre given in the data sheet is 0.065. When the operation wavelength 

is at 1060nm, the normalized frequency V can be calculated out by equation as follow: 

Equation 3.7  
2

V a NA



       
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Where α is the radius of core, λ is the operation wavelength and NA is the numerical aperture of 

the fibre. The normalized frequency V of this fibre is around 4.4. According to the theory of 

optical waveguide, when v is large number, the mode capacity could be roughly evaluated as 

V2/2=10. The mode field diameter (MFD) for 20/390 fibre operating at 1060nm wavelength is 

16.511μm, which could be simulated out by Matlab as shown in Figure 3.21: 

 

Figure 3.21   Simulation result of mode field diameter (MFD) for 20/390 fibre operating at 

1060nm. 

 
(a) 
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Figure 3.22   Matlab simulated near field patterns of 20/390 fibre: (a) LP01 mode, (b) LP11 mode.  

A designed chirped phase mask was purchased for CFBGs in this large mode field fibre. We have 

first tested the phase mask, which is designed for 244nm UV laser by Ibsen Photonics. The 

specifications of the phase mask are: period of mask 736.94nm and chirped rate 0.8nm/cm. Figure 

3.23 shows the image of the UV diffraction pattern of the phase mask with and without optical 

fibre. It can be seen from Figure 3.24, 0 order diffraction pattern is noticeably weak. 

 

Figure 3.23  Image of UV diffraction pattern by phase mask without (a) and with (b) optical fibre. 

We also calculated the diffraction efficiency of 0 and ±1 order diffraction beams by measuring 

the intensity of diffraction beam using a power meter. The equation of diffraction efficiency is 

listed as following: 

𝐃𝐢𝐟𝐟𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 =
𝐃𝐢𝐟𝐟𝐫𝐚𝐜𝐭𝐞𝐝 𝐩𝐨𝐰𝐞𝐫

𝐈𝐧𝐜𝐢𝐝𝐞𝐧𝐭 𝐔𝐕 𝐛𝐞𝐚𝐦 𝐩𝐨𝐰𝐞𝐫
 

(b) 



   

90 
 

The measured diffraction efficiencies of 0 and ±1 order of the chirped phase mask are listed in 

table 3.2. 

Diffraction 

Efficiency (%) 

Diffraction 

Efficiency (%) 

Diffraction 

Efficiency (%) 

-1 order 0 order +1 order 

33.40 ± 0.01 3.34 ± 0.01 32.40 ±0.01 

Table 3.2   Measured phase mask diffraction efficiency. 

From table 3.2 we can see the 0-order suppression (only 3.34 ± 0.01 % diffraction efficiency) is 

reasonable, because the 0-order diffraction of phase mask is usually suppressed to less than 4% 

diffraction efficiency. 

We firstly inscribed a 1060nm FBG in the hydrogen loaded 20/390 fibre by using a 20mm long 

phase mask with 742nm pitch period from Aston University. As the 20/390 fibre core diameter is 

around 20µm, which is more than double of the core size of standard single mode fibre (8µm), a 

butt-coupling measurement technique was required to characterize the spectral profiles of the 

FBG in this large mode field fibre. Figure 3.24 shows the schematic diagram of the butt-coupling 

system we used in the experiment. 

Figure 3.24  Schematic diagram of butt-coupling system for the measurement of FBGs in 20/390 

fibre. 
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The measured transmission spectrum of 1060nm FBG in 20/390 fibre is shown in Figure 3.25. In 

the figure, there are three peaks: the strongest one is fundamental mode LP01, which shows a 9dB 

(90%) reflectivity, and the other two relatively weak peaks are LP11 and LP21. 
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Figure 3.25   The transmission spectrum of the FBG at 1057nm in 20/390 fibre. 

We have fabricated the FBG with chirped structure on 20/390 fibre by using the chirped phase 

mask. The transmission spectra of CFBG are measured using OSA at different resolutions 

(0.06nm and 0.5nm). From the Figure 3.26, it can be clearly seen that the reflectivity is increasing 

with reducing OSA resolution. Because the 20/390 fibre is not a single mode fibre, the most 

percentage of light is butt-coupled into the fibre fundamental mode, but there is still a part of light 

coupled into the high order modes, which will affect the measurement accuracy of FBG 

reflectivity of the fundamental mode. In 20/390 fibre, the power of light couple in is sum of the 

power of LP01, LP11 and LP21. If the PLP01 is 90% of Pin and the sum of PLP11 and PLP21 is 10% of 

Pin, then we will only measure 10dB reflection of the multimode FBG, although the actual 

reflectivity is higher than 10dB. However, in the experiment, we noticed when we reduced the 

resolution of OSA, the percentage of the light measured in the fundamental mode was increased, 

as shown by the results in Figure 3.26.  



   

92 
 

 

Figure 3.26   The reflection spectra of the CFBG in 20/390 fibre at 1060nm measured with 

different OSA resolutions.  

 

3.5 UV-inscribed Long Period Grating 

Long period gratings (LPGs), which can couple the light from the fundamental core mode to co-

propagating cladding modes in the fibre, have attracted much attention for their applications in 

fibre-optic sensors and communication systems.  They can be used as in–fibre, low–cost, band 

rejection filters. The multiple bands of LPG can be used to effectively separate strain and 

temperature effects acting simultaneously on the grating[105]. Additionally, because the light 

coupling involves cladding modes, LPGs are sensitive to the surrounding medium and thus can 

be employed as refractive index sensors[81]. The phase matching condition and mode coupling 

theory for LPGs are discussed in detail in Chapter 2.      

3.5.1 Fabrication of long period gratings 

The common fabrication method for LPGs is the point-by-point technique, which is usually used 

to fabricate LPGs with periods ranging from 10μm to 600μm. Due to the limit of the focused size 
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of the UV beam spot, it is difficult to write 1st order Bragg gratings which have normal periods 

of ~0.5μm at 1550nm by this method [25]. 

Translation Stage

Incident UV Beam

Fibre

f1 f2

Lens-1

Lens-2

 

Figure 3.27  Schematic diagram of the point-by-point technique system employed in Aston 

University lab to UV-inscribe LPGs. 

As shown in Figure 3.27, compared to the phase-mask inscription system, one more cylindrical 

lens is added to focus the writing beam along the fibre length. The PC controlled shutter modulates 

the laser power by switching on/off with a 50:50 duty cycle to achieve point by point print. This 

technique is widely used for LPG fabrication. 

The LPGs used in the research presented in this report were fabricated by the same 244nm UV 

laser and the point-by-point inscription method. The optical fibre used for most LPG fabrication 

is single-mode standard telecom fibre (SMF-28e, Corning). Similar to FBG fabrication, the fibre 

samples were hydrogen loaded at temperatures (20-70 C ) and pressure 150atm for 48 hours to 

enhance the fibre photosensitivity. All the fabricated LPGs were characterized using a broad band 

source, covering the wavelength range from 1250nm to 1650nm, and the HP86142A OSA.  The 

LPGs were UV-inscribed with three different periods: 300μm, 350μm and 400μm
 

for the 

investigation. The typical experimental spectra for these three periods LPGs are shown in Figure 
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3.28. It can be clearly seen from the figure that the 300µm and 350μm LPGs have 3 transmission 

loss bands in the wavelength range from 1250nm to 1650nm, whereas the 400µm LPG has shown 

4 loss bands in the same range.  By controlling the UV exposure time, the individual loss band 

will grow with certain strength. As shown in Figure 3.28, the strongest coupled mode in each 

structure has reached 20dB attenuation and other coupled cladding mode peaks are about 10dB. 

LP06

LP07

LP08

LP05

LP06
LP07

LP06

LP03

LP04

LP05

(a) (b)

(c)

  

Figure 3.28  Transmission spectra for LPGs with different periods: (a) 300µm (b) 350μm and (c) 

400µm. 

To stabilize the structure, the LPGs have been annealed at 80°C for 48 hours to remove the residual 

molecular hydrogen in SMF-28 fibre, which was not completely used in the photochemical reaction during 

the grating fabrication. Figure 3.29 shows the comparison between the transmission spectra of the two 

LPGs of 300m and 400m periods before and after annealing.   
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Figure 3.29  Spectrum of the annealing effect of LPGs inscribed in SMF-28 fibre left: 300 period; 

right: 400 period. 

From the results shown in Figure 3.29 we can see it is about a 40nm wavelength red shift for 

300μm period LPG and an 80nm wavelength red shift for 400μm period LPG before and after 

annealing treatment. Compared with FBGs (0.5nm), the wavelength shift of LPG is much more 

significant before and after annealing. From Equation 2.34, we can reason that the resonant 

wavelength is determined by the effective refractive index and grating period. Assuming the 

effective refractive index variation is the same; the resonant wavelength peaks for LPG will shift 

more than for FBG due to their grating periods in different order of magnitude, as has been 

discussed in Chapter 2. The peaks shift direction by temperature change depends on fibre 

dispersion factor   and the temperature dependence of the waveguide dispersion temp . If the 

cladding mode order is less than or equal to 7, the value of fibre dispersion factor must be positive. 

So the peak shift direction only depends on the value of the temperature dependence of the 

waveguide dispersion ( 7m  ). The temperature dependence of the waveguide dispersion can be 

expressed as [106] 

Equation 3.9               
,

,

eff eff

co co cl cl m

temp eff eff

co cl m

n n

n n

 
 


  

Where co  and cl  are the thermo-optic coefficients of the fibre core and cladding materials, 

respectively.  In the hydrogenated fibre, the effective refractive index of core is always larger than 

the refractive index of cladding, so ,

eff eff

co cl mn n  will be always positive. After annealing, the 
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hydrogen gas will be released from the core. The core effective RI 
eff

con  will decrease more 

sharply than the cladding effective RI ,

eff

cl mn . Therefore, ,

eff eff

co co cl cl mn n   will be positive and the 

temp  will be positive. Thus, all the LPG resonant wavelength peaks for mode order 7m  will 

red-shift after annealing. 

Figure 3.26 shows the attenuation of each peak of the LPG also changes before and after annealing. 

This is due to the change of the coupling coefficient as the UV-induced index modulation has 

been changed after the annealing. The transmission of the attenuation band of the LPG is governed 

by Equation 3.10 as follows [79]:  

Equation 3.10              
21 sin ( )i iT k L    

where L is the length of the LPG and ik  is the coupling coefficient for the ith cladding mode. 

According to Equation 3.10, the intensity of LPG resonant wavelength peak is determined by 

LPG length L and the coupling coefficient ik . The LPG transmission dependence on grating 

length has been experimental evaluated by three UV-inscribed LPGs with the same period of 

400µm, but different gating lengths: 10mm, 15mm and 20mm. Figure 3.27 shows the 

transmission spectra of these three LPGs and we can clearly see that the longest LPG has the 

strongest attenuation bands. More specifically, for LP06 band, the transmission loss is around 

25dB for 20mm long LPG, whereas only 5dB for 10mm long LPG. Thus, it is possible to control 

the response wavelength and the strength of the LPG attenuation band by controlling the period, 

the length and UV exposure time.  
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Figure 3.30  Spectra of three LPGs of 400 μm period with different lengths (10mm, 15mm and 

20mm). 
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3.5.2 Thermal sensing property 

One of the most important applications of LPGs is sensing for different physical conditions 

(temperature, strain and surrounding refractive index). In this section, the results on temperature 

sensing by LPGs are presented.   

By differentiating the LPG phase-matching Equation 2.34 with temperature, we  may obtain LPG 

temperature sensitivity expression[106]: 

Equation 3.11           ( )res
res temp

d

dT


        

Where   is the thermal expansion coefficient of fibre,   is waveguide dispersion as below; 

Equation 3.12         
,

res

eff eff

co cl m

d

d

n n



 


  

The LPG temperature sensing experiment was conducted using the set up shown in Figure 3.31, 

where the LPG is housed on a thermal Peltier with a temperature controller to vary the temperature 

from 0C to 80C. 

 

Figure 3.31 Experimental setup for LPG thermal response evaluation using a Peltier with 

temperature controller.  
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To avoid the effects of strain and bending, the LPG was fixed on the metal heated plate on the 

Peltier by thermo stable tape.  

Three LPGs with different periods (300μm, 350 μm and 400 μm) were employed as sensors for 

the temperature sensing experiment. During the temperature response study, all readings were 

taken with air as the surrounding medium.  The initial temperature was selected at room 

temperature ( 20 C ). The LPG was then heated from 20 C  to 80 C  in step of 10 C  using the 

temperature controller device. We observed a spectral shift to longer wavelength with temperature 

increase.  

 

Figure 3.32 Thermal response of the LPG of 300 m period for different order cladding modes: 

(LP06, LP07 and LP08). 

The temperature response of 300 μm period LPG is plotted for LP06, LP07 and LP08 cladding 

modes, as shown in Figure 3.29. As seen in the figure, all three loss bands shift to the longer 

wavelength with increasing temperature. For temperature change from 20C to 80C, the 

temperature sensitivities for LP06, LP07 and LP08 are 41.7 pm/C, 50.9 pm/C and 61.7 pm/C, 

respectively. Here we see the temperature sensitivity of LP08 mode is almost 50% higher than 

the LP06 mode.  
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Figure 3.33 Thermal response of the LPG of 350 µm period for different order cladding modes: 

LP05, LP06 and LP07. 

Figure 3.33 shows the temperature sensitivities of 350μm period LPG for different order cladding 

modes: LP05, LP06 and LP07, which are 20.1 pm/°C, 45.6 pm/°C and 51.7 pm /°C respectively.  

 

Figure 3.34   Thermal response of the LPG of 400m period for different order cladding modes: 

LP03, LP04, LP05 and LP06. 

Figure 3.34 plots the thermal response of the LPG of 400 m period for the LP03, LP04, LP05 

and LP06 cladding modes, showing temperature sensitivities of 19.2pm/C, 25.4 pm/C, 34 
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pm/C and 51pm/C, respectively. Here we also see the temperature sensitivity is higher for the 

cladding mode with higher order, but the difference is not as larger as shown for the LPG of 

300µm period and 350μm period.  For same cladding modes (LP 06), the thermal sensitivity is 

increasing by the period of LPG.  

3.5.3 SRI sensor based on long period grating 

In Chapter 2, the phase matching condition of LPG has been formulated through Equation 2.34. 

Re-writing equation 2.34, we can derive analytic expressions for the surrounding refractive index 

(SRI) sensitivity dλres/dnsur of the resonant wavelength as   

Equation 3.13              
res

res sur

sur

d

dn


     

Where sur is the SRI dependence of the waveguide dispersion, which can be expressed as [106]: 

Equation 3.14          
2 3

3 2 2 3/2

,

 
8 ( )( )

m res sur
SRI eff eff

cl cl co cl m cl sur

u n

r n n n n n




  

 
 

Where um is the mth root of the zeroth-order Bessel function of the first kind, and rcl and ncl are 

the radius and refractive index of the fibre cladding, respectively. 

To evaluate the SRI sensing capability of the LPGs, we applied a series of index oil (from Cargille 

laboratory) with different RIs from 1.305 to 1.444 to the gratings and measured their spectral 

evolution using the setup shown in Figure 3.35. To avoid wavelength shift induced by the bending 

and axial strain, the grating was straightly clamped on two stages set at the same height. The index 

oil was placed on a flat glass substrate, which can be raised by a vertical micrometre to submerge 

the grating into the index oil without imposing any force to the grating.  Once the grating was 

surrounded by the index oil, the shift of wavelength was almost instantaneously observed on the 

optical spectrum analyser. After each index oil measurement, the grating was rinsed with 

methanol to remove the residual oil till the original spectrum in air was restored.  
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Figure 3.35  The experiment setup for surrounding refractive index sensing. 

Figure 3.36 shows the comparison of SRI responses of different cladding modes of the 300μm 

period LPG. As is shown in the figure, each cladding mode has a different SRI sensing range. The 

maximum detectable SRI is 1.444, and the sensitivities for LP06 mode at 1220nm, LP07 mode at 

1300nm and LP08 mode at 1450 nm are -8.26nm/RIU, -18.4nm/RIU and -56.3nm/RIU, 

respectively. As shown in Figure 3.33, the wavelength shift against SRI is not linear, but 

exponentially increasing with the SRI and reaching the maximum when approaching the cut-off 

mode index.  Table 3.3 lists the measured SRI sensitivity of the three cladding modes of the 

300μm period LPG at 1220nm, 1300nm and 1450nm. 

 

Figure 3.36 SRI responses of different cladding modes of 300μm period LPG 
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Resonance wavelength Mode order RI sensitivity 

1220nm LP06 -8.26nm/RIU 

1300nm LP07 -18.4nm/RIU 

1450nm LP08 -56.3nm/RIU 

Table 3.3  The measured SRI sensitivities for different cladding modes of 300μm period LPG.  

In the experiment, we also have evaluated SRI response for the other two LPGs (with periods of 

350μm and 400μm.  For comparison, Figure 3.37 plots the wavelength shift of the cladding 

resonance peaks at around 1500nm region against SRI for all three LPGs. From the measurement 

results, we can estimate the SRI sensitivities are -56.3 nm/RIU of peak LP08, -24.82nm/RIU of 

peak LP07 and -22.37 nm/RIU of peak LP06, for the three LPGs with period at 300μm, 350μm 

and 400μm, respectively. These results clearly indicate that at the same wavelength range, the 

higher order mode presents higher SRI sensitivity. 

 

Figure 3.37 The SRI responses of the cladding modes (at around 1550nm) of LPGs with period 

300μm, 350μm and 400μm for SRI range from 1 to 1.44. 
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According to the equation 3.14, the SRI sensitivity of an LPG could be improved by using small 

cladding radius fibre. To verify this, we inscribed 350m LPG on SM1500 (4.2/80) fibre (from 

Fibercore company) with 40μm cladding radius and investigated their SRI sensitivities. The 

experiment setup and procedure for this experiment have already been introduced in earlier 

section. The transmission spectrum of 350m LPG on SM1500 (4.2/80) fibre is plotted in figure 

3.38, and we only see one resonance peak in 1200nm to 1600nm region. 

