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Summary

The primary theme of this thesis was to investigate in vivo ciliary muscle morphology in
refractive error, and how ciliary muscle parameters are linked with accommodative function
in a young adult population. Anterior segment optical coherence tomography was utilised for
all ciliary muscle image acquisition to examine morphological differences between eyes.

High levels of inter-ocular ciliary muscle symmetry were shown in emmetropes and myopes.
Whilst the myopic ciliary muscle was longer and thicker than in emmetropes for both eyes,
ciliary muscle length and thickness were linked with axial length in both cohorts. In amblyopes
and anisometropes, high levels of inter-eye ciliary muscle symmetry were observed. The
ciliary muscle in amblyopic eyes appear to grow in accordance with the axial length of the
non-amblyopic eye (P = 0.022, r?> = 0.438).

The possibility of diurnal variation in accommodative axial elongation and accommodative
error was explored in emmetropes and myopes. Daily stability in these accommodative
functions were shown, and between groups there was no difference in accommodative axial
elongation (P = 0.884) or accommodative error (P = 0.098). It was demonstrated that ciliary
muscle morphology is not linked with accommodative function, disputing the theory that the
thickened ciliary muscle has reduced contractility, which initiates hyperopic defocus in
myopigenesis.

In emmetropes, males had significantly longer ciliary muscle lengths (P = 0.031) and axial
length (P = 0.001) compared with females. Novel parameters to analyse the ciliary muscle
were investigated; both inner apical angle and ciliary muscle cross-sectional area measures
were linked to axial length, as were the area and apical angle. Both measures are highly
effective ciliary muscle analysis parameters which demonstrated high repeatability.

The studies detailed demonstrated normal ciliary muscle growth with ocular development in
myopia, and indicated that the ciliary muscle is not a crucial causative myopigenesis factor.
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Chapter 1
Ciliary muscle morphology in refractive error and accommodation
1.1 Introduction

Myopia, a major health concern is one of the foremost reasons for visual impairment
worldwide. The refractive condition can significantly hinder quality of life, ranging from being
a simple visual inconvenience with financial cost to sufferers, to a predisposition to sight
threatening pathological conditions such as glaucoma, cataract, retinal detachment and
chorioretinal degeneration (Lin et al., 2016 Woodman et al., 2011; Ghosh et al., 2014).

An increased lag of accommodation has been documented in myopic eyes, but there is
dispute as to whether this occurs before or after myopia onset (Gwiazda et al., 2005; Multti et
al., 2006). The ciliary body supplies the musculature for controlling accommodation and
significantly, recent findings have discovered a link between refractive error and ciliary muscle
morphology (Bailey et al., 2008; Sheppard and Davies, 2010b; Buckhurst et al., 2013; Pucker
et al., 2013). The findings are based on non- invasive imaging of the ciliary muscle through
the sclera, by utilising anterior segment optical coherence tomography (AS-OCT). Several
studies have reported thicker ciliary muscles in myopic eyes; it has been hypothesised that
an altered physiological response in myopes may be responsible for a thickened, hypertrophic
ciliary muscle which could display a reduced contractile response, resulting in the reported
accommodative lag (Bailey et al., 2008). Relating the altered ciliary muscle morphology to the
aetiology of myopia is unclear, though it has been suggested that the thickened ciliary muscle
may mechanically restrict equatorial expansion required for maintenance of emmetropia.
Whilst ciliary muscle morphology in terms of both length and thickness appears to be altered
in myopic eyes, there still remains ambiguity between findings of previous studies, and the

relevance of these observations is not fully understood.

Previous in vivo studies on human ciliary muscle have typically investigated only one eye,
and/ or just one aspect (e.g. just the temporal side; Bailey et al., 2008). As such, laterality and
symmetry of the ciliary muscle which could be relevant to refractive error development, is not
well understood. The authors of a relatively recent investigation have discovered asymmetry
in the laterality of globe profile in myopia development and the results indicate that binocular
growth may be synchronised by processes operating past the optic chiasm (Gilmartin et al.,
2013). It is not known whether ciliary muscle morphology displays similar properties between
the refractive error groups or if such asymmetry in myopia development may translate to the

ciliary muscle, and this matter is investigated for the first time.
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Accommodation is known to produce a temporary elongation of the eye and results indicate
that myopic eyes may demonstrate the largest expandability during, and immediately
following an accommodative task (Mallen et al., 2006; Woodman et al., 2010; Woodman et
al., 2012). Findings again denote that there may be discrepancies between myopes and
emmetropes in the morphology of the ciliary body, causing ciliary muscle forces to be
transmitted differentially to the choroid and sclera amid these different refractive groups and
thereby resulting in differences in the magnitude of transient elongation (Mallen et al., 2006;
Ghosh et al., 2014). Such information will help benefit our understanding of whether altered
ciliary muscle morphology impacts on this other element of accommodation.

Whilst information relating to ocular biometric data in amblyopia has been investigated, there
have been no reports of ciliary muscle morphology in amblyopia. Since amblyopic eyes have
a reduced visual output and accommodation (Ciuffreda and Rumpf, 1985; Maheshwatri et al.,
2011), it would intuitively be thought that ciliary muscle morphology should be altered in the
amblyopic eye and asymmetry of the ciliary muscle across both eyes may be expected where
amblyopia has been present for most of an adult’s life. The impact of any altered ciliary muscle
morphology is not currently known and may be relevant to the aetiology of amblyopia.
Paediatric investigations of amblyopia indicate that reduced axial length is present in some
amblyopias (Kugelberg et al., 1996; Cass and Tromans, 2008). An investigation that studied
the ocular parameters and their relationship in both strabismic and anisometropic amblyopic
eyes (Cass and Tromans, 2008) reported that the components of the amblyopic eye differ
physically from their fellow non-amblyopic eye across both amblyopic groups. Whilst the
anisometropic amblyopic eye seemed to be a proportionally smaller version of the fellow eye
largely due to a greater magnitude of hyperopia, the strabismic amblyopic eye was found to
have a disproportionally greater degree of anterior chamber reduction and crystalline lens
thickness, a reduced vitreous chamber depth and therefore total axial length (Cass and
Tromans, 2008); the authors suggested that the strabismic eye may be under-developed,
with a delay of emmetropisation in the infantile phase, though it has not been ascertained

whether the reported biometric characteristics are a consequence or cause of amblyopia.

The overall objectives of this thesis are to provide new in vivo data regarding ciliary muscle
morphology and biometric parameters with refractive error, and linking such anatomical
parameters with accommodative function, for the first time. The experimental chapters within
this thesis explore the morphology of the ciliary muscle and ocular biometric correlates in
emmetropia on a large scale and compare such data across refractive error. The possibility
of diurnal variation in accommodative function is studied, as well as the methods to measure
ciliary muscle parameters in vivo. The research involved application of relatively new high-

resolution imaging and biometric techniques that permited visualisation of the ciliary muscle
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in vivo and accurately measure ocular parameters, respectively. Full details of the
instrumentation used and validation of techniques is given in following chapters. Previous
experimental work has provided great insight into ciliary muscle morphology with refractive
error but many findings remain ambiguous. The thesis therefore aims to clarify several related

guestions.

The anatomy and function of the accommodative apparatus and theories of the mechanism
of accommodation are discussed in this chapter as well as instrumentation and measurement
techniques. Methods of ciliary muscle imaging and a discussion of current morphological
ciliary muscle findings are included, as well as current theories of myopia development in

relation to the ciliary muscle.

1.1.1 Accommodative structures

An appreciation of the anatomy and functions of the accommodative apparatus is needed to
comprehend in detail the conventional and controversial theories relating to human
accommodation, and the background to the investigations carried out. The following section
considers in detail the anatomy of the ciliary body, crystalline lens, lenticular capsule and

zonules.
1.1.2 Human Ciliary Body

The ciliary body is a circumferential structure largely comprised of the ciliary muscle. It
embodies the anterior continuance of the choroid and retina and is approximately triangular
in cross-section (Tamm and Lutjen-Drecoll, 1996; Remington, 2005). Aside from
(fundamentally) supplying the musculature of accommodation, other ciliary body key
functions include aqueous humour production, zonular fibre secretion and support, and
providing crystalline lens nourishment (Aiello et al., 1992; Atchison, 1995; Tamm and Lutjen-
Drecoll, 1996; Snell and Lemp, 1998 ).

The posterior part of the ciliary body is the relatively even, smooth surfaced pars plana
(orbicularis ciliaris), which contacts the vitreous and is comprised of zonular fibres oriented
longitudinally (Tamm and Lutjen-Drecoll, 1996). The most posterior portion of the pars plana
is covered by posterior zonular fibres creating a broad sheet connected to the ciliary body
internal limiting membrane (ILM), which is continuous with the retinal ILM (Atchison, 1995).
The wider, anterior region of the ciliary body is the pars plicata (corona ciliaris), continuous

with the posterior surface of the iris. The pars plicata is characterised by approximately 70 to
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80 densely vascularised radiating ridges, the ciliary processes, which unlike the pars plana
are not covered by zonular fibres, but protrude freely into the posterior chamber. In the
depressions between ciliary processes, the zonular fibres are firmly attached to the ciliary
epithelium in order to join the pars plicata surface. Aqueous humour is produced by a two-
fold method of ultrafiltration of fluid from the ciliary process vasculature into the adjacent
stroma, followed by an active secretion by the ciliary epithelium into the posterior chamber of
the eye from the ciliary processes (Tamm and Lutjen-Drecoll, 1996). In vitro methods have
shown the antero-posterior ciliary body in adults is longest temporally, with a mean of
approximately 5.76 mm, in contrast with approximately 4.79 mm nasally (Aiello et al., 1992).

The ciliary body consists of six layers, from the outer (scleral) to the inner (vitreous) phase:
the supraciliary lamina, ciliary muscle, stroma, basal lamina, epithelium and ILM (Aiello et al.,
1992; Tamm and Lutjen-Drecoll, 1996); see table 1.1 for a summary of these layers and their
respective functions. The outermost layer, the supraciliary (or suprachoroidal) lamina is a thin
layer of sparse collagen fibres, fibroplasts and melanocytes; this loose connective tissue
facilitates movement of the ciliary muscle against the sclera (Atchison, 1995; Tamm and
Litjen-Drecoll, 1996). The three innermost layers are all relatively thin; the basal lamina is
the continuation of the chorio-retinal Bruch’s membrane (Tamm and Litjen-Drecoll, 1996);
the epithelial layer is made up of two single epithelial linings, the inner of which is non-
pigmented and continuous with the posterior iris epithelium and neural retina, whilst the outer
lining is pigmented heavily and continuous with the anterior iris epithelium and retinal pigment
epithelium; the ILM of the ciliary body is secreted by the non-pigmented epithelial layer and
is continuous with the retinal ILM. The stroma of the ciliary body has rich vascularity and is
comprised of loose connective tissue and melanocytes (Mafee et al., 2005). The stroma of
the ciliary processes is also highly vascular, consisting of a vast number of capillaries to
deliver the water and metabolites necessary for aqueous production, yet does not contain the

elastic fibres present in ciliary body stroma (Tamm and Litjen-Drecoll, 1996).
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Ciliary Body | Key Functions

Layer

Supraciliary A very thin layer connecting the ciliary body to the sclera.

Outer | Lamina It allows motion between the ciliary body and the sclera.
Detachments occur at this point.

Ciliary Muscle Contracts to reduce tension on the zonules to form a more
convex crystalline lens in the process of accommodation,
whilst its relaxation pulls the zonules taught to create less
convex lens in disaccommodation.

Stroma Highly vascular, thereby providing blood supply to the
ciliary body and constituents required for aqueous humour
production.

Basal Lamina The site at which zonular fibrils attach

Epithelium Consists of an inner (non-pigmented) layer which is a
continuation of the posterior iris epithelium and neural
retina. The outer (pigmented) epithelium layer secretes
the ILM of the ciliary body.

Inner Limiting | The basement membrane of the six layers, and forms an

Inner Membrane organised scaffold to provide structural support to the
tissue.

Table 1.1 Layers of the ciliary body with respective functions

Much of the mass of the ciliary body is comprised of the ciliary muscle, underneath ciliary
processes (Pardue and Sivak, 2000; Glasser et al., 2001). Innervated by the autonomic
nervous system, the human ciliary muscle is classified as a rapid, multi-unit smooth muscle
(Bozler, 1948). Conventionally, the muscle has been organised into three distinct regions
which relate to the orientation of smooth muscle bundles (Figure 1.1): the longitudinal fibres,
attached anteriorly to the scleral spur and trabecular meshwork, running longitudinally along
the inner scleral surface; radial fibres which bundle in a fan-like arrangement from the anterior
chamber angle towards the ciliary processes, and finally the circular fibres, whose bundles
run around the globe, parallel with the limbus (Tamm and Litjen-Drecoll, 1996; Pardue and
Sivak, 2000). However, detailed in vitro analysis of the muscle has revealed that these
regions are not truly distinct, and during accommodation there is reorganisation of the muscle
fibres, with a relative increase in circular fibres with a decrease in the relative proportion of
longitudinal fibres (Pardue and Sivak, 2000). During the reorganisation of fibres, it is believed

that the longitudinal fibres act as a syncytium and change orientation; there is an increase in
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the relative proportion of circular fibres to create an internal protuberance (Pardue and Sivak,
2000), which explains the accommodative movement of the ciliary muscle, considered to
shorten longitudinally and thicken anteriorly. The choroid is drawn forward, pulling the ciliary
body closer to the crystalline lens by the sphincter-like action of the circular fibres (Duke-
Elder, 1961; Strenk et al., 1999). The crystalline lens equator is situated approximately 1- 1.5
mm centrally from the ciliary processes (Atchison, 1995; Tamm and Lutjen-Drecoll, 1996). In
terms of mass, longitudinal fibres always constitute the greatest proportion (41- 69 %),

followed respectively by the radial fibres (25- 47 %) and circular fibres (4- 24 %) (Pardue and
Sivak, 2000).

Figure 1.1. Conventional classification of muscle fibres within the ciliary muscle, based on fibre
orientation. The longitudinal fibres (L) run along the inner aspect of the sclera and terminate at the
scleral spur (S). The radial fibres (R) form a fan-like arrangement and connect the longitudinal fibres

to the circular fibres (C), which form bundles around the globe.

Age-dependent histological and morphological alterations in human ciliary muscle have been
described by several previous authors using in vitro methods (e.g. Lutjen, 1966; Nishida and
Mizutani, 1992; Tamm et al., 1992a; Tamm and Litjen-Drecoll, 1996; Pardue and Sivak,
2000). Neonatal eyes show a uniform distribution of singular fibres, with a lack of connective
tissue. With increasing age, these individual fibres form bundles within their own fibre type.
Increasing masses of connective tissue segregate these bundles, predominantly in the
circular and radial areas, of which has been suggested to account for why fibre type
orientation was more defined in older ciliary muscle (Pardue and Sivak, 2000). The relative
proportion of the muscle fibre orientations also varies with increasing age (Nishida and
Mizutani, 1992; Tamm et al., 1992a; Pardue and Sivak, 2000). The radial fibres show a
significant increase in percentage with age, the longitudinal fibres show a significant

decrease, whilst the circular fibres maintain a stable proportion (Pardue and Sivak, 2000).
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Morphologically, there is a decrease in both the overall length and anterior length (distance
from the point of maximum muscle thickness to the anterior tip) of the ciliary muscle, whilst
there is a tendency for maximum width to increase with increasing age (Tamm et al., 1992a;
Pardue and Sivak, 2000). Figure 1.2 illustrates definitions of overall ciliary muscle length and
anterior length. Together with the age-dependent shortening and thickening, the distance
from the scleral spur to the inner apex of the muscle is lessened, signifying that a more antero-
inward position is adopted in the ageing human ciliary muscle, comparable to that of the
young, accommodating muscle (Tamm et al., 1992a).

Overall length

55 PL

Anterior length

Figure 1.2. lllustration showing the definition of anterior and overall length of the ciliary muscle. The
overall length of the ciliary muscle is measured in mm from the scleral spur (SS) to the posterior limit
(point where no more thinning of the muscle occurs, PL). The anterior length is taken from the scleral

spur to the point of maximum thickness of the muscle. IA represents the inner apex.
1.1.3 Crystalline Lens

The human crystalline lens is an elaborate and transparent refractive structure, which shows
continuous growth and maturation (Brown, 1974; Koretz et al.,, 1989; Weale, 1989;
Pierscionek and Weale, 1995; Strenk et al., 2004). Contrasting to skin cells, where the oldest
are ultimately shed, accumulation of newly differentiated cells on the lens surface occurs with
lenticular growth. The lens fibres originate from the continual differentiation of the anterior
lens surface epithelial cells, with morphological alterations occurring primarily near the lens
equator (Kaufman and Alm, 2003). As the new lens fibre cells continually advance and
overlay their predecessors (which consequently displace inwardly) sphericity of the lens is
lost as its form becomes more ellipsoidal. The lens nucleus, the large central portion (see
figure 1.3), consists of the oldest fibres (Fisher and Pettet, 1973; Brown, 1974) and is the
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region of highest refractive index due to peak protein concentration of approximately 36 %
(Fisher and Pettet, 1973). Such lifelong growth of the lens would be expected to result in an
age-dependent increase in lenticular optical power, and hence a myopic shift in refractive
error (Hemenger et al., 1995). Conversely, the lens actually becomes dioptrically weaker with
age- a contradiction known as Brown’s lens paradox (Brown, 1973; Brown, 1974; Dubbleman
et al.,, 2003). Alterations in the lenticular refractive index distribution are considered to
counteract the propensity for myopia induced by lens growth (Gilmartin, 1995; Koretz et al.,
2004). A gradient protein concentration and therefore, gradient refractive index (GRIN) occurs
within the crystalline lens. The increase in axial lens thickness during accommodation is
primarily due to the shape alteration of the lens nucleus whereas the axial cortical thickness
remains constant (Hermans et al., 2007).

Despite its high protein concentration and cellular structure, the young human lens
exceptionally transmits nearly all the incident light, with optical homogeneity being essential
for efficient light transmission (Patel and Bron, 2002; Truscott, 2009). To maintain lens
transparency, the nuclei, organelles and any internal cytoplasmic structure large enough to
scatter light are shed from the fibre cells whilst nuclei-containing newer fibres are situated in
the equatorial region, obscured by the iris (Strenk et al., 2005; Truscott, 2009). So that the
crystalline lens provides an effective refractive contribution, it must maintain a higher
refractive index than its surrounding media (aqueous and vitreous humours), achieved
through internal fibre cell protein concentrations greater than 300 mg/ml (Strenk et al., 2005);
this mechanism ensures that the maintenance of transparency is independent of lens
curvature, shape and size (Koretz et al., 1994; Yaroslavsky et al., 1994; Zhao and Bettelheim,
1995).

1.1.4 Capsule

Enclosing the entire crystalline lens is the capsule (see figure 1.3), an elastic basement
membrane that is essential for moulding the crystalline lens during accommodation (Snell
and Lemp, 1998; Strenk et al., 2005). Electron microscopy reveals the capsule to be a laminar
structure that is composed of collagen filament layers (Stafford, 2001), while this lamellar
arrangement of filaments is responsible for the highly elastic nature of the capsule. The outer
capsular layer is denser and consists of zonular microfibrils amongst collagen (Atchison,
1995). The posterior capsule maintains a relatively constant thickness over time, at about 5
pMm (Krag and Andreassen, 2003). In contrast, the anterior portion of the capsule continually
thickens throughout life (up to approximately 25 um) due to the production of anterior
epithelium, and in order for the capsule to continue mirroring the growing size of the crystalline

lens (Remington, 2005). In terms of the capsular equatorial region, here zonular fibres insert,
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joining the lens to the ciliary processes, thereby suspending the lens and permitting
contractile alterations of the ciliary muscle to be transmitted to the lens mass (Snell and
Lemp,1998).

Capsule

Nucleus

Figure 1.3. AS-OCT image of the crystalline lens of a 26 year old participant. The nucleus, cortex and

capsule can be easily distinguished.

1.1.5 Zonules

The zonular fibres are responsible for suspending the crystalline lens and supplementing
accommodation (Rohen, 1979; Croft et al., 2013). The zonules are delicate structures
composed of intricate meshworks of fibrils (Kaufman and Alm, 2003) and have been
separated into two categories: the main fibres (anterior and posterior/ vitreous) and the

spanning/ tension fibres (Rohen, 1979).

The lens is supported by the anterior zonules, running from the ciliary processes of the
anterior portion of the ciliary body, traversing the circumlenticular space and implanting into
the equatorial area of the capsule, with crossover of many fibres occurring (Glasser and
Campbell, 1999; Charman, 2008) (see figure 1.4). Lengthier, posterior/ vitreous zonular fibres
run from the ora serrata towards the ciliary process valleys (Glasser, 2008; Lutjen-Drecoll et
al., 2010; Croft et al., 2013). Furthermore, both anterior and posterior arrangements are
connected by shorter, intermediate, tension fibres that inject into the ciliary epithelium within

the valleys of the ciliary processes (Rohen, 1979). The precise role of these tensile fibres is
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unclear, but they may act as a fulcrum, supplying specific leverage to allow rapid and precise
amendments to the amount of accommodation (Rohen, 1979; Gilmartin, 1995; Charman,
2008).

Gradual alterations to the geometry of zonular insertions into the capsule occur due to
ongoing lens growth, such that there is an age-dependent forward shift of the zonular fibres
away from the equator of the lens (Farnsworth and Burke, 1977; Farnsworth and Shyne,
1979; Sakabe et al., 1998). Whilst there is lifelong variation of the zonular attachment
geometry, the extensile characteristics of the zonules are stable between the ages of 15- 45
years (Fisher, 1986). The role of the vitreous zonules in the mechanism of accommodation
has been a topic of recent research interest. A key investigation (on primate and human eyes)
used scanning electron microscopy and ultrasound biomicroscopy techniques to image the
anterior, intermediate, and posterior vitreous zonules and their connections to the ciliary body,
lens capsule, vitreous membrane, and ora serrata, characterising their age-related alterations
and relating them with loss of ciliary body accommodative forward movement (Lutjen-Drecoll
et al., 2010). It was suggested that the vitreous zonules could facilitate smooth translation of
the ciliary muscle driving forces of accommodation and disaccommodation to the lens, whilst
protecting the lens capsule and ora serrata from acute tractional forces, and sustaining visual
focus (Lutjen-Drecoll et al., 2010). A further study also using rhesus monkeys and human
subjects discovered that the anterior zonule only relaxes at or near maximal accommodation
(Croft et al., 2013). It was also indicated that the role of the vitreous zonule may be to prevent
shear between the retina and vitreous and/ or to assist ocular ability to smoothly pursue the

movement of objects, without distortions within the field of view (Croft et al., 2013).
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Scleral spur Comea

Sclera

Ciliary muscle

Posterior Zonules

Crystalline lens

Figure 1.4. Schematic diagram of the human accommodative apparatus showing the arrangement of
both anterior and posterior (vitreous) zonules. During accommodation as the ciliary muscle contracts
anteriorly and inwards, tension on the anterior zonules is reduced, allowing the elastic capsule to mould

the crystalline lens into a more convex form.

1.2 Mechanism of accommodation

Ocular accommodation is the alteration in shape of the crystalline lens to allow focus of near-
objects (Dubbelman et al., 2005; Kasthurirangan et al., 2011), a process instigated by ciliary
muscle contraction through parasympathetic innervation. In the unaccommodated state
where the ciliary muscle is relaxed, the lens is held relatively flat by the taught zonules such
that a low dioptric power is achieved to allow the focus to correspond with the far point of the
eye. There is a shift in the mass of the ciliary muscle as it contracts during accommaodation,
sliding anteriorly and fundamentally, inwards, towards the optical axis, producing a reduction
in the ciliary muscle collar diameter (Gilmartin, 1995; Strenk et al., 1999; Croft et al., 2001,
Zhonga et al., 2014). As a result, zonular tension is lessened, permitting the elastic lens
capsule to mould the youthful lens into a more convex form with greater dioptric power
(Charman, 2008; Glasser, 2008); this Helmholtzian mechanism (Figure 1.5) is the basis of
our modern understanding of accommodation and is almost universally accepted, with a vast

amount of research to support the theory (Strenk et al., 1999; Hermans et al., 2007; Jones et
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al., 2007; Hermans et al., 2009; Reilly and Ravi, 2010; Kasthurirangan et al., 2011; Sheppard
et al., 2011b)

Non- accommodative state

Accommodative state

Figure 1.5. lllustration of Hemholtzian mechanism of accommodation. The top image represents the
non-accommodative state when the eye is focussed on a distant object; light rays (red dotted line)
enter at parallel and are focussed on the retina through the crystalline lens (blue), which is held flat by
the taught zonules (purple), via relaxation of the ciliary muscle (orange). The bottom image illustrates
the accommodative state; divergent light rays from a near object are focused on the retina by the
crystalline lens entering a more dioptrically powerful, convex form through the contraction of the ciliary

muscle releasing the tension on the zonules.

In both the accommodated and the unaccommodated states, the posterior lens surface is
more steeply curved than the anterior lens surface (ALS). Although during accommodation
both surface curvatures increase in convexity, the anterior does so more significantly,
undergoing the greatest increase in curvature and axial movement, though its steepness
never exceeds that of the posterior surface (Koretz et al., 2004). The discrepancy during

accommodative response between these two crystalline lens surfaces may be due to the
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thicker anterior capsule applying more elastic force to the crystalline lens substance and
greater tensional forces affecting the anterior zonules. Moreover, vitreous body resistance
could oppose posterior movement of the posterior lens surface (Charman, 2008). The
behaviour of these surface curvatures are mimicked by the internal curvatures (Dubbleman
et al., 2003); this structural change in the anterior lens surface results in a shallower anterior
chamber during accommodation (Atchison, 1995; Drexler et al., 1997; Croft et al., 2001).
Overall, and due to these combined alterations, the lens thickens axially, there is a small
bulge in the central lenticular mass anteriorly, and equatorial diameter reduces during
accommodation (Patnaik, 1967; Brown, 1973a; Drexler et al., 1997; Wilson, 1997; Strenk et
al., 1999; Croft et al., 2001; Jones et al., 2007; Charman, 2008; Croft et al., 2013). The closer
proximity between the cornea and anterior lens surface together with the greater lens
convexity and thickness, increases the dioptric power of the eye (von Helmholtz, 1855).

Additionally, the potential roles of the iris and vitreous body in the mechanism of ocular
accommodation have been debated. The iris sphincter has been suggested to facilitate
accommodation by pulling the ciliary body further forward and inwards to allow increased
lenticular convexity (Crawford et al., 1990), and vitreous pressure variations during
accommodation could aid movement of the anterior lens surface forward to augment the
accommodative response (Koretz and Handelman, 1982; Coleman, 1986). Still,
accommodation has been observed in both aniridic subjects (Fincham, 1937) and those with
empty vitreous chambers (Fisher, 1982; Fisher, 1983) so any involvement from these

structures is unlikely to be substantial.

The process that commences when cessation of ciliary muscle contraction occurs is often
referred to as disaccommodation (Croft et al., 2001; Glasser, 2008). It involves the reversal
of the actions occurring with accommodation; the elastic choroid operates as a restorative
force as the ciliary muscle is pulled posteriorly and away from the optical axis, along the inner
scleral surface, into its relaxed and unaccommodated arrangement again (Strenk et al., 1999;
Croft et al., 2001). The swiftly increased zonular tension manipulates the lens capsule, pulling
the lens into a flatter form and shifting the anterior lens surface posteriorly away from the
cornea, such that anterior chamber depth increases. Likewise, a small returning movement
of the posterior lens surface occurs anteriorly, thus deepening the vitreous chamber. The
flattening of lenticular surface curvatures causes a reduced dioptric power of the eye (Croft
et al., 2001; Glasser, 2008; Davies et al., 2010).

Nonconformist opinions of the mechanism of accommodation remain, particularly the notion

of a Tscherning-type system, whereby there is greater zonular tension (specifically the
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equatorial zonules) during accommodation, resulting in the outward movement of the lens
equator towards the sclera, with the crystalline lens steepening centrally and flattening
peripherally (Schachar, 2006; Schachar and Koivula, 2008). Controversially, this theory
suggests that anterior and posterior zonules (inserting into the lens capsule) solely supply
suspension for the lens, whilst the equatorial zonules respond to ciliary muscle activity and
thereby initiate alterations to lens shape. Despite its controversial nature, various
investigations have findings which are in agreement with the theory (Sa et al., 2005; Schachar
and Koivula, 2008); an investigation utilised OCT imagery to observe the alteration in
reflected light intensity from the ALS in both the accommodated and non-accommodated
state. The investigative findings were on the basis that a greater surface strain leads to the
surface being smoother, and therefore a greater amount of light reflectance will occur
(compared with increased light scatter occurring with a rough surface) (Federici et al., 1999;
Schachar and Koivula, 2008). In accordance with the nonconformist Schachar theory, the
data indicated that the ALS was more stretched in the accommodated state (Schachar and
Koivula, 2008).

In summary, ocular accommodation involves the coordination of various anatomical
structures, including the ciliary muscle, crystalline lens and zonules. The ciliary muscle is a
circumferential multi-unit smooth muscle which rapidly contracts anteriorly and inwards,
causing a release of zonular tension on the crystalline lens such that it enters a more

dioptrically powerful, convex form (von Helmholtz, 1855).

1.3. Components of accommodation

Physiologically, the accommodative response is a dynamic process that involves several
components (Ni et al., 2013). Four components of accommodation have been differentiated,
specifically reflex, proximal, tonic and convergence (Heath, 1956).

1.3.1. Reflex accommodation

Reflex accommodation is known as the automatic modification of the refractive ocular power
(over approximately a 2 D range) in response to a blurred stimulus, in order to sustain a clear
retinal image (Charman, 2008). It has been suggested that reflex accommodation is the only

accommodative component to be manipulated by retinal image quality (Heath, 1956)

1.3.2. Proximal accommodation
Belief of the distance of an object, or awareness of its proximity produces proximal
accommodation (Heath, 1956; Rosenfield and Ciuffreda, 1991); the mere presentation of a

near object may initiate the accommodative response, or when employing a device such as

26



a closed-view autorefractor (instrument myopia). Because simply “thinking near” can induce
a response, voluntary accommodation may be deemed a type of proximal accommodation
(Provine and Enoch, 1975; Rosenfield and Ciuffreda, 1991).

1.3.3. Tonic accommodation

The accommodative mechanism adopts an intermediate state of approximately 1 D (Heath,
1956; Millodot, 2008), producing a mild myopic state which arises when there is inadequate
visual stimulus e.g. a structureless/ empty field (Schor et al., 1986) or darkness (Gilmartin et
al., 1984), poor visual acuity (Heath, 1956) or a low spatial frequency target (Kotulak and
Schor, 1987). This phenomenon was initially termed tonic accommodation as it was thought
to stem from the dual innervation of the ciliary muscle; an intermediate dioptric power would
be established without presence of accommodative stimulation (Rosenfield et al., 1993).
However, the term is likely to be somewhat inaccurate, as a feasible explanation of this
accommodative response is multifactoral, including non-optical features, such as visual

imagination, auditory and vestibular input (Rosenfield et al., 1993).

1.3.4. Convergence accommodation

Convergence accommodation outlines the accommodative mechanism automatically
stimulated by a change in convergence; the convergence accommodation (CA)/ convergence
(C), (CA/ C) ratio, governs the magnitude of this response. The near triad consists of
convergence, accommodation and pupil miosis, and synkinesis of these processes is due to

their neural connection (Charman, 2008).

1.4 Ciliary muscle in vivo imaging

Historically, information regarding the ciliary muscle was extracted from in vitro studies. Whilst
such investigations have advanced our understanding of primate and human accommodative
physiology (Aiello et al., 1992; Tamm et al., 1992; Poyer et al., 1993), in vitro findings may be
modified by post mortem chemical tissue changes, (Weale, 1999; Kasthurirangan et al., 2008)
along with handling and storage processes; the extent of these changes cannot be known
(Strenk et al., 2004; Werner et al., 2008; Sheppard and Davies, 2010b). In vitro methods
involve dissection of accommodative structures (Lutjen-Drecoll et al.,, 2010), and this
introduces uncertainty as to whether the accommodative structures under investigation are
behaving as they would in the intact accommodative system. Furthermore, ischaemic effects
may modify the ciliary muscle response to the application of topical pharmacological agents
(Pardue and Sivak, 2000; Sheppard and Davies, 2010b). Hence the ability to view the active

human ciliary muscle in vivo is highly beneficial. The use of in vivo imaging techniques allows
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an enhanced comprehension of the anatomical and physiological ocular structures and the
processes involved in ocular accommodation. The key in vivo techniques are ultrasound
biomicroscopy (UBM), magnetic resonance imaging (MRI) and optical coherence tomography
(OCT) due to their wide use in research, clinically acceptable resolution, speed of imaging

and availability.

1.4.1 Ultrasound biomicroscopy

UBM is a type of ophthalmic ultrasound imaging based on high frequency acoustic pulses
being reflected; the sound waves are generated by piezoelectric constituents, (Wolffsohn and
Davies, 2007) and are reflected from ocular tissue interfaces. An A-scan is created from the
subsequent detection of these reflected acoustic pulses (Konstantopoulos et al., 2007). UBM
for use in anterior segment imaging has been utilised since the early 1990s (Pavlin et al.,
1992) and employs a transducer of approximately 50 MHz (contrasting to 10- 20 MHz for
entire-globe ultrasonography), allowing visualisation behind opaque corneas, for the imaging
of ocular structures. Although high frequency UBM permits tissue penetration to just 4- 5 mm,
resolution is improved compared to low frequency UBM; transverse resolution is
approximately 25 ym and axial resolution around 50 um with the high frequency (Nolan,
2008).

The chief disadvantage of UBM is that the technique requires the patient to remain supine
because the eye is submerged in saline, using an eye cup directly placed onto the globe.
Furthermore, the contact nature of the technique may cause discomfort for the subject whilst
also potentially distorting angle structures (Konstantopoulos et al., 2007). Because the probe
is in contact with and occludes the eye being studied, this may cause potential precision
problems in accommodation studies as binocular vision is obstructed and only the fellow eye
can view the accommodative stimulus. UBM has been used in the analysis of the relationship
between ciliary body thickness and refractive error, e.g. Olivera et al. (2005) described thicker
ciliary muscles in myopic eyes. Whilst resolution of the ciliary muscle with UBM is inferior to
AS-OCT, it does however permit visualisation of structures posterior to the iris such as the
ciliary body and posterior zonules (Oliveira et al., 2005a; Croft et al., 2013). High frequency
UBM has been utilised in investigations to study the movement of implanted IOLs (Stachs et
al., 2002; Muftuoglu et al., 2009).

1.4.2 Magnetic resonance imaging
Because MRI is a non-optical (and non-invasive) imaging method (Strenk et al., 1999;
Gilmartin et al., 2013), it is not obstructed by the iris. It provides unparalleled soft tissue

contrast that offers visualisation of the anterior segment in any required plane with no optical
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distortion (Jones et al.,, 2007; Strenk et al.,, 2010). MRI is utilised primarily in clinical
applications for the diagnosis of ocular diseases including space- occupying lesions (Ben
Simon et al., 2005), soft tissue injury (Kolk et al., 2005) and congenital disorders (Chaudhry
et al., 2007) as well as extraocular muscle investigation (Sa et al., 2005). However, due to
the technical difficulties of imaging small volumes and the relative expense and inaccessibility
of the method, use in anterior segment research is limited (Singh et al., 2006; Strenk et al.,
2006; Wolffsohn and Davies, 2007; Strenk et al., 2010).

The strength of the magnetic field in an MRI system is measured in Tesla units, which helps
govern image resolution. In recent years image resolution has improved. Previously high
resolution- MRI scanners typically scanned at 1.5 Tesla (Strenk et al., 2006), though
resolution is now less of an issue with newer scanners that permit ultra-high field 7.1- Tesla
MRI imaging of ocular structures (Richdale et al., 2009; Langner et al., 2010).

MRI employs the basis of huclear magnetic resonance to image the internal bodily structures
(Wolffsohn and Davies, 2007). Typically the proton nuclear spins in tissues have no stable
orientation, though when within a prevailing magnetic field, for instance, an MRI scanner, the
nuclear spins become oriented along the field (Hornak, 2008). The proton spins are flipped
out of their longitudinal plane into the transverse plane with the application of a 90°
radiofrequency (RF) pulse of a precise frequency (Liney, 2005). Such linear alterations to the
magnetic field permit construction of an image for visualisation, as the RF coil is able to detect

a spatially localised signal.

Investigations using MRI reported that ciliary ring diameter decreases as a function of age
and accommodation (Strenk et al., 1999; Strenk et al., 2004). In addition to ciliary muscle
investigations, MRI has provided much information on the morphological and optical and
alterations in the crystalline lens with accommodation. Procedures to map the lenticular
refractive index distribution have been developed (Moffat et al., 2002a; Moffat et al., 2002b;
Jones and Pope, 2004) and applied to human eyes and in vivo (Jones et al., 2007;
Kasthurirangan et al., 2008), and in vitro (Jones et al., 2005). MRI has also been utilised to
explore globe shape with refractive error (Atchison et al., 2004; Gilmartin et al., 2013), which

is discussed in further detail in section 1.4.2.

1.4.3 Time-domain and spectral-domain optical coherence tomography

Becoming commercially available in 1995, OCT has been used widely for retinal disease

assessment (Drexler and Fujimoto, 2007). Fundus examination using OCT is useful in age
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related macular degeneration (Pieroni et al., 2006) macular hole (Bakri et al., 2007) and
diabetic retinopathy (Polito et al., 2006), as the technique permits segmenting through the
retinal layers (Wolffsohn, 2008). OCT provides very high resolution, with a penetration of 2 -
20 mm, making it advantageous in imaging and quantifying small ocular structures (Ramos
et al., 2009).

Two different OCT systems have been established: time domain (TD) and Fourier- domain
(FD). With time-domain (TD) OCT, the reference mirror is moveable in order to create the A-
scans, thus yielding a reflectivity profile corresponding to depth and thereby limiting the speed
at which the image is acquired (Kiernan et al., 2010). Fourier-domain (FD) OCT has an
immobilised reference mirror so can operate much more rapidly, and the interference
between the sample and reference reflections is detected as a spectrum (Yaqoob et al., 2005;
Ramos et al., 2009). A Fourier transformation algorithm of the spectral interferogram
generates the A-scan, creating increased sensitivity and faster image acquisition compared
with traditional TD-OCT systems (Asrani et al., 2008; Ramos et al., 2009; Kiernan et al., 2010)
which rely on the mechanical locomotion of a reference mirror to measure the reflectivity of
the tissues; therefore the speed of this approach is restricted by the mechanical cycle time of

the reference mirror driver (Ramos et al., 2009).

The greater sensitivity of FD-OCT systems has been utilised to image at high scan rates
without intensifying the optical exposure or losing image brightness (Asrani et al., 2008) as
signals are not detected from the entire depth range just serially, but in parallel (Ramos et al.,
2009; Rodrigues et al., 2012). Nonetheless, FD-OCT devices functioning with a long
wavelength superluminecent diode have been restricted in effective imaging depths to less
than 3- 4 mm, preventing useful ocular anterior segment imaging (Huber et al., 2006;
Christopoulos et al., 2007; Asrani et al., 2008). In current ophthalmic FD-OCT versions, the
detector arm of the interferometer encompasses the spectrometer (Ramos et al., 2009).
Swept-source OCT (SD- OCT) is a further implementation of FD-OCT where the source is a
rapidly tunable, narrowband scanning laser (Yagoob et al., 2005) that is more detection
sensitive and has lower signal-to-noise ratios at greater scanning depths, compared with
traditional FD-OCT devices (Lim et al.,, 2014). As wider range swept—source wavelength
provides greater depth resolution, and rapid wavelength tuning of the source permits faster
image acquisition, the design and operation of a tunable source is an essential aspect in
the swept —source FD-OCT performance; several ~ 1300 nm laser designs have been
utilised (Yaqoob et al., 2005) and the high speed tuning of the light source are founded on
three major concepts: the first is based on a diffraction grating on a mechanically resonant

galvanometer scanning mirror (Yun et al., 2003a; Yun et al., 2004; Yaqoaob et al., 2005), the
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second is a polygonal rapidly rotating mirror (Yun et al., 2003a; Yun et al., 2003b; Gora et al.,
2009), and thirdly a tunable Fabry-Perot cavity (Choma et al., 2003; Yaqoob et al., 2005;
Gora et al.,, 2009). The details of these concepts are beyond this thesis and will not be

discussed in further detail.

The most rapid TD-OCT system is the Visante AS-OCT (Carl Zeiss Meditec, Inc., Dublin, CA),
no longer commercially available and which acquires 2,000 A-scans per second. The RTVue
(Optovue, Inc., Fremont, CA) and the Cirrus (Carl Zeiss Meditec) are SD-OCT systems that
can provide either retinal or anterior segment imaging (the latter requires a corneal adaptor
module (CAM)) whose spectrometers encompass high speed line cameras that capture A-
scans thirteen times faster than the Visante per second, at 26,000- 27,000 scans (Ramos et
al., 2009; Ostrin et al., 2015). Despite the rapid speed of the Cirrus and RTvue which reduces
motion artefacts to provide a higher definition from a greater quantity of A-scans per image
(Gora et al., 2009; Ramos et al., 2009), their shorter wavelength (830 and 840nm for RTvue
and Cirrus, respectively, compared with 1310 nm Visante) cannot penetrate as deep through
the sclera and iris, whereas the Visante’s 16 mm scan width and approximately 6 mm scan
depth in tissue are effective for anterior segment biometry. However, the RTVue and Cirrus
feature a depth resolution that is over three times greater (5 mm) than the Visante, whose
depth resolution in tissue is approximately 17 mm (Ramos et al., 2009). A swept source SD-
OCT system, the DRI Triton (Topcon) has recently become available which alike to the
previous 2012 model Atlantis, utilises a 1050 nm wavelength to provide increased penetration
through the sclera and iris compared with traditional SD-OCT systems, and boasts the fastest
current scanning speed at 100,000 A-scans per second (Miki et al., 2015). Like the Cirrus
and RTVue, the Triton utilises a CAM for anterior segment imaging. The Triton has a scan
depth of 9 mm, surpassing that of the Visante, though its scan width is 12 mm and comprises
of additional features such as fundus photography and Fluorescein Angiography.

Whilst each OCT system has distinct advantages and which is defined as a better instrument
depends on the precise application, there is a scarcity of literature relating to which OCT is

ideal for imaging the ciliary muscle.

1.4.4 Anterior segment optical coherence tomography

A more recent development is anterior segment OCT, first devised in 1994 (lzatt et al., 1994)
and available since 2001, when a high speed AS-OCT supplying images of good resolution,
was obtainable. Clinical use of the AS-OCT is wide- spread, including evaluation of anterior

chamber depth (Baikoff et al., 2004; Baikoff, 2006), anterior segment tumours (Huang et al.,
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2004), corneal thickness (Li et al., 2006b) and corneal grafts (Ardiomand et al., 2007), precise
measurements of phakic I0OLs (Goldsmith et al., 2005), assessment of IOL implantation
(Wirbelauer et al., 2005; Baikoff, 2006) and the detection of closed-angle glaucoma
(Radhakrishnan et al., 2005; Nolan et al., 2007).

There are presently very limited dedicated AS-OCT instruments commercially available
(Nolan, 2008): The slit-lamp OCT (Heidelberg Engineering, GmbH, Heidelberg, Germany)
combines a slit-lamp and AS-OCT. The Visante stand-alone OCT (Carl Zeiss Meditec Inc.,
Dublin, CA, USA) shown in Figure 1.6 is no longer commercially available though it has been

used in several human ciliary muscle studies (Bailey et al., 2008; Sheppard and Davies, 2011,
Pucker et al., 2013).

Figure 1.6. Visante stand-alone AS-OCT, used in the Ophthalmic Research Group laboratories of

Aston University.

AS-OCT technology employs a light source of which wavelength varies depending on the
type of OCT system (830 - 1310 nm). Resolution is governed by the wavelength and the
spectral bandwidth of the light source, with wider bandwidths and shorter wavelengths
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providing better resolution (Ramos et al., 2009). The employment of the long wavelength light
source (opposed to 830 nm used for retinal imaging) enables enhanced scleral penetration,
a light scattering tissue, hence the ciliary body can be visualised (Konstantopoulos et al.,
2007; Ramos et al., 2009). The light source is divided by a beamsplitter into a measurement
beam, which is reflected by the ocular structures and a reference beam that is reflected by a
mirror (Yaqoob et al., 2005; Wolffsohn, 2008). Coherent interference occurs if light from both
the measurement and reference beam travel identical optical distances prior to their
recombination (Wolffsohn and Davies, 2007). An A-scan is built up through the determination
of the axial depth of tissues by altering the reference path optical length at each scanning
point. This scanning point travels across the eye laterally, and the alignment of many A-scans
are utilised to develop a two-dimensional cross-sectional image. AS-OCT has greater
sensitivity than other imaging techniques utilising a similar principle, because photodetection
at the interferometer output comprises of multiplying the two optical waves together. As such,
the weak signal in the object arm, transmitted or back-scattered through the tissue, is
intensified by the powerful signal in the reference arm, permitting the OCT to detect reflected
signals as small as one part in 102° of the incident power (Ramos et al., 2009). Previously,
imaging of the ciliary muscle had been difficult due to the anatomical position of the pigmented
iris obstructing the view of the ciliary apparatus, leading to a lack of complete understanding
of ciliary muscle morphology in accommodation and myopia (Lewis et al., 2012). OCT is
advantageous over MRI and UMB as it is relatively inexpensive, a natural head position can
be maintained by the subject, the technique is non- contact and images can be captured

rapidly.

1.4.5 Visante AS-OCT and ciliary muscle imaging

As with all methods consisting of light or acoustic waves bypassing curved-surfaced media
and altering refractive indices, optical distortion results (Wolffsohn, 2008), and AS-OCT is no
exemption. However, the distortion is deceased by the incorporated Visante software
(versions 1.0 or 2.0) which uses edge detection algorithms to locate the corneal surfaces,
consequently assigning the fitting refractive indices to each image section; for the portion
anterior to the cornea, a refractive index of 1.000 (air) is employed; the portion within the
corneal margins has 1.338 index (cornea) applied; and 1.343 index (aqueous humour) for
anatomy posterior to the cornea, is implemented. Whilst the software provides increased
accuracy compared with using uncorrected images for assessing the ocular components,
some inaccuracy still resides. An investigation that utilised physical model eyes in the anterior
segment single mode with recognised dimensions ascertained, found for instance, that

anterior chamber depth may be overestimated by approximately 88 ym with the AS-OCT
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software (Dunne et al., 2007). A range of corneal radii, lens radii, anterior chamber depths,
and lens thicknesses were used, while each model corneal thicknesses was fixed at 0.8 mm.
Distortion correction factors with the Visante instrument have been developed to decrease
errors of axial distance measurements and a scheme established to permit surface curvature

measurement with a higher level of accuracy (Dunne et al., 2007).

More recently OCT has been utilised in the evaluation of ciliary muscle morphology (Bailey
et al., 2008; Sheppard and Davies, 2010b; Sheppard and Davies, 2011; Buckhurst et al.,
2013) and contraction (Sheppard and Davies, 2010b; Lossing et al., 2012). Rather than the
internal target of the AS-OCT, the ciliary muscle can be visualised with the patient instructed
to fixate on an eccentric target, thereby avoiding iris pigmentation and imaging the ciliary
muscle through the sclera. The imaging mode frequently used to visualise the ciliary muscle
is high resolution corneal, and the anterior segment can be imaged as a single image (see
figure 1.7) with the patient fixating on the internal target and utilising the anterior segment

single mode.

The anterior segment single mode allows visualisation of the entire anterior segment, imaging
at a resolution of 18 ym and penetrating a tissue depth of 6 mm with an image width of 16
mm. The high resolution corneal mode (10 mm x 3 mm) allows for detailed visualisation of
the cornea when the subject is fixating straight ahead; transverse and optical axial resolutions

are down to 60 um and 18 um, respectively (Zeiss, 2006).
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Figure 1.7. AS-OCT image of the anterior segment with distortion corrected for by the Vistane, utilising

the anterior segment single mode.

1.5 Ciliary muscle morphology

Despite the potential role of the ciliary muscle in myopia (Mallen et al., 2006; Bailey et al.,
2008; Buckhurst et al., 2013; Pucker et al., 2013), accommodation (Sheppard and Davies,
2010b; Lewis et al., 2012; Lossing et al., 2012) and presbyopia (Sheppard and Davies, 2011;
Richdale et al., 2013) there still remains a paucity of in vivo ciliary muscle research. In vivo
imaging of the ciliary muscle is challenging due to the concealed position of the ciliary muscle

behind the pigmented iris.

Various approaches to examine and measure the ciliary muscle have been employed. An
investigation by Pardue and Sivak (2000) utilised 16 pairs of donor eyes, aged from 1 day to
107 years. One eye from each pair was treated with pilocarpine hydrochloride to
pharmacologically stimulate ciliary muscle contraction, and the other treated in the same way
with atropine sulphate to relax the ciliary muscle. Only a decline in anterior length of the ciliary
muscle with age was significant (R = -0.71, P < 0.001), indicating that an increase in width

and forward movement of the apical edge were the greatest age-related alterations in the
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ciliary muscle. The chief accommodative alteration of the ciliary muscle was discovered to be

a decline in length, presumed to be due to the longitudinal fibres.

More recent work (Sheppard and Davies, 2010b) utilised AS-OCT imaging to investigate
ciliary muscle morphology in pre-presbyopes; The ciliary muscle in its relaxed state was found
to have a significantly longer overall and anterior length in eyes of longer axial length (see
figure 1.8).

Aston University

lustration removed for copyright restrictions

Figure 1.8. Images demonstrating the noticeable difference in temporal ciliary muscle morphology
between an axial myopic eye (top image; axial length 28.12 mm) and an emmetropic eye (bottom

image; axial length 23.7 mm).

Anterior length was measured from the scleral spur to the point of ciliary muscle maximum
width, using internal callipers of the Visante software to obtain the measurement. These
measurements were taken at particular points along the ciliary muscle which were
proportional to the ciliary muscle overall length, the most anterior measurement being
represented as CM25, the muscle width at a point at which was 25 % of the overall length

posterior to the scleral spur. Similarly CM50 and CM75 measures were taken at points 50 %
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and 75 % (CM50 and CM75 respectively) of the total ciliary muscle length posterior to the

scleral spur (see figure 1.9).

Aston University
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Figure 1.9. Measurements of ciliary muscle width were attained by Sheppard and Davies (2010b) with
a calliper positioned perpendicular to the boundary between the ciliary muscle and sclera, with three
chief width measurements obtained. These width measurements (CM25, CM50 and CM75) were taken

at points along the ciliary muscle that were proportional to the overall length.

A different approach to measuring the ciliary muscle has been employed by other
investigators, whereby thickness measurements were taken at fixed distances from the
scleral spur (Oliveira et al., 2005b; Bailey et al., 2008; Lewis et al., 2012; Pucker et al., 2013);
CMT1 represents a point 1 mm posterior to the scleral spur, with CMT2 and CMT3 taken at
points 2 mm and 3 mm posterior to the scleral spur, respectively (see figure 1.10). CMTMAX
represents the maximum ciliary muscle thickness. A potential limitation of this technique is
that measurements do not take into consideration the fact that the total length of the ciliary
muscle differs considerably with refractive error, such that a location 2 mm posterior to the
scleral spur, for example, may signify a different ciliary body anatomical region in varying

refractive errors (Sheppard and Davies, 2010b).
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Figure 1.10. Representation of fixed width ciliary muscle thickness measurements. The blue outline

represents the profile of the ciliary muscle. CMT1, CMT2 and CMT3 are taken 1, 2 and 3 mm posterior

to the scleral spur (SS), respectively.

Nasal and temporal ciliary muscle discrepancies (within individuals) have been studied
(Sheppard and Davies, 2010b) and interestingly, it was found that the accommodative
shortening in the ciliary muscle anterior portion, is greater in the temporal ciliary muscle
aspect than that of the nasal. Fittingly, in terms of nasal versus temporal disparity in ciliary
muscle thickness, this was significantly increased temporally in CM50, CM75 and CM2. This
nasal-temporal difference in thickness was least manifest for CM25, the most anteriorly
measured location. Currently, the significance of this asymmetry is uncertain although it has
been reasoned that the thicker side of the ciliary muscle would yield a more powerful
contractile response, reinforced through the finding of increased accommodative shortening
of the anterior portion of the temporal aspect of the ciliary muscle (Sheppard and Davies,
2010b). The nasal-temporal asymmetry in human ciliary body morphology has also been
established through in vitro studies, identifying the temporal aspect being significantly longer
throughout life (Aiello et al., 1992). However, this discrepancy in length had not previously
been observed in vivo (Sheppard and Davies, 2010b).

A limitation of previous studies is that inter-eye symmetry of the ciliary muscle has not been
investigated as it has only been one eye, typically the right, which has been studied. A
relatively recent investigation examined globe profile in emmetropia and myopia (Gilmartin et
al., 2013). Using a cohort of 55 adult participants, posterior vitreous chamber shapes were

established using T2-weighted MRI. An emmetropic eye was mapped as coordinate
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reference points to contrast with the myopic globe profile; these three- dimensional surface
model coordinates were allotted to superior, inferior, nasal and temporal quadrants and
plotted in a two-dimensional model to demonstrate the overall profile of respective quadrants
(Gilmartin et al., 2013). Asymmetry in the laterality of globe profile in myopia development
was discovered, with nasal to temporal quadrants being asymmetric between right and left
eyes- the temporal quadrant of the right eye corresponds with the nasal quadrant of the left
eye (Gilmartin et al., 2013). Since the division of nasal and temporal retinal nerve fibres into
right and left visual fields occurs at the optic chiasm (Bron et al., 1997), the coupling indicates
that binocular growth may be synchronised by processes operating past the optic chiasm
(Gilmartin et al., 2013). Altered ciliary muscle morphology in myopia has been implicated in
refractive error development (Bailey et al., 2008) and such laterality in myopia development
may translate to ciliary muscle laterality, though this matter has not been investigated in
previous studies. More work is needed to fill this gap in the current knowledge, and one of
the aims of this thesis is to provide answers relating to ciliary muscle morphology and

laterality.

1.5.1 Ciliary muscle and refractive error

Myopia represents a significant health concern and is one of the foremost reasons for visual
impairment worldwide (Lin et al., 1996; Saw, 2003; Woodman et al., 2011). The refractive
condition affects approximately one sixth of the global population (Norton et al., 2005; Logan
etal., 2011) and is continuing to increase in prevalence (Rose et al., 2001; Vitale et al., 2008),
such that myopia has reached epidemic proportions in certain industrialised East Asian
communities (e.g. Singapore) where at least 70 % of adolescents are myopic (Seet et al.,
2001; Logan et al., 2011).

The effect of a high prevalence myopia on society is significant, and establishments in
affected countries include refractive error in their health, educational and economic strategic
plans (Logan et al., 2011). Myopia can significantly hinder quality of life, ranging from being
a simple visual inconvenience with financial cost to sufferers, to a predisposition to sight
threatening pathological conditions (Mitchell et al., 1999; Gilmartin, 2004; Logan et al., 2011;
O'Donoghue et al., 2015). Pathologies linked to myopia include glaucoma (Mitchell et al.,
1999; Miki et al., 2015), cataract (Lim et al., 1999), chorioretinal degeneration and retinal
detachment (Grossniklaus and Green, 1992). Whilst the specific cause of myopia is not fully
understood, it is widely believed to have not only a genetic element but also environmental
constituents (Mutti 2010; Woodman et al., 2011; Ghosh et al., 2014; Jin et al., 2015;

O'Donoghue et al., 2015). In the current epidemic, axial length is regarded as the primary
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ocular biometric component of refractive error, and is a well-known feature of myopia (Liao et
al., 2014; Jin et al., 2015).

It would typically be expected that the ciliary muscle is longer in myopic eyes due to globe
expansion, as van Alphen (1986) perceived a discernible thinning of the ciliary body with
globe expansion in vitro. More recent work (Mutti et al., 2000; Walker and Mutti, 2002; Harb
et al., 2006; Sheppard and Davies, 2010b; Buckhurst et al., 2013) indicates that the ciliary
region is not merely mechanically stretched with axial elongation, as the ciliary muscle in
myopic subjects has not been found to be thinned as would be predicted by unaccompanied
mechanical stretch.

Though it has previously been hypothesised that hyperopic subjects should exhibit a thicker
ciliary muscle due to the increased accommodative effort expended compared to non-
hyperopes (Oliveira et al., 2005; Pucker et al., 2013), no dependency between the
proportional measurements of ciliary muscle thickness (CM25, CM50 & CM75) and axial
length has been identified, (Sheppard and Davies, 2010). However, this contrasts to other
work using AS-OCT, which determined a strong correlation between ciliary body thickness
taken at fixed width measures, myopic refractive error and axial length (Bailey et al., 2008).
A common finding between both studies showed that the region 2 mm posterior to the scleral
spur (CM2) did show an association of being thicker with greater axial length (Bailey et al.,
2008; Sheppard and Davies, 2010). Similarly, an investigation utilising UBM for the in vivo
assessment of ciliary body thickness showed that the mean CBT2 (the ciliary body region 2
mm posterior to the scleral spur) was significantly greater in myopes than for hyperopes and
emmetropes, whilst emmetropes also displayed a greater mean CBT2 than hyperopes.
Likewise, mean CBT3 (the ciliary body region 3 mm posterior to the scleral spur) was shown
to be significantly greater in myopes than emmetropes and hyperopes, and again, was
significantly greater in emmetropes than that of hyperopes (Oliveira et al., 2005). Interestingly,
it was discovered that the inner apical angle of the ciliary muscle is wider in myopic subjects
than emmetropes (see figure 1.11), though further research is needed to determine the
relevance of this finding to refractive error development (Sheppard and Davies, 2010).

40



Aston University

Nlustration removed for copyright restrictions

Figure 1.11. Top image shows the temporal ciliary muscle of an emmetropic eye (axial length 23.7
mm) and bottom image shows the temporal ciliary muscle of a myopic eye (axial length 28.12). The
ciliary muscle inner apical angle appeared larger in the myopic eye (a, in myopia = 138°; B, in

emmetropia = 92°).

Eyes with longer axial lengths appeared to have greater ciliary muscle thickness values, both
with accommodation, and in the cyclopleged state (Lewis et al., 2012), linking mean axial
length with ciliary muscle thickness and supporting previous findings that myopes have a
thicker ciliary muscle than in emmetropic or hyperopic eyes (Bailey et al., 2008). With
accommodation, there was consistent ciliary muscle thickening in the anterior portion
(CMTMAX and CMT1) with a thinning of the posterior portion of the ciliary muscle (CMT3)
(Bailey et al., 2008). Such results are consistent with the earlier findings of Sheppard and
Davies (2010), that there is longitudinal and radial contraction of the ciliary muscle during
accommodation. Interestingly, for CMT2, the measurements were relatively unchanged over
a range of accommodative responses; where several subjects demonstrated thickening in
this area with accommodation, other subjects showed thinning (Lewis et al.,, 2012),
highlighting that the accommodative response did not appear to be a significant contributor
for shaping the behaviour of CMT2. There was also no suggestive trend to indicate which
ciliary muscle are predisposed to thicken as opposed to thin at CMT2. Therefore, it was
suggested that CMT?2 is the approximate position of a fulcrum, providing the transition in the

muscle from thickening action, to thinning during accommodation. The investigators indicate
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that in some individuals the fulcrum position may be slightly ahead, or behind the CMT2 and
that the position may also vary according to the level of accommodative effort expended
(Lewis et al., 2012).

Work by Sheppard and Davies (2010b) did not reveal any significant association between
ciliary muscle thickness and refractive error and therefore, predicted that radial growth-
thickening of the ciliary muscle occurs in conjunction with axial elongation during
myopigenesis. Several other investigations have also contradicted the in vitro experimental
findings of van Alphen, but by demonstrating the ciliary muscle to be thicker in the myopic
eye compared with non-myopic eyes (Oliveira et al., 2005a; Bailey et al., 2008; Buckhurst et
al., 2013) . Such thickening of the ciliary muscle indicates a potential physiological response
of the myopic ciliary muscle, as opposed to a simple mechanical stretch (Bailey et al., 2008),
whilst the thinner hyperopic ciliary muscle has been hypothesised to result from a disruption
of the basic stress-response relationship that occurs in all recognised muscles (Pucker et al.,
2013). Evidently, ciliary muscle morphology in terms of both length and thickness appears to
be altered in myopic eyes. Nonetheless, there is ambiguity between findings of previous

studies, and the relevance of these observations is not fully understood.

With respect to myopia development, it is well documented that principally there is an
increase in axial length (Atchison et al., 2004; Mutti et al., 2007; Mutti 2010; Gilmartin et al.,
2013) of approximately 0.35 mm/ D, while dimensions of globe height and depth increase to
a less significant degree (Atchison et al.,, 2004). Figure 1.12 indicates the relationship
between axial length and refractive error. Previously, it has been described that an
acceleration of axial elongation occurs as spherical globe expansion becomes more prolate
expansion (Mutti 2010), and other previous studies have describe the more prolate shape in
myopia (Atchison et al., 2004; Multti et al., 2007). It was predicted there is approximately a
threefold increase in the rate of axial elongation when there is elliptical growth of the eye
rather than spherical growth (Mutti et al., 1998) and this has been shown to occur in the year
prior to and subsequent to myopia onset (Mutti et al., 2007; Mutti 2010). This lessened oblate
shape in myopic eyes has been reported across several studies (Atchison et al., 2004; Logan
et al., 2004; Mutti et al., 2007; Bailey et al., 2008), though the aetiology of this myopic prolate

globe shape is uncertain.
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Figure 1.12. The relationship between mean sphere equivalent (MSE) refractive error and axial length,
plotted using author's own data (n = 100). Axial length increases systematically with increasing

negative MSE.

Lens thinning has been described as a significant process than maintains emmetropia, and
an interruption of this precedes the development of myopia. During eye growth, there is
expansion of the eye in all directions and the equatorial growth has reasonably been assumed
to be responsible for this lens thinning (Mutti 2010). The mechanical stretching of the
crystalline lens in the equatorial plane leads to a flatter and dioptrically weaker state; therefore
an interruption to this process would provide no refractive compensation to the increasing
axial length of the growing eye. So, Mutti hypothesises that myopia development is the optical
consequence of limited crystalline lens compensation and more rapid axial elongation, due
to interruption of the equatorial stretch and oblate globe shape which has been in place since
infanthood (Mutti 2010) (see Figure 1.13). This poses the question of what could cause this
interruption to the equatorial expansion that allows for the lens thinning theory, or even the
prolate expansion. Results from various studies including MRI work (Atchison et al., 2004)
and A-scan ultrasonography on the infant monkey (Smith et al., 2005) indicate that equatorial
expansion of the globe is a significant aspect in the development of myopia (Logan et al.,

2004; Mutti et al., 2007; Bailey et al., 2008). However, it is more difficult to measure the
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equatorial diameter of the eye, compared with the axial length, hence there is not as much
information relating to the former. Hypertrophy of the ciliary muscle could give rise to
excessive collagen deposition running though the ciliary muscle in a circular orientation, such
that the thickened ciliary muscle mechanically restricts equatorial expansion required for
maintenance of emmetropia (see Figure 1.13) (Bailey et al., 2008; Mutti 2010). Furthermore,
this hypertrophic ciliary body would also cause enlargement of the ciliary muscle cells,
yielding a reduced contractile response (Seidel and Weisbrodt, 1987; Bailey et al., 2008).

Figure 1.13. lllustration of theory of myopia development due to interruption to lens thinning adapted

from Multti et al (2010). ‘A’ represents an emmetropic eye, with moderate ciliary muscle size (orange)

and axial length. ‘B’ represents myopic development with a thicker ciliary muscle mechanically
restricting equatorial globe growth and thereby limiting lens (blue) thinning, such that axial elongation

occurs.

In contrast to the previously documented globe profile in myopia, more recent findings have
suggested that myopes rarely display prolate posterior chamber shapes (Gilmartin et al.,
2013). Regarding the vitreous chamber shape measured by MRI, the investigators describe
emmetropic eye shape as being evidently oblate elliptical in shape, and in myopia, also an
oblate ellipse but to a lesser extent such that the myopic vitreous chamber shape
approximates to a spherical globe profile. It has been proposed that the myopic spherical
globe shape may represent a biochemical limitation on advancing axial growth. Therefore,
more oblate myopic eyes may be at increased risk of myopic progression than myopes with
less oblate globe shapes (Gilmartin et al., 2013). Prolate vitreous chamber shapes are likely
to be just be distinctive to pathological myopia and high myopia (Moriyama et al., 2011;
Moriyama et al., 2012; Ohno-Matsui et al., 2012).
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1.6 Theories of myopia development relating to the ciliary muscle

Theories of myopia development are extensive and a full review of all the theories is beyond
the scope of this thesis. However, the theories linking myopia aetiology with accommodation

and thereby the ciliary muscle, are documented in the following sections.

1.6.1 The hyperopic defocus model

A prevailing hypothesis concerning myopic development is the hyperopic defocus model
(Harb et al., 2006; Mutti et al., 2006; Mutti 2010; Woodman et al., 2011). In 1978, it was
demonstrated that modest environmental changes to the chick during early visual experience
could result in a high level of myopia in this species (Wallman et al., 1978). Restriction to just
the frontal visual field of the chicks produced extreme changes in ocular refraction (up to -
24.00 D). Lateral field restriction was produced by translucent, hemispherical lenses that
occluded each eye and a trapezoidal notch incised on the front of the occluder enabled the
chicks to have frontal vision. The occluders were attached from hatching and were replaced
by successively larger ones as the chicks grew. At 4- 7 weeks the chicks were then refracted
by streak retinoscopy, confirming highly myopic refractive errors. A decade later, work by
Schaeffel and co-workers validated the research by showing that the axial length of the chick
eye could be altered through the dioptric power and sign of the lenses provoking refractive
error (Schaeffel et al., 1988).

Subsequently, several studies utilising similar approaches have further developed the theory
that eye growth is guided towards emmetropia by a visual feedback mechanism, detecting
the sign and extent of blur (Irving et al., 1992; Wildsoet and Wallman, 1995; McFaddden et
al., 2004; Smith et al., 2005; Berntsen et al., 2011; Ho et al., 2012). Specifically, according to
the hyperopic retinal defocus model, the focal point of stimuli forms behind the retina, and
this is believed to stimulate axial elongation so that the focal point is moved on the retina
(Harb et al., 2006; Mutti et al., 2006; Berntsen et al., 2010), as shown in Figure 1.14.
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Figure 1.14. lllustration of the hyperopic defocus model. The light rays (red dotted lines) meet at a
point posterior to the retina, on the blue vertical line. The eye is stimulated to grow towards this blue

line (shown by blue arrows) so that the focal point falls on retina.

In contrast, myopic retinal defocus appears to inhibit axial growth, though this is vastly more
robust in the chick eye than the mammalian eye, with the choroid of the chick actually pushing
the retina forward towards the myopic conjugate point (Wallman et al., 1995; Wildsoet and
Wallman, 1995; Mutti et al., 2006); several other animal species including the marmoset
(Graham and Judge, 1999), monkey (Smith and Hung, 1999), and guinea pig (McFadden et

al., 2004) all demonstrated this response.

1.6.2 Hyperopic defocus and accommodative lag

Accommodative lag is the usual tendency to under accommodate to high demand stimuli and
can be defined as the positive difference between the accommodative demand and
accommodative response. This accommodative parameter can be accurately measured with
an autorefractor to Badal stimuli (Berntsen et al., 2010). The findings that myopic subjects
between ages 5- 18 years accommodate with less accuracy than emmetropes, producing a

lag of accommodative response, suggests there is a link with the resulting hyperopic retinal
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defocus and accelerated axial growth in not just the animal based exemplar, but also in
human myopia (Gwiazda et al., 1993; Gwiazda et al., 1995; Multti et al., 2006; Berntsen et al.,
2010; Berntsen et al., 2011). Henceforth, what is of particular interest is whether increased
accommodative lag is a precursor/ risk factor for myopia, or a consequence of the refractive

condition.

Several studies on human participants (Goss, 1991; Drobe and Saint-Andre, 1995; Gwiazda
et al., 2005) have indicated that accommodative lag is increased prior to myopia onset. A
longitudinal investigation by Gwiazda and co-workers (2005) identified an increase in
accommodative lag in pre-myopic children two years before the onset of myopia. However,
subsequent research by Mutti found that increased accommodative lag followed myopia
onset by one year or greater (Mutti et al., 2006), in agreement with studies documenting
increased lag amongst myopic children (Gwiazda et al., 1993; Gwiazda et al., 1995). Results
from this investigation indicated that ‘became-myopic’ children (those who had at least one
non-myopic examination and developed myopia of at least -0.75 D in each principal meridian)
that showed increased lag at myopia onset were those wearing spectacle correction, but this
finding is unlikely to be a useful predictive factor of myopia as these children were already
identified as being myopic by wearing the negative spectacle correction. The reason these
children displayed a higher lag could simply be a result of additional accommodative demand
with their correction in place. Similarly, accommodative lag was decreased along with
accommodative demand for intermediate distance tasks in became-myopic children when
their refraction was not fully corrected. This signifies the possibility that perhaps less
hyperopic defocus is subjected to children with uncorrected myopia than with emmetropes
during clinically substantial myopic development, providing they partake in intermediate-work
visual tasks for a significant amount of time. It has been stated that accommodative lag might
be a causative factor if lag escalated within a year before myopia onset, and the narrowness
of this time scale reduces the basis of any preventative intervention as well as likelihood of it

being a causative factor (Mutti et al., 2006).

Interestingly, whilst accommodative lag is found to be greater in young progressing myopes
than for emmetropes, it appears that the accommodation system may adapt and increase its
response once myopia is stabilised, such that the differences in lags between stable myopic
adults and adult emmetropes disappear (Abbott et al., 1998; Nakatsuka et al., 2003;
Seidemann and Schaeffel, 2003; Harb et al., 2006). Work investigating accommodative
behaviour during sustained reading tasks in emmetropes and myopes (Harb et al., 2006)
showed no difference in lags between the two refractive categories during extended periods,

consistent with various studies investigating brief accommodative periods (Gwiazda et al.,
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1993; Nakatsuka et al., 2003; Nakatsuka et al., 2005). Similarly, more recent studies found
an absence of a relationship between accommodative lag and myopia progression in children
(Weizhong et al., 2008; Berntsen et al., 2011), disputing the hypothesis that foveal hyperopic

defocus instigates myopia progression.

Blur adaptation is a neural mechanism which allows compensation of optical defocus by the
visual system, to improve defocused visual acuity without changing ocular refraction
(Pesudovs and Brennan, 1993; Mon-Williams et al., 1998) and has been considered as a
possible process linked to accommodation and myopia development (Harb et al., 2006; Mutti
etal., 2006). Emmetropes and myopes both undergo blur adaptation, but this has been shown
to be greater in myopic subjects, indicated from the improvements in grating acuity that they
experience (George and Rosenfield, 2004). Controversially, another investigation showed an
improvement in the accommodative response of myopes using blur adaptation from a
diffusing film which was then removed, yet this had no effect on the response in emmetropic
subjects (Vera-Diaz et al., 2004). So if a greater amount of blur adaptation improves visual
acuity and/ or accommodative response, it appears improbable that blur adaption is

responsible for the elevated accommodative lag following myopia onset (Mutti et al., 2006).

The AC/A ratio is the amount of accommodative convergence (AC, prism dioptres) per unit
of accommodative (A, Dioptres) response, and is a fundamental aspect of an individual's
ocular motor system (Mutti et al., 2000). Many cases of myopia show increased AC/A ratio
(Gwiazda et al., 1999; Mutti et al., 2000), so it is this that may be responsible for the elevated
lag, as sensory discrepancies between myopes and emmetropes may explain
accommodative lag but do not account for the elevated convergence. The principle of this
alternative viewpoint is that increased equatorial tension may result from excessive ciliary
muscle and/ or lenticular stretch in the larger myopic eye (Mutti et al., 2000) and it is this that
may account for these accommodative characteristics linked with myopia (Mutti et al., 2006).
Physically, ciliary muscle tension could also warrant the more prolate ocular shape that has
previously been observed in myopia (Mutti et al., 2000; Atchison et al., 2004; Logan et al.,
2004; Stone and Flitcroft, 2004; Mutti et al., 2006; Verkircharla et al., 2012). It has been
speculated that a mutual factor could link together a poorer accommodative response and
myopia (Gwiazda et al., 1995) and it is proposed that this mutual factor is a pseudocylopleged
state occurring in the eye at risk of myopia, and recently myopic eye. An increase in ciliary
tension could heighten the accommodative effort required, giving rise to this term of
pseudocycloplegia, as it reflects a trio of accommodative characteristics in cyclopleged eyes
(Mutti et al., 2000; Mutti et al., 2006): a decline in tonic accommodation (Gilmartin and Hogan,
1985), a higher AC/A ratio (Gwiazda et al., 1999; Mutti et al., 2000) and an increased
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accommodative lag (Gwiazda et al., 1993; Mutti et al., 2000; Harb et al., 2006). Although
increased magnitudes of tonic accommodation is linked with myopia onset in adults (Jiang,
1995), longitudinal investigations however, do not support this notion (Mutti et al., 2000).
Investigations have established that in spite of a relationship with prevalent refractive errors,
tonic accommodation levels in non myopes are not a risk factor for myopia development
(Zadnik et al., 1999; Allen and O’Leary, 2006) and the concept is not discussed further in this
thesis.

Researchers have hypothesised that the thicker ciliary muscle does not contract as
accurately, resulting in an increased accommodative lag and resultant hyperopic defocus.
However, whilst many researchers have described the morphology of the ciliary muscle, there
is a paucity of information regarding how the morphology impacts accommodative function, if
at all; one objective of this thesis is to fill this gap to enhance our understanding if, and how

altered ciliary muscle morphology impacts on accommodative function.

1.6.3 Accommodative microfluctuations and refractive error

Microfluctuations are minute alterations in the ocular refractive power during steady- state
accommodation (see Figure 1.15) and are comprised of both high and low frequency
components (Campbell et al., 1959; Kotulak and Schor, 1986; Winn et al., 1990; Schultz et
al., 2009). An increase in the amplitude of the fluctuations occurs systematically with
increasing stimulus demand, up to approximately -4.00 D (Kotulak and Schor, 1986; Harb et
al., 2006), predominantly as the power of the low frequency component increases (Day et al.,
2006; Schultz et al., 2009).
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Figure 1.15. A typical accommodative response sample showing microfluctuations from a

PowerRefractor measurement using -4.00 D stimulus demand.
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Whilst the high frequency component appears to mirror noise from the arterial pulse in the
accommodative apparatus (Collins et al., 1995), not arising from anterior and posterior
crystalline lens optical oscillations, the low frequency component appears to result from such
lenticular oscillations, shown by ultrasound (Van der Heijde et al., 1996; Schultz et al., 2009).
The power of this high frequency component attains a peak around the middle of the
accommodative span or approximately -3.00 to -5.00 D, thereafter decreasing as the near
point is approached (Miege and Denieul, 1988; Toshida et al., 1998). Comparatively,
accommodative fluctuations of the low frequency component are sustained drawing towards
the near point (Schultz et al., 2009). Importantly, the low frequency component may be
involved in the mediation of the accommodative response (Charman and Heron, 1988; Winn
et al., 1989; Schultz et al., 2009) owing to its link with conditions leading to a greater depth of
focus (Schultz et al., 2009) (e.g. amplified blur; Niwa and Tokoro, 1998) and smaller pupil
size (Stark and Atchison, 1997). It is not influenced by the tension fluctuations of the zonules
or lens capsule and has therefore been proposed to arise from a certain intrinsic characteristic
of the lens, or feedback-control of noise in accommodative neural input (Miege and Denieul,
1988).

Refractive error groups have different microfluctuation characteristics. With a -4.00 D stimulus
in a Badal system, investigators observed an increased power of the low frequency
component with late-onset myopia, compared with that of early onset myopia and emmetropia
(Seidel et al., 2003). Yet, these variations were not observed in free-space viewing (Seidel et
al., 2005). Using multiple stimulus levels, late-onset myopes showed more power in the high
frequency component unassociated with stimulus demand, and larger microfluctuations
during long-distance viewing were evident. Such a rapid increase in power was not observed
with the low frequency component when late-onset myopic subjects observed
accommodative stimuli further than -3.00 D, as was the case with other refractive error groups
(Day et al., 2006). A more recent study found that the power of the accommodative
microfluctuations was more variable amongst myopic individuals than in emmetropes (Harb
et al., 2006). Myopic subjects also demonstrated a significantly greater rise in accommodative
microfluctuation power with closer sustained reading demands and with higher levels of
myopia, at the closest reading demand (Harb et al., 2006). It may be that the reason for this
variation in results between these studies is that Harb and co-workers measured the
accommodative microfluctuations during sustained reading when the subjects were likely to
be fatigued, hence there is great importance in differentiating between fatigue-related

accommodative microfluctations and those anatomically based (Schultz et al., 2009).
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1.6.4 Ciliary muscle and accommodative microfluctuations

Fixation on a stationary near object results in rapid fluctuations about the mean level of
accommodation (Charman and Heron, 1988). The power of the high frequency component
peaks around the middle of the accommodative range for young individuals, or approximately
-3.00 to -5.00 D, thereafter decreasing as the near point is approached (Miege and Denieul,
1988; Toshida et al., 1998; Schultz et al., 2009). Contrastingly, low frequency accommodative
fluctuations are maintained towards the near point (Schultz et al., 2009). The low frequency
microfluctuations may be implicated in the mediation of the accommodative response
(Charman and Heron, 1988; Winn et al., 1989; Winn, 2000; Schultz et al., 2009; Sreenivasan
et al., 2011) due to its relationship with conditions leading to a greater depth of focus (e.g.
amplified blur (Niwa and Tokoro, 1998) and smaller pupil size (Stark and Atchison, 1997)); it
has therefore been proposed to arise from a certain intrinsic characteristic of the lens, or
feedback-control of noise in accommodative neural input, since they are not stimulated by
zonular tension or lens capsule fluctuations (Miege and Denieul, 1988; Schultz et al., 2009;

Sreenivasan et al., 2011).

A study in children (aged 8- 15 years) investigated the relationship between accommodative
microfluctuations and size of the ciliary body (Schultz et al., 2009). Results indicated that the
high frequency component of accommodative microfluctuations had reduced power in
association with thicker ciliary bodies measured at CM2, by 86 % for every 50 um increase
in ciliary body thickness. The authors suggest that perhaps a thicker ciliary body (associated
with myopia) diminishes the effects of arterial pulse on accommodation and further
hypothesised that with a thicker ciliary body, there is an improvement in the stability of the
high frequency component of the accommodative response (Schultz et al., 2009). In
accordance with this finding, higher amounts of hyperopia were associated with greater

powers of the high frequency accommodative fluctuations.

Such findings however, are at variance with other investigations reporting increased
accommodative flucuations with myopia (Seidel et al., 2003; Day et al., 2006; Harb et al.,
2006; Langaas et al., 2008). For instance, studies have shown that subjects with late-onset
myopia had increased accommodative microfluctuations during their myopia progression
(Seidel et al., 2003; Day et al., 2006) and the power of the accommodative microfluctuations
is more variable amongst myopic individuals than that of emmetropes (Harb et al., 2006). In
the latter study, myopic subjects also demonstrated a significantly greater rise in
accommodative microfluctuation power with closer sustained reading demands and with

higher levels of myopia, at the closest reading demand, contradicting the hypothesis that a
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thicker ciliary muscle may stifle the effects of arterial pulse on accommodation. Schultz and
co-workers (2009) predict the reason for this variation in results between these studies is that
Harb et al (2006) measured the accommodative microfluctuations during sustained reading
when the subjects were likely to be fatigued, and further stated the importance of
differentiating between fatigue-related accommodative microfluctations and those
anatomically based. Whilst accommodative microfluctuations could be another characteristic
of accommodation that is transitorily affected by the progression of myopia, more work is
needed to establish whether a greater stability of accommodative microfluctuations is a
precursor to myopigenesis.