 

Figure 3.38 The transmission spectrum of 350μm LPG on SM1500 (4.2/80) fibre. 

We have investigated the thermal and SRI sensitivity of 350m LPG on SM1500 (4.2/80) fibre 

(sample 1) and compared with LPG on the SMF28 fibre (sample 2), who has two resonances 

(1340nm and 1360nm) in this region. Figure 3.39 depicts the results, showing  the thermal 

sensitivity is -277.1pm/°C for the LPG made in small cladding fibre (sample 1) and 45.6pm/°C 

for the LPG in normal cladding fibre (sample 2). According to the Equation 3.9 to 3.11, the value 

and sign of thermal sensitivity for an LPG is determined by the cladding mode order and thermal 

coefficient ξco. Here we clearly see that with increasing temperature, the wavelength of LPG in 

small cladding fibre red-shifts whereas the LPG in normal cladding fibre blue-shifts.  
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Figure 3.39  Comparison of temperature response of 350μm inscribed into SM-28 fibre with 

62.5μm cladding radius (blue) and SM1500 (4.2/80) fibre with 40μm cladding radius (black). 

Figure 3.40 plots the SRI response for the two LPGs, showing the SRI sensitivity is much higher 

for the LPG made in small cladding fibre then that in normal fibre.  Quantitatively, the SRI 

sensitivity is only 10.43nm/RIU for LPG in normal fibre, but reached 59.64nm/RIU for LPG in 

small cladding fibre, which indicates that the SRI sensitivity is almost increased by 6 times when 

the cladding radius reduced by 1/3.  

 

Figure 3.40  Comparison of SRI response of 350μm inscribed into SM-28 fibre with 62.5μm 

cladding radius (red) and SM1500 (4.2/80) fibre with 40μm cladding radius (black). 
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3.6 Chapter conclusion 

At the beginning of this chapter, we have presented three optical fibre grating fabrication 

techniques which have been used to fabricate all the Near-IR fibre grating devices described in 

this chapter. The FBGs have been inscribed by two main different methods: two beam holographic 

inscription technique and phase mask inscription technique. The holographic technique has been 

employed to write FBGs with arbitrary wavelengths in the near- and mid-IR range. The phase 

mask inscription technique is the most effective grating inscription technique due to the simplicity 

of the optical system and its stability compared to the two-beam holographic technique. LPGs 

with period ranging from 10μm to 600μm normally were fabricated by point-by-point technique. 

The FBGs and LPGs are remarkable for different sensing applications: temperature sensor, strain 

sensor and SRI sensor. Both FBGs and CFBGs UV-inscribed in metal coated and large mode 

fibres fibre have been presented with their unique spectral responses. With metal buffer protection, 

FBG sensors can operate at high temperature and harsh environment. FBGs in metal coated fibre 

have a typical sensitivity of 11.6 pm/°C in low temperature range (0-80°C) and 13.9 pm/°C in 

high temperature range (120-900°C). The optical fibre gratings fabrication on the large mode field 

fibre can be employed in high power fibre laser system with up to 1 kW output power level. 

Finally, to improve and enhance the RI sensitivity in the aqueous solution, the LPG structures 

were inscribed into a 40μm cladding radius fibre and a standard fibre (62.5μm cladding radius). 

The experiment results the RI sensitivity at the index is increased from 10.43nm/RIU to 

59.64nm/RIU. 
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Chapter 4.                 

Fabrication, Spectral 

Characteristics and Applications of 

45 Tilted Optical Fibre Gratings 
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4.1 Introduction 

Tilted fibre grating (TFG) is a special type of grating which was first reported by Meltz et al.[8] 

in 1990. In 1996, Erdogan and Sipe performed a theoretical investigation of TFG structures[9]. 

TFG grating planes are tilted at angles to the fibre axis instead of perpendicular to it, thus resulting 

in the incident light guided in the fibre core being coupled into cladding or radiation modes. In 

2005, Kaiming Zhou et al. reported a UV-inscribed TFG with 45 tilted structure (45°-TFG), 

showing high polarisation-dependent-loss (PDL) by theoretical and experimental investigation. 

Since then, many applications based on 45°-TFG were wildly reported including PER equalizer 

[107], in-line Polari meter[108] and polarization filters [109].  

In this chapter, the inscription and characterization of UV-inscribed TFGs with tilted structures 

at 45° will be presented and discussed. Furthermore, we will demonstrate different applications 

based on 45°-TFGs. Finally, we will present 45°-TFGs inscribed in polarization maintaining (PM) 

fibre and demonstrate an all-fibre Lyot filter theoretically and experimentally. 

4.2 Structure and phase matching condition of TFG  

TFGs are capable of coupling the light from forward-propagating core mode to backward-

propagating, radiation and forward-propagating cladding modes when the tilt angle is at <45°, 

=45° and >45°, respectively. Figure 4.1 shows the schematic diagram of a TFG structure in fibre 

core. In this figure, ΛG is the grating period, Λ represents the grating period along the fibre axis 

and θ is the angle of the tilted structure.  
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Figure 4.1   Schematic diagram of a tilted grating structure in fibre core. 

As we discussed in Chapter 2, the strongest coupling wavelength for a TFG can be given by the 

phase matching condition: 

Equation 4.1         
,

,(n n )
cos

eff i eff G
strongest co cl m




    , i = TE or TM           

Where n
eff

co and 
,

,ni eff

cl m are the effective refractive index of core mode and mth TE/TM cladding 

mode, and the signs of “+” and “-” describe the cases wherein the mode propagates in the –z or 

+z direction, respectively.  

4.2.1 Phase matching conditions for TFG 

The phase matching condition can be expressed by using the principles of conservation of 

momentum, which make us understand intuitively the mode coupling mechanism in the tilted 

fibre gratings. Conservation of momentum requires that the sum of the wave vector of core mode 

coreK  and the vector of grating GK  must be equal with the wave vector xK  of reflected core, 

cladding, or radiation mode according to the equation 4.2.   

Equation 4.2           radiation cladding, core, :     xGcorex KKK


  

Where


2
nK corecore 


, 


cos

2


 coreG nK


 and



2
nK xx 


. 
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As we descried earlier in of this section, the direction of the mode coupling depends on the tilted 

angle of the grating structure. Due to the total internal reflection effect at the boundary between 

the silica fibre cladding and air, if the tilt angle of a TFG at the boundary is less than the critical 

angle of the silica and air interface, the light will be tapped out from the side of the TFG by the 

radiation modes. However, if the tilted angle is below or beyond this total internal reflection angle 

range, the light will be confined in backward- and forward-propagating cladding modes 

respectively without tapping out from the grating fibre side. When the TFG is placed in the air, 

the critical angle of the fibre cladding boundary can be written as  

Equation 4.3                  
1

2

arcsinc

n

n
   

where n1 and n2 are refractive indices of air (n1=1) and fibre cladding (n2=1.45), respectively. As 

shown in figure 4.2, φ is the incident angle of radiation beam which is related to tilted grating 

angle θ by 2
2


   .  If c  , the tilted grating angle range for the radiation mode out-

coupling will be given as 1 2c c    , where θ1c and θ2c can be expressed as: 

Equation 4.4 & 4.5             
1 2

1 1
( ), ( )

2 2 2 2
c c c c

 
         

Based on equation 4.3, the critical angle can be calculated as 43.8c   . Therefore, this range 

can be calculated as from 23.1° to 66.9° in air surrounding-medium. So the phase matching 

conditions for TFGs can be classified into three types: (a) the tilted angle of TFG is θ<23.1°, at 

which the forward-propagating core mode is coupled to backward-propagating cladding mode; 

(b) the tilted angle of TFG is within 23.1°<θ<66.9°, at which the core mode is coupled to radiation 

modes; (c) the tilted angle of TFG is θ>66.9°, at which the core mode is coupled to the forward-

propagating cladding modes. Figure 4.2 shows the phase match conditions for TFGs with tilted 

angles in three different ranges.  
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Figure 4.2 Sketch of tilted fibre grating structures with different angles and their phase-match 

conditions: (a) TFG with θ<23.1°; (b) TFG with 23.1°<θ<66.9°; (c) TFG with θ>66.9°. 

4.3 Inscription and characteristics of 45°-TFGs 

4.3.1 Polarization characteristics of 45-TFGs 

It is well-known that when unpolarised light is incident on a boundary between two media with 

different refractive indices at the Brewster angle [110], the light that is reflected from the 

boundary is totally polarized and the refracted light will be partially polarized. By using Snell’s 

Law and Fresnel equations, the Brewster angle can be calculated as:  

Equation 4.6         )arctan(
1

2

n

n
B   

Where n1 is the refractive index of the initial medium and n2 is that of the second medium. In a 

fibre grating, n1 will be equal to effective refractive index of core, and n2 is equal to the effective 

refractive index of the core mode after UV modification. However, because the UV induced index 
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modulation is so small (the order of 10-5 ~ 10-3), n2  n1. Thus, in a UV-inscribed fibre grating, 

the Brewster angle may be estimated as
45)1arctan()arctan(

1

2 
n

n
B . Hence, a 45°-TFG can 

be recognized as an ideal in-fibre polarizer, which couples the s-polarized light out of fibre core 

and leaves the p-polarized light propagating through the fibre (see figure 4.3). 

X

Y
Z

Reflected light
S-polarised

Incident light
Transmitted light
P-polarised 

45 degree

 Grating period ΛG 

Figure 4.3  Schematic of a 45°-TFG structure, showing in-fibre polarizer function. 

Zhou et al. [111] gave the simulation of transmission spectra of TFGs with different tilted angles 

for s-polarization and p-polarization light (see figure 4.4). From both figures, it is clearly noted 

that the transmission loss of p-polarization light is almost eliminated when the tilted angle is at 

45°, whereas the transmission loss of s-polarization light still remains high at this angle. In other 

words, the polarization dependent loss (PDL) of 45°-TFG reaches the maximum at 45.     

 

Figure 4.4  (a) Simulated transmission spectra of TFGs with various tilting angles. P-light (dashed 

curves); s-light (solid curves). (b) Transmission losses of TFGs for s-light and p-light versus 

tilting angles. The peak wavelength is set to 1.55μm [111].  
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Based on the discussion in section 4.2.1, the strongest coupling wavelength for a 45°-TFG can be 

given as 

Equation 4.7             45cos2 Gstrongest n  

Where n is the refractive index of the fibre core, ΛG is the grating period, and the 45⁰ is the tilting 

angle of the TFG in the fibre core. 

The bandwidth (λB) of 45°-TFG has been given by Ref [112] as follow: 

Equation 4.8       

2

0 0

2ln 2 R
B

n




 
   

Where n0 is effective refractive index of fibre core, λB is resonance wavelength and ω0 is a fibre 

core radius. 

4.3.2 Inscription of 45°-TFGs by phase mask technique 

TFGs can be fabricated using the methods similar to normal FBG fabrication, for which the 

refractive index of the fibre modulation is induced by an interference pattern composed of two 

intense UV laser beams. There are two ways generally used to fabricate TFGs: (1) holographic 

technique and (2) phase mask scanning technique. As shown in Figure 4.5, a TFG can be inscribed 

by rotating the fibre at the angle θext which is the angle between the fibre normal axis and the 

interference fringe pattern (Figure 4.5 (a)). For phase mask technique, a TFG structure can be 

inscribed by rotating a normal phase mask (Figure 4.5 (b)) or directly using a tilted phase mask 

with a tilted grating pattern, as shown in figure 4.5 (c). In order to fabricate high quality gratings, 

all TFGs reported in this thesis were written by phase mask technique. 
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Figure 4.5  Schematic for the TFG inscription by (a) two-beam holographic technique, (b) rotating 

phase mask with respect to the optical fibre and (c) phase mask with tilted pattern. 

The optical fibre for grating fabrication can be regarded as a cylindrical lens due to its own 

geometry.  This cylindrical lens effect leaves the UV interference fringes unaltered in the direction 

parallel to its centre axis, but compresses the fringes in the direction perpendicular to centre line. 

Therefore, the tilted angle of the grating is not the same as the fibre rotated angle or external 
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phase-mask angle θext. The difference in the internal and external tilt angles is illuminated in 

Figure 4.6. 

 

Figure 4.6  Schematic diagram of a TFG showing the difference between the internal and tilt 

external angle θext and internal angle θint. 

Thus, the internal grating tilt angle θint is related to the external tilted angle θext described in ref. 

[107] as follows: 

Equation 4.8              







 

)tan(

1
tan

2

1

int

extUVn 


  

Where nuv is the refractive index of the fibre at wavelength of the UV laser. The relationship 

between the internal and external angles is plotted in Figure 4.7. 

   

Figure 4.7  Plot of relationship between internal angle and external tilt angle.  
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All 45°-TFGs reported in this thesis were UV inscribed into single mode fibre by using a tilted 

phase mask. The phase mask was purchased from Ibsen Photonics with a special design for the 

period and tilted angle. The mask period is of 1830nm which ensures the central response is at 

1550nm region, and the tilted angle is at 33.7° to ensure the UV-induced fringes will tilt at exact 

by 45 in the fibre core.  All 45-TFGs were inscribed using a 244nm UV light source from a 

frequency doubled Ar+ CW laser (Coherent Sabre Fred ®) and the phase mask scanning technique. 

In order to enhance photosensitivity of silica fibre, before the 45-TFG inscription, all fibre 

samples were hydrogen-loaded by storing them into hydrogen gas chamber at temperature 80°C 

and under pressure 150bar for two days. Most of fabricated 45°-TFGs were UV inscribed in the 

standard telecom single mode fibre (SM-28) from Corning and some were in high photosensitive 

fibre (PS1250/1500) and  PM fibre (PM 1550) from Fujikura®.  

After inscription, a high magnification microscope system (Zeis Axioskop 2 mot plus) with a 

100× oil immersion objective lens was employed to examine the grating structure. Figure 4.8 

shows a micro-image of a 45°-TFG in the SM_28 fibre core. It can be seen clearly from the micro-

image that the tilt angle of grating pattern is measured at 45.04° and the diameter of fibre core is 

8.77μm.    

 

Figure 4.8 Microscopy image of a 45°-TFG taken under a 100x oil objective lens. 
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4.3.3 Polarisation dependent loss of 45°-TFG 

As discussed in earlier section, the 45-TFG can be recognised as an in-fibre polarizer. Thus, 

polarization dependence loss (PDL) or the polarization extinction ratio (PER) is the important 

parameter of a 45°-TFG. The definition of PDL is a measure of the peak-to-peak difference in 

transmission of an optical component or the ratio of the maximum and the minimum transmission 

of a system with respect to all possible states of polarization[113]. The PDL mathematic 

expression of a 45°-TFG was given in Ref. [114] as follow:  

Equation 4.9      lePDL  log10 minmax   

where max  and 
min  are the maximum and minimum light transmission loss coefficients in 45⁰-

TFG, e is the natural exponential and l is the grating length.  

The PDL of 45°-TFG could be measured by using the polarization scanning technique. A typical 

experimental setup for measuring PDL by the polarization scanning technique is illustrated in 

Figure 4.9, which involves the use of a tuneable laser, a commercial fibre polarizer, a fibre 

polarization controller (PC) placed in front of the 45°-TFG and a power meter (or an optical 

spectrum analyser).  

 

Figure 4.9  Diagram of the setup used for characterising the PDL of 45°-TFGs. 

The polariser and the PC used in the PDL measurement setup are operating in 1550nm region. 

The maximum and minimum transmission spectra of the 45-TFG at each wavelength can be 

 

OSA or Power 

meter    

Tuneable laser     
Polariser    PC    45°-TFG    
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obtained by adjusting the PC. The PDL can then be calculated using Equation 4.9. Figure 4.10 

shows the measured PDL spectra at 1550nm of one of the 45°-TFGs inscribed in SM-28 fibre 

with a grating length of 24mm. From the figure we can see the PDL, i.e. the difference between 

the maximum and minimum transmission, at 1550nm is about 22.1dB. This PDL value 

corresponds to a percentage value of 99.38%, which means that the 45-TFG couples out 99.38% 

of s-polarized light from the fibre.  

 

Figure 4.10  Transmission spectra of a 24mm-long 45°-TFG measured using a single wavelength 

at 1550nm at two orthogonal polarization states (P1 and P2). 

The PDL of a 45-TFG over a broad wavelength range can also be measured by using commercial 

LUNA Vector Analyser system based on Mueller method [115]. Figure 4.11 shows the overall 

PDL result for the same 45°-TFG measured in the range of 1525nm to 1610nm. From the figure 

we can see that the PDL monotonically decreases from the short wavelength to the long 

wavelength. This can be explained as follows. As calculated in ref [111], the PDL spectral 

response of a 45°-TFG has a Gaussian shape that is symmetric to certain wavelengths manifesting 

a broadband polarizing behaviour. In our experiment, due to the limit range of the measurement 

system, we are unable to measure the full wavelength range of PDL. However, it can be clearly 

seen in Figure 4.11 that the other half of the Gaussian shape should be within the range of 1530nm 

to 1610nm.  One may notice that there are spectral ripple of the grating overall PDL profile when 
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the device is exposed to air (black solid line).  This is because the cross coupling between the 

forward propagating core mode and radiation modes resulting from the refractive index mismatch 

between the air and cladding. In order to eliminate this resonance effect, the grating area of this 

45°-TFG was immersed into index matching gel to achieve an infinite cladding boundary 

condition. As clearly shown in Figure 4.11, all ripples have been eliminated and the overall PDL 

profile is a smooth curve as shown by the red-line plot.  Quantitatively speaking, we can see the 

PDL is about 15 dB around wavelength 1550nm and dropped to 12dB at 1600nm.  

 

Figure 4.11  The overall PDL spectral response of the 45°-TFG measured in air (black curve) and 

in index matching gel (red curve). 

From equation 4.9, it is easy to find out that the PDL is linearly proportional to the grating length. 