1.6.5 Accommodative axial length changes

Several studies have demonstrated that intense close-work tasks, especially those involving
high levels of cognitive demand, may result in transient periods of myopia (e.g. Wolffsohn et
al., 2003), leading to the development of permanent myopia (Adams and McBrien, 1992;
Mallen et al., 2006). Despite the uncertainty of the precise sequence of events causing
myopia development, it is evident that vitreous chamber elongation is the chief structural
correlate of myopia in both adults and children (McBrien and Adams, 1997; Mallen et al.,
2006; Gilmartin et al., 2013). Many previous investigations have reported a temporary
increase in axial length during (Drexler et al., 1998; Mallen et al., 2006; Read et al., 2010) or
directly following (Woodman et al., 2010) an accommodative task, and have compared the

differences in expandability between emmetropic and myopic subjects.

Partial coherence interferometry (PCI) was implemented by Drexler and co-workers (1998)
to study the effect of accommodation on axial length (AXL) in myopic and emmetropic
subjects. When observing a closed-loop accommodative target at a distance corresponding
to their individual amplitude of accommodation (4.1 + 2.0 D for the myopic group and 5.1
1.2 D for the emmetropic group), the subjects displayed transient AXL increases; axial
elongation was greatest in emmetropic eyes (mean 12.7 pum), with myopic eyes lengthening
by a significantly lesser magnitude (mean 5.2 um). It has been stated that, similar to previous
reports of increased accommodative lags in myopes (Drexler et al., 1998; Gwiazda et al.,
2005; Harb et al., 2006; Mutti et al., 2006), it could be assumed that the magnitude of
accommodation, and hence AXL change during a near task would be slightly decreased in
the myopic subjects (Woodman et al., 2011). Despite this, results showed the opposite; larger
increases in AXL following the near task were observed in myopic subjects compared to

emmetropes: at 6 D, AXL change was 37 + 27 pm and 58 = 37 pum for emmetropes and
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myopes, respectively (Mallen et al., 2006) and at 5 D, AXL change was 10 + 15 um and 20 £

20 um for emmetropes and myopes, respectively (Woodman et al., 2010).

The work of Mallen et al (2006) also highlighted that the magnitude of transient axial
elongation increased with the demand level of accommodative stimulation, as demonstrated
by Drexler et al (1998) in emmetropes. Moreover, it has been ascertained that this effect not
only occurs in the emmetropic eye, but is more pronounced in myopic participants (see Figure
1.16) (Mallen et al., 2006). The differences between both of these studies may be attributed
to the fact that the latter investigation used a larger cohort of emmetropes and early-onset
myopes with higher amplitudes of accommodation compared with the former study. The
investigators of the latter study also controlled the accommodative demand between both
emmetropic and myopic groups (2, 4, and 6 D above baseline), as opposed to the greatest
extent of accommodative effort at the near point. In the study by Drexler et al (1998), the
accommodative response of the myopic participants was stimulated to a lesser degree than
that of the emmetropic category (mean values of 5.1 D for the emmetropes and 4.1 D for
myopes). As such, it is possible that the accommodative ocular expandability of the myopic
subjects was somewhat underestimated (Mallen et al., 2006). Transient increases in axial
length were again observed during accommodation, but in contrast to Drexler et al., the

greatest magnitude of elongation was observed in myopic eyes.
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Figure 1.16. Magnitude of mean transient axial elongation in emmetropes (dashed line) and myopes

-

(solid line) that occurred in the investigation by Mallen et al (2006) at 2 D, 4 D and 6 D. n = 60, error

bars indicate the standard deviation.

The IOLMaster (Carl Zeiss Meditec, Inc., Dublin, CA) utilises an average ocular refractive
index in order to calculate axial length from the optical path length, and hence may be liable
to an overestimation of up to 0.02 mm (20 pm) in axial length for an eye accommodating to a
10 D stimulus in comparison with PCI methods which assign individual refractive indices for
the ocular components (Mallen et al., 2006). Previous work has established that changes in
the accommodative apparatus during accommodation may produce errors in axial length
measurements obtained from the IOLMaster (Atchison and Smith, 2004). The basis of this
potential error is the increase in optical path length (i.e., the outcome of the linear aspect of
a specified optical medium and the refractive index of that medium; Mallen et al., 2006) that
results from the forward movement of the anterior vertex of the crystalline lens into the anterior
chamber and the thickness increase of the crystalline lens during the accommodative
response. During the response, the anterior portion of the crystalline lens which has a higher
refractive index (n’ = 1.386) than that of the aqueous humour (n’ = 1.336) it displaces, results

in an increase in optical path length (Atchison and Smith, 2004; Mallen et al., 2006; Read et
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al., 2010; Woodman et al., 2010; Woodman et al., 2012). Despite the possible I0OLMaster
exaggeration of the axial elongation accompanying the accommodative response that was
not corrected for, myopic eyes still underwent a greater magnitude of transient axial
expandability than that of emmetropes at higher accommodative demand levels (Mallen et
al., 2006).

Similarly, it was demonstrated in a more recent investigation that immediately after a period
of sustained close work, significant axial elongation occurred in young adult subjects
(Woodman et al., 2010). Such work follows on from several previous investigations that
determined the occurrence of significant axial elongation during accommodation (Drexler et
al., 1998; Mallen et al., 2006; Read et al., 2010), by determining that axial elongation also
continues for a brief episode following the cessation of accommodation. Myopic subjects were
segregated into either progressing or stable subcategories and it was found that the
progressing myopes displayed the greatest magnitude of axial expansion of any group
instantly succeeding the near task (Woodman et al.,, 2010). Ten minutes after the
accommodative task, axial lengths had reverted to their original levels (Woodman et al., 2010;
Woodman et al., 2012).

The investigation by Mallen et al (2006) also showed that there was no significant link
observed between MSE and transient expandability during accommodation, or between
baseline AXL and transient expanability. Such findings support a recent study which
investigated the time course of expandability and recovery of axial length during a 30 minute
4 D accommodative task (Woodman et al., 2012). Despite that the axial elongation during the
accommodation task appeared to have a slightly higher magnitude in the myopic participants,
corrected axial length data highlight that discrepancies in accommodative expandability
during the task between the emmetropic and myopic groups were not statistically significant
(Woodman et al., 2012). Nevertheless, in the post- accommodative task measures, significant
differences associated with refractive error were determined; Instantly following near task
culmination AXL in the myopes was significantly greater than baseline levels (13 £ 28 um)
and myopes demonstrated a significantly greater change in corrected AXL from baseline
compared to emmetropes, both directly after the accommodative task and 5 minutes following
task cessation. However, none of the AXL changes in the emmetropic group post-task were
significantly different from baseline (Woodman et al., 2012). Contrary to this, a further
investigation using the Lenstar LS 900 (Haag-Streit, Koeniz, Switzerland) noncontact optical
biometer at three different accommodative demand levels (0 D, 3 D and 6 D) showed no

significant difference in the magnitude of accomodative expandability between emmetropes
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and myopes, with and without correction for axial length measurements (Read et al., 2010).
As a significant variation in elongation was identified for a 6 D accommodative stimulus
(Mallen et al., 2006), the investigators to agreed with the concept that there is an intrinsic
difference in the structural disposition of the myopic eye, such that eyes of myopic individuals
are more prone to transient biometric alterations during high accommodation levels, than their
emmetropic equivalents; changes in scleral biochemical, biomechanical and structural
properties have been previously reported to show a link with myopia (Mallen et al., 2006;
McBrien et al., 2009; Woodman et al., 2010; Woodman et al., 2012), which may therefore
account for the disparities observed between myopes and emmetropes in accommodative
expandability studies (Mallen et al., 2006; Woodman et al., 2010).

1.6.6 Ciliary muscle and accommodative axial length changes

As discussed in section 1.5.1, hyperopic defocus arising as a consequence of increased
accommodative lag during near vision has been shown to be a plausible factor in
myopigenesis. A very slight reduction of the amount of this hyperopic blur may occur from the
transient axial elongation during sustained accommodative effort (Mallen et al., 2006).
Though this effect has been shown to be more pronounced in myopes than emmetropes, the
authors stated that it is unlikely to be of any clinical significance. Transient elongation could
be a result of the ciliary muscle contraction transmitting an inward pull force to an area of the
sclera and choriod adjacent to the ciliary body. In order to maintain a constant ocular volume
from this effect, a rearward displacement of the posterior portion of the globe is required,

thereby resulting in a transient axial length increase (Mallen et al., 2006).

Whilst to date, the cornea is not a recognised structure involved in the Helmoltz theory of
ocular accommodation (Ni et al., 2013), corneal alterations with accommodation have been
debated across the literature (Buehren et al., 2003; Yasuda et al., 2003; Yasuda and
Yamaguchi, 2005; Read et al., 2007). Yasuda and Yamaguchi (2005) demonstrated a
steepening of the central cornea instigated by ciliary muscle contraction, induced by
pilocarpine. In contrast, Read et al. (2007) found no significant corneal changes with
accommodation in young participants. However, it was later indicated that the results from
the investigation by Read and co-workers (2007) did not wholly disprove corneal changes (Ni
et al., 2013) as one subject in the study (n = 11) was found to have significant accommodative
corneal alterations, and suggested that the posterior cornea may be affected with ocular
accommodation (Read et al., 2007). A relatively recent study also reported that
accommodation produced corneal changes, demonstrating alterations in central and

peripheral corneal curvature (a steepening of both anterior and posterior cornea) in both
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young and presbyopic subjects (Ni et al., 2013). Such findings therefore signify the capability
for transient biometric ocular alteration during the accommodative response (Yasuda and
Yamaguchi, 2005; Mallen et al., 2006); the cornea had been defined as elastic,soft and
modifiable, and is implicated in the accommodation proccess (Ni et al., 2013). It has been
proposed that the reason for the greater elongation seen in myopic eyes, is decreased ocular
rigidity and a greater efficiency of force transmission from the ciliary muscle to the sclera and
choroid in myopic subjects (Mallen et al., 2006; Woodman et al., 2010). However, another
investigation reported no variance in ocular rigidity between myopic and emmetropic children
(Schmid et al., 2003). Yet, it has been indicated that there may be discrepancies between
myopes and emmetropes in the morphology of the ciliary body, causing ciliary muscle forces
to be transmitted differently to the choroid and sclera amongst these different refractive
groups (Mallen et al., 2006; Woodman et al., 2010; Ghosh et al., 2014).

An alternative anatomical change has been proposed which could stimulate the apparent
increase in axial length: a thinning of the choroid, as opposed to a stretching of the globe
(Woodman et al., 2012). In the investigation by Woodman and co-workers (2012), some
evidence of decreased choroidal thickness during accommodation was found, and such
choroidal changes displayed a significant negative correlation with the axial length alterations.
Myopic participants demonstrated the most noticible decreases in choroidal thickness during
accommodation, with the greatest magnitude of change in choroidal thickness percieved 10
minutes following commencement of the accommodative task. The choroid of the myopic
subjects became thinner on average by 9 + 18 um, and the emmetropes by 7 £ 22 um; the
emmetropic participants showed no significant reduction in choroidal thickness with
accommodation (Woodman et al., 2012). The magnitude of alteration in choroidal thickness
during accommodation compared to axial length (38 %), along with the relatively weak
relationship between the two measures led the authors to conclude that whilst choroidal
thickness alterations appear to influence the alterations in axial elongation, multiple other
factors such as scleral stretch are likely to also contibute to accommodative axial elongation
(Woodman et al., 2012).

It is feasible that ciliary muscle morphology impacts on transient accommodative elongation,
though previous work has not examined this. Ciliary muscle parameters could be linked to
ocular biometric differences between emmetropes and myopes. The present body of research
is the first to explore the potential relationship between ciliary muscle characteristics with

refractive error and accommodation, and is documented in subsequent chapters.
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1.7 Ciliary muscle morphology in amblyopia and anisometropia

Amblyopia is a developmental disorder due to abnormal visual input in early life, during the
critical period(s) of visual development, that causes reduced visual acuity in the affected
eye(s) and subsequent binocular dysfunction (Wiesel and Hubel, 1963; Webber and Wood,
2005; Veneruso et al., 2014). The prevalence of the condition in the population is
approximately 3 % (Thompson et al., 1991; Attebo et al., 1998; Polling et al., 2012). Clinically,
amblyopia is characterised by a one or more line difference in visual acuity between both
eyes (Thompson et al., 1991), cannot be detected through physical ocular examination, and
can be reversed by therapeutic treatment in some cases (Webber and Wood, 2005). When
amblyopia, the most common cause of uncorrectable reduced vision in children and in adults
up to 60 years of age, is not treated, a permanent deficit in vision ensues (Wang et al., 2000;
Simons, 2005; Bhola et al., 2006; Xiao et al., 2015). The most common risk factors for
amblyopia include strabismus, presence of heterophoria or micro-squint (Attebo et al., 1998;
Webber and Wood, 2005), and anisometropia (Von Noorden, 1985; Attebo et al., 1998;
Webber and Wood, 2005), defined as a difference in the sphere or cylinder between the two
eyes of at least one dioptre (Attebo et al., 1998; Webber and Wood, 2005; Hashemi et al.,
2013). These conditions have therefore principally been targeted in childhood vision

screenings (Webber and Wood, 2005).

Biometric data on the changes in ocular parameters and their involvement in emmetropisation
have been widely studied (Ehrlich et al., 1997; Mutti and Zadnik, 1998; Zadnik et al., 2003;
Mutti et al., 2005; Mutti 2010; Flitcroft, 2014), as well as the ocular biometric correlates in
myopia (McBrien and Adams, 1997; Atchison et al., 2004; Mutti et al., 2007; Buckhurst et al.,
2013; Gilmartin et al., 2013). As such, a growing body of evidence supports the findings of
increased length and thickness of the ciliary muscle (Oliveira et al., 2005; Bailey et al., 2008;
Schultz et al., 2009; Sheppard and Davies, 2010; Buckhurst et al., 2013). However, whilst
information relating to ocular biometric data in amblyopia has been investigated, there have
been no reports of ciliary muscle morphology in amblyopia. Accommodation is considered to
be a symmetrical response (Charman, 2004; Horwood and Riddell, 2010), whilst amblyopes
demonstrate aniso-accommodation, with the accommodative response being driven by the
least amblyopic eye (Horwood and Riddell, 2010). Similarly, reports indicate that the stimulus-
response slope of the amblyopic eye is charactistically flatter than in the nonamblyopic eye
(Ciuffreda et al., 1984; Horwood and Riddell, 2010) Since amblyopic eyes have a reduced
visual output and accommodation (Ciuffreda and Rumpf, 1985; Maheshwari et al., 2011), it
would intuitively be thought that ciliary muscle morphology should be altered in the amblyopic
eye and asymmetry of the ciliary muscle across both eyes may be expected where amblyopia

has been present for most of an adult’s life.
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Despite a paucity of information relating to ciliary muscle morphology and biometry in adult
amblyopes, paediatric investigations indicate that reduced axial length is present in some
amblyopias (Kugelberg et al., 1996; Cass and Tromans, 2008). Ocular parameters and their
relationship in both strabismic and anisometropic amblyopic eyes were studied (Cass and
Tromans, 2008) and it was reported that the components of the amblyopic eye differ
physically from their fellow non-amblyopic eye across both amblyopic groups. Whilst the
anisometropic amblyopic eye seemed to be a proportionally smaller version of the fellow eye
largely due to a greater magnitude of hyperopia, the strabismic amblyopic eye was found to
have a disproportionally greater degree of anterior chamber reduction and crystalline lens
thickness, a reduced vitreous chamber depth and therefore total axial length (Cass and
Tromans, 2008); the authors suggested that the strabismic eye may be under-developed,
with a delay of emmetropisation in the infantile phase though it has not been ascertained
whether the reported biometric characteristics are a consequence of cause of amblyopia,
hence, it is feasible that the ciliary muscle in amblyopia is also under-developed. More
recently, a biometric investigation was carried out on an anisometropic adult cohort aged 40
— 64 years (Hashemi et al., 2013) and reported that axial length asymmetry had the strongest
relationship with anisometropia, in keeping with biometric findings in anisometropic children
aged 6- 7 and 12 — 13 years (O'Donoghue et al., 2013), though ocular biometry such as
corneal power, lens power and anterior chamber depth were also linked to anisometropia in

the investigation by Hashemi and co- workers (2013).

The literature on ciliary muscle morphology in anisometropia without amblyopia, albeit very
limited, suggests that anisometropic subjects do not follow a different trend from the rest of
the population (Kuchem et al., 2013). Evidence from this investigation using AS-OCT to
acquire ciliary muscle images, showed that in low levels of anisometropia (mean 1.85 + 1.24
D) the ciliary muscle thickness of the more myopic eye does not differ significantly from that
of the shorter, more hyperopic fellow- eye. Similarly the magnitude of the interocular
difference in refractive error was not linked with an interocular difference of ciliary muscle
thickness at any measured thickness parameter. As such, the authors stated that in
anisometropic ocular development, it is possible for an eye to undergo a greater degree of
myopic expansion than its fellow eye, without the concomitant thickening of the ciliary muscle
(Kuchem et al., 2013) that is generally observed in isometropic myopia (Oliveira et al., 2005;
Bailey et al., 2008; Schultz et al., 2009; Buckhurst et al., 2013). However, the results from a
previous investigation (Muftuoglu et al., 2009), differ greatly from the work by Kuchem and
co-workers (2013), as greater ciliary muscle thickness was observed in the more myopic eye

of most subjects with unilateral high myopia.

59



As amblyopic eyes have reduced visual output and accommodation, it is of interest to
understand how amblyopia which develops at a very young age, may impact on the growth
and development of the ciliary muscle. Ciliary muscle morphology in anisometropic and

strabismic amblyopia is documented for the first time, and detailed in chapter 6 of this thesis.
1.8 Instrumentation and measurement techniques

The subsequent experimental chapters describe the application of a range of advanced
instrumentation to image the accommodative apparatus and measure structural and
refractive changes. An account of the technical specification of the instruments used along
with specific measurement techniques and bespoke instrument attachments developed for

ophthalmic research, are discussed in this section.
1.8.1 Grand Seiko WAM-5500 auto ref/keratometer

Autorefraction is widely used in clinical practice during the pre-screening examination as a
starting point for subjective refraction, as well as in a research setting to objectively measure
the refractive power of the eye (Bullimore, 2000; Sheppard and Davies, 2010a) through
calculation of the vergence light reflected from the retina (Benjamin, 2006). The literature
recognises that most modern open-view autorefractors are precise and highly consistent
compared with subjective refraction (Kinge et al., 1996; Elliott et al., 1997; Bullimore et al.,
1998; Mallen et al., 2001; Cleary et al., 2009; Sheppard and Davies, 2010a), making them
effective tools in research investigations of refractive error (Bullimore et al., 1998; Walline et
al., 1999).

The Grand Seiko WAM-5500 Auto Ref/Keratometer (Grand Seiko Co. Ltd., Hiroshima, Japan)
is a binocular open-view instrument (see figure 1.16) that measures pupil size and
keratometry in addition to refractive error, and has been previously described and validated
(Sheppard and Davies, 2010a). Instrument-induced myopia generated by proximal
accommodation is characteristic of closed-view devices, and is reduced by the open-view
specification (Hennessy, 1975; Smith, 1983; Rosenfield and Ciuffreda, 1991; Sheppard and
Davies, 2010a). An internal 5.6 inch colour monitor displays the pupil to allow subject fixation
to be monitored and aid instrument alignment with the patient’s visual axis. Pupil size data is
obtained by automatic detection of the iris boundary and successive superimposition of a
circle of best fit. Measurement data is also displayed, of which hard copies can be obtained

from the in-built printer (Sheppard and Davies, 2010a).
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Grand Seiko co, td.

Figure 1.17. The Grand Seiko WAM-5500 Auto Ref/Keratometer (Grand Seiko Co. Ltd., Hiroshima,

Japan) within the Ophthalmic Research Group laboratories in Aston University.

Objective refraction is determined by multiple meridian digital analysis of an infra-red
measurement ring, which is reflected off the retina and brought into approximate focus by an
internal motorised rack. The WAM-5500 measures refraction with a range of = 22.00 DS and
+10.00 DC in increments of 0.01, 0.12 or 0.25 D for power and increments of 1° for cylindrical
axis. The repeatability during measurement sessions, calculated from the standard deviation
of 5 measurements obtained in one session is good, with reported values of £ 0.09 D for the
spherical constituent; + 0.14 D for the cylindrical component (Sheppard and Davies, 2010a).
Similarly, between measurement sessions, bias for the spherical constituent were -0.04 +
0.26 D; the cylindrical constituent: -0.07 + 0.29 D, MSE -0.07 + 0.26 D. The difference
between subjective refraction and objective refraction with the WAM-5500 has been
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determined: spherical constituent as 0.04 + 0.41 D; cylindrical constituent - 0.10 + 0.34 D;
MSE - 0.01 + 0.38 D; (Sheppard and Davies, 2010a).

The WAM-5500 like other autorefractors, may underestimate the level of hyperopia in a small
number of young adults which is likely owing to the capability of young adults to expend their
large amplitude of accommodation to achieve maximum clarity of the target (Mallen et al.,
2001; Davies et al., 2003; Sheppard and Davies, 2010a). The minimum pupil size required
for refraction is 2.3 mm, smaller than for several other autorefractors, such as the Shin-Nippon
SRW-5000/Grand Seiko WV-500 (2.9 mm) (Mallen et al., 2001) and Tracey VisualFunction
Analyzer (2.5 mm) (Cleary et al., 2009). Measurement of pupil size is obtained from the
superimposition of a best-fit circle from the automatic detection of the iris boundary and is
guantified in 0.1 mm increments concurrently with objective refraction. Keratometry is
calculated with the instrument by analysis of the diameter of an additional infra-red ring
reflected off the cornea, measured in 3 meridians which are each separated by 60°. Corneal
power can be measured in the range of 33.75- 67.50 D. and corneal radii between 5.0 - 10.0
mm (0.01 mm increments). WAM-5500 keratometry measures are on average steeper
compared with Javal-Schiotz values, by-0.06 + 0.08 mm and -0.05 £ 0.07 mm in the vertical
and horizontal meridians, respectively (Sheppard and Davies, 2010a). The WAM-5500 has
been widely utilised across accommodative studies (e.g. Sheppard and Davies, 2010b;
Alderson et al., 2012).

1.8.2 Distance refractive error measurement technique

Binocular distance refractive error obtained with the Grand Seiko WAM-5500, utilises five
measurements of refractive error taken for each eye, averaged and converted into MSE, for
both eyes. The participant is instructed to look through the screen of the instrument at the

centre of a Maltese cross fixation target through the mirror, stimulating a 6 metre distance.
1.8.3 Stimulus- response accommodative error measurement technique

To obtain stimulus- response accommodation data, static accommodation responses (0.0,
1.0, 2.0, 3.0, 5.0, 6.0, 8.0 D) are measured for the right eye of each participant (with the left
eye occluded with a patch), using the Grand Seiko WAM 5500 with an attached Badal lens
system and participant focussing on the centre of a Maltese cross target (see Figure 1.18),
with five measurements being taken and converted into MSE in the same way as for distance
refractive error. The sequence of stimulus demand level is randomised and the participant is
asked to relax and stare into the distance for approximately 1 minute following measurements
at each stimulus demand level. Myopic participants wear contact lenses appropriate for their

habitual refractive error, for all accommodative measures.
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Figure 1.18. Grand Seiko WAM 5500 with Badal lens system. The participant rests their chin on‘the
chin rest (farthest left) and focusses through the window of the instrument and Badal lens respectively,
to the centre of the Maltese cross. The Maltese cross target can be moved to varying distances to alter

the accommodative demand.
1.8.4 Analysis of stimulus- response accommodation data

The stimulus- response curve has frequently been utilised to assess the overall steady- state
accommodative response (Chauhan and Charman, 1995). Commonly, a single parameter,
the linear regression slope of this function, has been employed to indicate the steady-state
stimulus- response (see Figure 1.19). However, whilst the regression slope is known to be
valuable, it is not a wholly accurate measure of the accommodative response and an
alternative single-figure index to characterise the stimulus-response function has been

proposed (Chauhan and Charman, 1995).
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Figure 1.19. A mean accommodative stimulus- response curve for 100 pre-presbyopic subjects, taken
from author’s own data. The dotted line indicates a 1:1 relationship between the demand of the stimulus
and the response to the stimulus at each demand level; the black complete line represents the mean
accommodative response of the cohort. Error bars indicate the standard deviation. There is a greater

lag of accommodation as stimulus demand is increased.

When analysing the accommodative stimulus- response curves, it is problematic determining
which parameter, if any, of the linear regression analysis to use, as comparisons established
on the curve alone may be misleading, as may be those utilising the correlation coefficient or
intercept of the regression line (Chauhan and Charman, 1995). It would seem more valuable
if there was an amalgamation of all the parameters into a single index which would review
the precision of the response over a given stimulus interval. Chauhan and Charman (1995)
suggested a method of defining such an index and thereby calculated the area between the
best fit curve and the unit ratio; the accommodative stimulus response curves can now be
compared by a method known as the accommodative error index (AEl) (Chauhan and
Charman, 1995) and several subsequent investigations have since employed this method
(e.g. Woodhouse et al., 2000; Allen and O’Leary, 2006). Accurate accommodation at all

stimulus demands is indicated by an AElI of O D. A value > 0 D indicates the level of
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accommodative inaccuracy (Chauhan and Charman, 1995; Woodhouse et al., 2000). The
AEI for the monocular response to targets placed at the seven demand levels (1, 2, 3, 4, 5, 6

and 8 D) will be calculated using the following formula:

ja-m 5] -]

r2

AEI =

Equation 1. Accommodative Error Index (Chauhan and Charman, 1995).

m = slope of response line ¢ = intercept of response line
x1 = farthest stimulus dioptric equivalent X2 = nearest stimulus dioptric equivalent

r = correlation coefficent

1.8.5 Measure of accommodative axial length changes

The Lenstar LS 900 biometer (Haag-Streit AG, Koeniz, Switzerland) is a relatively recently-
developed device used for determination of ocular measurements and performance of
calculations to facilitate in establishing the relevant type and power of intraocular lens for
implantation following removal of the natural crystalline lens during cataract surgery
(Cruysberg et al., 2010). The instrument can measure corneal thickness (CT), anterior
chamber depth (ACD; from corneal endothelium to lens surface), lens thickness (LT), axial
length (AL), retinal thickness (RT) as well assessing keratometry and pupil diameter
(Buckhurst et al., 2009; Rohrer et al., 2009; Cruysberg et al., 2010; Alderson et al., 2012;
Zhao et al., 2013) concurrently through image analysis within each measurement, without
requiring realignment (Buckhurst et al., 2009; Cruysberg et al., 2010; Zhao et al., 2013). The
basis of the Lenstar LS 900 is founded on optical low coherence reflectometry powered by a
superluminescent diode of a broad band light source (20-30 nm) with a centre wavelength of
820 um (Cruysberg et al., 2010). Similar to the IOLMaster, the Lenstar utilises the effect of
time domain interferometric or coherent superposition of light waves to measure ocular
lengths, in a technigue comparable to one-dimensional optical coherence tomography
(Buckhurst et al., 2009). Where the IOLMaster uses a diode laser, the superluminescent
diode used by the Lenstar has a Gaussian shaped spectrum, permitting a higher axial
resolution; thus the terminology optical low coherence reflectometry as opposed to partial

coherence interferometry, has been coined (Buckhurst et al., 2009).
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The precise refractive index and method the Lenstar uses to calculate axial length is
proprietary information, yet, it is established that the instrument does utilise an average ocular
refractive index, in a similar way to the IOLMaster, to convert to geometric length from optical
length in the axial length calculations (Read et al., 2010). Therefore, it is likely as suggested
by Atchison and Smith (2004) that during accommodation, the measurements collected with
the Lenstar may overestimate axial length, due to the biometric changes that occur with
accommodation effectively resulting in an increase of the average refractive index of the eye.
However, because the Lenstar also offers the individual ocular component dimensions per
measurement, the potential error associated with the accommodative measurements can be
reasonably estimated for each individual subject, as achieved in several investigations (Read
et al., 2010; Woodman et al., 2012; Ghosh et al., 2014).

From a single measurement, which is acquired in approximately 20 seconds, all the
mentioned parameters above can be evaluated and multiple measurements can be taken
successively to improve the accuracy (Cruysberg et al., 2010). The ocular measurements
obtained from the Lenstar biometer have been demonstrated to be highly precise, reliable
and comparable to previously validated ocular biometry instruments, including the IOLMaster
(Buckhurst et al., 2009; Rohrer et al., 2009; Cruysberg et al., 2010; Read et al., 2010).

1.8.6 Badal modification of the Lenstar LS 900

Following the preliminary ocular and refractive measurements, each participant will undergo
axial length measures under 2 different accommodative demands (0 D and 5 D). Badal
modifications are utilised for examination of axial length changes with accommodation,

allowing for axial length determination at 0 D and 5 D demands.

All measurements are to be performed on the right eye only while the left eye is occluded.
To allow performance of biometry while participants are accommodating, a similar
experimental setup will be used to that of Read et al (2010) and Alderson et al (2012),
comprising of a back-illuminated text target viewed through a pellicle beam splitter (thickness
approximately 2 um) and + 10 D Badal lens (25.4 mm diameter, 100 mm focal length
achromatic doublet; Edmund Optics) mounted in front of the Lenstar instrument (see Figure
1.20). The eye under investigation is 100 mm from the Badal lens and the 0 D and 5 D

stimulus levels are situated 100 mm and 50 mm, respectively, from the Badal lens.
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Target +10D BS

Lenstar

Figure 1.20 A) Diagram of experimental setup for accommodative axial length changes using the
Lenstar LS 900. A back-illuminated text target is viewed through a beamsplitter (BS) and a +10 D Badal
lens to enable ocular biometry measurements to be performed at different accommodative demand
levels. The back- illuminated text target was positioned to stimulate 0 D from the Badal lens for relaxed
accommodation biometry, and moved 50 mm forward towards the Badal lens for a 5 D stimulus

demand.
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-
Figure 1.20 B) Photograph of the Lenstar LS 900 and bespoke attachment including: pellicle

beamsplitter (A), +10 D achromatic doublet Badal lens (B) and retro-illuminated text target (C).

Pellicle beamsplitters are particularly advantageous owing to their considerable thinness of
approximately 2 pum which minimises undesirable secondary reflections (Alderson et al.,
2012), such that the beamsplitter used exhibited a transmittance of 92 % for the 820 nm
wavelength used by the Lenstar. Measurements with the inclusion of the pellicle beamsplitter
to the optical path with the Lenstar have been tested and shown to be robust; it has been
reported that no statistical significance was present with the beamsplitter inclusion for any
biometric parameters for any subject. However, using the Lenstar calibration eye to again test
for any difference in the biometric parameters with the beamsplitter in place, the only
statistically significant difference was for axial length (at 0.007 mm); this difference cannot be
deemed clinically significant (Alderson et al., 2012).

The accommodative target consists a 5 x 5 grid of high-contrast letters, with each letter
equivalent to 0.8 logMAR. The participants are asked to maintain maximum clarity of the
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letters at all times. Myopic participants wear daily disposable soft contact lenses in a power

appropriate to their refractive error.
1.8.7 IOLMaster

A commercially available optical biometer, IOLMaster (Carl Zeiss Jena, Germany), based on
the principle of dual beam PCI, is a widely used non-contact instrument (Vogel et al., 2001;
Santodomingo-Rubido et al., 2002; Eleftheriadis, 2003). The IOLMaster is a high-resolution
instrument principally developed to establish ocular biometry prior to intraocular lens (IOL)
implantation with cataract extraction (Santodomingo-Rubido et al., 2002). A resolution of 0.01
mm for AXL measurements is utilised (Drexler et al., 1998; Mallen et al., 2006) and such
measures are acquired along the visual axis, whilst the participant fixates an internal light.
The device employs infrared light (wavelength of 780 nm) of short coherence to measure the
optical AXL, which is converted to geometric AXL by utilising a group refractive index
(Hitzenberger et al., 1993; Vogel et al., 2001; Read et al., 2010). Additionally, the IOLMaster
measures the ACD, corneal curvature, and the corneal diameter and calculates the optimum
IOL power from the biometric data obtained, operating several IOL power calculation formulae
built within its internal software (Eleftheriadis, 2003). The high resolution, precision, accuracy,
and reproducibility of the AXL biometry obtained with the IOLMaster instrument have been
demonstrated, (Lam et al.,, 2001; Vogel et al., 2001; Santodomingo-Rubido et al., 2002;
Eleftheriadis, 2003) and has henceforth been widely implemented across ocular biometric
research (Atchison and Smith, 2004; Mallen et al., 2006; Bailey et al., 2008; Sheppard and
Davies, 2010b; Kuchem et al., 2013).

The IOLMaster utilises infrared light (A = 780 nm) of short coherence for the AXL measures,
which is converted to geometric AXL by using a group refractive index (Vogel et al., 2001,
Read et al., 2010. After being introduced in Germany in September 1999 and accepted in
2000, there have since been several versions of the instrument over the years (Vogel et al.,
2001); whilst dense cataracts may limit the ability to measure AXL, the software and hardware
upgrades (e.g. version 5 and 500) have increased successful acquisition in dense cataract
cases (Hill et al., 2008; Epitropoulos, 2014). A noise reduction filter is applied by the
IOLMaster 500 to each individual scan, diminishing the variable noise in each measurement
whilst calculating the composite signal; this relatively recent version offers an AXL calculation
algorithm that uses a composite of 20 scans (Epitropoulos, 2014). The most recent version
is the IOLMaster 700 and incorporates swept source OCT into biometry, acquiring 2000 scans
per second. Furthermore, the OCT image shows anatomical details on a longitudinal plane
through the entire eye (from cornea to retina); any unusual biometric geometries, such as

decentration or tilt of the crystalline lens, can therefore be detected. Repeatability and
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reproducibility of the IOLMaster 700 was recently investigated, and was found to be excellent,

and agreement with the IOLMaster 500 (see figure 1.21) was very high. The swept-source

optical biometer had better lens penetration ability compared with the I0OLMaster 500
(Srivannaboon et al., 2015).
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Figure 1.21. IOLMaster 500 (Carl Zeiss Jena, Germany) in the Ophthalmic Research Group

laboratories of Aston University.

1.8.8 Ciliary muscle image acquisition
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AS-OCT (Visante; Carl Zeiss Meditec. Inc., Dublin, CA) images of nasal and temporal ciliary
muscle were obtained from right and left eyes of participants, using the high-resolution
corneal (8 um axial resolution and scanning area of 10 mm width and 3 mm depth) mode for
all imaging. The scanning plane was set horizontally, at 0° throughout image acquisition. The
fixation stimulus was a Maltese cross target, viewed through a 0 D Badal lens and suspended
in free space from an adjustable apparatus positioned at a 45° angle (see Figure 1.22), which
allowed the head of the participant to remain in primary position on the forehead and chin rest
while the participant occupied a horizontal gaze. Positioning of the fixation stimulus 45°
external to the centre of the AS-OCT headrest enables the optical axis of the instrument to
pass through the eye imaged (nasal and temporal). For each eye, the target was positioned
along the same axis and the participant asked if the centre of the Maltese cross was in view
with horizontal gaze in order to reduce any potential variance in acquisition planes. At least
three images of good visibility of the nasal and temporal ciliary muscle was acquired for each
eye in the non-accommodated state. Each participant was instructed to carefully focus on the
centre of the Maltese cross during the process of image capture. Acquisition lasted

approximately 5 seconds per scan.
- awm

Figure 1.22. AS-OCT with external fixation target. The participant fixates on the centre of the

suspended Maltese cross by gazing laterally through the Badal lens. The Maltese cross fixation target
and Badal lens can be adjusted to maintain the 45° fixation angle by movement of the rotatable metal

rod.
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1.8.9 Ciliary muscle image analysis

Figure 1.23. AS-OCT image of a temporal ciliary muscle with associated parameters. The anterior

length is taken from the scleral spur (SS) to the point of maximum ciliary muscle thickness (CMTMAX).
CM25, CM50 and CM75 are taken at 25, 50 and 75 % of the curved CM length, respectively.

Inbuilt Visante AS-OCT callipers have been previously utilised to measure the range of ciliary
muscle parameters, in the same way described by Sheppard and Davies (2010). The internal
software enables a maximum of seven callipers at a time to be positioned over each acquired
image, with the ability to remove callipers from view when not required, for instance, if the
calliper is obstructing the view for another measurement. During image analysis, the
boundaries of the ocular media are outlined and corrective refractive indices (n) are applied
to correct distortion (anterior to the cornea: n = 1.000, cornea: n = 1.338, posterior to the
cornea: n = 1.343). However, the same refractive index adjustments are applied to ciliary
muscle images by the system, without an option to vary the scale of the tiered refractive index
corrections (Laughton et al., 2015). As such, previous investigators have employed a
refractive index of 1.000 to the entire ciliary muscle image (Bailey et al., 2008; Sheppard and
Davies, 2010b; Sheppard and Davies, 2011). Calliper measurements of ciliary muscle have
then been adjusted to account for a refractive index of 1.382 (Sheppard and Davies, 2010b;
Sheppard and Davies, 2011), which is the best current approximation of the ciliary muscle
refractive index, based on in vitro methods of human ventricular muscle studies using OCT
(Tearney et al., 1995) and bovine muscle tissue studies using confocal microscopy (Dirckx et
al., 2005). Yet, the refractive indices of the overlying sclera and the ciliary muscle itself must
be compensated for to maximise accuracy of the measured ciliary muscle parameter.

Moreover, the straight lines of the Visante callipers do not accurately depict the ciliary muscle
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tissue as both scleral and ciliary muscle tissue are curved, and with varying magnitudes in
different subjects (Kao et al., 2011; Laughton et al., 2015). To overcome these limitations
and address the subjective nature of the calliper technique (particularly identifying the
posterior point of the ciliary muscle), a bespoke semi-automated analysis programme was
developed at Aston University, and has since been described and validated (Laughton et al.,
2015).

The semi-automated ciliary muscle analysis programme was utilised for full analysis of
images acquired with the AS-OCT and included in the dataset for the subsequent
experimental chapters. Overall ciliary muscle length is expressed as anteroposterior distance
from the scleral spur, to the posterior point of the ciliary muscle where no more thinning occurs
(see Figure 1.23). Anterior length is the measurement from the scleral spur to the point of
maximum width, CMTMAX (see Figure 1.23). The width measures are calculated from the
dimension between the ciliary muscle- sclera boundary to the pigmented ciliary epithelium.
Ciliary muscle thickness measures at set points along the ciliary muscle from the scleral spur
were obtained as achieved originally by Bailey et al (2008) and described previously in section
1.4 (see Figure 1.11). Similarly, measurements proportional to the overall length of the ciliary
muscle were obtained (see Figure 1.9), as achieved by Sheppard and Davies (2010) and
described previously in section 1.4.

1.8.10 Validation of bespoke ciliary muscle analysis software

A bespoke semi- automated software programme has been developed by the Ophthalmic
Engineering Department at Aston University to assist in the more objective measurement
ciliary muscle parameters acquired from the AS-OCT ciliary muscle images. The purpose of
the software was to remove the subjectivity from manually measuring parameters as was
done in previous work. The software had not previously been validated for any ciliary
muscle parameters, and was carried out to test the robustness of the semi-automated

measurements.

Simulated ciliary regions were constructed using bespoke rigid gas permeable lenses of
constant centre thickness, and consisted of two lenses combined; a greater diameter base
lens, L1 (10 mm total diameter), representing the sclera, and five smaller diameter, L2 lenses
(6 mm total diameter) that represented the ciliary muscle (see figure 1.24), with each of these
lenses varying in thickness (0.30, 0.45, 0.60, 0.75, 0.90 mm). The refractive index of the L1
and L2 lens were chosen in accordance with that of the sclera and ciliary muscle, at 1.479

and 1.440 respectively.
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Figure 1.24. Schematic diagram of two rigid gas-permeable lenses designed to simulate the sclera

(L1) and ciliary muscle (L2), and associated diameters of lenses.

The L1 lens fitted behind the L2 lens and was manually centred, with the front curvature of
the L1 lens in contact with the back curvature of L2 lens (see Figure 1.24). This resultant
simulated ciliary region was held in place by a bespoke mount (see Figure 1.25) which
attached to the chin rest of the AS-OCT. The slot that held the lenses was 10 mm in diameter
and allowed the protrusion of the front surface of the L2 lens. A metal prong was twisted in to
place to hold the L2 lens in its central position on the L1 lens and to thereafter push the L2
lens forward in to the back surface curvature of the L1 lens with minimal or no visible air gap
when imaging the simulated eye. 10 images were acquired for each L2 lens in this way, using

the high resolution corneal mode, as is normally utilised for ciliary muscle imaging.
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Figure 1.25. Arrangement of ciliary muscle lens, L2, in direct contact with, and centred on sclera lens,
L1.

Following image acquisition, the semi- automated software was utilised on the simulated
ciliary muscle thicknesses to compare the actual measurements with those attained by the
software; the images were saved on the Visante software of the AS-OCT and exported in raw
DICOM (Digital Imaging and Communications in Medicine) form. The analysis was then
performed on a spare computer, using Matlab R2012b (The MathWorks Inc., Mas-sachusetts,
USA). The thicknesses of the ciliary muscle lenses were measured at CM25, CM50 and
CM75 of the lens diameter and each thickness measurement was calculated perpendicular
to the scleral/ ciliary muscle boundary curve. The scleral and ciliary muscle lens refractive
indices (1.48 and 1.44, respectively) were inputted to compensate the calculations by the
software. Furthermore, ciliary muscle lens diameter and thickness was also measured 10
times by Vernier callipers and compared to the data produced by the programme. For each
artificial ciliary muscle thickness parameter measured, there was no significant difference
between the results found with the analysis software and the Vernier callipers (CM25: P =
0.671; CM50; P = 0.151; CM75: P = 0.857). The robustness of the analysis technique has
been established as the programme extracts valid and repeatable ciliary muscle parameters
and increases the objectivity of ciliary muscle analysis (Laughton et al., 2015).
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Figure 1.26 Setup of simulated ciliary muscle image acquisition. ‘A’ illustrates the plastic material that
encapsulates the lenses. ‘B’ shows the metal prong which can be twisted to maintain centration of L2
and ensure no air gap between the two lenses. ‘C’ demonstrates the position of the simulated eye
within the lens mount.

1.9 Summary

The literature is in agreement in relation to alteration of ciliary muscle morphology with
refractive error (Bailey et al., 2008; Sheppard and Davies, 2010; Pucker et al., 2013).
However, there is a paucity of information pertaining to how this altered morphology relates
to myopia development. It has been suggested that the thicker ciliary muscle in myopia is
hypertrophic and leads to a reduced contractile response (Bailey et al., 2008), which accounts
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for the accommodative lag that is well documented in myopia (Goss, 1991; Gwiazda et al.,
2005; Mutti et al., 2006), and results in the hyperopic model of myopigenesis. A slight
reduction of the amount of hyperopic blur may occur from transient axial elongation during
sustained accommodative effort (Mallen et al., 2006). Myopic eyes may demonstrate the
largest expandability during (Drexler et al., 1998; Mallen et al., 2006; Read et al., 2010), and
immediately following an accommodative task. There may be discrepancies between myopes
and emmetropes in the morphology of the ciliary body, causing a difference in ciliary muscle
force transmission to the choroid and sclera amid these different refractive groups and
thereby resulting in differences in the magnitude of transient axial elongation (Mallen et al.,
2006). Nevertheless, the potential relationship between ciliary muscle morphology and

accommodative function has not been investigated.

Previous human ciliary muscle studies in vivo have typically investigated only one eye, and/
or just one aspect (e.g. just the temporal side) (Bailey et al., 2008); as such, laterality and
symmetry of the ciliary muscle which may be relevant to refractive error development, is not
well understood. Bilateral globe profile in emmetropia and myopia was recently investigated
(Gilmartin et al., 2013) using high-resolution MRI. Globe shape was linked to retinotopic
projection in both myopes and emmetropes, and showed that emmetropic and myopic eyes
could not be differentiated with regards to equatorial dimensions. It is not known whether
ciliary muscle morphology displays similar properties between the refractive error groups.
Asymmetry in the laterality of globe profile between myopic eyes was also evident, with nasal
to temporal quadrants being asymmetric between right and left eyes (Gilmartin et al., 2013).
Since the division of nasal and temporal retinal nerve fibres into right and left visual fields
occurs at the optic chiasm (Bron et al., 1997), such coupling indicates that binocular growth
may be coordinated by processes operating past the optic chiasm (Gilmartin et al., 2013).
Such laterality in myopia development may be linked to ciliary muscle morphology and this
matter has not been previously examined. Review of current research has highlighted the gap
in the literature regarding altered ciliary muscle morphology with refractive error and its link
with accommodation, and particularly the need for a large scale investigation on an
emmetropic cohort, where the ciliary muscle is influenced only by normal ocular development;
where normal variations in biometric characteristics of the emmetropic ciliary muscle are not

yet known.
1.10 Aims of this thesis

The literature review presented in this chapter has highlighted numerous uncertainties
relating to differences in accommodative function between emmetropes and myopes, and the

role of altered ciliary muscle morphology which may be implicated in refractive error
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development. Consequently, this thesis will address five pertinent topics related to ciliary

muscle, accommodation and refractive error. The specific aims of the thesis were as follows:

1. To determine if there is any diurnal variation in axial length change with
accommodation and/ or accommodative error

2. To describe the ciliary muscle and ocular biometric correlates in emmetropia, as the
ciliary muscle parameters that relate to particular ocular biometric correlates will help
determine what defines ciliary muscle growth with normal ocular development

3. To compare ciliary muscle morphology in emmetropia and myopia, and determine the
level of inter-eye symmetry

4. To elucidate any potential link between ciliary muscle morphology and
accommodative function
To describe the ciliary muscle morphology in amblyopia and anisometropia
To investigate new parameters for measuring the ciliary muscle from in vivo AS-OCT
imaging

The research involved the operation of relatively new biometric and complementary high-
resolution imaging that allow visualisation of the ciliary muscle in vivo as described in this
chapter; the application of such methodologies permit a high level of precision in examining
the morphology of the ciliary muscle. Previous work has shown insight into a potential link
between ciliary muscle morphology, accommodative function and refractive error. However,
much still remains unanswered and the research presented in this thesis aimed to fill this gap

in our current understanding.
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Chapter 2

Diurnal stability of accommodative accuracy and axial length change with

accommodation
2.1 Introduction

Despite the wide acceptance that axial length (AXL) undergoes significant diurnal variation in
both animal (Nikla et al., 1998; Nikla, 2006; Tian and Wildsoet, 2006; Read et al., 2008); and
human models (Stone et al., 2004; Wilson et al., 2006; Read et al., 2008) and it is well known
that AXL is increased temporarily with accommodation (Drexler et al., 1998; Mallen et al.,
2006; Read et al., 2010; Ghosh et al., 2014; Zhonga et al., 2014) which may be relevant to
refractive error development (Mallen et al., 2006; Woodman et al., 2012), there is a paucity
of information relating to diurnal changes in AXL with accommodation and alterations in
accommodative function throughout the day.

AXL is longest in the day and shortest during the night (Stone et al., 2004; Read et al., 2008;
Chakraborty et al., 2011), varying in the range of 15 — 46 um (Stone et al., 2004; Chakraborty
et al.,, 2011). In a study consisting of two consecutive days of diurnal testing on human
participants, the AXL underwent significant diurnal changes; the link between vitreous
chamber depth fluctuations and axial length suggested that diurnal axial length variations
occur largely due to alterations in the posterior portion of the globe (Chakraborty et al., 2011).
A significant diurnal rhythm has also been observed in choroidal thickness, with the choroid
being thickest at night and thinnest during the day, in close correspondence with previous
animal research (Nikla et al., 1998; Nikla, 2006), and demonstrating an antiphase to diurnal
AXL fluctuations (Brown et al., 2009; Chakraborty et al., 2011).

Considerable alteration of intraocular pressure (IOP) could be responsible for the diurnal
variation in AXL. Significant changes in IOP mechanically or surgically, can result in large
predictable AXL fluctuations, coherent with the globe expansion and contraction in
accordance with the IOP (Cashwell and Martin, 1999; Phillips and McBrien, 2004; Read et
al., 2008). Another investigation in emmetropic and myopic cohorts found a weak association
between the diurnal AXL changes and IOP, yet the larger amplitudes in IOP variation were
not in accordance with amplitudes of AXL change (Nikla et al., 1998; Chakraborty et al.,
2011). Diurnal variations in AXL were not different between refractive groups. Whilst diurnal
changes in AXL have been studied with regard to the various factors which may be causally
related and the magnitude of AXL variation throughout the day, potential diurnal AXL changes
associated with accommodation have not previously been reported. It is important for

investigations in this field, and studies detailed in the thesis, to know if accommodative axial
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expandability varies diurnally, as this would impact on both results and subsequent
experimental designs, which may need account for time of day. In comparing the differences
in transient AXL change with accommodation between emmetropes and myopes (Drexler et
al., 1998; Mallen et al., 2006; Read et al., 2010; Woodman et al., 2010; Woodman et al.,
2012; Ghosh et al., 2014; Zhonga et al., 2014) (see table 2.1), it therefore must be determined

if, and to what extent any diurnal variation occurs in a myopic and emmetropic cohort.

Whilst various ocular diurnal variations are known, very little is known about changes in
accommodative function throughout the day. Results from a previous investigation (Murphy
et al., 1977) showed that there was no diurnal change in the values of volitional control of
accommodation, near-point of accommodation and accommodative tracking. Similarly, a
further investigation demonstrated that there is short-term stability during the day in tonic
accommodation and does not undergo diurnal fluctuations (Krumholz et al., 1986).
Conversely, a study by Kurtev et al (1990) showed that tonic accommodation varied
throughout the day (by approximately 1 D) and the discrepancies between this study and that
of Krumholz and co-workers (1986) was attributed to differences in measurement techniques
(Kurtev et al., 1990). Whilst these few studies have provided the literature with some evidence
for diurnal change with particular aspects of accommodation, no reports have described the
possibility of diurnal changes on accommodative accuracy despite the large body of literature
relating to accommodative lag, due to its widely accepted association with myopia (Gwiazda
et al., 1993; Gwiazda et al., 1995; Harb et al., 2006; Mutti et al., 2006; Berntsen et al., 2010;
Berntsen et al., 2011). Mallen et al. (2006) observed the greatest AXL changes in myopic
participants, with a mean increase of 58 ym, compared to 37 uym in emmetropes, when
viewing a 6 D stimulus and subsequent work found that myopes also had the largest
accommodative AXL elongation directly following a prolonged near task (Woodman et al.,
2010). Such accommodative axial changes are considered to be a mechanism to maintain a
constant ocular volume whilst the ciliary muscle contraction pulls the choroid and sclera
adjacent to the ciliary body inwards (Drexler et al., 1998; Mallen et al., 2006). Given the
current hypothesis that the eyes of myopic individuals are more malleable and susceptible to
AXL changes with accommodation (Mallen et al., 2006; Woodman et al., 2010), the
accommodative accuracy should also be lesser at the point in time when the retina has
undergone greater amounts of this elongation. Hence, the accommodative lag would
intuitively be thought to be greater during periods of the day where AXL change with

accommodation is greatest.

The purpose of this study was to determine if diurnal variation occurs with AXL change with
accommodation, accommodative accuracy, and to what extent the diurnal variation in these

accommodative functions occurs across myopic and emmetropic refractive groups.
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Author & study details

Results

Implications

Drexler et al., 1997.
11 emmetropes

(MSE ranging from
+0.38 D to —0.75 D),
and 12 myopes (MSE
ranging from —1.0 D to
—9.5D)
Accommodative
demand: the greatest
extent of
accommodative effort
at the near point (mean
for emmetropes: 5.1 D,
for myopes: 4.1 D)

Accommodative AXL in
emmetropes and myopes:
12.7 pm (range, 8.6-19.2 um)
and 5.2 um, respectively
(range, 2.1-9-5 pm). (UC)

AXL change with
accommodation is greater in
emmetropes, compared with
myopes.

Mallen et al., 2006.

30 emmetropes (mean
MSE =-0.07 +0.23);
30 myopes (mean MSE
=-3.59 £ 0.75),
Accommodative
demand: 0,2,4 &6 D

Mean AXL change at 2 D,
4D, 6D: 14 £ 19 ym &19 + 20
pm for emmetropes and
myopes, respectively; 26 +
21 pm & 37 £ 26 pm for
emmetropes and myopes,
respectively; 37 £ 27 um and
58 + 37 um for emmetropes
& myopes, respectively. (UC)

The magnitude of
accommodative AXL change
systematically increases with
increasing stimulus demand,
this effect was more marked
in myopes; myopic eyes are
more susceptible to transient
biometric changes than with
emmetropes.

Read et al., 2010.

19 emmetropes (mean
MSE: +0.05 £ 0.27 D);
21 myopes (mean MSE:
-1.82 + 084 D)
Accommodative
demand: 0, 3, & 6D

No significant differences in
AXL change with
accommodation between
refractive groups. Mean AXL
increased by 5.2 £ 11.2 um
and 7.4 +18.9 uym for 3D
and 6 D demands,
respectively. (C)

Significant AXL increase is
linked with brief periods of
accommodation; the
magnitude of AXL change
increases for larger
demands. There is no
significant

difference in the magnitude of
AXL elongation in myopes
and emmetropes, though
structural ocular changes
linked with greater
magnitudes of myopia may
be associated with the eye
being more susceptible to
accommodative AXL
changes

Woodman et al., 2010.
20 emmetropes (mean
MSE: -0.10 + 0.23 D);
20 myopes (mean MSE:
3.11 £ 2.24 D).
Accommodative
demand: sustained near
work at 5 D for 30
minutes

Mean accommodative AXL
change: 10 £ 15 um and 20 +
20 pm for emmetropes and
myopes, respectively. (UC)

Myopes showed the greatest
AXL change instantly
following the near task. AXL
returns to baseline levels 10
minutes following near task
cessation.

Woodman et al., 2012.
22 emmetropes (mean
MSE: +0.16 + 0.28 D);

Accommodative AXL change
between refractive groups
was not significant (P =
0.136): mean AXL change

In post-accommodative task
measures (10 minutes
following end of near task),
myopes still showed a small
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37 myopes (mean MSE:
-2.90+1.57 D)
Accommodative
demand: 4D for
minutes continuously

30

with accommodation was 14+
28 um (C)

degree of AXL elongation,
whilst AXL of emmetropes
returned to baseline
measures.

Zhong et al., 2014.
10 myopes (mean MSE:
-1.95 + 0.88 D), 11

Baseline AXL was 24.519 +
0.917 mm
And significantly increased to

With accommodation, whole
eye axial
biometry altered, including a

minutes

change, 23 + 13 um at 10
minutes) compared with
primary gaze accommodation
(8 £ 15 um at 10 minutes).
There was no significant
difference between refractive

emmetropes (mean | 24.545 £ 0.915 mm with decreased ACD, and
MSE not stated) accommodation. There was increased lens thickness and
Accommodative no significant differences in AXL. UL-OCT may provide an
demand: 6 D accommodative AXL alternative method

changes between refractive appropriate for ocular

groups. (UC) biometry measures during

accommodation.

Ghosh et al., 2014 AXL was significantly greater | AXL, choroidal thickness, LT
Accommodative for downward gaze with & ACD alter significantly
demand: 2.5 D for 10 | accommodation (mean during accommodation in

downward gaze, perhaps
influenced by biomechanical
factors (i.e., extraocular
muscle forces, ciliary muscle
contraction) associated with
near tasks in downward gaze.

groups for AXL change in
primary position or downward
gaze (C).

Table 2.1. Key findings from accommodative axial length change studies in emmetropes and myopes.

C = correction factors for AXL change with accommodation was applied. UC = uncorrected values for
AXL change.

2.2 Methods
2.2.1 Subjects

Twenty eight subjects (20 females, 8 males) aged 19-26 years were recruited from the
student body of Aston University, and were classified according to their mean sphere
equivalent refractive error (MSE; sphere + %% cylinder (D)) as emmetropes ((MSE) = -0.55; <
+0.75 D; n = 14) and myopes (MSE = -1.50 D; n = 14). A cohort size of twenty four was
based on a sample size calculation (GPower based on effect size of 0.25, for a repeated
measures, within — between interaction ANOVA for 4 repeated measurements amongst 2
groups, an error probability (a) of 0.05 and required power (1-8) of 0.80). More subjects than
the required sample size were recruited to allow for some attrition from missed appointments
or drop-outs. Exclusion criteria were amblyopia, cylindrical refractive errors greater than 2.00
D, systemic conditions known to affect ocular health, and previous history of ocular trauma,
surgery or pathology. All participants had corrected visual acuities of 0.00 logMAR or better

in each eye and exhibited a monocular amplitude of accommodation =9 D (as measured with
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the push-up method using the RAF rule). Myopic participants wore 31% Nelfilcon A (Focus
Dailies) contact lenses appropriate for their habitual refractive error for all measures. Ethical
approval was obtained from the Aston University Life and Health Sciences Research Ethics
Committee and the study adhered to the tenets of the Declaration of Helsinki. Written,
informed consent was obtained from all volunteers prior to participation after explanation of

the nature and possible consequences of the study.
2.2.2 Measurements

Ocular biometric parameters and accommodative responses in the right eye only were
measured within each of the four time periods (08:00 — 09:00, 12:00 — 13:00, 16:00 — 17:00,
20:00 — 21:00). For each participant, the measurements were separated by four hours in a
single study day (Monday — Friday) and subjects resumed their regular academic activities
between individual measurement sessions. The first measurement slot was within one hour

of waking and prior to commencement of any studying or prolonged near work.

Binocular distance refractive error was measured with an infra-red binocular open-view
autorefractor (Grand Seiko WAM 5500; (Sheppard and Davies, 2010a)) at the first session
whilst subjects viewed a distance (6 m) Maltese cross target. A minimum of five

measurements of refractive error were taken for each eye, averaged and converted into MSE.

To indicate the level of accommodative inaccuracy at various times during the day, the
accommodative error index (AEl) was used, which amalgamates all the parameters of the
accommodative stimulus- response curve into a single index ((Chauhan and Charman, 1995;
Woodhouse et al., 2000; Allen and O’Leary, 2006).

Accurate accommodation at all stimulus demands is indicated by an AEI of 0 D. A value >0
D indicates the level of accommodative inaccuracy (Chauhan and Charman, 1995;
Woodhouse et al., 2000). At each session the accommodative response was measured in
the right eye to targets placed at 8 randomised-order stimulus demands (0.0, 1.0, 2.0, 3.0,
4.0, 5.0, 6.0, 8.0 D) to produce the AEI, calculated using equation 1, detailed in section 1.7.3.

AXL, anterior chamber depth (ACD), lens thickness (LT), and corneal thickness (CT) of the
right eye in the unaccommodated and accommodated states were obtained using the Lenstar
LS 900 biometer (Haag-Streit AG, Koeniz, Switzerland). Participants viewed a back-
illuminated text target through a pellicle beam splitter (thickness approximately 2 ym) and +
10 D Badal lens (25.4 mm diameter, 100 mm focal length achromatic doublet; Edmund
Optics) mounted in front of the Lenstar instrument (Alderson et al., 2012) and fixated on a

letter (a 5 x 5 grid of high-contrast letters, with each letter equivalent to 0.8 logMAR) closest
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to the central red dot. The eye under investigation was 100 mm from the Badal lens and the
retro-illuminated text target was situated 100 mm from the Badal lens to stimulate a 0 D
demand level (see figure 1.18). Participants were asked to maintain maximum clarity of the
letter throughout data acquisition whilst four separate biometric measurements were taken
and averaged at 0 D, before repeating these measurements while the participant
accommodated to 5 D stimulus demand, by shifting the back- illuminated text target 50 mm

forward towards the Badal lens (Alderson et al., 2012), as described in section 1.7.5.

2.2.3 Analysis

The Lenstar instrument, like the IOLMaster, utilises an average ocular refractive index in order
to calculate axial length from the optical path length. Previous work has established that
changes in the accommodative apparatus, principally lens thickness, during accommodation
may produce errors in these AXL measurements (Atchison and Smith, 2004). The basis of
this potential error is from the anterior portion of the crystalline lens which has a higher
refractive index than that of the aqueous humour it displaces, resulting in an increase in
optical path length (Atchison and Smith, 2004; Mallen et al., 2006; Read et al., 2010;
Woodman et al., 2010; Woodman et al., 2012) and thereby overestimating AXL during
accommodation. The formulae and methods outlined by Atchison and Smith were applied by
utilising each participant’s individual ocular biometric parameters; the error associated with
the change in AXL from baseline to the 5 D accommodative demand was calculated for each
participant and these values were used to determine the corrected accommodative AXL

changes (from equations 2.1- 2.7).

0.51 +0.012 x age

ACT = LT
i (0.51 4 0.012 x age) + (2.11 4+ 0.003 x age) + (0.33 + 0.0082 * age)

Equation 2.1: Anterior cortex thickness (ACT)

2.11 4+ 0.003 *x age
(0.51 +0.012 * age) + (2.11 + 0.003 * age) + (0.33 + 0.0082 * age)

Equation 2.2: Nucleus thickness (NT)

NT = LT *

0.33 + 0.0082 * age

PCT = LT *
(0.51+ 0.012 * age) + (2.11 + 0.003 * age) + (0.33 + 0.0082 * age)
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Equation 2.3: Posterior corneal thickness (PTC)

OPL = (CT = 1.376) + (ACD = 1.336) + (ACT = 1.386) + (NT * 1.406) + (PCT * 1.386) +
(VCD * 1.336)

Equation 2.4: Optical path length (OPL)

nave = [(CTAXL)  1.376] + [(ACDAXL) * 1.336] + [(ACTAXL) = 1.386] + [(NTAXL)
+ 1.406] + [(PCTAXL) = 1.386] + [(VCDAXL) * 1.336]

Equation 2.5: Average refractive index (nave)

E = OPL/nave - AXLdissaccommodated

Equation 2.6: Error (E)

AXLcorrected = AXLaccommodated — E

Equation 2.7

To assess the differences in AXL change with accommodation and AEI across the four
different time periods and between the refractive groups, a repeated-measures analysis of
variance (ANOVA) was performed with one within-subject factor (time) and one between-
subjects factor (refractive group) (SPSS Statistics 21; IBM, lllinois, USA). An independent
samples t-test was performed to check for differences in age between the refractive groups.
A P value of less than 0.05 was considered significant. All data were stored in an Excel
spreadsheet (Microsoft 2010, Redmond, Washington, USA).

2.3 Results

Summary characteristics of emmetropic and myopic participants are provided in table 2.2.
There was no significant difference in age between the refractive groups (P = 0.826). The
corrected AXL values listed are a summary from all four measurement sessions. Mean AXL

change and AEI for each time period is summarised in table 2.3.
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Emmetropes Myopes

Mean Mean
Age (years) 21.6+2.16 22.2+1.22
Right eye MSE (D) +0.05 + 0.34* -3.39 + 1.62*
AXL 0D (mm) 22.93 £ 0.78* 25.25 +1.23*
AXL 5D (mm) 22.97 £ 0.77* 25.36 £ 1.23*
Accommodative change in AXL (um) 16.48 + 25.52 16.57 £ 25.07
ACD 0D (mm) 2.99 + 0.27* 3.24 +1.21*
ACD 5D (mm) 2.72 +0.28* 3.00 + 0.24*
Accommodative change in ACD 0.25+0.04 0.24+£0.11

Table 2.2. Summary characteristics of emmetropic and myopic participants, including the grouped
means of biometric data across the 4 measurement session. *represents significant difference

between refractive groups.

Time Rx group Mean AEIl | Mean AXL at | Mean AXL at | Mean AXL
(D) 0 D (mm) 5D (mm) change (um)

0800-0900 | Emmetrope | 0.91+0.35 | 22.93+0.78 22.95+0.78 17.67 + 19.69
Myope 0.66 + 0.30 | 25.23 +1.22 25.24 +1.23 6.60 + 15.44

Total 0.77+0.35 | 24.08 +1.54 24.09 + 1.54 12.14 + 18.26
1200-1300 | Emmetrope | 0.85+0.32 | 22.95 + 0.77 22.96 + 0.77 9.08 + 18.67

Myope 0.70+0.32 | 25.24 + 1.22 25.25+ 1.23 1243+ 17.17

Total 0.78+0.32 | 24.09 + 1.53 2411 + 1.54 13.05+17.69

1600-1700 | Emmetrope | 0.90+0.28 | 22.94 + 0.78 22.96 £ 0.77 26.53 £ 39.02

Myope 0.69 +0.37 | 25.23+1.22 25.24 +1.23 10.58 + 14.78

Total 0.79+0.34 | 2408 +1.54 2411 +1.54 18.56 + 30.07

2000-2100 | Emmetrope | 0.80 +0.33 | 22.93+0.77 22.95+0.77 20.60 + 42.83

Myope 0.71+0.33 | 25.21+1.24 25.24 +1.23 29.13 + 48.28

Total 0.76 £ 0.33 | 24.07+1.54 24.03+ 1.54 24.86 + 45.00

Table 2.3. Mean AXL change with accommodation (corrected values) and AEIl values at each
measurement session for emmetropic (n = 14) and myopic (n = 14) refractive groups and for the whole
cohort (n = 28).

Significant diurnal variation in unaccommodated AXL were observed at the different time
points across the whole cohort (P = 0.040). There was no significant relationship between
mean AXL change and AEI at any time period (e.g. 1200-1300 emmetropes: R = 0.420, r? =
0.177, P = 0.097; 1200-1300 myopes: R = 0.032, r>= 0.001, P = 0.917). Between refractive

groups, there was no significant difference in accommodative AXL change for any
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measurement session (see figure 2.1) (0800-0900: P = 0.110; 1200-1300: P = 0.678; 1600-
1700: P = 0.206; 2000-2100: P = 0.808) or AEI (see figure 2.2) (0800-0900: P = 0.060; 1200-
1300: P =0.102; 1600-1700: P = 0.241; 2000-2100: P = 0.885).

For emmetropes, mean AEIl was maximal at 0.91 D (0800-0900 session) and minimal at 0.80
D (2000-2100 session), while AXL change was maximum at 26.53 um (1600-1700) and
minimal at 9.08 um (1200-1300), though there was no significant difference between the
different time points in either accommodative aspects (AXL change: F = 1.650, P = 0.235;
AEIl: F =0.915, P = 0.465). For myopes, mean AEIl was minimal at 0.66 D (0800-0900) and
maximal at 0.71 D (2000-2100), while mean accommodative AXL change was minimal at
6.60 um (0800-0900) and maximal 29.13 um (2000-2100) (see table 2), though the difference
for both was not significant (AXL change: F = 0.684, P = 0.580; AEIl: F = 0.259, P = 0.854)

between any measurement session.
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Figure 2.1. AXL change with accommodation throughout the day in emmetropes and myopes, with
associated unidirectional error bars, representing standard deviation. Neither refractive group

demonstrated any significant diurnal changes (emmetropes: P = 0.401; myopes: P = 0.329).
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Figure 2.2. Accommodative error throughout the day in emmetropes and myopes, with associated
unidirectional error bars representing standard deviation. Neither refractive group demonstrated any

significant diurnal changes (emmetropes: P = 0.482; myopes: P = 0.499).

2.4 Discussion

Whilst differences in transient AXL change with accommodation between emmetropes and
myopes have been compared (Mallen et al., 2006; Read et al., 2010; Woodman et al., 2010;
Woodman et al., 2012; Ghosh et al., 2014), it has not previously been determined if any
diurnal variation occurs in a myopic and emmetropic cohort. Furthermore, this is the first study
to investigate diurnal changes in accommodative error despite the large body of literature
relating to accommodative lag, due to its widely accepted association with myopia (Gwiazda
et al., 1993; Gwiazda et al., 1995; Harb et al., 2006; Mutti et al., 2006; Berntsen et al., 2010;
Berntsen et al., 2011).

Diurnal variation of AXL has been reported in both animal (Nikla et al., 1998; Nikla, 2006;
Tian and Wildsoet, 2006; Read et al., 2008) and human models (Stone et al., 2004; Wilson
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et al., 2006; Read et al., 2008), and the results from this study also indicate significant diurnal
variation in AXL across the whole cohort. In accordance with previous studies (Nikla et al.,
1998; Chakraborty et al., 2011), there was no significant difference in diurnal variation
between refractive groups. Previous studies over a two day period have reported AXL to be
longest around midday and shortest in the night (Stone et al., 2004; Chakraborty et al., 2011),
consistent with the findings of this study, as mean AXL of both refractive groups was greatest
at 1200-1300 and shortest at 2000-2100. The magnitude of diurnal AXL variation across the
whole cohort in this investigation was 20 pum, in keeping with previous findings, reporting AXL
changes in the region of 15- 46 um (Stone et al., 2004; Read et al., 2008; Chakraborty et al.,
2011). It has been suggested based on repeated measurements that the diurnal variations
may be regulated by a range of physiologic factors (such as sleep amount, daily lighting
exposure, and diet) (Stone et al., 2004). Reports from marmoset (Nikla et al., 2002) and chick
(Papastergiou et al., 1998) data suggest that diurnal axial length variations alter with age.
However, a further study in humans utilised a similar age cohort of 20 — 27 years and also

reported significant AXL variation over a 24 hour time period (Read et al., 2008).

Various studies have demonstrated that intense close-work tasks, may result in transient
periods of myopia (Wolffsohn et al., 2003), potentially leading to the development of
permanent myopia (Adams and McBrien, 1992; Mallen et al., 2006). Transient axial length
increase during sustained accommodative effort may lead to a slight reduction in the amount
of hyperopic blur (Mallen et al., 2006). Eyes of myopic individuals have demonstrated the
largest expandability during (Drexler et al., 1998; Mallen et al., 2006; Read et al., 2010), and
immediately succeeding an accommodative task (Woodman et al., 2010; Woodman et al.,
2012). Whilst many studies have reported increased AXL with accommodation as this may
be relevant to refractive error development, it was not previously recognised whether
accommodative AXL change shows diurnal variation. Unlike the significant effect of AXL
diurnal variation that was observed, there was no change in accommodative AXL change in
either refractive group. In accordance with this, in both emmetropic and myopic cohorts, there
was no significant difference in accommodative axial elongation across measurement
sessions. As such, accommodative AXL change data from previous studies are not
significantly affected by diurnal variation and future investigations using this accommodative

parameter do not need to account for the time of day the measurement was taken.

Accommodative accuracy has been reported widely with regards to myopia development;
increased accommodative error may produce hyperopic retinal defocus considered to
instigate axial elongation (Harb et al., 2006; Mutti et al., 2006; Berntsen et al., 2010), as the
theory that ocular growth is guided towards emmetropia by a visual feedback mechanism,

detecting the sign and extent of retinal blur, is broadly acknowledged (Irving et al., 1992;
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Wildsoet and Wallman, 1995; McFaddden et al., 2004; Smith et al., 2005; Berntsen et al.,
2011; Ho et al., 2012). This is the first study, however, to explore the possibility of diurnal
variations in accommodative error across emmetropic and myopic refractive groups; the
results indicate that in both refractive groups, no significant difference in accommaodative error
occurred between any measured time points. Similarly, between the refractive groups, there
was no significant difference in accommodative error for any time period, indicating that
accommodative error is another element of accommodative function that is unaffected by

ocular daily fluctuations.

As it has been hypothesised that myopic eyes are more malleable and susceptible to
accommodative AXL elongation (Mallen et al.,, 2006; Woodman et al., 2010), the
accommodative error should also be greater at the point in time when the retina has
undergone greater magnitudes of this elongation. Whilst the accommodative error would
therefore intuitively be thought to be greater during periods of the day where accommaodative
AXL change is greatest, the results do not support this hypothesis as accommodative axial
elongation was constant. The lack of a significant relationship between accommodative AXL
elongation and accommodative error at any measured time period indicates that these two

elements of accommodative function are not related to one another.
2.5 Conclusion

In conclusion, this is the first study to investigate diurnal variation in accommodative AXL
change and accommodative error. Both of these accommodative functions are not shown to
fluctuate diurnally in either refractive group, and there was no relationship between AEI and
accommodative AXL change at any measured time point. Hence, future work utilising these
accommodative measures does not need to account for any diurnal variation during the

investigation.

90



Chapter 3

Ciliary muscle morphology and ocular biometric correlates in emmetropia

3.1 Introduction

Evidence for altered ciliary muscle morphology with axial myopia is increasing (Oliveira et al.,
2005; Bailey et al., 2008; Sheppard and Davies 2010; Buckhurst et al., 2013) and indicates
that the ciliary region is not stretched with axial elongation; the ciliary muscle in myopic eyes
has not been found to be thinned, and moreover, a body of research has shown the myopic
ciliary muscle to be thicker than that of emmetropes (Oliveira et al., 2005; Bailey et al., 2008;
Buckhurst et al., 2013).

Despite the reports of altered ciliary muscle morphology in myopia (which are documented in
depth in the following chapter), normal variations in biometric characteristics of the
emmetropic ciliary muscle are not yet known. The emmetropic ciliary muscle is influenced
only by normal globe development. The morphology of the ciliary muscle in emmetropia is
therefore of significant interest as the parameters which relate with particular ocular biometric
correlates will indicate what defines ciliary muscle growth with normal ocular development, in
the developed eye. Furthermore, other ocular biometric parameters have been investigated
in emmetropes and gender contrasts were identified, with males having significantly longer
vitreous chambers and axial length (AXL), flatter anterior corneal radii of curvature and lower
lens powers than that of females. There were trends for other gender discrepancies including
greater anterior chamber depth (ACD), and crystalline lens thickness (LT) in males that did
not reach statistical significance (Atchison et al., 2008; Atchison, 2009) though were of the
order of significant differences identified in larger scale investigations (Klein et al., 1998;
Nomura et al., 2002; Cosar and Sener, 2003; Wickremasinghe et al., 2004; Shufelt et al.,
2005; Suzuki et al., 2005; Li et al., 2006a). Though there have been numerous reports
comparing ciliary muscle morphology across refractive error groups (Oliveira et al., 2005a;
Bailey et al., 2008; Schultz et al., 2009; Sheppard and Davies, 2010b; Buckhurst et al., 2013),
it is not known whether such gender differences translate to ciliary muscle morphology and

thus have a potential effect on any morphological alterations found.

Previous work investigating ocular biometry and ciliary muscle morphology in emmetropia
was based on in vitro methods (Lutjen, 1966; van Alphen, 1986; Aiello et al., 1992; Pardue
and Sivak, 2000; Augusteyn et al., 2012). Whilst such in vitro investigations have advanced

our understanding in this area, findings may be modified by post mortem chemical tissue
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changes, (Weale, 1999; Kasthurirangan et al., 2008) along with handling and storage
processes; the extent of these changes cannot be known (Strenk et al., 2004; Werner et al.,
2008; Sheppard and Davies, 2010). In vitro methods also involve dissection of the
accommodative apparatus (Lutjen-Drecoll et al., 2010), and results in ambiguity as to whether
the accommodative structures under investigation are behaving as they would in their habitual
and intact accommodative system; therefore the ability to visualise the active human ciliary
muscle and ocular biometric parameters in vivo is highly beneficial. The use of in vivo imaging
techniques as research devices allows an enhanced comprehension of the anatomical and

physiological ocular structures.

The work presented in this chapter is the first to investigate emmetropic eyes specifically, on
a large scale and the biometric correlates of ciliary muscle parameters in vivo. Furthermore
any gender differences in the morphology of the ciliary muscle is explored, when the eye has
not undergone any pathological expansion.

3.2 Methods
3.2.1 Subjects

Sixty-nine subjects including thirty-nine females and thirty males, aged 19-26 years were
recruited from the student and staff body of Aston University, with a mean sphere equivalent
(MSE) = -0.55; < +0.75 D. The narrow age band was selected to reduce variation in ciliary
muscle data due to ageing, most notably thickening of the ciliary muscle (Sheppard and
Davies, 2010). Exclusion criteria were cylindrical refractive errors greater than 2.00 D,
amblyopia, previous history of ocular trauma, surgery or pathology, and systemic conditions
known to affect ocular health. All participants had corrected visual acuities of 0.0 logMAR or
better in each eye. Ethical approval was obtained from the Aston University Life and Health
Sciences Research Ethics Committee and the study adhered to the tenets of the Declaration
of Helsinki. Written, informed consent was obtained from all participants prior to

commencement after explanation of the nature and possible consequences of the study.
3.2.2 Measurements

Binocular distance refractive error was measured with a validated infra-red binocular open-
view autorefractor (Grand Seiko WAM 5500; Sheppard and Davies, 2010) whilst subjects
viewed a distance (6 m) Maltese cross target. A minimum of five measurements of refractive

error were taken for each eye, averaged and converted into MSE.

ACD, AXL, and LT in the unaccommodated state were obtained in the right eyes only of

participants using the Lenstar LS 900 biometer (Haag-Streit AG, Koeniz, Switzerland). Each
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participant fixated on the letter closest to the central red fixation light whilst four separate

biometric measurements were taken and averaged at O D.
3.2.3 Ciliary muscle image acquisition and analysis

AS-OCT (Visante; Carl Zeiss Meditec. Inc., Dublin, CA) images of nasal and temporal ciliary
muscle regions were obtained from right eyes only of participants, using high-resolution
corneal mode, as described in detail in section 1.7.7.

Several length and width measurements were acquired; curved ciliary muscle total length
(CML) was determined as the anteroposterior distance from the scleral spur, signifying the
anterior insertion along the ciliary muscle-scleral border, to the visible posterior tip of the
ciliary muscle. The anterior length (AL) is measured from the scleral spur to the point of ciliary
muscle maximum width (CMTMAX). CM25 is the muscle width at a point which was 25 % of
the CML posterior to the scleral spur; similarly CM50 and CM75 values were measured at
points 50 % and 75 % (CM50 and CM75 respectively) of the CML posterior to the scleral spur.
Ciliary muscle thickness values were additionally measured at fixed distances from the scleral
spur; CMT1 represents a point 1 mm posterior to the scleral spur, with CMT2 and CMT3 taken

at points 2 mm and 3 mm posterior to the scleral spur, respectively.

Ciliary muscle images were exported from the AS-OCT in raw DICOM (Digital Imaging and
Communications in Medicine) form for analysis purposes. A validated bespoke analysis
programme (Laughton et al., 2015; described in section 1.7.9), produced by the Aston
University Ophthalmic Engineering Department, was used to measure ciliary muscle
parameters; all image analysis was carried out by a single examiner (RNS). The programme
calculates the distance between the scleral spur and a point beyond the posterior visible limit
and the change in pixel intensity along each line is determined to help define the curved
superior and inferior ciliary muscle border, as described in section 1.7.8.. A tiered refractive
index correction was assigned by the programme to the scleral and ciliary muscle tissue (1.41
and 1.38, respectively) in each section of the image to adjust is dimensions accordingly
(Laughton et al., 2015).

3.3 Statistical Analysis

The relationship between axial length and emmetropic ciliary muscle parameters was
determined by linear regression analysis, as was the relationship between anterior chamber
depth and axial length, and anterior chamber depth and each ciliary muscle measure. To

assess the differences in ciliary muscle parameters between male and female cohorts,
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independent sample t-tests were utilised. A P value of less than 0.05 was considered

significant in all analyses.

3.4 Results

Summary characteristics of emmetropic participants are provided in table 3.1. Ciliary muscle

morphological parameters are displayed in table 3.2.