In order to verify this co-relation experimentally, we fabricated five 45°-TFG samples with 

different grating lengths (5mm, 10mm, 15mm, 20mm and 24mm ) under the same fabrication 

parameters. The measured PDL results for all five 45°-TFG samples are plotted in Figure 4.12. 

As clearly shown from the figure, the PDL increases with the grating length at a rate of almost 

0.986 dB/mm. 
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Figure 4.12   The PDL of 45-TFG against grating length. 

The 45°-TFG has a linear polarization response, which works as described earlier by coupling 

out the s-polarised light and propagating the p-polarised light through the tilted grating fibre. If 

the linearly polarised light from the 45°-TFG is aligned with either the slow- or fast-axis of a PM 

fibre, the output will show a minimum and a maximum power [114]. To evaluation the 

polarisation distribution of 45°-TFGs, we measured the grating using the experimental set up 

shown in Figure 4.13, by changing the polarisation state of the light launched to the 45°-TFG. 

 
Figure 4.13 Experimental setup for measuring polarization distribution of 45-TFG. 
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The set-up shown in Figure 4.13 consists of a single wavelength light source (from a tuneable 

laser), a fibre polarization controller (PC), a fibre polarization beam splitter (PBS), a fibre rotator 

and a power meter with dual-channel. The two outputs of the PBS are two pieces of PM fibre, 

therefore, the light coming out from the two ports are linearly polarized with orthogonal 

polarization states. The polarization distribution was measured by rotating the PM fibre 2 output 

port from 0⁰ to 360° with a step of 10° for three 45°-TFGs and a pristine fibre for comparison. 

While for the pristine fibre without grating, the output power measurement shows a perfect circle 

in Figure 4.14 (a), indicating no polarisation effect at all. For the three 45°-TFGs with PDLs of 

10dB, 15dB and 22 dB, the polarization distribution plots show a figure 8 shape as seen in Figure 

4.14 (b), (c) and (d). Comparing the polarization distribution figures for the three 45-TFGs, we 

clearly see that the high PDL grating shows a narrower waist than the low PDL one.    

 

 

Figure 4.14 Polarization distribution measurement: (a) for a prestige fibre with 0dB PDL; (b) for 

a 45°-TFG of 10dB PDL; (c) for a 45°-TFG of 15dB PDL; (d) for a 45°-TFG of 22dB PDL. 
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4.4 Power tapping function of 45-TFG 

4.4.1 Principle of power tapping based on TFG with 45° tilted angle 

As we discussed in an earlier section, if the tilted angle of TFG is within 23.1°<θ<66.9°, the core 

mode is coupled to radiation modes. The tilt angle of the grating plane and the index modulation 

strength will determine the radiation coupling efficiency of the light that is tapped out. The 45°-

TFG is an ideal device for side-tapping power out of fibre due to its radiation light coupled out of 

the fibre perpendicularly. 

The spectrum of a TFG can be simulated by the Green's function method [116]. Thus, the loss of 

a core mode of a TFG in a single-mode fibre can be expressed as –𝛼𝛿𝑙, where α is the loss 

coefficient of TFG , and is given in ref. [111] as below:  

Equation 4.10     
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where k0=2π/λ0 is the wave vector of light in vacuum; n and δn are the original and the 

perturbation refractive indices of the core, respectively; u and ω are the fibre waveguide 

parameters; a is the core radius; K and J are Bessel function. 

In Equation 4.10,    
1

2 2 2 2 2
0 0 0 0sin 2 sin coss t cl t clR R k n R k n      , where  θ0 is the angle 

between the radiation beam and the fibre axis, which satisfies 0 0 0cos 0g eff clR n k k n    ; φ 

denotes the polarization of the core mode; Rt and Rg are wave vectors of the grating along the 

fibre axis and across the fibre cross section and are defined as Rt=2π/Λg sin 45 and Rg=2π/Λg 

cos 45.    
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From Equation 4.10, we can calculate the ratio of radiated and input power of s- and p-polarised 

light for a 45°-TFG. Figure 4.15 shows the simulated ratio of radiation power in percentage with 

different modulation index changes. It can be clearly seen from the figure that we can design the 

tapping power efficiency for 45˚-TFGs by controlling appropriate index modulation strength 

during the grating fabrication. 

 

Figure 4.15  Simulated ratio of radiation power of s- (solid line) and p-polarization (dash line) for 

a 45˚-TFG. 

4.4.2 Experimental results for power tapping using 45°-TFGs  

Power tapping experiment setup is shown in Figure 4.16, which consists of a tuneable laser from 

HP, an InGaA amplified detector (700 nm - 1800 nm) from Thorlabs, an oscilloscope and a 

power-meter. The tuneable laser was operating at 1550nm wavelength and launched into the 45°-

TFG. The detector was amounted on a translation stage for examining the side-tapped power 

distribution along grating axial direction. The oscilloscope which was connected to a detector was 

used to measure the light power tapped out from the side of the 45°-TFG. The power metre was 

employed to measure the remaining light power transmitting along the fibre core. 
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Figure 4.16  Experimental setup for power tapping measurement. 

It can be seen clearly from the experiment, the power tapping out from the 45-TFG side varies 

along the grating length.  Choosing the 12 mm long 45˚-TFG, by moving the translation stage in 

0.5 mm step, the power distribution over the entire grating length was measured.  The result is 

plotted in Figure 4.17, which clearly shows that the side-tapped power is the highest at the start 

position of the grating and decreased exponentially along the grating length. As we known, the 

loss of a core mode of a TFG depends on the length of grating. Thus, the side tapped power from 

45°-TFG decreased along the grating length. 

 

Figure 4.17   Measured side-tapped out power along the length of the 12mm 45°-TFG. 
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The side-tapped and transmitted power of the 45˚-TFG can be measured simultaneously by 

placing a photo diode at the beginning position of the 45-TFG and a power meter at the fibre 

end. The side-tapped power and transmitted power were recorded respectively by changing the 

tuneable laser wavelength. The results are plotted in Figure 4.18. It can be seen clearly from the 

figure that the shorter wavelength gives more transmitted and less side-tapped power, and vice 

versa with the longer wavelength.  

 

Figure 4.18  The side-tapped and transmitted power from a 45°-TFG probed with a light source 

at different wavelengths.  
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4.5 Application of 45-TFG in laser systems 

As a high PDL in-fibre polariser, the 45°-TFG can play an important role in fibre laser systems 

to achieve the single polarization and mode-locking pulse output [15, 117]. This section will focus 

on using the 45°-TFG as an intra-cavity functional element to obtain the single polarisation and 

soliton mode locking lasers. Furthermore, a novel loading sensor based on single polarization 

fibre laser using a 45°-TFG will also be discussed. 

4.5.1 Single polarization single wavelength fibre laser 

The optical fibre laser can be used as an important light source in both optical communication 

[118] and sensing applications [119]. Polarisation is one of the most important proprieties of laser 

light. The single polarised laser is more desirable for applications. Due to the effect of low 

birefringence of the passive and active fibre, most of laser systems can just generate unpolarised 

or a very low degree of polarization (DOP) output.  To achieve fibre laser output with high DOP, 

several methods [120, 121] have been proposed. Because the 45°-TFGs can be successfully 

fabricated in standard single mode fibre with high PDL, it is now possible to achieve single 

polarization fibre laser by using 45-TFG as intra-cavity polarizer. 

In order to achieve the single polarization laser output, we constructed a fibre ring laser and inserted a 45°-

TFG into the laser cavity. The experimental setup of the single polarization ring laser based on 45°-TFG is 

illustrated in Figure 4.19.  As shown in the figure, a 4-metres length of EDF  (from Fibercore, absorption 

at 1530nm is 11dB/m) is inserted in the ring cavity and pumped by a grating stabilized 976nm laser diode 

(LD) which can provide up to 200mW pump power though a 980/1550 wavelength division multiplexing 

(WDM) coupler. A 10:90 coupler is employed to couple 10% of light out of the laser cavity. A uniform 

FBG with reflectivity larger than 90% and 3-dB bandwidth of 0.19nm at the wavelength of 1550nm is 

incorporated in the cavity through an optical circulator, which defines the laser seeding wavelength while 

maintaining unidirectional oscillation. A 45°-TFG is inserted between the circulator and the coupler to 
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achieve single polarization oscillation. A polarization controller (PC1) is used to optimize the cavity 

birefringence. Figure 4.20 provides a typical output with 0.08nm linewidth of the ring laser measured by 

an OSA. 
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Figure 4.19  Schematic diagram of the single polarization fibre ring laser structure. The degree of 

polarization (DOP) of the laser output is measured using the setup shown in dashed line box. 

 

Figure 4.20  Typical output spectrum of the fibre laser. 

The degree of polarization (DOP) measurement of the output of the fibre laser is conducted by the setup 

shown in the dashed line box in Figure 4.19. The DOP of laser light is expressed as below: 
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Equation 4.11   100%
polarized

polarized unpolarized

P
DOP

P P
 


                             

where Ppolarized is the polarized part of the laser and Punpolarized is the unpolarised part. By properly adjusting 

polarization controller (PC2) in the setup shown in Figure 4.19, either the maximum power (power of 

polarized light plus half unpolarised light) or the minimum power (power of half polarized light) of the 

laser output can be obtained. Therefore, the DOP can be calculated by using Equation 4.11. The 45-TFG 

used as the intra-cavity polarizer has a PDL of 22.1dB. The measurement showed that without the 45°-

TFG in the ring cavity, the fibre ring laser output has a DOP of only about 19.7%, which suggests that the 

laser output is almost un-polarized. After inserting the 45°-TFG into the laser cavity, the DOP of the laser 

output significantly increased to 99%, which clearly indicates that the output of the laser is highly polarized 

and almost single polarization. The slope efficiency of the fibre laser has also been examined before and 

after incorporating the 45°-TFG into the cavity. Figure 4.21 clearly shows the slope efficiency decreased 

from 11.93 % to 8.06 % after the 45°-TFG had been inserted into the laser cavity. This is owing to the PDL 

of 45°-TFG and splicing loss in the laser cavity. 

 

Figure 4.21  Slope efficiency of the fibre ring laser with and without the 45°-TFG. 
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We also measured the stability of the fibre ring laser output with the 45°-TFG in cavity. Figure 4.22 displays 

typical output spectra of fibre ring cavity laser measured over half an hour at a 5 minutes interval. No 

noticeable spectral variation has been observed over this period.  

 

Figure 4.22  The stability of fibre ring cavity laser output spectra measured over half an hour at 

the laboratory condition. 

4.5.2 Mode-locked fibre laser using 45º-TFG and FBG 

Ultrafast picosecond fibre lasers are useful light sources that have found many applications in the 

field of telecommunication, micro-machining, medical imaging and fundamental research. An 

efficient approach to achieve picosecond pulses is laser passive mode locking using an element 

or scheme called a saturable absorber. Various methods have been implemented to mode-lock a 

fibre laser, including semiconductor saturable absorber mirror (SESAM) [122], carbon 

nanomaterial [123], and nonlinear polarization evolution (NPE) [124].  The picosecond pulse 

output can be achieved by inserting a narrow band filter, such as a fibre Bragg grating (FBG). 

The pulse duration and wavelength can then be tailored by the filter bandwidth and central 

wavelength. NPE mode-locked lasers use the intrinsic fibre nonlinearity as an effective saturable 

absorber, which could avoid such problems. As 45º-TFG has been proved to be an efficient in-



   

130 
 

fibre polarizer for fibre laser systems [15, 125],  we have proposed and demonstrated an NPE 

mode-locked EDF fibre laser using a 45-TFG as an in-fibre polarizer to manipulate the 

nonlinearity and dispersion property of the laser to achieve the mode-locking. Similarly to the 

CW fibre ring laser, a standard FBG is used to tailor the output pulse duration and lock the centre 

wavelength.  

The experimental setup of a passively mode-locked laser using a 45º-TFG and an FBG is 

illustrated in Figure 4.23. As shown in the figure, a 4-meters length of conventional erbium doped 

fibre (EDF M12, from FiberCore) is inserted in the ring cavity with nominal absorption coefficient 

of ~17.92 dB/m at 1530nm and normal dispersion +23 ps2/km. The rest of the cavity consists of 

10.5 meter standard telecom fibre with dispersion of -22 ps2/km at 1550nm and a one meter HI 

1060 fibre coming with 980/1550 wavelength division multiplexer (WDM) coupler, with 

dispersion  -17.8 ps2/km at 1060nm. Thus, the net-anomalous dispersion of the laser cavity is -

10.12 ps2/km. This ensures soliton pulse shaping of the laser. The pump and output arrangement 

is the same as the CW fibre laser in section 4.5.1, while   the uniform FBG used as seeding has a 

reflectivity larger than 90% and 3-dB bandwidth of 0.5 nm at the wavelength of 1567nm.  The 

45°-TFG with a PDL of 22.1 dB is inserted between two polarization controllers (PC1 and PC2) 

to achieve the effect of nonlinear polarization evolution (NPE), as it can provide the necessary 

intensity discrimination for mode locking. 
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Figure 4.23  Schematic configuration of the 45°-TFG and FBG based mode-locked fibre laser. 

The stable passively mode-locked pulses were observed by carefully adjusting the polarization 

controllers (PC1 and PC2) in the system. Figure 4.24(a) shows the measured optical spectrum of 

the soliton pulses at the launched pump power of 73.2mW with a resolution of 0.05nm. The 

central wavelength of optical spectrum profile is 1567nm with a spectral bandwidth at full-width 

half maximum (FWHM) of 0.55nm. A typical pulse train is shown in Figure 4.24 (b) with an 

86.9ns interval between two adjacent pulses, giving a repetition rate of 10.34MHz. The average 

output power was measured to be 2.5mW and the pulse energy was calculated to be 0.2nJ. Figure 

4.24(c) shows the measured FWHM autocorrelation trace at 26ps corresponding to the pulse 

duration of 16ps – a typical ps laser pulse. The measured time bandwidth product is 0.33 which 

is similar to the theoretical value of 0.32 for soliton pulses indicating the output laser pulses are 

transform limited. 
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Figure 4.24   (a) Optical spectrum of the ~ 26ps output pulse; (b) a typical output pulse train of 

the mode-locked fibre laser showing interval between two adjacent pulses of ~ 86.9ns; (c) 

Measured auto-correlation trace. 

The 45°-TFG based mode locking fibre laser can be tuned over a certain wavelength range 

generating single polarization output as well, as the polarization response of the 45°-TFG is quite 

broad. In our mode locking laser system, the seeding FBG was thermally tuned from 0C to 80C, 

shifting the laser output from 1567nm to 1568nm, giving ~1nm tuning range. Figure 4.25 shows 

the output spectra when the FBG is under temperature tuning from 0C to 80°C. 
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Figure 4.25  Output spectra of all fibre erbium doped fibre soliton ring laser tuned by temperature. 

4.5.3 Loading sensor based on single polarization single wavelength fibre laser 

Most fibre loading sensors proposed so far are based on their passive operation with expensive 

spectrometer for signal demodulation. External light source will also be required in such types of 

sensors. The above issues can be resolved by using fibre laser based sensors because the laser 

itself is a light source and signal demodulation can be obtained by relatively low cost power 

measurement. Thus, the laser sensors [126] have become more attractive due to their high signal-

to-noise ratio, narrow bandwidth and low threshold power. Conventionally, the fibre laser sensor 

is formed by a section of EDF as the gain material and FBGs as reflectors. The FBG in such a 

laser system can also be used as a sensing element which leads to the wavelength shift of the laser 

[127] by some environment parameter variation, such as temperature, strain and so on. The 

following section will discuss a loading sensor based on single polarization single wavelength 

fibre laser incorporating a 45-TFG. 

4.5.3.1 Loading sensing principle 

The EDF laser system can be generally regarded as a quasi-three-level system[128] , the output laser power 

can therefore be written as below: 
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 
 , and  

Ωb  the beam area in the active medium,  

ν  the frequency of the emitted photon,  

h  the Planck constant, lm the length of the active medium,  

Nt  the total number of the population in the laser level and ground level,  

εe  the effective stimulated emission cross section,  

εa  the effective absorption cross section,  

δ2 s the logarithm loss due to the output coupler of the laser system,  

τ  effective life time of the upper laser level,  

δloss  the total logarithm loss of the laser system including cavity loss and mirror loss,  

Pp  the pump power  

Pth  the threshold pump power.  

The threshold pump power Pth also can be expressed as: 
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 Equation 4.13      
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where µ is the pump efficiency, νp  the frequency of pump light and Ω  cross section area of the active 

medium. The substitution of Equation 4.12 into Equation 4.13 gives the more intuitive form of output laser 

power: 
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It can be seen clearly from Equation 4.14, since our laser system has a fixed setup, only the intra-cavity loss 

is a variable and the other parameters are constant while the laser cavity configuration remains unchanged.   

As a result of the polarizing property of the 45º-TFG, the proposed fibre laser cavity could eliminate one 

polarization state thus giving out single polarization output. The single polarization oscillation will be 

formed after certain roundtrips in the cavity. In the laser system, because we use standard single mode fibre, 

not PM fibre, the light polarization will not be preserved after the light passing through the 45°-TFG. Only 

light beams with specific polarization state that are able to transform to linear polarization state prior to 

reaching the 45°-TFG have the minimum cavity loss. Therefore, any alternation in the cavity that could 

induce birefringence change leading to the intra-cavity polarization state change will be filtered by the 45°-

TFG.  This polarization state filter effect will result in a laser output power variation which can be detected. 

As shown in Figure 4.26, we assume an elliptically polarized light travels in the laser cavity when stable 

laser oscillation established. We now define the logarithm intra-cavity loss induced by the loading induced 

birefringence change as:  

Equation 4.15     ln Trans
loss

in

I

I


 
  

 
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where Iin is the intensity of single polarized light incident into the 45°-TFG, ITrans is the intensity of single 

polarized light transmitted through the 45°-TFG. 

 

Figure 4.26  Birefringence induced by load applied to the fibre. 

The principle of the intra-cavity loss induced by loading effect can be described by Jones matrix method. 

We may assume the fibre laser cavity single polarization light 𝐸𝑖𝑛
⃗⃗⃗⃗⃗⃗  incident into 45°-TFG could be 

described in Equation 4.16 using Jones vector 

Equation 4.16   

cos

sin
in i

E E
e 





 
   

 
                                            

where E is the amplitude of the light field, tanα is the ratio between the x and y component of the electric 

field and ϕ is the phase difference between the two orthogonal electric fields. The intensity of the input 

single polarized light can be written as Equation 4.17 by multiplying its complex conjugate.  

Equation 4.17                  
*

inin inI E E      

As shown in Figure 4.26, the angle between the axis of the polarizer (45°-TFG) and the y axis is θ.  Thus 

the fibre laser cavity transmitted light  𝐸𝑇𝑟𝑎𝑛𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    after the polarizer (45°-TFG) can be expressed as: 
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Equation 4.18           

sin 0

0 cos
Trans inE E





 
  
 

                                    

The intensity of the transmitted light after the polarizer can then be given by: 

Equation 4.19              
*

TransTrans TransI E E                                        

Due to the photo-elastically induced birefringence, the applied loading can thus alternate the polarization 

state of input light 𝐸𝑖𝑛
⃗⃗⃗⃗⃗⃗    when transverse force applied onto the single mode fiber. Within the same 

coordinate system, the load applied to the fiber will produce linear birefringence in x direction. As a 

consequence, the light undergoing linear birefringence in x direction could transform to: 

Equation 4.20        
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is the Jones matrix expression of the load induced phase change, τ = δ•l is the 

phase retardation due to the applied load, δ is the amount of birefringence per unit length that is proportional 

to the load while l is interaction length. Then, by increasing the applied load to the fibre in the laser cavity, 

τ will be varied between 0 and 2π periodically. 

According to Equations 4.12-4.20, we can see that the transmitted light is governed by the load induced 

birefringence variation that will lead to the intra-cavity loss alternation of the laser cavity. This is the 

principle of our fibre laser based loading sensor. 
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4.5.3.2 Experimental setup of laser loading sensor and results 

The schematic description of the laser loading experiment is illustrated in Figure 4.27. The laser structure 

is the same as the one illustrated in Figure 4.18; the dotted circle in Figure 4.27 indicates the sensing fibre 

section in the cavity. In the experiment, the plastic coating of the sensing fibre was removed to reduce the 

buffer effect. The loading setup is shown in the dotted box, which was implemented by laying the sensing 

fibre and a dummy fibre (SMF-28) between two flat-surface aluminium plates. During the experiment, we 

gradually increased the load on the top of the plate with a number of standard weights. The active loading 

lengths were set as 31mm and 51mm, respectively. The laser output was continuously monitored by a high 

sensitivity power meter. 
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Figure 4.27  Schematic of the fibre laser loading sensor incorporating an intra-cavity 45º-TFG. 

Before applying the transverse load, we maximized the laser output power by adjusting the PC to guarantee 

the laser working in an optimized condition. We then applied the transverse load to the sensing fibre in 

cavity from 0 to 6.4kg in an elevation step of 0.1kg. The laser output power changed with loading weight 

variation due to the alteration of intra-cavity polarization state. The measured output optical power changes 

against the loading weight on two different active loading lengths (31mm and 51mm) are plotted in Figure 

4.28 and Figure 4.29, separately. It can be seen that the normalized output power varies with increasing 

load in a sinusoidal fashion with a fixed period and gradually reduced amplitude in a similar trigonometric 
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function which is caused by fibre deformation for a full cyclic change of the polarization state. However, 

in practical application, a linear relationship is more desirable. By taking the quasi-linear range from 

32kg/m to 61kg/m for loading on the shorter active length fibre (31mm)  and from 21kg/m to 47kg/m for 

the longer one (51mm), we can estimate that the loading sensitivity is approximately 0.033/ (kg•m-1) for 

the former and 0.042/(kg•m-1) for the latter. The loading sensitivity for longer fibre is more sensitive than 

for the shorter one, because the load induced phase change depends on interaction length l, as discussed in 

the loading principle section. The longer loading length accelerating the phase change rate will lead to the 

reduction of the period of the sinusoidal curve of the laser output. Thus, it is possible to increase the active 

loading length so as to obtain higher loading sensitivity. From Figure 4.28 and 4.29, it can be seen that the 

measured experimental results correspond well to the theoretical calculation using Equation 4.14. 

Compared with TFG based loading sensor reported before[129], the sensitivity of our active loading sensor 

under the same experiment conditions has been increased by 50%.  However, the laser output power is not 

able to return back to the initial point level with the cycles as we see the measured maximum power 

decreases with the cycle. The reason for this phenomenon is that the fibre deformation by transverse force 

induces the extra loss to the laser cavity. This loss will affect the loading sensitivity and limit the 

measurement range. The loading sensing based on this active configuration has shown significantly 

increased sensitivity compared with the TFG-based passive one [129]. The one of advantages of this sensor 

is that the loading signal can be measured using a low-cost power meter.  

 

Figure 4.28  Measured output power change against loading weights for the shorter interactive 

fibre length (31mm). 
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Figure 4.29  Measured output power change against loading weights for the longer interactive 

fibre length (51mm). 

4.6 45°-TFG inscribed in PM fibre and all-fibre birefringent filter 

4.6.1 45°-TFG inscribed in PM fibre 

As described in the earlier section of this chapter, the 45°-TFGs have performed as in-fibre 

polarizers. Due to the nature of fibre configuration, the polarization status along the fibre is 

changing randomly. As a result, the linearly polarized light generated by the 45°-TFG cannot 

maintain its state of polarization while transmitted in the normal single mode fibre (such as 

SM28). In order to solve this issue, the 45°-TFG may be inscribed in to the polarization 

maintaining (PM) fibre along the fast or slow axis. 

Most PM fibres are a single-mode optical fibre, which is designed to transmit light with 

maintained linear polarization. The PM fibre used for 45°-TFG inscription is Panda type fibre 

(PM1550 from Fujikura®). Figure 4.30 shows the cross-section image of the Panda type PM fibre. 

From figure 4.30, the diameter of the fibre core is 9.61μm and the diameter of the stress rod is 

about 34.83μm. This Panda structure design is used to introduce high stress-birefringence in a 

fibre core, resulting in fibre with excellent polarization maintaining properties.  
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Figure 4.30  The micro-images of cross-section of the Panda type PM fibre used for 45-TFG 

inscription. 

In order to maintain the linear polarization state of the propagating light in the fibre, the 

transmitted light should be launched by the PM fibre along its principal axis (the slow- or fast-

axis). Therefore, the 45°-TFG is UV-inscribed along the slow- or fast-axis of PM fibre. The PM 

fibre was hydrogen-loaded under 180bar at 80ºC for 72hours before the grating fabrication to 

enhance the photosensitivity. To inscribe 45°-TFG in the PM fibre along the slow- or fast-axis of 

the PM fibre was labelled under the microscope. The schematic diagram of the UV-inscription of 

45°-TFG structure along the two different directions is shown in Figure 4.31. Here, we should 

appoint out that the polarized axis of the 45°-TFG based in-fibre linear polarizer is vertical to the 

inscription direction. 
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Figure 4.31  Schematic diagram of 45°-TFG inscription with respect to the (a) slow-axis and (b) 

fast-axis of PM fibre. 

After the UV-inscription in PM fibre, the 45°-TFGs were annealed under 80 ºC for 24 hours for 

stabilization. The 45°-TFG structures were examined by the high magnification microscope 

system under a 100× oil immersion objective. As shown in Figure 4.32, the 45°-TFG structure in 

the core area along both the slow- and fast-axis and the stress rod of PM fibre can be clearly 

distinguished. 

(a) (b)

 

Figure 4.32  Micro-images of 45°-TFGs in PM fibre inscribed along (a) slow- and (b) fast-axis. 

The 45°-TFGs in PM fibre were evaluated for the PDL by using the LUNA Vector system 

described in section 4.2.3. The Figure 4.33 shows the PDL of a 48mm-long 45°-TFG inscribed in 

the PM fibre along fast- and slow-axis .From the figure, we can see that the PDL of the 45°-TFG 

inscribed in PM fibre along the slow-axis is of 30dB, which is higher than that along the fast-axis 
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(only 18dB). This difference in PDL may be caused by the size of the effective interference area 

is expanded by a convex lens effect formed by the low refractive index stress rod surrounded by 

the high index silica [130]. 

(a)

(b)

 

Figure 4.33  PDL profiles of the 45°-TFG in PM fibre inscribed along (a) slow- and (b) fast-axis 

from 1525 to 1605 nm measured by LUNA optical vector analyser 2000.  

4.6.2 All-fibre polarization birefringent filter 

Bornard Lyot first published the basic principle of a birefringent filter (also called as Lyot filter) 

operation in 1933[131]. A Lyot filter could be used as a comb filter, which is consisting of two 

parallel polarizers sandwiching a birefringent crystal whose axis is aligned at 45° with respect to 

the axes of the polarizers. As discussed in the earlier section of this chapter, 45°-TFG can be used 
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as a linearly polarizer. By inscribing two 45°-TFGs along a PM fibre, we may implement an all-

fibre Lyot interference filter,  

Figure 4.34  The schematic structure of an all-fibre Lyot interference filter based on two 45-

TFGs. 

The configuration of the all-fibre Lyot filter based on two 45-TFGs is illustrated in Figure 4.34. 

In experimental implementation, a length of PM fibre was spliced between two 45°-TFGs; the 

fast-axis of PM fibre was aligned at 45° to the fast-axis of the 45-TFGs. In this structure, the 

45°-TFGs inscribed along the fast-axis of PM fibre were used as the linear polarizers, and a 

section of bared PM fibre was used as the birefringence medium. The working principle of the 

all-fibre Lyot filter is that when light is passed through the first 45°-TFG it becomes linearly 

polarized, then, the linearly polarized light is incident on the PM fibre at 45°with respect to 

slow/fast axis, which resolves into two beams of equal intensity that travel in the fast- and slow- 

axes of the PM fibre. Due to the birefringence, there is a relative phase difference between these 

two beams, which leads to wavelength-dependent polarization state. Finally, the light with 

wavelength-dependent polarization state would be analysed by the second 45°-TFG and a 

wavelength-dependent intensity modulation is generated in the transmission. The normalized 

transmittance of the Lyot filter is given by [132]: 
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Equation 4.1 )(2sin2sin)2/(cos)2(cosT 22                                

Equation 4.22 





nL2 PM     

Where Δn is birefringence of PM fibre and LPM is the length of PM fibre. 

The free spectral range (FSR) of Lyot filter can be obtained [132] from Equation 4.22, as: 

Equation 4.23 
nL

FSR
m

2




                                                       

The full width half maximum (FWHM) of Lyot filter is half of the FSR of the filter. So the FWHM 

of Lyot filter can be expressed as:  

Equation 4.24 
2

2

m
m

PML n


 


       

Based on Equation 4.23 and 4.24, the FSR and bandwidth of the Lyot filter transmission spectrum 

depends on the length of the PM fibre cavity. We have spliced three different lengths PM fibre 

(20m, 50m and 100m) between two 45°-TFGs in turn achieving three Lyot filters. Figure 4.35 

shows the transmission spectra of the three Lyot filters, respectively. It can be clearly seen from 

the figure that the output from the 45°-TFG based Lyot filter exhibits comb-like transmission with 

sinusoidal shape and the bandwidth and FSR are PM fibre cavity length dependent. The 

bandwidths for 20m, 50m and 100m PM fibre cavities are 126.2pm, 57.2pm, and 28.7pm, 

respectively.  These experiment results were found in agreement with its theoretical values (134.7 

pm, 53.9 pm and 26.9pm).                        
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Figure 4.35  Transmission spectra of the 45°-TFG based Lyot filter with different PM fibre cavity 

lengths (20m, 50m and 100m). 

We also compare the simulation and experimental results of the transmission spectra of Lyot 

filters with 50m and 100m PM fibre cavity lengths, which are shown in Figure 4.36 (a) and (b). 

It can be seen from figures the experimental results are in very good agreement with the 

simulation ones.  
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Figure 4.36  The simulated (red dash) and experimentally measured (black solid) comb-like 

transmission spectra of 45-TFG based Lyot filters with (a) 50m and (b) 100m PM fibre cavity 

length.  
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4.7 Chapter Conclusion 

In this chapter, systematic investigation of TFGs on the phase match condition, phase mask 

fabrication, spectral and polarization characteristics and applications in fibre laser systems has 

been presented.  

For 45º-TFGs, the PDL has been discussed in the wavelength range from 1525nm to 1610nm and 

the maximum PDL achieved is ~21.1dB from a 24mm long grating. We also experimentally 

demonstrated the power tapping function of 45°-TFG and verified that the side-tapping efficiency 

deceases along the grating length, therefore, for a real power tapping device, a 45°-TFG of mm 

length may be sufficient enough. We further presents the experimental investigation of the 

functionality and loading application of 45º-TFG in EDFLs emitting continuous wavelength 

tuneable laser light of single polarisation and picosecond pulses in the region of 1.5μm. Finally, 

we demonstrate 45°-TFGs that were UV-inscribed along the principal axis of the PM fibre and 

based on 45-TFGs in PM fibre, an all-fibre polarization interference filter can be constructed by 

45°-TFG and PM fibre. All fibre Lyot filter generate comb-like transmission response and the 

FSR of filter can be easily designed by altering the PM fibre cavity length. 
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5.1 Introduction 

The tilted fibre gratings with ex 45° tilted structures (ex 45°-TFGs) were firstly reported by Zhou et al, 

[133, 134]. In terms of mode coupling mechanism, an ex 45-TFG is similar to an LPG as it couples the 

light  from the forward propagating core mode to forward propagating cladding modes, but only to the 

higher order ones. Due to the asymmetric structure induced by the excessively tilted fringes in the fibre 

core, the light coupled into high order co-propagating cladding modes is splitting into two sets of 

polarization dependent modes resulting in dual-peak resonances in spectrum. Due to this unique 

polarization property, the large angle TFGs have been proposed as fibre sensors for the detection of 

loading[129], strain[134], twist[135], refractive index (RI) and liquid level[136, 137].  

5.2 Principle of ex 45°-TFGs 

The phase matching condition of TFG has been introduced in Chapter 4. Based on Equation 4.1, 

the ex 45°-TFGs phase matching condition can be written as: 

Equation5.1              TM or TEi        
cos

))(n)(n( Geff,i

m,cl

eff

co 



  

Where ΛG is the normal period of grating and θ is the tilt angle of the grating and > 45. 

θ
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CORE

CLADDING
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Figure 5.1  Schematic diagram of ex 45°-TFG structure in fibre core. 

As shown in Figure 5.1, the geometry relation of horizontal axial period Λ, grating period ΛG and 

the tilted angle θ of grating can be expressed as 

Equation 5.2                 
cos

G
  
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Using [137], ex 45°-TFG’s phase matching condition can be rewritten by using the horizontal 

period as: 

Equation 5.3         TMor   TEi               ))()(( ,

,   effi

mcl

eff

co nn  

It can be clearly seen from above equation that wavelength of ex 45°-TFG is relating to the mode 

index of core, mth order mode index of cladding and the horizontal axis period of grating. Once 

the ex 45°-TFG has been inscribed, mode index of core and the horizontal axis period of grating 

are fixed.  The basic sensing theory of grating is the effective indices of the cladding modes are 

changing with the environmental condition. Zhijun Yan [137] gave the general sensitivity 

expression of cladding mode as follows: 

Equation 5.4          
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Where γ is the waveguide dispersion, Γ is the dependence of waveguide dispersion on 

environment and the material expansion α caused by the changing of environment and the λ is the 

operation wavelength. In Equation 5.4, the temperature and RI dependent waveguide dispersion 

(ΓTEM & ΓRI) are expressed as below, respectively: 

Equation 5.5                      ,
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Where ξco and ξcl are the thermo-optic coefficients of core and cladding materials, 
eff

con and ,

eff

cl mn  

are the effective index of core and mth order cladding mode. 

Equation 5.6                      
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Where 
2

mu  is  root of the zero order Bessel function; λ is the operation wavelength of cladding 

mode, nsur is the RI of surrounding medium; r is the radius of fibre cladding;   ncl is the index of 

cladding . 

5.3 Inscription and Characterisation of ex 45°-TFGs 

5.3.1 Inscription of ex 45°-TFGs 

As discussed in Chapter 4, if a TFG’s tilted angle larger than 67 (for an air/glass interface), this 

ex 45-TFG will couple the light from the core mode to the forward propagating cladding modes, 

which is similar to LPGs except the coupling to high order cladding modes. Although ex 45°-

TFGs have a similar property as conventional LPGs, they could not be easily fabricated by the 

point-by-point technique. Because, its structure is tilted and it’s period is relatively small (several 

microns). In order to evaluate their spectral, polarization and sensing property, a number of ex 

45°-TFGs were UV-inscribed in hydrogen-loaded Corning SMF-28 fibre by the scanning mask 

technique using the same frequency doubled Argon ion laser. The mask used in ex 45-TFG 

fabrication is a custom-designed amplitude mask with a period of 6.6μm purchased from Edmund 

Optics. Before ex 45°-TFGs fabrication, the SMF-28 fibre was hydrogen loaded under the 

standard condition to enhance its photosensitivity. The Figure 5.2 shows that the zero order 

diffraction of UV beam which generated by the amplitude mask for inscribing ex 45°-TFGs into 

the fibre core. 
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Figure 5.2  Schematic of the top view of amplitude mask and fibre with 0 order diffraction inside 

the fibre core. 

Due to the lens effect of the cylindrical shape of the fibre, the internal tilted angle in the fibre core 

is different from the external tilted angle of the mask.  In the experiment, the amplitude mask was 

tilted at 69 and 78° to produce in-fibre grating structures with tilted angles at 76° and 81°. Due 

to it being an amplitude mask, the ex 45-TFGs were written by the zero order diffraction of UV 

laser beam which passed though the mask directly. After the UV inscription, some grating 

structures were examined under a microscope with 100X oil immersion objective lens. Figure 5.3 

shows the image of tilted fringes in 76° and 81-TFG and the measured angle is at 76.04° and 

81.82 , which is very close to the design angle value. 