Mean Minimum Maximum
Overall Age (years) 21.1+£8.63 19.1 26.8
Males: 21.5+2.01 19.1 25.9
Females: 21.8+2.08 19.3 26.8
Overall Axial length (mm) | 23.56 + 0.88* | 21.50 25.56
Males: 2414 +0.78 | 22.62 25.56
Females: 23.12+0.66 | 21.50 24.40
Overall MSE (D) -0.02 £ 0.32 -0.51 0.75
Males: 0.00 +0.33 -0.51 0.75
Females: -0.03+0.32 | -0.47 0.72
Overall ACD (mm) 3.03+0.29 2.43 3.68
Males: 3.15+0.25 2.77 3.62
Females: 2.97+0.30 2.43 3.68
Overall LT (mm) 3.41+£0.22 3.11 3.94
Males: 3.48+0.16 3.29 3.72
Females: 3.57+0.24 3.11 3.94

Table 3.1. Summary characteristics of the RE of emmetropic participants, n = 69 consisting of 39

females and 30 males. There was no significant difference in age between the gender groups (P =

0.495). *Indicates a significant difference between females and males.
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Parameter (mm) Nasal Temporal
Overall CML 3.82 £ 0.61* 4.10 £ 0.63*
Males 4.28 + 0.60 4.60 + 0.60
Females 3.53+0.40 3.80+0.41
Overall AL 0.64 + 0.15* 0.66 + 0.15*
Males 0.68 £ 0.16 0.74+£0.22
Females 0.60 £ 0.15 0.59 £ 0.13
Overall CMT1 0.50 £ 0.06 0.50 £ 0.07
Males 0.51+0.07 0.51 +0.07
Female 0.49 £ 0.06 0.49 £ 0.06
CMT2 0.30 £ 0.05* 0.33 £ 0.05*
Males 0.32 £ 0.05 0.34 £ 0.05
Females 0.29 £ 0.05 0.32+0.04
CMT3 0.15 £ 0.04* 0.17 £ 0.04*
Males 0.16 £ 0.05 0.19 £ 0.05
Females 0.13+0.04 0.16 £ 0.04
CM25 0.50 £ 0.06 0.49 £ 0.06
Males 0.49 £ 0.05 0.48 £ 0.05
Females 0.51 £ 0.05 0.50 £ 0.05
CM50 0.32 £ 0.03* 0.32 £ 0.04*
Males 0.29 £ 0.03 0.30 £ 0.04
Females 0.34 £ 0.03 0.33+0.03
CM75 0.16 + 0.02* 0.18 £ 0.03*
Males 0.14 £ 0.03 0.15+0.03
Females 0.18 £ 0.03 0.18 £+ 0.02
CMTMAX 0.56 + 0.07 0.55 £ 0.07
Males 0.56 + 0.07 0.54 + 0.07
Females 0.57 £ 0.06 0.55+ 0.06

Table 3.2. Mean ciliary muscle parameters across the emmetropic cohort.

difference between females and males.
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3.4.1 Ciliary muscle length parameters and ocular biometric correlates

Temporal CML was greater than nasal CML (3.58 =+ 0.40 mm and 3.85 + 0.39 mm for nasal
and temporal aspects, respectively, P < 0.001) though temporal AL was not significantly
greater than nasal AL (0.64 + 0.15 and 0.66 + 0.16 mm for nasal and temporal aspects,
respectively, P = 0.598). Across the whole cohort, AXL was linked with CML (R = 0.519, r? =
0.268, P = 0.001 for nasal aspect; R = 0.475, r2 = 0.226, P = 0.001 for temporal aspect), AL
(nasal: R = 0.436, r? = 0.190, P = 0.001; temporal: R = 0.469, r? = 0.324, P = 0.001) and ACD
(R =0.335, r = 0.112, P = 0.028) There was no relationship between ACD and both CML
aspects (nasal: P = 0.362; temporal: P = 0.331) or AL aspects (nasal: P = 0.594; temporal: P
= 0.401) though ACD was significantly linked with nasal AL (R =0.369, r2=0.136, P = 0.010).

3.4.2 Gender differences in ciliary muscle length and ocular biometric correlates

In males, temporal CML was greater than nasal CML (4.28 £ 0.60 mm and 4.60 + 0.62 mm
for nasal and temporal aspects, respectively, P = 0.031) though temporal AL was not
significantly greater than nasal AL (P = 0.187). In females, temporal CML was also greater
than nasal CML (3.53 + 0.40 and 3.80 = 0.41 mm for nasal and temporal aspects,
respectively) whilst there was no significant thickness difference between nasal and temporal
AL (P =0.802).

A significant gender difference occurred for AXL (24.14 + 0.78 mm and 23.12 + 0.66 for males
and females, respectively, P = 0.001) (see figure 3.1), though not for ACD (3.15 + 0.25 mm
and 2.97 + 0.30 mm for males and females, respectively, P = 0.075) or LT (3.48 £ 0.16 mm
and 3.56 + 0.24 mm for males and females, respectively, P = 0.304). Males were found to
have significantly longer ciliary muscle, for both CML (nasal: 4.28 + 0.60 mm and 3.53 + 0.40
mm for males and females, respectively, P = 0.002; temporal: 4.60 + 0.60 mm and 3.80 %
0.41 mm for males and females respectively, P = 0.001) (see figure 3.1 and 3.2) and AL
(nasal: 0.68 + 0.16 mm and 0.63 + 0.16 mm for males and females, respectively, P = 0.028;
temporal: 0.74 + 0.21 mm and 0.59 = 0.13 mm for males and females, respectively, P =
0.001). In females, there was a significant link between AXL and nasal CML (R = 0.949, r? =
0.900, P =0.035) though not with temporal CML (P = 0.334) or AL (nasal: P = 0.438; temporal:
P = 0.552). Across males, there was a significant link between AXL and nasal CML (R =
0.414,r>=0.171, P = 0.023) and AL (nasal: R = 0.457, r? = 0.209, P = 0.006; temporal: R =
0.487, r> = 0.237, P = 0.004) though not with temporal CML (P = 0.093).
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Figure 3.1 Relationship between AXL and temporal CML in male (solid line) emmetropes (n = 30) and

female (dashed line) emmetropes (n = 39). Temporal CML was significantly longer than temporal CML

in females (P = 0.001)
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Figure 3.2. Relationship between AXL and nasal CML in male (solid line) emmetropes (n = 30) and

female (dashed line) emmetropes (n = 39). The AXL in males was significantly longer in females (P =

0.001), as was nasal CML (P = 0.002).
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3.4.3 Ciliary muscle thickness parameters and ocular biometry

Across the whole cohort, there was no significant thickness difference at CMT1 and CM25
between nasal and temporal aspects (P = 0.649 for CMT1 and P = 0.121 for CM25). Temporal
CMT2 and CMT3 were greater than nasal CMT2 and CMT3, respectively (CMT2: P < 0.002;
CMT3: P < 0.001). Thickness difference between nasal and temporal aspects at CM50 and
CM75 was not significant (P = 0.618 for CM50 and P = 0.501 for CM75). There was no
significant thickness difference between nasal and temporal aspects for CMTMAX (P =
0.134).

AXL across the whole cohort was linked significantly with CMT at nasal CM75 (R = 0.354, r?
= 0.125, P = 0.002), temporal CMT75 (R = 0.381, r? = 0.145, P = 0.001), nasal CM2 (R =
0.235, r> = 0.055, P = 0.030) nasal CM3 (R = 0.224, r? = 0.050, P = 0.036) and temporal
CM50 (R = 0.285, r? = 0.081, P = 0.010). AXL was not significantly related with nasal CM50
(P = 0.063), CM25 for either aspect (nasal: P = 0.538; temporal: P = 0.823), CM1 for either
aspect (nasal: P = 0.145; temporal: P = 0.450), temporal CM2 (P = 0.166) or temporal CM3
(P = 0.181). ACD was significantly linked with nasal CM1 (R = 0.261, r> = 0.068, P = 0.041).

3.4.4 Gender differences in ciliary muscle thickness

In males, temporal CM2 and CM3 was significantly greater than nasal CM2 (0.32 £ 0.05 and
0.34 £ 0.05 mm for nasal and temporal aspects, respectively; P = 0.023) and CM3 (0.16 *
0.05 and 0.19 £ 0.05 mm for nasal and temporal aspects, respectively, P = 0.003),
respectively. There was no significant difference between nasal and temporal aspects for
CM1 (P =0.939) and CM25 (P = 0.383), or CM50 (P = 0.358), CM75 (P = 0.290) or CMTMAX
(P =0.132). In females, there was also a significant thickness difference between nasal and
temporal CM2 (0.29 + 0.05 and 0.32 £+ 0.04 mm, for nasal and temporal and temporal aspects,
respectively, P = 0.025) and CM3 (0.13 = 0.04 and 0.16 + 0.04 mm for nasal and temporal
aspects, respectively, P = 0.006) and no significant difference between nasal and temporal
aspects for CM1 (P = 0.959), CM25 (P = 0.436), or CM50 (P = 0.911), CM75 (P = 0.932) or
CMTMAX (P = 0.835).

There were no significant gender differences for CM1 (0.51 + 0.07 and 0.49 £+ 0.46 mm for
males and females, respectively, for both aspects, P = 0.610), CM25 (nasal: 0.49 + 0.05 mm
and 0.50 + 0.05 mm for males and females, respectively, P = 0.770; temporal: 0.48 + 0.05
mm and 0.50 = 0.05 mm for males and females, respectively, P = 0.527) or CMTMAX (nasal:
0.56 £ 0.07 mm and 0.57 £+ 0.06 for males and females, respectively, P = 0.496; temporal:
0.54 £ 0.07 mm and 0.55 + 0.06 mm for males and females, respectively, P = 0.130). Males

showed significantly greater thickness at CM2 (nasal: 0.32 + 0.05 mm and 0.29 £ 0.05 mm
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for males and females, respectively, P = 0.035; temporal: 0.34 + 0.05 mm and 0.32 £ 0.04
mm for males and females, respectively) and CM3 (hasal: 0.16 = 0.05 mm and 0.13 + 0.04
mm for males and females, respectively, P = 0.017; temporal: 0.19 £ 0.05 mm and 0.16 £
0.04 mm for males and females, respectively, P = 0.002). Thickness measures proportional
to CML showed females to have significantly greater thickness values than males at CM50
(nasal: 0.29 = 0.03 mm and 0.34 + 0.03 mm for males and females, respectively, P = 0.001;
temporal: 0.30 £ 0.04 mm and 0.34 + 0.03 mm for males and females, respectively, P =
0.001) and CM75 (nasal: 0.14 + 0.03 mm and 0.18 + 0.03 for males and females, respectively,
P = 0.001; temporal: 0.15 + 0.03 mm and 0.18 =+ 0.03 mm for males and females,
respectively, P = 0.001).

3.5 Discussion

Whilst comparisons have been made regarding ciliary muscle morphology across emmetropic
and myopic cohorts (Bailey et al., 2008; Sheppard and Davies, 2010; Buckhurst et al., 2013;
Pucker et al., 2013), the ciliary muscle has not been evaluated in emmetropes specifically.
Since the emmetropic ciliary muscle is only influenced by normal globe development and with
absence of any pathological globe expansion, the morphology of the ciliary muscle in
emmetropia is therefore of significant interest; the ciliary muscle parameters which are linked
with particular ocular biometric correlates implicates what defines ciliary muscle growth with
normal ocular development. This study is the first to investigate ciliary muscle morphology

and ocular biometric correlates in an emmetropic cohort, on a large scale.

Across the emmetropic cohort, AXL was linked with ACD, ciliary muscle length (both AL and
CML) and CMT, whilst ACD was linked with AL and CMT, indicating ciliary muscle growth
with normal ocular development. The temporal ciliary muscle aspect was longer (for both AL
and CML) and thicker at CM2 and CM3; such nasal-temporal asymmetry has been identified
in in vitro investigations of human ciliary body morphology, with a longer temporal aspect
established (Aiello et al., 1992), and this discrepancy corresponds with the thicker temporal
side and increased contractile response from this aspect found in vivo (Sheppard and Davies,
2010b). Though the significance of this intraocular asymmetry is not well understood, ciliary
apparatus asymmetry has been observed in the rhesus monkey in vitro (Glasser et al., 2001),
where it was suggested that this morphological variation may be required to permit lenticular
axis alignment and maintain binocular single vision during accommodative convergent eye

movements (Glasser et al., 2001; Sheppard and Davies, 2010b).

In keeping with previous biometric findings across varying refractive errors (Wickremasinghe
etal., 2004; Hashemi et al., 2012; Wang et al., 2015), and specifically in an emmetropic cohort

(Atchison et al., 2008; Atchison et al., 2009), AXL was found to be significantly longer in males
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compared with females (see figure 3.1), with a mean difference of 1.02 mm. This difference
is somewhat larger than that found by Atchison and co-workers (2009), who found a greater
AXL in males by a mean difference of 0.72 mm, though mean overall non-gender specific
AXL found here in this study was 23.56 mm, similar to that found by Atchison et al (2009), at
23.39 mm. There was also a trend for males to have a greater ACD compared to females,
but similar to previous work in emmetropes (Atchison et al., 2008; Atchison et al., 2009), this
difference, and the difference in LT between males and females, did not reach statistical
significance, indicating that the increased AXL in males is attributable to vitreous elongation.

Since males were found to have a significantly longer AXL compared with females, it is fitting
therefore that ciliary muscle morphology is altered between gender, given the current
evidence of increased ciliary muscle length and thickness in axially longer eyes (Oliveira et
al., 2005; Bailey et al., 2008; Buckhurst et al., 2013; Pucker et al., 2013). Both CML and AL
were significantly longer in males, relative to females. There was no thickness difference
between the gender groups for CM25 and CM1, however, the data indicates that females
have significantly greater CMT at CM50 and CM75, for both nasal and temporal aspects.
Conversely, males had significantly greater CMT at CM2 and CM3, compared with females.

Whilst these findings appear contradictory at first, since it is assumed that CM50 and CM75
are in a similar ciliary muscle region to CM2 and CM3, respectively, the differences in these
two methods (thicknesses taken proportional to the CML, and at fixed with measures) to
measure ciliary muscle thickness explain the findings (see figure 3.3); because males have
a longer AXL and therefore a longer CML compared with females, a measure of CM2 in a
longer, male ciliary muscle is not in the same anatomical region in a shorter, female ciliary
muscle. The same concept applies for CM3 as demonstrated in figure 3.3, and highlights that
CM2 and CM50 are not at all the same anatomical regions, as CM75 and CM3 are evidently
not either. Moreover, in a shorter ciliary muscle representative of that in the female cohort,
CM50 and CM75 are regions which fall anterior to CM2 and CM3, respectively, whereas in a
longer ciliary muscle which is characteristic of those in males, CM50 and CM75 are regions
which fall posterior to CM2 and CM3, respectively. Therefore, the reason the data suggests
that males have increased CMT compared with females, at CM2 and CM3, is due to the fact
that in a longer ciliary muscle, these fixed width measures fall on a relatively more anterior,
and consequently thicker region of the ciliary muscle than in a shorter ciliary muscle. It can
be deduced from the thickness measures proportional to the CML, that females demonstrate
greater ciliary muscle thickness compared with males, despite males possessing a
significantly longer ciliary muscle. It would be expected for males to have increased CMT

considering the data indicates AXL is linked with CMT, and previous work has shown that
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CMT increases with increasing negative refractive error (Oliveira et al., 2005; Bailey et al.,

2008). Such findings cannot be explained and warrant further investigation.

Figure 3.3. Top image is the ciliary muscle of a male emmetropic subject with an axial length of 25.56
mm. Bottom image is the ciliary muscle of a female emmetropic subject with an axial length of 22.60
mm and correspondingly shorter ciliary muscle. The orange lines depict where the fixed with measures
(CM1, CM2 and CM3) are taken along the ciliary muscle, relative to thickness measures proportional
to the overall length (CM25, CM50, CM75). The proportional measures all lie posterior to the fixed

width measures in the longer, male ciliary muscle and anterior in the shorter, female ciliary muscle.

Since the proportional ciliary muscle measures fall posteriorly to the fixed width parameters
in the longer, male ciliary muscle, it is therefore demonstrated that the arbitrary, fixed width
measures evidently do not take into consideration that ciliary muscle lengths vary with varying
AXL and may therefore present data with somewhat misleading outcomes. The findings here
are in agreement with previous work which suggested that fixed width measures may signify
a different ciliary body anatomical region in varying refractive errors (Sheppard and Davies,

2010b). Thickness measures proportional to the CML do not have the same shortcomings

101



and aim to measure thickness of the ciliary muscle at the same regions of the ciliary muscle,

across varying ciliary muscle morphology.
3.6 Conclusion

To conclude, this is the first study to investigate specifically the emmetropic ciliary muscle, on
a large scale. Length and thickness were greater than that of the nasal aspect. Gender
differences in the overall length were found, corresponding with the significantly longer axial
lengths and therefore CML, in males. However, thickness measures proportional to the CML
(CM50 and CM75) were found to be greater in females. Arbitrary, fixed width measures,
relative to the scleral spur do not take into account that the ciliary muscle length varies

amongst individuals, and may produce misleading results.
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Chapter 4
Inter- eye ciliary muscle symmetry and morphological variation with refractive error
4.1 Introduction

Myopia represents a considerable health concern and is one of the foremost global causes
of visual impairment (Lin et al., 1996; Saw, 2003; Woodman et al., 2011; Ghosh et al., 2014).
The refractive condition affects approximately one sixth of the worldwide population (Norton
et al., 2005; Logan et al., 2011) and its prevalence is continuing to increase (Rose et al.,
2001; Vitale et al., 2008; Williams et al., 2015), such that myopia has expanded to epidemic
proportions in certain industrialised East Asian communities (e.g. Singapore) where at least
70 % of adolescents are myopic (Seet et al., 2001; Logan et al., 2011). There is a significant
effect of myopia on all spheres of society, and East Asian countries include refractive error in
their educational, health, and economic strategic plans (Logan et al., 2011). Myopia can
impact considerably on quality of life, ranging from having cost implications and being a
simple visual inconvenience to sufferers, to a predisposition to certain sight threatening
pathological conditions (Mitchell et al., 1999; Gilmartin et al., 2004; Logan et al., 2011).
Associated ocular pathologies include glaucoma (Mitchell et al., 1999), cataract (Lim et al.,
1999), retinal detachment and chorioretinal degeneration (Grossniklaus and Green, 1992).
Whilst the precise aetiology of myopia is not fully understood, it is believed to be multifactorial
in origin, consisting of both genetic and environmental constituents (Mutti 2010; Woodman et
al., 2011; Williams et al., 2015).

There is increasing evidence of altered ciliary muscle morphology in myopia (van Alphen,
1986; Mutti et al., 2000; Walker and Mutti, 2002; Harb et al., 2006; Sheppard and Davies,
2010b; Buckhurst et al., 2013). In vitro findings have indicated that the ciliary muscle in myopic
eyes is longer due to simple globe expansion (van Alphen, 1986). However, several more
recent in vivo studies investigating ciliary muscle morphology (Mutti et al., 2000; Walker and
Mutti, 2002; Harb et al., 2006; Sheppard and Davies, 2010b; Buckhurst et al., 2013) dispute
such evidence, as the ciliary region in myopic eyes is not thinned as would be expected from
simple mechanical stretching with axial growth (Bailey et al., 2008; Sheppard and Davies,
2010b; Lewis et al., 2012; Buckhurst et al., 2013). Several other investigations have also
contradicted the in vitro experimental findings of van Alphen, but by demonstrating that the
ciliary muscle is thicker in the myopic eye compared with non-myopic eyes (Oliveira et al.,
2005a; Bailey et al., 2008; Buckhurst et al., 2013). Though it may have been assumed that
hyperopic eyes should exhibit greater ciliary muscle thickness owing to the increased

accommodative effort expended compared to the non-hyperope (Oliveira et al., 2005; Pucker
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et al.,, 2013), there was no dependency between axial length and the proportional
measurements of ciliary muscle thickness (CM25, CM50 & CM75; Sheppard and Davies,
2010). However, such findings differ from previous work using AS-OCT, which acknowledged
a strong relationship between ciliary body thickness at areas 2 mm and 3 mm posterior to the
scleral spur (CM2 and CM3, respectively) and axial myopia (Bailey et al., 2008). A mutual
finding between both investigations revealed that CM2 did show an association of being
thicker with increased axial length (Bailey et al., 2008; Sheppard and Davies, 2010). Similarly,
a study utilising UBM for the in vivo assessment of ciliary body thickness demonstrated that
the mean CBT2 was significantly greater in myopes than emmetropes and hyperopes, whilst
emmetropes also displayed an increased mean CBT2 compared with hyperopes. Also, mean
CBT3 was shown to be significantly greater in myopes than emmetropes and hyperopes, and
again, was significantly increased in emmetropes compared with hyperopes (Oliveira et al.,
2005).

Further anterior segment optical coherence tomography (AS-OCT) - based research of the
ciliary region by Lewis et al (2012) revealed that eyes of longer axial lengths show greater
ciliary muscle thickness values at CMT2 and CMT3, in both the relaxed state, and with
accommodation, supporting previous findings that myopes have a regionally thicker ciliary
muscle than hyperopic or emmetropic subjects (Bailey et al., 2008). Such thickening of the
ciliary muscle has been implicated as a potential physiological response in myopic eyes,
(Bailey et al., 2008), whilst the thinner hyperopic ciliary muscle has been hypothesised to
result from a disruption of the basic stress-response relationship that occurs in all recognised
muscles (Pucker et al., 2013). The pre-presbyopic ciliary muscle was also studied with AS-
OCT by Sheppard and Davies (2010) and results indicated that the relaxed ciliary muscle has
a significantly longer overall and anterior length in eyes of greater axial length. It was
predicted that radial growth-thickening of the ciliary muscle occurs in conjunction with axial
elongation during myopigenesis (Sheppard and Davies, 2010). Key findings of in vivo studies
of human ciliary muscle morphology with refractive error are summarised in table 4.1.
Evidently, ciliary muscle morphology in terms of both length and particular thickness sections
appear to be altered in myopic eyes. Nonetheless, ambiguity between findings of previous

studies remain, and the significance of these observations is not fully understood.

Results from various studies including human MRI work (Atchison et al., 2004) and study of
the infant monkey (Smith et al., 2005) indicate that equatorial expansion of the globe is a
significant aspect in the development of myopia (Logan et al., 2004; Mutti et al., 2007).
Thickening of the ciliary muscle may develop from hypertrophy, resulting in excessive

collagen deposition running though the ciliary muscle in a circular orientation. As such, the
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thickened ciliary muscle mechanically blocks equatorial expansion necessary for
maintenance of emmetropia (Bailey et al., 2008; Mutti 2010). Moreover, this hypertrophic
ciliary body would also cause enlargement of the ciliary muscle cells, reducing the contractile

response (Seidel and Weisbrodt, 1987; Bailey et al., 2008).

Authors & study | Imaging | Cohort Key findings Implications
title method
Oliveira et al. UBM n =75 (mean Mean CB2 values vary Strong association
2005 age 51.8 £ 16.5 | with refractive group: between CB2 and
years) refractive error. CB2
Ciliary body Myopes = 490 um increases with myopia
thickness and axial length.
increases with Emmetropes = 362 ym
increasing axial
myopia Hyperopes = 317 um
Bailey et al. 2008 | AS-OCT | n =53 children | Mean ciliary body Hypertrophy of ciliary
(mean thickness in myopes = muscle could be
Ciliary body age 11.8 years | 630 ym and emmetropes | implicated in
thickness +2.31;range: 8 | =574 uym. myopigenesis, due to
and refractive error — 15 years) CB2 strongly correlated increased
in with axial length and accommodative lag,
children myopia key to the retinal
defocus model of
myopia
development.
Sheppard and AS-OCT | n=50 The ciliary muscle was Axial elongation is
Davies, 2010 prepresbyopes | longer in eyes with accompanied by some
(mean age 28.5 | greater axial length. radial growth—
In vivo analysis of + 4.5 years; The ciliary muscle thickening of the ciliary
ciliary muscle range: 19- 34 was thicker and showed muscle during
morphologic years) a greater contractile myopigenesis
changes with response on the temporal
accommodation aspect.
and axial
ametropia
Pucker et al., AS-OCT | n=269 Refractive error was Posterior ciliary
2013 children (mean | significantly associated muscle fibers (CMT2 &
age 8.7+ 1.51 only with CMT2 and CMT3) are thicker in
Region-specific years; range: 6 | CMT3. Apical fibers at myopia, but the apical
relationships — 14 years) CMT1 and CMTMAX had | ciliary muscle fibers
between refractive a significant relationship (CMTMAX & CMT1)
error and ciliary with refractive error. are thicker in
muscle thickness hyperopia
in children
Buckhurst et al., AS-OCT | n=62 (mean Refractive error was Increased CMT is
2013 age 27.7 years | significantly associated associated with
+5.29; range: with CMT, with thicker myopia.
Ocular biometric 18 — 40 years) CMT2 and CMT3 found
correlates of ciliary in the myopic eyes.
muscle thickness
in human myopia

Table 4.1. Key findings from in vivo studies of human ciliary muscle morphology and refractive error.
CB2 is ciliary body thickness, measured 2 mm posterior to the scleral spur. CMT1, CMT2 and CMT3
are ciliary muscle thickness measurements at 1mm, 2 mm and 3 mm posterior to the scleral spur,

respectively. CMTMAX is the ciliary muscle maximum thickness.
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Previous in vivo human ciliary muscle investigations have investigated only one eye, and
many have been limited to just one aspect (e.g. the temporal side); as such, the inter- eye
symmetry of the ciliary muscle, which may be relevant to refractive error development, is not
understood. Similarly, many studies of refractive error have reported data from one eye
(Shufelt et al., 2005; Mutti et al., 2007; Liao et al., 2014). However, a relatively recent MRI
investigation examined bilateral globe profile in myopia and emmetropia (Gilmartin et al.,
2013). Posterior vitreous chamber shapes were established from T2-weighted MRI, using a
cohort of 55 adult participants. Coordinate reference points to contrast with the myopic globe
profile were mapped to an emmetropic eye; these three- dimensional surface model
coordinates were allotted to inferior, superior, temporal and nasal quadrants and plotted in a
two-dimensional model to reveal the compound profile of respective quadrants (Gilmartin et
al., 2013). Globe shape was linked to retinotopic projection in both myopes and emmetropes;
emmetropic and myopic eyes could not be differentiated with regards to equatorial
dimensions. While symmetry was observed between the two eyes of each subject for the
superior to inferior vitreous chamber shape, asymmetry in the horizontal laterality of globe
profile in myopia development was found; there was asymmetry between nasal and temporal
guadrants in right and left eyes, but a symmetrical relationship between the temporal quadrant
of one eye and the contralateral nasal quadrant, and vice versa (Gilmartin et al., 2013). Since
the decussation of nasal and temporal retinal nerve fibres into right and left visual fields occurs
at the optic chiasm (Bron et al., 1997), the coupling indicates that binocular growth may be
coordinated by signals produced beyond the optic chiasm (Gilmartin et al., 2013). It is not
known whether ciliary muscle morphology displays similar properties between the refractive
error groups. Such laterality in myopia development may reflect ciliary muscle laterality, and
previous investigations have not studied this matter. More work was needed to fill this gap in
the current knowledge in this area, and this investigation aimed to provide answers relating

to ciliary muscle morphology and laterality.

The purpose of this investigation was to link the morphological characteristics of the ciliary
muscle with axial length across emmetropes and myopes, and to study the inter-eye ciliary

muscle symmetry of both aspects (nasal and temporal), for the first time on a large scale.
4.2 Methods
4.2.1 Subjects

One hundred subjects aged 19-26 years were recruited from the student body of Aston
University, consisting of fifty emmetropic volunteers with a mean sphere equivalent (MSE = -
0.55; < +0.75 D) and fifty myopes (MSE < -2.00 D). The narrow age range was chosen to

reduce discrepancies in ciliary muscle data due to ageing, most notably ciliary muscle
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thickening (Sheppard and Davies, 2010). Exclusion criteria were cylindrical refractive errors
greater than 2.00 D, anisometropia = 1.00 D, amblyopia, previous history of ocular trauma,
surgery or pathology, and systemic conditions known to affect ocular health. All participants
had corrected visual acuities of 0.0 logMAR or better in each eye. Myopic participants wore
31% Nelfilcon A (Focus Dailies) contact lenses appropriate for their habitual refractive error
for all ciliary muscle imaging. Ethical approval was obtained from the Aston University Life
and Health Sciences Research Ethics Committee and the study adhered to the tenets of the
Declaration of Helsinki. Written, informed consent was obtained from all participants prior to
commencement after explanation of the nature and possible consequences of the study.

4.2.2 Measurements

Binocular distance refractive error was measured with a validated infra-red binocular open-
view autorefractor (Grand Seiko WAM 5500; Sheppard and Davies, 2010) whilst subjects
viewed a distance (6 m) Maltese cross target. A minimum of five measurements of refractive

error were taken for each eye, averaged and converted into MSE.

AXL in the unaccommodated state was obtained in each eye, and ACD and LT was obtained
in the unaccommodated state in right eyes only, using the Lenstar LS 900 biometer (Haag-
Streit AG, Koeniz, Switzerland). Each participant fixated on the letter closest to the central
red fixation light whilst four separate biometric measurements were taken and averaged at O
D.

4.2.3 Ciliary muscle image acquisition and analysis

AS-OCT (Visante; Carl Zeiss Meditec. Inc., Dublin, CA) images of nasal and temporal ciliary
muscle regions were obtained from right and left eyes of participants, using high-resolution
corneal mode, as detailed in section 1.7.7. Ciliary muscle images were exported from the AS-
OCT in raw DICOM (Digital Imaging and Communications in Medicine) form for analysis
purposes. A validated bespoke analysis programme (Laughton et al., 2015) was used to
measure ciliary muscle parameters, as detailed in section 1.7.8. All image analysis was

carried out by a single examiner (RNS).

Several length and width measurements were acquired (see figure 1.23); ciliary muscle total
length (CML) was determined as the anteroposterior distance from the scleral spur, signifying
the anterior insertion along the ciliary muscle-scleral border, to the visible posterior tip of the
ciliary muscle. The anterior length (AL) is from the scleral spur to the point of ciliary muscle
maximum width (CMTMAX). CM25 is the muscle width at a point which was 25 % of the CML

posterior to the scleral spur; similarly CM50 and CM75 measures were taken at points 50 %
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and 75 % (CM50 and CM75 respectively) of the CML posterior to the scleral spur. Additionally,
ciliary muscle thickness measurements were taken at fixed distances from the scleral spur;
CMT1 represents a point 1 mm posterior to the scleral spur, with CMT2 and CMT3 taken at

points 2 mm and 3 mm posterior to the scleral spur, respectively.
4.2.4 Statistical analysis

The data for each variable were normally distributed, as examined by tests of normality
(Shapiro-Wilk) (SPSS Statistics 21; IBM, lllinois, USA). The relationship between axial length
and ciliary muscle parameters was determined by linear regression analysis for each
refractive group, as was the relationship between anterior chamber depth and axial length,
and anterior chamber depth and each ciliary muscle measure. A P value of < 0.05 was
considered significant. To assess the differences in ciliary muscle parameters between
aspects (nasal and temporal) and refractive groups and to determine whether any differences
occurred between eyes, two-way, mixed-factor ANOVAs were performed (SPSS Statistics
21; IBM, lllinois, USA.)

4.3 Results

Summary characteristics of emmetropic and myopic participants are provided in table 4.2.
Mean axial length in both eyes (P < 0.001) and anterior chamber depth (P = 0.001) were
significantly greater in the myopic group, though no significant difference between the
refractive groups found for LT (P = 1.000). Ciliary muscle morphological parameters are
displayed in table 4.3. There was no significant difference in age between the refractive
groups (P = 0.884) or in axial length between right and left eyes across the whole cohort (P
= 0.431).

Emmetropes (n = 50) Myopes (n = 50)

Mean Minimum | Maximum | Mean Minimum | Maximum
Age (years) 21.1+863 |19.2 26.8 21.7+884 |19.3 26.1
Right eye 23.29 + 21.50 25.24 25.46 + 23.53 28.02
axial length 0.80* 1.16*
(mm)
Left eye axial | 23.23 + 21.55 25.00 25.47 + 23.48 27.98
length (mm) 0.80* 1.28*
ACD (mm) 3.03+0.29* | 2.43 3.68 3.23+£0.25* | 2.67 3.71
LT (mm) 3.53+0.22 |3.11 3.94 351+0.23 |3.14 3.78

Table 4.2. Summary characteristics of emmetropic (n= 50) and myopic (n= 50) participants. Both eyes
were grouped for MSE; there was no significant difference in MSE between the two eyes of emmetropic
(P = 0.062) and myopic (P = 0.793) participants. Similarly, there was no significant difference in AXL
between the two eyes of emmetropic (P = 0.232) and myopic (P = 0.527). *Indicates significant

difference between the refractive groups.
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Emmetropes Myopes

Parameter (mm) RE LE RE LE

Nasal CML 3.58 £ 0.40 3.65+0.35 5.01 + 0.54 4.99 + 0.55
Range 2.71-459 2.94 -4.40 3.85-5.98 4.00 - 6.57
Temporal CML 3.85+0.39 3.88+0.41 5.53+0.54 5.47 + 0.52
Range 2.93-4.59 297-4.78 457 -6.54 447 - 6.62
Nasal AL 0.60 + 0.15 0.61 +0.15 0.73+0.12 0.73+0.11
Range 0.25-0.89 0.39-0.97 0.50 -1.06 0.46 - 0.99
Temporal AL 0.60 +0.13 0.60+0.14 0.82+0.14 0.80+0.11
Range 0.33-0.82 0.35-0.94 0.57-1.20 0.55-1.08
Nasal CMT1 0.49 + 0.06 0.48 +0.06 0.59 + 0.04 0.59 + 0.04
Range 0.36 — 0.66 0.38 -0.61 0.47 - 0.66 0.50 - 0.66
Temporal CMT1 0.49 + 0.07 0.50 + 0.07 0.61 + 0.05 0.60 + 0.06
Range 0.30 -0.62 0.34 -0.65 0.51-0.70 0.46 - 0.69
Nasal CMT2 0.29 + 0.05 0.30 + 0.05 0.39 + 0.05 0.38 + 0.05
Range 0.19-0.44 0.18 -0.44 0.26 - 0.49 0.28 -0.48
Temporal CMT2 0.32 +0.05 0.32 +0.05 0.42 +0.04 0.42 +0.05
Range 0.22 -0.46 0.23-0.46 0.32-0.53 0.33-0.50
Nasal CMT3 0.13+0.04 0.14 +0.04 0.23 +0.05 0.22 +0.05
Range 0.06 —0.26 0.05-0.25 0.12-0.33 0.15-0.35
Temporal CMT3 0.16 + 0.04 0.16 + 0.05 0.27 + 0.05 0.27 +0.04
Range 0.10-0.29 0.07 -0.27 0.16 - 0.38 0.18 -0.35
Nasal CM25 0.51 + 0.06 0.51 + 0.06 0.54 + 0.04 0.54 +0.03
Range 0.39 -0.62 0.39-0.70 0.44 - 0.60 0.47 - 0.60
Temporal CM25 0.50 + 0.06 0.50 + 0.06 0.54 + 0.04 0.53 +0.05
Range 0.38 - 0.62 0.36 — 0.66 0.46 — 0.67 0.41-0.63
Nasal CM50 0.33+0.03 0.33+0.03 0.31+0.03 0.31+0.03
Range 0.27-0.42 0.26 -0.41 0.23-0.37 0.24 -0.40
Temporal CM50 0.33+0.04 0.34+0.04 0.31+0.04 0.31+0.04
Range 0.27-0.44 0.26 - 0.45 0.23-0.46 0.24-0.43
Nasal CM75 0.18 + 0.02 0.18 + 0.03 0.14 +0.02 0.14 +0.02
Range 0.13-0.24 0.12 -0.26 0.09 -0.22 0.10-0.19
Temporal CM75 0.18 + 0.03 0.18 + 0.03 0.15+0.03 0.15+0.02
Range 0.13-0.24 0.12-0.24 0.11-0.25 0.11-0.21
Nasal CMTMAX 0.56 + 0.07 0.75+0.05 0.64 + 0.06 0.65 + 0.05
Range 0.41-0.70 0.41 -0.69 0.52-0.78 0.54 -0.72
Temporal CMTMAX | 0.55 £ 0.07 0.55+0.07 0.64 + 0.06 0.63 +0.07
Range 0.40 - 0.66 0.37-0.68 0.51-0.79 0.48 - 0.82
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Table 4.3. Mean ciliary muscle parameters in emmetropic and myopic participants. There was no

significant differences between RE and LE for any ciliary muscle parameter in emmetropes or myopes.
4.3.1 Ciliary muscle length and symmetry

In both refractive groups, temporal CML was greater than nasal CML, in right and left eyes
(right mean CML = 3.58 £ 0.40 mm and 3.85 + 0.39 mm for nasal and temporal aspects,
respectively, P <0.001; left: 3.65 + 0.35 mm and 3.88 = 0.41 mm for nasal and temporal
aspects, respectively, P < 0.001), though the difference between eyes for both aspects was
not significant (temporal: P = 0.393 and nasal: P = 0.095) (see figure 4.1). Temporal AL was
greater than nasal AL, in both eyes, though there was no significant difference between ciliary
muscle aspects in each eye (temporal: P = 0.745; nasal: P = 0.589) or between eyes (right:
P = 0.598 and left: P = 0.590). No significant difference was found for any CM length
parameter between the eyes (CML: F = 0.003, P = 0.960; AL: F = 0.002, P = 0.800). The CM
of myopes was longer than in emmetropes (CML: F = 224.82, P < 0.001; AL: F = 69.128, P
< 0.001).
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Figure 4.1a: Relationship of RE nasal (solid line) and temporal (dashed line) CML with AXL in emmetropes, with
greater temporal CML length than nasal (n = 50).

110



5.0

o Temporal CML
o e Nasal CML

o)
451 R=0.417,12=0.174, P = 0.003 . o)

Ciliary Muscle Length (mm)

3.0 - e R =0.390, r2 = 0.134, P = 0.006

25 T T T T
21 22 23 24 25 26

Axial Length (mm)

Figure 4.1b: Relationship of RE nasal (dashed line) and temporal (solid line) CML with AXL in myopes (n = 50),

with greater temporal CML length than nasal, mirroring the relationship between AXL and CML in emmetropes.

AXL was related to CML in emmetropes (r = 0.417, r?> = 0.175, P = 0.003 for right temporal
aspect; r = 0.358, r* = 0.128, P = 0.010, for right nasal aspect; r = 0.355, r* = 0.126, P = 0.011
for left nasal aspect; r = 0.370, r*> = 0.137, P = 0.008 for left temporal aspect), myopes (r =
0.511, r* = 0.261 P < 0.001 for left nasal aspect; r = 0.422, r* = 0.178, P = 0.001 for right
temporal aspect) and ACD in emmetropes (r = 0.425, r* = 0.181, P = 0.010). There was a
positive association between ACD and both CML aspects in emmetropic right (nasal: r =
0.382, 1> = 0.146, P = 0.008; temporal: r = 0.524, r* = 0.274, P = 0.001) and left (nasal: r =
0.432,r?>=0.187, P = 0.012; temporal: r = 0.491, r* = 0.241, P = 0.009) eyes. In myopic eyes,
ACD was related to both CML aspects in the right eye (nasal: r = 0.403, r? = 0.162, P = 0.004;
temporal: r = 0.326, r> = 0.106, P = 0.018), left eye temporal CML (r = 0.385, r* = 0.148, P =
0.006), right eye nasal CMT1 (r = 0.311, r? = 0.097, P = 0.002), right eye temporal AL (r =
0.342, r* = 0.117, P = 0.023) and left eye nasal AL (r = 0.311, r? = 0.097, P = 0.041); there
was no significant link between ACD and AXL (r = 0.195, r* = 0.038, P = 0.108).
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4.3.2 Ciliary muscle thickness and symmetry

In both refractive groups, temporal CMT was thicker than nasal CMT at CMTMAX (F = 8.21,
P = 0.005) and at each fixed measure from the scleral spur (CMT1: F = 6.310, P = 0.014;
CMT2: F=113.47, P <0.001; CMT3: F = 141.90, P < 0.001), though there was no significant
difference between aspects in any CMT measures proportional to the CML (CM25: F = 3.81,
P =0.054; CM50: F=3.110, P =0.81; CM75: F=4.101, P =0.460). There was no significant
difference for any CM thickness parameter between the eyes (e.g. CMT1: F = 0.160, P =
0.690; CMT3: F = 0.201, P = 0.650). All CM thickness parameters were greater in myopes
compared with emmetropes (CMT1: F =127.041, P < 0.001; CM25: F =15.456, P < 0.001;
CMT2: F=113.851, P <0.001; CM50: F=17.492, P <0.001; CMT3: F=136.664, P <0.001;
CM75: F =79.722, P < 0.001; CMTMAX: F = 69.321, P < 0.001).