 
(a) 
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Figure 5.3  Microscope image of a TFG with tilted angle at (a) 76° and (b) 81° examined by 

microscope with 100X oil immersion objective lens. 

 

5.3.2 The transmission spectra of ex 45-TFGs 

All fabricated ex 45-TFGs were characterised using the experimental setup shown in Figure 5.4, 

the light from a broadband light source (from Aligent company) was launched into the one end of 

the ex 45°-TFG fibre and the output was monitored from the other end by an OSA. A linear 

polariser and a polarisation controller were inserted between the broadband light source and the 

ex 45°-TFG to change the polarisation state of the probing light. 
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Optical spectrum 
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Polarizer

Polarization 

Controller

Ex-TFG

 

Figure 5.4  The measurement setup for ex 45-TFGs. 

As the index fringes are severely tilted in an ex-45TFG, the asymmetric structure induces a 

significant birefringence to the fibre, resulting in all coupled cladding modes degenerating into 

two sets with orthogonal polarization states. Figure 5.5 (a) plots the typical transmission spectrum 

of an 81°-TFG, showing clearly the mode splitting and generating a series of dual-peak loss bands 

in the wavelength range from 1250 nm to 1650 nm. The zoomed transmission spectra of one of 

(b) 
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the paired peaks for two (labelled as P1 and P2) orthogonally polarized states are shown in Figure 

5.5(b).  From the figure we can see that when the grating is probed with randomly polarized light, 

the two peaks show similar strength, e.g.  3-dB transmission loss; but when it was launched with 

orthogonally polarized lights (P1 or P2), one of the dual peaks grows to its full strength (∼11 dB) 

whereas the other almost disappears. 

 

Figure 5.5  The transmission spectra of 81°-TFG: (a) a series of dual-peak resonances from 1250 

to 1650 nm; (b) a paired dual peaks at around 1550nm when launched with randomly polarized 

light (black line) and orthogonally polarized lights (red line – TM; blue line - TE). 

5.3.3 Evaluation of thermal response of ex 45-TFGs 

The thermal response of the 81°-TFG has been evaluated by the experiment setup shown in Figure 

5.6. The grating was placed on the surface of a heat exchange plate while the temperature was 

tuned from 0°C to 80°C with an interval of 10°C. The polarizer and polarization controller were 

used to guarantee one of the dual peaks under measurement.  
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Figure 5.6  Experiment setup for temperature sensing of ex-45° TFG. 

(a) 
(b) 
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In the experiment, we examined a pair of peaks of the 81°-TFG at 1538nm and 1545nm. Figure 

5.7 shows the wavelength shifts of the paired peaks against the temperature increasing from 0°C 

to 80°C. As clearly shown in the figure, the temperature sensitivities of the TM and TE cladding 

modes are 6.7pm/°C and 5.7pm/°C, which are significantly lower than that of the LPG (51.7 

pm/°C) and FBG (13 pm/°C) at 1550 nm.  

 

Figure 5.7  The wavelength shift of 81°-TFG against temperature change: for TM mode at 

1538nm (black line) and TE mode at 1545nm (red line). 

We also analysed the temperature sensitivities of TM peak at around 1550nm for 76°- and 81°-

TFG. Figure 5.8 shows the wavelength shift of TM cladding mode against the temperature for 

these 2 ex-TFGs. From the linear fitting it can be seen clearly the temperature sensitivities are 4.2 

pm/°C and 6.7pm/°C for 76° and 81° ex-TFGs, respectively. So, from the experimental results, 

we can see clearly that the thermal sensitivity is decreasing with decreasing of the tilted angle. 

However, both of 76° and 81°-TFGs sensitives are lower than the sensitivity of normal FBGs at 

1550nm.  



   

157 
 

 

Figure 5.8  The temperature sensing results for TM cladding modes of ex-TFGs with tilted angle 

at 76° and 81°. 

5.3.4 Surrounding medium refractive index sensing using ex 45°-TFGs 

In this section, the surrounding medium refractive index (RI) sensing capability of the ex 45°-

TFGs will be discussed. In the RI evaluation experiment (see set-up in Figure 5.9), the ex 45°-

TFG was fixed straight on two stages to eliminate the system errors induced by bending.  A series 

of refractive index gel (from Cargille laboratory) with different RIs from 1.305 to 1.44 were 

applied in turn over the grating area on the fibre sample, and the spectrum was monitored by an 

OSA.  Once the grating was surrounded by the refractive index gel, the shift of wavelength was 

almost instantaneously displayed on the OSA. After each measurement, the refractive index gel 

adhered to the grating was washed out with methanol until the spectrum recovered to the original 

position on the OSA, e.g. when surrounded by air.  

Broadband light 
source

Optical spectrum 
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Polarizer

Polarization 
Controller Ex-TFG

Figure 5.9 Schematic of the experimental setup for refractive index sensing of ex 45°-TFG. 
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Figure 5.10 plots the wavelength shift of TE and TM cladding mode peaks of an 81°-TFG 

responding to the RI variation from 1.305 to 1.408. It clearly shows that the RI sensitivity of TM 

mode is slightly higher than the TE mode. It can also be seen that the ex 45°-TFG exhibits a 

nonlinear RI sensitivity which differs from the linear trend of the temperature sensitivity. For the 

81°-TFG, we can see from Figure 5.10, the total wavelength shifts of TM and TE mode are around 

50 nm and 43.75 nm when RI  changing from 1 (air) to 1.404. We also noticed that when RI was 

larger than 1.404, the cladding mode resonant peaks of 81°-TFG completely disappeared.  This is 

caused by the fact that when the RI is larger than the high order cladding mode index, the light 

will be coupled out from the cladding to the radiation modes.  

 

Figure 5.10  The RI response of 81-TFG to TE mode at 1545nm (red) and TM at 1538nm (black). 

Figure 5.11 shows the comparison of RI responses of TM cladding modes of 81°-TFG at different 

wavelengths. As it shown in the figure, each cladding mode has a different RI sensitivity. From 

the figure we can see, when the RI varies  from 1.305 to 1.375, the RI sensitivities of TM cladding 

modes at 1620 nm, 1538 nm and 1310 nm are 307 nm/RIU, 196 nm/RIU and 126 nm/RIU, 

respectively. According to numerical analysis of ex 45°-TFG reported in Ref. [137], the cladding 

mode at longer wavelength is the lower order cladding mode, which is less sensitive to RI.  
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Figure 5.11  The RI responses of TM modes at 1620 nm, 1538 nm and 1310 nm. 

The RI response evaluation was carried out on another TFG with slightly less tilted structure – a 

76-TFG and its response was compared with that of 81-TFG. Figure 5.12 present the 

wavelength shifts of the TM peaks at around 1550nm region against RI for these two ex 45°-

TFGs. From the measurement results, we can calculate out their RI sensitivities, which are at 499 

nm/RIU and 396 nm/RIU covering  the RI range from 1.3 to 1.4, for the two TFGs with structure 

tilted at 81 and 76, respectively, indicating that the RI sensitivity increases with the tilt angle of 

the structure.    

 

Figure 5.12  The RI responses of the TM modes (at around 1550nm) of two TFGs with structure 

tilted at 76° and 81 measured for the RI range from 1 to 1.4. 
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5.4 Novel glucose sensor based on enzyme-immobilized ex 45-TFGs 

Optical fibre biosensors have been proved as good tools for detecting specific bio-molecules in 

the fields of food safety, drug discovery, medical diagnosis and environmental monitoring [138-

141], due to their advantages of small size, label free and high sensitivity and good selectivity. In 

clinic examination, it is very important to test the concentration of blood glucose, as glucose is 

the key source of energy of human body. Presently, only electrochemical methods are popular for 

the glucose analysis. In some published papers, unmodified LPG sensors have been used for non-

selective analysis of very highly concentrated glucose solutions (300mg/mL) [142, 143]. 

Although the LPG sensor is simple to fabricate, but it suffers from the thermal and tensile cross-

talk effect, because of its inherent properties of highly sensitive to the temperature and strain, and 

also its Q-factor is relatively low due to broad resonant spectrum. We have developed a novel 

sensor based on enzyme-immobilized ex 45-TFG, offering higher bio-sensing sensitivity.   

5.4.1  Grating surface modification by GOD immobilization  

In order to achieve the selective method for glucose detection, the fibre surface of the grating 

sensor should be bio-functionalized by the glucose oxidase (GOD) firstly[144] . In this process, 

an 81°-TFG was initially immersed in HNO3 solution (5% v/v) for 2h at 40°C to remove the 

contamination and then thoroughly washed by de-ionized water and ethanol. The cleaned fibre 

was then immersed in the H2SO4 solution (95% v/v in H2O2) for 1h at room temperature to activate 

the hydroxyl-groups (i.e., ‘-OH’) on the glass surface followed by drying under an incandescent 

lamp for 18h at 40°C. An aminopropyltriethoxysilane(APTES) solution (10% v/v in ethanolic 

solution) is used to cultivate the -OH activated fibre for 40 min at room temperature in the 

silanized process, in which the NH3+ groups of the APTES molecules would covalently link to 

the -OH groups of the glass surface. Afterwards, the fibre was washed by de-ionized water and 

ethanol to remove non-covalently bonded silane compounds. Finally, the immobilization of 

enzyme molecules on the fibre surface was realized by immersed the silane fibre in 10mg/ml 

sodium acetate (SA) buffered solution of GOD for 2h incubation, in which the GOD’s -COOH 
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groups would bind with the NH3+ groups on the surface of the silane fibre through covalent 

interaction. Figure 5.13 depicts the whole process of the fibre surface modification. 

 

Figure 5.13  Modified process for the fibre surface of the 81°-TFG. 

After the surface modification experiment, the GOD-immobilized fibre was inspected under the 

microscope. The micro images of the 81°-TFG showed in Figures 5.14 (a)-(c) corresponding to 

after cleaning, silanization and GOD-immobilization process, respectively. The comparison of 

Figure 5.14 (a) and (b) clearly shows that the surface of grating has been covered by a smooth 

silane layer. Figure 5.14 (d) shows the strong glowing fluorescence, indicating sufficient GOD 

molecules have been immobilized on the surface of the 81°-TFG.  

 

Figure 5.14  Micro image of the 81°-TFG based on (a) Cleaned fibre (b) Silane fibre (c) GOD-

immobilized fibre (d) fluorescence fibre. 

5.4.2 Glucose detection by GOD-immobilized 81-TFG 

The prepared GOD-immobilized 81°-TFG sensor was used for glucose detection. The selective 

method for glucose detection is based on the principle that the specific enzyme (i.e., GOD) 

immobilized on the surface of the 81°-TFG will cause the glucose (molecular weight = 180.6) to 

convert to the gluconic acid (molecular weight = 192.6), as shown in Equation 5.7 , leading to a 

relatively large RI change even in a dilute (e.g. 0.1~3mg/mL) glucose solution, which will in turn, 

cause a detectable shift of the resonance wavelength of the grating sensor.  
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Equation 5.7    .-c- 2222 OHacidGluconicDOOHoseGluD GOD   

GOD used in our experiment was purchased from Sigma, and its enzymatic activity is larger than 

200units/mg and one unit GOD will oxidize 1.0µ mole of β-D-Glucose to D-Gluconic acid and 

H2O2 per minute at pH 5.1 at 35°C. Thus, we prepared different concentrations of D-Glucose (0.1-

5.0mg/ml) in the SA buffered solution (PH 5.2), which will provide a suitable chemical 

environment for this catalytic reaction. The experimental setup to investigate the correlation 

between D-Glucose concentration and grating spectral response is shown in Figure 5.15. Light 

from a broadband source (BBS, 1550A-TS, 1495~1595nm) was launched into the fibre and the 

transmission spectrum was recorded by an optical spectrum analyzer (OSA, AQ-6370B). A 

polarizer and a polarization controller (PC) were placed between the BBS and the grating to adjust 

and maintain the 81°-TFG to work only in the X-polarized mode. 

 

Figure 5.15  Experimental setup for investigating the grating spectral response. 

 At the beginning, a pure SA buffer solution was introduced in the sample cell, and the observed 

resonant wavelength of the 81°-TFG was recorded as the reference. Then the prepared SA 

buffered solutions of D-Glucose with different concentrations were introduced into the sample 

cell in turn to investigate the correlation between the D-Glucose concentration and the grating 

spectral response. In each test, we measured the RI change induced resonance shift. After each 

test, the de-ionized water was used to wash the grating to guarantee its resonant wavelength 
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moving back to the reference point. For comparison, a non-modified 81°-TFG was also subjected 

to the evaluation. Figure 5.16(a) is the spectral evolution of one of the TM resonance peak with 

the increase of the glucose concentration from 0 to 3.0mg/ml. Because the red-shifted resonance 

amplitude is related to the change of average RI within the evanescence-field area surrounding 

the grating surface, therefore, according to Equation 4.1 and Equation 5.7, the more D-Glucose 

molecules (i.e., the higher the glucose solution concentration) and enough active GOD molecules 

exist in this evanescence-field area, the greater change of 
m

cln  that affected by the change of this 

average RI will be. This will then result in a greater red-shift in the resonant wavelength. Figure 

5.16(b) plots the resonant wavelength shift with D-Glucose concentration for the non-modified 

(square dots) and GOD-immobilized (circle dots) 81°- TFGs, indicating that, for the former, the 

resonant wavelength remains almost unchanged as the maximum variation of which is only 

~0.08nm, compared with the reference point, while for the latter, it is red-shift for 0.91nm and 

has a good linear response with the increase of the glucose concentration from 0 to 3.0mg/ml. 

Linear fitting shows that the detecting sensitivity for the glucose concentration is 

0.298nm·(mg/ml)−1 and the R-square ~0.99. The Q-factor of the sensor, defined by the working 

wavelength versus FWHM, is estimated to be ~1585nm/~4.5nm ≅ 352. However, the sensors did 

not respond properly in a higher concentration range from 3.0mg/ml to 5.0mg/ml. This may be 

due to the fact that since the activated grating length is only 10mm, above 3.0mg/ml, there were 

not enough active GODs to support a complete oxidation of the glucose molecules in this case, 

leading to a gradual decrease in the red-shifted amplitude of the resonant wavelength. 
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Figure 5.16 (a) Spectrum evolution of 81°-TFG with the glucose concentration; (b) Shift of the 

resonant wavelength of 81°-TFG by the selective method (GOD immobilized) and non-selective 

method (original) in the concentration range of 0~3.0mg/ml. 

In order to evaluate the sensor re-usability, the GOD and silane layers on the fibre grating surface 

were removed by using the HNO3 solution. Then, the above described experiment was conducted 
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again on the grating for three times, and the observed average variation in the resonant wavelength 

shift was only ±0.04nm, indicating a good reproducibility for the 81-TFG based biosensors. 

5.5 Transverse loading sensor based on hybrid 45°- and 81-TFG 

As we discussed in Chapter 4, 45°-TFG can be employed as an in-fibre polarizer. In this section 

we will present an all-fibre transverse loading sensor system based on a hybrid structure 

combining 45°- and 81°-TFG in a single piece of fibre. The use of the 45-TFG is to polarizing 

the light before launching into 81-TFG for loading sensing application. 

5.5.1  Loading sensing principle and experiment 

The polarization direction of the light in a fibre inevitably changes when a fibre is under loading 

effect. When the transverse loading is applied to the y-axis of 81°-TFG fibre as shown in Figure 

5.17, the refractive index changes in the cross section due to the photo-elastic effect can be 

expressed by[145]   

Equation 5.8   0 0 1 2( ) ( )( )x y x y x yn n n n n C C           

where nx0 and ny0 are the effective refractive indices of the fibre; C1 and C2 are the stress-optical 

coefficients; δx and δy are the stresses in x- and y-direction. For silica, the C1 and C2 are constant 

and always positive. Based on reference [146], the horizontal normal stress δx is always positive 

(tensile) and the vertical normal stress δy is negative (compressive), which means (δx – δy) is 

positive. Thus, the value of birefringence Δn is depending on the effective refractive indices of 

the fibre δx and δy. When the transverse load is applied to the fast axis of the 81°-TFG, we have 

nx0 = ns and ny0 = nf   and the first term in Equation 5.8 will be positive, resulting in increase in 

birefringence Δn. When the transverse load is applied to the slow axis of the 81°-TFG, the 

birefringence Δn will be decreased. Therefore, the 81°- TFGs may be utilized to implement the 

optical loading sensors.  



   

166 
 

x
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F

 

Figure 5.17  The cross section of a fibre in an assigned x–y coordinate system with transverse 

load applied along the y-axis. 

The experimental setup of the load sensing is illustrated in Figure 5.18. Initially, the light from a 

broadband source (BBS) was launched into the 45°-TFG to be polarized before entering the 81°-

TFG and the output was monitored from the other fibre end by an optical spectrum analyser 

(OSA). The 81°-TFG was laid between two flat-surface aluminium plates with a dummy fibre for 

balance. The active loading length between the two plates is 32 mm. In order to eliminate 

measurement errors from axial-strain and bending effects, the 81°-TFG was fixed on the plate 

with a small axial tension to maintain it straight. 
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Figure 5.18 (a)The schematic diagram of the all-fibre transverse loading sensor based on a 45°-

TFG and an 81°-TFG. The 81°-TFG in an x–y coordinate system showing transverse load applied 

to its (b) fast-axis and (c) slow-axis.  

We applied the transverse load first to the equivalent fast-axis of 81°-TFG  from 0 to 1.6 kg in a 

step of 0.1 kg by putting the weights on the top of the aluminium plate,  as shown ψ = 0° in Figure 

5.18 (b).  

5.5.2 Loading sensing results and discussion 

The transmission spectrum for each applied load is plotted in Figure 5.19. As clearly seen, when 

the load was applied to the 81°-TFG, the P1 mode peak was gradually decreasing but P2 peak 

oppositely increasing, due to the load induced polarization state change. Figure 5.20 (a) plots the 

transmission loss against applied load for both peaks. We can see from Figure 5.20 (a) that for the 

loading range from 0 to 2.9 kg m−1for peak P1 and 0 to 4.5 kg m−1 for P2, the transmission loss 

changes are almost linear, in which we estimate that the loading sensitivities are 1.902 dB/ (kg· 

m−1) and 1.023 dB/ (kg· m−1) respectively. Although we see the load-induced transmission loss 

goes through a cycle (maximum – minimum – maximum), however, the intensity of peak P1 is 
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not able to return to the initial point level with the cycles. The reason for this phenomenon is that 

the fibre deformation by transverse force induces the extra loss to the fibre waveguide. This loss 

will affect the loading sensitivity and limit the measurement range. 

 

Figure 5.19  The transmission spectrum evolution of the 81°-TFG with transverse load from 0 kg 

to 1.6 kg applied to the fast-axis of 81°-TFG. 

We then repeated the loading experiment by applying the transverse load to the grating slow-axis, 

as shown ψ = 90° in Figure 5.19 (c). By increasing the force applied to the 81°-TFG, the P1 mode 

peak was decreasing, whereas the P2 peak was oppositely increasing, exhibiting a similar 

phenomenology to the case with the load applied to the grating fast-axis. However, it can be seen 

clearly from Figure. 5.20, both of the peaks of 81°-TFG will eventually disappear by further 

increasing the loading force. This may be explained by the fact that the birefringence Δn will 

decline with increasing load when the loading force is applied to the slow-axis of the 81°-

TFG[134]. Thus, the low birefringence cannot maintain the light in two polarization states. As 

shown in Figure 5.20(b), the transmission loss changes by loading to the slow-axis are almost 

linear for the loading range from 0 to 4.2 kg m−1for peak P1 and 0 to 5.2 kg m−1 for P2, in which 

we estimate that the loading sensitivities are approximately 1.365 dB/ (kg· m−1) and 0.491dB/ (kg· 

m−1) respectively. We can see for loading to the slow-axis, the initial linear response range is larger 

than for loading to the fast-axis, but the loading response degrades much significantly with further 

increased loading.  
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Figure 5.20  (a) Transmission losses of the two orthogonal polarization modes plotted with 

increasing load to fast (ψ = 0°) axis. (b) to slow (ψ = 90°) axis. 

5.5.3 Loading sensing by low-cost power based interrogation 

From above described experimental results, we can see the load only induces a power coupling 

exchange between the dual peaks with orthogonal polarization states. Thus, the hybrid TFG based 

loading system may be interrogated using a low cost power measurement, which is much more 

desirable for real applications. To this end, we have replaced the BBS and OSA in Figure 5.18 (a) 

with a tunable laser (in a real application, this can be a cheap single wavelength laser diode) and 

a power meter respectively, the schematic diagram is shown in Figure 5.21. 
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Figure 5.21  The schematic diagram of the transverse loading experiment system using a single 

wavelength source and a power meter. 

 

Figure 5.22  The upper plot is the transmission spectra of paired polarization peaks of 81°-TFG; 

the wavelength of the P1 loss peak is at 1538.32 nm and that of the P2 peak is at 1544.76 nm. The 

lower plot is the output spectra of the tunable laser set at the wavelengths of 1538.32 nm and 

1544.76 nm, separately. 

The spectra of the paired polarization peaks (1538.32 nm and 1544.76 nm) of 81°-TFG under 

loading are shown in Figure 5.22. In the experiment, we first tuned the laser to the P1 peak at 

1538.32 nm and applied the load from 0 to 3.2 kg with an incremental of 0.1 kg to the 81°-TFG 

fast-axis and recorded the power reading accordingly, and then repeated this measurement by 

tuning the laser to match P2 at 1544.76nm. Figure 5.23 plots the measured power values against 

the applied load for the two peaks. Clearly, the load can be measured up to the range of 10kg/m. 

Although the entire plots are not linear, there is an almost linear loading response range from 0 to 

3.5 kg·m−1for peak P1 and from 0 to 4.0 kg·m−1 for peak P2, in which we estimate that the loading 
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sensitivities are approximately 30.142 ± 1.326 μW/ (kg· m−1) and 16.319 ± 0.393μW/ (kg· m−1) 

respectively. As the load is measured in electronic signal form, this may provide a mechanism 

that potentially the signal may be transmitted wirelessly for remote control and monitoring. 

 

Figure 5.23  Transmission powers variation for the two orthogonal polarization peaks measured 

using the tuneable laser and power meter. 
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5.6 Chapter conclusion 

In this Chapter, the principle of ex-45°TFGs have been briefly introduced and their transmission spectra 

characteristics have been examined, which shows paired peaks for two orthogonally polarization states. 

The thermal property investigation on ex 45-TFGs with different angles (76° and 81°) was carried out, 

showing typical thermal sensitivities of 4pm/°C and  4.2pm/°C for the 76°-TFG and 81°-TFG at the 

resonance wavelength around 1550nm, which are significantly lower than that of LPGs and also lower  

comparing with normal FBGs. The RI response investigation shows that the sensitivity of TM mode is 

slightly larger than that of the TE mode, with the average RI sensitivities of 365nm/RIU and 337 nm/RIU 

for the TM and TE modes around 1550nm, in the index range from 1.305 to 1.404. All demonstrated ex 

45-TFG based RI sensors could be further implemented as optical biosensors by applying bio-active 

coating to them for potential applications in chemical, biomedical and biological detection and monitoring. 

We have demonstrated a cost-effective biosensor based on an 81°-TFG to detect the glucose concentration 

within the physiological range (0~3.0mg/ml) of human being. Comparing with the previous enzyme-

immobilized LPG biosensor, the glucose sensor we proposed possesses several intrinsic advantages, 

including relatively higher RI sensitivity (168nm/RIU), much lower thermal cross-talk effect and higher 

Q-factor (352). Finally, we have demonstrated a loading sensor based on a hybrid 45° and 81° TFG, in 

which the two TFGs were inscribed on the same fibre adjacent to each other.  Such a hybrid structure can 

ensure only one polarized mode is selected for detection.  The evaluated loading sensitivities are 1.365 dB/ 

(kg· m−1) and 0.491 dB/ (kg· m−1) respectively at the loading range of from 0 to 4.2 kg m−1for TM peak and 

0 to 5.2 kg m−1 for TE peak, respectively. 



   

173 
 

 

 

 

 

Chapter 6.  

Fabrication and application of 

optical fibre gratings in mid-IR 

wavelength range 

 

 

 

 

 

 



   

174 
 

6.1 Introduction  

In recent years, the optical fibre devices operating at mid infrared (mid-IR) region have attracted 

growing interests due to their application potentials in defence[12], remote sensing [14], medical 

surgery [147], etc. Optical fibre gratings as useful in-fibre components are in demand to extend 

their operation wavelength range from near-IR into mid-IR. Moreover, laser sources locating at 

eye-safe 2μm region, especially for operation wavelengths in the atmospheric transmission 

window between 2.05μm and 2.3μm, have attracted special attention. However, most of the 

reported mid-IR fibre lasers use the bulk mirrors in the cavities, inducing high insertion loss and 

limiting the structure compactness. FBGs can be used as intra-cavity resonators for all fibre lasers 

to eliminate these disadvantages. Therefore, the fabrication of FBGs covering all the mid-IR 

wavelength range is the key factor for the development of all fibre mid-IR lasers. Besides, the 

45°-TFG can be employed as an in-fibre polarizer in a mid-IR mode-locked fibre laser providing 

the effect of nonlinear polarization evolution (NPE)[148] and as well as low insertion loss and 

high compactness.  

In this Chapter, we report mid-IR fibre gratings fabricated using three main in-fibre grating 

fabrication techniques (two-beam holographic, phase-mask, and point-by-point).   Grating 

structures including FBGs, LPGs and 45°-TFGs have been realized in around 2m and their 

thermal, strain and RI response, as well as polarization dependent loss (PDL), have been 

systematically characterized.  In addition,  we present the results on a multi-wavelength continue 

wave (CW) mid-IR fibre laser utilizing a set of FBGs with Bragg wavelengths in mid-IR range 

and a tuneable multi-wavelength fibre laser using a 45°-TFG with PDL function in mid-IR 

wavelength range.  
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6.2 Optical fibre grating in mid-IR wavelength range 

6.2.1 Fabrication and characteristics of FBGs in mid-IR wavelength range 

The mid-IR FBGs reported in this thesis were  fabricated by a 244nm UV source from a frequency 

doubled Ar+ laser (Coherent Sabre Fred®) using only the two-beam holographic technique. The 

two-beam holographic technique for writing grating structure from the side of fibre is a flexible 

technique allowing inscribing FBGs with arbitrary wavelengths ranging from 750nm to 2300nm 

in our laboratory. We fabricated mid-IR FBGs with centred wavelengths from 1800nm to 2225nm. 

A super continuum broadband light source (Fianium SC480, UK) was employed to monitor the 

FBG growth during the UV inscription. The mid-IR FBGs were UV-inscribe in Corning SMF-28 

and Thorlabs SM-2000 fibres to compare their characteristics. Note, before the FBG inscription, 

both SMF-28 and SM-2000 fibres were hydrogen loaded under high-temperature (80°C) and 

high-pressure (150 bar) for 2 days to increase their UV-photosensitivity. However, a great 

quantity of hydroxide ions in the hydrogen loaded fibre caused strong light absorption in the 

wavelength range from 1800nm to 1900nm[149]. Figure 6.1 shows the transmission spectra of 

SMF-28 fibre with and without hydrogen loaded and the transmission spectrum after annealing. 

It can be clearly seen that the strong absorption at 1850nm region has vanished after putting the 

SMF-28 in the oven at 80°C for 48hours as the annealing released the hydrogen in the fibre core. 



   

176 
 

 

Figure 6.1 Transmission spectra of SMF-28 fibre with and without hydrogen loading and after 

annealing, measured using the supercontinuum light source from 1700 nm to 2200 nm. 

It is clear that there is a broad absorption peak between 1830nm and 1900nm in the hydrogen 

loaded fibre. Therefore, the FBGs with Bragg resonances in this absorbing wavelength range were 

not be possibly monitored in the fabrication process, but were measured after the annealing 

treatment, which out-gas the hydrogen from the fibre. All mid-IR FBGs were annealed at 80°C 

for 48 hours to improve their long term stability. Figure 6.2 shows the measured transmission 

spectra of three FBGs inscribed in the SMF-28 and three in SMF-2000 fibres centred at 1800 nm, 

2050 nm and 2225 nm, respectively. From Figure 6.2 we can see that the transmission loss 

(reflection) peaks of the six FBGs reach around 16-20dB, corresponding to a reflectivity of 96-

99%; the 3dB bandwidths (FWHMs) are all less than 0.4nm. It also can be seen that the FBGs 

UV-inscribed in SMF-28 fibre are stronger with slightly high reflectivity and broad bandwidth 

than that in SMF-2000 fibre. 
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Figure 6.2 Measured transmission spectra of FBGs inscribed on SMF-28 and SMF-2000 fibres. 

As we discussed in Chapter 3, the effective refractive index (RI) and the period of an FBG will 

be affected by temperature and strain changes. We then examined the thermal response of three 

FBGs with different wavelengths fabricated in SMF-28 fiber by employing the set-up described 

in Chapter 3 Figure 3.9. The temperature was varied from 0°C to 80°C at a step of 10°C. For each 

temperature, the FBG resonance was measured and recorded by the OSA. From Figure 6.3, it can 

be seen that the three FBGs with different wavelengths exhibit slightly different thermal responses. 

The temperature sensitivities are 15.4 pm/°C, 15.9 pm/°C and 16.3 pm/°C for the FBGs with the 

central wavelengths at 1950 nm, 2000 nm, and 2100 nm, respectively, which shows that the longer 

the FBG central wavelength is, the higher the temperature sensitivity.   
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Figure 6.3 Comparison of thermal responses for three mid-IR FBGs with Bragg wavelengths at 

1950nm, 2000nm and 2100nm. 

The strain response of mid-IR FBGs was investigated using the experimental set up shown in 

Figure 3.11. The FBG was straightly clamped on two 3D moving stages set at a distance of 40cm. 

The varied strain supplied to the grating was realized by moving the right-side stage from 0mm 

to 0.35mm at a step of 0.05mm, which gives a total strain variation of 750 . Figure 6.4 presents 

the strain responses of the three FBGs measured by the OSA. It can be seen that the strain 

sensitivities are 1.47 pm/με, 1.51 pm/με and 1.56 pm/με for the FBGs with the central wavelength 

at 1950 nm, 2000 nm, and 2100 nm, respectively, which demonstrates that the FBG with the 

Bragg resonance in the longer wavelength range also exhibits slightly higher strain sensitivity 

than that in shorter wavelength range. 
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Figure 6.4  Comparison of the strain responses for three FBGs with different wavelengths. 

6.2.2 Fabrication and characterization of TFGs in mid-IR wavelength range  

The 45°-TFGs centred at ~2000 nm were also UV inscribed into SMF-28 fibre by using the phase-

mask scanning technique and the same UV laser. The phase-mask (Ibsen, Denmark) has a 25 mm 

long uniform pitch and 33.7° tilted angle with respect to the fibre axis. The designed phase mask 

tilted angle at 33.7° is to ensure the internal tilted index fringes are at 45° in the fibre core. Before 

the inscription, the SMF-28 fibre was hydrogen loaded to enhance its photosensitivity. After the 

inscription, the grating samples were subjected to annealing treatment at 80°C for 48 hours to 

stabilize the grating structure. A high magnification microscope system (Zeis Axioskop 2 mot 

plus) under a 100× oil immersion objective lens was employed to examine the grating structure. 

Figure 6.5 shows a micro-image of the 45°-TFG in the fibre core of SMF-28 fibre. It can be seen 

clearly from the figure that the tilted angle of grating pattern is measured at 44.98° and the 

diameter of fibre core is 8.77 μm. The effective length of the TFG was 24 mm. 
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Figure 6.5  Microscopic image of the 45°-TFG taken under a 100 × oil objective lens. 

As discussed before, the 45°-TFG can be recognized as an ideal in-fibre polarizer. Thus, 

polarization dependence loss (PDL) or the polarization extinction ratio (PER) is the important 

parameter of a 45°-TFG. The PDL is a measure of the peak-to-peak difference in transmission of 

an optical component or the ratio of the maximum and the minimum transmission of a system 

with respect to all possible states of polarization. The PDL of the mid-IR 45°-TFG was measured 

by using the polarization scanning technique. The typical experimental setup is shown in Figure 

6.6 (a). In this setup, the light source is a super continuum source which can generate light from 

450nm to 2400nm. The polarizer (Thorlabs LPNIRA050-MP) is a bulk component which has a 

high PDL of >50 dB at a range from 1550nm to 2450nm. To measure the PDL of the 45°-TFG at 

a specific wavelength, the central wavelength of optical spectrum analyser (Yokogawa AQ6375) 

was set at the measuring wavelength, and the span was set to zero. The maximum and minimum 

transmission through the 45°-TFG can directly be measured by adjusting the polarization 

controller. Figure 6.6 (b) depicts the simulated and measured PDL of the 45°-TFG within the 

range from 1600nm to 2400nm. The simulation method we used is volume current method, of 

which the details have been reported in [116]. In the simulation, the fibre core radius is set as 

4.5μm, the period of grating as 0.990μm and the length of grating as 24mm. The refractive index 

modulation induced by the UV light was set to be 0.0017. It is observed that the simulation result 

agrees well with the experimental result as shown in Figure 6.6(b). The measured bandwidth of 

PDL is broader than 400 nm and the PDL is larger than 12dB from 1850 nm to 2150 nm. Although 

the maximum PDL of the 45°-TFG at 2000nm is 24dB, which  is still low compared to the 
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commercial in-line polarizers at 1550nm (40dB), it is comparable with current commercial in-

line polarizers at 2000nm (25dB). Moreover, the PDL (PER) of the 45°-TFG could be further 

increased by extending the length of grating and optimizing the UV scanning power and speed. 

This 3dB bandwidth of the mid-IR 45°-TFG is 532nm. According the equation 4.8, the 3dB 

bandwidth becomes broader when the operating wavelength moves to the longer wavelength. 

Using the same setup as shown in Figure 4.12, we also measured the insertion loss of the 45°-

TFG, which was about ~0.6 dB within the range of 1850 nm to 2150nm. 

 

 

Figure 6.6 (a) Experimental setup of PDL measurement of 45°-TFG and (b) measured PDL at the 

range from 1800 nm to 2200 nm. 
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6.2.3 Characteristics and fabrication of LPGs in mid-IR wavelength range 

The mid-IR LPGs of periods from 200m to 450m were written in hydrogen loaded Corning 

SMF-28 fiber by using the same 244 nm UV laser and point-by-point technique. The UV beam 

scanning speed was selected in the range of 0.1 mm/s to 0.3 mm/s and the duty cycles were 50%. 

Using the supercontinuum broadband light source and an optical spectrum analyzer with spectral 

range extended to 2.4 m (Yokogawa AQ 6375), the transmission spectra of fabricated mid-IR 

LPGs were measured and Figure 6.7 shows the transmission spectrum of an LPG with a length of 

20mm and a period of 200μm. From the figure we can clearly see that there are three broad 

attenuation resonant peaks distributed from near-IR (1200nm) to mid-IR (2400nm) range, and two 

of them are at 2m region. The transmission loss peak at 2000 nm is relatively weak and the one 

at mid-IR 2183 nm (mode order m=9) exhibits a loss of 8.2 dB. The bandwidth of this resonance 

is >10nm, much broader than that of an FBG. LPGs are transmission loss type devices which have 

been employed for a range of applications in optical fiber communications and sensing, and these 

LPGs could translate the applications to mid-IR range.  