In emmetropes, AXL was linked to CMT at fixed width measures and those proportional to
CML in both eyes, for nasal (e.g. right eye CMT1: r = 0.351, r? = 0.123, P = 0.014; left eye
CMT3: r = 0.263, r> = 0.069, P = 0.036) and temporal (e.g. right eye CMT2: r = 0.400, r? =
0.152, P = 0.001; left eye CM25: r = 0.379, r? = 0.144, P = 0.004) aspects. ACD was linked
to CMT at CMT2 and CMT3 for both nasal and temporal aspects and eyes (e.g. right eye
nasal CMT2: r = 0.394, r? = 0.155, P = 0.007; left eye nasal CMT3: r = 0.406, r> = 0.165, P =
0.006; right eye temporal CMT3: r = 0.344, r = 0.118, P = 0.017). For myopes, the positive
association between AXL and CMT was present in both eyes at CMT2 and CMT3 (see figure
4.2) fixed width measures only, for nasal (e.g. right eye CMT3: r = 0.437, 1> = 0.191, P =
0.001; left eye CMT3: r = 0.472, r* = 0.223, P < 0.001) and temporal (e.g. right eye CMT3: r
=0.332, r?=0.110, P = 0.019; left eye CMT3: r = 0.313, r* = 0.098, P = 0.015). A relationship
was found between ACD and CMT at CMT2 (e.g. temporal: r = 0.278, r> = 0.077, P = 0.042).
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Figure 4.2a Relationship of RE nasal (dotted line) and temporal (solid line) CMT3 with AXL in myopes

(n = 50), with greater temporal CMT3 than nasal CMT3.
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Figure 4.2b Relationship between LE nasal (dotted line) and temporal (solid line) CMT3 with AXL in

myopes (n = 50), with greater temporal CMT3 than nasal CMT3, mirroring the relationship between

AXL and CMT3 in emmetropes.
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4.4 Discussion

Despite a growing body of research relating to ciliary muscle morphology and refractive error,
there is a paucity of information regarding inter- eye symmetry of the ciliary muscle. Previous
investigations have typically investigated one eye only, usually the right (Oliveira et al., 2005;
Bailey et al., 2008; Sheppard and Davies, 2010; Buckhurst et al., 2013) or one aspect (Bailey
et al., 2008; Pucker et al., 2013); hence, there has been limited information relating to the
normal variations in the inter- eye ciliary muscle symmetry, and those observed in myopia.
This study is the first to examine ciliary muscle morphology across both eyes, and both

aspects, across a fairly large emmetropic and myopic cohort.

Baseline AXL and ACD were significantly greater in the myopic group, as found in previous
studies (Park et al., 2010; Buckhurst et al., 2013) and in keeping with the evidence that
increased axial elongation and globe expansion occurs with myopia (Atchison et al., 2004;
Mutti et al., 2007; Mutti 2010; Gilmartin et al., 2013). The present study has established high
levels of inter- eye symmetry in ciliary muscle morphology in both refractive groups; there
was no significant difference between the eyes for any length or thickness ciliary muscle
parameter in either refractive group. Gilmartin et al (2013) discovered asymmetry in the
laterality of globe profile in myopia development; with nasal to temporal quadrants being
asymmetric between right and left eyes, with the temporal quadrant of the right eye
corresponding with the nasal quadrant of the left eye. However, the similaratity between nasal
aspects between the eyes and temporal aspects between both eyes of myopes observed in
this study, demonstrates that the variance in globe profile is not translated to ciliary muscle
morphology.

In both emmetropic and myopic refractive groups, ACD and AXL was linked to nasal and
temporal CML, and CMT in both aspects was linked with AXL. Furthermore, the r?values for
the relationship between AXL and CML are highly similar between emmetropes and myopes,
as for the relationship between AXL and CMT, and CML with ACD; the relationship is
unchanged as the eye undergoes myopic elongation and indicates ciliary muscle growth that
is consistent with normal ocular development. However, AXL and ACD each only accounted
for around 17 — 18 % of the varience in CML. The data (see figure 4.2) indicate that the ciliary
muscle plays a passive role in myopigenesis, and altered ciliary muscle morphology is
unlikely to be the aetiology, though appears to be an anatomical consequence, of myopia
development. However, ACD in emmetropes was linked with AXL whilst there was no
relationship between these two biometric correlates in myopic eyes, suggesting that while the

ACD in myopes is significantly greater than in emmetropes, this deeper anterior chamber is
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not the chief structural correlate in myopia, supporting findings that show vitreous chamber
elongation is evidently this (McBrien and Adams, 1997; Mallen et al., 2006; Gilmartin et al.,
2013). There was a relationship between ACD and CMT in emmetropes, and ACD was linked
with CMT in myopes. Previous work has found ACD in myopia to be significantly associated
with both temporal and nasal CMT2 and CMT3 (Buckhurst et al., 2013), though AXL and
myopic refractive error have previously been shown to be linked with ACD (Hosny et al., 2000;
Antodomingo-Rubido et al., 2002). Van Alphen attributed a thinner crystalline lens and deeper
ACD to larger, myopic eyes. During normal eye growth, there is expansion of the eye in all
directions and the equatorial growth has been considered to be responsible for this lens
thinning (Mutti 2010; Buckhurst et al., 2013). However, the results of this study do not indicate
lens thickness difference between refractive groups. It has been suggested the ciliary muscle
may limit the equatorial expansion (Bailey et al., 2008; Mutti, 2010) required for
emmetropisation; as such, it may be possible to expect that CMT would be related differently
with ACD in myopes (Buckhurst et al., 2013).

The ciliary muscle temporal aspect was longer (for CML) and thicker at CMT2 and CMT3
across both eyes and refractive groups. This nasal-temporal asymmetry has been identified
in in vitro studies of human ciliary body morphology, with a significantly longer temporal
aspect recognised (Aiello et al., 1992), and this disparity agrees with the thicker temporal side
and increased contractile response from this aspect found in vivo (Sheppard and Davies,
2010b). Whilst the significance of this intraocular asymmetry is not well understood, ciliary
apparatus asymmetry has been observed in the rhesus monkey in vitro (Glasser et al., 2001),
where it was proposed that this morphological variation may be essentional to permit
lenticular axis alignment and maintain binocular single vision during accommodative

convergent eye movements (Glasser et al., 2001; Sheppard and Davies, 2010b).

The results from the present study are in accordance with the literature, that myopic eyes had
longer (Sheppard and Davies, 2010) and thicker ciliary muscle (Bailey et al., 2008; Buckhurst
et al.,, 2013) compared with emmetropes, for every fixed width measure and those
proportional to the CML. Similarly, Bailey et al (2008) utilised fixed width measurements for
analysis of nasal ciliary muscle imaging of the right eye, and found that CMT2 and CMT3
were both negatively correlated with refractive error in children, as did CMT1, CMT2 and
CMT3 in adult subjects (Kuchem et al., 2013). The reason for this thicker ciliary muscle in
myopes remains unclear, yet several investigators have suggested that hypertrophy of the
ciliary muscle could give rise to excessive collagen deposition running though the ciliary
muscle in a circular orientation, such that the thickened ciliary muscle mechanically restricts
equatorial expansion (Bailey et al., 2008; Mutti 2010). Furthermore, this enlargement of the

ciliary muscle cells would occur with a hypertrophic ciliary body, reducing the contractile
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response (Seidel and Weisbrodt, 1987; Bailey et al., 2008) responsible for the increased
accommodative lag associated with myopia (Gwiazda et al., 1993; Gwiazda et al., 1995; Multti
et al., 2006; Berntsen et al., 2010; Berntsen et al., 2011).

4.5 Conclusion

In summary, this study is the first to establish high levels of inter —eye ciliary muscle
symmetry, across emmetropic and myopic refractive groups. In both groups, nasal and
temporal CML and CMT was linked with AXL in both eyes, with the same relationship,
indicating normal ocular development. Across both eyes, the ciliary muscle was both longer
and thicker in myopes, though this altered ciliary muscle morphology does not appear to play

a physiological role in the development of myopia, but a passive result of myopigenesis.
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Chapter 5

Ciliary muscle morphology and associated accommodative function

5.1 Introduction

The previous experimental chapter, and other in vivo investigations indicate that the ciliary
muscle is both longer (Sheppard and Davies, 2010) and thicker in myopic eyes compared
with that of emmetropes (Oliveira et al., 2005a; Bailey et al., 2008; Lewis et al., 2012;
Buckhurst et al.,, 2013). How this altered ciliary muscle morphology is linked with
myopigenesis and accommodation remains unclear. It has been suggested that the enlarged
ciliary muscle cells result in a hypertrophic ciliary body, reducing ciliary muscle contraction
(Seidel and Weisbrodt, 1987; Bailey et al., 2008), and produces the greater accommodative
lag that is documented widely in myopia (Goss, 1991; Gwiazda et al., 2005; Mutti et al., 2006).
A slight reduction in the amount of hyperopic blur, of approximately 0.1 D, may occur from
transient axial length increase during sustained accommodative effort (Mallen et al., 2006).
Transient elongation could be a result of the ciliary muscle contraction transmitting an inward
pull force to an area of the sclera and choroid adjacent to the ciliary body. Myopic eyes may
demonstrate the largest axial expandability during (Drexler et al., 1998; Mallen et al., 2006;
Read et al., 2010), and immediately following an accommodative task (Woodman et al.,
2012).

The greater accommodative error is largely involved in the hyperopic defocus model of
myopia; in 1978, it was demonstrated that simple environmental changes during early visual
experience could result in high levels of myopia in chicks (Wallman et al., 1978). Extreme
changes in ocular refraction (up to -24.00 D) were generated by restriction of vision to just
the frontal visual field. Restriction of the lateral field was produced by translucent,
hemispherical lenses; attached from hatching and occluding each eye, a trapezoidal notch
incised on the front of the occluder enabled the chicks to have frontal vision. The occluders
were replaced by increasingly larger ones as the chicks grew; by 4- 7 weeks the chicks were
refracted by streak retinoscopy and shown to have developed extreme levels of myopia. The
work was validated a decade later, as work by Schaeffel and co-workers demonstrated that
in the chick eye, refractive error could be instigated, as axial length could be altered through
manipulations to the dioptric power and sign of inducing lenses (Schaeffel et al., 1988).
Subsequently, many investigations utilising similar approaches have further progressed the
theory that axial growth of the eye is guided towards emmetropia by a visual feedback

mechanism, detecting the optical sign and extent of blur (Irving et al., 1992; Wildsoet and
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Wallman, 1995; McFaddden et al., 2004; Smith et al., 2005; Berntsen et al., 2011; Ho et al.,

2012), generating the theory of foveal hyperopic defocus in the development of myopia.

Myopic subjects 5- 18 years have been found to have reduced accommodative accuracy
compared with emmetropes, suggesting a link with the resulting hyperopic retinal defocus
and accelerated axial growth in not just the animal based exemplar, but also in human myopia
(Gwiazda et al., 1993; Gwiazda et al., 1995; Mutti et al., 2006; Berntsen et al., 2010; Berntsen
etal., 2011). Hence, what has been of particular interest is whether increased accommodative
lag is a precursor/ risk factor to myopia, or a consequence of myopigenesis, and is widely
debated; several previous human studies investigated this matter (Goss, 1991; Drobe and
Saint-Andre, 1995; Gwiazda et al., 2005) and indicated that prior to myopia onset,
accommodative lag is increased. For example, a longitudinal study by Gwiazda et al (2005)
described an elevation in accommodative lag in pre-myopic children two years before myopia
onset. Yet subsequently, Mutti et al (2006) measured accommodative lag annually (for 5
years prior to, and 5 years following myopia onset) demonstrated that increased
accommodative lag followed myopia onset by a minimum of one year, in agreement with
investigations reporting increased lag amongst myopic children (Gwiazda et al., 1993;
Gwiazda et al.,, 1995). Accommodative lag was decreased along with accommodative
demand for intermediate distance tasks in became-myopic children (those who had at least
one non-myopic examination and developed myopic refractive error of at least -0.75 D in each
principal meridian), when their refraction was only partially corrected; the possibility that less
hyperopic defocus is subjected to children with uncorrected myopia than with emmetropes
during clinically substantial myopic development, providing they partake in intermediate-work
visual tasks for a significant amount of time, was indicated. Mutti and co-workers (2006)
reported that accommodative lag might be only considered a causative factor of myopia if this
error was escalated within a year before myopia onset, though the narrowness of this time
period reduces the potential for any preventative intervention as well as likelihood of it being
a causative factor. More recent investigations in children however, found no relationship
between myopia progression and accommodative lag (Weizhong et al., 2008; Berntsen et al.,
2011), opposing the hypothesis that foveal hyperopic defocus instigates axial elongation and

myopia progression.

Drexler and co-workers (1998) first utilised partial coherence interferometry (PCI) to study
accommodative AXL changes in myopic and emmetropic participants. When observing a
closed-loop accommodative target at a distance corresponding to their individual amplitude
of accommodation (4.1 + 2.0 D for the myopic group and 5.1 + 1.2 D for the emmetropic
group), the participants demonstrated transient axial elongation; AXL increase was greatest

in emmetropic eyes (mean 12.7 um), with axial elongation in myopic eyes of a significantly
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lesser magnitude (mean 5.2 um). Mallen et al (2006) also studied the transient ocular
expandability across emmetropic and myopic subjects during an accommodative task. It has
been hypothesised that, based on previous reports of increased accommodative error in
myopes (Drexler et al., 1998; Gwiazda et al., 2005; Harb et al., 2006; Multti et al., 2006), the
magnitude of accommodation during a near task would be decreased somewhat in myopic
participants (Woodman et al., 2011). Results however, demonstrated the opposite; larger AXL
increases following the near task were observed in myopic subjects compared to emmetropes
(Mallen et al., 2006; Woodman et al., 2012). Mallen et al (2006) also highlighted that the level
of transient axial elongation relates to the magnitude of accommodative stimulation. This was
also demonstrated by Drexler et al (1998) in emmetropes, who showed that transient axial
elongation systematically increased with increasing accommodative stimulus. Moreover, it
has been ascertained that this effect not only occurs in the emmetropic eye, but is more
marked in myopic subjects (Mallen et al., 2006). Differences between these studies may be
attributed to the fact that different accommodative demands were utilised across both studies
(see table 2.1). Drexler et al (1998) stimulated accommodation in myopes to a lesser degree
than Mallen and co-workers (2006), it is possible the AXL increase in myopes was
underestimated by Drexler (1998). However further investigations (see table 2.1) in addition
to chapter 2 of this thesis showed no difference in the accommodative transient axial
expandability between emmetropes and myopes during the accommodative task (Read et
al., 2010; Woodman et al., 2012; Ghosh et al., 2014; Zhonga et al., 2014). An investigation
that studied the time course of expandability and recovery of transient AXL increase during a
sustained (30 minute) 4 D accommodative task (Woodman et al., 2012) found that
discrepancies in accommodative expandability during the task between the emmetropic and
myopic groups were not statistically significant (Woodman et al., 2012). Nevertheless, in the
post- accommodative task measures, significant differences linked with refractive error were
determined. During this period, myopic subjects still showed a small amount of axial
elongation, whilst the axial length of the emmetropic subjects did not display a significant
difference to the baseline measures (Woodman et al., 2012).

It has been suggested that variations between myopes and emmetropes in the morphology
of the ciliary body may cause ciliary muscle forces to be transmitted differentially to the
choroid and sclera amid these different refractive groups and thereby resulting in
discrepancies in the magnitude of transient axial elongation (Mallen et al., 2006). However,
such findings do not seem to be coherent; if the thickened ciliary muscle in myopia results in
a greater force transmission that delivers increased transient axial elongation compared with
emmetropes, then the thickened ciliary muscle cannot have a reduced contractile ability from

cellular hypertrophy. The link between ciliary muscle morphology, accommodative accuracy
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and accommodative axial length change has not been investigated and there is a paucity of

information relating to how ciliary muscle morphology impacts on accommodative function.

Despite the theory that increased ciliary muscle thickness in myopia results in a reduced
contractile response (Bailey et al., 2008), the potential link between accommodative function
and ciliary muscle morphology is unclear. An investigation in children (aged 8- 15 years)
studied the relationship between ciliary body morphology and accommodative
microfluctuations (Schultz et al., 2009). Such fluctuations are minute alterations in the ocular
refractive power (around 0.1 D - 0.5 D) (Sreenivasan et al., 2011) during steady- state
accommodation (see Figure 1.13) and are comprised of both high frequency and low
frequency components (Campbell et al., 1959; Kotulak and Schor, 1986; Winn et al., 1990;
Schultz et al., 2009). The high frequency component is believed to mirror noise from the
arterial pulse in the accommodative apparatus (Collins et al., 1995), whereas the low
frequency component appears to result from anterior and posterior lenticular oscillations,
shown by ultrasound (Van der Heijde et al., 1996; Schultz et al., 2009).

Differences in the characteristics of the microfluctuations across refractive error groups have
been described, with myopes demonstrating greater power and variability of the fluctuations
compared with emmetropes (Seidel et al., 2003; Day et al., 2006; Harb et al., 2006; Langaas
et al., 2008; Sreenivasan et al., 2011). However, another investigation indicated that the high
frequency component of accommodative microfluctuations had reduced power in association
with thicker ciliary bodies measured at CM2, by 86 % for every 50 um increase in ciliary body
thickness. The authors suggest that the thicker ciliary body in myopia diminishes the effects
of arterial pulse on accommodation and further hypothesised that the thicker ciliary body
improves the stability of the high frequency component of the accommodative response. In
accordance with this finding, higher amounts of hyperopia were associated with greater

powers of the high frequency accommodative fluctuations (Schultz et al., 2009).

Investigations have shown that subjects with late-onset myopia had increased
accommodative microfluctuations during their myopia progression (Seidel et al., 2003; Day
et al., 2006) and the power of the accommodative microfluctuations is more variable amongst
myopic individuals compared with emmetropes (Harb et al., 2006). Schultz and co-workers
(2009) predict however, that the reason for such discrepancy is that Harb et al (2006)
measured the accommodative microfluctuations during sustained reading when the subjects
were likely to be fatigued, as opposed to anatomical micro-fluctuations in the absence of
prolonged fatigue. Similarly, the authors (Schlutz et al., 2009) added that because errors in
accommodative function may be more likely present during active myopia progression,

investigating accommodative function and comparing to previous work is somewhat
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problematic in a cross-sectional study, where children may be at varying, unknown stages of

myopia development.

Previous work that studied in vivo morphological changes in the ciliary muscle with
accommodation (Sheppard and Davies, 2010b) identified a contractile shortening and
thickening of the anterior portion of the ciliary muscle, using vergence levels of -4.0 and -8.0
D. The ciliary muscle was also shown to be significantly thicker on the temporal side, in
keeping with nasal versus temporal asymmetry found from UBM analysis of the ciliary region
in cyclopleged monkeys (Glasser et al., 2001), and corresponding with a greater contractile
response of the temporal aspect. For the ciliary muscle temporal aspect, overall length
reduced on average by 80 + 100 and 50 £ 120 um per diopter of accommodative response
between the 0.19- to 4.0 D and 4.0 to 8.0 D demand levels, respectively. Similarly, anterior
length decreased by 60 £+ 40 and 30 + 30 uym per diopter of response between the lower and
higher demand levels, respectively. For the nasal side, the mean reductions in anterior length
were significantly less: 30 + 14 ym from 0.19 to 4.0 D and -20 + 20 ym from 4.0 to 8.0 D.
However, it is not yet known if this increased contractile response of the temporal ciliary
muscle would result in a greater magnitude of axial elongation with accommodation, or a
reduced accommodative error, compared with the nasal aspect (Sheppard and Davies,
2010Db).

Evidently, there is debate in the literature regarding the link between accommodative
dysfunction and myopia. Considering this link and the hypothesis that a thicker ciliary body
supresses the high frequency accommodative microfluctuations, and that a thicker ciliary
muscle results in greater accommodative inaccuracy, no study has yet investigated the
relationship between ciliary muscle morphology and accommodative function. The study
presented in this chapter explores, for the first time, the link between ciliary muscle
morphology, accommodative error and axial length changes with accommodation, in

emmetropes and myopes.

5.2 Methods
5.2.1 Subjects

One hundred subjects aged 19 - 26 years were recruited from the student body of Aston
University, consisting of fifty emmetropic volunteers with a mean sphere equivalent (MSE = -
0.55; < +0.75 D and fifty myopes (MSE < -2.00 D). The narrow age band was selected to

reduce variation in ciliary muscle data due to ageing, most notably thickening of the ciliary
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muscle (Sheppard and Davies, 2010). Exclusion criteria were cylindrical refractive errors
greater than 2.00 D, amblyopia, previous history of ocular trauma, surgery or pathology, and
systemic conditions known to affect ocular health. All participants had corrected visual
acuities of 0.0 logMAR or better in each eye and exhibited a monocular amplitude of
accommodation = 9 D (as measured with the push-up method). Myopic participants wore 31%
Nelfilcon A (Focus Dailies) contact lenses appropriate for their habitual refractive error for all
accommodative measures and ciliary muscle imaging, as functional emmetropia was required
to ensure near-identical accommodative demand for each participant. Ethical approval was
obtained from the Aston University Life and Health Sciences Research Ethics Committee and
the study adhered to the tenets of the Declaration of Helsinki. Written, informed consent was
obtained from all participants prior to commencement after explanation of the nature and

possible consequences of the study.
5.2.2 Measurements

Binocular distance refractive error was measured with a validated infra-red binocular open-
view autorefractor (Grand Seiko WAM 5500; Sheppard and Davies, 2010) whilst subjects
viewed a distance (6 m) Maltese cross target. A minimum of five measurements of refractive

error were taken for each eye, averaged and converted into MSE.

To indicate the level of accommodative inaccuracy for each participant, the accommodative
error index (AEI) was used, which combines all the parameters of the accommodative
stimulus- response curve into a single index (Chauhan and Charman, 1995; Woodhouse et
al., 2000; Allen and O’Leary, 2006).

Accurate accommodation at all stimulus demands is indicated by an AEI of 0 D. A value > 0
D indicates the level of accommodative inaccuracy (Chauhan and Charman, 1995;
Woodhouse et al., 2000). For each subject, the accommodative response was measured in
the right eye to targets placed at 8 randomised-order stimulus demands (0.0, 1.0, 2.0, 3.0,
4.0, 5.0, 6.0, 8.0 D) to produce the AEI, calculated using equation 1, detailed in section 1.7.3
and 2.3. Pupil size measures were obtained for all accommodative demand levels, using the
Grand Seiko WAM 5500 (see figure 5.1).

ACD, AXL, and LT in the unaccommodated state were obtained from the right eye of each
participant using the Lenstar LS 900 biometer (Haag-Streit AG, Koeniz, Switzerland). Each
participant fixated on the letter closest to the central red fixation light (a 5 x 5 grid of high-
contrast letters, with each letter equivalent to 0.8 logMAR) whilst four separate biometric
measurements were taken and averaged at O D. The eye under investigation was 100 mm

from the Badal lens and the 0 D stimulus demand was situated 100 mm from the Badal lens

122



(Alderson et al.,, 2012). These measures were then repeated whilst the participant
accommodated to 5 D stimulus demand, by shifting the back- illuminated text target 50 mm
forward towards the Badal lens (Alderson et al., 2012), as described as described in detail in
section 1.7.5 and 2.3.

Figure 5.1. Image of display screen of Grand Seiko WAM 5500, showing a pupil diameter

measurement of 5.2 mm, in conjunction with the refractive error of the participant.
5.2.3 Ciliary muscle image acquisition and analysis

AS-OCT (Visante; Carl Zeiss Meditec. Inc., Dublin, CA) images of nasal and temporal ciliary
muscle regions were obtained from the right eye of participants only, using high-resolution
corneal mode, as detailed in section 1.7.7. Ciliary muscle images were exported from the AS-
OCT in raw DICOM form for analysis purposes. A validated bespoke analysis programme
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(Laughton et al., 2015) was used to measure ciliary muscle parameters, as detailed in section

1.7.8; all image analysis was carried out by a single examiner (RNS).

Various length and width measurements were obtained; ciliary muscle total length (CML) was
determined as the curved anteroposterior distance from the scleral spur, signifying the
anterior insertion along the ciliary muscle-scleral border, to the visible posterior tip of the
ciliary muscle. The anterior length (AL) is from the scleral spur to the point of ciliary muscle
maximum width (CMTMAX). CM25 is the muscle width at a point which was 25 % of the CML
posterior to the scleral spur. Similarly CM50 and CM75 measures were taken at points 50 %
and 75 % (CM50 and CM75 respectively) of the CML posterior to the scleral spur. Additionally,
ciliary muscle thickness measurements were taken at fixed distances from the scleral spur;
CMT1 represents a point 1 mm posterior to the scleral spur, with CMT2 and CMT3 taken at
points 2 mm and 3 mm posterior to the scleral spur, respectively.

5.2.4 Statistical analysis

Comparable to the IOLMaster, the Lenstar instrument utilises an average ocular refractive
index in order to calculate axial length from the optical path length. Previous work has
established that changes in the accommodative apparatus, principally lens thickness, during
accommodation may produce errors in these AXL measurements (Atchison and Smith, 2004),
as described in section 2.3. The formulae and methods outlined by Atchison and Smith were
applied by utilising each subject’s individual ocular biometric parameters; the error associated
with the change in AXL from baseline to the 5 D accommodative demand was calculated for
each subject and these values were used to determine the corrected accommodative AXL

changes (from equations 2.1- 2.7).

The data for each variable were normally distributed, according to tests of normality (Shapiro-
Wilk, SPSS Statistics 21; IBM, lllinois, USA). Independent samples t-tests were performed to
indicate any significant difference between the change in pupil sizes with accommodation
from baseline between refractive groups, AElI of emmetropes and myopes, and the
accommodative axial length change between the refractive groups. The relationships
between these accommodative functions and ciliary muscle morphological parameters were
determined by linear regression analysis. An independent samples t-test was performed to
check for differences in age between the refractive groups, and difference between refractive
groups in pupil diameter change from baseline at each demand level. A P value of less than
0.05 was considered significant. All data were stored in an Excel spreadsheet (Microsoft
2010, Redmond, Washington, USA).

5.3 Results
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Pupil size across the refractive groups at different accommodative demand levels is shown
in table 5.1. The expected pupil constriction with increased accommodative effort was
observed. For each accommodative demand (above 0.0 D), the emmetropic pupil size was
significantly greater than that of myopes (1.0 D: P = 0.043; 2.0 D: P = 0.030; 3 D: P = 0.018;
4D:P=0.003;5D: P=0.010; 6 D: P<0.001; 8 D: P =0.018).

Mean Pupil size (mm)
Accommodative Demand (D) | Emmetropes Myopes Whole Cohort
0.0 6.56 + 0.90 6.31+0.83 6.41+1.03
1.0 6.34 +0.91 5.99+0.79 6.14+1.01
2.0 6.29 + 0.90 5.93+0.72 5.98 + 1.27
3.0 5.95+ 0.87 5.53+0.87 574 +1.04
4.0 5.87 +0.98 5.31+0.86 5.39+1.40
5.0 5.73+1.05 5.19+0.99 526 +1.42
6.0 5.61+0.91 4.84 + 0.98 520+1.01
8.0 474+1.04 4.27 £ 0.90 451+1.12

Table 5.1. Mean pupil size and associated accommodative demand levels. There was a significant

difference between refractive groups in pupil diameter change from baseline at each demand level.
5.3.1 Accommodative error index

Mean AEI values of emmetropes, myopes and the whole cohort are shown in table 4.2.

Emmetropes Myopes Whole Cohort
AEI (D) 0.97 + 0.60 0.80+0.51 0.90 £ 0.49

Table 5.2. AEI values for emmetropes, myopes and the whole cohort. There was no significant

difference between the AEI of emmetropes and myopes (P = 0.098).

Stimulus response curves in emmetropes and myopes are shown in figure 5.2 and are
compared with a theoretical 1:1 ratio between stimulus demand and response. There is a
mirrored response between the two refractive groups, whereby with increasing stimulus

demand, there is a greater accommodative error.
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Figure 5.2. A mean accommodative stimulus- response curve for emmetropic subjects (n = 50) and
myopic subjects (n = 50). The black solid line indicates a 1:1 relationship between the demand of the
stimulus and the response to the stimulus at each demand level; the blue dotted line represents the
mean accommodative response of the emmetropic cohort and the red dotted line indicates the mean
accommodative response of the myopic cohort. Unidirectional error bars indicate the standard

deviation of the mean.

Across the whole cohort, there was no significant relationship between AEI and any ciliary
muscle thickness parameter (e.g. nasal CM1: P = 0.190, r?> = 0.002; nasal CM3: P = 0.617, r?
= 0.003, nasal CM50; P = 0.998, r?> = 0.026; temporal CM2: P = 0.252, r?> = 0.003; temporal
CM25; P = 0.323, r? = 0.010; temporal CMTMAX: P = 0.525, r?= 0.040) or length parameter
(nasal CML: P = 0.061, r?> = 0.026; temporal CML; P = 0.249; r? = 0.004; nasal AL: P = 0.052,
r2 = 0.029; temporal AL: P = 0.076; r?> = 0.022). Figure 5.3 shows the relationship between
AEI and temporal CM50. The relationship between temporal CM2 and AEI is shown in figure
5.4. No significant relationship was found in either refractive group between AEI and
accommodative AXL change (emmetropes: P = 0.415, r> = 0.078; myopes: P = 0476, r? =
0.011).
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Figure 5.3. Relationship between temporal CM50 and AEI. No significant relationship occurred (P =
0.998) between AEI and temporal CM50 across the whole cohort (n = 100).
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Figure 5.4. Relationship between temporal CM2 and AEI. No significant relationship occurred P =

0.252) between AEI and temporal CM2 across the whole cohort (n = 100).
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Figure 5.5 Relationship between nasal CM1 and AEI. No significant relationship occurred P = 0.190)

between AEI and temporal CM2 across the whole cohort (n = 100).

5.3.2 Transient accommodative axial length change

Transient accommodative AXL changes, and the summary characteristics of emmetropic and

myopic cohorts, are shown in table 5.3.
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Emmetropes (n = | Myopes (n = 50)
50)
Mean

Age (years) 21.1+8.63 21.7+8.84
0 D Axial length (mm) 23.29 £ 0.79* 25.46 £ 1.16*
0 D ACD (mm) 3.03+0.29* 3.23+0.25*
0D LT (mm) 3.53+0.22 3.51+0.23
5 D Axial length (mm) 23.24 + 0.79* 2549 + 1.16*
5D ACD (mm) 2.78 £ 0.27 299+ 0.25
5D LT (mm) 3.86 + 0.24 3.81 £ 0.55
Corrected 5 D Axial length (mm) 23.32 £ 0.79* 2551 + 1.16*
Axial length change with accommodation (um) 16.48 + 25.52 16.57 £ 25.07

Table 5.3. Summary biometric characteristics and AXL changes with accommodation in emmetropic
and myopic participants. There was no significant difference in age between the refractive groups (P
=0.884). *Indicates significant difference between the refractive groups. Axial length measures were
obtained in every participant. In the emmetropic cohort, LT data was gathered from the Lenstar LS 900
in 31 subjects; in the myopic cohort, LT data were obtained in this way for 28 subjects. For ACD, the
Lenstar LS 900 obtained measures for 42 subjects in the emmetropic cohort and in 48 subjects in the

myopic refractive group. The missing data for ACD and LT was replaced with predicted ACD and LT,

respectively, based on participant age and published work by Atchison et al (2008).

The mean transient accommodative AXL change in emmetropes was 16.48 um + 25.52 and
in myopes was 16.57 um = 25.07; the difference in accommodative AXL change between the
refractive groups was not significant (P = 0.768). No relationship was found between AXL
change and any CM thickness or length parameter (e.g. nasal CM1: P = 0.974, r? = 0.001,
nasal CM2: P = 0.484, r? = 0.05; nasal CM3: P = 0.925, r? = 0.010; nasal CM25: P = 0.181,
r2 = 0.03; nasal CM75: P = 0.460, r? = 0.003; temporal CM3: P = 0.712; r? = 0.003; temporal
CML: P =0.868, r> =0.000; temporal CM50: P = 0.996, r?> = 0.001; temporal CM75: P = 0.750,
r2 = 0.001; temporal CMTMAX: P = 0.659, r? = 0.002; temporal AL: P = 0.506; r? = 0.005;
nasal CML: P = 0.145; r? = 0.024).

5.4 Discussion

Whilst it has been widely hypothesised that an increased accommodative error would induce
the hyperopic retinal defocus considered to stimulate axial elongation (Harb et al., 2006; Multti
et al., 2006; Berntsen et al., 2010), accommodative error has been studied with regard to
ciliary muscle morphology for the first time. Previous work has compared the accommodative
axial elongation between emmetropes and myopes (Drexler et al., 1998; Mallen et al., 2006;

Read et al., 2010; Woodman et al., 2010), where it has been shown that the myopic eye may
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demonstrate the largest transient axial changes (Mallen et al., 2006). It has been proposed
the ciliary muscle in myopes may transmit a greater force to the choroid and sclera, resulting
in the larger magnitude of transient accommodative axial elongation, compared with
emmetropes (Mallen et al., 2006). However, these transient axial length changes have never

before been studied with regards to ciliary muscle morphology.

There is increasing evidence of a thicker ciliary muscle in the myopic eye, as discussed in
the previous chapter. Previous investigators have speculated this altered morphology is due
to hypertrophy of the ciliary muscle, which could give rise to excessive collagen deposition
running though the ciliary muscle in a circular orientation, and such hypertrophy would also
cause enlargement of the ciliary muscle cells, yielding a reduced contractile response (Seidel
and Weisbrodt, 1987; Bailey et al., 2008) responsible for the increased accommodative lag
associated with myopia (Gwiazda et al., 1993; Gwiazda et al., 1995; Mutti et al., 2006;
Berntsen et al., 2010; Berntsen et al., 2011). However, the link between accommodative error
and ciliary muscle morphology has never previously been examined; the results demonstrate
no significant difference in accommodative inaccuracy between the refractive groups, and
that in both ciliary muscle aspects (nhasal and temporal), no significant relationship was
present between any ciliary muscle thickness parameter and the level of accommodative
inaccuracy. As such, the results suggest no intrinsic difference between emmetropes and
myopes in the physiology of the ciliary muscle pertaining to accurate accommodation; the
hypothesis that a thicker ciliary muscle is hypertrophic and leads to the development of

myopia by producing a greater accommodative error, is not supported by this study.

Many previous investigations have exposed a temporary increase in axial length during
(Drexler et al., 1998; Mallen et al., 2006; Read et al., 2010) or directly following (Woodman et
al.,, 2010) an accommodative task, and results showed larger increases in axial length
following the near task in myopic subjects compared to emmetropes (Mallen et al., 2006;
Woodman et al.,, 2012). Transient elongation is likely to result from the ciliary muscle
contraction transmitting an inward pull force to an area of the sclera and choroid adjacent to
the ciliary apparatus. In order to maintain a constant ocular volume from this effect, a rearward
displacement of the posterior portion of the globe is needed, thereby resulting in a transient
axial length increase (Mallen et al., 2006) and it has been proposed that a partial reason for
the greater elongation seen in myopic eyes is greater efficiency of force transmission from
the ciliary muscle to the sclera and choroid in myopic subjects (Mallen et al., 2006; Woodman
et al., 2010). However, corrected AXL data in this investigation show no significant difference
in AXL changes with accommodation between refractive groups, coherent with more recent
investigations (Read et al., 2010; Woodman et al., 2012). The mean corrected AXL change
(16.52 + 25.16 um) is of larger magnitude than that of Read et al (2010) (~ 7 pum for 6 D
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accommodative demand) and similar to that of Woodman et al (2012) during the

accommodative task at 4 D (20 £ 31 um).

No study has previously documented the relationship between ciliary muscle morphology and
accommodative AXL change; just as no link appears to be present between ciliary muscle
morphology and AEI, the findings indicate no clear relationship between ciliary muscle
morphology and transient accommodative AXL change, or between AEI and accommodative
AXL change. This suggests that transient AXL change with accommodation is another
element of accommodative function in which ciliary muscle morphology is not responsible. In
the investigation by Woodman et al (2012) some evidence of decreased choroidal thickness
during accommodation was found, and such choroidal changes displayed a significant
negative correlation with the axial length alterations. It was suggested that choroidal thickness
alterations and multiple other factors such as scleral stretch are highly likely to contribute in
the accommodative axial elongation (Woodman et al., 2012), opposed to ciliary muscle
forces. The similar levels of AEI and AXL change with accommodation between the refractive
groups, together with the lack of relationship with ciliary muscle morphology indicate that the
thicker ciliary muscle in myopia does not impact overall on accommodative function, or

myopic development.

Interestingly, the pupil size was found to be significantly larger in emmetropes, compared with
myopes, for each accommodative demand above baseline. In both refractive groups, pupil
size decreased with increasing accommodative demand, consistent with widely
acknowledged findings that the primary stimuli for the pupil near response is accommodation
and convergence, as part of the near triad accommodative response (Marg and Morgan,
1949; Marg and Morgan, 1950; Kasthurirangan and A., 2005). Whilst baseline pupil size did
not significantly vary between the refractive groups, in keeping with previous work (Winn et
al., 1994; Orr et al., 2015), findings of different pupil sizes between the refractive groups for
various accommodative demands differ from previous investigations, which report that pupil
size does not vary with refractive error, irrespective of accommodative demand (Orr et al.,
2015). In the study by Winn and co-workers, a wide age range of participants were used (17
to 83 years), such that differences in pupil diameter between refractive groups may have been
confounded by age effects (Watson and Yellott, 2012; Orr et al., 2015) which are known to
affect pupil diameter (Kadlecova et al., 1958; Schaeffel et al., 1993). In the study by Orr et al
(2015), the cohort ranged from ages 20 — 35 years, whereas in the present study the cohort
age was between 19 — 26 years, a much narrower age band which reduces the likelihood for
confounding age effects on pupil size. Similarly, target vergences of just 0.0 D and -3.0 D
were used in the investigation by Orr and co-workers (2015), whereas 7 accommodative

demands were utilised in the present study. Whilst both investigations showed no significant
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difference in pupil size at the 0.0 D demand level, more accommodative demands were
presented in the current study, perhaps allowing for more opportunity for pupil differences
across varying vergence levels, to arise between refractive groups. However, a full
investigation of pupil size to follow up these findings is required, though such investigations

are beyond the aims of this thesis.

During the present investigation, the Lenstar LS 900 biometer (Haag-Streit AG, Koeniz,
Switzerland) was unable to obtain crystalline lens thickness values in all subjects (measures
were obtained in 59 out of 100 study participants). In the emmetropic cohort, it failed to gather
lens thickness information, at both 0 D and 5 D accommodation demands in 19 subjects, and
in 22 subjects of the myopic cohort. For ACD, the biometer did not obtain measures for both
0 D and 5 D accommodative demands in 8 emmetropes and 2 myopes. It is widely accepted
that there is greater central thickness of the unaccommodated lens with age due to increases
in cortical thickness, while concurrently a decrease in anterior chamber depth occurs (Brown,
1973b; Niesel, 1982; Koretz et al., 1989; Dubbelman et al., 2001; Atchison et al., 2008;
Shammas and Shammas, 2015). Such missing biometric data from the Lenstar was replaced
with predicted values based on age by Atchison and co-workers (2008), shown by equations
5.1 for LT, and 5.2, 5.3 and 5.4 for ACD with corneal thickness (CT),CT, and the resultant
ACD, respectively. Previous work has also shown that whilst anterior corneal radius, vitreous
length and retinal shape alters with refraction, there is no significant effect of refraction on
lens thickness or anterior chamber depth (Atchison, 2006). As such, biometric data for the
myopic cohort was extracted in the same way as for emmetropes, using the equations

outlined below.

Equation 5.1: LT = 3.1267 + (0.02351 * age)
Equation 5.2: CT + ACD = 3.857 + (0.0106 * age)
Equation 5.3: CT = 0.5667 + (0.00077 * age)
Equation 5.4: resultant ACD = (CT + ACD) — CT

The reason for the limited ability of the Lenstar LS 900 biometer to obtain all crystalline lens
thickness measures from every participant is unclear. It is established that the instrument can
measure CT, ACD (from corneal endothelium to lens surface), LT, AXL, RT, as well assessing
keratometry and pupil diameter (Buckhurst et al., 2009; Rohrer et al., 2009; Cruysberg et al.,
2010; Alderson et al., 2012; Zhao et al., 2013) concurrently through image analysis within

each measurement, without needing realignment (Buckhurst et al., 2009; Cruysberg et al.,
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2010; Zhao et al., 2013). The instrument is therefore marketed as a highly efficient research
tool by obtaining LT measures simultaneously with AXL and biometric data. A recent study
that investigated accommodative changes during incipient presbyopia also could not obtain
crystalline lens thickness values in all subjects, and it was suggested that this may be due to
high light transmittance of the posterior lenticular surface (Laughton et al., 2016). However,
this issue may not be linked to all Lenstar biometers, although a software update did not
resolve the problem on the Aston device.