 

Figure 6.7  Transmission spectrum of an LPG with 200μm period UV-inscribed in SMF-28 fibre 

by the point-by-point method. 
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The light coupling from the fundamental core mode to the cladding modes of LPG generates 

multiple resonant peaks, which are intrinsically sensitive to the changes in environment, such as 

the temperature and the surrounding medium refractive index (RI). Similar to the FBG temperature 

sensing experiment, the mid-IR LPGs were characterized for their thermal response using the same 

experimental set-up shown in Figure 3.9.  

 

Figure 6.8  Comparison of the thermal response for two different resonant peaks of the LPG. 

We have examined the thermal responses for two different resonant peaks of the LPG with the 

grating period of 200μm. The temperature was elevated from 20°C to 80°C with an increment of 

10°C, and the experimental results of the wavelength shift are plotted in Figure 6.8. It is clear that 

the longer resonant wavelength corresponding to the higher order cladding mode has higher 

temperature sensitivity. The temperature sensitivity of the resonant peak at mid-IR 2100nm 

reaches to 112.5 pm/°C, which is over 50% larger than that of only 73.2 pm/°C at the 1200nm 

resonant peak. 

Furthermore, changes of the surrounding medium RI will also affect the wavelength shift of the 

resonant peaks of the mid-IR LPG. To evaluate the surrounding medium RI sensing capability of 
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the mid-IR LPGs, we applied a series of refractive index oil (from Cargille laboratory) with 

different RIs from 1.3 to 1.44 to the LPG, and measured its spectral evolution using the 

experimental setup shown in Figure 3.30.  The refractive index oil was placed on a flat glass 

substrate, which can be raised by a vertical micrometer to submerge the grating into the refractive 

index oil without imposing any force to the grating. Once the grating was surrounded by the 

refractive index oil, the shift of wavelength was almost instantaneously observed on the OSA. 

After each index oil measurement, the grating was rinsed with methanol to remove the residual oil 

till the original spectrum in air was restored. 

 

Figure 6.9 Refractive index sensing results for 20 μm LPG with 2 different resonant peaks at near-

IR and mid-IR regions respectively. 

Figure 6.9 plots the wavelength shifts of the near-IR and mid-IR resonant peaks for the LPG with 

the grating period of 200μm when subjected to 15 refractive index gels. Unlike the temperature 

response, the shorter wavelength resonant peak of the LPG corresponding to lower order cladding 

mode is more sensitive to RI change of the surrounding medium than the longer wavelength 

resonant peak. Quantitatively, the RI sensitivity of the shorter wavelength resonant peak of the 

LPG (at 1200nm) is about 198.72nm/RIU which is almost twice that at longer wavelength 

(2100nm) which is 107.52nm/RIU. 



   

185 
 

As we discussed in Chapter 3, the SRI sensitivity of an LPG could be improved by inscription on 

the SM1500 (4.2/80) fiber (from Fibercore company) with 40μm cladding radius. The LPGs of 

200m period were UV-inscribed in this thin cladding fiber and the typical transmission spectrum 

is shown in Figure 6.10, where we see dual resonance peaks (peak1 and peak2) in 1500nm to 

1800nm region and a single resonance peak (peak 3) near 2200nm. Note, there is a dip near 

2100nm which comes from the supercontinuum light source. With a selected relatively short LPG 

period (normally smaller than 200μm) on standard SMF-28 fibre, the light coupling between the 

fundamental core mode to cladding modes close to dispersion-turning-point leads to dual-peak 

resonances in the transmission spectrum [150]. Because thinner cladding fiber is used, we see 

dual-peaks occurred in 200m period LPGs. However, when the grating period increased to 

300m, we still see dual-peak resonance, but occurred at longer wavelength region as shown in 

Figure 6.10.  

 

Figure 6.10  Transmission spectrum of an LPG of 300μm period UV-inscribed in SM1500 (4.2/80) 

fibre showing dual-peak feature and one of the dual peaks is close to mid-IR range.  

By applying phase matching condition in equation 2.38,  a set of phase matching curves are 

generated and plotted in Figure 6.11 for 9 LPG cladding modes covering a broad wavelength 

range from 1μm to 2.4μm: with mode order m = 1 to 9.  The dispersion turning point feature is 
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apparent on the curves as we see that the slope direction of the phase curve changes from negative 

(d𝜆/dΛ<0) to positive (d𝜆/dΛ>0). From Figure 6.11, for a given LPG period (Λ=300µm), one 

cladding mode in the positive and the other in the negative dispersion region could meet the phase-

match condition simultaneously. As a result, the conjugate cladding modes will be experimentally 

observed as dual-peak LPGs. 

 

Figure 6.11 Simulated resonance wavelength versus the period of LPG on SM1500 (4.2/80) fibre 

with cladding modes for different orders: m = 1 to 9 (from right to left). 

Theoretically, each cladding mode exhibits a turning point, providing that the observing 

wavelength range is sufficiently large. At each turning point, |dλres/dΛ|→∞; thus, from Equation 

3.12, we find that |γ|→∞ and that the turning points determine the condition of maximum 

sensitivity for each cladding mode. Therefore, we may design dual-peak LPGs for achieving the 

high sensitivity.  The dual-peak property of the mid-IR LPGs UV-inscribed in thin cladding fiber 

was evaluated by the temperature sensing experiment and the results are shown in Figure 6.12. 
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Figure 6.12  Temperature response of an LPG with 300μm period UV-inscribed in thin cladding 

SM1500 (4.2/80) fibre. 

Figure 6.12 shows the measured thermal response of three peaks (including dual peaks) of an LPG 

with 300μm period over the temperature range 20°–80°C. During the experiment, we clearly saw 

the dual peaks were moving to opposite direction with increasing temperature, similar to the dual-

peak LPGs made in normal SMF-28 fiber [106]. As shown in Figure 6.11, at 80°C, two resonance 

dual peaks separated by 85.2 nm (red shift +36.5 nm by the peak2 at 1800nm, blue shift −48.7 nm 

by the peak1 at 1600nm). The temperature sensitivities are then -814.3 pm/°C and 601.6 pm/°C 

for peak1 and peak 2, respectively. The wavelength shift responding to temperature changing (-

399.7 pm/°C) for the single peak at 2000nm is about half of the dual peaks, but still  higher than 

the LPG made in normal cladding SMF-28 fiber in the same wavelength range. 
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Figure 6.13  RI respond to a LPG with 300 μm period UV-inscribed in SM1500 (4.2/80) fibre. 

We further investigated the RI sensitivity of the 300m LPG UV-inscribed in thin cladding fiber 

by applying a set of index gels to the grating. The spectrum was measured for each RI value for 

all three peaks and the RI induced wavelength shifts are plotted in Figure 6.13. Over the range of 

RI from 1.305 to 1.444, for the dual peaks, the peak1 is blue shifted, whereas the peak2 is red 

shifted, and the total wavelength shifts of peak1, peak2 and peak3 are -152.42 nm, 296.2nm, and 

25.79nm respectively. It is particularly noteworthy that the dual-peak resonances both showed 

ultrahigh RI sensitivities of -1771nm/RIU and +3722nm/RIU in the high RI range (1.404 to 1.444), 

respectively. The single peak at 2200nm has a measured RI sensitivity of -58.08 nm/RIU, which 

is more than 30 times smaller than the dual peak. 
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6.3 All-fibre thulium doped fibre laser using mid-IR FBGs as mirror and 

out-coupler  

6.3.1 Introduction 

Laser sources located in the eye-safe 2µm region and  in the atmospheric transmission window 

between 2.05 µm and 2.3µm have many significant applications in medical examination, 

atmospheric lidar measurement, remote sensing, environment monitoring, etc [151, 152]. 

Compared to conventional lasers, fibre lasers have advantages of high operation efficiency, 

excellent heat-dissipating capability, good beam quality and compact and simple formation. 

Currently, the most common fibre laser technology of realizing 2-3µm emission is based on the 

direct energy level transitions 3H6 →3H4  from Tm3+ and 5I7 →5I8 from Ho3+. A number of Tm3+ 

doped, Ho3+-doped and Tm3+-Ho3+ co-doped silica and fluoride fibre lasers have been 

reported[153-157].  

In this section, we will demonstrate a broadband Tm3+-doped silica fibre amplified spontaneous 

emission (ASE) source with up to 520 nm spanning from 1700 nm to 2220 nm. Based on the 

ultra-broad ASE spectrum, an all-fibre Tm3+-doped laser can be realized by utilizing either a high 

reflective (HR) FBG-fibre end based cavity or an HR FBG- low reflective (LR) FBG based cavity. 

For this laser, we have investigated the wavelength selectable range for lasing, the relative 

thresholds, efficiencies and line width of the laser. Then, a six wavelengths switchable laser from 

1925nm and 2200nm employing a mid-IRFBG array in the cavity is discussed. Finally, a thulium-

doped fibre laser employing a 45°-TFG and Sagnac loop mirrors is demonstrated, which can 

operate with tunable single-wavelength lasing around 2000nm. 
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6.3.2 ASE source at 2m range 

The schematic diagrams of two Tm3+-doped silica laser systems exploiting the in-fiber reflection 

function of mid-IR FBGs are shown in Figure 6.13, with (a) using one FBG as high reflectivity 

(HR) mirror and the 0-cleaved fiber end as an output coupler and (b) using one HR FBG as 

mirror and one low reflectivity (LR) FBG as an output coupler. The active fiber used in these two 

systems is a 11-meter double cladding Tm3+-doped fiber (Nufern, SM-TDF-10P/130-HE) with an 

octagonal shaped pump core of a diameter 130µm across the circular cross-section and a 

numerical aperture (NA) of 0.46. The fiber has a 10µm core diameter with a reduced NA of 0.15 

by a specific pedestal around the core. The Tm3+ dopant concentration in the fiber core is about 

5wt.% and the measured absorption coefficient at 793 nm is 3.0 dB/m. Two 793nm diode lasers 

(Lumics, German) with 105/125 µm core and cladding parameter multimode fiber pigtail were 

used as the pump source and the light was coupled into the double cladding Tm3+-doped fiber 

through a (2+1)×1 pump combiner (ITF, USA). The maximum launched pump power was 8W. 

At the output end, either the fiber end facet (3.5% Fresnel reflection) (Figure 6.14(a)) or LR FBG 

(Figure 6.14(b)) was employed to provide laser feedback and also act as the output coupler. A 

number of UV-inscribed FBGs with the Bragg reflection wavelengths between 1900nm and 

2200nm at a total span of 25nm were used in the laser system for multi-wavelength output 

operation. The HR FBG was designed with reflectivity of > 95% and a spectral FWHM of <0.4 

nm, and the LR FBG was designed with reflectivity of ~50% and a spectral FWHM of <0.4 nm. 

Because the threshold for Fresnel-reflection-based cavity might be lower than that for the FBG-

based cavity at some wavelengths of small gain, the fiber end at the FBG side was angle cleaved 

at 8° to reduce the reflection in order to avoid the parasitic lasing. At the output side, a germanium 

window was employed to remove the residual pump light. 
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Figure 6.14 Experimental setup of the all-fibre Tm3+-doped ASE sources based on (a) backward 

and (b) forward output. 

Figure 6.15 shows the backward and forward ASE spectra measured using an optical spectrum 

analyzer (Yokogawa AQ 6375) at the launched pump power of 2W, 4W, 6W and 8W, respectively, 

and the measured emission and absorption cross-sections between 1700nm and 2100nm extracted 

from Ref. [158] were also given. It is observed that the apophysis region of both backward and 

forward ASE envelopes increased with raised pump power, but the peak remained essentially 

unchanged at the regime around 2000nm. The sharp fall of ASE envelope towards the short 

wavelength direction can be attributed to the strengthened ground state re-absorption induced by 

the increased absorption cross-section at shorter wavelength range. The similar fall of ASE 

envelopes towards the long wavelength direction was observed as well, resulting from the reduced 

emission cross-section and increased background loss with increasing wavelength. On the other 

hand, the optical spectrum without a spike at high launched pump power of 8W suggests that the 

laser operation mode was successfully suppressed with efficient angle cleaving at the fibre end. 

The backward ASE spectrum of over 520nm span from 1700nm to 2220nm with an FWHM 

bandwidth of 60nm was achieved at the maximum launched pump power of 8W, which is the 
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reported longest wavelength edge from the ASE of Tm3+-doped fibres. Note that there were 

noticeable increases in the ASE spectra around 1650nm, which were clarified as ghost spectra 

induced by stray light of monchromator usually occurring at the shorter wavelength side of 400nm 

away from the original spectra in the spectrum analyser AQ6375 (this has been confirmed by 

Yokogawa). The stray light has no impact on the original signal and can be ignored. Besides, 

absorption lines caused by water vapor in the wavelength range from 1800nm to 1950nm could 

be clearly seen in the spectrum. Compared to the backward ASE, the forward ASE had a similar 

long wavelength edge of 2200nm but exhibited a narrower spectrum range spanning from 1945nm 

to 2220nm with a FWHM of 35 nm at the launched pump power of 8W as a result of its stronger 

re-absorption at the un-pumping end [159]. The red-shift of the long wavelength edge in our work 

can be ascribed to the comparatively long active fibre (11 m) and large rare earth ions 

concentration (5 wt. %). Larger Tm3+ concentration may enable more ground state ions to be 

involved in the re-absorption process per unit length, and thus stronger total re-absorption can be 

achieved by using longer fibre.  

 

Figure 6.15 Measured backward and forward ASE emission spectra at different launched pump 

powers, and the absorption and emission cross-sections of Tm3+-doped fibre extracted  
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In order to investigate the influence of fibre length on the ASE spectrum, we also measured the 

backward ASE spectrum using shorter fibre lengths of 5.0m and 8.0m and longer fibre of 13.0m 

in the system, respectively at the maximum launched pump power of 8W, as show in Figure 6.16. 

Compared to the system using 11.0 m fibre, the shorten fibre system exhibited shorter centre 

wavelength and slightly narrower FWHM bandwidth for both backward and forward ASE. For 

the system using 5.0m fibre, the centre wavelength blue shifted by 13.2nm and 23.8nm for the 

backward and forward ASE, respectively. However, the ASE centre wavelength and FWHM 

bandwidth of the system using 13.0m fibre were almost unchanged compared to the system using 

11.0m fibre. This suggests that the fibre length of 11.0m was enough to realize the ASE with the 

longest edge around 2.2μm region. 

  

Figure 6.16  Backward ASE spectra at different fibre lengths of 13.0 m, 11.0 m, 8.0 m and 5.0 m 

under launched pump power of 8 W. 
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6.3.3 Wavelength selectable range based on FBGs 

The ASE towards longer wavelength range shown above may provide the possibility of laser 

operation in the mid-IR 2m region. We then investigated Tm3+-doped fibre laser and the laser 

configurations are shown in Figure 6.17 (a) and (b), where the low reflectivity (LR) FBG and 

cleaved fibre end are used as the output couplers, respectively. In order to compare with previous 

ASE measurement which identifies the lasing wavelength limit beyond 2150 nm, we used 11.0m 

Tm3+-doped fibre in the laser cavity. At the output end, either the fibre end facet (3.5% Fresnel 

reflection) (Figure 6.17 (a)] or LR FBG (Figure 6.17 (b)] was employed to provide laser feedback 

and also act as the output coupler. A number of FBGs were UV-inscribed with the Bragg 

reflection wavelengths between 1900nm and 2200nm at a span of 25 nm for the investigation. 

The HR FBG was designed with receptivity of > 95% and a spectral FWHM of <0.4 nm, and the 

LR FBG was designed with receptivity of 50% and a spectral FWHM of <0.4 nm. Because the 

threshold for Fresnel-reflection-based cavity might be lower than that for the FBG-based cavity 

at some wavelengths of small gain, the fibre end at the FBG side was angle cleaved at 8° to reduce 

the reflection in order to avoid the parasitic lasing. 

 

Figure 6.17  Experimental setup of Tm3+-doped silica fibre laser with counter-propagating scheme 

employing (a) ~3.5% reflectivity of cleaved fibre end and (b) ~50% low reflective (LR) FBG as 

output coupling reflectors. 
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By using the setup shown in Figure 6.17, the narrow width CW laser with selectable wavelength 

between 1975nm and 2150nm was achieved. Figure 6.18 shows the spectra of lasers centred at 

1974.7nm, 1997.5nm, 2026.2nm, 2056.8nm, 2074.3nm, 2102.4nm, 2125.7nm and 2151.02nm at 

the maximum pumping power of 8W measured in a large spectrum range of 400nm. 

 

Figure 6.18  Output spectra of Tm3+-doped fibre lasers at 400 nm spectrum range for cavity 

constructed by perpendicular cleaved fibre end and HR FBGs. 

The spectra of these mid-IR laser outputs were also measured in a 1.0nm range with a resolution 

of 0.02nm to investigate their spectrum characteristics, as shown in Figure 6.19. It was observed 

that the FWHM of laser lines were all narrower than 0.3nm suggesting the efficient spectral 

confining ability of the HR FBGs. Note that the spectrum gradually tended to be compressed and 

smoothed with increasing output wavelength owing to the weakened ground state re-absorption 

process at longer wavelength region. At the shorter wavelength emission region, especially below 

2000nm, the spectrum was broader and exhibited more amplitude fluctuation as a result of strong 

ground state re-absorption and re-emission processes. After the center wavelength exceeding 

2100nm, the spectrum width was essentially unchanged suggesting that the laser was almost not 

influenced by the re-absorption owing to the fairly low absorption cross-section of less than 0.1 

× 10−25m2. 
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Figure 6.19 Output spectra of Tm3+-doped fibre laser for the cavity constructed by perpendicularly 

cleaved fibre end and HR FBGs with different centre wavelengths. The scanning range and 

resolution were 1 nm and 0.02nm, respectively. 