5.5 Conclusion

In summary, this is the first study to relate ciliary muscle thickness with accommodative error
and transient accommodative axial elongation. It has been shown, for the first time, that there
was no relationship between ciliary muscle morphology and axial length change with
accommodation or accommodative inaccuracy, or any difference between the refractive
groups in these accommodative measures. It is therefore indicated that the altered ciliary
muscle morphology in myopia has no impact on accommodative function, and hence, is

unlikely to be play a role in the hyperopic defocus model of myopia.
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Chapter 6

Ciliary muscle morphology in amblyopia and anisometropia

6.1 Introduction

Amblyopia is a neurodevelopmental disorder that causes reduced visual acuity, usually in
one eye (Wiesel and Hubel, 1963; Webber and Wood, 2005; Veneruso et al., 2014; Solebo
et al., 2015), depite refractive correction and in the absense of ocular disease (Ciuffreda et
al., 1991; Astle et al., 2011). The condition is due to abnormal visual input in early life, during
the critical period(s) of visual development (believed to span from infancy to around 9 years
of age), and is characterised by binocular dysfunction (Thompson et al., 1991; Astle et al.,
2011; Solebo et al., 2015). Recent investigations however, indicate that the plasticity period
may exert its influence much longer, into adolescent and early adult life (Mora et al., 2007;
Dominguez, 2014). The prevalence of the disorder in the Western population is approximately
3 % (Thompson et al., 1991; Attebo et al., 1998; Polling et al., 2012) and is the most common
cause of uncorrectable reduced vision in children and in adults up to 60 years of age
(Thompson et al., 1991). Clinically, amblyopia is characterised by at least one line difference
in visual acuity between both eyes (Thompson et al., 1991), cannot be detected through
physical ocular examination, and in certain cases can be reversed by therapeutic treatment
(Webber and Wood, 2005). Such treatment is conventionally undertaken by optical correction
of any refractive error, surgical correction of any associated strabismus, and/ or occlusion
therapy of the non-amblyopic eye with a patch or through atropine penalisation (Astle et al.,
2011). The most common amblyogenic factors include strabismus, presence of micro-squint
or heterotropia (Attebo et al., 1998; Webber and Wood, 2005), and anisometropia (Von
Noorden, 1985; Attebo et al., 1998; Webber and Wood, 2005). Anisometropia is defined as
asymmetry in refraction between fellow eyes (O'Donoghue et al., 2013; Sonia et al., 2013),
or a difference in the sphere or cylinder between the two eyes of at least one dioptre (Attebo
et al., 1998; Webber and Wood, 2005; Hashemi et al., 2013; Kuchem et al., 2013). These
conditions have been targeted in vision screenings programmes for children aged 4-5 years
(Webber and Wood, 2005; Solebo et al., 2015) to allow timely intervention, usually within the
critical period (Solebo et al., 2015).

A wide range of studies have reported biometric data on the normal changes in ocular
parameters that occur during visual development (Ehrlich et al., 1997; Mutti and Zadnik, 1998;
Zadnik et al., 2003; Mutti et al., 2005; Mutti 2010; Flitcroft, 2014), in addition to the ocular

biometric correlates in myopia (McBrien and Adams, 1997; Atchison et al., 2004; Mutti et al.,
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2007; Buckhurst et al., 2013; Gilmartin et al., 2013). For example, axial length and anterior
chamber depth are greater in myopes compared with emmetropes, (Park et al., 2010;
Buckhurst et al., 2013) which is consistent with the evidence that increased axial elongation
and globe expansion occurs with myopic development (Atchison et al., 2004; Mutti et al.,
2007; Mutti 2010; Gilmartin et al., 2013). As such, an increasing body of evidence supports
the findings of increased ciliary muscle length and thickness (Oliveira et al., 2005; Bailey et
al., 2008; Schultz et al., 2009; Sheppard and Davies, 2010; Buckhurst et al., 2013), as
detailed in chapter 4. However, whilst ocular biometric data in amblyopia have been
documented, there have been no reports to date of ciliary muscle morphology in amblyopia.

Accommodation is considered to be a symmetrical response between both eyes (Charman,
2004; Horwood and Riddell, 2010). However, amblyopes demonstrate aniso-accommodation,
with the least amblyopic eye driving the accommodative response (Horwood and Riddell,
2010). Fittingly, reports also indicate that the stimulus- response slope of the amblyopic eye
is charactistically flatter than in the fellow eye (Ciuffreda et al., 1984; Horwood and Riddell,
2010). Chapter 4 showed high levels of ciliary muscle symmetry between the eyes of non-
amblyopes. Since amblyopic eyes have a reduced visual output and accommodation
(Ciuffreda and Rumpf, 1985; Maheshwari et al., 2011), it might intuitively be expected that
the amblyopic ciliary muscle morphology should be altered, and inter- ocular asymmetry of
ciliary muscle parameters may be anticipated where amblyopia has been present for most of

an individual’s life.

Despite a paucity of information regarding amblyopic ciliary muscle morphology and biometry
in adults, paediatric studies reveal that a reduction in axial length is evident in some
amblyopias (Kugelberg et al., 1996; Cass and Tromans, 2008; Mori et al., 2015). Ocular
biometric components and their relationship in both anisometropic and strabismic amblyopic
eyes were investigated using A-scan ultrasound biometry (Cass and Tromans, 2008) and it
was reported that the parameters of the amblyopic eye differ physically from their non-
amblyopic counterparts, across both amblyopic cohorts. The anisometropic amblyopic eye
appeared to be a proportionally smaller version of the fellow eye largely due to the presence
of higher magnitudes of hyperopia found in the anisometropic eyes. However, the strabismic
amblyopic eye was found to have a significantly greater, and disproportionate degree of
anterior chamber reduction (10 % shorter than that of the non-amblyopic eye, which cannot
be accounted for by difference in refractive error) and crystalline lens thickness, a reduced
vitreous chamber depth and therefore total axial length (Cass and Tromans, 2008). The
authors therefore indicated that the strabismic eye may be under-developed, with a delay of
emmetropisation in the infantile phase, though it has not been determined whether the

reported biometric characteristics are a consequence or cause of amblyopia; hence, it is
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feasible that the ciliary muscle in amblyopia is also under-developed, though how the
morphology would be altered is not known. A more recent biometric investigation utilising PCI
on an anisometropic adult cohort aged 40 — 64 years (Hashemi et al., 2013) reported that
axial length asymmetry had the strongest relationship with anisometropia, though ocular

biometry such as lens power, corneal power, and anterior chamber depth were also altered.

Anisometropia, refractive asymmetry between fellow eyes, may be an underdiagnosed cause
of amblyopia as it is not instantly apparent to the child or parents, and may go undetected
until the later in the child’s life (Attebo et al., 1998; Sonia et al., 2013). The prevalence of the
condition varies between approximately 2 — 10 % under 50 years of age (Weale, 2002;
Haegerstrom-Portnoy et al., 2014). The literature on ciliary muscle morphology in
anisometropia, albeit very limited, indicates that anisometropic participants follow a similar
trend to the isometric population (Kuchem et al., 2013). Utilising AS-OCT for ciliary muscle
image acquisition, it was shown that in low- moderate levels of anisometropia (mean 1.85 +
1.24 D), the ciliary muscle thickness of the more hyperopic eye does not differ significantly
from that of the longer, more myopic fellow- eye. The thickness measures were obtained at
CM1, CM2, CM3 and CMTMAX as well as apical fibres at CMTMAX (the thickness difference
between CMTMAX and CM2) and apical fibres at CM1 (the thickness difference between
CM1 and CM2). Similar to the previous finding, the magnitude of the interocular refractive
error difference was not linked with an interocular difference in ciliary muscle thickness, at
any measured thickness parameter. It may therefore be that in ocular development in
anisometropia, it is possible for an eye to undergo greater magnitudes of myopic expansion
than its fellow eye, without the concomitant ciliary muscle thickening (Kuchem et al., 2013)
that is demonstrated in isometropic myopia (Oliveira et al., 2005; Bailey et al., 2008; Schultz
et al., 2009; Buckhurst et al., 2013). However, the results from a previous investigation
(Muftuoglu et al., 2009), are inconsistant with the investigation by Kuchem and co-workers
(2013), as greater ciliary muscle thickness was observed in the more myopic eye of most
participants with unilateral high myopia and other parameters such as ciliary muscle lengths

or proportional thickness measures have not previously been reported.

As amblyopic eyes have reduced visual output and accommodation, it is of interest to
understand how amblyopia which is known to develop at a very young age, may impact on
the growth and development of the ciliary muscle. Ciliary muscle morphology in anisometropic
and strabismic amblyopia is documented for the first time, and compared to ciliary muscle
morphology in anisometropic subjects without the presence of amblyopia. Measurements of
morphological parameters are compared between the two eyes of each subject, which reduce
the potential influence of environmental and genetic factors that vary between individuals and

govern ocular growth (Kutchem et al., 2013).
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6.2 Methods
6.2.1 Subjects

The study recruited both amblyopic subjects and anisometropic participants without
amblyopia. All participants were aged 18- 29 years and were recruited from the staff and
student body of Aston University. The fairly narrow age band was selected to reduce variation
in ciliary muscle data due to ageing, most notably increased ciliary muscle thickness
(Sheppard and Davies, 2010). Exclusion criteria were cylindrical refractive errors greater than
2.75 D, previous history of ocular trauma, refractive surgery, pathology and systemic
conditions known to affect ocular health. Ethical approval was obtained from the Aston
University Life and Health Sciences Research Ethics Committee and the study adhered to
the tenets of the Declaration of Helsinki. Written, informed consent was obtained from all
participants prior to commencement after explanation of the nature and possible

consequences of the study.

Ten unilateral amblyopic subjects were recruited, in which amblyopia was defined as an
interocular difference in visual acuity of two logMAR lines or greater (Pascual et al., 2014).
All participants had corrected visual acuities of 0.0 logMAR or better in the non amblyopic
eye. Eight anisometropic subjects without the presence of amblyopia were recruited, defined
as an interocular difference of at least 1.50 D mean sphere equivalent (MSE; sphere + %
cylinder (D)). Anisometropic participants had corrected visual acuities of 0.0 logMAR or better

in each eye.
6.2.2 Measurements

Binocular distance refractive error was measured with a validated infra-red binocular open-
view autorefractor (Grand Seiko WAM 5500; Sheppard and Davies, 2010) whilst subjects
viewed a distance (6 m) Maltese cross target. A minimum of five measurements of refractive
error were taken for each eye, averaged and converted into MSE. In line with previous reports
of refractive error in young and older populations (Cregg et al., 2003; Owsley et al., 2007),
mean absolute refractive error (MAE) was also calculated for amblyopic participants to reflect

the fact that the cohort consisted of some moderate-high myopes as well as hyperopes.

Axial length in the relaxed state were obtained in both eyes using the Lenstar LS 900 biometer
(Haag-Streit AG, Koeniz, Switzerland). Each participant fixated on the central red fixation light

whilst four separate biometric measurements were taken and averaged at O D.

6.2.3 Ciliary muscle image acquisition and analysis
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AS-OCT (Visante; Carl Zeiss Meditec. Inc., Dublin, CA) images of nasal ciliary muscle regions
were obtained from right and left eyes of participants to compare with previous work (Kuchem
etal., 2013), using high-resolution corneal mode, as described in detail in section 1.7.7. Ciliary
muscle images were exported from the AS-OCT in raw DICOM form for analysis purposes.
A validated bespoke analysis programme (Laughton et al., 2015) was used to measure ciliary
muscle parameters, as detailed in section 1.7.8; all image analysis was carried out by a single
examiner (RNS).

Various length and width measurements were obtained; curved ciliary muscle total length
(CML) was defined as the anteroposterior distance from the scleral spur, representing the
anterior insertion along the ciliary muscle-scleral border, to the visible posterior tip of the
ciliary muscle. The anterior length (AL) is from the scleral spur to the point of maximum ciliary
muscle width (CMTMAX). CM25 is the ciliary muscle width at an area which was 25 % of the
CML posterior to the scleral spur; similarly CM50 and CM75 measures were taken at areas
50 % and 75 % (CM50 and CM75 respectively) of the CML posterior to the scleral spur.
Additionally, ciliary muscle thickness measurements at fixed distances from the scleral spur
were taken to compare with previous work (Kuchem et al., 2013); CMT1 represents a point 1
mm posterior to the scleral spur, with CMT2 and CMT3 taken at locations 2 mm and 3 mm
posterior to the scleral spur, respectively.

6.2.4 Statistical Analysis

The relationship between axial length and ciliary muscle parameters was determined by linear
regression analysis for each cohort. To assess the differences in ciliary muscle parameters
between eyes of each cohort, independent samples t- tests were performed (SPSS Statistics

21; IBM, lllinois, USA.) A P value of less than 0.05 was considered significant for all analyses.
6.3 Results
6.3.1 Amblyopes

Table 6.1 shows the characteristics of amblyopic participants. Table 6.2 shows the ciliary
muscle characteristics in amblyopic subjects. There was no significant difference in MSE
between the eyes of amblyopes (P = 0.931). However, the MAE between the amblyopic eyes

and the non- amblyopic eyes showed a significant difference (P = 0.013).
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Mean Minimum | Maximum
Age (years) 22.61 + 3.38 18.5 29.1
Axial length of amblyopic eye (mm) 23.30+£1.35 21.57 24.45
Axial length of non- amblyopic eye (mm) 23.61+£1.05 22.20 25.40
MSE of amblyopic eye (D) -1.05 £ 3.09 -5.38 6.97
MSE of non- amblyopic eye (D) -1.16 + 2.60 -4.13 5.54
MAE of amblyopic eye (D) 259+ 1.45 0.00 6.97
MAE of non- amblyopic eye (D) 1.29 +1.87 0.25 5.54

Table 6.1. Characteristics of amblyopic participants (n = 10). There was a significant difference in axial

length between amblyopic and non-amblyopic eyes (P = 0.040).

Parameter (mm) Amblyopic eye Non- amblyopic eye
CML 4.26 +0.51 4.25+0.51
AL 0.63+0.14 0.65+0.12
CMT1 0.70 £ 0.22 0.69 + 0.18
CMT2 0.45+0.17 0.42 +0.15
CMT3 0.24 £ 0.12 0.21 +0.11
CM25 0.68 + 0.20 0.68 £ 0.16
CM50 0.41+0.13 0.41+0.13
CM75 0.20 + 0.07 0.18 + 0.05
CMTMAX 0.67 £ 0.16 0.78 £ 0.20

Table 6.2. Nasal ciliary muscle morphological characteristics of amblyopic participants (n = 10).

Between the eyes of amblyopes, there was no significant difference for any length measure
(AL: P = 0.754; CML: P = 0.954) or thickness parameter (CM1: P = 0.938; CM2: P = 0.713;
CM3: P =0.420; CM25: P =0.723; CM50: P =0.681; CM75: P = 0.855; CMTMAX: P =0.751).
In the non- amblyopic eye, there was a significant association between CML and AXL (P =
0.010, r? = 0.534) as shown by figure 6.1, though there was no link between AXL and AL (P
= 0.532). For ciliary muscle thickness measures in the non- amblyopic eye, there was a
relationship between AXL and CM3 only (P = 0.039, r? = 0.359). CML was linked to CMT at
CM2 (P = 0.010, r? = 0.535) and CM3 (P = 0.001, r?> = 0.746). In the amblyopic eye, there
was no link between AXL and CML (P = 0.065) as shown in figure 6.2, or between AXL and
AL (P =0.154). AXL was not linked to CMT (e.g. CM1: P = 0.239, CM50: P = 0.152, CM3: P
= 0.057, CM75: P = 0.087) though CML was related with CMT at CM3 only (P = 0.048; r? =
0.330). CML in the amblyopic eye was related to AXL of the non- amblyopic eye (P = 0.022,
r2 = 0.438), as was CM3 in the amblyopic eye (P = 0.033, r? = 0.384).
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Figure 6.1. Relationship between axial length and nasal ciliary muscle length in the non- amblyopic

eye of the amblyopic cohort (n = 10).
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Figure 6.2. Relationship between axial length and nasal ciliary muscle length in the amblyopic eye (n
=10).
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6.3.2 Anisometropes

Table 6.3 shows the charactistics of anisometropic participants. Mean values for ciliary
muscle morphological parameters are shown in table 6.4. There was a significant different in
MSE between eyes (P < 0.001).

Mean Minimum Maximum
Age (years) 20.29+1.60 |19.0 23.5
Axial length of most myopic eye (mm) 24.29+1.35 | 2155 26.34
Axial length of least myopic eye (mm) 23.12+1.23 |21.19 24.97
MSE of most myopic eye (D) -246+2.01 | -6.54 0.75
MSE of least myopic eye (D) -0.57+£2.06 |-4.98 2.25
Difference in MSE between eyes (D) 1.89 £ 0.52 1.50 3.00

Table 6.3. Characteristics of anisometropic participants (n = 8). There was a significant difference in

axial length between both eyes (P = 0.029).

Parameter (mm) Most myopic eye Least myopic eye
CML 4.73+0.74 4.71+0.81
AL 0.63+0.21 0.65+0.17
CMT1 0.72 £ 0.15 0.72+0.15
CMT2 0.49+0.13 0.47 £0.10
CMT3 0.28 +0.10 0.26 + 0.08
CM25 0.69 + 0.15 0.67+0.14
CM50 0.42+0.11 0.42 +0.10
CM75 0.20 + 0.06 0.19+0.04
CMTMAX 0.85+0.21 0.84 +0.18

Table 6.4. Nasal ciliary muscle characteristics across both eyes of anisometropes (n = 8).

There was no significant difference between eyes of anisometropes in any ciliary muscle
length (CML: P = 0.959; AL: P = 0.842) or thickness (CM1: P = 0.978; CM2: P = 0.962; CM3:
P = 0.695; CM25: P = 0.835; CM50: P = 0.971; CM75: P = 0.531; CMTMAX: P = 0.872)
parameter. In the most myopic eye, there was no relationship between AXL and CML (P =
0.178) or between AXL and AL (P = 0.316). AXL was not linked with ciliary muscle thickness
at any measures parameter (e.g. CM1: P = 0.929, CM3: P = 0.607; CM75: P = 0.881) and
there was no relationship between CML and any thickness measurement (e.g. CM1: P =
0.953, CM3: P =0.154; CM50: P = 0.732). In the least myopic eye, there was no link between
AXL and CML (P = 0.703) or between AXL and AL (P = 0.309). AXL was not related with any
ciliary muscle parameter measured (e.g. CM25: P =0.081, CM3: P =0.215, CM75: P =0.214)

141



and there was no relationship between CML and any thickness parameter (e.g. CM50: P =
0.707; CM3: P =0.132).

6.4 Discussion

Though several investigations have studied ciliary muscle morphology with refractive error
(Oliveira et al., 2005; Bailey et al., 2008; Schultz et al., 2009; Sheppard and Davies, 2010;
Buckhurst et al., 2013), the ciliary muscle in amblyopia has not previously been described.
Since amblyopic eyes are known to have reduced visual output and an altered
accommodative response (Ciuffreda et al., 1984; Horwood and Riddell, 2010) compared with
their fellow eyes, it may be expected that ciliary muscle morphology between the eyes does
not display the symmetry demonstrated in myopic and emmetropic eyes (detailed in chapter
4). Similarly, there is a paucity of information relating to the ciliary muscle morphology
between eyes of anisometropes (Kuchem et al., 2013), as such, the ciliary muscle was
investigated between the eyes of amblyopes and anisometropes, to determine if, and what
impact these neurological and refractive conditions have on the symmetry of ciliary muscle

morphology.

The axial length of the amblyopic eye was found to be significantly shorter than the fellow
eye, consistent with previous findings in peadiatric amblyopias (Cass and Tromans, 2008;
Debert et al., 2011; Mori et al., 2015) and in amblyopia present in adults (Lempert and Porter,
1998). It has been suggested that the strabismic amblyopic eye is under- developed,
impeding emmetropisation in the infanitle phase (Cass and Tromans, 2008). Similarly, in
another investigation studying optic disc dysversion and axial length measurements in a
population of adult amblyopes, it was indicated that reduced vision in smaller eyes may result
from a decrease in nerve fibres and photoreceptors (Lempert and Porter, 1998). Whether the
altered ocular biometry observed is a result of or a cause of amblyopia, cannot be answered

in this investigation.

Ciliary muscle morphology is known to vary with axial length, and has found to be longer
(Sheppard and Davies, 2010) and thicker (Oliveira et al., 2005; Bailey et al., 2008; Schultz et
al., 2009; Buckhurst et al., 2013) with increasing axial length, in the non- amblyopic
population. Since the amblyopic eye has a significantly smaller axial length than its fellow
non- amblyopic eye, and suffers visual loss (Wiesel and Hubel, 1963; Webber and Wood,
2005; Veneruso et al., 2014; Solebo et al., 2015) and reduced accommodative response
(Ciuffreda et al., 1984; Horwood and Riddell, 2010), asymmetry of ciliary mucle morphology
would be expected between the eyes of amblyopes. However, between the amblyopic eyes
and the fellow eyes, there was unexpectedly no significant difference in ciliary muscle

morphology for any length or thickness parameter measured. In the non- amblyopic eye, axial
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length was linked to ciliary muscle length (for CML) and thickness at CM3, and CML was also
linked with ciliary muscle thickness. Yet, in the amblyopic eye, there was no relationship
between axial length and ciliary muscle length or thickness, though CML was linked with
ciliary muscle thickness. It is shown therefore, that amblyopic participants display high levels
of ciliary muscle symmetry between the eyes, as the ciliary muscle length and thickness in
the amblyopic eye is not governed by the axial length of the amblyopic eye, but appears to
grow in accordance with the fellow non- amblyopic eye.

The sample of adult anisometropes in this study behaved in accordance with the literature
(Hashemi et al., 2013, Jiang et al., 2013), in showing a significant difference between the
axial lengths of both eyes. In anisometropic participants, between the most myopic and least
myopic eye, though myopic eyes tended to have a thicker ciliary muscle, there was no
significant difference in any ciliary muscle thickness parameter measured, consistent with
previous AS-OCT work investigating ciliary muscle morphology in anisometropes (Kuchem
et al., 2013). Similarly, no significant difference for ciliary muscle length parameters were
found between the eyes of anisometropes, a finding that has not previously been reported. In
each eye, there was no link between axial length or any ciliary muscle length or thickness
parameter, and length of the ciliary muscle was not linked with thickness. Such findings vary
with outcomes in the isometric population, whereby ciliary muscle morphology is known to be
associated with axial length (Oliveira et al., 2005; Bailey et al., 2008; Schultz et al., 2009;
Sheppard and Davies, 2010) and with findings by Kuchem et al (2013). However, whilst the
present study only included anisometropic subjects with a minimum of 1.50 D difference in
MSE, the previous investigation included subjects with a spherical equivalent refractive error
of less than 1 D difference between eyes, with a difference as little as 0.75 D included
(Kuchem et al.,, 2013). Hence, the inclusion of subjects regarded as isometric (since
anisometropia can be defined as a difference in MSE of at least 1 D) and of a much wider
age range (18 — 40 years) when the ciliary muscle thickness is known to increase with
advancing age (Pardue and Sivak, 2000; Sheppard and Davies, 2010), may have caused the
discrepancy between the two investigations. However, in agreement with the investigation by
Kuchem and co- workers (2013), it seems plausible in anisometropic ocular development,
that an eye can expand and become more myopic than its fellow eye, without a concurrent
increase in ciliary muscle length or thickness. This contrasts with previous research in high
uniliateral myopia (Muftuoglu et al., 2009) which found increased ciliary muscle thickness in
the longer eye, more myopic eye of most, though not all, subjects with unilateral high myopia.
The participants had a much greater level of anisometropia (= 5.00 D) compared with the

present study and the investigation by Kuchem et al (2013) (= 0.75 D). It has been suggested
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that the mechanisms governing ocular growth in a high degree of anisometropia differ from

those regulating ocular growth in lower magnitudes of anisometropia (Kuchem et al., 2013).

The relatively small sample size used in this investigation was due to the low prevalence of
the conditions, particularly with the narrow age range selected. Where the present
investigation utilised a sample of eight anisometropes, other biometric studies of
anisometropia (= 1 D) have included cohorts of between 19 — 354 participants (Muftuoglu et
al., 2009; Hashemi et al., 2013; Jiang et al., 2013; Kuchem et al., 2013). Similarly, studies of
ocular biometry in amblyopia have included samples of between 12 — 45 amblyopic
participants (Kugelberg et al., 1996; Cass and Tromans, 2008; Debert et al., 2011; Mori et
al., 2015), whereas the present investigation utilised a sample size of ten amblyopes.
Therefore, the smaller sample size in this investigation may have reduced the statistical
power of the analytical tests. Further work is required in this area amongst a larger cohort of
anisometropes and amblyopes, and to determine whether the relationships shown in
amblyopic eyes apply across both anisometropic and strabismic sub- groups.

6.5 Conclusion

To conclude, this is the first investigation to study ciliary muscle morphology between eyes of
amblyopes. High levels of ciliary muscle symmetry were found between the amblyopic eye
and the fellow eye. In the non- amblyopic eye, ciliary muscle length and thickness were linked
to axial length, whereas growth of the ciliary muscle in the amblyopic eye appears to passively
mirror ciliary muscle morphology in the non- amblyopic eye. Similarly, there were high levels
of ciliary muscle symmetry between the eyes of anisometropes, indicating that when an eye
increases in axial length, becoming more myopic than the fellow eye, there is not

accompanying ciliary muscle growth.
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Chapter 7

New parameters for analysis of ciliary muscle morphology
7.1 Introduction

Before the utilisation of in vivo imaging techniques to view the human ciliary muscle,
information regarding the ciliary muscle was extracted from in vitro studies. Such
investigations have fuelled our understanding of human and primate accommodative
physiology (Aiello et al.,, 1992; Tamm et al., 1992; Poyer et al., 1993). However in vitro
methods are subject to limitations (Weale, 1999; Kasthurirangan et al., 2008) as discussed in
section 1.4. Over several years the Vistante AS-OCT has been widely used to image the
active ciliary muscle (Bailey et al., 2008; Sheppard and Davies 2010b; Lewis et al., 2012;
Buckhurst et al., 2013; Pucker et al., 2013; Laughton et al., 2016). However, standardised
criteria for ciliary muscle measurement do not currently exist. There is debate in the literature
regarding the appropriate refractive index that should be used when analysing ciliary muscle
images, which metrics should be used, and the best reference point for these metrics (Bailey
et al., 2008; Sheppard and Davies, 2010b; Bailey, 2011). Whilst different examiners have
used slightly different techniques, there may be further parameters other than length and
thickness which have not been measured previously (Bailey et al., 2008; Sheppard and
Davies 2010b; Lewis et al., 2012; Buckhurst et al., 2013; Pucker et al., 2013), which are
valuable to assess with regard to ciliary muscle morphology and refractive error.

Similar to UBM devices, incorporated AS-OCT software (Zeiss, Vistante) permits super-
imposed callipers on acquired images to extract measurement data (Sheppard and Davies,
2010b; Kao et al., 2011; Laughton et al., 2015) (see figure 7.1). The limitations of the calliper
method, detailed in section 1.8.9, were overcome through the development of a bespoke
semi-objective analysis programme at Aston University, and is described in section 1.7.9. The
programme has since been described, validated (Laughton et al.,, 2015) and utilised
throughout this body of research and in other ciliary muscle investigations (Laughton et
al.,2016).
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Figure 7.1. User controlled in-built callipers of the Visante AS-OCT, superimposed on the acquired

ciliary muscle image to provide morphological ciliary muscle data for the designated parameters.

Similar to the software developed at Aston University, the analysis programme by Kao et al.
(2011) required localisation of the scleral spur manually, prior to automated image analysis
because of varying ciliary muscle contour in Visante AS-OCT images. Subsequent to the
outline of the sclera and ciliary muscle, refractive indices of 1.41 and 1.38 were employed
across the y-axis of the sclera and ciliary muscle image portions, respectively, and previous
work has reported the refractive index for rabbit sclera and ciliary body to be 1.41 and 1.38,
respectively (Nemati et al., 1997; Nemati et al., 1998). However, in the software by Kao and
co-workers (2011) the edge detection algorithms appeared to combine both the pigmented
ciliary epithelium and the ciliary muscle, which may overestimate ciliary muscle thickness
measurements. Whilst the same refractive indices applied to the AS-OCT ciliary muscle
images have been used amongst authors (Kao et al., 2011; Laughton et al., 2015), there is
not yet a universally accepted method agreed to measure ciliary muscle parameters (Bailey
2011). In the programme developed by Kao et al (2011), ciliary muscle length parameters
were not acquired, and thickness measures have since been taken at fixed points posterior
to the scleral spur (CM1, CM2 and CM3) (Lewis et al., 2012; Buckhurst et al., 2013; Pucker
et al., 2013); measurements in this way do not account for the fact that the ciliary muscle
length varies with different axial lengths (Bailey et al., 2008; Sheppard and Davies 2010b),

so width measures are not attained at the same anatomical region of the muscle. The location
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of the width measures established by Sheppard and Davies (2010b) are proportional to the
overall length of the ciliary muscle (CM25, CM50 and CM75), addressing the shortcomings
of the arbitrary measures. Both fixed arbitrary width measures and those proportional to the
curved overall ciliary muscle length have been utilised throughout the body of research in this
thesis, and are compared in detail across an emmetropic cohort in chapter 3, and illustrated

how the fixed width measures may present data with not entirely accurate outcomes.

Despite the validity and robust nature of the ciliary muscle programme developed at Aston
University (Laughton et al., 2015), there have been previous concerns regarding the visibility
of the posterior limit of the ciliary muscle (Bailey, 2011) that are not completely groundless
(see figure 7.2); extensive ciliary muscle image analysis during semi-objective programme
development showed there can be inter-subject inconsistency in the visibility of the posterior
limit of the ciliary muscle. To simplify localisation for the programme, the definition of the
posterior visible limit (PVL) was given as the point where the scleral/ ciliary muscle and ciliary
muscle/ pigmented ciliary epithelium boundaries reached minimum separation posteriorly,
which generated highly repeatable results (Laughton et al., 2015). Previous findings have
demonstrated that the greater anterior ciliary muscle length occurs with increased axial
length, suggesting that the structure grows in the anteroposterior direction with globe
elongation, with the scleral spur as the set anchor point (Sheppard and Davies, 2010).
Similarly, it was speculated that the inner apical angle of the ciliary muscle is wider in myopic
participants than in emmetropes (see figure 1.11), though further research is required to
determine the relevance of this finding to refractive error development (Sheppard and Davies,
2010).

To date, the investigations regarding ciliary muscle morphology have measured the ciliary
muscle with regard to length and width (Oliveira et al., 2005; Bailey et al., 2008; Sheppard
and Davies 2010b; Sheppard and Davies, 2011, Lewis et al., 2012; Buckhurst et al., 2013;
Pucker et al., 2013; Laughton et al., 2016) which are known to be linked with axial length
(Oliveria et al., 2005; Bailey et al., 2008; Buckhurst et al., 2013). Such measures are therefore
linked to the overall cross- sectional area, the size of the surface of the ciliary muscle, an
important parameter which has not before been reported in previous studies investigating the
ciliary muscle (Oliveira et al., 2005; Bailey et al., 2008; Sheppard and Davies 2010b;
Sheppard and Davies, 2011, Lewis et al., 2012; Buckhurst et al., 2013; Pucker et al., 2013;
Laughton et al., 2016) and would be expected to be greater in eyes with longer axial lengths.
The cross- sectional area of the ciliary muscle requires judgement of the posterior visible limit,
and the investigation presented in this chapter addressed the effect on area that varying

posterior visible limit localisation would incur. This study was the first to examine the most
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effective parameters to measure the ciliary muscle, including the inner apical angle and cross-
sectional area of the ciliary muscle, and their relationship with axial length in both emmetropes

and myopes. The repeatability of these parameters are assessed for the first time.
7.2 Methods
7.2.1 Subjects

One hundred patrticipants aged 19-26 years were recruited from the student body of Aston
University, comprising of fifty emmetropic volunteers with a mean sphere equivalent (MSE) 2
-0.55; < +0.75 D and fifty myopes (MSE < -2.00 D). The narrow age range was implemented
to decrease variation in ciliary muscle data due to ageing, particularly thickening of the ciliary
muscle (Sheppard and Davies, 2010). Exclusion criteria were cylindrical refractive errors
greater than 2.00 D, previous history of ocular trauma, amblyopia, surgery or pathology, and
systemic conditions known to affect ocular health. All subjects had corrected visual acuities
of 0.0 logMAR or better in each eye. Ethical approval was obtained from the Aston University
Life and Health Sciences Research Ethics Committee and the study adhered to the tenets of
the Declaration of Helsinki. Written, informed consent was attained from all subjects prior to
commencement, after explanation of the nature and possible consequences of the

investigation.
7.2.2 Measurements

A validated infra-red binocular open-view autorefractor (Grand Seiko WAM 5500; Sheppard
and Davies, 2010) was used to measure binocular distance refractive error, whilst subjects
viewed a distance (6 m) Maltese cross target. AS-OCT (Visante; Carl Zeiss Meditec. Inc.,
Dublin, CA) images of temporal ciliary muscle regions were obtained from the right eye only
of participants, using high-resolution corneal mode, as detailed in section 1.7.7. Ciliary muscle
images were exported from the AS-OCT in raw DICOM form for analysis purposes with the
validated bespoke analysis programme (Laughton et al., 2015).

The analysis programme was used to measure the straight line length of the ciliary muscle,
from the scleral spur to the PVL, and three images of the temporal ciliary muscle of the right
eye were analysed. Data was stored in an Excel spreadsheet (Microsoft 2010, Redmond,
Washington, USA). Currently, the analysis programme does not facilitate area measures of
the ciliary muscle, or the inner apical angle. Snipping Tool (Microsoft 2010, Redmond,
Washington, USA) was used to capture and save the ciliary muscle image to be imported
subsequently to ImageJ, a biomedical image processing software (Schindelin et al., 2015)

that has been validated with high repeatability and sensitivity in detection of acetylcholine
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esterase inhibitory activity at very low concentration levels (Abou-Donia et al., 2014) and used

to measure ciliary muscle parameters.

Due to the somewhat contentious issue of the posterior visible limit location that has been
implied (Bailey, 2011; Laughton et al., 2015), the influence of posterior visible location on
cross- sectional area was assessed by considering cross- sectional area measures when the
posterior visible limit location was varied. Using ImageJ software, the following parameters
were measured: cross- sectional area of the ciliary muscle extending from the scleral spur to
the posterior visible limit (the point at which the scleral/ ciliary muscle and ciliary muscle/
pigmented ciliary epithelium outlines reached minimum separation posteriorly) shown by
figure 7.2, the area of the ciliary muscle when the posterior visible limit is located 0.25 mm
anterior to the originally selected PVL (area-0.25), the area of the ciliary muscle when the
posterior visible limit is located 0.25 mm posterior to the originally selected PVL (area+0.25),
The inner apical angle was also measured (see figure 7.3). The area measures were taken
using the ImageJ area tool, whilst the inner apical angle was measured with the angle tool.
In order to convert the pixel measurement to millimetres, each image was initially scaled to a
known length; a straight line was drawn from the scleral spur to the posterior visible limit using
ImageJ, and the value of the straight line length of the ciliary muscle obtained from the semi-
objective bespoke analysis programme, was inputted (see figure 7.4). Visual inspection was
used to ensure that the outline was smooth and followed the ciliary muscle boundary. Figure
7.2 demonstrates an accepted area outline for analysis and the regions of area+0.25 and
area-0.25. The straight line tool was again utilised for location of the posterior visible limit in
all area+0.25 and area-0.25 analysis. All analyses were carried out by a single examiner
(RNS).
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Figure 7.2. ImageJ analysis of the ciliary muscle area, extending from the scleral spur to the posterior
visible limit (PVL) indicated by the red dashed line, and showing an accepted area outline image for
analysis. Area+0.25 is the cross- sectional area of the ciliary muscle where the PVL is situated 0.25
mm posterior to the original PVL and area-0.25 is the ciliary muscle cross- sectional area when the

PVL falls 0.25 mm anterior to the original PVL.
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Figure 7.3. Inner apical angle of the temporal ciliary muscle in the right eye, outlined by the angle tool
of ImageJ (indicated on the ImageJ toolbar). The user manually selects the starting point of the
measurement and drags the line towards the point at which the ciliary muscle boundaries meet, and
towards the following intersecting boundary in order to create the angle. On selecting the ‘Analyse’ tab,

the measurement function can be selected in order to display the value of the measured parameter.
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Figure 7.4. The straight line tool extending from the scleral spur to the posterior visible limit. Following
superimposition of this line, the user can select ‘Analyse’ in the ImageJ tab to set the scale of this

known length parameter.
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7.2.3 Repeatability

The repeatability of the image analysis method with ImageJ was studied, as this is the first
investigation to examine the ciliary muscle by the technique described. To determine the
repeatability of the measurements, a randomly selected temporal aspect image from the
cohort was analysed ten times by a single examiner (RNS). The mean value and standard
deviation of the measured ciliary muscle parameters (inner apical angle and cross- sectional
area) were calculated. The inter- examiner repeatability was determined by randomly
selecting 5 emmetropic and 5 myopic participant ciliary muscle images (3 images analysed
per subject), measured by a different examiner (ALS), and calculating the mean difference

between the two examiners for cross- sectional ciliary muscle area and inner apical angle.
7.2.4 Statistical analysis

The data for each variable were normally distributed, as examined by tests of normality
(Shapiro-Wilk, SPSS Statistics 21; IBM, lllinois, USA). Independent samples t-tests were
performed to indicate any significant difference between the ciliary muscle cross- sectional
area between refractive groups and the inner apical angle between emmetropes and myopes,
and the difference in cross- sectional area and inner apical angle measures obtained between
the two different examiners. A one-way ANOVA was performed to assess the difference
between area+0.25, area-0.25 and ciliary muscle cross- sectional area amongst the refractive
groups. The relationships between ciliary muscle cross- sectional area, inner apical angle
and axial length were determined by linear regression analysis. An independent samples t-
test was performed to check for differences in age between the refractive groups. A P value
< 0.05 was considered significant. All data were stored in an Excel spreadsheet (Microsoft
2010, Redmond, Washington, USA).

7.3 Results
7.3.1 Repeatability

The results from analysing a single image ten times by a single examiner (RNS) are shown
in table 7.1. The image analysis using ImageJ software appear robust, with a standard
deviation for cross- sectional ciliary muscle area of 0.04 mm?, indicating that most values (68
% for a normal distribution) are within 0.04 mm? of the mean and the vast majority (95%) are
within 0.08 mm?; this standard deviation of 0.04 mm? represents a 2.15 % variation of the
mean area. Similarly, the standard deviation of the apical angle was 2.97°, indicating that
most values are within 2.97° of the mean whilst the overall majority (95%) are within 5.94°;

this 2.97° standard deviation corresponds to a 2.78 % change. Table 7.2 shows the variation

152



between ciliary muscle cross- sectional areas utilising different PVL locations. There was no
significant variation between area+0.25 and ciliary muscle area (F = 0.795; P = 0.198), though
there was a significant difference between PVL-0.25 and ciliary muscle area (F = 0.565; P =
0.020), however the magnitude of difference between the latter means are so small (2.15 %)

that it cannot be deemed relevant.

Repeat Area (mm?) Angle (°)
1 1.85 107.6
2 1.94 108.2
3 1.86 102.5
4 1.87 101.2
5 1.85 108.1
6 1.80 106.1
7 1.88 106.8
8 1.89 111.6
9 1.86 108.1
10 1.86 106.5
Mean 1.86 106.7
SD 0.04 2.97

Table 7.1. Repeatability of ImageJ analysis technique on cross sectional area and inner apical angle,

from a single ciliary muscle image analysed ten times, by examiner RNS.

Area Area+0.25 Difference Area-0.25 Difference
(mm?) (mm?) Between Area (mm?) Between Area
and Area+0.25 and Area-0.25
(mm?) (mm?)
Mean 1.86 1.89 0.03 1.82 0.04
SD 0.04 0.03 0.02 0.05 0.03

Table 7.2. The effect of varying PVL locations on the cross- sectional area of the ciliary muscle. A
single ciliary muscle image was analysed ten times by examiner RNS. There was no significant
difference between area and area+0.25, with a magnitude of difference of 1.61 %. Whilst there was a
statistically significant difference between area and area-0.25 (P = 0.020), the magnitude of difference
is 2.15%.

Table 7.3 shows the inter-examiner repeatability results for ciliary muscle cross- sectional
area and inner apical angle measures. Between the two examiners, there was no significant
difference between cross- sectional area measures (P = 0.897) or for inner apical angle (P =
0.937).
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Examiner 1 (RNS) Examiner 2 (ALS)

Cross- sectional | Inner apical angle | Cross- sectional Inner apical angle
area (mm?) © area (mm?) ©

Mean 1.67 117.0 1.64 117.3

SD 0.58 5.84 0.59 8.19

Table 7.3. Mean results for ciliary muscle cross- sectional area and inner apical angle measures for 2
different examiners (RNS and ALS), through ImageJ ciliary muscle image analysis of 10 participants.
There was no statistically significant difference between examiners for cross- sectional area (P = 0.897)

or inner apical angle (P = 0.937).

7.3.2 Ciliary muscle parameters

Summary characteristics of emmetropic and myopic participants are shown in table 7.4. Mean
axial length (P < 0.001) was significantly greater in the myopic group. There was no significant
difference in age between the refractive groups (P = 0.884).

Emmetropes (n = 50) Myopes (n = 50)
Mean Mean
Age (years) 21.1+8.63 21.7+8.84
Refractive error (D) -0.03 £ 0.32* -4.54 + 2.08*
Axial length (mm) 23.29 + 0.79* 25.46 + 1.16*
Ciliary muscle area (mm?) | 1.35 + 0.22* 2.47 £ 0.57*
Apical angle (°) 101.45 + 10.61* 120.99 + 12.58*

Table 7.4. Summary characteristics of emmetropic and myopic participants. *Indicates statistically

significant difference between the refractive groups.
7.3.3 Ciliary muscle area

Mean ciliary muscle area was significantly larger in myopes compared to emmetropes
(emmetropes: 1.35 + 0.22 mm?, myopes: 2.47 + 0.57 mm?, P < 0.001). In both emmetropes
and myopes, there was no significant difference between ciliary muscle cross- sectional area
and area+0.25 (F = 0.263; P = 0.610). There was a significant difference between ciliary
muscle area and area-0.25 (F = 0.692; P = 0.042) and between area-0.25 and area+0.25 (F
= 196.771; P < 0.001). Across the whole cohort, ciliary muscle area was linked with axial
length (R = 0.732, r> = 0.536, P < 0.001), shown by figure 7.5. The ciliary muscle area across
the whole cohort was linked with the inner apical angle (R = 0.425, r> = 0.181, P = 0.001).
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Figure 7.5. Relationship between ciliary muscle area and axial length (n = 100). A significant
relationship occurred between the two parameters across the whole cohort (R =0.732, r2=0.536, P <
0.001).

7.3.4 Ciliary muscle inner apical angle

Between refractive error groups, myopes had a significantly wider inner apical angle
compared with emmetropes (emmetropes: 101.45 + 10.61°, myopes: 120.99 + 12.58 °; P <
0.001). Across the whole cohort, inner apical angle was linked with axial length (R = 0.465, r?
=0.216, P <0.001); figure 7.6 shows the relationship between axial length and ciliary muscle

inner apical angle.
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Figure 7.6. Relationship between axial length and ciliary muscle inner apical angle across the whole
cohort (n = 100). There is a significant link between the two parameters (R = 0.465; r2=0.216; P <
0.001).

7.4 Discussion

In recent years, the ciliary muscle has been studied widely due to its association with
refractive error (Bailey et al., 2008; Oliveira et al., 2008; Sheppard and Davies, 2010;
Buckhurst et al., 2013; Pucker et al., 2013). Whilst there has been MRI investigations of ciliary
muscle ring diameter (apex to apex) in the role of accommodation and presbyopia (Strenk et
al, 1999; Strenk et al., 2006), much of the current methods of analysis of in vivo imaging
involve width and length measurements only, either dependent on fixed arbitrary measures
posterior to the scleral spur (Bailey et al., 2008; Oliveria et al., 2008; Buckhurst et al., 2013;
Kuchem et al., 2013; Pucker et al., 2013) or utilising measures that are proportional to the

overall length of the ciliary muscle (Sheppard and Davies, 2010; Sheppard and Davies, 2011).
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Recent methods employ the latter technique (due to the greater accuracy of targeting the
same anatomical regions across varying ciliary muscle) by using validated semi-objective
ciliary muscle analysis software (Laughton et al., 2015; Laughton et al., 2016). However, a
point has been raised regarding the subjective nature of determining the end point of the
ciliary muscle (Bailey, 2011), which the proportional length and width measures depend upon.
The magnitude of inaccuracy of posterior limit determination has been previously reported
(Sheppard and Davies, 2010) by determining the repeatability of ciliary muscle biometric
measures through analysis of a single temporal ciliary muscle image, ten times; out of the
various parameters measured (anterior length, overall length, CM25, CM5, CM75 and CM2),
the overall length had the highest standard deviation of 32.2 ym, compared with 26.4 um for
anterior length, suggesting this parameter that depends predominantly on posterior visible
limit location, is the most difficult to define. Since both length and width measures are related
(Bailey et al., 2008; Oliveria et al., 2008; Buckhurst et al., 2013), it can be expected that the
ciliary muscle area is also linked; this was the first AS-OCT study to utilise the cross- sectional
area parameter, which may be more a more effective method to measuring the ciliary muscle,
and to establish the effect on area of varying the posterior visible limit by 0.25 mm posteriorly,
and anteriorly. Furthermore, apical angle was analysed across emmetropes and myopes, and
this angle parameter and ciliary muscle area are linked with axial length for the first time, to

help establish the most appropriate method to measure the ciliary muscle.

The ciliary muscle area was significantly greater in myopes compared to emmetropes,
consistent with findings of longer (Sheppard and Davies, 2010) and thicker ciliary muscle
morphology across myopes (Bailey et al., 2008; Oliveria et al., 2008; Buckhurst et al., 2013;
Pucker et al., 2013). Similarly, across the whole cohort, ciliary muscle cross- sectional area
was strongly linked with axial length, in keeping with the previous finding. Moreover the R and
r? values for the relationship between axial length and this ciliary muscle parameter were
greater than for the axial length relationship with any other ciliary muscle parameter
previously detailed in this thesis, highlighting the effectiveness of this parameter when relating
ciliary muscle morphology with refractive error. Across the whole cohort, there was no
significant difference between ciliary muscle cross- sectional area and the area where the
posterior visible limit was selected 0.25 mm posteriorly to the originally selected, true posterior
visible limit. Whilst there was a significant difference between cross- sectional area and the
area where the posterior visible limit was selected 0.25 mm anterior to the original posterior
visible limit, the magnitude of difference was just 2.15 %, hence, has limited impact on the
overall results. It can therefore be confirmed that width measures proportional to the overall
curved length of the muscle maintain their accuracy, when using an experienced examiner

for analysis, due to the unlikelihood of an experienced examiner selecting the posterior visible
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limit beyond 0.25 mm of this area. Similarly, inter- examiner repeatability was determined for
ciliary muscle cross- sectional area, with no significant difference between analysis results by
both examiners. As such, it is demonstrated that the ciliary muscle cross- sectional area
parameter is a highly repeatable method for analysing the ciliary muscle and it combines both
length, and width measurements proportional to the ciliary muscle overall length, as a singular

overall measure.

The ciliary muscle apical angle was significantly wider in myopic eyes, compared with that of
emmetropes. Similarly, across the whole cohort, the inner apical angle was significantly linked
with axial length. These findings link with previous work indicating that the inner apical angle
appears wider, and a longer anterior length of the myopic ciliary muscle suggests that the
muscle grows in an anteroposterior direction with ocular elongation, whilst the scleral spur
acts as a fixed anchor point (Sheppard and Davies, 2010). Furthermore, across the whole
cohort, inner apical angle was related with ciliary muscle area, demonstrating a triad link
between axial length, inner apical angle and area of the ciliary muscle. This finding has not
been previously reported and signifies the importance of implementing these new parameters
when analysing the ciliary muscle. Despite the robust nature of the ImageJ analysis utilising
these parameters, which demonstrate high repeatability, future work is needed to implement
these measures within a semi-objective analysis programme to reduce the subjectivity of the
technique.

7.5 Conclusion

To conclude, this is the first investigation to utilise the cross- sectional area parameter to
measure the ciliary muscle from AS-OCT imaging. Both ciliary muscle cross- sectional area
and inner apical angle were linked to axial length, as were the area and apical angle; similarly,
inner apical angle was significantly wider in myopic eye compared with emmetropes, as was
ciliary muscle area significantly greater in myopes compared to emmetropes. There was no
difference in ciliary muscle cross- sectional area when the PVL was selected 0.25 mm anterior
or posterior to the original PVL, signifying the accuracy of measurements that are proportional
to the overall length of the ciliary muscle when using an experienced examiner, compared
with fixed arbitrary measures. Both inner apical angle and cross- sectional area measures
are highly effective ciliary muscle analysis parameters, demonstrating high repeatability, and
morphological assessment of the ciliary muscle should utilise such measures for future work

in this area.
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Chapter 8

Conclusions and potential future research

8.1 General conclusions

Despite previous in vivo research findings of longer and thicker ciliary muscle in myopes, the
relevance of such findings was uncertain. There have been indications that altered ciliary
muscle morphology in myopia is related to refractive error aetiology, with the thickened ciliary
muscle resulting in a reduced contractile response and generating the hyperopic defocus that
stimulates axial elongation (Bailey et al., 2008). However, no previous investigation has linked
ciliary muscle morphology with accommodative function and many questions regarding the
ciliary muscle in refractive error remained. Therefore, the key experimental theme of this
thesis has been analysis of ciliary muscle morphology in refractive error and accommodative
function in young adult participants, both with and without refractive error, and with particular
reference to symmetry of the ciliary muscle across both eyes.

Ciliary muscle morphology and ocular biometric correlates were studied in emmetropia (n =
69) where the eye had not undergone myopic expansion, and between sexes, for the first
time on a large scale (chapter 3). Images of the ciliary muscle were acquired in vivo with the
Visante AS-OCT (chapters 3 — 6), which is a non- contact technique and permits rapid, high-
resolution image acquisition. Ocular biometry was measured by the Lenstar LS-900, which
allows simultaneous measurement of axial length, anterior chamber depth, crystalline lens
thickness and corneal thickness. Across the cohort, the temporal ciliary muscle was
significantly longer and thicker than the nasal aspect, consistent with previous in vivo
research and findings of an increased contractile response of the temporal aspect (Sheppard
and Davies, 2010). Axial length and anterior chamber depth was linked with ciliary muscle
length and thickness, in keeping with previous findings of a longer (Sheppard and Davies,
2010) and thicker (Oliveria et al., 2005; Bailey et al., 2008; Buckhurst et al., 2013) ciliary
muscle with increasing axial length. Axial length and ciliary muscle length was found to be
significantly longer in males, compared to females. However, it was found that the ciliary
muscle was thicker in females, in thickness measures proportional to the overall curved ciliary
muscle length. Such an outcome is unexpected and warrants further investigation to

understand the implications.

In chapter 4, it was shown that similar to emmetropes, the relationship between axial length,

ciliary muscle length and thickness also occurred in myopes, indicating ciliary muscle growth
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in line with normal ocular development. The myopic ciliary muscle was significantly longer
and thicker for every ciliary muscle parameter measured, in agreement with findings of altered
ciliary muscle morphology in axial myopia (Oliveira et al., 2005; Bailey et al., 2008; Schultz et
al., 2009; Sheppard and Davies, 2010; Buckhurst et al., 2013). Symmetry of the ciliary muscle
between both eyes of isometric participants was studied for the first time (n = 100), and both
emmetropes and myopes were shown to present high levels of symmetry for every measured
ciliary muscle parameter. It therefore seems likely that the altered ciliary muscle morphology
is a passive result of myopia, not linked to the aetiology of refractive error.

Prior to investigating the link between ciliary muscle morphology, accommodative axial
elongation and accommodative error in emmetropes and myopes (chapter 5), the possibility
of diurnal changes of these accommodative functions were explored in chapter 2. Despite the
large body of literature relating to accommodative lag owing to its association with myopia
(Goss, 1991; Gwiazda et al., 2005; Mutti et al., 2006), and of transient accommodative axial
elongation due to findings that myopic eyes may be more malleable to accommodative ciliary
muscle forces (Mallen et al., 2006), diurnal changes of this accommodative error and the
transient accommodative expandability were investigated in emmetropic and myopic
participants for the first time (n = 28). Axial length was shown to fluctuate significantly
throughout the day, being longest around midday, and shortest at night, consistent with
previous diurnal findings (Stone et al., 2004; Read et al., 2008; Chakraborty et al., 2011).
However, transient axial length changes with accommodation did not vary significantly
throughout the day, and neither did accommodative error, for either refractive group.
Investigations of and utilising these accommodative measures therefore, do not need to
account for any diurnal variation during the investigation. It was also found that there no was
no significant difference between the refractive groups in either of these accommodative
functions at any measured time point, and the same was found in chapter 5 (n = 100); there
was no significant difference in the measured accommodative functions between
emmetropes and myopes, and neither accommodative error or transient accommaodative axial
elongation was linked to ciliary muscle morphology. Hence, it is demonstrated for the first
time, that accommodative error is not linked to the altered ciliary muscle morphology in
myopia, and this altered morphology is unlikely to relate to the hyperopic defocus model of

myopia development, but is a passive result of myopic ocular growth (Chapters 4 and 5).

High levels of symmetry were found between eyes of anisometropes and amblyopes (n = 18)
(chapter 6), despite the axial length between both eyes being significantly different in both
cohorts. Previous investigations have not studied the ciliary muscle in amblyopia, and in the
non- amblyopic eye a relationship was found between axial length, ciliary muscle length and

thickness, consistent with ciliary muscle growth in the isometric population (Chapters 3 and
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4). However, there was no relationship between axial length, ciliary muscle length and ciliary
muscle thickness in the amblyopic eye. As both length and thickness measures of the
amblyopic ciliary muscle are linked with the axial length of the non- amblyopic eye, it therefore
appears that the ciliary muscle in amblyopic eyes grow in accordance with ciliary muscle
development in the non- amblyopic eye. Similarly, high levels of ciliary muscle symmetry were
found between the eyes of anisometropes, suggesting that when an eye increases in axial

length compared to its fellow eye, there is not accompanying ciliary muscle growth.

Novel parameters to analyse the ciliary muscle were investigated (n = 100; chapter 7), and
was the first investigation to utilise the cross- sectional area parameter to measure the ciliary
muscle from AS-OCT imaging. Both inner apical angle and ciliary muscle cross- sectional
area were linked to axial length, as were the area and apical angle; similarly, inner apical
angle was significantly wider in myopic eyes compared with emmetropes, as was ciliary
muscle area significantly greater in myopes compared to emmetropes. The cross sectional
area parameter showed the strongest relationship with axial length, compared with all other
ciliary muscle parameters described in this thesis. Both novel measures are highly effective
ciliary muscle analysis parameters which demonstrate high repeatability. Therefore,
morphological assessment of the ciliary muscle should utilise such measures for future work

in this area.

8.2. Evaluation of experimental work: suggestions for improvement and plans for

future research

The ciliary muscle analysis and ocular biometric data detailed in chapter 5 allowed ciliary
muscle morphology to be linked with accommodative function. The data confirmed that eyes
of myopes have longer axial lengths and anterior chamber depths (Park et al., 2010;
Buckhurst et al., 2013), consistent with the evidence that increased axial elongation and globe
expansion occurs with myopia development (Atchison et al., 2004; Multti et al., 2007; Multti
2010; Gilmartin et al., 2013). However, the Lenstar LS 900 biometer (Haag-Streit AG, Koeniz,
Switzerland) was unable to obtain crystalline lens thickness and anterior chamber depth
values in all subjects. Such missing biometric data from the Lenstar was therefore replaced
with predicted values based on age by Atchison and co-workers (2008), leading to a small
difference in ocular biometric data acquisition amongst participants. The reason for the limited
ability of the Lenstar LS 900 biometer to obtain all crystalline lens thickness and anterior
chamber depth measures from every participant is unclear and this issue may not be linked
to all Lenstar biometers. An adaptation to ocular biometric data acquisition could be to acquire

all ocular biometric data (axial length, lens thickness, anterior chamber depth and corneal

161



thickness) with the recent IOLMaster 700. Unlike the previous IOLMaster (500), the newer
model is how able to measure crystalline lens thickness (Akman et al., 2015; Kurian et al.,
2016) and is shown to be highly repeatable and in agreement with the Lenstar LS 900.
Obtaining all biometric measurements with the IOLMaster 700 would allow the same

technique to be utilised across the whole cohort, to strengthen the validity of the results.

The investigation of ciliary muscle morphology in amblyopia and anisometropia in chapter 6
was limited to a relatively small cohort of 10 amblyopic participants and 8 anisometropes
(aged 18 — 29 years), due to the relatively low prevalence of the conditions. While the data
provided novel information regarding symmetry between the eyes of these groups, further
data collection amongst a larger cohort of these groups is planned by the author to determine
if the trend shown in amblyopic eyes is replicated across both strabismic and anisometropic
amblyopic sub— groups. Furthermore, within- eye comparisons could be made on a larger
scale, to determine if the nasal versus temporal ciliary muscle asymmetry that occurs within

the isometric population, is also present amongst amblyopes and anisometropes.

The validity of utilising the cross- sectional area and inner- apical angle parameters to analyse
the ciliary muscle presented in chapter 7, was achieved through employment of ImageJ, free
biomedical image analysis software. The data presented was shown to be repeatable, despite
the high level of subjectivity of the measurement technique. The validated bespoke semi-
objected ciliary muscle analysis programme developed at Aston University does not currently
incorporate cross- sectional area and inner- apical angle measurements into its ciliary muscle
analysis. The author therefore plans to integrate the parameters into the bespoke analysis
programme, to develop a more objective method to measure the inner- apical angle and
cross- sectional area of the ciliary muscle, and to determine the accuracy and repeatability of

these parameters measured by the ciliary muscle analysis programme.

It was shown in chapters 2 and 5 that the transient accommodative axial elongation and
accommodative error index did not significantly differ between the developed eyes of
emmetropes and myopes aged 19 — 26 years. Previous research has shown that whilst
accommodative lag is greater in young progressing myopic subjects than for emmetropes,
the accommodation system appears to adapt and increase its response once myopia is
stable, such that the differences in lags between myopic and emmetropic adults disappear
(Abbott et al., 1998; Nakatsuka et al., 2003; Seidemann and Schaeffel, 2003; Harb et al.,
2006). It is plausible that this phenomenon also exists for the transient axial length increase
with accommodation. However, it is currently not known whether accommodative axial
elongation differences occur across refractive groups in children, where the eye is not fully

developed and the transient axial elongation with accommodation has not been studied in the
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developing eye. Hence, there is clear scope for further research into ocular elongation with
accommodation in children, and to link the findings with the associated ciliary muscle

morphology, which may be relevant to development of myopia.
8.3 Concluding statement

The investigations presented in this thesis are the first to study ciliary muscle morphology in
both eyes of participants, across different refractive error groups and demonstrated high
levels of symmetry between eyes of myopes, emmetropes, anisometropes and amblyopes.
The findings provide further evidence of altered ciliary muscle morphology in myopia (Oliveira
et al., 2005; Bailey et al., 2008; Sheppard and Davies, 2010, Buckhurst et al., 2013), though
dispute the role of the ciliary muscle in the hyperopic defocus model of myopia development
as accommodative error was not related with ciliary muscle morphology in adults. Amid great
interest in refractive error and ciliary muscle morphology (Oliveira et al., 2005; Bailey et al.,
2008; Buckhurst et al., 2013, Kuchem et al., 2013), this thesis provides insight in to ciliary
muscle morphology and accommodative function in refractive error, which will aid the
development and direction of future research in ciliary muscle morphology and myopia

development, with new beneficial parameters to analyse the ciliary muscle.
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REC reference: Ethics Application 548

Please quote this number on all correspondence

With the Committee’s best wishes for the success of the project

Yours sincerely

J ?LM\

Secretary of the Ethics Committee

Email: j.g.walter@aston.ac.uk
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A2: Participant information and consent for project 548 (main study)

Participant Information Sheet

Research workers, school and subject area responsible
Dr Amy Sheppard (Lecturer in Optometry and optometrist), Optometry Department, School

of Life & Health Sciences, Aston University. a.sheppard@aston.ac.uk

Dr Leon Davies (Reader in Optometry and optometrist), Optometry Department, School of

Life & Health Sciences, Aston University. |.n.davies@aston.ac.uk

Miss Richa Saigal (PhD researcher and optometrist), Optometry Department, School of Life

& Health Sciences, Aston University. saigalnr@aston.ac.uk

Project Title
Ciliary muscle characteristics and accommodative function in emmetropic and myopic eyes

Invitation

You are being invited to take part in a research study. Before you decide whether you wish
to participate, please take the time to read this information sheet about why the research is
being done and what it will involve. Furthermore, if you have any questions regarding the
study, please do not hesitate to contact any of the researchers involved (email addresses are

shown above).

What is the purpose of the study?
To analyse how differences in the size and shape of the ciliary muscle in the eyes affect an
individual’s ability to focus on near objects, and to gather data on normal ciliary muscle

characteristics, and those in amblyopic eyes.

The information collected in this research project will provide an insight into whether changes
in ciliary muscle characteristics have an impact on eye focus, and if this may be important in
the development of short-sightedness (myopia). A full understanding of why myopia develops
in some individuals would be very beneficial in the development of strategies (such as special

contact lenses or eye drops) aiming to prevent myopia.

Why have | been chosen to take part?
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You have been chosen because you are considered to be a healthy candidate, fitting into the
age range we require (18-25 years). Individuals that do not have any eye diseases, or a
history of eye problems or health issues that affect the eye (such as diabetes) are invited to

participate in this research.

Where will the study take place?
Ophthalmic Research Group laboratories, Vision Sciences, Aston University, Birmingham, B4
TET

What will happen to me if | take part?

By volunteering to participate in this study, you will be invited to attend the Ophthalmic
Research Group’s laboratories for a one-off visit lasting around 30-40 minutes. During this
visit, a UK-registered optometrist will take various measures from your eyes using a range of
validated equipment. All measures are non-invasive, and you will not require any drops during

the course of the visit. The following measures will be undertaken:

1. How far down a letter chart you are able to read with each eye (visual acuity).

2. The power of each eye, using an automatic machine (autorefractor). You will be required

to look at a target in the distance whilst this measurement is taken.
3. How close to your eye you are able to focus very small print (amplitude of accommodation).

4. The accuracy of your eye’s focusing response, using an autorefractor. You will be required
to concentrate on targets at different distances in front of your eyes while the machine takes

the readings.

5. Imaging the ciliary muscle of the eye; this can be done safely and rapidly using a device
called an anterior segment optical coherence tomographer (AS-OCT). The AS-OCT uses a
special wavelength of light enabling the ciliary muscle inside the eye to be seen. You will look

at targets in different directions whilst the machine takes the images.

6. Measurement of the length of the eye and lens using a biometer device (Lenstar). You will

be required to concentrate on a small light whilst the readings are taken.

If you are short-sighted, you will be supplied with disposable soft contact lenses to wear during
the appointment whilst measurements are taken. The wearing of contact lenses for a short
period of time is very unlikely to cause any problems, but we will check the health of your

eyes using a microscope before you leave the appointment.

196



Why have | been chosen to take part?
You have been chosen because you are considered to be a healthy candidate, fitting into the
narrow age range the study requires. Individuals that do not have any eye diseases, previous

major eye surgery or health issues that affect the eye are invited to participate in this research.

Are there any potential risks in talking part in the study?

There are no known risks involved with the instruments or techniques listed above. Similarly,
there are minimal risks if you are to wear soft contact lenses for the duration of the study. All
measurements and procedures will be taken in accordance with the manufacturers’
guidelines by a GOC (General Optical Council- regulatory body in UK) registered Optometrist.
All techniques have been used successfully in previously-published research from our
laboratory.

Do I have to take part?
No, you do not have to participate if you do not wish to do so. You are free to withdraw at any
time from the project. Your decision to participate (or not) will not influence your ability to

participate in any future research, nor will it affect your studies at the university in any way.

Expenses and payments
You will be paid £10 as a thank you for participation in the study

Will my taking part in this study be kept confidential?

Privacy and confidentiality will be carefully protected. Your name will be turned into a code,
the details of which will be kept on a separate database which will only be accessed by the
investigators. Analysis of data by others, including the internal project examiner, will only be
undertaken in the coded format to prevent a breach of confidentiality. We cannot, however,

guarantee privacy or confidentiality.

What will happen to the results of the research study?

The researchers aim to publish the results of this project. However, there will be no reference
to any individual's performance in any publication. If you wish to receive copies of any
publications arising from the data, please let the investigator know, and these can be emailed

to you.
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Who is organising and funding the research?
The project is being organised and conducted by researchers from the Ophthalmic Research
Group at Aston University. The study has been funded by a UK College of Optometrists

postgraduate scholarship, for Richa Saigal.

Who has reviewed the study?
The research has been submitted and reviewed by Aston University Research Ethics

Committee.

Who do | contact if something goes wrong or | need further information?
Please contact the principal investigator, Dr Amy Sheppard (a.sheppard@aston.ac.uk or
0121 204 4208)

Who do | contact if | wish to make a complaint about the way in which the research is
conducted?

If you have any concerns about the way in which the study has been conducted, then you
should contact Secretary of the University Research Ethics Committee by email at:
j-g.walter@aston.ac.uk or telephone +44(0)121 204 4665.
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Patient Identification Number for this study:

CONSENT FORM
Title of Project: Ciliary muscle characteristics and accommodative function in
emmetropic and myopic eyes

Name of Researcher:

Please initial box
1. | confirm that | have read and understand the information sheet dated October
2013 (version 2.0) for the above study. | have had the opportunity to consider the

information, ask questions, and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any time,
without giving any reason.

3. |l understand that relevant sections of any of my data collected during the study may be
looked at by responsible individuals from Aston University, where it is relevant to my
taking part in this research. | give my permission for these individuals to have access to
my data.

4. | agree to take part in the above study.

Name of Participant Date Signature

Researcher Date Signature

When completed, 1 for participant; 1 for researcher site file
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Patient Identification Number for this study:

CONSENT FORM
Title of Project: Ciliary muscle characteristics and accommodative function in
emmetropic and myopic eyes

Name of Researcher:

Please initial box
1. | confirm that | have read and understand the information sheet dated October
2013 (version 2.0) for the above study. | have had the opportunity to consider the

information, ask questions, and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any time,
without giving any reason, without my medical care or legal rights being affected.

3. |l understand that relevant sections of any of my data collected during the study may be
looked at by responsible individuals from Aston University, or regulatory authorities,
where it is relevant to my taking part in this research. | give my permission for these

individuals to have access to my data.

5. | agree to take part in the above study.

Name of Participant Date Signature

Researcher Date Signature

When completed, 1 for participant; 1 for researcher site file
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A3: Participant information and consent for project 548 (diurnal study)

Participant Information Sheet

Research workers, school and subject area responsible
Dr Amy Sheppard (Lecturer in Optometry and optometrist), Optometry Department, School
of Life & Health Sciences, Aston University. a.sheppard@aston.ac.uk

Dr Leon Davies (Reader in Optometry and optometrist), Optometry Department, School of
Life & Health Sciences, Aston University. |.n.davies@aston.ac.uk

Miss Richa Saigal (PhD researcher and optometrist), Optometry Department, School of Life
& Health Sciences, Aston University. saigalnr@aston.ac.uk

Project Title
Ciliary muscle characteristics and accommodative function in emmetropic and myopic eyes-

diurnal variation in accommodative function

Invitation

You are being invited to take part in a research study. Before you decide whether you wish
to participate, please take the time to read this information sheet about why the research is
being done and what it will involve. Furthermore, if you have any questions regarding the
study, please do not hesitate to contact any of the researchers involved (email addresses are

shown above).

What is the purpose of the study?
To analyse whether there are differences in the accuracy of accommodation (focussing) and

magnitude of axial length (total eye length) change with accommodation, throughout the day.

Whilst various ocular diurnal (throughout the day) changes are known, very little is known
about changes in accommodative function throughout the day, despite the widely researched
link between accommodation and myopia (short sightedness). In comparing the differences
in axial length change with accommodation between emmetropes (normal sighted
individuals) and myopes, it must be determined if, and to what extent any diurnal variation

occurs in myopic and emmetropic groups.

Why have | been chosen to take part?
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You have been chosen because you are considered to be a healthy candidate, fitting into the
age range we require (19-26 years). Individuals that do not have any eye diseases, or a
history of eye problems or health issues that affect the eye (such as diabetes) are invited to

participate in this research.

Where will the study take place?
Ophthalmic Research Group laboratories, Vision Sciences, Aston University, Birmingham, B4
TET

What will happen to me if | take part?

By volunteering to participate in this study, you will be invited to attend the Ophthalmic
Research Group’s laboratories for four visits during the day lasting around 10 minutes each
and between the following times: 0800- 0900, 1200 — 1300, 1600- 1700, 2000- 2100. During
this visit, a UK-registered optometrist will take various measures from your eyes using a range
of validated equipment. All measures are non-invasive, and you will not require any drops

during the course of the visit. The following measures will be undertaken:

1. How far down a letter chart you are able to read with each eye (visual acuity).

2. The power of each eye, using an automatic machine (autorefractor). You will be required

to look at a target in the distance whilst this measurement is taken.
3. How close to your eye you are able to focus very small print (amplitude of accommodation).

4. The accuracy of your eye’s focusing response, using an autorefractor. You will be required
to concentrate on targets at different distances in front of your eyes while the machine takes

the readings.

5. Measurement of the length of the eye and lens using a biometer device (Lenstar). You will
be required to concentrate on a small light whilst the readings are taken, and then a letter
target.

If you are short-sighted, you will be supplied with disposable soft contact lenses to wear during
the appointment whilst measurements are taken. The wearing of contact lenses for a short
period of time is very unlikely to cause any problems, but we will check the health of your

eyes using a microscope before you leave the appointment.

Why have | been chosen to take part?
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You have been chosen because you are considered to be a healthy candidate, fitting into the
narrow age range the study requires. Individuals that do not have any eye diseases, previous

major eye surgery or health issues that affect the eye are invited to participate in this research.

Are there any potential risks in talking part in the study?

There are no known risks involved with the instruments or techniques listed above. Similarly,
there are minimal risks if you are to wear soft contact lenses for the duration of the study. All
measurements and procedures will be taken in accordance with the manufacturers’
guidelines by a GOC (General Optical Council- regulatory body in UK) registered Optometrist.
All techniques have been used successfully in previously-published research from our
laboratory.

Do | have to take part?
No, you do not have to participate if you do not wish to do so. You are free to withdraw at any
time from the project. Your decision to participate (or not) will not influence your ability to

participate in any future research, nor will it affect your studies at the university in any way.

Expenses and payments

You will be paid a £20 amazon voucher as a thank you for participation in the study.

Will my taking part in this study be kept confidential?

Privacy and confidentiality will be carefully protected. Your name will be turned into a code,
the details of which will be kept on a separate database which will only be accessed by the
investigators. Analysis of data by others, including the internal project examiner, will only be
undertaken in the coded format to prevent a breach of confidentiality. We cannot, however,

guarantee privacy or confidentiality.

What will happen to the results of the research study?

The researchers aim to publish the results of this project. However, there will be no reference
to any individual’s performance in any publication. If you wish to receive copies of any
publications arising from the data, please let the investigator know, and these can be emailed

to you.

Who is organising and funding the research?
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The project is being organised and conducted by researchers from the Ophthalmic Research
Group at Aston University. The study has been funded by a UK College of Optometrists

postgraduate scholarship, for Richa Saigal.

Who has reviewed the study?
The research has been submitted and reviewed by Aston University Research Ethics

Committee.

Who do | contact if something goes wrong or | need further information?
Please contact the principal investigator, Dr Amy Sheppard (a.sheppard@aston.ac.uk or
0121 204 4208)

Who do | contact if | wish to make a complaint about the way in which the research is
conducted?

If you have any concerns about the way in which the study has been conducted, then you
should contact Secretary of the University Research Ethics Committee by email at:
j.g.walter@aston.ac.uk or telephone +44(0)121 204 4665.
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Patient Identification Number for this study:

CONSENT FORM
Title of Project: Ciliary muscle characteristics and accommodative function in
emmetropic and myopic eyes- diurnal variation in accommodative function

Name of Researcher:

Please initial box
1. | confirm that | have read and understand the information sheet dated January
2015 (version 1.0) for the above study. | have had the opportunity to consider the

information, ask questions, and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any time,
without giving any reason.

3. |l understand that relevant sections of any of my data collected during the study may be
looked at by responsible individuals from Aston University, where it is relevant to my
taking part in this research. | give my permission for these individuals to have access to
my data.

4. | agree to take part in the above study.

Name of Participant Date Signature

Researcher Date Signature

When completed, 1 for participant; 1 for researcher site file
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Patient Identification Number for this study:

CONSENT FORM
Title of Project: Ciliary muscle characteristics and accommodative function in
emmetropic and myopic eyes

Name of Researcher:

Please initial box
1. | confirm that | have read and understand the information sheet dated January
2015 (version 1.0) for the above study. | have had the opportunity to consider the

information, ask questions, and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any time,
without giving any reason, without my medical care or legal rights being affected.

3. |l understand that relevant sections of any of my data collected during the study may be
looked at by responsible individuals from Aston University, or regulatory authorities,
where it is relevant to my taking part in this research. | give my permission for these

individuals to have access to my data.

5. | agree to take part in the above study.

Name of Participant Date Signature

Researcher Date Signature

When completed, 1 for participant; 1 for researcher site file
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A4: Participant information and consent for project 543 (amblyopia study)

Participant Information Sheet

Research workers, school and subject area responsible
Dr Amy Sheppard (Lecturer in Optometry and optometrist), Optometry Department, School
of Life & Health Sciences, Aston University. a.sheppard@aston.ac.uk

Dr Leon Davies (Reader in Optometry and optometrist), Optometry Department, School of
Life & Health Sciences, Aston University. |.n.davies@aston.ac.uk

Miss Richa Saigal (PhD researcher and optometrist), Optometry Department, School of Life
& Health Sciences, Aston University. saigalnr@aston.ac.uk

Project Title

Ciliary muscle characteristics in refractive error and amblyopia

Invitation

You are being invited to take part in a research study. Before you decide whether you wish
to participate, please take the time to read this information sheet about why the research is
being done and what it will involve. Furthermore, if you have any questions regarding the
study, please do not hesitate to contact any of the researchers involved (email addresses are

shown above).

What is the purpose of the study?

To analyse how differences in the size and shape of the ciliary muscle in the eyes affect an
individual’s ability to focus on near objects, and to gather data on normal ciliary muscle
characteristics, those in amblyopic eyes (lazy eyes) and anisometropic eyes (moderate-large
difference in prescription between the eyes). Since amblyopic eyes are known to have
reduced vision, it could be predicted that the ciliary muscle in the amblyopic eye could be
altered; however, there has been no previous reports of the ciliary muscle in amblyopia, so
how the ciliary muscle develops in eyes of amblyopes (those with a lazy eye) is not currently

known.

The information collected in this research project will provide an insight into whether changes
in ciliary muscle characteristics have an impact on eye focus, and whether the ciliary muscle

varies in eyes of amblyopes and anisometropia.
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Why have | been chosen to take part?

You have been chosen because you are considered to be a healthy candidate, fitting into the
age range we require (18-25 years). Individuals that do not have any eye diseases, or a
history of eye problems or health issues that affect the eye (such as diabetes) are invited to
participate in this research, along with individuals with a moderate-large difference in
prescription between the eyes (anisometropia), or a lazy eye (amblyopia).

Where will the study take place?
Ophthalmic Research Group laboratories, Vision Sciences, Aston University, Birmingham, B4
TET

What will happen to me if | take part?

By volunteering to participate in this study, you will be invited to attend the Ophthalmic
Research Group’s laboratories for a one-off visit lasting around 10-12 minutes. During this
visit, a UK-registered optometrist will take various measures from your eyes using a range of
validated equipment. All measures are non-invasive, and you will not require any drops during

the course of the visit. The following measures will be undertaken:

1. How far down a letter chart you are able to read with each eye (visual acuity).

2. The power of each eye, using an automatic machine (autorefractor). You will be required

to look at a target in the distance whilst this measurement is taken.

3. Imaging the ciliary muscle of the eye; this can be done safely and rapidly using a device
called an anterior segment optical coherence tomographer (AS-OCT). The AS-OCT uses a
special wavelength of light enabling the ciliary muscle inside the eye to be seen. You will look

at targets in different directions whilst the machine takes the images.

4. Measurement of the length of the eye and lens using a biometer device (Lenstar). You will

be required to concentrate on a small light whilst the readings are taken.

If you have a prescription, you will be supplied with disposable soft contact lenses to wear
during the appointment whilst measurements are taken. The wearing of contact lenses for a
short period of time is very unlikely to cause any problems, but we will check the health of

your eyes using a microscope before you leave the appointment.

Why have | been chosen to take part?
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You have been chosen because you are considered to be a healthy candidate, fitting into the
narrow age range the study requires. Individuals that do not have any eye diseases, previous

major eye surgery or health issues that affect the eye are invited to participate in this research.

Are there any potential risks in talking part in the study?

There are no known risks involved with the instruments or techniques listed above. Similarly,
there are minimal risks if you are to wear soft contact lenses for the duration of the study. All
measurements and procedures will be taken in accordance with the manufacturers’
guidelines by a GOC (General Optical Council- regulatory body in UK) registered Optometrist.
All techniques have been used successfully in previously-published research from our
laboratory.

Do | have to take part?
No, you do not have to participate if you do not wish to do so. You are free to withdraw at any
time from the project. Your decision to participate (or not) will not influence your ability to

participate in any future research, nor will it affect your studies at the university in any way.

Expenses and payments

You will be paid £10 as a thank you for participation in the study

Will my taking part in this study be kept confidential?

Privacy and confidentiality will be carefully protected. Your name will be turned into a code,
the details of which will be kept on a separate database which will only be accessed by the
investigators. Analysis of data by others, including the internal project examiner, will only be
undertaken in the coded format to prevent a breach of confidentiality. We cannot, however,

guarantee privacy or confidentiality.

What will happen to the results of the research study?

The researchers aim to publish the results of this project. However, there will be no reference
to any individual’'s performance in any publication. If you wish to receive copies of any
publications arising from the data, please let the investigator know, and these can be emailed

to you.

Who is organising and funding the research?
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The project is being organised and conducted by researchers from the Ophthalmic Research
Group at Aston University. The study has been funded by a UK College of Optometrists

postgraduate scholarship, for Richa Saigal.

Who has reviewed the study?
The research has been submitted and reviewed by Aston University Research Ethics

Committee.

Who do | contact if something goes wrong or | need further information?
Please contact the principal investigator, Dr Amy Sheppard (a.sheppard@aston.ac.uk or
0121 204 4208)

Who do | contact if | wish to make a complaint about the way in which the research is
conducted?

If you have any concerns about the way in which the study has been conducted, then you
should contact Secretary of the University Research Ethics Committee by email at:
j.g.walter@aston.ac.uk or telephone +44(0)121 204 4665.
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Patient Identification Number for this study:

CONSENT FORM

Title of Project: Ciliary muscle characteristics in refractive error and amblyopia

Name of Researcher:

Please initial box
1. | confirm that | have read and understand the information sheet dated March
2016 (version 3.0) for the above study. | have had the opportunity to consider the

information, ask questions, and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any time,

without giving any reason.

3. |l understand that relevant sections of any of my data collected during the study may be
looked at by responsible individuals from Aston University, where it is relevant to my
taking part in this research. | give my permission for these individuals to have access to

my data.

4. | agree to take part in the above study.

Name of Participant Date Signature

Researcher Date Signature

When completed, 1 for participant; 1 for researcher site file
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Patient Identification Number for this study:

CONSENT FORM

Title of Project: Ciliary muscle characteristics in refractive error and amblyopia

Name of Researcher:

Please initial box
1. | confirm that | have read and understand the information sheet dated March
2016 (version 3.0) for the above study. | have had the opportunity to consider the

information, ask questions, and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any time,

without giving any reason.

3. |l understand that relevant sections of any of my data collected during the study may be
looked at by responsible individuals from Aston University, where it is relevant to my
taking part in this research. | give my permission for these individuals to have access to

my data.

4. | agree to take part in the above study.

Name of Participant Date Signature

Researcher Date Signature

When completed, 1 for participant; 1 for researcher site file
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