In order to investigate the laser wavelength operation limit of our Tm3+-doped silica fibre, higher 

feedback was added by employing LR FBG to replace the previously cleaved fibre end as the 

output coupler, as shown in Figure 6.17 (b). The short and long operation wavelength edges were 

then extended to 1925.6nm and 2198.4nm respectively. Figure 6.20 shows the measured spectra 

across 400nm spectrum range at the maximum pumping power of 8.0 W. 
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Figure 6.20 Output spectra of Tm3+-doped fibre laser at 400 nm spectrum range for the cavity 

constructed by LR FBG and HR FBG. From left to right these centre wavelengths are at 1925.6nm, 

1951.2nm, 2174.9nm, and 2198.4nm, respectively. The scanning resolution was set at 0.5 nm. 

The spectra of the lasers under each LR FBG at a narrow scanning range of 1.0nm were also 

measured at the maximum pumping power of 8W to examine the detailed spectrum characteristics 

as shown in Figure 6.21 with centre wavelengths of 1925.6nm, 1951.2nm, 2174.9nm and 

2198.4nm, respectively. The operation wavelength of 2198.4nm is also the longest wavelength 

produced from 3F4→3H6 transition of Tm3+ ions so far being demonstrated. Similar to the results 

as shown in Figure 6.x, the laser at 1925.6nm and 1951.2 nm still exhibited spectrum fluctuation 

and broadening, whereas the laser at 2174.9nm and 2198.4nm showed fixed spectrum width of 

0.8nm and relatively smooth and narrow spectrum. 
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Figure 6.21 Output spectra of Tm3+-doped fibre laser for cavity constructed by LR FBGs and HR 

FBGs with different centre wavelengths. The scanning range and resolution were 1 nm and 0.02 

nm, respectively. 

6.3.4 Wavelength switchable operation based on an FBG array 

It is well known that there are many methods of tuning or switching the wavelength of a fiber 

laser such as strain tuning an FBG, fiber etalons, external diffraction grating, and fiber coupled 

acousto-optic tunable filters and so on. By employing an FBG array in the laser cavity and 

inducing bend loss between adjacent FBGs in the array, the experiment setup of a six wavelengths 

switchable Tm3+- doped fiber laser was demonstrated, as shown in Figure 6. 22. 

 

Figure 6.22 Experimental setup of multi-wavelength switchable Tm3+-doped silica fibre laser. 
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An FBG array including 6 mid-IR FBGs centred at 1997nm, 2025nm, 2057nm, 2075nm, 2103nm 

and 2125nm, respectively, were fabricated and their transmission spectrum is shown in Figure 

6.23. It is observed that the emission cross-section decreases with the wavelength, however, the 

gain and threshold are not coincidence with the emission cross-section. We arranged these FBGs 

in descending order, as 1997nm (FBG1), 2125nm (FBG2), 2025nm (FBG3), 2103nm (FBG4), 

2075nm (FBG5) and 2057nm (FBG6). Then one end of the array was spliced to the Tm3+-doped 

fibre with the opposite end cleaved at 8 ° while the other end of the cavity was cleaved 

perpendicularly to provide 3.6% Fresnel reflection (FR) for all wavelengths. The pigtails between 

adjacent FBGs in the array were looped around two tubular mounts at a radius of 5cm. With this 

setup, the wavelength can be switched freely by increasing the distance between the two tubular 

mounts after the selected FBG to induce the bend loss for the suppression on all other laser modes 

relevant to rest FBGs. Through mode competition, the laser mode relevant to the selected FBG 

can win owing to its lower threshold. Figure 6.24 shows the measured spectra for the outputs at 

six mid-IR wavelengths, clearly demonstrated the wavelength switchable principle. 

 

Figure 6.23 Transmission spectrum of the FBG array. 
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Figure 6.24  Output spectra of the multi-wavelength switchable Tm3+-doped fibre laser. 

6.3.5 All-fibre tuneable single-polarization fibre laser based on 45°-TFG at 2μm 

region 

We finally investigated an all-fibre tuneable single-polarization fibre laser at 2m region by 

exploring an intra-cavity polarizer based on a 45-TFG with central response around 2m. The 

experimental setup of the tuneable single-polarization fibre laser based on 45°-TFG is illustrated 

in Figure. 6.25. As show in the figure, a 6m length of TDF (from Nufern, SM-TDF-10P/130-HE; 

absorption is 3 dB/m at 793nm) is inserted into the laser cavity and pumped by 793 nm laser diode 

(Lumics, German), which can provide up to 8W pump power through a 980/1550 pump combiner 

(ITF, USA). Two Sagnac loop mirrors are located at the both ends of the cavity, which is formed 

by 70:30 coupler and 50:50 coupler respectively.  The 50: 50 coupler is used as the output port of 

the fibre laser, and the two other sides form a loop to ensure a linear cavity of this laser. A 45°-

TFG is inserted between the PC and the coupler to achieve single-polarization oscillation. A 

polarization controller (PC) is used to adjust the cavity polarization. 
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Figure 6.25  The configuration of linear cavity fibre laser with an intra-cavity 45-TFG as a 

polariser. 

Due to the comb filtering of the Sagnac loop mirror, the multi-wavelength laser may be realized 

by adjusting the PC. However, the multi-wavelength laser output cannot maintain operation in a 

stable state, the cause to the instability may due to mode competition in the cavity.   Based on 

reference [114], while introducing an intra-cavity polarizer into a fibre laser, wide wavelength 

tunability may be achieved by varying the fibre birefringence with an in-line PC.  In our laser 

system, the 45°-TFG is employed as an in-fibre polariser in the cavity. Therefore, by adjusting 

the PC in the laser cavity, the lasing wavelength tuning is possible to achieve. Figure 6.26 shows 

that the lasing wavelength can be tuned in the range of about 30nm from 1988nm to 2018nm.    

 

Figure 6.26 Tunable single-wavelength output between 1988nm and 2018nm from the all-fibre 

laser based on a mid-IR 45-TFG and two Sagnac loop mirrors. 



   

202 
 

One unique advantage of the 45°-TFG based wavelength tuneable fibre laser is the laser output at 

single polarization with a high polarization dependent loss (PDL). This has been shown in 

1550nm fibre lasers [117]. Figure 6.27 shows the PDL of the laser output at around 2000nm, 

giving a value of 34.8dB (i.e. the degree of polarization is more than 99.9%), indicating the output 

of the laser is almost single polarization. 

 

Figure 6.27 The PDL results of 45°-TFG based mid-IR fibre laser measured at ~2000nm. 
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6.4 Conclusions  

We have successfully UV-inscribed FBGs, LPGs, and 45°-TFGs with spectral responses at mid-

IR wavelength range on the standard telecom single mode SMF-28, mid-IR single mode SMF-

2000 and thin cladding SM1500 fibers. Temperature and strain sensitivity characteristics for the 

mid-IR FBGs, temperature and refractive index response for mid-IR LPGs and polarization 

property for mid-IR 45°-TFGs have been investigated.  

Secondly, we presented the application of mid-IR fibre gratings in selectable multi-wavelength 

CW and Tm3+-doped tuneable fibre lasers. In the former, the laser operation at eight individual 

wavelengths in the range from 1925.6nm to 2198.4nm by using LR and HR FBGs was 

successfully demonstrated, and in the later, we have proposed and demonstrated a tuneable linear 

cavity fibre laser incorporating a 45-TFG and Sagnac loop mirrors. By adjusting the PC in the 

laser cavity, the reported fibre laser can operate at the mode of tuneable single-wavelength lasing 

with a wavelength tuning range of 30nm from 1988nm to 2018nm. We have clearly demonstrated 

the single polarization operation of this mid-IR laser with polarization extinction ratio as high as 

34.8dB, showing the degree of polarization is about 99.9%. 
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7.1 Conclusions 

In this thesis, a systematic investigation on the fabrication, characterisation and application of 

different types of optical fibre gratings (FBGs, LPGs and TFGs) with operating wavelength cover 

from near- to mid- IR range is presented. The main achievements can be summarized as: different 

types of near–IR optical fibre grating fabricated in normal telecom fibre and special designed 

fibre; high PDL 45º-TFGs based in-fibre polarizer and the applications on the single polarisation 

and mode locking fibre laser system; highly sensitive loading sensor and biosensor based on ex-

TFGs with low thermal cross-sensitivity; UV-inscribed optical fibre gratings in mid-IR range and 

their applications as sensor and laser. 

The thesis started with the literature review of fibre grating history and photosensitivity 

mechanism in optical fibres. Three main reported photosensitivity enhancement techniques have 

been brief by discussed. An introduction of mode coupling theory and phase match conditions for 

different type of fibre gratings is included in this thesis as well.  

Three UV-inscription techniques, including two-beam holographic, phase mask scanning, and 

point-by-point, have been employed to fabricate the near- and mid-IR optical fibre gratings.  FBG 

and TFG inscription techniques are mainly using the holographic and phase mask method, based 

on simple exposure to UV radiation periodically along a part of fibre. The phase mask inscription 

technique has been proved through varieties of experiments to be the efficient one. The reasons 

for this are good stability and the ability to write a quality grating structure. However, there are a 

few disadvantages to this fabrication technique including: expensive phase mask and different 

wavelengths needing different phase masks. The point-by-point is the most efficient and flexible 

method for inscribing LPGs as the period can be selected arbitrarily by simple control the UV 

exposure with a programmable shutter.  
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As for 45º-TFGs, the fabrication and characterisation have been done with the gratings inscribed 

in hydrogen-loaded SMF-28 fibres and PM fibres by using a tilted phase mask. One of the most 

important achievements is 45°-TFGs with intrinsically high PDL can be employed as ideal in-

fibre polarizers. The PDL of a 45-TFG is linearly proportional to the grating length, as the 

experiment results have shown the PDL increases with the grating length at a rate of almost 0.986 

dB/mm. For an idea in-fibre linear polarizer, 45º-TFG should be written into the PM fibre along 

its principal axis, which will maintain its state of polarization in the fibre. The experiment results 

clearly show the PDL of the 45°-TFG inscribed in PM fibre along the low-axis (30dB) is higher 

than along the fast axis (18dB). The 45°-TFG is also a tilted grating for side-tapping power 

detection due to its radiation light coupled out to the fibre perpendicularly. The power distribution 

over a 45°-TFG is the highest at the start position of the grating and decreasing exponentially 

along the grating length.  Incorporating a 45°-TFG in a fibre ring laser cavity has shown 

significantly increased DOP of laser output to 99%, which clearly indicates that the output of the 

laser is highly polarized and almost single polarization.  A 45-TFG based single-polarization 

fibre laser has been demonstrated for loading sensing. The achieved loading sensitivities are 0.033 

/ (kg·m−1) and 0.042 / (kg·m−1) for the two different interaction lengths. The 45º-TFG has also be 

applied in the area of nonlinear photonics, which facilitates NPR based mode locking at 1.55μm 

region. The pulsed laser output power is at a repetition rate of 10.34MHz with 12mW output 

power. By using 45º-TFGs in PM fibre, the all fibre Lyot filter has been achieved, which has both 

polarizing and filtering function. The FSR and bandwidth of filter is inversely related to the length 

of PM fibre cavity.  

The research work has revealed that ex-TFGs will couple the light from the core mode to the 

forward propagating cladding modes, which is similar to LPGs except the coupling to high order 

cladding modes. Although ex-TFGs have a similar property as conventional LPGs, they could not 

be fabricated by the point-by-point technique. Ex-TFGs reported in this thesis were fabricated by 

an amplitude mask with 6.6μm period. For bio-sensing applications, a high-Q  glucose 

concentration detection biosensor has been developed based on an 81°-TFG, demonstrating the 
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glucose detection of the physiological range (0~3.0mg/ml) of human being. The GOD 

immobilization has been achieved by modifying the 81°-TFG surface with APTES. Compared to 

the previously reported glucose sensor based on the GOD-immobilized LPG, the 81°-TFG based 

sensor has shown a high RI sensitivity (168nm/RIU), lower thermal cross-talk effect (5.30pm/°C), 

better linearity and higher Q-factor (325) in sensing response. Finally for another sensing 

application, an all-fibre loading sensor based on a hybrid 45°- and 81°-TFG structure was 

demonstrated. Such a sensor system removes the use of the commercial polarizer and polarization 

controller, making the sensor system more simple and compact.  

FBGs, LPGs and 45°-TFGs in mid-IR wavelength range have been successfully UV-inscribed on 

the standard telecom single mode SMF-28 and mid-IR single mode SM-2000 fibres. Temperature 

and strain sensitivity characteristics for the mid-IR FBGs, temperature and refractive index 

response for mid-IR LPGs and polarization property for mid-IR 45-TFGs have been investigated. 

It is found that the SRI sensitivity is significantly improved by UV-inscribing LPG into the fibre 

with smaller cladding size. For the first time, a dual-peak LPG sensor has been produced in mid-

IR range showing ultra-high SRI sensitivity. This design has made the coupled cladding modes 

very close to the dispersion-turning-point and small cladding size (about 40μm radius) has then 

been applied to shift the coupled modes even closer to the most sensitive region (dispersion-

turning-point). Even large period (300μm) LPG written on small cladding SM1500 (4.2/80) fibre 

is able to generate the dual resonance peaks in 1500nm to 1800nm region. The SRI sensitivity has 

been increased by 40 times (+3722nm/RIU in the high RI range from1.404 to 1.444), compared 

to the same LPG on the fibre with 62.5µm cladding (82.3nm/RIU). Finally, we presented the 

application of mid-IR fibre gratings in selectable multi-wavelength CW and mode locking Tm3+-

doped fibre lasers. In the former, the laser operation at eight individual wavelengths in the range 

from 1925.6nm to 2198.4nm by using mid-IR LR and HR FBGs was successfully demonstrated 

and in the latter, a tuneable linear cavity fibre laser incorporating a 45°-TFG and Sagnac loop 

mirrors have been proposed and demonstrated.  
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7.2 The future works 

7.2.1 Optical fibre gratings fabrications for mid-IR (wavelength over 2µm)  

Recently, fibre lasers and optical fibre devices operating at 2μm and 3μm region of the mid-IR 

spectrum have attracted growing interests owing to their applications potentially in defence, 

health and the environment. Due to high transmission loss beyond 2μm, we commonly use 

fluoride (ZBLAN) fibre as mid-IR rare earth doped fibres, which have loss as low as 3dB/km at 

2.6µm [160]. Unfortunately, the optical fibre gratings cannot be written in ZBLAN fibre by UV 

exposure due to the non-photo sensitivity of undoped ZBLAN fibres. Thus, permanent optical 

grating were normally photo-induced in undoped ZBLAN fibres using femtosecond (fs) laser to 

physical modify the fibre structure [161]. However, the fibre structure damage by fs inscription 

also involves new transmission loss into the grating device comparing the UV-inscribed gratings. 

So far, some scientists [162] doped Ce3+ into ZBLAN fibre to achieve the photosensitivity and 

fabricate the highly reflective FBGs at 2μm in fibre core using a 248-nm excimer laser. For future 

work, we could propose to fabricate the different types of optical fibre grating (FBGs, LPGs and 

TFGs) over 2μm on Ce3+ doped ZBLAN fibre by using two beam holographic and phase mask 

technique, respectively. 

7.2.2 All fibre comb-like multi-wavelength mode-locked laser  

As discussed in Chapter 4, 45°-TFG based Lyot filter exhibits comb-like transmission spectra 

with sinusoidal shape, for which the FSR and bandwidth could be designed by using different 

length PM cavity. We have observed in the experiment that the Lyot filter with 100m PM fibre 

cavity has 57.4pm FSR and 28.7pm bandwidth, and the PDL is more than 15dB. Such a small 

FSR and bandwidth filter could be used in the laser system to achieve high density comb-like 

multi-wavelength laser. Moreover, the Lyot filter can be applied in the pulse laser system. Dr. Z. 

Yan [163] has demonstrated an erbium doped fibre (EDF) ring laser achieving soliton mode 

locking by the use of an intra-cavity Lyot filter. In his experiment, the Lyot filter has employed 
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as a polarised component suppressing sidebands of soliton pulse.  Here, we propose an all-fibre 

mode-locked erbium-doped fibre laser based on nonlinear loop mirror (NOLM) with a 100 metres 

intra-cavity Lyot filter (see Figure 7.1). According to above discussion, the laser system in Figure 

7.1 can generate multi-wavelength mode-locked laser output. The long PM fibre length of the 

Lyot filter also ensures enough nonlinear phase shift difference for stable mode-locking through 

the NOLM.  
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Figure 7.1 Schematic of the “figure-of-eight” mode-locked double-clad TDF laser based on 

NOLM incorporating an all fibre Lyot filter. 

7.2.3 All fibre mode-locked laser for mid-IR wavelength range 

A number of passively mode-locked lasers over 2μm have been already reported [164-170], which 

can be roughly classified into two major categories depending on the mode-locking mechanism. 

The first group can be defined as material saturable absorber (SA) based laser. The second is 

referred as nonlinear switching based laser, in which the transmission or reflectivity property is 

dependent on the nonlinear phase shift induced by nonlinear polarization evolution (NPE), 

nonlinear amplifying loop mirror (NALM) or nonlinear optical loop mirror (NOLM), all 

exhibiting the capability of pulse self-shaping that is equivalent to a real saturable absorber. 

Here, we propose a new solution for thulium-doped all-fibre mode-locked laser based on NPR 

and optical fibre gratings. Figure 7.2 shows experimental configuration of a linear cavity Fabry-

Perot system capable of generating soliton pulses with over 2μm wavelength. The advantage of 

this laser system compared to existing self-starting fibre soliton lasers in mid-IR wavelength range 
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is that an optical isolator (an expensive component) is not required. The rep1acement of the two 

mirrors with fibre reflection gratings (FBG and CFBG) and in-fibre polarising grating (45°-TFG) 

would make this configuration a truly all-fibre device. The system should be able to operate in 

the femtosecond short pulse regime by the adjustment of the dispersion of the laser cavity. 

combiner

 output

PC 1

793 nm 

Pump 6 mTDF

45°-TFG

PC 2CFBG FBG

Figure 7.2  experimental configuration of linear cavity Fabry-Perot system capable of generating 

soliton pulses for mid-IR wavelength range. 
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